-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchatyoutube_app.py
93 lines (65 loc) · 2.87 KB
/
chatyoutube_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# Create an app to chat with a YouTube video transcript
# Import modules
import os
from apikey import apikey
import streamlit as st
from langchain_community.chat_models.openai import ChatOpenAI
from langchain_community.document_loaders import TextLoader
from langchain_openai import OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain_community.document_loaders import YoutubeLoader
# Set API key
os.environ['OPENAI_API_KEY'] = apikey
# Define a function to clear the chat history from the session state
def clear_history():
if 'history' in st.session_state:
del st.session_state['history']
# Set title
st.title("Chat with a document")
# Ask the user to provide a YouTube video URL
youtube_url = st.text_input("Enter a YouTube video URL")
# Check if the user provided a YouTube video URL
if youtube_url:
# Load the YouTube video transcript as a text document
loader = YoutubeLoader.from_youtube_url(youtube_url)
documents = loader.load()
# Initialize the text splitter
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
# Split the document
chunks = text_splitter.split_documents(documents)
# Embed the chunks
embeddings = OpenAIEmbeddings()
# Initialize the vectorstore
vectorstore = Chroma.from_documents(chunks, embeddings)
# Initialize the LLM
llm = ChatOpenAI(model_name="gpt-4", temperature=0)
# Initialize the retriever
retriever = vectorstore.as_retriever()
# Define the conversational retrieval chain
crc = ConversationalRetrievalChain.from_llm(llm=llm, retriever=retriever)
# Set the conversational retrieval chain in the session state
st.session_state.crc = crc
# Get question from the user
question = st.text_input("Ask a question about the YouTube video:")
# Get the answer
if question:
# Add the conversational retrieval chain to the session state.
# Note: this is necessary because question is a new user input in the app, which is separated from the file upload button.
if 'crc' in st.session_state:
crc = st.session_state.crc
# Save chat history in the session state
if 'history' not in st.session_state:
st.session_state.history = []
# Run the conversational retrieval chain by passing the question and chat history
response = crc.run({
'question': question,
'chat_history': st.session_state.history})
# Add the question and answer to the chat history
st.session_state.history.append((question, response))
st.write(response)
# Display the answer
for prompts in st.session_state.history:
st.write("Question: " + prompts[0])
st.write("Answer: " + prompts[1])