@@ -50,6 +50,7 @@ eval_linear(grid, values, points) # 10000 vector
5050out = np.zeros(10000 )
5151eval_linear(grid, values, points, out) # 10000 vector
5252
53+ # # jitted, non-uniform multilinear interpolation
5354
5455# default calls extrapolate data by using the nearest value inside the grid
5556# other extrapolation options can be chosen among NEAREST, LINEAR, CONSTANT
@@ -140,9 +141,9 @@ This is for compatibility purpose only, until a new jittable model object is fou
140141from interpolation.splines import LinearSpline, CubicSpline
141142a = np.array([0.0 ,0.0 ,0.0 ]) # lower boundaries
142143b = np.array([1.0 ,1.0 ,1.0 ]) # upper boundaries
143- orders = np.array([50 ,50 ,50 ]) # 10 points along each dimension
144+ orders = np.array([50 ,50 ,50 ]) # 50 points along each dimension
144145values = np.random.random(orders) # values at each node of the grid
145- S = np.random.random((10 ^ 6 ,3 )) # coordinates at which to evaluate the splines
146+ S = np.random.random((10 ** 6 ,3 )) # coordinates at which to evaluate the splines
146147
147148# multilinear
148149lin = LinearSpline(a,b,orders,values)
0 commit comments