|
| 1 | +""" |
| 2 | +Function approximation using complete polynomials |
| 3 | +
|
| 4 | +@author : Spencer Lyon |
| 5 | +@date : 2016-01-21 17:06 |
| 6 | +
|
| 7 | +""" |
| 8 | +import numpy as np |
| 9 | +from scipy.linalg import lstsq |
| 10 | +from numba import jit |
| 11 | + |
| 12 | +# does not list monomials in the right order |
| 13 | +# |
| 14 | +# def complete_inds(n, d): |
| 15 | +# """ |
| 16 | +# Return all combinations of powers in an n dimensional d degree |
| 17 | +# complete polynomial. This will include a term for all 0th order |
| 18 | +# variables (i.e. a constant) |
| 19 | +# |
| 20 | +# Parameters |
| 21 | +# ---------- |
| 22 | +# n : int |
| 23 | +# The number of parameters in the polynomial |
| 24 | +# |
| 25 | +# d : int |
| 26 | +# The degree of the complete polynomials |
| 27 | +# |
| 28 | +# Returns |
| 29 | +# ------- |
| 30 | +# inds : filter |
| 31 | +# A python filter object that contains all the indices inside a |
| 32 | +# generator |
| 33 | +# |
| 34 | +# """ |
| 35 | +# i = itertools.product(*[range(d + 1) for i in range(n)]) |
| 36 | +# return filter(lambda x: sum(x) <= d, i) |
| 37 | + |
| 38 | + |
| 39 | +@jit(nopython=True) |
| 40 | +def n_complete(n, d): |
| 41 | + """ |
| 42 | + Return the number of terms in a complete polynomial of degree d in n |
| 43 | + variables |
| 44 | +
|
| 45 | + Parameters |
| 46 | + ---------- |
| 47 | + n : int |
| 48 | + The number of parameters in the polynomial |
| 49 | +
|
| 50 | + d : int |
| 51 | + The degree of the complete polynomials |
| 52 | +
|
| 53 | + Returns |
| 54 | + ------- |
| 55 | + m : int |
| 56 | + The number of terms in the polynomial |
| 57 | +
|
| 58 | + See Also |
| 59 | + -------- |
| 60 | + See `complete_inds` |
| 61 | +
|
| 62 | + """ |
| 63 | + out = 1 |
| 64 | + denom = 1 |
| 65 | + for i in range(d): |
| 66 | + tmp = 1 |
| 67 | + denom *= i + 1 |
| 68 | + for j in range(i + 1): |
| 69 | + tmp *= (n + j) |
| 70 | + |
| 71 | + # out += tmp // math.factorial(i + 1) |
| 72 | + out += tmp // denom |
| 73 | + return out |
| 74 | + |
| 75 | + |
| 76 | +def complete_polynomial(z, d): |
| 77 | + """ |
| 78 | + Construct basis matrix for complete polynomial of degree `d`, given |
| 79 | + input data `z`. |
| 80 | +
|
| 81 | + Parameters |
| 82 | + ---------- |
| 83 | + z : np.ndarray(size=(nvariables, nobservations)) |
| 84 | + The degree 1 realization of each variable. For example, if |
| 85 | + variables are `q`, `r`, and `s`, then `z` should be |
| 86 | + `z = np.row_stack([q, r, s])` |
| 87 | +
|
| 88 | + d : int |
| 89 | + An integer specifying the degree of the complete polynomial |
| 90 | +
|
| 91 | + Returns |
| 92 | + ------- |
| 93 | + out : np.ndarray(size=(ncomplete(nvariables, d), nobservations)) |
| 94 | + The basis matrix for a complete polynomial of degree d |
| 95 | +
|
| 96 | + """ |
| 97 | + # check inputs |
| 98 | + assert d >= 0, "d must be non-negative" |
| 99 | + z = np.asarray(z) |
| 100 | + |
| 101 | + # compute inds allocate space for output |
| 102 | + nvar, nobs = z.shape |
| 103 | + out = np.zeros((n_complete(nvar, d), nobs)) |
| 104 | + |
| 105 | + if d > 5: |
| 106 | + raise ValueError("Complete polynomial only implemeted up to degree 5") |
| 107 | + |
| 108 | + # populate out with jitted function |
| 109 | + _complete_poly_impl(z, d, out) |
| 110 | + |
| 111 | + return out |
| 112 | + |
| 113 | + |
| 114 | +@jit(nopython=True, cache=True) |
| 115 | +def _complete_poly_impl_vec(z, d, out): |
| 116 | + "out and z should be vectors" |
| 117 | + nvar = z.shape[0] |
| 118 | + |
| 119 | + out[0] = 1.0 |
| 120 | + |
| 121 | + # fill first order stuff |
| 122 | + if d >= 1: |
| 123 | + for i in range(1, nvar + 1): |
| 124 | + out[i] = z[i - 1] |
| 125 | + |
| 126 | + if d == 1: |
| 127 | + return |
| 128 | + |
| 129 | + # now we need to fill in row nvar and beyond |
| 130 | + ix = nvar |
| 131 | + if d == 2: |
| 132 | + for i1 in range(nvar): |
| 133 | + for i2 in range(i1, nvar): |
| 134 | + ix += 1 |
| 135 | + out[ix] = z[i1] * z[i2] |
| 136 | + |
| 137 | + return |
| 138 | + |
| 139 | + if d == 3: |
| 140 | + for i1 in range(nvar): |
| 141 | + for i2 in range(i1, nvar): |
| 142 | + ix += 1 |
| 143 | + out[ix] = z[i1] * z[i2] |
| 144 | + |
| 145 | + for i3 in range(i2, nvar): |
| 146 | + ix += 1 |
| 147 | + out[ix] = z[i1] * z[i2] * z[i3] |
| 148 | + |
| 149 | + return |
| 150 | + |
| 151 | + if d == 4: |
| 152 | + for i1 in range(nvar): |
| 153 | + for i2 in range(i1, nvar): |
| 154 | + ix += 1 |
| 155 | + out[ix] = z[i1] * z[i2] |
| 156 | + |
| 157 | + for i3 in range(i2, nvar): |
| 158 | + ix += 1 |
| 159 | + out[ix] = z[i1] * z[i2] * z[i3] |
| 160 | + |
| 161 | + for i4 in range(i3, nvar): |
| 162 | + ix += 1 |
| 163 | + out[ix] = z[i1] * z[i2] * z[i3] * z[i4] |
| 164 | + |
| 165 | + return |
| 166 | + |
| 167 | + if d == 5: |
| 168 | + for i1 in range(nvar): |
| 169 | + for i2 in range(i1, nvar): |
| 170 | + ix += 1 |
| 171 | + out[ix] = z[i1] * z[i2] |
| 172 | + |
| 173 | + for i3 in range(i2, nvar): |
| 174 | + ix += 1 |
| 175 | + out[ix] = z[i1] * z[i2] * z[i3] |
| 176 | + |
| 177 | + for i4 in range(i3, nvar): |
| 178 | + ix += 1 |
| 179 | + out[ix] = z[i1] * z[i2] * z[i3] * z[i4] |
| 180 | + |
| 181 | + for i5 in range(i4, nvar): |
| 182 | + ix += 1 |
| 183 | + out[ix] = z[i1] * z[i2] * z[i3] * z[i4] * z[i5] |
| 184 | + |
| 185 | + return |
| 186 | + |
| 187 | + |
| 188 | +@jit(nopython=True, cache=True) |
| 189 | +def _complete_poly_impl(z, d, out): |
| 190 | + nvar = z.shape[0] |
| 191 | + nobs = z.shape[1] |
| 192 | + |
| 193 | + for k in range(nobs): |
| 194 | + out[0, k] = 1.0 |
| 195 | + |
| 196 | + # fill first order stuff |
| 197 | + if d >= 1: |
| 198 | + for i in range(1, nvar + 1): |
| 199 | + for k in range(nobs): |
| 200 | + out[i, k] = z[i - 1, k] |
| 201 | + |
| 202 | + if d == 1: |
| 203 | + return |
| 204 | + |
| 205 | + # now we need to fill in row nvar and beyond |
| 206 | + ix = nvar |
| 207 | + if d == 2: |
| 208 | + for i1 in range(nvar): |
| 209 | + for i2 in range(i1, nvar): |
| 210 | + ix += 1 |
| 211 | + for k in range(nobs): |
| 212 | + out[ix, k] = z[i1, k] * z[i2, k] |
| 213 | + |
| 214 | + return |
| 215 | + |
| 216 | + if d == 3: |
| 217 | + for i1 in range(nvar): |
| 218 | + for i2 in range(i1, nvar): |
| 219 | + ix += 1 |
| 220 | + for k in range(nobs): |
| 221 | + out[ix, k] = z[i1, k] * z[i2, k] |
| 222 | + |
| 223 | + for i3 in range(i2, nvar): |
| 224 | + ix += 1 |
| 225 | + for k in range(nobs): |
| 226 | + out[ix, k] = z[i1, k] * z[i2, k] * z[i3, k] |
| 227 | + |
| 228 | + return |
| 229 | + |
| 230 | + if d == 4: |
| 231 | + for i1 in range(nvar): |
| 232 | + for i2 in range(i1, nvar): |
| 233 | + ix += 1 |
| 234 | + for k in range(nobs): |
| 235 | + out[ix, k] = z[i1, k] * z[i2, k] |
| 236 | + |
| 237 | + for i3 in range(i2, nvar): |
| 238 | + ix += 1 |
| 239 | + for k in range(nobs): |
| 240 | + out[ix, k] = z[i1, k] * z[i2, k] * z[i3, k] |
| 241 | + |
| 242 | + for i4 in range(i3, nvar): |
| 243 | + ix += 1 |
| 244 | + for k in range(nobs): |
| 245 | + out[ix, k] = (z[i1, k] * z[i2, k] * z[i3, k] * |
| 246 | + z[i4, k]) |
| 247 | + |
| 248 | + return |
| 249 | + |
| 250 | + if d == 5: |
| 251 | + for i1 in range(nvar): |
| 252 | + for i2 in range(i1, nvar): |
| 253 | + ix += 1 |
| 254 | + for k in range(nobs): |
| 255 | + out[ix, k] = z[i1, k] * z[i2, k] |
| 256 | + |
| 257 | + for i3 in range(i2, nvar): |
| 258 | + ix += 1 |
| 259 | + for k in range(nobs): |
| 260 | + out[ix, k] = z[i1, k] * z[i2, k] * z[i3, k] |
| 261 | + |
| 262 | + for i4 in range(i3, nvar): |
| 263 | + ix += 1 |
| 264 | + for k in range(nobs): |
| 265 | + out[ix, k] = (z[i1, k] * z[i2, k] * z[i3, k] * |
| 266 | + z[i4, k]) |
| 267 | + |
| 268 | + for i5 in range(i4, nvar): |
| 269 | + ix += 1 |
| 270 | + for k in range(nobs): |
| 271 | + out[ix, k] = (z[i1, k] * z[i2, k] * z[i3, k] * |
| 272 | + z[i4, k] * z[i5, k]) |
| 273 | + |
| 274 | + return |
| 275 | + |
| 276 | + |
| 277 | +class CompletePolynomial: |
| 278 | + |
| 279 | + def __init__(self, n, d): |
| 280 | + self.n = n |
| 281 | + self.d = d |
| 282 | + |
| 283 | + def fit_values(self, s, x): |
| 284 | + Phi = complete_polynomial(s.T, self.d).T |
| 285 | + self.Phi = Phi |
| 286 | + self.coefs = np.ascontiguousarray(lstsq(Phi, x)[0]) |
| 287 | + |
| 288 | + def __call__(self, s): |
| 289 | + |
| 290 | + Phi = complete_polynomial(s.T, self.d).T |
| 291 | + return np.dot(Phi, self.coefs) |
0 commit comments