Skip to content

Implement Real-time Product Detection and Recognition System with AR Overlay #602

@bunny1810

Description

@bunny1810

Project Overview

Building a Python-based computer vision application that performs real-time product detection and identification through webcam feed, with augmented reality (AR) product information overlay.

Core Features

  1. Real-time Video Capture and Processing

    • Implement webcam feed capture using OpenCV
    • Set up frame processing pipeline
    • Optimize frame rate and resolution handling
  2. Object Detection System

    • Integrate object detection model (options: YOLO, SSD, or Faster R-CNN)
    • Implement frame extraction for detected objects
    • Add bounding box drawing functionality
    • Setup confidence threshold controls
  3. Product Recognition

    • Implement visual recognition model integration (options):
      • Google Vision API
      • OpenAI CLIP
      • Custom-trained model
    • Add image preprocessing and normalization
    • Implement caching for frequently recognized products
  4. Product Information Retrieval

    • Design product database integration system
    • Implement API clients for:
      • Amazon Product API
      • SerpAPI
      • Custom product database
    • Add rate limiting and error handling
    • Implement async product data fetching
  5. AR Overlay System

    • Design overlay UI components
    • Implement real-time information display
    • Add interactive elements (clickable links)
    • Create smooth transition animations
  6. User Interface

    • Create main application window
    • Implement video feed display
    • Add product information panels
    • Create settings/configuration interface
    • Add user controls for:
      • Camera selection
      • Detection sensitivity
      • Display preferences

Technical Requirements

Dependencies

  • Python 3.8+
  • OpenCV (cv2)
  • UI Framework (choose one):
    • Tkinter
    • PyQt5
    • Streamlit
  • Machine Learning:
    • TensorFlow/PyTorch
    • Required model dependencies
  • API clients and utilities

System Requirements

  • Webcam access
  • GPU recommended for real-time processing
  • Internet connection for API calls
  • Sufficient storage for model files

Implementation Plan

  1. Phase 1: Core Setup

    • Set up project structure
    • Implement basic webcam capture
    • Create basic UI framework
    • Add configuration management
  2. Phase 2: Detection System

    • Integrate object detection model
    • Implement frame processing
    • Add basic overlay system
    • Set up object tracking
  3. Phase 3: Recognition and API

    • Implement product recognition
    • Set up API integrations
    • Create product database handler
    • Add caching system
  4. Phase 4: UI and AR

    • Complete UI implementation
    • Add AR overlay features
    • Implement interactive elements
    • Add user settings and controls
  5. Phase 5: Optimization

    • Performance optimization
    • Error handling
    • User experience improvements
    • Testing and documentation

Success Criteria

  • Smooth real-time video processing (minimum 15 FPS)
  • Accurate object detection (>85% confidence)
  • Product recognition accuracy >80%
  • UI response time <100ms
  • Stable AR overlay with no visible lag
  • Successful API integration with fallback handling

Additional Considerations

  • Privacy and data handling
  • Error logging and monitoring
  • Performance metrics tracking
  • User feedback collection
  • Documentation and setup guides

Future Enhancements

  • Multiple camera support
  • Custom product database integration
  • Offline mode capabilities
  • Mobile device support
  • Extended AR features

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions