-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathall_to_all.py
132 lines (112 loc) · 4.85 KB
/
all_to_all.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import torch
import sys, os, time
COMMS_BENCH_DIR = os.path.join(os.path.dirname(__file__), "../")
sys.path.append(COMMS_BENCH_DIR)
from communication.utils import *
from communication.constants import *
def timed_all_to_all(input, output, start_event, end_event, args):
if args.dist == 'torch':
import torch.distributed as dist
elif args.dist == 'deepspeed':
import deepspeed.comm as dist
sync_all()
# Warmups, establish connections, etc.
for i in range(args.warmups):
dist.all_to_all_single(output, input, async_op=args.async_op)
sync_all()
# time the actual comm op trials times and average it
start_event.record()
for i in range(args.trials):
dist.all_to_all_single(output, input, async_op=args.async_op)
end_event.record()
sync_all()
duration = start_event.elapsed_time(end_event) / 1000
# maintain and clean performance data
avg_duration = duration / args.trials
size = input.element_size() * input.nelement()
n = dist.get_world_size()
tput, busbw = get_bw('all_to_all', size, avg_duration, args)
tput_str, busbw_str, duration_str = get_metric_strings(args, tput, busbw, avg_duration)
desc = f'{input.nelement()}x{input.element_size()}'
if not args.raw:
size = convert_size(size)
print_rank_0(f"{size:<20} {desc:25s} {duration_str:20s} {tput_str:20s} {busbw_str:20s}")
def run_all_to_all(local_rank, args):
if args.dist == 'torch':
import torch.distributed as dist
elif args.dist == 'deepspeed':
import deepspeed.comm as dist
world_size = dist.get_world_size()
global_rank = dist.get_rank()
# Prepare benchmark header
print_header(args, 'all_to_all')
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
if args.scan:
M_LIST = []
for x in (2**p for p in range(1, args.maxsize)):
M_LIST.append(x)
sync_all()
# loop over various tensor sizes
for M in M_LIST:
global_rank = dist.get_rank()
try:
mat = torch.ones(world_size, M,
dtype=getattr(torch, args.dtype)).cuda(local_rank)
assert mat.numel() % world_size == 0, f"tensor cannot be divided in {world_size} chunks"
sync_all()
input = ((mat.mul_(float(global_rank))).view(-1))
output = (mat.clone().view(-1))
except RuntimeError as e:
if 'out of memory' in str(e):
if dist.get_rank() == 0:
print('WARNING: Ran out of GPU memory. Exiting comm op.')
sync_all()
break
else:
raise e
sync_all()
timed_all_to_all(input, output, start_event, end_event, args)
else:
# Send the biggest message size our GPUs can fit. If you're facing OOM errors, reduce the mem_factor
elements_per_gpu = max_numel(comm_op='all_to_all',
dtype=getattr(torch, args.dtype),
mem_factor=args.mem_factor,
local_rank=local_rank,
args=args)
try:
mat = torch.ones(elements_per_gpu, dtype=getattr(torch,
args.dtype)).cuda(local_rank)
assert mat.numel(
) % world_size == 0, f"tensor with {mat.numel()} elements cannot be divided in {world_size} chunks"
input = ((mat.mul_(float(global_rank))).view(-1))
# Delete original mat to avoid OOM
del mat
torch.cuda.empty_cache()
output = torch.zeros(elements_per_gpu,
dtype=getattr(torch, args.dtype)).cuda(local_rank)
except RuntimeError as e:
if 'out of memory' in str(e):
if dist.get_rank() == 0:
print('WARNING: Ran out of GPU memory. Try to reduce the --mem-factor argument!')
sync_all()
return
else:
raise e
sync_all()
if args.debug:
for i in range(world_size):
if i == global_rank:
print(f"Before AllToAll Input List at rank {global_rank}: {input}")
dist.barrier()
timed_all_to_all(input, output, start_event, end_event, args)
if args.debug:
for i in range(world_size):
if i == global_rank:
print(f"AllToAll Results at rank {global_rank}: {output}")
dist.barrier()
if __name__ == "__main__":
args = benchmark_parser().parse_args()
rank = args.local_rank
init_processes(local_rank=rank, args=args)
run_all_to_all(local_rank=rank, args=args)