-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathutils.py
232 lines (198 loc) · 8.75 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import torch
import os, sys
import math
import argparse
COMMS_BENCH_DIR = os.path.join(os.path.dirname(__file__), "../")
sys.path.append(COMMS_BENCH_DIR)
from .constants import *
global dist
def env2int(env_list, default=-1):
for e in env_list:
val = int(os.environ.get(e, -1))
if val >= 0: return val
return default
def init_torch_distributed(backend):
global dist
import torch.distributed as dist
# discover rank/size info from env
if 'MASTER_PORT' not in os.environ:
os.environ['MASTER_PORT'] = str(TORCH_DISTRIBUTED_DEFAULT_PORT)
if 'MASTER_ADDR' not in os.environ:
try:
from mpi4py import MPI
except ModuleNotFoundError:
print(
"Cannot import mpi4py and MASTER_ADDR not set. Please either install mpi4py or set the MASTER_ADDR on all ranks"
)
raise Exception
import subprocess
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
master_addr = None
if rank == 0:
hostname_cmd = ["hostname -I"]
result = subprocess.check_output(hostname_cmd, shell=True)
master_addr = result.decode('utf-8').split()[0]
master_addr = comm.bcast(master_addr, root=0)
os.environ['MASTER_ADDR'] = master_addr
local_rank = env2int(
['LOCAL_RANK', 'MPI_LOCALRANKID', 'OMPI_COMM_WORLD_LOCAL_RANK', 'MV2_COMM_WORLD_LOCAL_RANK', 'SLURM_LOCALID'])
if 'LOCAL_RANK' not in os.environ:
os.environ['LOCAL_RANK'] = str(local_rank)
rank = env2int(['RANK', 'MPI_RANKID', 'OMPI_COMM_WORLD_RANK', 'MV2_COMM_WORLD_RANK', 'SLURM_PROCID'])
if 'RANK' not in os.environ:
os.environ['RANK'] = str(rank)
world_size = env2int(['WORLD_SIZE', 'OMPI_COMM_WORLD_SIZE', 'MV2_COMM_WORLD_SIZE', 'SLURM_NPROCS'])
if 'WORLD_SIZE' not in os.environ:
os.environ['WORLD_SIZE'] = str(world_size)
torch.distributed.init_process_group(backend)
local_rank = int(os.environ['LOCAL_RANK'])
torch.cuda.set_device(local_rank)
def init_deepspeed_comm(backend):
global dist
import deepspeed
import deepspeed.comm as dist
deepspeed.init_distributed(dist_backend=backend)
local_rank = int(os.environ['LOCAL_RANK'])
torch.cuda.set_device(local_rank)
def init_processes(local_rank, args):
if args.dist == 'deepspeed':
init_deepspeed_comm(args.backend)
elif args.dist == 'torch':
init_torch_distributed(args.backend)
else:
print_rank_0(f"distributed framework {args.dist} not supported")
exit(0)
def print_rank_0(message):
if dist.get_rank() == 0:
print(message)
def print_header(args, comm_op):
if comm_op == 'pt2pt':
world_size = 2
else:
world_size = dist.get_world_size()
tput = f'Throughput ({args.bw_unit})'
busbw = f'BusBW ({args.bw_unit})'
header = f"\n---- Performance of {comm_op} on {world_size} devices ---------------------------------------------------------\n"
duration_str = 'Duration'
if args.raw:
duration_str += ' (us)'
header += f"{'Size (Bytes)':20s} {'Description':25s} {duration_str:20s} {tput:20s} {busbw:20s}\n"
header += "----------------------------------------------------------------------------------------------------"
print_rank_0(header)
def get_bw(comm_op, size, duration, args):
n = dist.get_world_size()
tput = 0
busbw = 0
if comm_op == "all_to_all":
tput = (size / duration)
busbw = (size / duration) * ((n - 1) / n)
elif comm_op == "all_gather":
size *= n
tput = (size / duration)
busbw = (size / duration) * ((n - 1) / n)
elif comm_op == "all_reduce":
tput = (size * 2 / duration)
busbw = (size / duration) * (2 * (n - 1) / n)
elif comm_op == "pt2pt" or comm_op == "broadcast":
tput = (size / duration)
busbw = tput
else:
print_rank_0("wrong comm_op specified")
exit(0)
if args.bw_unit == 'Gbps':
tput *= 8
busbw *= 8
return tput, busbw
def get_metric_strings(args, tput, busbw, duration):
duration_ms = duration * 1e3
duration_us = duration * 1e6
tput = f'{tput / 1e9:.3f}'
busbw = f'{busbw /1e9:.3f}'
if duration_us < 1e3 or args.raw:
duration = f'{duration_us:.3f}'
if not args.raw:
duration += ' us'
else:
duration = f'{duration_ms:.3f} ms'
return tput, busbw, duration
def sync_all():
torch.cuda.synchronize()
dist.barrier()
def max_numel(comm_op, dtype, mem_factor, local_rank, args):
dtype_size = _element_size(dtype)
max_memory_per_gpu = torch.cuda.get_device_properties(local_rank).total_memory * mem_factor
if comm_op == 'all_reduce' or comm_op == 'pt2pt' or comm_op == 'broadcast':
elements_per_gpu = int(max_memory_per_gpu // dtype_size)
elif comm_op == 'all_gather':
# all_gather performance is lower for non-powers of two, and the output buffer size scales with world size
# Therefore, divide by world size and round down to nearest power of 2
elements_per_gpu = int(max_memory_per_gpu // dtype_size // dist.get_world_size())
elements_per_gpu = int(pow(2, int(math.log(elements_per_gpu, 2))))
elif comm_op == 'all_to_all':
# Number of elements must be divisible by world_size
# all_to_all performance is lower for non-powers of two. Round down like all_gather.
elements_per_gpu = int(max_memory_per_gpu // dtype_size)
elements_per_gpu = int(dist.get_world_size() * round(elements_per_gpu / dist.get_world_size()))
elements_per_gpu = int(pow(2, int(math.log(elements_per_gpu, 2))))
else:
print(f"This communication operation: {comm_op} is not supported yet")
exit(0)
return elements_per_gpu
# Helper function to pretty-print message sizes
def convert_size(size_bytes):
if size_bytes == 0:
return "0B"
size_name = ("B", "KB", "MB", "GB", "TB", "PB", "EB", "ZB", "YB")
i = int(math.floor(math.log(size_bytes, 1024)))
p = math.pow(1024, i)
s = round(size_bytes / p, 2)
return "%s %s" % (s, size_name[i])
# Copied from torch. Need to add the func here for old torch compatibility.
def _element_size(dtype):
"""
Returns the element size for a dtype, in bytes
"""
if not isinstance(dtype, torch.dtype):
raise RuntimeError(f'expected torch.dtype, but got {type(dtype)}')
if dtype.is_complex:
return torch.finfo(dtype).bits >> 2
elif dtype.is_floating_point:
return torch.finfo(dtype).bits >> 3
elif dtype == torch.bool:
# NOTE: torch.bool is not supported in torch.iinfo()
return 1
else:
return torch.iinfo(dtype).bits >> 3
def benchmark_parser():
parser = argparse.ArgumentParser()
parser.add_argument("--local_rank", type=int)
parser.add_argument("--trials", type=int, default=DEFAULT_TRIALS, help='Number of timed iterations')
parser.add_argument("--warmups", type=int, default=DEFAULT_WARMUPS, help='Number of warmup (non-timed) iterations')
parser.add_argument("--maxsize", type=int, default=24, help='Max message size as a power of 2')
parser.add_argument("--async-op", action="store_true", help='Enables non-blocking communication')
parser.add_argument("--bw-unit", type=str, default=DEFAULT_UNIT, choices=['Gbps', 'GBps'])
parser.add_argument("--backend",
type=str,
default=DEFAULT_BACKEND,
choices=['nccl', 'ccl', 'mpi'],
help='Communication library to use')
parser.add_argument("--dist",
type=str,
default=DEFAULT_DIST,
choices=['deepspeed', 'torch'],
help='Distributed DL framework to use')
parser.add_argument("--scan", action="store_true", help='Enables scanning all message sizes')
parser.add_argument("--raw", action="store_true", help='Print the message size and latency without units')
parser.add_argument("--all-reduce", action="store_true", help='Run all_reduce')
parser.add_argument("--all-gather", action="store_true", help='Run all_gather')
parser.add_argument("--all-to-all", action="store_true", help='Run all_to_all')
parser.add_argument("--pt2pt", action="store_true", help='Run pt2pt')
parser.add_argument("--broadcast", action="store_true", help='Run broadcast')
parser.add_argument("--dtype", type=str, default=DEFAULT_TYPE, help='PyTorch tensor dtype')
parser.add_argument("--mem-factor",
type=float,
default=.3,
help='Proportion of max available GPU memory to use for single-size evals')
parser.add_argument("--debug", action="store_true", help='Enables all_to_all debug prints')
return parser