forked from OSU-NLP-Group/GrokkedTransformer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
197 lines (175 loc) · 10.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import logging
import argparse
import os
import json
from simpletransformers.seq2seq import Seq2SeqModel
from utils import read_data_source_target
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--data_dir", default=None, type=str, required=True, help="Input data dir. {train/valid/test}.json files for the task.")
parser.add_argument("--model_type", default='gpt2', type=str, help="lm type")
parser.add_argument("--model_name_or_path", default=None, type=str, required=True, help="lm name or path")
parser.add_argument("--init_weights", action="store_true", help="whether fresh init the weights of the model")
parser.add_argument("--add_tokens", action="store_true", help="whether add the tokens in vocab.json in data_dir to the vocabulary.")
parser.add_argument("--no_dropout", action="store_true", help="Whether disable dropout.")
parser.add_argument("--n_layer", default=None, type=int, help="number of layers, only used when init weight")
parser.add_argument("--n_head", default=None, type=int, help="number of heads, only used when init weight")
parser.add_argument("--n_inner", default=None, type=int, help="inner dimension of MLP")
parser.add_argument("--no_ln", action="store_true", help="Whether disable layernorm.")
parser.add_argument("--no_mlp", action="store_true", help="Whether disable mlp layers.")
parser.add_argument("--share_mlp", action="store_true", help="Whether share mlp weights across layers.")
parser.add_argument("--add_recurrence", action="store_true", help="Whether run the layers twice.")
parser.add_argument("--re_embed", action="store_true", help="Whether add re-embedding during recurrence.")
parser.add_argument("--re_embed_temp", default=1.0, type=float, help="softmax temperature for re-embedding")
parser.add_argument("--relation_mean_shift", action="store_true", help="Whether perform OOD relation mean shift w.r.t. ID relations in lm_head")
parser.add_argument("--add_memory", action="store_true", help="Whether add shared mlp memory.")
parser.add_argument("--memory_dim", default=1536, type=int, help="inner dimension of add shared mlp memory")
parser.add_argument("--fp16", action="store_true", help="whether use half-precision training")
parser.add_argument("--do_train", action="store_true", help="Whether run training.")
parser.add_argument("--do_eval", action="store_true", help="Whether run validation.")
parser.add_argument("--do_predict", action="store_true", help="Whether to run prediction on the test set.")
parser.add_argument("--overwrite_output_dir", action="store_true", help="Whether to overwrite on the existing output dir")
parser.add_argument("--save_best_model", action="store_true", help="Whether to save the best model on validation")
parser.add_argument("--use_multiprocessed_decoding", action="store_true", help="Whether to use multiprocess when decoding")
parser.add_argument("--save_model_every_epoch", action="store_true", help="Whether to save model every epoch")
parser.add_argument("--evaluate_during_training", action="store_true", help="Whether to eval model during training")
parser.add_argument("--predict_during_training", action="store_true", help="Whether to predict on test set during training")
parser.add_argument("--weight_decay", default=0.01, type=float, help="weight decay")
parser.add_argument("--warmup_steps", default=2000, type=int, help="Warmup step. 0 for using warmup ratio.")
parser.add_argument("--save_epoch_interval", default=0, type=int, help="Save checkpoint every X epochs. 0 for no saving")
parser.add_argument("--scheduler", default='linear_schedule_with_warmup', type=str, help="scheduler type")
parser.add_argument("--output_dir", default='output_dir/', type=str, help="The output directory where the model checkpoints will be written.")
parser.add_argument("--prediction_dir", default=None, type=str, help="The output directory where the predictions results will be written.")
parser.add_argument("--custom_test", default=None, type=str, help="Override the default test set (test.json)")
parser.add_argument("--save_step", default=0, type=int, help="Save checkpoint every X updates steps. 0 for no saving")
parser.add_argument("--save_step_dense", default=-1, type=int, help="If not -1, save via every save_step_dense_interval steps till specified")
parser.add_argument("--save_step_dense_interval", default=2000, type=int, help="")
parser.add_argument("--train_batch_size", default=16, type=int, help="Size of each train batch")
parser.add_argument("--eval_batch_size", default=16, type=int, help="Size of each eval/predict batch")
parser.add_argument("--gradient_accumulation_steps", default=1, type=int, help="gradient accumulation steps")
parser.add_argument("--learning_rate", default=4e-5, type=float, help="learning rate")
parser.add_argument("--max_steps", default=0, type=int, help="Number of train steps")
parser.add_argument("--num_train_epochs", default=20, type=int, help="Number of train epochs")
parser.add_argument('--dataloader_num_workers', default=0, type=int, help='the number of cpus used in collecting data in dataloader. Note that if it is large than cpu number, the program may be stuck')
parser.add_argument('--manual_seed', default=42, type=int, help='random seed')
parser.add_argument("--max_seq_length", default=None, type=int, help="Max input seq length")
parser.add_argument("--max_length", default=None, type=int, help="Max output seq length")
parser.add_argument("--max_gen_length", default=None, type=int, help="Max seq length appending during generation")
parser.add_argument("--block_size", default=None, type=int, help="block size")
parser.add_argument("--prediction_cutoff", default=None, type=int, help="if set, only predict on the first # of prediction examples")
# DDP configs:
parser.add_argument('--world-size', default=-1, type=int, help='number of nodes for distributed training')
parser.add_argument('--rank', default=-1, type=int, help='node rank for distributed training')
parser.add_argument('--dist-url', default='env://', type=str, help='url used to set up distributed training')
parser.add_argument('--dist-backend', default='nccl', type=str, help='distributed backend')
parser.add_argument('--local_rank', default=-1, type=int, help='local rank for distributed training')
parser.add_argument('--gpu', default=None, type=int)
args = parser.parse_args()
if (
os.path.exists(args.output_dir)
and os.listdir(args.output_dir)
and args.do_train
and not args.overwrite_output_dir
):
raise ValueError(
"Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
args.output_dir
)
)
train_sample_size = None
if args.do_train:
train_df, train_sample_size = read_data_source_target(os.path.join(args.data_dir, "train.json"), return_num=True)
else:
train_df = None
if args.do_eval or args.evaluate_during_training:
eval_df = read_data_source_target(os.path.join(args.data_dir, "valid.json"))
else:
eval_df = None
if args.do_predict or args.predict_during_training:
if args.custom_test:
test_df = read_data_source_target(os.path.join(args.data_dir, args.custom_test), return_json=True)
else:
test_df = read_data_source_target(os.path.join(args.data_dir, "test.json"), return_json=True)
else:
test_df = None
new_tokens = None
if args.add_tokens:
with open(os.path.join(args.data_dir, "vocab.json")) as f:
new_tokens = json.load(f)
model_args = {
"reprocess_input_data": True,
"overwrite_output_dir": args.overwrite_output_dir,
"max_seq_length": args.max_seq_length,
"max_length": args.max_length,
"max_gen_length": args.max_gen_length,
"block_size": args.block_size,
"train_batch_size": args.train_batch_size,
"eval_batch_size": args.eval_batch_size,
"gradient_accumulation_steps": args.gradient_accumulation_steps,
"learning_rate": args.learning_rate,
"num_train_epochs": args.num_train_epochs,
"save_eval_checkpoints": False,
"save_steps": args.save_step,
"use_multiprocessing": False,
"output_dir": args.output_dir,
"manual_seed": args.manual_seed,
"fp16": args.fp16,
"truncation": True,
"dataloader_num_workers":args.dataloader_num_workers,
"use_multiprocessed_decoding":args.use_multiprocessed_decoding,
"save_best_model": args.save_best_model,
"save_model_every_epoch": args.save_model_every_epoch,
"save_epoch_interval": args.save_epoch_interval,
"scheduler": args.scheduler,
"weight_decay": args.weight_decay,
"evaluate_during_training": args.evaluate_during_training,
"predict_during_training": args.predict_during_training,
"mlm": False,
"warmup_steps": args.warmup_steps,
"max_steps": args.max_steps,
"n_layer": args.n_layer,
"n_inner": args.n_inner,
"n_head": args.n_head,
"memory_dim": args.memory_dim,
}
ddp_args = {
"local_rank": args.local_rank,
"rank": args.rank,
"gpu": args.gpu,
"world_size": args.world_size,
"dist_url": args.dist_url,
"dist_backend": args.dist_backend,
}
# Initialize model
model = Seq2SeqModel(
model_type=args.model_type,
model_name=args.model_name_or_path,
args=model_args,
ddp_args=ddp_args,
new_tokens=new_tokens,
init_weights=args.init_weights,
no_dropout=args.no_dropout,
no_ln=args.no_ln,
no_mlp=args.no_mlp,
share_mlp=args.share_mlp,
add_memory=args.add_memory,
add_recurrence=args.add_recurrence,
re_embed=args.re_embed,
re_embed_temp=args.re_embed_temp,
relation_mean_shift=args.relation_mean_shift,
)
# Train the model
if args.do_train:
model.train_model(train_data=train_df, eval_data=eval_df, test_data=test_df, output_dir=args.output_dir,
save_step_dense=args.save_step_dense, save_step_dense_interval=args.save_step_dense_interval)
# Evaluate the model
if args.do_eval:
results = model.eval_model(eval_data=eval_df)
# Use the model for prediction
if args.do_predict:
if args.custom_test:
model.predict(pred_data=test_df, output_dir=args.prediction_dir, cutoff=args.prediction_cutoff, out_file=args.custom_test)
else:
model.predict(pred_data=test_df, output_dir=args.prediction_dir, cutoff=args.prediction_cutoff)
if __name__ == '__main__':
main()