-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathdata_processing.py
253 lines (239 loc) · 10.4 KB
/
data_processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import glob
import json
import os
import subprocess
import cv2
import numpy as np
from config.config import DataProcessingOptions
from utils.data_processing import compute_crop_radius, load_landmark_openface
from utils.deep_speech import DeepSpeech
def extract_audio(source_video_dir, res_audio_dir):
"""
extract audio files from videos
"""
if not os.path.exists(source_video_dir):
raise ("wrong path of video dir")
if not os.path.exists(res_audio_dir):
os.mkdir(res_audio_dir)
video_path_list = glob.glob(os.path.join(source_video_dir, "*.mp4"))
for video_path in video_path_list:
print("extract audio from video: {}".format(os.path.basename(video_path)))
audio_path = os.path.join(
res_audio_dir, os.path.basename(video_path).replace(".mp4", ".wav")
)
cmd = "ffmpeg -i {} -f wav -ar 16000 {}".format(video_path, audio_path)
subprocess.call(cmd, shell=True)
def extract_deep_speech(audio_dir, res_deep_speech_dir, deep_speech_model_path):
"""
extract deep speech feature
"""
if not os.path.exists(res_deep_speech_dir):
os.mkdir(res_deep_speech_dir)
DSModel = DeepSpeech(deep_speech_model_path)
wav_path_list = glob.glob(os.path.join(audio_dir, "*.wav"))
for wav_path in wav_path_list:
video_name = os.path.basename(wav_path).replace(".wav", "")
res_dp_path = os.path.join(res_deep_speech_dir, video_name + "_deepspeech.txt")
if os.path.exists(res_dp_path):
os.remove(res_dp_path)
print("extract deep speech feature from audio:{}".format(video_name))
ds_feature = DSModel.compute_audio_feature(wav_path)
np.savetxt(res_dp_path, ds_feature)
def extract_video_frame(source_video_dir, res_video_frame_dir):
"""
extract video frames from videos
"""
if not os.path.exists(source_video_dir):
raise ("wrong path of video dir")
if not os.path.exists(res_video_frame_dir):
os.mkdir(res_video_frame_dir)
video_path_list = glob.glob(os.path.join(source_video_dir, "*.mp4"))
for video_path in video_path_list:
video_name = os.path.basename(video_path)
frame_dir = os.path.join(res_video_frame_dir, video_name.replace(".mp4", ""))
if not os.path.exists(frame_dir):
os.makedirs(frame_dir)
print("extracting frames from {} ...".format(video_name))
videoCapture = cv2.VideoCapture(video_path)
fps = videoCapture.get(cv2.CAP_PROP_FPS)
if int(fps) != 25:
raise ("{} video is not in 25 fps".format(video_path))
frames = videoCapture.get(cv2.CAP_PROP_FRAME_COUNT)
for i in range(int(frames)):
ret, frame = videoCapture.read()
result_path = os.path.join(frame_dir, str(i).zfill(6) + ".jpg")
cv2.imwrite(result_path, frame)
def crop_face_according_openfaceLM(
openface_landmark_dir, video_frame_dir, res_crop_face_dir, clip_length
):
"""
crop face according to openface landmark
"""
if not os.path.exists(openface_landmark_dir):
raise ("wrong path of openface landmark dir")
if not os.path.exists(video_frame_dir):
raise ("wrong path of video frame dir")
if not os.path.exists(res_crop_face_dir):
os.mkdir(res_crop_face_dir)
landmark_openface_path_list = glob.glob(
os.path.join(openface_landmark_dir, "*.csv")
)
for landmark_openface_path in landmark_openface_path_list:
video_name = os.path.basename(landmark_openface_path).replace(".csv", "")
crop_face_video_dir = os.path.join(res_crop_face_dir, video_name)
if not os.path.exists(crop_face_video_dir):
os.makedirs(crop_face_video_dir)
print("cropping face from video: {} ...".format(video_name))
landmark_openface_data = load_landmark_openface(landmark_openface_path).astype(
np.int
)
frame_dir = os.path.join(video_frame_dir, video_name)
if not os.path.exists(frame_dir):
raise ("run last step to extract video frame")
if (
len(glob.glob(os.path.join(frame_dir, "*.jpg")))
!= landmark_openface_data.shape[0]
):
print(f"frames are {len(glob.glob(os.path.join(frame_dir, '*.jpg')))}")
print(f"landmarks are {landmark_openface_data.shape[0]}")
raise ("landmark length is different from frame length.")
frame_length = min(
len(glob.glob(os.path.join(frame_dir, "*.jpg"))),
landmark_openface_data.shape[0],
)
end_frame_index = list(range(clip_length, frame_length, clip_length))
video_clip_num = len(end_frame_index)
for i in range(video_clip_num):
first_image = cv2.imread(os.path.join(frame_dir, "000000.jpg"))
video_h, video_w = first_image.shape[0], first_image.shape[1]
crop_flag, radius_clip = compute_crop_radius(
(video_w, video_h),
landmark_openface_data[
end_frame_index[i] - clip_length : end_frame_index[i], :, :
],
)
if not crop_flag:
continue
radius_clip_1_4 = radius_clip // 4
print(
"cropping {}/{} clip from video:{}".format(
i, video_clip_num, video_name
)
)
res_face_clip_dir = os.path.join(crop_face_video_dir, str(i).zfill(6))
if not os.path.exists(res_face_clip_dir):
os.mkdir(res_face_clip_dir)
for frame_index in range(
end_frame_index[i] - clip_length, end_frame_index[i]
):
source_frame_path = os.path.join(
frame_dir, str(frame_index).zfill(6) + ".jpg"
)
source_frame_data = cv2.imread(source_frame_path)
frame_landmark = landmark_openface_data[frame_index, :, :]
crop_face_data = source_frame_data[
frame_landmark[29, 1]
- radius_clip : frame_landmark[29, 1]
+ radius_clip * 2
+ radius_clip_1_4,
frame_landmark[33, 0]
- radius_clip
- radius_clip_1_4 : frame_landmark[33, 0]
+ radius_clip
+ radius_clip_1_4,
:,
].copy()
res_crop_face_frame_path = os.path.join(
res_face_clip_dir, str(frame_index).zfill(6) + ".jpg"
)
if os.path.exists(res_crop_face_frame_path):
os.remove(res_crop_face_frame_path)
cv2.imwrite(res_crop_face_frame_path, crop_face_data)
def generate_training_json(crop_face_dir, deep_speech_dir, clip_length, res_json_path):
video_name_list = os.listdir(crop_face_dir)
video_name_list.sort()
res_data_dic = {}
for video_index, video_name in enumerate(video_name_list):
print(
"generate training json file :{} {}/{}".format(
video_name, video_index, len(video_name_list)
)
)
tem_dic = {}
deep_speech_feature_path = os.path.join(
deep_speech_dir, video_name + "_deepspeech.txt"
)
if not os.path.exists(deep_speech_feature_path):
raise ("wrong path of deep speech")
deep_speech_feature = np.loadtxt(deep_speech_feature_path)
video_clip_dir = os.path.join(crop_face_dir, video_name)
clip_name_list = os.listdir(video_clip_dir)
clip_name_list.sort()
video_clip_num = len(clip_name_list)
clip_data_list = []
for clip_index, clip_name in enumerate(clip_name_list):
tem_tem_dic = {}
clip_frame_dir = os.path.join(video_clip_dir, clip_name)
frame_path_list = glob.glob(os.path.join(clip_frame_dir, "*.jpg"))
frame_path_list.sort()
assert len(frame_path_list) == clip_length
start_index = int(float(clip_name) * clip_length)
assert (
int(float(os.path.basename(frame_path_list[0]).replace(".jpg", "")))
== start_index
)
frame_name_list = [
video_name + "/" + clip_name + "/" + os.path.basename(item)
for item in frame_path_list
]
deep_speech_list = deep_speech_feature[
start_index : start_index + clip_length, :
].tolist()
if len(frame_name_list) != len(deep_speech_list):
print(
" skip video: {}:{}/{} clip:{}:{}/{} because of different length: {} {}".format(
video_name,
video_index,
len(video_name_list),
clip_name,
clip_index,
len(clip_name_list),
len(frame_name_list),
len(deep_speech_list),
)
)
tem_tem_dic["frame_name_list"] = frame_name_list
tem_tem_dic["frame_path_list"] = frame_path_list
tem_tem_dic["deep_speech_list"] = deep_speech_list
clip_data_list.append(tem_tem_dic)
tem_dic["video_clip_num"] = video_clip_num
tem_dic["clip_data_list"] = clip_data_list
res_data_dic[video_name] = tem_dic
if os.path.exists(res_json_path):
os.remove(res_json_path)
with open(res_json_path, "w") as f:
json.dump(res_data_dic, f)
if __name__ == "__main__":
opt = DataProcessingOptions().parse_args()
# step1: extract video frames
if opt.extract_video_frame:
extract_video_frame(opt.source_video_dir, opt.video_frame_dir)
# step2: extract audio files
if opt.extract_audio:
extract_audio(opt.source_video_dir, opt.audio_dir)
# step3: extract deep speech features
if opt.extract_deep_speech:
extract_deep_speech(opt.audio_dir, opt.deep_speech_dir, opt.deep_speech_model)
# step4: crop face images
if opt.crop_face:
crop_face_according_openfaceLM(
opt.openface_landmark_dir,
opt.video_frame_dir,
opt.crop_face_dir,
opt.clip_length,
)
# step5: generate training json file
if opt.generate_training_json:
generate_training_json(
opt.crop_face_dir, opt.deep_speech_dir, opt.clip_length, opt.json_path
)