diff --git "a/Week12_\341\204\207\341\205\251\341\206\250\341\204\211\341\205\263\341\206\270\341\204\200\341\205\252\341\204\214\341\205\246_\341\204\200\341\205\265\341\206\267\341\204\216\341\205\242\341\204\213\341\205\247\341\206\274.ipynb" "b/Week12_\341\204\207\341\205\251\341\206\250\341\204\211\341\205\263\341\206\270\341\204\200\341\205\252\341\204\214\341\205\246_\341\204\200\341\205\265\341\206\267\341\204\216\341\205\242\341\204\213\341\205\247\341\206\274.ipynb" new file mode 100644 index 0000000..4eb450f --- /dev/null +++ "b/Week12_\341\204\207\341\205\251\341\206\250\341\204\211\341\205\263\341\206\270\341\204\200\341\205\252\341\204\214\341\205\246_\341\204\200\341\205\265\341\206\267\341\204\216\341\205\242\341\204\213\341\205\247\341\206\274.ipynb" @@ -0,0 +1,2811 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "8Gxy65cu8irm" + }, + "source": [ + "##**Text generation Experiment**\n", + "\n", + "- 이번 복습과제에는 GPT-2 모델을 사용한 텍스트 생생을 다룹니다. 🙂\n", + "- GPT-2는 약 40GB의 인터넷 텍스트 데이터로 훈련된 모델로 다음 단어 예측(next word prediction)을 목적으로 학습이 되었습니다\n", + "- Beam Search, Top-k sampling, Top-p sampling 과 같은 다양한 디코딩 기법들을 실험해보겠습니다." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "id": "_M2apVV-8cyb" + }, + "outputs": [], + "source": [ + "#reproducability을 위해 해당 코드를 실행해주세요\n", + "SEED = 34\n", + "#max number of words in output text\n", + "MAX_LEN = 70" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "id": "Kd6ZRQmG8gWL" + }, + "outputs": [], + "source": [ + "# 실험할 문장입니다.\n", + "input_sequence = \"I don't know about you, but there's only one thing I want to do after a long day of work\"" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 447, + "referenced_widgets": [ + "2d4f1219ef25408aa0725c0a49b9ea5e", + "f31d37c927fd425e996c43e725a663ca", + "6b16506a0f8b491a9a0cb64c66773ff6", + "abd181c4d3ed4eca9c5269d75775c833", + "ac9cad3163ca4f929351a83cbe2edeb4", + "5a438f5d61ec44e49989e5612e0c06da", + "81c2fbac07ad44ffb311b6ac66743ed7", + "89fa32bdca4a48e3ba414feedfcb04a2", + "60a4e1d50fd444e1ae57eab72271abca", + "4fd5dff2c25a4480a2174ae1d81034f2", + "73e5adfbe1534c4190c9b8c91a572086", + "2a6b2b09f17f49969b67e4620459bb23", + "c9f766dda0da4c0194c0ddcd0cd61919", + "52a7a4e16916470294f2e7eb1fffdffc", + "efa6f9fc9a3b48b1a420726468e5fd3b", + "5e81b02a5622493199f44d098a34d2d4", + "80ff4590a7ec4a7eafb72dc173e04e48", + "c29b119b2b8343e5b12e80792480ed99", + "57e3af88b7fc4ec094429df84d12122d", + "26f6ef105a964324a84800b82754bd93", + "d700bf4777044b609c302ce42d369e1c", + "f04b4cf625dc47f099f648251146b4bf", + "705d739638ac44818056709a166bdad1", + "c0ab53a39af24f068900f669db515a05", + "3b655421119a4d0e945bc4f5e38dab01", + "03cc758ab39a4a0b822c14cb46f433b2", + "c2f091c1b7bc4a6480388a4c585baf5b", + "5d6fbbc06ce049578d1c300767dfc5c6", + "21e7522ed55a40ef8d29142acc3d069d", + "c0ce81d32c0047968528dc89bbf3580b", + "d233c8c5fb8648a0a63aae44f92657a2", + "7d2890d7ce574771b28b0e595c8fe232", + "09f42b6f43b44205bf9730cd77cda528", + "d89a8e0780544add9746bf1ea2e673d9", + "3acec24844b34e09a016e64f26eafcf6", + "b4603ba94d6346c8b9e39f08d038c3ae", + "ab0e43b3c36943a5bd9ccf3f4a3c9ede", + "bbbfdacb13dd40c2aa1d6f3fd4c59ef7", + "e651f62916f24655b722ed452b1062e4", + "198f2dd8e7aa430cb14a09476867c950", + "f95cb57979074d0f91bf769d6d37cd90", + "5eb218303fb4438c9bb64d4440d030ef", + "41aa17ebc83e464c871a506f231eba30", + "a4ac57284b044e0a963a0d6c751e1858", + "03791febac134be9bcd6b378127fb7a5", + "d212d272ab1942a7a875799788da02df", + "3b4a076a5e1041388bf285d9e05061d2", + "df5b37307e2443d0a263966e1f91133b", + "ab66fec2dc584fd1a369bd4aa4c8ee9d", + "d0322248bf514595a619b2dbde524697", + "59148ba271f147599d5ad1a1a3ca8712", + "8d0dc89c154c4fec9d04f5794abd20f3", + "35f506c453dc4f0f9e42dae9d2487c7d", + "216a04bb3a4848dfaad2920b827b4b6e", + "127cffac102a48f9a0fa0ff6f111a5cf", + "cca618e303b34611a77bc54261f9c785", + "56b0c404027b4d8da66794d29a5f7696", + "30e77991e34b462ab4f369c70d6f7ebc", + "1c7e8cd2ced64a65807c95407deb0cb9", + "130853ac235e4a0a95ad94afa92eab44", + "6235c74c67304ad79649955b9bb56815", + "5ae64d63f72e4fa199526bbf5fbf20d6", + "690bd98f6dc9409e87d4466aed4485f6", + "b8646219a56344ef82985203817b6d24", + "09d272d68a564dea9537fa87e20247c1", + "94d886400a414791bf5ee907ff943def" + ] + }, + "id": "pEjO6IVs8gS0", + "outputId": "f99695d5-671d-4dc6-9a04-76e1193d0b83" + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "883036e8c13548dfa9b109e374b969c5", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "tokenizer_config.json: 0%| | 0.00/26.0 [00:00 즉, 각 타임스텝 𝑡마다 조건부 확률이 가장 높은 단어를 선택하는 것!\n", + "\n", + "\n", + "- 이 단순한 접근방식이 어떤 성능 차이를 보이는지 살펴봅시다." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ig-oWtIA8gIq", + "outputId": "0ce6a21d-f716-458a-9354-5be570396653" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Output:\n", + "----------------------------------------------------------------------------------------------------\n", + "I don't know about you, but there's only one thing I want to do after a long day of work: go to the gym.\n", + "\n", + "I'm not talking about the gym that's right next to my house. I'm talking about\n" + ] + } + ], + "source": [ + "context = \"I don't know about you, but there's only one thing I want to do after a long day of work\"\n", + "\n", + "# context를 encoder해주세요\n", + "input_ids = tokenizer.encode(context, return_tensors=\"pt\")\n", + "\n", + "# 텍스트 생성하기, 이때 output length가 (context length 포함) 50이 될 때까지\n", + "greedy_output = GPT2.generate(input_ids, max_length=50)\n", + "\n", + "# output sequences 출력하기\n", + "print(\"Output:\\n\" + 100 * '-')\n", + "print(tokenizer.decode(greedy_output[0], skip_special_tokens = True))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "gVj1neC__f2N" + }, + "source": [ + "💡**위 Greedy Search 식과 코드 결과를 보고 고려되는 주요 문제점을 해당 셀을 풀고 설명해주세요.**\n", + "\n", + "\n", + "---\n", + "\n", + "\n", + "- 지역 최적화(Local Optimum): 매 스텝 최대 확률만을 따르다 보니, 전체 문맥을 고려한 더 좋은 시퀀스를 놓치기 쉬움.\n", + "- 반복성·단조로움 : 동일한 확률 상위 토큰이 계속 선택되어, 텍스트가 획일적이고 예측 가능해짐." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "3EC0shCGAAQq" + }, + "source": [ + "### **Beam Search + N-Gram Penalty**\n", + "- Beam Search는 기본적으로 Greedy Search와 유사하지만, 모델이 각 시점에서 여러 개(num_beams)의 후보 경로를 동시에 추적한다는 점이 다릅니다\n", + " > 즉, 모델이 여러 대안을 비교하면서 텍스트를 생성할 수 있다는 점!\n", + "\n", + "\n", + "- 또한, n-gram 반복을 방지하기 위한 패널티도 적용할 수 있습니다.예를 들어 `no_repeat_ngram_size = 2`로 설정하면\n", + "동일한 2-그램이 두 번 등장하지 않도록 제한됩니다.\n", + "\n", + "- 그리고 `num_return_sequences = 5` 로 설정하면\n", + "5개의 beam 결과를 모두 출력하여 비교해볼 수 있습니다." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "l6OrEzA684Np", + "outputId": "392c9796-8cdb-4c9d-9f5a-32eae3462597" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Output:\n", + "----------------------------------------------------------------------------------------------------\n", + "0: I don't know about you, but there's only one thing I want to do after a long day of work, and that's to go home and watch a movie.\"\n", + "\n", + "\"I don't know about you, but there's only one\n", + "1: I don't know about you, but there's only one thing I want to do after a long day of work, and that's to go home and watch a movie.\"\n", + "\n", + "\"I don't know about you, but I don't want\n", + "2: I don't know about you, but there's only one thing I want to do after a long day of work, and that's to go home and watch a movie.\"\n", + "\n", + "\"I don't know about you, but I want to go\n", + "3: I don't know about you, but there's only one thing I want to do after a long day of work, and that's to go home and watch a movie.\"\n", + "\n", + "\"I don't know about you, but I'd like to\n", + "4: I don't know about you, but there's only one thing I want to do after a long day of work, and that's to go home and watch a movie.\"\n", + "\n", + "\"I don't know about you, but I don't think\n" + ] + } + ], + "source": [ + "# Beam Search를 사용하려면,단순히 generate 함수의 몇몇 파라미터만 변경하면 됩니다.\n", + "# num_beans를 설정해서 beam search decoding을 실행해주세요\n", + "beam_outputs = GPT2.generate(\n", + " input_ids, \n", + " max_length=50, \n", + " num_beams=5, \n", + " num_return_sequences=5, \n", + " early_stopping=True\n", + ")\n", + "\n", + "\n", + "print('')\n", + "print(\"Output:\\n\" + 100 * '-')\n", + "\n", + "# output sequences 출력하기\n", + "for i, beam_output in enumerate(beam_outputs):\n", + " print(\"{}: {}\".format(i, tokenizer.decode(beam_output, skip_special_tokens=True)))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "_VhLZdJlBVZk" + }, + "source": [ + "💡**아래 그래프는 Beam Search의 결과와 실제 인간의 말하기 방식 사이의 차이를 보여줍니다. 위 Beam Search 코드 결과와 아래 그래프를 보고 고려되는 주요 문제점을 해당 셀을 풀고 설명해주세요. (기재된 논문에서 힌트를 찾을 수 있습니다.)**\n", + "\n", + "\n", + "---\n", + "\n", + "\n", + "- Beam Search는 매 timestep마다 현재까지 누적 확률이 높은 상위 K개의 후보 집합만을 유지하며 다음 토큰을 선택하기 때문에, 확률이 낮아 보이지만 뒤쪽 문맥을 고려하면 더 자연스럽게 이어질 수 있는 토큰을 놓칠 가능성이 크다." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "aOBGUk2aAwQ-" + }, + "source": [ + "![image.png]()\n", + "\n", + "[출처] The Curious Case of Neural Text Degeneration, arXiv:1904.09751 (cs)\n", + "https://arxiv.org/abs/1904.09751" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "BcDagIp1BvFA" + }, + "source": [ + "### **Basic Sampling**\n", + "- 이 방식은 가장 확률이 높은 문장을 찾는 경로를 고집하지 않고, 각 시점에서 조건부 확률 분포에 따라 무작위로 다음 단어를 선택합니다.\n", + "\n", + "$w t​ ∼P(w∣w 1:t−1)$\n", + "- 하지만 이렇게 무작위성이 추가되면, 생성된 문장이 일관성이 떨어지고 혼란스러워질 수 있습니다.\n", + "- 그래서 무작위성을 제어하기 위해 temperature 파라미터를 도입할 수 있습니다. 이 파라미터는 확률이 높은 단어의 선택 가능성을 높이고, 확률이 낮은 단어는 선택될 가능성을 줄여줍니다." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "z6pXSH2RBuz8", + "outputId": "a4b7f4f2-ca61-4714-a194-2dce3b483ad0" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Output:\n", + "----------------------------------------------------------------------------------------------------\n", + "I don't know about you, but there's only one thing I want to do after a long day of work. I want to take a nice nap.\"\n", + "\n", + "I was a bit surprised. Now I was to have her fall asleep on me\n" + ] + } + ], + "source": [ + "# 샘플링을 구현하려면 do_sample = True만 설정하면 됩니다.\n", + "# temperature을 설정해주세요.\n", + "# 이때 top_k = 0으로 설정해주세요.\n", + "sample_output = GPT2.generate(\n", + " input_ids,\n", + " max_length=50,\n", + " do_sample=True,\n", + " temperature=0.7,\n", + " top_k=0\n", + ")\n", + "\n", + "# output sequences 출력하기\n", + "print(\"Output:\\n\" + 100 * '-')\n", + "print(tokenizer.decode(sample_output[0], skip_special_tokens = True))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8g2RrY7PFmjJ" + }, + "source": [ + "💡**temperature 파라미터가 어떤 매커니즘으로 무작위성을 제어하는지 해당 셀을 풀고 설명해주세요.**\n", + "\n", + "\n", + "---\n", + "\n", + "- Temperature는 로짓(logits)에 대한 스케일(scale)을 조정하여,\n", + "낮게 설정(T<1)하면 확률 분포가 더욱 뾰족(peaky) 해져서, 무작위성이 줄어들고, 높게 설정(T>1)하면 확률 분포가 평탄(flat) 해져서, 무작위성이 증가한다. 따라서 T값을 조정함으로써 샘플링 시의 불확실성을 조절할 수 있다.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "RzmrRsA8CmYs" + }, + "source": [ + "### **Top-k Sampling**\n", + "- Top-K 샘플링에서는 다음 단어 후보 중 확률이 가장 높은 상위 K개 단어만 선택하고,\n", + "전체 probability mass을 이 K개의 단어에만 분배합니다.\n", + "\n", + "> 즉, 확률이 높은 단어의 선택 확률을 높이고, 낮은 단어의 확률을 줄이는 방식이 아니라,아예 확률이 낮은 단어들을 완전히 제거하는 방식!" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "WA-og6IeD1BZ", + "outputId": "e279dbbc-c4e1-411a-ca49-8c0952000b61" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Output:\n", + "----------------------------------------------------------------------------------------------------\n", + "I don't know about you, but there's only one thing I want to do after a long day of work is to make more money! And in fact that's pretty much what happened just two weeks ago when I made the following calculation.\n", + " ...\n" + ] + } + ], + "source": [ + "# top_k 값을 설정해서, 조건부 확률 분포에서 고려할 상위 단어 개수(K)를 지정해주세요!\n", + "sample_output = GPT2.generate(\n", + " input_ids,\n", + " max_length=50,\n", + " do_sample=True,\n", + " top_k=50\n", + ")\n", + "\n", + "# output sequences 출력하기\n", + "print(\"Output:\\n\" + 100 * '-')\n", + "print(tokenizer.decode(sample_output[0], skip_special_tokens = True), '...')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "2CgUegJOAw6h" + }, + "source": [ + "### **Top-P Sampling(Nucleus Sampling)**\n", + "- Top-K 샘플링은 이전의 random sampling보다 더 일관된 텍스트를 생성하는 것으로 보입니다. 하지만 이보다 더나은 방법으로 Top-p sampling이 있습니다.\n", + "- Top-P 샘플링은 Top-K와 유사하지만,가장 확률이 높은 상위 K개 단어를 고르는 대신,누적 확률이 P 이상이 되는 최소한의 단어 집합을 선택합니다 그리고 전체 probability mass는 이 단어 집합에 재분배됩니다.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "GEhy8PgbAr2f", + "outputId": "aac06a08-21b7-4e78-a231-a4e29709b343" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Output:\n", + "----------------------------------------------------------------------------------------------------\n", + "I don't know about you, but there's only one thing I want to do after a long day of work.\n", + "\n", + "I want to eat a big meal and relax on the couch.\n", + "\n", + "I want to read a good book and just ...\n" + ] + } + ], + "source": [ + "# top_p 파라미터를 통해 only from 80% most likely words 만 sample 해주세요.\n", + "sample_output = GPT2.generate(\n", + " input_ids,\n", + " max_length=50,\n", + " do_sample=True,\n", + " top_p=0.8\n", + ")\n", + "\n", + "# output sequences 출력하기\n", + "print(\"Output:\\n\" + 100 * '-')\n", + "print(tokenizer.decode(sample_output[0], skip_special_tokens = True), '...')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "heGKePrAE46H" + }, + "source": [ + "### **Top-K + Top-P sampling**\n", + "- 둘을 동시에 사용하면, 확률이 매우 낮은 단어(이상한 단어)가 나올 가능성을 줄이면서도, 선택되는 단어 집합의 크기는 유동적으로 유지할 수 있습니다." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Q8-CnW76E3FI", + "outputId": "8d547cbd-53ac-4710-d81b-6162649eddcf" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Output:\n", + "----------------------------------------------------------------------------------------------------\n", + "0: I don't know about you, but there's only one thing I want to do after a long day of work: go to the beach. And I don't mean just a little bit of sand, I mean a whole lot of sand. I want to be out in the ocean. I want to go to the beach, and I want to get all of my sunburned out.\n", + "\n", + "So I bought a beach umbrella. It's made from a rubberized fabric that's easy to wash, and it's the perfect size for me. It's about the size of my hand, and I can't really get it all the way around to the front. I'm not sure why...\n", + "\n", + "1: I don't know about you, but there's only one thing I want to do after a long day of work: sit down and watch a movie. I've got a few favorites.\n", + "\n", + "1. The Good, the Bad, and the Ugly (1942)\n", + "\n", + "The Good, the Bad, and the Ugly is one of the most famous films of all time, and it's also one of the most underrated. It's a film about a group of misfits who are sent to a war-torn village in order to help out the local population. The Good, the Bad, and the Ugly is a film about the human condition, and it's also about...\n", + "\n", + "2: I don't know about you, but there's only one thing I want to do after a long day of work: go to a movie. I'm a big fan of the '80s, and the '90s, and the 2000s, and the 2010s. I'm a huge fan of the '70s, and the '80s, and the '90s.\n", + "\n", + "You know, I just watched a documentary on the '90s. I don't know what it's called, but it's about the '90s. It's called \"The Rise of the New Millennium.\" It's a great documentary. I just want to see a movie that's about...\n", + "\n", + "3: I don't know about you, but there's only one thing I want to do after a long day of work, and that's to watch the game on TV. I'm not the only one. I know a lot of people that watch the game, and they're all like, 'Man, I don't want to do this anymore. I don't want to do this anymore.' And I'm like, 'Well, that's not gonna happen. I'm gonna do this.'\"\n", + "\n", + "Brock's \"The Biggest Loser\" was canceled after the show's fourth season.\n", + "\n", + "Brock's final season of \"The Biggest Loser\" was cut short after the...\n", + "\n", + "4: I don't know about you, but there's only one thing I want to do after a long day of work, and that's to sit back and relax.\"\n", + "\n", + "\"Well, I guess that's a good thing,\" said Weiss, nodding. \"I'm glad you're here.\"\n", + "\n", + "\"Yeah, I know. I'm glad you're here.\"\n", + "\n", + "\"Yeah, I'm glad you're here.\"\n", + "\n", + "\"Yeah, I'm glad you're here.\"\n", + "\n", + "\"Yeah, I'm glad you're here.\"\n", + "\n", + "\"Yeah, I'm glad you're here.\"\n", + "\n", + "\"Yeah, I'm glad you're here.\"\n", + "\n", + "\"Yeah, I...\n", + "\n" + ] + } + ], + "source": [ + "# top_k와 top_p에 값을 지정하면 되고, temperature 파라미터도 함께 사용할 수 있습니다.\n", + "# 아래 코드를 완성해주세요.\n", + "# 이때 max_length= 2*MAX_LEN 으로 설정해주세요\n", + "sample_outputs = GPT2.generate(\n", + " input_ids,\n", + " max_length=2 * MAX_LEN,\n", + " do_sample=True,\n", + " top_k=50,\n", + " top_p=0.8,\n", + " temperature=0.7,\n", + " num_return_sequences=5\n", + ")\n", + "# output sequences 출력하기\n", + "print(\"Output:\\n\" + 100 * '-')\n", + "for i, sample_output in enumerate(sample_outputs):\n", + " print(\"{}: {}...\".format(i, tokenizer.decode(sample_output, skip_special_tokens = True)))\n", + " print('')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "s_TeJ5zXF6Ra" + }, + "source": [ + "💡**Top-k와 Top-p의 방식의 차이에 대해 설명해주세요**\n", + "\n", + "\n", + "---\n", + "## Top-k\n", + "\n", + "- 항상 확률 상위 *k*개의 토큰만 남기고 샘플링한다\n", + "\n", + "- **특징** \n", + " - 후보 집합 크기가 **고정**되어 있어, 계산량을 예측하기 쉽다 \n", + " - 그러나 확률이 낮더라도 상위 *k* 안에 들어가 있으면 샘플링 대상이 되므로, 문맥에 어울리지 않는 무작위성이 발생할 수 있다\n", + "\n", + "---\n", + "\n", + "## Top-p \n", + "\n", + "- 조건부 확률 분포를 내림차순으로 정렬한 뒤, 누적 확률이 *p*가 될 때까지 상위 토큰들을 모아 그 안에서 샘플링한다\n", + "\n", + "- **특징** \n", + " - 후보 집합 크기가 문맥에 따라 **동적으로 변동**한다 \n", + " - 문맥에 알맞은 토큰들만 고려하여 무작위성을 조절하기 때문에, 더 자연스럽고 안정적인 출력을 얻을 수 있다\n" + ] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.2" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "03791febac134be9bcd6b378127fb7a5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d212d272ab1942a7a875799788da02df", + "IPY_MODEL_3b4a076a5e1041388bf285d9e05061d2", + "IPY_MODEL_df5b37307e2443d0a263966e1f91133b" + ], + "layout": "IPY_MODEL_ab66fec2dc584fd1a369bd4aa4c8ee9d" + } + }, + "03cc758ab39a4a0b822c14cb46f433b2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7d2890d7ce574771b28b0e595c8fe232", + "placeholder": "​", + "style": "IPY_MODEL_09f42b6f43b44205bf9730cd77cda528", + "value": " 456k/456k [00:00<00:00, 20.9MB/s]" + } + }, + "09d272d68a564dea9537fa87e20247c1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "09f42b6f43b44205bf9730cd77cda528": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "127cffac102a48f9a0fa0ff6f111a5cf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "130853ac235e4a0a95ad94afa92eab44": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "198f2dd8e7aa430cb14a09476867c950": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "1c7e8cd2ced64a65807c95407deb0cb9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_09d272d68a564dea9537fa87e20247c1", + "placeholder": "​", + "style": "IPY_MODEL_94d886400a414791bf5ee907ff943def", + "value": " 3.25G/3.25G [00:44<00:00, 35.2MB/s]" + } + }, + "216a04bb3a4848dfaad2920b827b4b6e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "21e7522ed55a40ef8d29142acc3d069d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "26f6ef105a964324a84800b82754bd93": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2a6b2b09f17f49969b67e4620459bb23": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c9f766dda0da4c0194c0ddcd0cd61919", + "IPY_MODEL_52a7a4e16916470294f2e7eb1fffdffc", + "IPY_MODEL_efa6f9fc9a3b48b1a420726468e5fd3b" + ], + "layout": "IPY_MODEL_5e81b02a5622493199f44d098a34d2d4" + } + }, + "2d4f1219ef25408aa0725c0a49b9ea5e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f31d37c927fd425e996c43e725a663ca", + "IPY_MODEL_6b16506a0f8b491a9a0cb64c66773ff6", + "IPY_MODEL_abd181c4d3ed4eca9c5269d75775c833" + ], + "layout": "IPY_MODEL_ac9cad3163ca4f929351a83cbe2edeb4" + } + }, + "30e77991e34b462ab4f369c70d6f7ebc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_690bd98f6dc9409e87d4466aed4485f6", + "max": 3247159078, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_b8646219a56344ef82985203817b6d24", + "value": 3247159078 + } + }, + "35f506c453dc4f0f9e42dae9d2487c7d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3acec24844b34e09a016e64f26eafcf6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e651f62916f24655b722ed452b1062e4", + "placeholder": "​", + "style": "IPY_MODEL_198f2dd8e7aa430cb14a09476867c950", + "value": "tokenizer.json: 100%" + } + }, + "3b4a076a5e1041388bf285d9e05061d2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8d0dc89c154c4fec9d04f5794abd20f3", + "max": 666, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_35f506c453dc4f0f9e42dae9d2487c7d", + "value": 666 + } + }, + "3b655421119a4d0e945bc4f5e38dab01": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c0ce81d32c0047968528dc89bbf3580b", + "max": 456318, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_d233c8c5fb8648a0a63aae44f92657a2", + "value": 456318 + } + }, + "41aa17ebc83e464c871a506f231eba30": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4fd5dff2c25a4480a2174ae1d81034f2": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "52a7a4e16916470294f2e7eb1fffdffc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_57e3af88b7fc4ec094429df84d12122d", + "max": 1042301, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_26f6ef105a964324a84800b82754bd93", + "value": 1042301 + } + }, + "56b0c404027b4d8da66794d29a5f7696": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6235c74c67304ad79649955b9bb56815", + "placeholder": "​", + "style": "IPY_MODEL_5ae64d63f72e4fa199526bbf5fbf20d6", + "value": "model.safetensors: 100%" + } + }, + "57e3af88b7fc4ec094429df84d12122d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "59148ba271f147599d5ad1a1a3ca8712": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5a438f5d61ec44e49989e5612e0c06da": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5ae64d63f72e4fa199526bbf5fbf20d6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5d6fbbc06ce049578d1c300767dfc5c6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5e81b02a5622493199f44d098a34d2d4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5eb218303fb4438c9bb64d4440d030ef": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "60a4e1d50fd444e1ae57eab72271abca": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6235c74c67304ad79649955b9bb56815": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "690bd98f6dc9409e87d4466aed4485f6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6b16506a0f8b491a9a0cb64c66773ff6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_89fa32bdca4a48e3ba414feedfcb04a2", + "max": 26, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_60a4e1d50fd444e1ae57eab72271abca", + "value": 26 + } + }, + "705d739638ac44818056709a166bdad1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c0ab53a39af24f068900f669db515a05", + "IPY_MODEL_3b655421119a4d0e945bc4f5e38dab01", + "IPY_MODEL_03cc758ab39a4a0b822c14cb46f433b2" + ], + "layout": "IPY_MODEL_c2f091c1b7bc4a6480388a4c585baf5b" + } + }, + "73e5adfbe1534c4190c9b8c91a572086": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "7d2890d7ce574771b28b0e595c8fe232": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "80ff4590a7ec4a7eafb72dc173e04e48": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "81c2fbac07ad44ffb311b6ac66743ed7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "89fa32bdca4a48e3ba414feedfcb04a2": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8d0dc89c154c4fec9d04f5794abd20f3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "94d886400a414791bf5ee907ff943def": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a4ac57284b044e0a963a0d6c751e1858": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ab0e43b3c36943a5bd9ccf3f4a3c9ede": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_41aa17ebc83e464c871a506f231eba30", + "placeholder": "​", + "style": "IPY_MODEL_a4ac57284b044e0a963a0d6c751e1858", + "value": " 1.36M/1.36M [00:00<00:00, 34.4MB/s]" + } + }, + "ab66fec2dc584fd1a369bd4aa4c8ee9d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "abd181c4d3ed4eca9c5269d75775c833": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4fd5dff2c25a4480a2174ae1d81034f2", + "placeholder": "​", + "style": "IPY_MODEL_73e5adfbe1534c4190c9b8c91a572086", + "value": " 26.0/26.0 [00:00<00:00, 1.16kB/s]" + } + }, + "ac9cad3163ca4f929351a83cbe2edeb4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b4603ba94d6346c8b9e39f08d038c3ae": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_f95cb57979074d0f91bf769d6d37cd90", + "max": 1355256, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_5eb218303fb4438c9bb64d4440d030ef", + "value": 1355256 + } + }, + "b8646219a56344ef82985203817b6d24": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "bbbfdacb13dd40c2aa1d6f3fd4c59ef7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c0ab53a39af24f068900f669db515a05": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5d6fbbc06ce049578d1c300767dfc5c6", + "placeholder": "​", + "style": "IPY_MODEL_21e7522ed55a40ef8d29142acc3d069d", + "value": "merges.txt: 100%" + } + }, + "c0ce81d32c0047968528dc89bbf3580b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c29b119b2b8343e5b12e80792480ed99": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c2f091c1b7bc4a6480388a4c585baf5b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c9f766dda0da4c0194c0ddcd0cd61919": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_80ff4590a7ec4a7eafb72dc173e04e48", + "placeholder": "​", + "style": "IPY_MODEL_c29b119b2b8343e5b12e80792480ed99", + "value": "vocab.json: 100%" + } + }, + "cca618e303b34611a77bc54261f9c785": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_56b0c404027b4d8da66794d29a5f7696", + "IPY_MODEL_30e77991e34b462ab4f369c70d6f7ebc", + "IPY_MODEL_1c7e8cd2ced64a65807c95407deb0cb9" + ], + "layout": "IPY_MODEL_130853ac235e4a0a95ad94afa92eab44" + } + }, + "d0322248bf514595a619b2dbde524697": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d212d272ab1942a7a875799788da02df": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d0322248bf514595a619b2dbde524697", + "placeholder": "​", + "style": "IPY_MODEL_59148ba271f147599d5ad1a1a3ca8712", + "value": "config.json: 100%" + } + }, + "d233c8c5fb8648a0a63aae44f92657a2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d700bf4777044b609c302ce42d369e1c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d89a8e0780544add9746bf1ea2e673d9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3acec24844b34e09a016e64f26eafcf6", + "IPY_MODEL_b4603ba94d6346c8b9e39f08d038c3ae", + "IPY_MODEL_ab0e43b3c36943a5bd9ccf3f4a3c9ede" + ], + "layout": "IPY_MODEL_bbbfdacb13dd40c2aa1d6f3fd4c59ef7" + } + }, + "df5b37307e2443d0a263966e1f91133b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_216a04bb3a4848dfaad2920b827b4b6e", + "placeholder": "​", + "style": "IPY_MODEL_127cffac102a48f9a0fa0ff6f111a5cf", + "value": " 666/666 [00:00<00:00, 67.1kB/s]" + } + }, + "e651f62916f24655b722ed452b1062e4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "efa6f9fc9a3b48b1a420726468e5fd3b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d700bf4777044b609c302ce42d369e1c", + "placeholder": "​", + "style": "IPY_MODEL_f04b4cf625dc47f099f648251146b4bf", + "value": " 1.04M/1.04M [00:00<00:00, 12.3MB/s]" + } + }, + "f04b4cf625dc47f099f648251146b4bf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f31d37c927fd425e996c43e725a663ca": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5a438f5d61ec44e49989e5612e0c06da", + "placeholder": "​", + "style": "IPY_MODEL_81c2fbac07ad44ffb311b6ac66743ed7", + "value": "tokenizer_config.json: 100%" + } + }, + "f95cb57979074d0f91bf769d6d37cd90": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + } + } + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/[Week 12].pdf b/[Week 12].pdf new file mode 100644 index 0000000..d599794 Binary files /dev/null and b/[Week 12].pdf differ diff --git a/wk12.ipynb b/wk12.ipynb new file mode 100644 index 0000000..ace2cf4 --- /dev/null +++ b/wk12.ipynb @@ -0,0 +1,1129 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqgAAAGJCAYAAABGoMFSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAA9hAAAPYQGoP6dpAACOlUlEQVR4nO2dB3hURdfHJ7vplYSQhN6ldwQpIgJSRAXbiwpShQ8VFZCqAioCggqIoCgqyitNUFBAelU6SJUivSfUJCSk737PmbxbzmRLdpOwm+z/9zwX7rnnltnZTXL2zPzPeOn1er0AAAAAAADATdC4ugEAAAAAAACYgwAVAAAAAAC4FQhQAQAAAACAW4EAFQAAAAAAuBUIUAEAAAAAgFuBABUAAAAAALgVCFABAAAAAIBbgQAVAAAAAAC4FQhQAQAAAACAW4EAFYACwMvLS7z//vu5OrdChQqid+/ewh2gNlPbiyrUz9Tfzr5XAAAA7g8IUEGR54cffpBBiGHz9/cXDzzwgBg0aJCIi4u7L23YsWOHDILi4+NFUQn0zPtU7V9gn/Pnz8v++vTTT21+Wbh582aBteHYsWPyOdQWAABwJ7xd3QAA7hcffvihqFixokhNTRV//fWX+Oqrr8Qff/whjh49KgIDA/P1WSkpKcLb25sFqB988IEM7IoVK8bOPXnypNBoCt93RT8/P/Htt9/mOK7VakVhQn2vPAkKUOlz2bp16xyZZQAAcCWe+VsZeCSdOnUSjRs3lvuvvPKKKF68uJg6dar47bffxIsvvpivz3Iki0iBXmGEgroePXqIwg4yvgAA4H4UvrQNAPlEmzZt5P/nzp2T/2dmZorx48eLypUry6CRMkrvvPOOSEtLY9ft27dPdOjQQURGRoqAgACZle3bt6/VeY30//Dhw+U+nWsYCjcMq1qag3r27Fnx/PPPi4iICJndfeihh8SqVavYOVu2bJH3+fnnn8WECRNEmTJlZLDVtm1bcfr0aXbun3/+Ke9Xrlw5+drKli0rhgwZIrOH92N6xfbt28XQoUNFiRIlRFBQkHj66afFjRs3cpy/evVq8cgjj4iQkBARGhoqHnzwQbFgwQJ2zpIlS0SjRo1k39N7QEHylStXctxr+fLlonbt2rJP6P9ly5ZZbKM6B9UwtE59aMh4h4WFiT59+oh79+6xa6n/3nzzTdkOavNTTz0l21KQ81p3794tOnbsKNtEnw3qL+pfcy5cuCBee+01Ua1aNdlP9GWM3n/zoXx6b+gY8eijjxo/l/S5Mnwun3jiCWnTFzu6T506dYz+X3/9VdrUv/R+HDhwgLXh8OHDsv8qVaokz4mJiZE/J7du3WLnGfr7xIkT4j//+Y9836m9b731lhztAAB4JsigAo/lzJkz8n/6Y2jIqv7444/iueeeE2+//bYMBCZNmiSOHz9uDG6uX78u2rdvLwOtUaNGyeCF/ujTH2trPPPMM+Lff/8VCxcuFNOmTZPBDEH3sATNi23evLkMhij4ofZRuyj4Wbp0qQzuzPn444/lFIFhw4aJhIQEMWXKFNG9e3fZfvOgju736quvyvvt2bNHfPHFF+Ly5cvS5yyW5kf6+vrKIMOcN954Q4SHh4tx48bJ/po+fbqcA7x48WIWMFEAU6tWLTF69GjZtxT0rFmzRrz00kvGcyhQpMCV3hvqq88//1wGaHSuYfrEunXrxLPPPitq1qwpz6OgiK6jID63ULBEXyjo+r///ltOZ4iKihKTJ082nkMBGH1BePnll+WXiK1bt4rOnTs71If0vljqRzUYJjZt2iRHAiggpL6k933u3LnyyxZ9CWnSpIk8b+/evXJayQsvvCBfM/U5TWmhoXwa1qfAtlWrVvLzNWPGDPlFrEaNGvJaw/8EBenU9//3f/8nvwjQfNknn3xSzJ49W15DQTBBfUT9ZT5dZf369fKLFvU7Baf//POP+Oabb+T/u3btyiHGo+spKKZ7kZ/adefOHTFv3jyH+hMAUETQA1DEmTt3rp4+6hs2bNDfuHFDf+nSJf2iRYv0xYsX1wcEBOgvX76sP3jwoDznlVdeYdcOGzZMHt+0aZO0ly1bJu29e/fafCadM27cOKP9ySefyGPnzp3LcW758uX1vXr1MtqDBw+W5/7555/GY3fv3tVXrFhRX6FCBX1WVpY8tnnzZnlejRo19GlpacZzP//8c3n8yJEjxmP37t3L8dxJkybpvby89BcuXDAeozbn5tcCtZfOs7R16NAhR9+3a9dOr9PpjMeHDBmi12q1+vj4eGnT/yEhIfqmTZvqU1JS2LMM16Wnp+ujoqL0tWvXZuesXLlSPmPs2LHGY/Xr19eXLFnSeH9i3bp18jzqb1vvlaEP+vbty857+umn5WfGwP79++V59H6Z07t37xz3tAR9Fqz1oflGn1lDP1StWlX2r3lf0ntLn43HHnuMHVPZuXOnvN+8efOMx5YsWSKP0WdJhfqJfDt27DAeW7t2rTxGPzfmn5uvv/46x30stWHhwoXyvG3btuXo76eeeoqd+9prr8njhw4dstmPAICiCYb4gcfQrl07mbWk4W3KLAUHB8vMaOnSpaVYiqBhaHMok0oYhtcNGbqVK1eKjIyMAmkntYUyYS1btjQeo7YOGDBAZsIoA2YOZagoa2ng4Ycflv9T9soADc8aSE5Olhk7ytJSfKYOzeYWGralLJm6UUZXhdpunjGjNmZlZcmhaIKuu3v3rsxKq3NCDdfR1ArKYFPWzvwcylhWr17d+B5du3ZNHDx4UPTq1UsOgxt47LHHZEY1twwcOJDZ1GbKxCYmJkqbMruEIYtoni12BOobS/1IWVlz6DWdOnVKZjSpHfQe0kbvJ03r2LZtm9DpdDneb/qc0vlVqlSRn1/KBucW6q9mzZoZ7aZNm8r/KWNL00XU49Y+czRUT22lLDNhqQ2vv/66xX40/GwCADwLDPEDj2HWrFmyvBSJe6Kjo+X8PMNwJAVKtE9/xM2hoUn6o24IpGi+Hw0dk/KZhutpyLRr164yaMgvsRM9y/AH3xzD0Cv5aU6lAfNAgaChdIKGRw1cvHhRjB07Vvz+++/sOEHTApyB1PoU9OcGe200TLcwf10qhveA3jcVClCpMoP5eVWrVs1xHl2b2wDNVptpCoPhM0PTAMxRP0P2oHZa6kfD6zFAwSlBgbc16L2kdtLcWBoqp+F/mhObnSg2nZNb1D4wBPz0Jc/ScfPP1u3bt+XPyaJFi+QXC7WdKur7RXPBqX9RAgsAzwQBKvAYKCtpUPFbw16RevLTPFCaI7dixQqxdu1aOW/ys88+k8co03m/sVbWyRCUUKaSsocUMIwcOVIGcyRUosCF5lAasm6ubKM74m5tNrxPn3zyiahfv77FcwyfP8o+UnA6ePBgmQGlAJI+uzRy4Mj7ba0PctM3NKeU5sGSQJDaS22jZ5PAKzdtKMoLRgAA7IMAFQAhRPny5eUfTcpSmYtESIRDxfXJbw4NVdJG6nlSmZMoiTJFJLTK6x9behaJTVRI5WzwO8KRI0ekSIuEVj179jQep2Fkd4GyZQTVpLWWgTS8buobQwUGA3TM4Df8b8g4qufl92eGqkCYZ//UCgr53UeUvbWXuaYvUZRppS9O5sPs6kIRBRUEUiZ148aNMoNKmXsDlt4Tc595Npr6kfoX9VkB8EwwBxUAIcTjjz8u/yd1uTlUJ5UwKLPpD6+aQTNks9RyVOZQxpLIzUpS1BZS2e/cudN4jOYZkgKa/lg7Mo/SPNtl3m7aJ/W7u0CVEahMEw1Lq6WFDO2m7Dep6ElBbt7XVJqKKi0Y3qOSJUvK94QCcvOhZArI1fm7eYFKjRFffvklO07VEQoCUu5TkEpK+qSkpBx+87Jd9J6rn1NqF2XTnf1c5vUzZ+nnS52CY6kfqWoBAMDzQAYVACFEvXr1ZMaJgkD6Y01zTSlIpCCH5phSnUiCbApIqNQTBQsk7JkzZ47MahmCXGvBBfHuu+/KYVYfHx9ZrscQIJhDQiEqSUV/mKkMENVCpedSpu6XX35xeNUpGtKntlIZKhrWp7bSfdS5qI5CdWN/+ukniz7qH0uvzRrUJprTSxloKiFFc3ppLuWhQ4dkuSV6/dRnVOKJRGH0/tDiCoYyUxS4U11XAxToUsBKQjOagkHTGyjgoRJWloI7Z6D3lOYjU9BFIiRDmSnKVhdEdpLedyp1RZ8Leh3UDyTwo/d08+bNsg9p2glB9Uv/+9//yqF9+kJDX3Y2bNhgLKlmgAJ5CiapXymYp3nUlJ2mLwJ5gdpCZayo5BmJtKidVPrLUHPYEuSjUmo0BYDaS58t+hzQzyYAwPNAgArA/6A//lRUnGptkrqfBFJUj5PqTRowBK40nE/BEQUANLd1/vz5OcQy5lDQRYsAUPaP1N+GoWFLQRwJuGjuHs0XpaCKMop169aVwYejNTYJCuzoWgp2KXAjBTwFkFSHNC9//CmLqSrNDVh7bbbo16+fDIyoCgD1FbWbgmvzwJPmzFINTzqH+sdQ9J8CLPMlZCnIofqu7733nnwPKUCnOZm0apih0Hx+QDU66XNCXyjoM0ND71TblcRYBbFCFYnyKHij/pk5c6YMtun5JKqjWqUGKGinwJM+l/T5adGihQxQDVlfA3QtfSbpc0H9TxlWCnbzGqASNPWF5sJSZpQyqZQlp2x3qVKlLJ5P/UbTAegLGgkZ6fNJ820BAJ6JF9WacnUjAACgqEDloBo0aCAzgDQ3GdiGVpKiuao0RcGwiAUAAGAOKgAAOImlpWJpyJ+G42mIGwAAgHNgiB8AAJyE5lju379fzlGmYWkawqaNiu+rtUIBAADkHgSoAADgJLQaF1UHoDmhNB+UCtvTkDWJ4QAAABTSIX76RU5KV/ONRBEGaHI/LX9HylMq8kyKWRKmAACAO0ALINCKT1QlID09XdbuJFEdZVNB7v8OkBQC80+BJ0NLFVNlFxIRUiy0fPlyu9eQ4LNhw4ay+gbVjyaBrwqJFKnKCYk2SUxJIt/CgsvnoFK5FFo727CZL+9H6l1SH5Mal8q3XL16VTzzzDMubS8AAAAAQH5Cta6pqopaD9gaVCmFqrrQ9CISZtKqcVSmj1Y3NK+MMXToUPmlmZZ4pvtTJQ916WF3xaUqfvrmTN8SqHNVqCZfiRIlZKmS5557zriSDq3yQ2VWqOYgAAAAAEBRgjKoy5YtkzW4rUFl9latWiVX3zNANbapjjeVMiQoY0olDqkkHUHlDWluPJV/o3Ju7o7Lx6FoeTtKaVP6mdaMpnp8NI+LhAdU4Nl8ST8a/iefrQCVajOarzJDbwgNv9E0AaztDAAAABQOKH9Gi6FQjODoAiX5AU0zpKk7zrZdjTloKJ62/GDnzp05ljym7ChlUglqN8VRVAfaAPUhXWO+SqE749IAlaJ7mjNBRa1peJ9q4T388MPyG0FsbKzw9fVlxbcNRczJZw0KcOk+AAAAACj8XLp0SZQpU+a+B6cBIRFCZOYsJZcbSDejrlpHQ+00cpwfxMbGynjIHLITExNl+TtaKZAW3rB0Do1GFwZcGqCar7FMK+VQwFq+fHnx888/i4CAAKfuSd8WaM6F+VQByroO1JYVfl7Z38Ae2r6eXbOuaVtmf3Rtr3F/Q51HmO+/7/B1ttvX4W/+hIkLmF21ZXNmv7toLLO3nONrYDffscG43/PVycx39XO+lObKrqZvRsSC97LT+AZGP/YAsxfWfpjZmwby+4dFBhr3B88ewXw/jOave+K+7DXqDZzZcJ7Z016dwtuyYAyze0Tytnw7/U3jfjE/H+Z7+pWPmf1XrSvcr+Pzkh//if8C6HNiO7M3NuTv6UvjTKszpdwyrd1OrJu9g597lH92RpbltS7rbvyD2dcff4rZa4Z8xuwPV00w7vcux1/H7ocuMrvWcr6O+rXZzzI7qi9fdvTCOv6sSk+8x+xVP5iU5s++OZv53n3nJWZPnb2Z2a068BWo/t5/jdnFS4YwOz01g9mp9zKN+yVK83MvnjCtKU80acbLNW1be4jZ/3mej6bM/+9GZg8dxH9uPvn0Z+P+pDE9mG/EmO+YPWvyAGa/+jb/GZs/y7TKFfHCAP65//17Poz2ZB/T+73hJ/4z0fYl/rn9c/GHzH64G//dsWvJeGY3ffYdZu9dNpHZDz5t8h9YPon56j/Ff96PrOArONV5cjiz/1nJ/bWe4P4Tq7i/emeT/+QfnzJftceHMfvUau6v2skx/5k13F+5o8l/dq3yM9HhbWbb859XfqYqtM+9X/15LK9ca89/aT3/nVv2saG59ufl2tz4L2/g/jLthubKZ8+vz8oQWcd+FiEh/HfE/UBmTjNThE/tF4XQ8r9JdsnKEElHF8rAmpb9NZBf2VNPweVD/OZQtvSBBx6QSlhSx9IHhOZTmGdRScVPy/NZw1oKnYJTQ4AaGMw/7L6KVsz8AxWo0TKfTwBfvjEgiN/Ly5s/29ufnx+k5fcztMn4PLO2eWl9ebuC+b3stS04xPQ6CF/lWVq/QKtttXtvX/4Dq55v73Wr/WT+uoP8+b29vH1tPlujC7T5OtV+8PfibQkJMLXF248/K0A51/yzYemzo34e/NU+t9EvGh++NGaIP+8jL22mzc9Djs+L0lbVH2TWL+r7ob4OjQ//wugbEJzrzxKRJXiAqs3KsHquxjfZ5rPUtvgFqn7ej/45fkZN/gDld4Gtz6Ulf1AOv9rHIVbfA/Vzqb4/efWH2PCH2PlsFKQ/r/cOzYM/L9fi2a55tjzmwul5Xj7+FttkC/3//h7Sa1NfX34RExOTo6oR2fQ8SvDRUse0WTrHVgzlTrhcxW8OpcPPnDkjSpYsKRo1aiTX4t640ZQNOXnypLh48aKcqwoAAAAAUJB4abRObQVNs2bNWHxEUE1mQ3xEUyQpjjI/hzQ5ZBeWGMqlGdRhw4bJul80rE8lpGh+BkX8L774oggLCxP9+vWTw/URERHyWwEpz6hjoeAHAAAAQFGBEnQ0emxeRurgwYMy/qFpijR98cqVK2LevHnSP3DgQKnOHzFihOjbt6/YtGmTnB5Jyn4DFD/16tVLNG7cWDRp0kQuw0zlrPr06SMKAy4NUC9fviyD0Vu3bsmSUi1bthS7du2S+8S0adOk6owK9JMynxRqX375pSubDAAAAAAPwcvLiYyozvEM6r59+2RNUwND/6eloQCTxOQkJKcRZAMVK1aUwSjVi//888+liOzbb7+VcZKBbt26iRs3boixY8dKUVX9+vVlCSpVOOWuuDRAXbRokU0/lZ6iorW5LVxri4fLhIqg/33IYsb0Yr5XOlVm9q4HTcKXzTf4fLjfnwznN75+kpnDE24y+/AfK5n9yLcjmb2iFbcf97tk3NfruCjm32ieOd5+6x6zR7Tjoqhvd19gdoNQPn/uZoOSzN629rBx/0iCqVQX0aVBaWaX9qvP7N9+Ps7s65e42CiqThSz/VL4qjH7L5nEYn0bc7VmZipXQsafu8Ps4Hp8DmO6jpf2jQjgvywifLmdfMX0noWU4z+4SZk6fm9v2+K9O/d4SZIALZ9Fk57C55H6mb0nWWlcLeoTxJ+l13FBnZev7bakZ/F+UH/Jppm9NtWXks4/explbmW60i9eGj5HLCuL+zXKHDK92XukXqtT3j+tnfIyWuV69efGnt8Warsdxdb1jt7bkXYTBTlrr6hW7FM+Kg5TRLvFo/HSaoSXoqGwi97x2ZOtW7eWpams8YOFVaLomgMHDti876BBg+RWGHErkRQAAAAAgLugcWJOqUEkBfIGAlQAAAAAAAs4JXpCgJovIEAFAAAAALAAAlTX4VZlpgAAAAAAAEAGFQAAAADAAl4ajdwcwtHzgWcHqNU2rzGurDIpsjbzjbhxhNlzo+oY9/s/XY35NrTiS0DqFbVykzc+Z/bepb8ye1uUqYwE0aksX2Xin3dNyxlG1XqR+d5ZeYzZMYpK+6FArvIeuIMvldmvGVfixzTmS0j+9o1pmda4NK42f7FiBLODQtowOy7tv8xOuHqOP6tZFX79iXLM/vuCSZn/TkveTpXEy4nMDmvLVzFSCVcWAcmh4o+9ZdyPbFzLpoo/KZ3bKtcTefWDSlqu601X+tU3yLQqli6TVwDwCeWvS68ztVOeb0/Fr6jhVSVqqtlr0/j42lTxq9eaVwAgtEq1AnOVvry/t3V/XlX4vjnubft629UFbF+rU/x5VX3bwt69i6qSvoi+LFBIwRC/6/CYABUAAAAAwPEMqqMBKjKo+QECVAAAAACA/CrU74UMan6AABUAAAAAwBJarcOF+vVOrCQFcoI8NAAAAAAAcCuQQQUAAAAAyCeRlMNTAoBnB6it+n8lvHz85f6Zr7kSv9YbC5m9ffgjxv2Q975ivtmhNW0+Z+WrTZn9mLL2+uCvdzN796TnmT2934+ma7/n1QZWL9vF7JEhpnXcifiFM5l99SivEFCjD68gUK1CGLMzkhOM+0qBAFHBy6SyJzLLN2J2inJByq2rzA6rX5/Z4fHFeFsvmZ7tffu8zR/227f4mvUlIm2r+LWJscwOjODq97vXkkznFi/JfKmKGl1V8SsifXE7mSvx6yoK8wxFxe8XZnoPdXEZ/N5BxWwqzPU+tl93uvKe0JJ95tzLyLLax6qKX+NtR+WvSM6zlOoWvt7eVv32VPh5UelLvw25u/r+2VP5O3Jve35XqvBdOXSW18oHBVk5AQAVBKiuw2MCVAAAAAAAR6Av9uqXe/sXIUDNDxCgAgAAAADkU5kphwv7A4sgQAUAAAAAsACG+F0HwnwAAAAAAOBWIIMKAAAAAGABZFBdh8cEqH5hkULjk63eHhzcifniL/F15A+PmWzcHzNhC/N91YqvIR93kq+PfnVwd2b/MP4HZtd7/G1mJ4+ZzuxLKd8a999rx9ev/+mTL5ndomUZZh/69i9+b986zPZt9z6zvU79yWyt2dru6nr1ukMbmX261rP83oq0Nt2sIgDhXfMhZhc/cZvZZ4/GGfezLv/Lrw0IZnZsKldx1yjJqxUkK21RVfxB0Vz9nhyXbHpWZAzzpShq9MQ0RWGuPOtiUhqzg1UVf2oqvz4ku7IEobvCKwB4BfLXpaL38bP5S1FV8av+NLPXlsOXyV+36s9U/FpvZc16xa8JVNe811tV4edQ6Styd3sqfn2WUoHAxvUauxUARJ6wVwXAFnlV+dt63favzduzvVxYosCVzwZFDwSorsNjAlQAAAAAgIJe6pSuAXkHASoAAAAAgAW8nFjq1NHzgWUQoAIAAAAAWABlplwHehEAAAAAALgVyKACAAAAAFgAIinXgQAVAAAAAMACCFBdh8cEqPtnviBCQ7PL9kS0eJ35pn45htm9Bn9l3E++cYn5Gm5fzWzN/hXMHtP2HWaPe2w2swPCo5n99orjzG4bYSr1VPr4KpvllmoN7MLsyd1mMFtb13Qv4mBKCLNLr1jG7LAy1Y37D5zexHzX1vNyW3+FtGF2pFKWSi1pkxJRidmNKjJTHNm817iffjaJ+XyVckt3Mvi9q0bzfjmtlna6fIbZwdFBzL596o7JCIlkvnSzckjEzXvpNstM3U3m/gClX7LSUvj1Eaa26JQ+04QUE7bQ+wTmrcyUWSkorbcv86UofaxV+jRLKb+llvbRKf2mlnMy9/sp91bLRKllpFTs+r0KphSTM9ezElcib+WQ8loKCgBgH/rdZa8cXc6L8MOZH3hMgAoAAAAA4AheGi+5OXoNyDsIUAEAAAAALECjQ44u/oDFIvIHqPgBAAAAAFzMrFmzRIUKFYS/v79o2rSp2LNnj9VzW7dubQyezbfOnTsbz+ndu3cOf8eOHUVhARlUAAAAAAArw/WOzkHVOzHEv3jxYjF06FAxe/ZsGZxOnz5ddOjQQZw8eVJERUXlOP/XX38V6ekmzcOtW7dEvXr1xPPPP8/Oo4B07ty5RtvPjy+R7c4ggwoAAAAAYAGZedQ4uDkxxD916lTRv39/0adPH1GzZk0ZqAYGBorvv//e4vkREREiJibGuK1fv16erwaoFJCanxceHi4KCx6TQf2jVisR+D8V85OTTd8miBf3f8ns9/2KG/cfaPsM8z3y6Q5mD3qipU1V9x+DfmR28w/mMHv9su3MnjyktXH/8CR+brkH3+Ivqn17ZsamTmV2eIXazJ6z6wKze6w4xOzS7U1VAarGcTX7xS2nmL2uWiyznw3mKnCNogo/cyeN2Q3LcYX67Dtxxv07x28yX0B4Y2YnmanPicrhXM1+Tauo+K+dZ3ZQDH92QqrJnxVkeu+lzcXo4pYdFX9aSiaz/UL5t9WsdK7i9ytmqkCgy+D31gTyqgsqOh9/m/50VWmvrG5yz0ypryr8U9IVJb3Sp1nKe6Cq/DPSlIoEyvV6vd6qCl9Vwqsqf7Xagb3r1eyHXmdWvcDLQZV+jgoDtq+35y+sFNGXBazgyVMq8yKSSkxMzBEsWspgUiZ0//79YvTo0cZjGo1GtGvXTuzcuTNXz/zuu+/ECy+8IIKCeJWaLVu2yAwsBaZt2rQRH330kShenP+dc1fwewYAAAAAwMqXVGc2omzZsiIsLMy4TZo0yeIzbt68KbKyskR0NC9DGR0dLWJjeTLIEjRX9ejRo+KVV17JMbw/b948sXHjRjF58mSxdetW0alTJ/mswoDHZFABAAAAAO5XBvXSpUvG+usFOf/zu+++E3Xq1BFNmjRhxymjaoD8devWFZUrV5ZZ1bZt2wp3BxlUAAAAAIB8hoJT881agBoZGSm0Wq2IizNNdSPIpnmjtkhOThaLFi0S/fr1E/aoVKmSfNbp06dFYQABKgAAAACABRwWSDmRcfX19RWNGjWSQ/EGdDqdtJs1a2bz2iVLloi0tDTRo0cPu8+5fPmyVPuXLFlSFAYQoAIAAAAA2Fjq1NHNUajE1Jw5c8SPP/4ojh8/Ll599VWZHSVVP9GzZ08mojIf3u/atWsO4VNSUpIYPny42LVrlzh//rwMdrt06SKqVKkiy1cVBjxmDuqFe5nC3ytbvfuj31rmGzNgKbN/P73PuF8pnCuly7V+g9mjT7Zg9p+DmjN78md/Mvu/3eszu+TX3zK7+A8mJf68SQ8yX9+RNZm98Oh1Zsf487ezYoNqvG07LzK7wcnbzG45qrRxv7ymOvP9MYO/jjOnbzG7fDX+w+Hvz6sA7L6cwJ9Vjpe6SE82+W//e5X5gkrwIY4URZ1eNowPm0T4ckX63Yt82CS4dAlm3zZTrOsCbZfguKGo+P0VZXx6SgazfYN9mJ2pqPh9Q00VCPS6ZObTBJnmLlkiXSkxoCrxzVX6liorpJj5VV96Jr9WzQjolGerKv80Ha9moP7CNq8CYE+F76hfRWtDgqyq9HNca+fe9q635benjNYI2yfY+xNo6/5Y6cb9sPdZAq7BS5O9OXqNo3Tr1k3cuHFDjB07Vgqj6tevL9asWWMUTl28eFEq+82hGql//fWXWLduXY770ZSBw4cPy4A3Pj5elCpVSrRv316MHz++0NRC9ZgAFQAAAADAXZc6HTRokNwssWXLlhzHqlWrxkr2mRMQECDWruXJuMIGAlQAAAAAAAtQ0tLxlaQKrDkeBboRAAAAAAC4FcigAgAAAADkcx1UkDcQoAIAAAAAWJuD6miACsFbvuAxAerQvfNEaEj2uudvVjStOU+0i+Jr1xaf2N+4f+NuKvOVa8aXEru4cyWzA76czex63zZidvrM4cwOLfMAsyfvMinOr97jivCpTcowu81nfzF7YtUIZke3rsTsd8bOZfa/SWnMfrGhScUfFclXmTgzyVSfjbhx7jKzS7fgzwq6WI7Zf526weyX6kQxW5dpUsffPsWrCxSrxd8fRUAuogL5x7iEH1ezJykq/lKteCWFhAyTovxupu1fLLHx/PMQo6wTn5bC1ev+ShWIrDSu4vcrFmLc1+v4us16nwCbbUkzU8JbVvHb9qeYVS/Q+HAV/z0znyWVvrkK36LKX/F7K/1krsT39dbmTaVvR+WvqqPN/fZV+uK+obbblRTk31dX/unO6/uJsMPzMF+6NLfoEaDmCx4ToAIAAAAAOIQTQ/z39ZttEQYBKgAAAACABTAH1XVAxQ8AAAAAANwKZFABAAAAACzgzNKlzix1CnKCABUAAAAAwMUrSQEPDVCbfXVZaP2y1z2f254rzuv/NI/Zb5ZoadzXKp+z1bGPMbvrx3yt9a5f7GT2b+/w85dM4GvmNpr0PbO/X3zQuN8/gN9b9+sUZp/ezZXX9QY8wuyaNfia82/duMTsFEUO38B8GfqwNlaV7kRS3HlmR7/IqxWEZ5Vi9r9n7zA7IIFXATDn1tUkZpeIzq6+YA2/ZF4hICyCK+cTLycwu1wJU7UCIjnL9NoS0hQFufL+X7/LKx9U8eYnpKXwygt+oXzN46ybvAqANijCqopb52f7dacq75+XVlXxK2p2RalvruJXFf7pigpfo6jws8z6jPD1479KdMrye742VPz2VPj2/L5KhQEV9T00R1Xn6tRn2/lDY89vy20vyZLXv3GunL+VlwQSkk/AnfDSZG+OXgPyjscEqAAAAAAAjoAhftfhNnH+xx9/LNPigwcPNh5LTU0Vr7/+uihevLgIDg4Wzz77rIiL4zUtAQAAAAAKUsXv6AaKSIC6d+9e8fXXX4u6deuy40OGDBErVqwQS5YsEVu3bhVXr14VzzzzjMvaCQAAAAAAPCBATUpKEt27dxdz5swR4eGmSZAJCQniu+++E1OnThVt2rQRjRo1EnPnzhU7duwQu3btcmmbAQAAAOA5IilHN1AEAlQawu/cubNo164dO75//36RkZHBjlevXl2UK1dO7NzJhUjmpKWlicTERLYBAAAAADg7B9XRDRRykdSiRYvE33//LYf4VWJjY4Wvr68oVqwYOx4dHS191pg0aZL44IMPchy/sGez8PLOVjEnzlvMfE2n7WP2jIdMKu+rZ7j63OvDfvw1vDuH2Q8+NZLZ3pumMvvoyBXMnvU8n9ZQ67sfjPvtWpRhvj2TVzI7UVub2aHPj2G25hLPNGt9+druEb5cuS32me5/umZXfq3y85aawJXzvg1eZHb0+Xhmnz92ndm684eZ7e1vUqxfUdazr106jD9b+eHX3uHVCYKigph99xqvCuAdU47ZKeYq/lRFIa4862IiV+GH+Sjq95QUZvsX432ui01ntibEvHQCR6+8XzmU9oqKX/u/z7c1Fb96/T0zFb9GuTbNzJd9b0Xtrqr8A237bSnxVRV+DpW+WgEgS6lOoGQr1Ott/bGwpfDPDY6u0Z2vKn07r9v2tXl7tiszRMhOgfuJzIg6upIUPqOFO4N66dIl8dZbb4n58+cLf39eFigvjB49Wk4PMGz0HAAAAAAAR6Ev185soBBnUGkI//r166Jhw4bGY1lZWWLbtm1i5syZYu3atSI9PV3Ex8ezLCqp+GNiYqze18/PT24AAAAAAHlB40TAqUOAWrgD1LZt24ojR46wY3369JHzTEeOHCnKli0rfHx8xMaNG2V5KeLkyZPi4sWLolmzZi5qNQAAAAAAKLIBakhIiKhdm8+hDAoKkjVPDcf79esnhg4dKiIiIkRoaKh44403ZHD60EMPuajVAAAAAPAUnBmyRwbVA1aSmjZtmtBoNDKDSur8Dh06iC+//NLVzQIAAACAB4AA1XW4VYC6ZcsWZpN4atasWXLLKz9+OUwEBofI/S59JjJfRjJfq73qlnXG/eZXeIWBYXX7MHtsrUnMDo6pwOyX5x9kdl9FYV5m70/M9gsxrc1efzR/1gedeHUC74Z8rfYdSdmvz0ClRQuYHV6hMbNrn93M7Mu//WHcX+/XkvlK+fvYVAwnFKvM7GZVLzD78EZeUSD1xF1m+4dFGvdvpnMVfx1FxX9cUXVnXPyX2aFleD+c33yR2SIsipnpOpMa/npymk0V/91krsIPUCohZKbwigF+5XhbsjJUFT+vUmGO3ifQpgo/LVNvW6WvqPhVlX+KmV+r9GmWWWUDee8ca9brbSrlVb+fDSW+vV/+dv1ezqvd7anwHVXK56ggIJz/Q+XKv3Eurz8I7isQnVsHAarrcKsAFQAAAADAXaDv1t4OBpx6fMPLF9CNAAAAAADArUAGFQAAAADAAhjidx0IUAEAAAAA8qkOahYC1HwBASoAAAAAgAW0Xhqh1WgcvgbkHfQiAAAAAICLlzqlikUVKlSQFYyaNm0q9uzZY/XcH374QVZXMd/UZeP1er0YO3asKFmypAgICBDt2rUTp06dEoUFj8mglnx/gAj2yX65ZRu9znyVapRg9kNvrzTud+pYnfkahPBlVOeO+JXZry/9ndmff8LLSC2d2YvZO0bNZXaN5yYY92/U5ytm3U4fy+yoWi2YPXk9L7f01s8HmF2pXw9mV7tXmtmnV5uu/73yFeYbUox/8L39eYmrI9fvMfuhCqZyWcS0W1eZffNwHLODSrQ37idl8hJH1SN5aa5YH15OKfXCGWaHluNlpG6mnWV2Vkg0t80qIl1Xy0hp+Xe4lLuKP5z3S1Z6CrP9igXbLEOktVFmKsvb32YZqVSlnzTevBRYWg6/UmYq3azUk/I6s5Rr1TJUGWlKOSXlep1Spkr9hW3eD2oJKp3aRzaulc/O4Vee7cDfCvPyV9nPtn2+Pb+t8j15KUFl797ZfgwzuhP2SpoB98SZgNOZAHXx4sVyYaLZs2fL4HT69Omy9jutoBkVxf+mGaAFjMhv7Wd+ypQpYsaMGeLHH38UFStWFGPGjJH3PHbsWI5g1h1BBhUAAAAAwIVMnTpV9O/fXy75XrNmTRmoBgYGiu+//97qNRSQxsTEGLfo6GiWPaUg97333hNdunQRdevWFfPmzRNXr14Vy5cvF4UBBKgAAAAAAPk8xJ+YmMg2WhHTEunp6WL//v1yCN6ARqOR9s6dO622LSkpSZQvX16ULVtWBqH//POP0Xfu3DkRGxvL7hkWFiazs7bu6U4gQAUAAAAAsIDWy8upjaDAkYJCwzZpEl950sDNmzdFVlYWy4ASZFOQaYlq1arJ7Opvv/0mfvrpJ6HT6UTz5s3F5cuXpd9wnSP3dDc8Zg4qAAAAAEBBl5kyzIu/dOmSnCdqwM+Pa1jyQrNmzeRmgILTGjVqiK+//lqMHz9eFAUQoAIAAAAA5LNIioJT8wDVGpGRkUKr1Yq4OC4ejouLk3NLc4OPj49o0KCBOH36tLQN19E9SMVvfs/69euLwoDHBKjz/jgtfP9Xm+zoZa7MFzcuMDNk7jbTdSd2Md/nKz9k9rBWI5k9vWoSsz++wz9w5x8ewew/js9m9qc9Ghr3J2zi6vSGipL+TsuKzN6+/gizd19KZPbLrSsxu2oUrxKwftBC4/7FkzeZr2zLMswOTCnF7K1nbzG7V0NeISAjOYHZN45eY3ZYvUjjfoq5rF4IUSaUq89L+HE1e8JpXnEgpBwf0rhtplYn0nxDhDWuJaYyO0iRaafey2C2v6Liz0jh779/Mf4svS6e2V6BYVbboqr0VRV/UnqmbX9aph0Vv8mvUZT0mRmKEl7th8wMmyp/nY6/h77eWqtKfHsqfV/l3jkqIdhRR9tST9v7w2NPee2oMlttuy0KUvNdlAXleamRXoS7BTiJt8ZLbgVZqN/X11c0atRIbNy4UXTt2lUe0+l00h40aFDunpmVJY4cOSIef/xxaZNqn4JUuochIKV5sLt37xavvvqqKAx4TIAKAAAAAOCOUImpXr16icaNG4smTZpIBX5ycrJU9RM9e/YUpUuXNs5j/fDDD8VDDz0kqlSpIuLj48Unn3wiLly4IF555RWjwn/w4MHio48+ElWrVjWWmSpVqpQxCHZ3EKACAAAAALiwDmq3bt3EjRs3ZGF9EjHVr19frFmzxihyunjxolT2G7hz544sS0XnhoeHywzsjh07ZIkqAyNGjJBB7oABA2QQ27JlS3nPwlADlUCACgAAAADgwgCVoOF8a0P6W7ZsYfa0adPkZgvKolKmlbbCCAJUAAAAAAALyLJRjgaoRXmS930EASoAAAAAQD6XmQJ5w2MC1LFfdBOhAdk1yKY98KTNtbpHLP3duD9rJl8S7ON79ZjdvU0FZm/p+hqzq7Yfy+w+3+xmdnM9Vzs3v3fQuN/jD14BYPDzprklRKO2DzC7xSy+JNrVVK7iHljdpJQngmKeZfallHnG/dvnjjFf+a4NmF3sIH/2pqO88O+oB8OFLW6fus3s4h35mvXmRGj46hslAvma8wnneT+VaNGY2YmKGv5OqnUl9eXbKcyupSjI01K4ej1AUfFnJfHr/SK4Sl+v49UOdH5BVtuSksk/G15aroS/l6GsSe/DVfpJyvuv+u+ZVTdQVfo6pc9UlX9Wls4hpb0tv12Vvp1f9j52qgCo1+vM/Pb+juQ1E2Lr/oU5yWKv32y58bcbFCbu5xA/4GAlKQAAAAAA4FZ4TAYVAAAAAMARkEF1HQhQAQAAAAAsQLOfHA9QC6w5HgUCVAAAAAAACyCD6joQoAIAAAAAWAABquvwmAB1pP+TwjcgWyne2u8X5ruSwtXOI24vNe5Xer8X8705/Ctmj178I7PfiGrF7Om/NGX2Uz3HM/ujqhHMPjBionE/7kZV5qu6cASz9eKSTfVygFKeIOL8dmZfKduc2VlmovHkG/zeoa1fZnbMnXRmx57na8xrLpiqERBa3wBmX0rgyvw6FSKslujwvnWet6UMX98+/nwCs31K8soKSYoiPV5R8fuaPe9KAlfhN/exreL3V1T8unju14QVZ7Zed4qf72d6LV4artJPU5TyGsV/10yFL/3eXKWf4oBfa0el7+PnbVPlryrxdZn88+GrjHmZf1bVX+b6LN5uH431a3NT0kVjQy6fV5V+QSrx1XbneN12r3f+2VTgGwCAMlOuBDMlAAAAAACAW+ExGVQAAAAAAIdXknJwRAErSeUPCFABAAAAAKxMtbE1TcjaNSDvIEAFAAAAALCA1sJqk7m5BuQdBKgAAAAAAFYET46KniCSyh88JkBdMuMb4aXNVjHPvrSP+bz2LGf22PZjjPvj5nPl81uKorjv2uvMbhvB1eqtrm+2uZ56y8m8SsDkbjNM59atznz7fasxu/SP7zA7vEJtZtc7/xezry5ayOzVXfn9Svl7W1VhJ5dpyOzmNc8y+4ddB5idejSJ2f5hkbwtyjrxDcsXM+6fVhThmeeOMrtYBb6+/cW/LjPbK7IMs1MURfq1u2lWqx3cSkhlvjCzPiEyknnFAP+SvC1Zp9JtqvhV9H7BpnYrKv3UTL1tFX6Gsua84r+bxvtYVepnml2vUVIEWYpKX+utrmfP2+an3FtV4udQ6psp0tUKACr2shf21O62rrerlLerpLfdOFsjffgbZhlUEADuBOagug6o+AEAAAAAgFvhMRlUAAAAAABHgEjKdSBABQAAAACwMhXHUZEUpu/kDwhQAQAAAAAsAJGU68AcVAAAAAAAG0P8jm6eyJkzZ8R7770nXnzxRXH9eraAfPXq1eKff/5x6n4ek0F98tW+wicgWzFd9f+WMF/rDlz93jbEz7g/o/cc5nv3j9XM/uiD75n9zdxXmb31lcnMrvvyFGZfb9GU2bGpU437MfUeZb7Rv/M3edjcXcyuOvA/zK4vyjH72M8Hmb0o+gK/X2Sgcd/b36QuJ/Ze5ar8R6tyVf6sG5eYHbfnGrODozsy+7ayTvyT0aHG/Vs+XM2ecvoEs8MqRDP7xrpzzM4KK8ltLjgXV+5ypX6A2TrxKXe5Cj8g3J/ZmalKdYLipnYTugx+vTbEVJ3AElne/lZV/MlKH2m8fZh9Nz3TtspfuV5r9jpVpb6q8M9IU56tXKtTKiOoSnxV7a6q/HU2VPw5lPI5KgDo8qbyN6swoLysHNjz2/s7ZE/ln5d750XtjsxEweCugYmbNqtQQL9fHK6D6oH9vXXrVtGpUyfRokULsW3bNjFhwgQRFRUlDh06JL777juxdOlSh++J31MAAAAAAMBpRo0aJT766COxfv164etrSpa0adNG7NrFk2m5xWMyqAAAAAAAjgAVf+44cuSIWLBgQY7jlEW9efOmcAZkUAEAAAAALECLjDizeRrFihUT167xqX3EgQMHROnSpZ26JwJUAAAAAAALQCSVO1544QUxcuRIERsbK+fH63Q6sX37djFs2DDRs2dP4QwIUAEAAAAAbIikHN08jYkTJ4rq1auLsmXLiqSkJFGzZk3RqlUr0bx5c6nsdwbMQQUAAAAAsICXExnRvFTYKKz4+vqKOXPmiDFjxoijR4/KILVBgwaiatWqTt/TYwLUmd4bRKhPdkmfsnG8jM3P07Yze+4hUzmEsZWfYr5xWTuY/X56CrO3PNCN2StPmspGEfNeacLsQb8cYXavqCDjvl+nasy3+KdNzN52OZHZgzvy8x+o9Bizf/9jNrPPHeXzRSp3qGTcD75Vgb+Of+KYPaJ1RWZnJCcwO3b/FWYXbxXF7HQdr/1UoZhJ9Rfjz8st3fmXl7CKqFGe2TeUkkj3vHmJLJXLd/h7FmpW5uheklJmKjKA2RkpvMxUYFQ4s3WZvJ9EcHGbbUkxK/WklpmyV0YqKdW2/25qhuLnAyaZGaZneyulvVKT+bVqGSqd8v5pNYo/k/ejrVJS6nwttcyUj3JvFXt/PHxspDPsXevoHya17bYo6D9hRfVvZF6m9xXRLgFFhFmzZolPPvlEDpPXq1dPfPHFF6JJEx4zGKBgcN68eTIYJBo1aiSzmObn9+7dW/z444/sug4dOog1a9YU2GsoV66c3PIDjwlQAQAAAAAcwRnRkzMiqcWLF4uhQ4eK2bNni6ZNm4rp06fLYPLkyZNSCa+yZcsWWRCfhtD9/f3F5MmTRfv27WVRfHNRUseOHcXcuXONtp+fqc57ftK3b1+b/u+/5zXjcwMCVAAAAAAAC9D4jaPxpjPinqlTp4r+/fuLPn36SHv27Nli1apVMrCjGqMq8+fPZ/a3334rfvnlF7Fx40YmSqKANCYmRhQ0d+7cYXZGRobM7sbHx8taqM6AABUAAAAAwAJaLy+5OXoNkZjIp+FRsGgpg5meni72798vRo8ebTym0WhEu3btxM6dO3P1zHv37smgMCIiIkemlTKw4eHhMlCkYvrFi9ueeuYMy5Yty3GMlPyvvvqqqFy5slP3hIofAAAAACCfy0yRoj0sLMy4TZo0yeIzqJB9VlaWiI7my3hHR0fL+ai5gUo8lSpVSga15sP7NE+Vsqo0BcCwHCk9635AQTZNW5g2bZpT1yODCgAAAABgAa0me3P0GuLSpUsiNDS0wOd/fvzxx2LRokUyW0rzUc1rkxqoU6eOqFu3rsxm0nlt27YV94MzZ86IzEwu6M0tHhOgjhvwk/D1yv7U7InlyvmuH29h9sPzTN9Yfn2/I/N9/8xEZrec+B2zX/2U36u/vw+zS238nNk7V/C3YO67pue1bGNS1RNffci/hdxO59+Cnihv+mASXmV5cdyrqTOZfefsIWaXH2yaJxK1jT97+yGu+I9sYvsH7frp28wu1aOYzfNDU01LocWUCGS+2yf5N8hSHfl8ljsZvB9upnBbFXFfuHWP2c19TL99UpO5+jwwkrcl6zavAOBTjL8uve4qs3X+IcIWyWZKei8tV9InKe+vxseOil/xpyjXq0r9TLN+8/Xjn8OsLFO7iABfrdMqfXtKfV87v/3V9y+Hyl+5Xqc+28bwnL2hO3sje/bmpuVFSe/K4S27ryuP1wPgCVBwah6gWiMyMlJotVoRF8erwMTFxdmdP/rpp5/KAHXDhg0yALVFpUqV5LNOnz6d7wEqZUrN0ev1cmUpmkfbq1cvp+7pMQEqAAAAAIAj0JctR8vNOfoFjWqIUpkoGorv2rWrcf7mxo0bxaBBg6xeN2XKFDFhwgSxdu1a0bhxY7vPuXz5srh165YoWbKkyG9oSVN1eL9EiRLis88+s6vwd8sA9auvvpLb+fPnpV2rVi0xduxYOUeCSE1NFW+//bZMXaelpcmSC19++WWOeRoAAAAAAPmNxgmRlDNLnVIGkjKNFGhSLdPp06eL5ORko6qflPlUPsowj5XmlFK8tGDBAlGhQgXjXNXg4GC5UaH8Dz74QDz77LMyC0tD7SNGjBBVqlSRsVR+s3nz5ny/p0tFUmXKlJGpaVKv7du3TyrMunTpIut4EUOGDBErVqwQS5YskZN7r169Kp555hlXNhkAAAAAHkJeRFKO0K1bNzlcT0Fn/fr1xcGDB2VBfUNC7uLFi3LI3AAl90j9/9xzz8mMqGGjexA0ZeDw4cPiqaeeEg888IDo16+fzNL++eefBTYXNr9xaQb1ySefZDalqqnTd+3aJYPX7777Tn47MNTQomKzNWrUkP6HHnrIRa0GAAAAgCeQF5GUo9BwvrUh/S1buL7FMPJsjYCAADn0X5DQUqa5Xdb177//LrxzUKnsAWVKKaXdrFkzmVWlml7mJROqV68ul9CiumDWAlSaCkCbAbUOGQAAAABAbnAmI+pMBrUw0vV/82ULCpcHqEeOHJEBKc03pXkTVOy1Zs2aMr1NE4eLKSppe3XBaH4GzbtQ6d6uogj2yX65Fx7lKvC/9/A17kNavmXcP7fsE+b7d8wfzP69F1fNhczhqv5ufRswe+VbC5idWJoH2oH9vzTua7bOYz7/sBLMLhvAKwRkrjJdS+xrMpDZwYrSOuUO70fvZqbzq93kqv09m4/zZx25yGy/EF4c+PQpvpZ7i6qRzL6pSLO9Lh8z7odX5O/5nbPxzPYp9wCzk8zWsyeuK0p8X2XG+unbXMUfYaZQT0tOYr6gKK7Cz4pNZbY2XF2CzvQ6CL2i4vfScDV8ilnbtd6KSj+Nq/RV/11Fxe/ty4dt0hQVv9ab94PO7NmaQOu+3Kj0VSV+Dr96vVkdPvWXuXqtxo7iQFX5O/LHwt4fEo0dvXqeVPp2Xrf9651/dm6zHgWBK58NAMg/xo0bJwoSlxfqr1atmgxGd+/eLVccoEnCx47xP/KOQCsxJCQkGDeqQwYAAAAA4Cj0fcqZDRSBDCplSUlVRtAE3r1794rPP/9cThimCcC0jqt5FtVeXTBrS4kBAAAAADgCjaLYG0mxdI2nkZWVJVeM+vnnn6Wgi+I3c27f5rXRC0UGVYVqf9EcUgpWfXx8ZB0wAydPnpQvnKYEAAAAAAAUJMig5g6aWjl16lSZXKTRayqbRVWXqB7q+++/LwpdBpWG46nmKQmf7t69KxX7pFQj5RmtW0tlEehFRkREyNUY3njjDRmcQsEPAAAAgPtTqN/xazyN+fPnizlz5ojOnTvLgPTFF1+Uy6rS6lZUeenNN98sXAHq9evXZfFZqu1FASm9EApOH3vsMemndDFF31Ro1rxQPwAAAABAQeNMRtQTM6ixsbGiTp06cp8E75RFJZ544gkxZswYp+7p0gCV6pzawt/fX8yaNUtueSVhylyRGZytqF5TsynzZdRqyexmb3xu3P/Pu8uZ78/B/Nx/X+nG7HLNXmF22Um8YsCns+ozu1iL2sx+b91p4/5zU39ivorNRjH74ZQ/mX1wFq959nUGXy2iUxifm6tRVOH/Zprm+natz2d/bPjpN2bf3H6D2cHR9ZgdpyjQHy8fzuydvvyjl/6vaZm08Kq8WsG/e3lFgazwsvxanZ7ZFxNSbVYvSIxX/OH+xv2M5OwfKgMBFXm7M9NS7Kj4OTo/Oyr+DDMlvTevynBXUeFr7Kj8NYqSPl3xe/vwZ2ekZVn1ZWVxFb+f0oe6DKVSguq3p+I38/soMny9jj/bR2NH5a+q4c0qBFiqSWh+vS1ffuDKTIrbzd8CBYonBkXAfaDa9ZRspBFxypyuW7dONGzYUOqKnNUF4XcYAAAAAIANkZSjm6fx9NNPGzVDNB2TsqZVq1aVo+R9+/a9fxlUKqZPS5RSY2iYnoRN5pw9e9apxgAAAAAAuA3OiJ48Lz4VFBMaIKFU+fLlxY4dO2SQqq4aWqAB6iuvvCK2bt0qXn75Zbn2KwovAwAAAKCoAZFU7qDFlmhapgESs+dV0O5UgLp69WqxatUq0aJFizw9HAAAAADAXaFYEwlU+0RFRclh/h49eoi2bdtKgXteceoO4eHhsvQTAAAAAEBRhUSYzmyexo8//iju3bsnunTpIkqXLi0GDx4s9u3bd/8zqOPHjxdjx46VDQoMDBSFgRdf/VR4eWcrye5smsh8w1qPZvbmp4ON+wELdjFfyme8osCPZbkq/7sTrZg9eO0FZjcsZkqBy7Z04VUBliw1vaHF9lxlvtem1GJ2/WrtmP3loIXM3rv7MrNHtqnA7OAUbv9y1KSW79WwNPOl3Ill9pUd55hdvF4XZicpa7nXiOSfk4sB/KN38+C/xv2I6rxdsal/Mzs1iKv8Vc7fvsfsUG+uUL+XmMbsoKgg4366ouIPjOIqfr0untmasEibbbmXqbepxE9IzbTqS0zNYLbWN4DZSYrf25e/zkyzCgHyekWynpppul6rqOyzlPfPV+lDVe2uqvz1Dqj4tXZ+mdv7Za/VOH+9vXur7hwVBOzkSmx57f0Nszd1qqj+Dczr8GhBdosnBh4A5AbKntJGNe2XLl0qFi5cKIf4K1WqJLOqFDPelwzqZ599JuuVRkdHy7pXVErAfAMAAAAAKBJD/I6uJCU8l5CQENGnTx9ZZurw4cMiKChIrjJ13zKoXbt2dephAAAAAACFBY0TmTxPrt+Zmpoqfv/9d7ky6Jo1a2Qic/jw4fcvQB03bpxTDwMAAAAAKCzQVBtHKxV5YmWjtWvXyqB0+fLlwtvbWzz33HMyi9qqFZ/2eN9Wktq/f784fvy43K9Vq5Zo0KBBXm4HAAAAAOA2oMxU7qD5p7Ss6bx588Tjjz8ufHz4yoj3LUCl4vwvvPCC2LJliyhWLHt5zPj4ePHoo4+KRYsWiRIlbItYAAAAAADcHcO8Ukev8TTi4uLk/NP8xKkAlZaxIqXWP//8I2rUqCGPHTt2TPTq1Uu8+eabUr3lbpSu/7DQ+mUrydvsCGW+xWPbM/vbRj2M+y0/mMN8nceuY3YfRZ384D5+/nMLeBd/OLYTv18Xrsyv+Pls4/5VM4U3MbJmGLO9HniN2ef7zmP29eN7mf3Am/x1Rm+rwuw/dl8y7r9T2/YsmqtHrjO79NNc7a4SmXGL2SWLc0X6jaOmigPRbfmQwE1lTfob93i/KEu5i7M3kpnd1Je/lnt3FRV/tEnFn3U7hfn8orhKX5fJX7cugL8nKvcUJb2XlqvhE9JMr0Xrx/sk4R5X6Wt8uMr/rvL58PZRVfyKkt6PfxazsnRWVfa6zHR+rYP+HCp+ddF7M3yUdIN6rY9yrU7120lX2KoSYO8Pib1MSGH9Q2T3deXxegCAZxGSz8Gp0wEqTXzdsGGDMTglatasKWbNmiXat+dBEAAAAABAYQQiKdfhVICq0+kszi+gY+QDAAAAACjsQCTlOpwK9Nu0aSPeeustcfWqqZD8lStXxJAhQ+QSVwAAAAAARUUk5egGXBSgzpw5UyQmJooKFSqIypUry61ixYry2BdffJEPzQIAAAAAcJNi/Q5swIVD/GXLlhV///23nId64sQJeYzmo7Zrx5feBAAAAAAARb/MlJeFqQ10zN/fX1SpUkW89NJLolq1agVfB5Ue+thjj8kNAAAAAKCogTqouSMsLEwW6afSo40aNZLHKJFJJUhJPL948WIxefJksXHjRtGiRYv8DVBnzJghBgwYICNh2rcFlZpyN3YPeUCEhgTL/aAnP2W+P79/n9mXJpnKHK3pVob5gubOZXa/UXzO7U8Df2R2QoXmzM7qy6dAhK+bxezA4qWM+5WDeFmhez99zOztrYcwO8yHz9hIuRPLbO2jQ5ndMOk8szet+tu4n7H/JPP5h/Hatif/5WWGOtSJYfZVpeyQOH+QmZHVijP75klTGSqfirz0VlImF95dSuBlogKUMkQnrycx+wmlvFJqYgKzg0uaSkVlXOUlqrTFTZUqsjnGLF0gL6/lpeGlnpKUMlNab/6eJpiVilJ98UqZKW9fP2an5CgzxfshUynPFRjsa9Uf4Mvbrcvg72+AUsIqRxkptcxUFvdrlG/W5td72yhBZamMmIqte9vza+wMyOW1DJXtZ+ft3vZwpVADIhFQVIBIKnfExMTIDClNAdVosn+7kWie9EpUgopq5A8cOFCMHDlS/PXXX/kboE6bNk10795dBqi0b+uNcccAFQAAAADAEZBBzR3fffed2L59uzE4JWif6uY3b95cTJw4UQwaNEg8/PDD+S+SOnfunChevLhx39p29uzZXD8cAAAAAKCoCKTyIpSiWvIkPqdEYNOmTcWePXtsnr9kyRJRvXp1eX6dOnXEH3/8wfx6vV6MHTtWlCxZUgQEBEid0KlTp0RBkJmZadQkmUPHsv43okbtdCS77JSK/8MPPxT37t3LcTwlJUX6AAAAAAAKOzRNx5nNUWiO5tChQ8W4cePk3M169eqJDh06yKXlLbFjxw7x4osvin79+okDBw6Irl27yu3o0aPGc6ZMmSKnZM6ePVvs3r1bBAUFyXumpqaK/Obll1+WbaERdhrCp4326VjPnj3lOVu3bhW1avEpfPkeoH7wwQciKYnP8yMoaCUfAAAAAADIHVOnThX9+/cXffr0kStzzp49WwQGBorvv//e4vmff/656Nixoxg+fLisojR+/HjRsGFDOQfUkD2dPn26eO+990SXLl1E3bp1xbx582T9ehIz5TcUjA4ePFgGxa1atZIb7VN9fHptBImlaC5qgQao9MItpWkPHTokIiIinLklAAAAAIBbQaGOMxtBteHNt7Q0LvA1kJ6eLvbv389KdWo0Gmnv3LnT4jV0XC3tSdlRw/k05TI2NpadQ0p7mjpg7Z55QavVinfffVdcu3ZNKvdpo/133nlH+ohy5cqJMmW48DzfykyFh4cbFW0PPPAAC1JpjgFlVUml5Y7Mavgf4e+V3UkfrFjFfP83hCvpY39+y7i/pfVzzNfo5SnMzvy/psz++/3azC794OPM7vHfA8weNm0hs+sMzP6mQbQL5vNPdn+6ltmfpfF7vx0ZxOwv/LOrFhj464ae2S81LsvsX2fPN+5fXX+N+cLKdmT21T+5grxXBa7K36Qo55MP7GJ2idr8Q3pkx2XjfmbxCsyXruPtPnOHTy8JVhTkd2+ncH+JQGZn3OMq/sCaxa2q170jeXUClUxf3scaRYl/N40ryrW+/sxOSDMp9bW+AcyXlKaq9LmSPjNDubfSDxnKszWKWl6XZaowEKio+FUlvJ9yb53iD7BzvY8ixdebLYmsqvTtqvCVCgF2igDY9NtV6eex7Lat++dV6Yv1vvMfZ4Zm7xdu3LQijRcl5PR6h68x1Iw3h4bv33+fVw0ibt68KWOo6Ohodjw6OtrivE6Cgk9L59Nxg99wzNo5BUVoaGi+3MehAJXSxZQ97du3rxzKp2jcgK+vr5zc26xZs3xpGAAAAACAS9HrsjdHr6GSiJcusWDNz4+XCixKxMXFiWHDhsk6pzRvlmJFcwxCqQILUHv16iX/p2VNqWyAj4+Pww8EAAAAACgMeOl1cnP0GoKC09xkEyMjI+UwOAV55sTFxcn6opag47bON/xPx0jFb35O/fr1RX7Tu3dvcfHiRTFmzBj5vPyoBZvrAJXmTxg6ukGDBlKxT1tBpncBAAAAAApjBjW30Ag0rb5E2UdS4huK3G/cuFHWDrUEjVaTn4RJBtavX28cxaZEIgWpdI4hIKU4jtT8r776qshvSLX/559/5mvw6+3I/FOa8BoVFSWXsrIUHRvEU86kcgEAAAAAPBEqMUWj1I0bNxZNmjSRUyqTk5Olqp+gUk2lS5cWkyZNkjat0PTII4+Izz77THTu3Fmq4/ft2ye++eYb6adYjILXjz76SFStWlUGrJTdLFWqlDEIzk9ovq06rH/fAtRNmzYZFfqbN2/O10YAAAAAALgdFHQ5Gng5Eah169ZN3LhxQxbWJxFT/fr1xZo1a4wiJxo+N1+liaZZLliwQJaRIqU8BaFUPqp2bZNQe8SIETLIpWXqSVXfsmVLeU8qmJ/fUEA9atQo8fXXX0s90n0NUClSt7RfWIj004qA/6n4W6/5iPmmhtVj9rv6Nsb9eydMqnpiy5uNmd18Ml9TdlqTUsxupqj83xz+FbP/OB/P7C9eamDcr9XqNeab33Ios0/u/IfZ9fo2YXbEOf66vv7rHLPndqvL7Ixkk7r9wma+Ilip50rbVNbXiOQf+HNBfH5y3D6uRCzb9kFmX0kx9WO8F69GoHIqjtfgjVHU7UnxvAhxcCmutE83e53SX7qEcV+XeYU/LCzKZluSlPXuvTS8LbdTTCp9Syr/hHtmKn4/ruKPv6dUFFBep6rSV/0pd/n1vorSPivTVCXA15v7dJnKtYqKX1Xa2/P7aKz7fdTqAnYqADiqvLblV5ckVNttD69Cqtp2pSA8r8tAQswOitoQvwEazrc2pL9ly5Ycx55//nm5WYOyqLR40v1YQIkCbKqFX7lyZVm/VdUo3b59u2BFUgYoAg8ODpbRuGF5rjlz5sjisrRP0wEAAAAAAAp/mSlHRVL5O9RdGKAMan7jVIBKKxdMnjxZ7h85ckTOnXj77bfl0D/tz507N7/bCQAAAABQZDOohZle/6vy5PIAlVYooGwp8csvv4gnn3xSTJw4Ua4f+/jjvHg8AAAAAEChBAFqrqo70b4tnKnu5FSASiURaK4BsWHDBqkuI0hEZa+RAAAAAACgcBNewNWdnApQae4pDeW3aNFC7NmzRyxevFge//fffx1aZxUAAAAAwG1BBtVl1Z2cClBnzpwpXnvtNbF06VLx1VdfydpcxOrVq0XHjnzNdnfh2WNbjSnmwUG1mG/DlRnMbtJlpHF//UNcvb7nMT6F4Wh69lQHAy2Wf83slul8Tfv/u8uVbAGKQrnmxY3G/QtV2jNfitna6cTts4eYXerj15ldZfldZu/fY1rvnvCtc4PZ3v4mtfuxY1zp3qKeaSUKIlOR4vpfPczsklWzP7QG4g7xtX8rv2qqVkDcTDcpyq8mceW7r/Ks49d4lr6+P1egJydmZ/cNhJbhQwuZp5OZ7RNV2biv111kvqyAcJsq/cR0/p54K0r8hDTT67Kk1L+VZFLLa325LymVX+utqPAzM/g3Uv9AX5v+AF/rSv0ApQKAqmbPcW1Geq5V+vaU+PZU+Fo7fvXZ+amGt3et2nb1dWsKUs1ut3qB8/fOa9sAKDJQsKlDgOqK6k5OBajlypUTK1euzHF82rRp+dEmAAAAAIBCvdRpUefwYZ6YskXdurysZYEFqATNJ6CisMePH5d2rVq1xFNPPSXXkwUAAAAAKPRgiN8qtJgAjeQY5pna4r7NQT19+rRU61+5ckVUq1ZNHqPlt2ipq1WrVslCrQAAAAAAhZr7tJJUYeTcOdPiPwcOHBDDhg2TZUibNWsmj+3cuVMuxTplyhSn7u9UgPrmm2/KIHTXrl3GCbK3bt0SPXr0kD4KUgEAAAAAQNGkfPnyxn1a0WrGjBms1CgN61PicsyYMaJr1673J0DdunUrC06J4sWLi48//lgq+wEAAAAACj0Y4s8VtGhTxYoVcxynY8eOHRPO4FSA6ufnJ+7e5QpxIikpSdZIdUfqv/mL0Phkq6S3DW7OfPeGv8TsMg/2M+43+Xgi870V1pDZYV2fZfbwv/k8jOc/H87sqo+OYHZnDZ9kvHe4abmw2QNN306I9hFc5f0ds4Q44V+F2f0e4Wr3QSvWMjtu5S3+WsrUMe6f38dFcE/Uimb2Tj/+0UndZ6o+QMQ04tUPdi/gr1Nfhlc/SMkyDYmcuMlV9mE+XAsdd537I4rzfklL4NUJQmrztmccSWK2d3Q5M2sX8+mCittU8SelK6ptb77+8J0UXpHAW1HqJ5j5vRUlfZpyrY8f92ek8WeHhHN/llL1IdCGEt/Xm/dxlpnC35Lfnkpfr6hefRRZuPn1OXxZ9u7N/VpFKp9TSe+VB5W+cBm2axO4FnvzzYDjoEvdEyx1mjtq1Kghp3p+++23xjgwPT1dHiPffQtQn3jiCTFgwADx3XffiSZNmshju3fvFgMHDpRCKQAAAACAQg8yqLli9uzZclVRqoVvUOyTyp++zK5YsULctwCV5hn07t1bNG/eXHh7Z98iMzNTBqeff/65Uw0BAAAAAHArEKDmCkpWnj17VsyfP1+cOHFCHuvWrZt46aWXRFBQkCjwAFWn04lPPvlE/P777zJ1S5Nee/XqJSNkSuFWqcKHmAEAAAAACi0IUHMNBaI0up5fOBSgTpgwQbz//vuiXbt2IiAgQPzxxx8iLCxMfP/99/nWIAAAAAAAULg4c+aMmD59OquPb6j6VODz8OfNmye+/PJLsXbtWlmkn+YVUDqXMqsAAAAAAEVxJSlHN09j7dq1ombNmmLPnj1yDiptVO2JgtT169cXfAb14sWLrMYVZVJpeP/q1atyYqw7k3L7qvDy9pf7yweOZ75/W7Vl9r67HY37bWZyVfdYZY35B4Z2YfZHE+YzW/PnJWZ/+e1DzG7ScSCzP+j0gXF/c/lD3PcyX78+4mo9Zk/deobZnz2RvYiCgX53Ypl9akX2txwDpTs/Y9xPWsp/wB4sFczsG8FcrX71zwPMjmlWm9nn5uxndqJ/pLDG0au8+kAJX/4xvXs7hdmhZUKZnXb3NrNDynEVvy7zGrO9IkpabUtiOu8HjTevUnHzHlfaaxWV/s2kNGZ7B/B+jL9npqRXKiOoKn1V5Z9yV1HaKyr9zHTetgClH3VmSn1V4a8q4e2q+DW2v+v6qFJ75rO3pnze/KrbvO22FP7y2jwqr22p3Yuyajsv1Q8KslvsfVYAyAEl4BxNwnlg0m7UqFFiyJAhstyoenzkyJHiscceK9gMKgmh/P2zgzwDPj4+IiOD/yEEAAAAACgyK0k5unkYx48fF/36mUp0Gujbt+/9qYNK662Sep/qoBpITU2V5aXMVVq//vqrU40BAAAAAHAbIJLKFSVKlBAHDx4UVatWZcfpWFRUlCjwAJUU+yq0vKmzUAFXCmapJAGJrqhs1eTJk0W1atVYAPz222+LRYsWibS0NNGhQwc5DzY6mg/bAgAAAADkJ87MKfXEOaj9+/eXCn4qNUWxHLF9+3YZ0w0dOrTgA9S5c+eK/ISWTH399dfFgw8+KKcPvPPOO6J9+/YyHWzIyNKchlWrVoklS5bIigGDBg0SzzzzjHzhAAAAAADAtYwZM0aEhISIzz77TIwePVoeK1WqlKz8REr++1aoP79Ys2YNs3/44QeZCt6/f79o1aqVSEhIkKtVLViwQLRp08YYJFPNVVKHPfQQFxwBAAAAAOQbGOLPFSQIpYQibXfv3pXHKGAtMss9U0BKRERkK+UpUCUBFlULMFC9enVRrlw5sXPnTov3oGkAiYmJbAMAAAAAcBgpetI5uHmeSOrcuXPi1KlTxsDUEJzSsfPnzxe+DKo5VEt18ODBokWLFqJ27ewSRbGxscLX11cUK1aMnUvzT8lnbV7rBx+YSjUZ2PT16yI4JLscUe1OfD7EtnYVmf1389bG/b1aXi6pzbYlzG53m5eRevdOHLN9lXorTc6vYva5Wl2ZnZAx1rh/4wQvcVV+4khm1/iNB99btpxldlDFC8z29ucljo4e4+WY2jQ2lQpLVdoddPlvZpetwctEXd7F+6FC/1eYfTOdTw85H6+USDJ73qFL8czXw5+XQEqKT2Z2sYrhzM44wfvFt3QNZut1l5mdFVLCuO+l0dosM+Xtp5SRMisTRWgV/62kdJtlqOLN/D7K68xIy2R2YKhJnEhkZvBSTwFKqSjzMlLS72Pdn+PaDH6tv7ftMlRqqaicZai4X2fm19op/WOvhJW9ykE2KlzZvVYtS6S+Lk1BlluyW17LzvV5uRblmADIRp8lhPJzn6trPIzevXtLxb4qktq9e7f49ttvxZYtWwpvBpXmoh49elSKofICzX2gTKxhu3SJB04AAAAAALlBr9M5tXkaBw4ckAlGFZqKSUr+QptBJeHTypUrxbZt21jB/5iYGJGeni7i4+NZFjUuLk76LEElsMzLYAEAAAAAOIXOiQyqo+cXAby8vIxzT82hRGFWlnP94dIMKtVVpeB02bJlYtOmTaJiRT7U3qhRI7kQwMaNG43HTp48KVe0atasmQtaDAAAAADgGm7fvi26d+8uQkNDZeKOiuMnJSXZPP+NN96Q5TupnCdpeEhVb9D8mAeY6ubIiDYJ22mKpXkwSvt0rGXLloUvg0rD+qTQ/+233+SEWsO8UionRR1J/1PnUw0tEk7RG0IdTcEpFPwAAAAA8KQMavfu3cW1a9fk+vYkIu/Tp4+sP0qxlCVoKXraPv30U1GzZk1x4cIFubgSHVu6dCk7l6okdexoWupd1f/YguqdUpBKgfDDDz8sj/35559SqE4JyEIXoH711Vfy/9atTaIkQyfRhFti2rRpQqPRiGeffZYV6gcAAAAAKEj0WVlyc/SaglpOdM2aNWLv3r2icePG8tgXX3whHn/8cRmAUt1RFRKd//LLL0a7cuXKYsKECXKRJao/7+3tzQJSa9Mn7UHB7+HDh8XMmTPFoUOHZJKxZ8+ecpTcUJmpUAWoNMRvD39/fzFr1iy55YULnTqLIG22Ernhy1OYL+b/mjJ7UqRJuV+6/+PM12npNWYPmzaE2Y0HTmX28yWzyy4Y2Nx/GrMnv1GB2W/HmOqGzVUU31sz+IdvWHv+QXruZ77E7MUFvK3Fq5i+GRH/7lnB7F71Sxv3NwX4MN/dP1czu0zzysze9A2vONC8fH1mp2Tx9/pQHFfaR5ipyHfH8uGKEjG8+kDqHV7BIbRxSWZnHkphtk8p3sdC8EUeMgNMPzwab1/mu5PClfRaX3+bKn4fpVLC7WSlWoEf/5FLN1Pqeysq+4w0/ktO9asq/hB/b5tK/EBVqW/2LV9V8dtX6etsqvRzqN1VNbzZL3B7FQBUFX4Ovz21uw09u301e8Gp3d1GoVrEUD9r7oKbNgvYg37XOSp6+t/5apnLvGpkdu7cKYNIQ3BKUBlOSuKRWv7pp5/O1X1oeJ9GpM2DU8Oo9iuvvCIqVaoks6yUnXXkdxwFyBMnThT5hVuIpAAAAAAA3DNAzXIqQC1btiw7PG7cOLmykrPExsbmWNeegkzKUForvaly8+ZNMX78eDktwJwPP/xQLogUGBgo1q1bJ1577TU5t9WRVaBI0L5nzx5x/fp1WTrUHMqmOgoCVAAAAAAAC9CIjTpqk5trCCpzSZlKA9ayp6NGjZJzOO0N7+cVyuh27txZDsergTItVWqgQYMGIjk5WXzyySe5DlBXrFgh58dSUEuv2TzzSvsIUAEAAAAA3AAK1MwDVGu8/fbbRt2NNSpVqiTnh1J20hyaR0pKfXtzR6kEFAmgSJBOlZOoQpItmjZtKjOtpP3JzbQEeg1UqJ+G+CkLmx8gQAUAAAAAsITeiTmodI0DlChRQm72aNasmRxGp2XgqQwnQQp5Gk6ngNJW5pQE5hRo/v7771LbYw8qrh8eHp7rObNXrlyR2db8Ck4JBKgAAAAAAPk8xJ/f1KhRQ2ZB+/fvL2bPni3LTJFK/oUXXjAq+ClQbNu2rZg3b55o0qSJDE7bt28v7t27J3766SdpG8RbFBRrtVo5PE8LIFH5TgpeqYQVZUKHDRuW67ZRALxv3z6Z6c0vPCZA3Xg2Xvh5Zetmtz7K13qvPJjXAts6uLlx/40R7Zmv0VMjmF3l7B1mr3iVf4sJfulzZn9bthOzD63h69M+8vGzxv3Su+sx3we//cPs9X0eYHZGMi+8e+LXY7ytb7/G7PSfuLK+TohJ9X09klcQOL92P7Or9X6K2WembWP2tSzb36L2nuf91sBMgR5/I5n5wivxWmypCTeYHValPLN1mbxygj7CtDqZJe6kmn6ZaHy4ij9OUeFr/Xi/3EhMY7Z3AFfx30rifh9VxW9WJUD1JSv3DlBU+pnpit9XUfFn8rarSn1zv6+3xuYvWH9FSp9T5a+xWiEg229dCeqjsa1n19qR2qtutW22RKhebqzctlthII/X54W83BtidlCocLM6qPPnz5dBKQWhhhKcM2bMMPopaKUFjSggJf7++2+p8CeqVKnC7nXu3DlRoUIFOdxPlZKGDBkiqyvReVOnTpWBcG6hua3Dhw8Xx44dE3Xq1MkxheCpp3jMkBs8JkAFAAAAALhfZaYKgoiICKtF+QkKOM1LeFKdeXslPSkra16g3xkMwSxVA1AhkZQzy50iQAUAAAAAcPNC/e6MWlYqP0CtaAAAAAAA4FYgQAUAAAAAsFWo36Gt4Ib43Q1aZpVWpjLw8ccfy0oDBm7duiXrrjoDAlQAAAAAAEs4HJw6IaoqxKxdu1bWSjVA6n+qy2pep5VEW87gMXNQx/3xvggNylaWj3lkOPPdbtKF2afem27crzb9DeaLfKAVsx+9wNXrN0fxYrtznufr0pZV1rhPijvP7PSnZxr3X4q+yHyzZi5ndkqxDcwOKVmZ2buOb2V2/0d4+Yejqqp7zwrjfvlW5Zjv7AbezlpTeT/cTuerYBy5zpX4YT78u9CuC1zF/1SYqdZa0k1eiDi8Wklmp2/j6xv7lDOtS0zodSeYnRXKCxhrvLlSP95Mxe/ty1X615MVFb4/V+lfv6v6eX25u0oVAL8A/iOXlpph3C9WIoj5MtP5L7kQRcWvy1BU+j7WVfrSr7zf5vOk7Kn0ve34/RS/PaW++fXq2unqvTV2dN/2lPK2FOf2n+38ve1d78ga1/mNK59dlEG3Fj30Op3cHL3GU9ArAix7gixH8JgAFQAAAACgMJeZ8iQQoAIAAAAAWELvRIBK13gIXl5eOUZk8muEBgEqAAAAAABwGBrS7927t3FJ1NTUVDFw4EARFJQ9Zc18fqqjIEAFAAAAALAA5qDaplevXszu0aNHjnN69uwpnAEBKgAAAACArTJTjl7jIcydO7fA7u0xAWrnHcWFt392ynlsBb62e/SkQcx+8a3Zxv2+G/9kvvknPmP2Q/24Kv+DTh8w+78JfzF764AHmT3jKrdHrDKVY/jsiWrMN2nUv8w+8NVxZlfs/D6zb6yew+9drTiztWbKeeLy72uN++U68HYtW8qV8c3CKjI7SxHu7TpvKjNBlPLn/XTrWhKzI6pGGPdT7sRyX/vy/FkbrjFbE8PbopKQ5W1TxX8tyTQEYfiMGH0Jqcz2CQpj9vVE7vdTXmdqcga/3o+3JfV2iulaxZeRxlX4wcq9s9JN11pS+WfZUfGbq/z9vBWFv/IL1t/bjkpf62VzJRXVn1sfoU5ncljl78C9c/rzVkGgsGKvOoE9CrJb1MoLABQoEEm5DI8JUAEAAAAAHAFLnboOBKgAAAAAAFaH+B0csvegIf6CBCtJAQAAAAAAtwIZVAAAAAAAS2AOqstAgAoAAAAAYAESZarCzNxcA/KOxwSoB5YvFV7abPV21R18jfqHfuPryE/QmNZjrxDIldPVf+Eq/d86jma21ov7445uY3bpv75m9hOrzjB7xRKT6v8Ln43MF1i8FLO37+AVBvrN5Kr/85P4DA6/AyuYXe3hssw+vfqUcb/i26P460jjpSQOxSUzO1hRee88dZPZQ4K5cj4hjvtL1C5p3E/be4f5/Ks0ZbZed5nZmeH8dXhpuCL9dqqiKA8IZva1u2nWffFcpe8byFX+txN5EWLfAP4jlZbCVfyhEabPFnErLdO4H6yq8NO4Sj9YUfmbq/AtXa/L4P4gH1Wpb+oXP+X9U+/to8i6dcovYB+NxuYvaFt+rR1VttbORCR7flX1bf5sTUGr2W28Nnv3tvdou9dD7Q5AnkEdVNfhMQEqAAAAAIAj6HV6oc9yNEBV6i4Cp0CACgAAAABgAQpOHQ5QHTwfWAYqfgAAAAAA4FYggwoAAAAAYAHMQXUdCFABAAAAACyAIX7X4TEB6piJg4V/UIjcb9xjGvP13biA2UuO7zbutzjPlfMfdP6I2f890ojZW/6Pr2H/XSy3X1txmtmfdObK+x8mzTDu75tygvkqtx/L7Esbf2L2oDrRzF5TzJ/ZFxcu5ffr0oyfv2a+cf/ByOrMl65M+t6kqPRLKQryNRcTmF2iViSzk29cZHZkmyrG/cxt15hPW64Gs4VYx6xEwV+n1pcr5S8rSntvf67Ev3jnnnHfNySC+a4lcCW9nz+v6pCSxNXufgHcf/c2v95f8Wekma4vFsgrHWSl82tDVJW/orQP8NXaVOL7easqftMvUX9Fxa+iqvzVpfx8tLYV47b8qthcrQCgsaNnt6dVtyVmt6d0tyeEL6xzpPJcnUAUHGrVBXfCjZsGCggEqK7DYwJUAAAAAABHoC/jOuULeW6uAXmnsCYAAAAAAABAEQUZVAAAAAAAC+j1Toik9Bjizw8QoAIAAAAAWABzUF0HAlQAAAAAAAsgQHUdmIMKAAAAAGBtqdP/1ULN/VZwS53evn1bdO/eXYSGhopixYqJfv36iaSkJJvXtG7dWlYsMd8GDhzIzrl48aLo3LmzCAwMFFFRUWL48OEiMzNTuBKPyaB2XTdFhPhll/GZHt6C+R4M52WKyk1/3bg/q9sk5gtVyu3EHd3G7GLbvmd2/x28nNKsmcuZPTX5F2aHlKxs3F+/aSvzvT27NrOPTuFlg/y283JZdTqa7kWc+PU4syuMGsfsSyk/GPd3Xr7LfGE+/HX/eSyO2aOK89JOd65cZXZ0w3LMTt3Gy1T5V3/EuK/XXWa+zOIVmK3x5uWYrifzHyKfgGBmX1RKRfkGhTH78h2T3zeQl6C6lZDK2xnEy0Sl3uOlnIqVUK6/xvuxWCC/PivN9OxgP2+bZaKClTJTugzuD/JRy0hl2SwVZX5/P63iU6710Shlphz0a23U51Ee7bBfLUuUs0yVrWvt3Nu2226ZKlv3t1exyF7b7D0bOA66FKjosnRyc/SagqJ79+7i2rVrYv369SIjI0P06dNHDBgwQCxYwP/+q/Tv3198+OGHRpsCUQNZWVkyOI2JiRE7duyQ9+/Zs6fw8fEREydOFK7CYwJUAAAAAIDCyvHjx8WaNWvE3r17RePGjeWxL774Qjz++OPi008/FaVK8brt5lBASgGoJdatWyeOHTsmNmzYIKKjo0X9+vXF+PHjxciRI8X7778vfH15Uuh+gSF+AAAAAAAbc1Ad3YjExES2paXxRWMcZefOnXJY3xCcEu3atRMajUbs3m1aYMgS8+fPF5GRkaJ27dpi9OjR4t69e+y+derUkcGpgQ4dOsg2//PPP8JVIIMKAAAAAJDPIqmyZcuy4+PGjZMZSWeJjY2V80PN8fb2FhEREdJnjZdeekmUL19eZlgPHz4sM6MnT54Uv/76q/G+5sEpYbBt3begQYAKAAAAAJDPdVAvXbokxUwG/Pz8LJ4/atQoMXnyZLvD+85Cc1QNUKa0ZMmSom3btuLMmTOicmWuVXEnEKACAAAAAORzBpWCU/MA1Rpvv/226N27t81zKlWqJOeQXr9+nR0npT0p+63NL7VE06ZN5f+nT5+WASpdu2fPHnZOXFy2ENqR++Y3HhOgTvt8u/D935Tb0ylfM593YntmvxHd2ri/6MRc5rv6fV9m/7CjJrOfmrWL2Vv6VmL2pMv/Mnvre/xD0eDd2cb9G6vnMN+Y8nzKcEQZ/sE//uViZtcY+ByzF/7Mv6HV8ufKenN+P3KN2Y2D+CTp5efjmV2yEf8QJ9/g1QuinqnF7Mx1J5itqVDXzFrFfDfSuTpd68crBpyL5yp9nyDeL2dvJDPbNySC2Rdumvz+gfx1ptzlSnl/pR9ux/HyHoEBXKWfnsLbFqbcPzM1yarCPzM9xbaKX1H5Byoqfl1mhm2/mdrdR+tlcy1pf6UCgIqvt5dDSnxzpb0thT/hlUfltS21e15V23aV9nm4Nq/k5f4F2TS16gIAnl4HtUSJEnKzR7NmzUR8fLzYv3+/aNSokTy2adMmodPpjEFnbjh48KD8nzKphvtOmDBBBr+GKQRUJYCC65o1eYxzP4FICgAAAADAzalRo4bo2LGjLBlFGc/t27eLQYMGiRdeeMGo4L9y5YqoXr26MSNKw/ikyKeg9vz58+L333+XJaRatWol6tbNTgy1b99eBqIvv/yyOHTokFi7dq147733xOuvv251WsL9AAEqAAAAAIAFKDvpzFZQzJ8/XwagNIeUyku1bNlSfPPNN0Y/1UYlAZRBpU8loqh8FAWhdB1NJ3j22WfFihUrjNdotVqxcuVK+T9lU3v06CGDWPO6qa7AY4b4AQAAAAAK81KnERERNovyV6hQQej1ppWsqJLA1q180R9LkMr/jz/+EO4EAlQAAAAAAKsBapbD14C8gwAVAAAAAMACVGLK4TJTBTjE70l4TIA6eFAzEeKXraBeWqYB833++nRmf9ooW9lGLFCU0L9UfZnZi1rydd8f6jqK2SePXGJ22aa8CsDabzYxe9Z/TGr29e/yycnx33MVfr1XmjN7+eSNzK45/0Vm30jja+quOnWT2aX8TSryX4/w4rw9HuDK99sXTzG7dGuu9EtdwO/tX68Ts4XgKv6UsDLGfa0vV+lfTOSrb/gGcpX+mdtcpe8fytWQZ29wpX1ASBCzExNM9w8I4Sr7e0lcKR+lVE5IT+Gfj+LBiko/hT+7uFIFwFypH6ao+HUZ/NkhvqqKnz87QFHpq2vSq0p886xADp9ybQ6Vv+K3p8S35benNtdq8vZsW/e3Nwnflevdu/LZRVWp76bNAu4eoDo6xI8ANV+ASAoAAAAAALgVLg1Qt23bJp588klZHoGyBcuXL2d+mug7duxYWasrICBArjl76hTP3AEAAAAAFAj/E0k5stE1oJAHqMnJyaJevXpi1qxZFv1TpkwRM2bMELNnzxa7d+8WQUFBokOHDiI1NfW+txUAAAAAnoUuS+fUBgr5HNROnTrJzRKUPZ0+fbosFtulSxd5bN68eSI6OlpmWqkwLQAAAABAQQGRlOtw2zmo586dE7GxsXJY30BYWJhczmvnzp1Wr0tLSxOJiYlsAwAAAABwFEeH952pmwoKmYqfglOCMqbmkG3wWWLSpEnigw8+yHF8ZefRwj8oRO6nf9WR+Q7/ztewr7PNpIYfsoOvKT9k3E/MPtOVq7SDSpRl9uJf1jN7/E6+Xu7RuVx5Xf7gEuN+my4PMN+eqVzx33HPIn6vd/ka9usvZq8kYSDMh38fWbLjArNHRQUa9788zV93udZVmZ28jVcnCHvoEWbr5vG2ZJSqzWyNN1ezX0wwKdJ9g8KY78RNRaUfxlX6J67dVfzhzL56i/dDUCivjpCUYFLSFyvBFf7x1/mzI5Vr/03mz44I4v4sM5W+PaV+qJ+q0k+3qdJX/YGqX1G7+2mtK/X9tLYrAPhobH+XVW6dU2lv43JVha9ea+9btN0qAF7OK+Xt3dueKNzW9XlV6dtrmy2KspgdSn2Qn+iz9HJz9BpQhDOozjJ69GiRkJBg3C5d4oEUAAAAAABwb9w2gxoTEyP/j4uLkyp+A2TXr1/f6nV+fn5yAwAAAADICzqd46InugYU4QxqxYoVZZC6caNpuJ3mk5Kav1mzZi5tGwAAAACKPnqd3qkNFPIMalJSkjh9+jQTRh08eFBERESIcuXKicGDB4uPPvpIVK1aVQasY8aMkTVTu3bt6spmAwAAAMADoCnxOo1jAacyjR4UxgB137594tFHHzXaQ4cOlf/36tVL/PDDD2LEiBGyVuqAAQNEfHy8aNmypVizZo3w9/d3YasBAAAA4AlIVb7GwTJTUPEX/gC1devWst6pLZXrhx9+KLe88v6oacJLm60cTz7JV6zasPwOsxu//Ydx/2QfLgn99E4cs38YYjqXGLBwGbMT1n7L7G4B55hdsYVpDXpi58hvjPut/juR+eYseIXZJfWlme2ryHq//vMss3uF8zXuF/1zldmV2lc27iee+Jf5Yvq0Ynbmuu3MFtX4tAsvzRpmX0rhs0lUpf6R6yY1vF9YJPMdvcJLhfmHZ89PNvDvVe4PLsa/wNy9zZX0gYoS//rFBON+hUoRzHc2mVdpKBHC751xz3QtEaXcOyOFXx8e6GtV5R+cQ8VvqmxAhPjaVun7eysq/awsmyp/c3y9bUufvbV2VPp2pNO2lPq2VPbSb0eubk+1bUstX5AqfXvPLkiVvny2KDg0kMoDT1LxO5hBhYq/iM9BBQAAAAAAnonbqvgBAAAAAFyJLkvvxBxUZFDzAwSoAAAAAAAWwBxU14EAFQAAAADAAjq9XugcLBtF14C8gwAVAAAAAMASJJLycjDgxBB/vuAxAWq9p54V3v7Z66zX+ewM8x3tH8rs4P9uNu7/t7NpoQCi++xFzP73Ba7an1GLr4++vbFpFSxi1yvvMLvJtOHMHt18sHE/snhjm5/5KRu50r6LotJfvu8Ks2s9blLpE3fOHmJ2+RGPGffT3t3LfNoGJh/hpdnF7Mu6EJsq/UOxfM16//BoZv99Md64H1SiHPMdvmTyEaERgcxOuHWP2cFhvB9uKir/suWLMfvCP5eN+yWLVWS+jGTHVPoRQdZV+kSYv3WlfrAv92VlpttU4dtT6atKe1Wpb+73USTjjqr07V9fcCp9e22zdfu8qvTzAlT6zuHGTQNFEFpFSufl4EpSGOLPF6DiBwAAAAAAboXHZFABAAAAAByug+rgED/qoOYPCFABAAAAACyAANV1IEAFAAAAALAA5qC6DgSoAAAAAAAWoOXY9Q6WmbK1hDvIPQhQAQAAAACsrSQlsJKUK/CYAHV1qwQRGpRd0id8+F/MN/O7P5g9eKGpdNShp7jvq7q8XNKe1uWZve3p/2N2q/9OZPaw+q8w2z+mFbOzzL55vbPiGPP1iuTlld7edprZHz5dndk3T/BSUBXf68Ls1JHbma156C3jvpfmb+a7IMKZ7RcSwew9V3gpp4DipZi9/extZqulpPafM/nDlNd5J46XcgotzstIXb/IS0GVKctLXF08fpn7w3kpqV13Tc8uo5TqSlfKTEWH+tssIxUe4GO1jBQR5me9lFSIr+0yUmoZKrWUk7+PxnaZKaXWk7nfW1NwZaSk38b9C7KMlLx/Xq6182x7/ryUkkIZKQCAyu3bt8Ubb7whVqxYITQajXj22WfF559/LoKDg4Ulzp8/LypW5H/zDPz888/i+eeft/q7bOHCheKFF14QrsJjAlQAAAAAAIdFUsLRpU4LLoPavXt3ce3aNbF+/XqRkZEh+vTpIwYMGCAWLFhg8fyyZcvK88355ptvxCeffCI6derEjs+dO1d07NjRaBcrxmuG328QoAIAAAAAWA1Q3UPFf/z4cbFmzRqxd+9e0bhx9kI+X3zxhXj88cfFp59+KkqV4iOXhFarFTExMezYsmXLxH/+858cWVcKSNVzXQkK9QMAAAAAWJuD6sRGJCYmsi0tLS1Pbdm5c6cMIg3BKdGuXTs51L979+5c3WP//v3i4MGDol+/fjl8r7/+uoiMjBRNmjQR33//vcvFXsigAgAAAABYQK/TCb2DE6PpGsPwujnjxo0T77//vtNtiY2NFVFRUeyYt7e3iIiIkL7c8N1334kaNWqI5s2bs+MffvihaNOmjQgMDBTr1q0Tr732mkhKShJvvvmmcBUIUAEAAAAA8lnFf+nSJREaGmo87ufnZ/H8UaNGicmTJ9sd3s8rKSkpcq7qmDFjcvjMjzVo0EAkJyfLeaoIUO8DH3UaI/y8smc0LD28k/n2NljB7DGpJuX+lQGNmG9pK67Sf+bIKma/EfMos2/oajA7QMtnVbw5n6vlx1YyqeX7bDzIfF8N5N94bqzjKv3KM3nKPu2VX5gtWnI1nsZ7L7NPpAaZ2hkezXwbFRV+cHQFZq8/fp3ZYaW4anD/6ZvMjojmc19uxZqqIxQrYWoHcfnULWZXq1qc2ecOnmV2pRJVmL0j4QazyytVAsyV+iXDuEo/MzWZ2ZGBXKWflZ7K7HB/H6sqfSLMn//I6TLSrfuUa/29nVfpW1Li3y+Vvr3rC1Klb+96eyp8e7irSt/VSn1bj4ZKH3gKFJyaB6jWePvtt0Xv3r1tnlOpUiU5P/T6df63NjMzUyr7czN3dOnSpeLevXuiZ8+eds9t2rSpGD9+vJyWYC2wLmg8JkAFAAAAAHAEKtLvsEjKwcL+JUqUkJs9mjVrJuLj4+U80kaNspNnmzZtEjqdTgaUuRnef+qpp3L1LJqnGh4e7rLglECACgAAAABgiSyd0OsdTPv/bw5qflOjRg1ZBqp///5i9uzZsszUoEGDZK1Sg4L/ypUrom3btmLevHlS7GTg9OnTYtu2beKPP3htd4JqqsbFxYmHHnpI+Pv7yxJWEydOFMOGDROuBAEqAAAAAIC1OagOqtl1DmZQHWH+/PkyKKUg1FCof8aMGUY/Ba0nT56UQ/nmkCq/TJkyon379jnu6ePjI2bNmiWGDBkilftVqlQRU6dOlYGwK0GACgAAAABgrQ6qvmCH+B0hIiLCalF+okKFChbbSxlR2ixBWVnzAv3uAgJUAAAAAAALUPbU4Qyqi+uHFhU8JkBtXbGYCNJmr3UeMbwH841c8S6zP+j8kXG/72WupN/2dR1mr9scz+zm4VwF/u7XvHju0i4PMHvWug3MfnjSS8b9mx9xlX3057ydmb9PYPbVio8w2yeI33vdeZNSnggpVZnZPx+6atwPK1eT+X47cIXZxcuXY/bhk1wpH1U2jNnXLycyu0oNPkn78K5zxv0m9flqGCd3HGF21WjetnWJ/NlVlQoBGWYqfaJ0qHWlflQQnxCemZ7C7MhAX2ZnmanwiYgAH6sqfSLEz9uqWt6eSt/P27bS3teOpFz1m1/vbedabzsy/ryo/O1ea8dvV+VvQzZu79q8VhDwKkAVvruq9AEAID/wmAAVAAAAAMARsvR6uTl6Dcg7CFABAAAAACxANff/V3ffoWtA3kGACgAAAABgAWRQXQcCVAAAAAAACyCD6joQoAIAAAAAWFHkO5oRhYo/f/CYALX8mlUiJCR7Tdxp0VyJn9q9PrObB5mU2J3e50r4pc/VYPYj3/L17r+Y8wqzX/1oBbNrrp7J7JROXIl/89F3jPs+08Yw3+rbfI36sHK8Ld/svsTsyAceZPbsbXzN+phqXA2/do/p+jIP8HV9z528mWsVPtGhI7/3iv3HmN2wI69msHPFVuN+g3LNmW9JAlfpV4viKv30u3eYXTYsgPvvJdpW8aeZlPrRQb42VfgRgYpKP1NV6Wtt+gNsKPX97MjV/bV2VPxa21UAbCnxffilFvx2VP52/LZeWl5U+PLedm5gy12QKvzsZ3sVShU+VPoAAFfjMQEqAAAAAIAj0Nd8h4f4C6oxHgYCVAAAAAAAayIpAZGUK0CACgAAAABgTSTlxDUg7yBABQAAAACwAAJU14EAFQAAAADAAhjidx0eE6C2GTBLeHlnq7fPf9eT+Up88iWzvzmw2Lj/atfPma/klqXMTu84mtk76r7F7JCS3zB7yj/8u1hMvUeZPWT5P8b9Ck3aMN/EX48yu/KDDZi9bP1pZldvXJ7Zx/ZxlX/bdlxJv3rZLuN+396tme/r2SuZPfC52sz+a+kaZj9cpRWzF9+6yuxGZYsxOy3BVCWgWiSvVpCmqPQrRQQyOyMlidnlwrhKP8tMpU+UUJT6WekmfzF/b5sq/GAf20r5QDt+Wyr+ADvX+tpR+dvz21Li50WFL/32rrfht3utPcW5cN6f1/XuC1KJn1elPZT4AIDCjMcEqAAAAAAAjqBzYoifrgF5BwEqAAAAAIAFMMTvOhCgAgAAAABYACIp14EAFQAAAADAaoDqaAa1wJrjUSBABQAAAACwADKorsNjAtSAiFJC45O9RvtAbV3mq9iSK8wfWXTbuF+v6wvM13bCFmY3e/F5Zv/fZ9uY/fhLHZj95bf8+p49WjL7229WGfdHD3uG+T6aMJ/Z0yb0Yfabw7/i5/d9gz9r0TJmvziSVwlY+PlxU7tr/If5Pos9z+xHKkQwO+VOHLMblQpldtpdU58SNRSlfnpygnG/QjF/qyp7olSIdRU+UTzAthI/3F9rVS0f5mdbSR/sa/1aIsjOovYB3tal1f525Op+SgUAlbyo/H3sXJtnlb8NSbktX0Er7QtaKW/LD5U9AABYx2MCVAAAAAAAR4BIynUgQAUAAAAAsACFmjonrgF5BwEqAAAAAIAFkEF1HQhQAQAAAAAsAJGU67CtugAAAAAAAOA+gwwqAAAAAIAFMMTvOjwmQD34xfMiNDS79FFo89eZL3HHLGab+235iL12/HOmKf7PvmT2uDYvM/uz90ylnl5rXIr5RsXxUk/dakYyu/+dWGZ3qlzMZqmnlmWCmZ2ZmmTcbxgdaLOUU/UIP5ulnCqF+dj0lw3xtlquqVSQdR8RFcBLPakU97c9MBCulJIyJ9TX9rUhPrZrAwXZKCNFBOalzJSd8Q57fltNt/OyhHce/Robv+Bt+Qra72XnD0lB+vFsPBvPtu93NRjidx0eE6ACAAAAADgCMqiuo1DMQZ01a5aoUKGC8Pf3F02bNhV79uxxdZMAAAAAUMTRUQbVwY2uAR4QoC5evFgMHTpUjBs3Tvz999+iXr16okOHDuL69euubhoAAAAAinoG1YkNeECAOnXqVNG/f3/Rp08fUbNmTTF79mwRGBgovv/+e1c3DQAAAAAAeNoc1PT0dLF//34xevRo4zGNRiPatWsndu7cafGatLQ0uRlISMhe4/3u3bvGY/osLthJTExktrnflq+g/Xg2no1n49l4Np7tqc/WZ2Vk/+/CjGSK0Dksekp3eO0pYAkvvSvfeTtcvXpVlC5dWuzYsUM0a9bMeHzEiBFi69atYvfu3Tmuef/998UHH3xwn1sKAAAAgILg0qVLokyZMvf1mampqaJixYoiNpZXx8ktMTEx4ty5c1I7A4pgBtUZKNtKc1YNxMfHi/Lly4uLFy+KsLAwl7atsEDfaMuWLSt/KRhKcwH7oN8cB33mHOg3x0GfFb5+o/wZjX6WKsVLLt4PKLCkAJNGcp3B19cXwWlRDlAjIyOFVqsVcXFx7DjZ9O3EEn5+fnJToeAUv5Qcg/oLfeY46DfHQZ85B/rNcdBnhavfXJlYogATQabrcGuRFH0DadSokdi4caPxmE6nk7b5kD8AAAAAACg6uHUGlaDh+l69eonGjRuLJk2aiOnTp4vk5GSp6gcAAAAAAEUPtw9Qu3XrJm7cuCHGjh0rJyvXr19frFmzRkRHR+fqehrupxqqlob9gWXQZ86BfnMc9JlzoN8cB33mHOg34CrcWsUPAAAAAAA8D7eegwoAAAAAADwPBKgAAAAAAMCtQIAKAAAAAADcCgSoAAAAAADArSjSAeqsWbNEhQoVZKHdpk2bij179ri6SW7FpEmTxIMPPihCQkJEVFSU6Nq1qzh58mSO5d5ef/11Ubx4cREcHCyeffbZHAsneDIff/yx8PLyEoMHDzYeQ59Z5sqVK6JHjx6yXwICAkSdOnXEvn37jH7Sa1K1jpIlS0p/u3btxKlTp4SnkpWVJcaMGSOXW6T+qFy5shg/fjxblxx9JsS2bdvEk08+KVcbop/F5cuXM39u+uj27duie/fushB9sWLFRL9+/URSUpLwxD7LyMgQI0eOlD+fQUFB8pyePXvKpcc9uc/A/afIBqiLFy+WNVSpPMbff/8t6tWrJzp06CCuX7/u6qa5DVu3bpWB1K5du8T69evlL6b27dvLOrMGhgwZIlasWCGWLFkiz6dfUs8884xL2+0u7N27V3z99deibt267Dj6LCd37twRLVq0ED4+PmL16tXi2LFj4rPPPhPh4eHGc6ZMmSJmzJghZs+eLXbv3i3/ONLPLAX8nsjkyZPFV199JWbOnCmOHz8ubeqjL774wngO+kzI31f0+50SEpbITR9RoPXPP//I34MrV66UAdyAAQOEJ/bZvXv35N9M+nJE///6668ycfHUU0+x8zytz4AL0BdRmjRpon/99deNdlZWlr5UqVL6SZMmubRd7sz169cpNaPfunWrtOPj4/U+Pj76JUuWGM85fvy4PGfnzp16T+bu3bv6qlWr6tevX69/5JFH9G+99ZY8jj6zzMiRI/UtW7a06tfpdPqYmBj9J598YjxGfenn56dfuHCh3hPp3Lmzvm/fvuzYM888o+/evbvcR5/lhH7Oli1bZrRz00fHjh2T1+3du9d4zurVq/VeXl76K1eu6D2tzyyxZ88eed6FCxek7el9Bu4PRTKDmp6eLvbv3y+HcgxoNBpp79y506Vtc2cSEhLk/xEREfJ/6kPKqpr3Y/Xq1UW5cuU8vh8p89y5c2fWNwT6zDK///67XA3u+eefl9NJGjRoIObMmWP0nzt3Ti7EYd5vtAY3Tc3x1H5r3ry5XNb533//lfahQ4fEX3/9JTp16iRt9Jl9ctNH9D8NUdPn0wCdT38zKOMKsv820FQA6icCfQbuB26/kpQz3Lx5U87fUlebIvvEiRMua5c7o9Pp5DxKGoatXbu2PEa/2H19fY2/lMz7kXyeyqJFi+TQFw3xq6DPLHP27Fk5XE3Tbt555x3Zd2+++absK1rK2NA3ln5mPbXfRo0aJRITE+UXHK1WK3+nTZgwQQ6tEugz++Smj+h/+tJkjre3t/yijn7MnlNPc1JffPFFOd+UQJ+B+0GRDFCBcxnBo0ePygwNsM6lS5fEW2+9JeddkfgO5P4LEGVbJk6cKG3KoNLnjeYFUoAKcvLzzz+L+fPniwULFohatWqJgwcPyi+RJFpBn4H7AY0G/ec//5FCM/qCCcD9pEgO8UdGRsqMg6qcJjsmJsZl7XJXBg0aJCe5b968WZQpU8Z4nPqKpkvEx8ez8z25H2kIn4R2DRs2lBkD2kgIRSIM2qfMDPosJ6SgrlmzJjtWo0YNcfHiRblv6Bv8zJoYPny4zKK+8MILUlH98ssvSwEeVd8g0Gf2yU0f0f+qeDYzM1Oq1D25Hw3B6YULF+QXckP2lECfgftBkQxQadiwUaNGcv6WeQaH7GbNmrm0be4EfSum4HTZsmVi06ZNspyNOdSHpLo270dSc1JQ4an92LZtW3HkyBGZzTJslBmkYVfDPvosJzR1RC1hRnMry5cvL/fps0d/2Mz7jYa3aT6bp/YbqalpTp859MWbfpcR6DP75KaP6H/6QklfPg3Q70PqZ5qr6snBKZXj2rBhgywNZw76DNwX9EWURYsWSaXmDz/8IBWHAwYM0BcrVkwfGxvr6qa5Da+++qo+LCxMv2XLFv21a9eM271794znDBw4UF+uXDn9pk2b9Pv27dM3a9ZMbsCEuYqfQJ9ZVgF7e3vrJ0yYoD916pR+/vz5+sDAQP1PP/1kPOfjjz+WP6O//fab/vDhw/ouXbroK1asqE9JSdF7Ir169dKXLl1av3LlSv25c+f0v/76qz4yMlI/YsQI4znos+yKGgcOHJAb/UmbOnWq3DcoznPTRx07dtQ3aNBAv3v3bv1ff/0lK3S8+OKLek/ss/T0dP1TTz2lL1OmjP7gwYPsb0NaWprH9hm4/xTZAJX44osvZKDg6+sry07t2rXL1U1yK+gXk6Vt7ty5xnPol/hrr72mDw8PlwHF008/LX9RAesBKvrMMitWrNDXrl1bfnGsXr26/ptvvmF+Kgk0ZswYfXR0tDynbdu2+pMnT+o9lcTERPm5ot9h/v7++kqVKunfffddFiSgz/T6zZs3W/w9RgF+bvvo1q1bMrgKDg7Wh4aG6vv06SODOE/sM/oyZO1vA13nqX0G7j9e9M/9ydUCAAAAAADgoXNQAQAAAABA4QUBKgAAAAAAcCsQoAIAAAAAALcCASoAAAAAAHArEKACAAAAAAC3AgEqAAAAAABwKxCgAgAAAAAAtwIBKgAAAAAAcCsQoAJQxHn//fdF/fr18/2+58+fF15eXuLgwYNWz9myZYs8h9btJn744QdRrFgx4U60bt1aDB48WLg71I/Lly93dTMAAOC+gAAVADehd+/eMghRt44dO4qiQrdu3cS///5b4M+hQNjQf1qtVoSHh4umTZuKDz/8UCQkJLBzf/31VzF+/Hjh7ly7dk106tTJ1c0AAID7gvf9eQwAIDdQMDp37lx2zM/PTxQVAgIC5HY/CA0NFSdPnhS0mjNlcHfs2CEmTZok+3f79u2iVKlS8ryIiAhRGIiJiXF1EwAA4L6BDCoAbgQFoxSImG+U/TNAGcGvv/5aPPHEEyIwMFDUqFFD7Ny5U5w+fVoOVQcFBYnmzZuLM2fO5Lg3XVe2bFl53X/+858cmcRvv/1W3s/f319Ur15dfPnll8y/Z88e0aBBA+lv3LixOHDgQI5n/PHHH+KBBx6QQeijjz4qpwGYow7xG6Yf/Pe//xUVKlQQYWFh4oUXXhB37941nkP73bt3l6+tZMmSYtq0abkalqe+ov6ja+h19evXTwapSUlJYsSIEcbz1HtROz766CPRs2dPERwcLMqXLy9+//13cePGDdGlSxd5rG7dumLfvn3seX/99Zd4+OGH5Wunfn7zzTdFcnIyu+/EiRNF3759RUhIiChXrpz45ptvjP709HQxaNAg2V7qY3ouBdTWhviPHDki2rRpI59XvHhxMWDAAPnazDPyXbt2FZ9++qm8J53z+uuvi4yMDJv9BgAA7gACVAAKGTQcTcETzf2kQPKll14S//d//ydGjx4tgybKGFKgYw4FsD///LNYsWKFWLNmjQwuX3vtNaN//vz5YuzYsWLChAni+PHjMpAaM2aM+PHHH6WfAh8KimvWrCn2798vA8thw4axZ1y6dEk888wz4sknn5Rte+WVV8SoUaPsvh4KpinwWrlypdy2bt0qPv74Y6N/6NChMuNJQeL69evFn3/+Kf7++2+n+i4qKkoGu3SvrKwsq+dRENyiRQvZT507dxYvv/yy7PMePXrIZ1euXFna1NeG10DZ72effVYcPnxYLF68WAas6vvw2WefGYN76v9XX31VZnmJGTNmyHbR+0TH6D2hoNYSFPh26NBBfnnZu3evWLJkidiwYUOO523evFm2jf6n95K+INAGAABujx4A4Bb06tVLr9Vq9UFBQWybMGGC8Rz6kX3vvfeM9s6dO+Wx7777znhs4cKFen9/f6M9btw4ed/Lly8bj61evVqv0Wj0165dk3blypX1CxYsYO0ZP368vlmzZnL/66+/1hcvXlyfkpJi9H/11Vfy2QcOHJD26NGj9TVr1mT3GDlypDznzp070p47d64+LCyMtS0wMFCfmJhoPDZ8+HB906ZN5T4d9/Hx0S9ZssToj4+Pl9e89dZbVvtSfY45hnbHxcVJ+5FHHmH3Kl++vL5Hjx5Gm/qIzh8zZkyOfjf0X79+/fQDBgxgz/nzzz9lHxv6TL2vTqfTR0VFyfYQb7zxhr5NmzbyuCXoecuWLZP733zzjT48PFyflJRk9K9atUo+LzY21vh5omdmZmYaz3n++ef13bp1s9pvAADgLmAOKgBuBA2Lf/XVV+yYOkeShpcNREdHy//r1KnDjqWmporExEQ5D5Og4eTSpUsbz2nWrJnQ6XQyU0fDzZRloyHw/v37G8/JzMyUQ+4EZVXpuTT0bH4Pc+gcEiKZo55jCcoSUhsM0HD09evX5f7Zs2flkHSTJk2MfmpTtWrVhLMYsp40ZG6N3PQxQe2kaQSHDh2SmVPKepo/h/r43LlzcoqBel/DFATDa6Uh+ccee0y+NsrGUsa6ffv2FttHfV2vXj057cEAZXwN76mhfbVq1ZIiMfO+pakBAADg7iBABcCNoICjSpUqNs/x8fEx7huCLEvHKFjJDYZ5i3PmzMkRYJoHNwWFedsN7c9t252BgjsK3GlOZn71MfUhTbOgeacq9OXA0n0N9zHco2HDhjKYXb16tRyup3nC7dq1E0uXLi00fQsAAPkF5qAC4AFcvHhRXL161Wjv2rVLaDQama2jbBsp2ilbScGx+VaxYkV5PmUAKUNImVnze5hD55CQyhz1HEepVKmSDLJonqUBEnc5W6qKspULFiyQ4iF6/fkFBZfHjh3L0X+0+fr65vo+FDhTKS76skDzWH/55Rdx+/btHOdRX1PW1lyERfN0De8pAAAUdhCgAuBGpKWlidjYWLbdvHkzz/eloflevXrJoIZERpTpowydoXTRBx98IBXjJNSh4I+Ggakc09SpU6WfhFiUfaMpABSIkVqf1OHmDBw4UJw6dUoMHz5cDjNTIJhXQQ4N/VO76Z4k9Pnnn3/kVAQKxGwN0RuG2Kn/qH4oZU2///57WeGApgiYi7Dyg5EjR8oKASRSIoEY9cNvv/2WQ7RkC+rrhQsXihMnTsj3gIRP9P5YWtiAhF6G9/To0aOyb9544w0p5jIM7wMAQGEGASoAbgQp7GmeoPnWsmXLPN+XMnmksH/88cflvEaaC2leRooU91RmioJSmmv5yCOPyODSkEGl0kpUAYACVyo19e6774rJkyfnGMqmjB8p8ml+5OzZs2U1gLxCgRvNZaU5mTTkTXMtDeWwbEFzcKn/aO4tXU9ltiigIwU9Hc9PqD+p+gAFllRqivqIqiIYaq3mNhifMmWKVPk/+OCDskQXfRGwlOmlUmFr166V2VU697nnnhNt27YVM2fOzNfXBQAArsKLlFIuezoAADgIDWtT0EklmyibCgAAoOgBkRQAwK2hjCcNe5OSn+af0nKlBBXNBwAAUDRBgAoAcHtovivNayXBUaNGjeQ82sjISFc3CwAAQAGBIX4AAAAAAOBWQCQFAAAAAADcCgSoAAAAAADArUCACgAAAAAA3AoEqAAAAAAAwK1AgAoAAAAAANwKBKgAAAAAAMCtQIAKAAAAAADcCgSoAAAAAABAuBP/D9sLqwBrcAMyAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "%matplotlib inline\n", + "import math\n", + "import torch\n", + "from torch import nn\n", + "from matplotlib import pyplot as plt\n", + "\n", + "class PositionalEncoding(nn.Module):\n", + " def __init__(self, d_model, max_len, dropout=0.1):\n", + " super().__init__()\n", + " self.dropout = nn.Dropout(p=dropout)\n", + " position = torch.arange(max_len).unsqueeze(1) # (max_len,1)\n", + " div_term = torch.exp(\n", + " torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model)\n", + " ) # (d_model/2,)\n", + "\n", + " pe = torch.zeros(max_len, 1, d_model) # (max_len,1,d_model)\n", + " pe[:, 0, 0::2] = torch.sin(position * div_term)\n", + " pe[:, 0, 1::2] = torch.cos(position * div_term)\n", + " self.register_buffer(\"pe\", pe)\n", + "\n", + " def forward(self, x):\n", + " x = x + self.pe[: x.size(0)]\n", + " return self.dropout(x)\n", + "\n", + "# 인스턴스 생성\n", + "encoding = PositionalEncoding(d_model=128, max_len=50)\n", + "\n", + "# 그래디언트 분리 → CPU 이동 → squeeze → 파이썬 리스트 변환\n", + "arr = encoding.pe.detach().cpu().squeeze(1).tolist() # shape: [50][128] 리스트\n", + "\n", + "# 그리기\n", + "plt.figure(figsize=(8, 4))\n", + "plt.pcolormesh(arr, cmap=\"RdBu\")\n", + "plt.xlabel(\"Embedding Dimension\")\n", + "plt.xlim((0, 128))\n", + "plt.ylabel(\"Position\")\n", + "plt.colorbar(label=\"Encoding value\")\n", + "plt.title(\"Positional Encoding Heatmap\")\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[38;5;3m⚠ As of spaCy v3.0, shortcuts like 'de' are deprecated. Please use the\n", + "full pipeline package name 'de_core_news_sm' instead.\u001b[0m\n", + "Collecting de-core-news-sm==3.8.0\n", + " Using cached https://github.com/explosion/spacy-models/releases/download/de_core_news_sm-3.8.0/de_core_news_sm-3.8.0-py3-none-any.whl (14.6 MB)\n", + "Installing collected packages: de-core-news-sm\n", + "Successfully installed de-core-news-sm-3.8.0\n", + "\u001b[38;5;2m✔ Download and installation successful\u001b[0m\n", + "You can now load the package via spacy.load('de_core_news_sm')\n", + "\u001b[38;5;3m⚠ As of spaCy v3.0, shortcuts like 'en' are deprecated. Please use the\n", + "full pipeline package name 'en_core_web_sm' instead.\u001b[0m\n", + "Collecting en-core-web-sm==3.8.0\n", + " Using cached https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.8.0/en_core_web_sm-3.8.0-py3-none-any.whl (12.8 MB)\n", + "Installing collected packages: en-core-web-sm\n", + "Successfully installed en-core-web-sm-3.8.0\n", + "\u001b[38;5;2m✔ Download and installation successful\u001b[0m\n", + "You can now load the package via spacy.load('en_core_web_sm')\n" + ] + } + ], + "source": [ + "!python -m spacy download de\n", + "!python -m spacy download en" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "German vocab size: 19214\n", + "English vocab size: 10837\n" + ] + } + ], + "source": [ + "import requests\n", + "import gzip\n", + "import io\n", + "from torchtext.data.utils import get_tokenizer\n", + "from torchtext.vocab import build_vocab_from_iterator\n", + "\n", + "# 1) 올바른 raw URL\n", + "URL_DE = \"https://raw.githubusercontent.com/multi30k/dataset/master/data/task1/raw/train.de.gz\"\n", + "URL_EN = \"https://raw.githubusercontent.com/multi30k/dataset/master/data/task1/raw/train.en.gz\"\n", + "\n", + "def download_and_read_gz(url):\n", + " resp = requests.get(url)\n", + " resp.raise_for_status()\n", + " # 메모리 상에서 gzip 해제\n", + " with gzip.GzipFile(fileobj=io.BytesIO(resp.content)) as gz:\n", + " return [line.decode(\"utf-8\").strip() for line in gz]\n", + "\n", + "# 2) 독일어·영어 문장 리스트 로드\n", + "de_sentences = download_and_read_gz(URL_DE)\n", + "en_sentences = download_and_read_gz(URL_EN)\n", + "raw_train = list(zip(de_sentences, en_sentences)) # [(de, en), ...]\n", + "\n", + "# 3) 토크나이저·특수토큰 세팅\n", + "SRC, TGT = \"de\", \"en\"\n", + "UNK_IDX = 0\n", + "specials = [\"\", \"\", \"\", \"\"]\n", + "tokenizer = {\n", + " SRC: get_tokenizer(\"spacy\", language=\"de_core_news_sm\"),\n", + " TGT: get_tokenizer(\"spacy\", language=\"en_core_web_sm\"),\n", + "}\n", + "\n", + "# 4) 토큰 제너레이터\n", + "def generate_tokens(data, lang):\n", + " idx = 0 if lang == SRC else 1\n", + " for src, tgt in data:\n", + " text = src if lang == SRC else tgt\n", + " yield tokenizer[lang](text)\n", + "\n", + "# 5) vocab 빌드\n", + "vocab = {}\n", + "for lang in [SRC, TGT]:\n", + " v = build_vocab_from_iterator(\n", + " generate_tokens(raw_train, lang),\n", + " min_freq=1,\n", + " specials=specials,\n", + " special_first=True,\n", + " )\n", + " v.set_default_index(UNK_IDX)\n", + " vocab[lang] = v\n", + "\n", + "# 확인\n", + "print(\"German vocab size:\", len(vocab[\"de\"]))\n", + "print(\"English vocab size:\", len(vocab[\"en\"]))\n" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "import math\n", + "import torch\n", + "from torch import nn\n", + "\n", + "\n", + "class PositionalEncoding(nn.Module):\n", + " def __init__(self, d_model, max_len, dropout=0.1):\n", + " super().__init__()\n", + " self.dropout = nn.Dropout(p=dropout)\n", + "\n", + " position = torch.arange(max_len).unsqueeze(1)\n", + " div_term = torch.exp(\n", + " torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model)\n", + " )\n", + "\n", + " pe = torch.zeros(max_len, 1, d_model)\n", + " pe[:, 0, 0::2] = torch.sin(position * div_term)\n", + " pe[:, 0, 1::2] = torch.cos(position * div_term)\n", + " self.register_buffer(\"pe\", pe)\n", + "\n", + " def forward(self, x):\n", + " x = x + self.pe[: x.size(0)]\n", + " return self.dropout(x)\n", + "\n", + "\n", + "class TokenEmbedding(nn.Module):\n", + " def __init__(self, vocab_size, emb_size):\n", + " super().__init__()\n", + " self.embedding = nn.Embedding(vocab_size, emb_size)\n", + " self.emb_size = emb_size\n", + "\n", + " def forward(self, tokens):\n", + " return self.embedding(tokens.long()) * math.sqrt(self.emb_size)\n", + "\n", + "\n", + "class Seq2SeqTransformer(nn.Module):\n", + " def __init__(\n", + " self,\n", + " num_encoder_layers,\n", + " num_decoder_layers,\n", + " emb_size,\n", + " max_len,\n", + " nhead,\n", + " src_vocab_size,\n", + " tgt_vocab_size,\n", + " dim_feedforward,\n", + " dropout=0.1,\n", + " ):\n", + " super().__init__()\n", + " self.src_tok_emb = TokenEmbedding(src_vocab_size, emb_size)\n", + " self.tgt_tok_emb = TokenEmbedding(tgt_vocab_size, emb_size)\n", + " self.positional_encoding = PositionalEncoding(\n", + " d_model=emb_size, max_len=max_len, dropout=dropout\n", + " )\n", + " self.transformer = nn.Transformer(\n", + " d_model=emb_size,\n", + " nhead=nhead,\n", + " num_encoder_layers=num_encoder_layers,\n", + " num_decoder_layers=num_decoder_layers,\n", + " dim_feedforward=dim_feedforward,\n", + " dropout=dropout,\n", + " )\n", + " self.generator = nn.Linear(emb_size, tgt_vocab_size)\n", + "\n", + " def forward(\n", + " self,\n", + " src,\n", + " trg,\n", + " src_mask,\n", + " tgt_mask,\n", + " src_padding_mask,\n", + " tgt_padding_mask,\n", + " memory_key_padding_mask,\n", + " ):\n", + " src_emb = self.positional_encoding(self.src_tok_emb(src))\n", + " tgt_emb = self.positional_encoding(self.tgt_tok_emb(trg))\n", + " outs = self.transformer(\n", + " src=src_emb,\n", + " tgt=tgt_emb,\n", + " src_mask=src_mask,\n", + " tgt_mask=tgt_mask,\n", + " memory_mask=None,\n", + " src_key_padding_mask=src_padding_mask,\n", + " tgt_key_padding_mask=tgt_padding_mask,\n", + " memory_key_padding_mask=memory_key_padding_mask\n", + " )\n", + " return self.generator(outs)\n", + "\n", + " def encode(self, src, src_mask):\n", + " return self.transformer.encoder(\n", + " self.positional_encoding(self.src_tok_emb(src)), src_mask\n", + " )\n", + "\n", + " def decode(self, tgt, memory, tgt_mask):\n", + " return self.transformer.decoder(\n", + " self.positional_encoding(self.tgt_tok_emb(tgt)), memory, tgt_mask\n", + " )" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "src_tok_emb\n", + "└ embedding\n", + "tgt_tok_emb\n", + "└ embedding\n", + "positional_encoding\n", + "└ dropout\n", + "transformer\n", + "└ encoder\n", + "│ └ layers\n", + "│ │ └ 0\n", + "│ │ └ 1\n", + "│ │ └ 2\n", + "│ └ norm\n", + "└ decoder\n", + "│ └ layers\n", + "│ │ └ 0\n", + "│ │ └ 1\n", + "│ │ └ 2\n", + "│ └ norm\n", + "generator\n" + ] + } + ], + "source": [ + "# --- 앞에서 build한 vocab 딕셔너리 ---\n", + "# vocab = {\"de\": de_vocab, \"en\": en_vocab}\n", + "\n", + "SRC_LANGUAGE, TGT_LANGUAGE = \"de\", \"en\"\n", + "PAD_IDX = 1 # 앞서 설정하신 패딩 인덱스\n", + "\n", + "# 모델 생성 시 vocab 대신 vocab_transform 이름으로 참조하거나\n", + "# 바로 vocab을 사용하세요.\n", + "model = Seq2SeqTransformer(\n", + " num_encoder_layers=3,\n", + " num_decoder_layers=3,\n", + " emb_size=512,\n", + " max_len=512,\n", + " nhead=8,\n", + " src_vocab_size=len(vocab[SRC_LANGUAGE]), # ← 여기만 바뀜\n", + " tgt_vocab_size=len(vocab[TGT_LANGUAGE]), # ← 그리고 여기\n", + " dim_feedforward=512,\n", + ").to(DEVICE)\n", + "\n", + "criterion = nn.CrossEntropyLoss(ignore_index=PAD_IDX).to(DEVICE)\n", + "optimizer = optim.Adam(model.parameters())\n", + "\n", + "for main_name, main_module in model.named_children():\n", + " print(main_name)\n", + " for sub_name, sub_module in main_module.named_children():\n", + " print(\"└\", sub_name)\n", + " for ssub_name, ssub_module in sub_module.named_children():\n", + " print(\"│ └\", ssub_name)\n", + " for sssub_name, sssub_module in ssub_module.named_children():\n", + " print(\"│ │ └\", sssub_name)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "source_batch shape: torch.Size([35, 128])\n", + "target_batch shape: torch.Size([30, 128])\n", + "example source indices:\n", + " tensor([[ 2, 2, 2, 2, 2],\n", + " [ 14, 5, 5, 21, 5],\n", + " [ 38, 12, 35, 31, 12],\n", + " [ 24, 281, 10, 957, 10],\n", + " [ 243, 7, 1205, 18, 7190],\n", + " [2744, 6, 32, 420, 2328],\n", + " [8680, 83, 11, 0, 8],\n", + " [ 11, 245, 34, 11, 16],\n", + " [ 20, 11, 792, 6, 18],\n", + " [ 892, 6, 13, 0, 362],\n", + " [ 3, 444, 17, 318, 3914],\n", + " [ 1, 4, 4, 11, 62],\n", + " [ 1, 3, 3, 3, 8],\n", + " [ 1, 1, 1, 1, 32],\n", + " [ 1, 1, 1, 1, 7],\n", + " [ 1, 1, 1, 1, 6],\n", + " [ 1, 1, 1, 1, 115],\n", + " [ 1, 1, 1, 1, 197],\n", + " [ 1, 1, 1, 1, 4],\n", + " [ 1, 1, 1, 1, 3],\n", + " [ 1, 1, 1, 1, 1],\n", + " [ 1, 1, 1, 1, 1],\n", + " [ 1, 1, 1, 1, 1],\n", + " [ 1, 1, 1, 1, 1],\n", + " [ 1, 1, 1, 1, 1],\n", + " [ 1, 1, 1, 1, 1],\n", + " [ 1, 1, 1, 1, 1],\n", + " [ 1, 1, 1, 1, 1],\n", + " [ 1, 1, 1, 1, 1],\n", + " [ 1, 1, 1, 1, 1],\n", + " [ 1, 1, 1, 1, 1],\n", + " [ 1, 1, 1, 1, 1],\n", + " [ 1, 1, 1, 1, 1],\n", + " [ 1, 1, 1, 1, 1],\n", + " [ 1, 1, 1, 1, 1]])\n", + "example target indices:\n", + " tensor([[ 2, 2, 2, 2, 2],\n", + " [ 6, 6, 6, 19, 6],\n", + " [ 39, 12, 35, 36, 1489],\n", + " [ 13, 383, 21, 412, 12],\n", + " [ 36, 7, 759, 50, 21],\n", + " [ 17, 4, 96, 4, 4],\n", + " [1667, 51, 9, 30, 31],\n", + " [2541, 189, 4, 272, 748],\n", + " [ 342, 9, 16, 382, 85],\n", + " [ 4, 4, 106, 1923, 10],\n", + " [ 282, 439, 893, 9, 32],\n", + " [ 3, 5, 5, 28, 7],\n", + " [ 1, 3, 3, 5504, 4],\n", + " [ 1, 1, 1, 79, 77],\n", + " [ 1, 1, 1, 325, 184],\n", + " [ 1, 1, 1, 3, 5],\n", + " [ 1, 1, 1, 1, 3],\n", + " [ 1, 1, 1, 1, 1],\n", + " [ 1, 1, 1, 1, 1],\n", + " [ 1, 1, 1, 1, 1],\n", + " [ 1, 1, 1, 1, 1],\n", + " [ 1, 1, 1, 1, 1],\n", + " [ 1, 1, 1, 1, 1],\n", + " [ 1, 1, 1, 1, 1],\n", + " [ 1, 1, 1, 1, 1],\n", + " [ 1, 1, 1, 1, 1],\n", + " [ 1, 1, 1, 1, 1],\n", + " [ 1, 1, 1, 1, 1],\n", + " [ 1, 1, 1, 1, 1],\n", + " [ 1, 1, 1, 1, 1]])\n" + ] + } + ], + "source": [ + "import requests\n", + "import gzip\n", + "import io\n", + "import math\n", + "import torch\n", + "from torch import nn\n", + "from torch.utils.data import DataLoader\n", + "from torch.nn.utils.rnn import pad_sequence\n", + "from torchtext.data.utils import get_tokenizer\n", + "from torchtext.vocab import build_vocab_from_iterator\n", + "\n", + "# === 0) 앞에서 정의한 download_and_read_gz 함수 재사용 ===\n", + "def download_and_read_gz(url):\n", + " resp = requests.get(url)\n", + " resp.raise_for_status()\n", + " with gzip.GzipFile(fileobj=io.BytesIO(resp.content)) as gz:\n", + " return [line.decode(\"utf-8\").strip() for line in gz]\n", + "\n", + "# === 1) train/valid 데이터 로드 ===\n", + "URLS = {\n", + " \"train\": {\n", + " \"de\": \"https://raw.githubusercontent.com/multi30k/dataset/master/data/task1/raw/train.de.gz\",\n", + " \"en\": \"https://raw.githubusercontent.com/multi30k/dataset/master/data/task1/raw/train.en.gz\",\n", + " },\n", + " \"valid\": {\n", + " \"de\": \"https://raw.githubusercontent.com/multi30k/dataset/master/data/task1/raw/val.de.gz\",\n", + " \"en\": \"https://raw.githubusercontent.com/multi30k/dataset/master/data/task1/raw/val.en.gz\",\n", + " }\n", + "}\n", + "\n", + "raw_data = {}\n", + "for split in [\"train\", \"valid\"]:\n", + " de = download_and_read_gz(URLS[split][\"de\"])\n", + " en = download_and_read_gz(URLS[split][\"en\"])\n", + " raw_data[split] = list(zip(de, en))\n", + "\n", + "raw_train = raw_data[\"train\"]\n", + "raw_valid = raw_data[\"valid\"]\n", + "\n", + "# === 2) 토크나이저 및 vocab 생성 ===\n", + "SRC, TGT = \"de\", \"en\"\n", + "BOS_IDX, EOS_IDX, PAD_IDX, UNK_IDX = 2, 3, 1, 0\n", + "specials = [\"\", \"\", \"\", \"\"]\n", + "\n", + "tokenizer = {\n", + " SRC: get_tokenizer(\"spacy\", language=\"de_core_news_sm\"),\n", + " TGT: get_tokenizer(\"spacy\", language=\"en_core_web_sm\"),\n", + "}\n", + "\n", + "def generate_tokens(data, lang):\n", + " idx = 0 if lang == SRC else 1\n", + " for src, tgt in data:\n", + " text = src if lang == SRC else tgt\n", + " yield tokenizer[lang](text)\n", + "\n", + "vocab = {}\n", + "for lang in [SRC, TGT]:\n", + " v = build_vocab_from_iterator(\n", + " generate_tokens(raw_train, lang),\n", + " min_freq=1,\n", + " specials=specials,\n", + " special_first=True,\n", + " )\n", + " v.set_default_index(UNK_IDX)\n", + " vocab[lang] = v\n", + "\n", + "# === 3) 텍스트 → 토큰ID 변환 트랜스폼 정의 ===\n", + "def sequential_transforms(*transforms):\n", + " def fn(txt):\n", + " for transform in transforms:\n", + " txt = transform(txt)\n", + " return txt\n", + " return fn\n", + "\n", + "def input_transform(token_ids):\n", + " return torch.cat([\n", + " torch.tensor([BOS_IDX]),\n", + " torch.tensor(token_ids),\n", + " torch.tensor([EOS_IDX])\n", + " ])\n", + "\n", + "text_transform = {}\n", + "for lang in [SRC, TGT]:\n", + " text_transform[lang] = sequential_transforms(\n", + " tokenizer[lang], # raw string → 리스트[str]\n", + " vocab[lang], # 리스트[str] → 리스트[int]\n", + " input_transform # 리스트[int] → Tensor[...]\n", + " )\n", + "\n", + "# === 4) collate_fn & DataLoader 생성 ===\n", + "def collator(batch):\n", + " src_batch, tgt_batch = [], []\n", + " for src_str, tgt_str in batch:\n", + " src_batch.append(text_transform[SRC](src_str))\n", + " tgt_batch.append(text_transform[TGT](tgt_str))\n", + " src_batch = pad_sequence(src_batch, padding_value=PAD_IDX)\n", + " tgt_batch = pad_sequence(tgt_batch, padding_value=PAD_IDX)\n", + " return src_batch, tgt_batch\n", + "\n", + "BATCH_SIZE = 128\n", + "valid_loader = DataLoader(raw_valid, batch_size=BATCH_SIZE, collate_fn=collator)\n", + "\n", + "# === 5) 한 배치 꺼내서 확인 ===\n", + "src_batch, tgt_batch = next(iter(valid_loader))\n", + "print(\"source_batch shape:\", src_batch.shape) # (seq_len, batch)\n", + "print(\"target_batch shape:\", tgt_batch.shape)\n", + "print(\"example source indices:\\n\", src_batch[:, :5])\n", + "print(\"example target indices:\\n\", tgt_batch[:, :5])\n" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "src_mask: torch.Size([35, 35])\n", + "tensor([[0., 0., 0., ..., 0., 0., 0.],\n", + " [0., 0., 0., ..., 0., 0., 0.],\n", + " [0., 0., 0., ..., 0., 0., 0.],\n", + " ...,\n", + " [0., 0., 0., ..., 0., 0., 0.],\n", + " [0., 0., 0., ..., 0., 0., 0.],\n", + " [0., 0., 0., ..., 0., 0., 0.]])\n", + "tgt_mask: torch.Size([29, 29])\n", + "tensor([[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0.],\n", + " [-inf, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0.],\n", + " [-inf, -inf, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0.],\n", + " [-inf, -inf, -inf, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0.],\n", + " [-inf, -inf, -inf, -inf, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0.],\n", + " [-inf, -inf, -inf, -inf, -inf, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0.],\n", + " [-inf, -inf, -inf, -inf, -inf, -inf, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0.],\n", + " [-inf, -inf, -inf, -inf, -inf, -inf, -inf, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0.],\n", + " [-inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0.],\n", + " [-inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0.],\n", + " [-inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0.],\n", + " [-inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0.],\n", + " [-inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0.],\n", + " [-inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0.],\n", + " [-inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0.],\n", + " [-inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0.],\n", + " [-inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0.],\n", + " [-inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0.],\n", + " [-inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0.],\n", + " [-inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0.],\n", + " [-inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0.],\n", + " [-inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, 0., 0., 0.,\n", + " 0., 0., 0., 0., 0.],\n", + " [-inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, 0., 0.,\n", + " 0., 0., 0., 0., 0.],\n", + " [-inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, 0.,\n", + " 0., 0., 0., 0., 0.],\n", + " [-inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf,\n", + " 0., 0., 0., 0., 0.],\n", + " [-inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf,\n", + " -inf, 0., 0., 0., 0.],\n", + " [-inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf,\n", + " -inf, -inf, 0., 0., 0.],\n", + " [-inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf,\n", + " -inf, -inf, -inf, 0., 0.],\n", + " [-inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf,\n", + " -inf, -inf, -inf, -inf, 0.]])\n", + "src_pad_mask: torch.Size([128, 35])\n", + "tensor([[False, False, False, ..., True, True, True],\n", + " [False, False, False, ..., True, True, True],\n", + " [False, False, False, ..., True, True, True],\n", + " ...,\n", + " [False, False, False, ..., True, True, True],\n", + " [False, False, False, ..., True, True, True],\n", + " [False, False, False, ..., True, True, True]])\n", + "tgt_pad_mask: torch.Size([128, 29])\n", + "tensor([[False, False, False, ..., True, True, True],\n", + " [False, False, False, ..., True, True, True],\n", + " [False, False, False, ..., True, True, True],\n", + " ...,\n", + " [False, False, False, ..., True, True, True],\n", + " [False, False, False, ..., True, True, True],\n", + " [False, False, False, ..., True, True, True]])\n" + ] + } + ], + "source": [ + "import torch\n", + "\n", + "# 이미 정의된 DEVICE, PAD_IDX 사용\n", + "# DEVICE = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n", + "# PAD_IDX = 1\n", + "\n", + "def generate_square_subsequent_mask(sz):\n", + " mask = torch.triu(torch.ones((sz, sz), device=DEVICE)) == 1\n", + " mask = (\n", + " mask.float()\n", + " .masked_fill(~mask, float(\"-inf\"))\n", + " .masked_fill(mask, float(0.0))\n", + " )\n", + " return mask\n", + "\n", + "def create_mask(src, tgt_input):\n", + " src_seq_len, _ = src.shape\n", + " tgt_seq_len, _ = tgt_input.shape\n", + "\n", + " # no future look-ahead for decoder\n", + " tgt_mask = generate_square_subsequent_mask(tgt_seq_len)\n", + " # encoder doesn't need causal mask\n", + " src_mask = torch.zeros((src_seq_len, src_seq_len), device=DEVICE)\n", + "\n", + " # padding masks: shape (batch, seq_len)\n", + " src_padding_mask = (src == PAD_IDX).transpose(0, 1)\n", + " tgt_padding_mask = (tgt_input == PAD_IDX).transpose(0, 1)\n", + " return src_mask, tgt_mask, src_padding_mask, tgt_padding_mask\n", + "\n", + "# 예시: valid_loader 에서 배치 꺼내기\n", + "src_batch, tgt_batch = next(iter(valid_loader)) # src_batch: (S, B), tgt_batch: (T, B)\n", + "\n", + "# decoder input은 부터 마지막 전까지\n", + "tgt_input = tgt_batch[:-1, :]\n", + "# 예측 대상(teacher forcing)은 두 번째 토큰부터 끝까지\n", + "tgt_out = tgt_batch[1:, :]\n", + "\n", + "src_mask, tgt_mask, src_pad_mask, tgt_pad_mask = create_mask(src_batch, tgt_input)\n", + "\n", + "print(\"src_mask:\", src_mask.shape)\n", + "print(src_mask)\n", + "\n", + "print(\"tgt_mask:\", tgt_mask.shape)\n", + "print(tgt_mask)\n", + "\n", + "print(\"src_pad_mask:\", src_pad_mask.shape)\n", + "print(src_pad_mask)\n", + "\n", + "print(\"tgt_pad_mask:\", tgt_pad_mask.shape)\n", + "print(tgt_pad_mask)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "577080f70b824c5b905db5a3e9cef87f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "config.json: 0%| | 0.00/665 [00:00= 2.1 is required but found 2.0.1\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Train Dataset Length : 8550\n", + "Valid Dataset Length : 526\n", + "Test Dataset Length : 515\n" + ] + } + ], + "source": [ + "import torch\n", + "from torchtext.datasets import CoLA\n", + "from transformers import AutoTokenizer\n", + "from torch.utils.data import DataLoader\n", + "\n", + "\n", + "def collator(batch, tokenizer, device):\n", + " source, labels, texts = zip(*batch)\n", + " tokenized = tokenizer(\n", + " texts,\n", + " padding=\"longest\",\n", + " truncation=True,\n", + " return_tensors=\"pt\"\n", + " )\n", + " input_ids = tokenized[\"input_ids\"].to(device)\n", + " attention_mask = tokenized[\"attention_mask\"].to(device)\n", + " labels = torch.tensor(labels, dtype=torch.long).to(device)\n", + " return input_ids, attention_mask, labels\n", + "\n", + "\n", + "train_data = list(CoLA(split=\"train\"))\n", + "valid_data = list(CoLA(split=\"dev\"))\n", + "test_data = list(CoLA(split=\"test\"))\n", + "\n", + "tokenizer = AutoTokenizer.from_pretrained(\"gpt2\")\n", + "tokenizer.pad_token = tokenizer.eos_token\n", + "\n", + "epochs = 3\n", + "batch_size = 16\n", + "device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n", + "\n", + "train_dataloader = DataLoader(\n", + " train_data,\n", + " batch_size=batch_size,\n", + " collate_fn=lambda x: collator(x, tokenizer, device),\n", + " shuffle=True,\n", + ")\n", + "valid_dataloader = DataLoader(\n", + " valid_data, batch_size=batch_size, collate_fn=lambda x: collator(x, tokenizer, device)\n", + ")\n", + "test_dataloader = DataLoader(\n", + " test_data, batch_size=batch_size, collate_fn=lambda x: collator(x, tokenizer, device)\n", + ")\n", + "\n", + "print(\"Train Dataset Length :\", len(train_data))\n", + "print(\"Valid Dataset Length :\", len(valid_data))\n", + "print(\"Test Dataset Length :\", len(test_data))" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Some weights of GPT2ForSequenceClassification were not initialized from the model checkpoint at gpt2 and are newly initialized: ['score.weight']\n", + "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n" + ] + } + ], + "source": [ + "import torch\n", + "from torch import optim\n", + "from transformers import GPT2ForSequenceClassification\n", + "\n", + "# 1) device 정의\n", + "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n", + "\n", + "# 2) 모델 로드 및 디바이스 이동\n", + "model = GPT2ForSequenceClassification.from_pretrained(\n", + " pretrained_model_name_or_path=\"gpt2\",\n", + " num_labels=2\n", + ").to(device)\n", + "\n", + "# 3) 패딩 토큰 설정\n", + "model.config.pad_token_id = model.config.eos_token_id\n", + "\n", + "# 4) 옵티마이저 준비\n", + "optimizer = optim.Adam(model.parameters(), lr=5e-5)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "from torch import nn\n", + "\n", + "\n", + "def calc_accuracy(preds, labels):\n", + " pred_flat = np.argmax(preds, axis=1).flatten()\n", + " labels_flat = labels.flatten()\n", + " return np.sum(pred_flat == labels_flat) / len(labels_flat)\n", + "\n", + "def train(model, optimizer, dataloader):\n", + " model.train()\n", + " train_loss = 0.0\n", + "\n", + " for input_ids, attention_mask, labels in dataloader:\n", + " outputs = model(\n", + " input_ids=input_ids,\n", + " attention_mask=attention_mask,\n", + " labels=labels\n", + " )\n", + "\n", + " loss = outputs.loss\n", + " train_loss += loss.item()\n", + " \n", + " optimizer.zero_grad()\n", + " loss.backward()\n", + " optimizer.step()\n", + "\n", + " train_loss = train_loss / len(dataloader)\n", + " return train_loss\n", + "\n", + "def evaluation(model, dataloader):\n", + " with torch.no_grad():\n", + " model.eval()\n", + " val_loss, val_accuracy = 0.0, 0.0\n", + " \n", + " for input_ids, attention_mask, labels in dataloader:\n", + " outputs = model(\n", + " input_ids=input_ids,\n", + " attention_mask=attention_mask,\n", + " labels=labels\n", + " )\n", + " logits = outputs.logits\n", + " loss = outputs.loss\n", + "\n", + " logits = logits.detach().cpu().numpy()\n", + " label_ids = labels.to(\"cpu\").numpy()\n", + " accuracy = calc_accuracy(logits, label_ids)\n", + " \n", + " val_loss += loss.item()\n", + " val_accuracy += accuracy\n", + " \n", + " val_loss = val_loss/len(dataloader)\n", + " val_accuracy = val_accuracy/len(dataloader)\n", + " return val_loss, val_accuracy\n", + "\n", + "\n", + "best_loss = 10000\n", + "for epoch in range(epochs):\n", + " train_loss = train(model, optimizer, train_dataloader)\n", + " val_loss, val_accuracy = evaluation(model, valid_dataloader)\n", + " print(f\"Epoch {epoch + 1}: Train Loss: {train_loss:.4f} Val Loss: {val_loss:.4f} Val Accuracy {val_accuracy:.4f}\")\n", + "\n", + " if val_loss < best_loss:\n", + " best_loss = val_loss\n", + " torch.save(model.state_dict(), \"../models/GPT2ForSequenceClassification.pt\")\n", + " print(\"Saved the model weights\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model = GPT2ForSequenceClassification.from_pretrained(\n", + " pretrained_model_name_or_path=\"gpt2\",\n", + " num_labels=2\n", + ").to(device)\n", + "model.config.pad_token_id = model.config.eos_token_id\n", + "model.load_state_dict(torch.load(\"../models/GPT2ForSequenceClassification.pt\"))\n", + "\n", + "test_loss, test_accuracy = evaluation(model, test_dataloader)\n", + "print(f\"Test Loss : {test_loss:.4f}\")\n", + "print(f\"Test Accuracy : {test_accuracy:.4f}\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "base", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.2" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +}