diff --git "a/Week12_\353\263\265\354\212\265\352\263\274\354\240\234_\355\225\250\354\230\210\353\246\260.ipynb" "b/Week12_\353\263\265\354\212\265\352\263\274\354\240\234_\355\225\250\354\230\210\353\246\260.ipynb" new file mode 100644 index 0000000..03f0f3b --- /dev/null +++ "b/Week12_\353\263\265\354\212\265\352\263\274\354\240\234_\355\225\250\354\230\210\353\246\260.ipynb" @@ -0,0 +1,580 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + } + }, + "cells": [ + { + "cell_type": "markdown", + "source": [ + "##**Text generation Experiment**\n", + "\n", + "- 이번 복습과제에는 GPT-2 모델을 사용한 텍스트 생생을 다룹니다. 🙂\n", + "- GPT-2는 약 40GB의 인터넷 텍스트 데이터로 훈련된 모델로 다음 단어 예측(next word prediction)을 목적으로 학습이 되었습니다\n", + "- Beam Search, Top-k sampling, Top-p sampling 과 같은 다양한 디코딩 기법들을 실험해보겠습니다." + ], + "metadata": { + "id": "8Gxy65cu8irm" + } + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "id": "_M2apVV-8cyb" + }, + "outputs": [], + "source": [ + "#reproducability을 위해 해당 코드를 실행해주세요\n", + "SEED = 34\n", + "#max number of words in output text\n", + "MAX_LEN = 70" + ] + }, + { + "cell_type": "code", + "source": [ + "# 실험할 문장입니다.\n", + "input_sequence = \"I don't know about you, but there's only one thing I want to do after a long day of work\"" + ], + "metadata": { + "id": "Kd6ZRQmG8gWL" + }, + "execution_count": 2, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "# transformers을 가져와서 사용해봅시다\n", + "from transformers import TFGPT2LMHeadModel, GPT2Tokenizer\n", + "\n", + "# pretrained large GPT2 tokenizer 와 GPT2 model를 가져와주세요.\n", + "tokenizer = GPT2Tokenizer.from_pretrained(\"gpt2-large\")\n", + "GPT2 = TFGPT2LMHeadModel.from_pretrained(\"gpt2-large\", pad_token_id=tokenizer.eos_token_id)\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "pEjO6IVs8gS0", + "outputId": "44d41d65-ff9a-406e-e7a7-a2642cfb8cba" + }, + "execution_count": 3, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.11/dist-packages/huggingface_hub/utils/_auth.py:94: UserWarning: \n", + "The secret `HF_TOKEN` does not exist in your Colab secrets.\n", + "To authenticate with the Hugging Face Hub, create a token in your settings tab (https://huggingface.co/settings/tokens), set it as secret in your Google Colab and restart your session.\n", + "You will be able to reuse this secret in all of your notebooks.\n", + "Please note that authentication is recommended but still optional to access public models or datasets.\n", + " warnings.warn(\n", + "All PyTorch model weights were used when initializing TFGPT2LMHeadModel.\n", + "\n", + "All the weights of TFGPT2LMHeadModel were initialized from the PyTorch model.\n", + "If your task is similar to the task the model of the checkpoint was trained on, you can already use TFGPT2LMHeadModel for predictions without further training.\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# model parameters을 확인해 봅시다.\n", + "GPT2.summary()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "QI2_C2gw8gPq", + "outputId": "0ba9b49e-dae3-488e-d374-b38f998f007b" + }, + "execution_count": 4, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Model: \"tfgpt2lm_head_model\"\n", + "_________________________________________________________________\n", + " Layer (type) Output Shape Param # \n", + "=================================================================\n", + " transformer (TFGPT2MainLay multiple 774030080 \n", + " er) \n", + " \n", + "=================================================================\n", + "Total params: 774030080 (2.88 GB)\n", + "Trainable params: 774030080 (2.88 GB)\n", + "Non-trainable params: 0 (0.00 Byte)\n", + "_________________________________________________________________\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "#아래 코드를 실행해주세요-\n", + "import tensorflow as tf\n", + "tf.random.set_seed(SEED)" + ], + "metadata": { + "id": "cPFXwobg8gMJ" + }, + "execution_count": 5, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "### **Greedy-Search**\n", + "- Greedy Search 에서는 각 시점마다 가장 확률이 높은 단어를 다음 단어로 선택합니다.\n", + "- 즉, 다음 단어는 아래와 같이 업데이트됩니다:\n", + "\n", + "$ wt=argmax wP(w|w1:t−1) $ \n", + "\n", + "> 즉, 각 타임스텝 𝑡마다 조건부 확률이 가장 높은 단어를 선택하는 것!\n", + "\n", + "\n", + "- 이 단순한 접근방식이 어떤 성능 차이를 보이는지 살펴봅시다." + ], + "metadata": { + "id": "zsX-xn93-tUP" + } + }, + { + "cell_type": "code", + "source": [ + "# context를 encoder해주세요\n", + "input_ids = tokenizer.encode(input_sequence, return_tensors=\"tf\")\n", + "\n", + "# 텍스트 생성하기, 이때 output length가 (context length 포함) 50이 될 때까지\n", + "greedy_output = GPT2.generate(input_ids, max_length=50, do_sample=False)\n", + "\n", + "# output sequences 출력하기\n", + "print(\"Output:\\n\" + 100 * '-')\n", + "print(tokenizer.decode(greedy_output[0], skip_special_tokens = True))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ig-oWtIA8gIq", + "outputId": "59fa11ae-1475-4c78-fb20-239847e23cf2" + }, + "execution_count": 6, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Output:\n", + "----------------------------------------------------------------------------------------------------\n", + "I don't know about you, but there's only one thing I want to do after a long day of work: go to the gym.\n", + "\n", + "I'm not talking about the gym that's right next to my house. I'm talking about\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "💡**위 Greedy Search 식과 코드 결과를 보고 고려되는 주요 문제점을 해당 셀을 풀고 설명해주세요.**\n", + "\n", + "\n", + "---\n", + "\n", + "\n", + "- 다양하고 창의적인 텍스트 생성이 어려워서 생성 결과가 반복적일 수 있다.\n", + "- max_length까지의 토큰만을 출력하기 때문에 문장이 마무리 되지 않은 채로 출력이 되는 문제가 발생해 결과가 어색할 수 있다." + ], + "metadata": { + "id": "gVj1neC__f2N" + } + }, + { + "cell_type": "markdown", + "source": [ + "### **Beam Search + N-Gram Penalty**\n", + "- Beam Search는 기본적으로 Greedy Search와 유사하지만, 모델이 각 시점에서 여러 개(num_beams)의 후보 경로를 동시에 추적한다는 점이 다릅니다\n", + " > 즉, 모델이 여러 대안을 비교하면서 텍스트를 생성할 수 있다는 점!\n", + "\n", + "\n", + "- 또한, n-gram 반복을 방지하기 위한 패널티도 적용할 수 있습니다.예를 들어 `no_repeat_ngram_size = 2`로 설정하면\n", + "동일한 2-그램이 두 번 등장하지 않도록 제한됩니다.\n", + "\n", + "- 그리고 `num_return_sequences = 5` 로 설정하면\n", + "5개의 beam 결과를 모두 출력하여 비교해볼 수 있습니다." + ], + "metadata": { + "id": "3EC0shCGAAQq" + } + }, + { + "cell_type": "code", + "source": [ + "# Beam Search를 사용하려면,단순히 generate 함수의 몇몇 파라미터만 변경하면 됩니다.\n", + "# num_beans를 설정해서 beam search decoding을 실행해주세요\n", + "beam_outputs = GPT2.generate(\n", + " input_ids,\n", + " max_length=50,\n", + " num_beams=5,\n", + " num_return_sequences=5,\n", + " no_repeat_ngram_size=2,\n", + " early_stopping=True\n", + ")\n", + "\n", + "print('')\n", + "print(\"Output:\\n\" + 100 * '-')\n", + "\n", + "# output sequences 출력하기\n", + "for i, beam_output in enumerate(beam_outputs):\n", + " print(\"{}: {}\".format(i, tokenizer.decode(beam_output, skip_special_tokens=True)))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "l6OrEzA684Np", + "outputId": "c0b4561a-3504-445a-aa6b-4356174d8a18" + }, + "execution_count": 7, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "Output:\n", + "----------------------------------------------------------------------------------------------------\n", + "0: I don't know about you, but there's only one thing I want to do after a long day of work, and that's to sit down and watch a movie.\"\n", + "\n", + "\"I know, I know,\" you say. \"But I\n", + "1: I don't know about you, but there's only one thing I want to do after a long day of work, and that's to sit down and watch a movie.\"\n", + "\n", + "\"I know, I know,\" you say. \"I'm\n", + "2: I don't know about you, but there's only one thing I want to do after a long day of work, and that's to sit down and watch a movie.\"\n", + "\n", + "\"I know, I know,\" you say. \"But you\n", + "3: I don't know about you, but there's only one thing I want to do after a long day of work, and that's to sit down and watch a movie.\"\n", + "\n", + "\"I know, I know,\" you say, \"but I\n", + "4: I don't know about you, but there's only one thing I want to do after a long day of work, and that's to sit down and watch a movie.\"\n", + "\n", + "\"I know, I know,\" you say. \"I just\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "💡**아래 그래프는 Beam Search의 결과와 실제 인간의 말하기 방식 사이의 차이를 보여줍니다. 위 Beam Search 코드 결과와 아래 그래프를 보고 고려되는 주요 문제점을 해당 셀을 풀고 설명해주세요. (기재된 논문에서 힌트를 찾을 수 있습니다.)**\n", + "\n", + "\n", + "---\n", + "\n", + "\n", + "- 인간의 언어는 불규칙성을 포함하고 있으나 Beam Search의 결과는 확률이 높은 경로만을 탐색하기 때문에, 생성 결과는 창의성이 부족하게 된다.\n", + "- Beam Search는 동일한 입력에 대해 유사한 출력을 생성하는 경향이 있기 때문에 다양한 결과를 생성하는 데 한계가 있다.\n", + "- Beam Search는 높은 확률의 토큰을 선택하여 반복적인 문장을 생성하는 경향이 있기 때문에 결과가 예측 가능하게 된다." + ], + "metadata": { + "id": "_VhLZdJlBVZk" + } + }, + { + "cell_type": "markdown", + "source": [ + "![image.png]()\n", + "\n", + "[출처] The Curious Case of Neural Text Degeneration, arXiv:1904.09751 (cs)\n", + "https://arxiv.org/abs/1904.09751" + ], + "metadata": { + "id": "aOBGUk2aAwQ-" + } + }, + { + "cell_type": "markdown", + "source": [ + "### **Basic Sampling**\n", + "- 이 방식은 가장 확률이 높은 문장을 찾는 경로를 고집하지 않고, 각 시점에서 조건부 확률 분포에 따라 무작위로 다음 단어를 선택합니다.\n", + "\n", + "$w t​ ∼P(w∣w 1:t−1)$\n", + "- 하지만 이렇게 무작위성이 추가되면, 생성된 문장이 일관성이 떨어지고 혼란스러워질 수 있습니다.\n", + "- 그래서 무작위성을 제어하기 위해 temperature 파라미터를 도입할 수 있습니다. 이 파라미터는 확률이 높은 단어의 선택 가능성을 높이고, 확률이 낮은 단어는 선택될 가능성을 줄여줍니다." + ], + "metadata": { + "id": "BcDagIp1BvFA" + } + }, + { + "cell_type": "code", + "source": [ + "# 샘플링을 구현하려면 do_sample = True만 설정하면 됩니다.\n", + "# temperature을 설정해주세요.\n", + "# 이때 top_k = 0으로 설정해주세요.\n", + "sample_output = GPT2.generate(\n", + " input_ids,\n", + " do_sample=True,\n", + " max_length=50,\n", + " temperature=1.0,\n", + " top_k=0\n", + ")\n", + "# output sequences 출력하기\n", + "print(\"Output:\\n\" + 100 * '-')\n", + "print(tokenizer.decode(sample_output[0], skip_special_tokens = True))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "z6pXSH2RBuz8", + "outputId": "94c95232-cdc6-4aff-a9c2-59f43a52caea" + }, + "execution_count": 8, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Output:\n", + "----------------------------------------------------------------------------------------------------\n", + "I don't know about you, but there's only one thing I want to do after a long day of work – play games. Believe it or not, it's not that difficult. Today I decided to take a break, hope that I was\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "💡**temperature 파라미터가 어떤 매커니즘으로 무작위성을 제어하는지 해당 셀을 풀고 설명해주세요.**\n", + "\n", + "\n", + "---\n", + "\n", + "- 모델이 생성할 단어를 결정하기 위해 소프트맥스 함수를 사용하는데, 여기에 temperature를 적용하면 걱 단어 후보의 로짓 값을 temperature로 나눈 뒤 확률로 변환한다. Temperature가 1보다 작으면 일관성 있고 보수적인 텍스트가 생성되고, 1보다 크면 다양하고 창의적인 문장이 생성되지만, 문맥과 맞지 않는 단어가 등장할 수 있다. 1일 경우에는, 원래 모델이 계산한 확률 분포를 그대로 사용한다." + ], + "metadata": { + "id": "8g2RrY7PFmjJ" + } + }, + { + "cell_type": "markdown", + "source": [ + "### **Top-k Sampling**\n", + "- Top-K 샘플링에서는 다음 단어 후보 중 확률이 가장 높은 상위 K개 단어만 선택하고,\n", + "전체 probability mass을 이 K개의 단어에만 분배합니다.\n", + "\n", + "> 즉, 확률이 높은 단어의 선택 확률을 높이고, 낮은 단어의 확률을 줄이는 방식이 아니라,아예 확률이 낮은 단어들을 완전히 제거하는 방식!" + ], + "metadata": { + "id": "RzmrRsA8CmYs" + } + }, + { + "cell_type": "code", + "source": [ + "# top_k 값을 설정해서, 조건부 확률 분포에서 고려할 상위 단어 개수(K)를 지정해주세요!\n", + "sample_output = GPT2.generate(\n", + " input_ids,\n", + " do_sample=True,\n", + " max_length=50,\n", + " top_k=50,\n", + ")\n", + "\n", + "# output sequences 출력하기\n", + "print(\"Output:\\n\" + 100 * '-')\n", + "print(tokenizer.decode(sample_output[0], skip_special_tokens = True), '...')" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "WA-og6IeD1BZ", + "outputId": "9c3561ad-ffab-4d72-81c9-ac0310f2a35b" + }, + "execution_count": 9, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Output:\n", + "----------------------------------------------------------------------------------------------------\n", + "I don't know about you, but there's only one thing I want to do after a long day of work - the one thing I get to do when I leave home. And when I step into the kitchen, I want to use that one ...\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "### **Top-P Sampling(Nucleus Sampling)**\n", + "- Top-K 샘플링은 이전의 random sampling보다 더 일관된 텍스트를 생성하는 것으로 보입니다. 하지만 이보다 더나은 방법으로 Top-p sampling이 있습니다.\n", + "- Top-P 샘플링은 Top-K와 유사하지만,가장 확률이 높은 상위 K개 단어를 고르는 대신,누적 확률이 P 이상이 되는 최소한의 단어 집합을 선택합니다 그리고 전체 probability mass는 이 단어 집합에 재분배됩니다.\n" + ], + "metadata": { + "id": "2CgUegJOAw6h" + } + }, + { + "cell_type": "code", + "source": [ + "# top_p 파라미터를 통해 only from 80% most likely words 만 sample 해주세요.\n", + "sample_output = GPT2.generate(\n", + " input_ids,\n", + " do_sample=True,\n", + " max_length=50,\n", + " top_p=0.8,\n", + ")\n", + "# output sequences 출력하기\n", + "print(\"Output:\\n\" + 100 * '-')\n", + "print(tokenizer.decode(sample_output[0], skip_special_tokens = True), '...')" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "GEhy8PgbAr2f", + "outputId": "36fa68cf-144e-4587-ca60-70c087ff3bdf" + }, + "execution_count": 10, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Output:\n", + "----------------------------------------------------------------------------------------------------\n", + "I don't know about you, but there's only one thing I want to do after a long day of work: take a bath. I'd even go as far as to say that it's my most important pre-work ritual, even if ...\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "### **Top-K + Top-P sampling**\n", + "- 둘을 동시에 사용하면, 확률이 매우 낮은 단어(이상한 단어)가 나올 가능성을 줄이면서도, 선택되는 단어 집합의 크기는 유동적으로 유지할 수 있습니다." + ], + "metadata": { + "id": "heGKePrAE46H" + } + }, + { + "cell_type": "code", + "source": [ + "# top_k와 top_p에 값을 지정하면 되고, temperature 파라미터도 함께 사용할 수 있습니다.\n", + "# 아래 코드를 완성해주세요.\n", + "# 이때 max_length= 2*MAX_LEN 으로 설정해주세요\n", + "sample_outputs = GPT2.generate(\n", + " input_ids,\n", + " do_sample=True,\n", + " max_length=2*MAX_LEN,\n", + " top_k=50,\n", + " top_p=0.8,\n", + " temperature=0.8,\n", + " num_return_sequences=5\n", + ")\n", + "# output sequences 출력하기\n", + "print(\"Output:\\n\" + 100 * '-')\n", + "for i, sample_output in enumerate(sample_outputs):\n", + " print(\"{}: {}...\".format(i, tokenizer.decode(sample_output, skip_special_tokens = True)))\n", + " print('')" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Q8-CnW76E3FI", + "outputId": "f6a98ace-fdb5-45eb-e387-5021d06e7665" + }, + "execution_count": 11, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Output:\n", + "----------------------------------------------------------------------------------------------------\n", + "0: I don't know about you, but there's only one thing I want to do after a long day of work: smoke a cigarette. But I don't want to smoke in my office. That would be rude. So I've made a rule: I don't smoke anywhere.\n", + "\n", + "I've also made a rule: I don't smoke anywhere in the building.\n", + "\n", + "The first rule is easy to remember. The second is more difficult.\n", + "\n", + "I'm going to tell you what my rule is: I don't smoke anywhere.\n", + "\n", + "I've been told that's a rule. I've been told that's a law.\n", + "\n", + "I've been told that's a rule...\n", + "\n", + "1: I don't know about you, but there's only one thing I want to do after a long day of work: go home, have a few drinks, and watch some TV.\n", + "\n", + "The problem with that is that it's not that easy.\n", + "\n", + "It's not that easy to get a drink at a bar or to get a beer at a bar.\n", + "\n", + "I'm going to be honest with you. I'm not a big drinker. I don't drink a lot of beer, but I do drink a lot of wine.\n", + "\n", + "And I'm not going to lie to you. I've had some bad experiences with getting a beer at a bar.\n", + "\n", + "Here...\n", + "\n", + "2: I don't know about you, but there's only one thing I want to do after a long day of work: sleep. I've been doing that for over three years now, and I'm still not happy.\n", + "\n", + "So I decided to give it a shot. I found a couple of websites that provide tips on how to get a good night's sleep. One of them is called SleepChart, and the other is Sleep-O-Meter. Both of them are free.\n", + "\n", + "I downloaded the SleepChart app and started sleeping on it. It's a very simple app, but it's very easy to use. It's like a clock, but it has a graph that...\n", + "\n", + "3: I don't know about you, but there's only one thing I want to do after a long day of work: watch a movie.\n", + "\n", + "The first time I saw a movie was at a party, when I was a kid. I was the only one there, and I couldn't find anything to watch. My parents were both very old-school, so they took me to see The Godfather.\n", + "\n", + "I watched it over and over again, and I still remember the feeling of being mesmerized by the action.\n", + "\n", + "It wasn't until a few years later, when I was in college, that I started to think about what it was that I wanted to do after college...\n", + "\n", + "4: I don't know about you, but there's only one thing I want to do after a long day of work, and that's to go home and relax. If you think I'm going to miss the show, you're wrong.\n", + "\n", + "The show will be back on the air on Wednesday, September 13th at 10pm ET.\n", + "\n", + "For more information about the show, check out our website, and follow us on Twitter @nbcuniverses....\n", + "\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "💡**Top-k와 Top-p의 방식의 차이에 대해 설명해주세요**\n", + "\n", + "\n", + "---\n", + "- Top-k 방식은 확률 순으로 정렬된 단어들 중 상위 k개만을 고정적으로 선택 후보로 삼고, 그중에서 무작위로 단어를 생성한다. 계산이 간단하지만, 분포에 상관없이 같은 수의 단어를 고려하므로 불필요한 단어가 포함될 수 있다.\n", + "- Top-p 방식은 전체 단어 확률의 누적합이 p를 초과하지 않는 단어들만 후보로 선택한다. 분포에 따라 포함되는 단어 수가 달라지므로 더 자연스러운 문장 생성이 가능하지만, 계산이 복잡하다." + ], + "metadata": { + "id": "s_TeJ5zXF6Ra" + } + } + ] +} \ No newline at end of file diff --git "a/Week12_\354\230\210\354\212\265\352\263\274\354\240\234_\355\225\250\354\230\210\353\246\260.ipynb" "b/Week12_\354\230\210\354\212\265\352\263\274\354\240\234_\355\225\250\354\230\210\353\246\260.ipynb" new file mode 100644 index 0000000..5a84e89 --- /dev/null +++ "b/Week12_\354\230\210\354\212\265\352\263\274\354\240\234_\355\225\250\354\230\210\353\246\260.ipynb" @@ -0,0 +1,1898 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "provenance": [], + "gpuType": "T4" + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + }, + "accelerator": "GPU" + }, + "cells": [ + { + "cell_type": "markdown", + "source": [ + "**Transformer**" + ], + "metadata": { + "id": "RFxCMlpjc5hk" + } + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 455 + }, + "id": "pxdmDJ5tWpc3", + "outputId": "2d397dfc-c133-4156-c41a-c784db8bb0c6" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi4AAAG2CAYAAABYlw1sAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAgtZJREFUeJzt3Xd8FNX6P/DP7ia7m15JA0Jo0qQJEgOoCJEiKnzlKnpREBEuSlRAEblKVxBFQBTBBsgVBLGgWFA6KqFIURAIRZBQkgAhCQmpu/P7gx/nzMBOSHYDm2Q/79drXz45O3PmzCbEk5l5nmNQFEUBERERURVgdPcAiIiIiMqKExciIiKqMjhxISIioiqDExciIiKqMjhxISIioiqDExciIiKqMjhxISIioiqDExciIiKqMjhxISIioiqDExciIiKqMtw6cZkwYQIMBoPm1bhxY/F+QUEBhg0bhrCwMPj7+6NPnz5IT09344iJiIiqpk2bNuG+++5DTEwMDAYDVqxYcc19NmzYgFtuuQUWiwUNGjTAwoULr9pmzpw5iIuLg9VqRXx8PLZt21bxg1dx+xWXZs2a4fTp0+L166+/ivdGjBiBlStXYvny5di4cSNOnTqFBx54wI2jJSIiqpry8vLQsmVLzJkzp0zbHz16FD179sRdd92F3bt3Y/jw4XjyySfx008/iW2WLVuGkSNHYvz48di5cydatmyJbt26ISMj43qdBgzuXGRxwoQJWLFiBXbv3n3Ve9nZ2ahRowaWLFmCf/3rXwCAAwcOoEmTJkhOTsZtt912g0dLRERUPRgMBnz99dfo3bu37jajR4/G999/j71794q2hx9+GFlZWVi1ahUAID4+HrfeeiveffddAIDdbkft2rXxzDPP4KWXXrouY/e6Lr2Ww6FDhxATEwOr1YqEhARMnToVsbGx2LFjB4qLi5GYmCi2bdy4MWJjY0uduBQWFqKwsFB8bbfbkZmZibCwMBgMhut+PkREVHUpioILFy4gJiYGRuP1uylRUFCAoqIil/tRFOWq/7dZLBZYLBaX+05OTtb8PxgAunXrhuHDhwMAioqKsGPHDowZM0a8bzQakZiYiOTkZJePr8etE5f4+HgsXLgQjRo1wunTpzFx4kTcfvvt2Lt3L9LS0mA2mxEcHKzZJzIyEmlpabp9Tp06FRMnTrzOIyciouosNTUVtWrVui59FxQUwCcgFCjJd7kvf39/5ObmatrGjx+PCRMmuNx3WloaIiMjNW2RkZHIyclBfn4+zp8/D5vN5nCbAwcOuHx8PW6duPTo0UPELVq0QHx8POrUqYPPP/8cPj4+TvU5ZswYjBw5UnydnZ2N2NhYDDXVhsVgxG2/rRbv/RzfRcSvnt4u4jXN7xTx//77jqb/rs3lN+i1KUtE3LBjexG/vHSciDcczRJx+81rRNz/qWkiPvX2PSL+rrecuS555V3tud19k4g/u/l2Ea8bKvsKCvcV8fB5L4p44Rh5HlN+nyHiI2uOiXjmU2/IYy0Zqzn2o+HyeB/NelbEwRZvEf/fk6+L+NdmJ2W7XT6XdM+nE0Q88MBvIl57i/zM/z2+p+bY+eeyRfzzvM1yu73yezm69h0ibrH2BxFn3HO/iFeNeEvEk75/TcSPx8rxbb3tuObYzVbYRHx6Xh8RRzzxqYj/+Vn2W+/eV0T8/cKXRdzn2Xkifvm//xbxjHnrRXxHt5aaY+/ccVrEYdEBIi4qKBZxwcUSEdeoKbc5fuCMiNsl1Bbxpp/+EPFDD8qrlov/t1Zz7JFJ8mfyzemfi3jq2EdF/OLYj0U8Z9oQET/1vPy5XTxnhIgfHiJ/vr6dLy8h3zdQfi8AYM2n8mevy78niPiXZZNEfHtf+W9sy/LJIo7v818Rb/96iohv/T/ZvmvFVBG3ul/+GwGAPSvfFHHz+0aJ+K/vZHuze2X7ge9le+Oesj3lh+kibnTPCyI+9KNsb9hDtpf23pFVsr1+d9n+90+qn7tuz1+z/Zjq5zSuq2wv7T31z3adMrSnrpa/W2rfPfKa7c7so9d+Yo1sr5V47Xa99xRbMWz7PkdAQACul6KiIqAkH15NHwJM3tfeQY+tGLn7PkdqaioCAwNFc0VcbanM3H6rSC04OBg33XQTDh8+jLvvvhtFRUXIysrSXHVJT09HVFSUbh96l8gsBiMsBiN8/eUPo1n1bLL6m+5rNInY28dP04+Pn9zf4CWP42WV2/mZ5P4WgzyG+tgGk1ke21/uW9qx/QPkGM2qfk0WOVlRj0OvL3+zt8Nt9M4B0J6r+jz8rN6qbeQ5qY9htMvxqcetPh+rQR4vwEf7/fOyyH59VNupv2fq76X6e2RVf04652f0tspjW7XHNpjkxED9fdJ8/1TjULf7qc5P/fmpx2f0lhN0s4+/5th631cb5MTFZCt2uI3RnOewX/XxLL7qdvkZAIBV83Mu3/Pxd/zz76vT7qdpV382jv8tANqfC/V75W0P0GvX+X6V9t71bgf0f46udzuP7fi9G/FogcHbetVxy0P5/7+/AwMDNedSUaKioq7K5E1PT0dgYCB8fHxgMplgMpkcblPa/6dd5fasIrXc3FwcOXIE0dHRaNOmDby9vbF2rfxLMCUlBcePH0dCQoIbR0lEROQ6g9Hk8ut6SkhI0Pw/GABWr14t/h9sNpvRpk0bzTZ2ux1r1669rv+fdusVlxdeeAH33Xcf6tSpg1OnTmH8+PEwmUx45JFHEBQUhEGDBmHkyJEIDQ1FYGAgnnnmGSQkJDCjiIiIqjyXJx9K+fbNzc3F4cOHxddHjx7F7t27ERoaitjYWIwZMwYnT57EokWLAABDhw7Fu+++ixdffBFPPPEE1q1bh88//xzff/+96GPkyJEYMGAA2rZti3bt2mHWrFnIy8vDwIEDnT+va3DrxOXEiRN45JFHcO7cOdSoUQMdO3bEli1bUKNGDQDAzJkzYTQa0adPHxQWFqJbt25477333DlkIiKiKun333/HXXfdJb6+/DzogAEDsHDhQpw+fRrHj8vn/OrWrYvvv/8eI0aMwNtvv41atWrho48+Qrdu3cQ2ffv2xZkzZzBu3DikpaWhVatWWLVq1VUP7FYkt05cli5dWur7VqsVc+bMKXOxHCIioqrCYHDxiou9fPt26tQJpZVuc1QVt1OnTti1a1ep/SYlJSEpKalcY3FFpXo4l4iIyFMYTEYYTK7cKqpUj6neMB4zcbm9ViD8jCZEjR0g2p7sUV/EW26V6bTrz8iMjG/vC9F2lJEiwlHZZ0X85w/fifjOj0aLeOUdMr7HkipixS7TbA9Gymd2fjt3UcQvJsr0ZwD4aOs/Im4dKDM3zraOFvGmn/4U8Z5sWYivV+uaIq5paSXibz7fL+KMVJl2HNE8QnNsS364iHekZon4ibayzkFJgawlkHX0vIj9W8pslyK7nO2H+sh/sKFmGeedlJ8rAATEykuOuSV22ZeX45T58xdlUScfk/yHXZQvM4Qsqs/PVihrKXj7aftU7FkiNpgdH6/IJs9J/ddToWqs6vb8Ivm9N6oybYpU21/aR2Y12GzyPaMq20GxKw63t6vaTTpFtExGdT+2Mr/niLGcGRilbV+WvsoyporMCalKtSuNToy1Cp0ekedMXIiIiCoTo4sP5yrXOauosuLEhYiIyA1cziry0ImLZ94gIyIioiqJV1yIiIjcgFdcnMOJCxERkRsYjEYYXFmB+jquXl2ZeeZZExERUZXkMVdcGq1fhYCAQEwNv1m0vXhmj4gXRDQX8eD/ayTiNXfIlXwBQFGlpbZ75m0Rb//iKxFvipCVCXvUlgtf/fWyXNE2otkjIv7vd/tEHKVKrb3NN0tz7KGbZUXDQQkyvTmqrVz995sP5IrV6YUy/feRuqEi9gvorNrmfyLOPnVU9pnQQHNsvwOxIt75j0x1/m/HmnAk50SOiIO6+DrcJkS1tpgmHTrtnGa78LbNRKxOh84t0qYPX5aRI9PA65lkomeR6vMw+8lFIO0lMn3aO1A7VsUux2LXS4dWpySrajIUqMZq9JYnq06HVm9feEU6tEmVyq1OezZ6OW7XS2HWazdr+tFPh1bTpmI7PoZd1e5Maq4evb6qUqpyFRoq3QC8VeQcj5m4EBERVSaXbhW5MnHxzJsmnLgQERG5gcsl/w2eecXFM6drREREVCXxigsREZE7mEwurVWklHORxeqCExciIiI3cPXhXJduM1VhvFVEREREVYbHXHG5Y/BcGLytOPK+TG9u9sxnIv5t1J0iDnhlrojnBTbV7fO7p+JFfLdq5eHh728V8dapD4p41qBP5PbzZVr2j19vEfHoALlqcdZn72qOd2qvTK1uMlCmXDeKCxJxcZ5c4VmVWY04g0xhLqnTRsT5qo3yz50ScVCrVppjh2QFy3GoVpH2yjwmYvXsP/OcXHG5RrjjdGhTTpqIfUNlqvGF07na7cLk6tcFqvRfdTq0KusZmXkyvbmFKuW3WJUObQmSn7M9vVj24xesObY65Vfxdnwe6tWhjarP4GKxKu25DKtDq9sv7eN4dWizl5dOu+P0Zr12vZRnADDp5BibdHbRW9FZvx/9Y1/v9OYb8deaM2ngFZk6TlUDr7g4x2MmLkRERJWJ0WjS/LFT/g48c+LCW0VERERUZfCKCxERkRu4WoDOpXWOqjBOXIiIiNyAz7g4xzOna0RERFQl8YoLERGRG/CKi3M4cSEiInIDTlyc4zETF0tQOIzePhju30O0ZaX+T8R/jp0m4rGvbRDx3DtiNf2kp5wT8anh/US8cPJCEbe853kR542dJeLU/I9E/EpiAxF/+uZ7Iu7QsZaI//joV82x88zNRWxOnCBiw6FfRGwyy3oooWb5Q23/Y62IDzfrI/tRFY8oUtWA8Wp6m+bYYQcyRfz33nQR204clPv4+Is4rUDWC2kSLevP5KmOp67j4hcpa6Tkpedpju0VHiXifFXdkpxCVa0SVb/HcwtF7K+u41JQILcPsIrYflLWfTH4yrFeSfGWtV/UvzDUdVzU7YWqsWraSxy3l6jaAcDkJc/JrnrP6CvbFVVdG3VdFk29FoNOu3p7m7aGjFFnH6NOsRG9+i569Oq+lKa8u+idQ+n7lO8YhutddOYGHYPcw9VFFg1cZJGIiIiocvOYKy5ERESVicHFRRZd2bcq48SFiIjIDVjHxTmeedZERERUJfGKCxERkRswq8g5nLgQERG5AScuzvGYicuOdx9GYGAgQjsME20z3hsr4gHD54o470yqiG/57UdNP8YdK0U8tst/RTz+7nki9gmJFPHzK/eLuEuoTFWuuf97EavTiJsN7SXiaX1na45taiH3350fIPta+bWIg2o1FvFNh9eJ+PTqDSL+NaCziMNVKdPqlNH80HqaY7epK+M967eLuOjvXBGbVanE54tlXw0j5fkdVqcnnzgiYv9IPxFnHjqvOTYCwuXxVOm/Zy/KNGZ1OvSFPNnuozo/W2G+3D5UHs+uTvcNCIYexVumbJcpHVqVwmzyMos4X/XZmFSfh82mTYdWp8HaVeetTklWt1tUfanTm016Kcyl5P7qpTeXN8W4LNtf2W5E+dJ/y5vCTERVm8dMXIiIiCoTo9GgWxupbB145qydExciIiI3MBgNMLgw+XBl36qMWUVERERUZfCKCxERkRsYDAaXlnTw1OUgeMWFiIjIDQz//xkXZ1/O3iqaM2cO4uLiYLVaER8fj23btulu26lTJzHBUr969uwptnn88cever979+5Oja0seMWFiIjIDQwGF59xceKKy7JlyzBy5EjMmzcP8fHxmDVrFrp164aUlBRERERctf1XX32FoiKZqXnu3Dm0bNkSDz74oGa77t27Y8GCBeJri8WC68VjJi4/NLsDvkYT7psmP9hHdshVmSdYwkR8U5cHRHzn9M2afpLu7ShidQruD0mfiLj9xA9FvPrr30Q8bUQnEf85VW4Te+tz8gBdu4owrWCG5tghcTeL+MMt/4j40ZV/iLhmV5lO3TBdphEf33BIxD83kqsy9/GXabpGVcrukfNyhWUAuCU2WMTzzsvVoc/vPytin5C2Is5VpQLXD5FpxKdNqnTo08dE7Bcl+88ukO0AYPOT3xtV5jHO6aRDF+aXiNgSKP/x2IpkOrQlWKZo24tlP0ZfmWZ+Jbu31WF7kWYVaHl+F1Vpz+o06fwiVaqy6vOwXbU6tOqzUq2EbVTtoyjXXh1anSZt11sd+sqUZM17qrTusqRJa1KxHW+v115ZVbHhVmseenekwsyYMQODBw/GwIEDAQDz5s3D999/j/nz5+Oll166avvQ0FDN10uXLoWvr+9VExeLxYKoqKjrN3AV/nskIiJyg8tZRa68ACAnJ0fzKiwsdHi8oqIi7NixA4mJiaLNaDQiMTERycnJZRrzxx9/jIcffhh+fn6a9g0bNiAiIgKNGjXCU089hXPnzjn5qVwbJy5ERERuYDQYXH4BQO3atREUFCReU6dOdXi8s2fPwmazITIyUtMeGRmJtLQ0h/uobdu2DXv37sWTTz6pae/evTsWLVqEtWvXYtq0adi4cSN69OgBm+3aRSqd4TG3ioiIiKqj1NRUBAbKyuXX6/mSjz/+GM2bN0e7du007Q8//LCImzdvjhYtWqB+/frYsGEDunTpUuHj4BUXIiIiN6ioW0WBgYGal97EJTw8HCaTCenp6Zr29PT0az6fkpeXh6VLl2LQoEHXPK969eohPDwchw8fLuMnUT6cuBAREblBRU1cyspsNqNNmzZYu3ataLPb7Vi7di0SEhJK3Xf58uUoLCzEo48+es3jnDhxAufOnUN0dHS5xldWnLgQERF5iJEjR+LDDz/EJ598gv379+Opp55CXl6eyDLq378/xowZc9V+H3/8MXr37o2wsDBNe25uLkaNGoUtW7bg2LFjWLt2LXr16oUGDRqgW7du1+Uc+IwLERGRG7i6yKLixL59+/bFmTNnMG7cOKSlpaFVq1ZYtWqVeGD3+PHjMBq11zRSUlLw66+/4ueff76qP5PJhD///BOffPIJsrKyEBMTg65du2Ly5MnX7Vkbj5m4/HOxBFaDHZ9YfhJtY4d8IeJvD/8u4nohsl5HbKdnNP2MSekg4l+S2ot42lu/iPh//VqJOPr9j0QctlDWZVk09VYRPzG6qYg/25sh4iir9ttTt3Ujeezk4yJunZIp4o4v1RRxHWNjEf8wW47vyGGZplankZw9W62y7svWE9maY3eMDRFxUZ58L/PgKRH71ZD3SPNVtU1qB8kf3lCzrGdy4bi8z+pfs4bss0j7JLrdNwSOnFHVcbGq/qEV5ReL2OzvLeISVR0Xc6CsLaPY80Rs9JMPuF2pSFVERl2XRV2vRV0LJ1+nvahEXd9F/uKxq4vUQFvjpdAua9Oof9Gpa7/o1WUpS/uVTDrFMow67Xp96W2v1w7o1+kwwvEbej3p9eOpZdIrUmnfPyo7g/HSy5X9nZGUlISkpCSH723YsOGqtkaNGmlqRqn5+Pjgp59+cvje9cJbRURERFRleMwVFyIiosqEiyw6hxMXIiIiNzAa4eIzLhU4mCqEExciIiI3cCal+cr9PZGHzteIiIioKuIVFyIiIjcwGFy84sJnXKq3kdsXITDAH8/W7SXaEiPk6pZhUwaL+MyFAhHHJmgXkzqe/J2Ifd6bJ+KWH7URcdG7o0QcWOsmEU/bItN/T12UKbsz2tUScee3fhXxlIba5cQjO9UT8X/HLRDxwVy5Eugjt8h06IhwuUbEkamyUuKZoydEXLOD7NPveKyIfz10RnPsfzePELG9RKYhZx6SqdjBzeTnqc7sjfCVP2Y1LDKNOFeVDh1zRysRZxfLFF8AuFDi+B9nWpb8PkV5qVKH82XqsFWV2m4rlOnQluAAESv2HBl7+zg8FgAUqlKPtenQjtvzVWndRm+ZDn1R1a5OeVanNl/qS5UqrXrPS3Wu6vRms5fJYbteqrJemjSgTXctS1/X64r1leO63irq/wM34n8n5f3MPfN/cZWbeqFEZygeOnHhrSIiIiKqMjzmigsREVGl4uLDudftUmclx4kLERGRGzCryDm8VURERERVBq+4EBERuYGriyy6sm9VxokLERGRG7Dkv3N4q4iIiIiqDI+54pIw9wRMFl8s6CrrlrT6dJGIn63RUcQm1ST2x7S7Nf30ft1bxu8ki/ib/8rtlr/2s4jbTJ0v4vnLdot4sI/sx/7VGyI+vFXW+2g55E7NsZs2qSHi586kijhfVTSldYhqh6DOIlTXRslNPybiyEdk/ZkQW4yID/59XnNsn+wTcOTcqVwR14j0d7iNJU/WhAkKlXVVck5kizi2hqw/k2fT1jPJLlTVEVF9bzIuyPo1DbzkG4X5skaOJdAiYttZWffF5Cdr5Khrhdgtjs8BAApUn7PBpK7j4rhei7qOi7q+S5GqJotRVZPFdsV5my3yn6ddtaS8WaeOi15dFr12s0n/7xaTzh9y6poTdvUxdP7y02sv7Q9Fvavf5f3j8kb8VVbeK/UeemWfdBiMl16u7O+JPGbiQkREVJnwGRfncOJCRETkBkyHdk6ludD0+uuvw2AwYPjw4aKtoKAAw4YNQ1hYGPz9/dGnTx+kp6frd0JERETVWqWYuGzfvh3vv/8+WrRooWkfMWIEVq5cieXLl2Pjxo04deoUHnjgATeNkoiIqOJczipy5eWJ3D5xyc3NRb9+/fDhhx8iJEQ+WZqdnY2PP/4YM2bMQOfOndGmTRssWLAAmzdvxpYtW9w4YiIiItddfsbFlZcncvvEZdiwYejZsycSExM17Tt27EBxcbGmvXHjxoiNjUVycvKV3QiFhYXIycnRvIiIiKh6cOvDuUuXLsXOnTuxffv2q95LS0uD2WxGcHCwpj0yMhJpaWm6fU6dOhUTJ068qv2fbeth8DIjZ9Ey0RY/83cRz75NpuOeOiJTgQ2TBmnH/PKHIr71/tEi9lo3Q8R7R68U8ZwH5e2vZh8vFHFih1oi3jbtOxHnmG4WceCDYzXHNqbKK00ms4+IQ80y1Ra/y74ON+0tt1dNzAuyZXqyufUjIo48liXiY/syNMe2H/tTxF5WmTJ8Mr9ExDfXDJLHUP0lYDovU7f9IvxEfOG0TKX2iooVcf6V6dAFqhReVb/Hc2R6c5C3Kt04P1/E1mD5OdnTikRsDFDnjUuK6nMFrkhjVqVDm7xk2rM6HVq9/UVVOrRRtX2hqt2kSuO2l2jP2+jr+L2ypDdr2tXp0zbVmAyO+wH0sxX00qT1GJ24lF3utOdSzsPx9uUd0Y0p9OWpl/09mcHg4sO5Hvoz47YrLqmpqXjuueewePFiWK3Wa+9QRmPGjEF2drZ4paamXnsnIiKiG8xkNLj88kRum7js2LEDGRkZuOWWW+Dl5QUvLy9s3LgRs2fPhpeXFyIjI1FUVISsrCzNfunp6YiKitLt12KxIDAwUPMiIiKi6sFtt4q6dOmCPXv2aNoGDhyIxo0bY/To0ahduza8vb2xdu1a9OnTBwCQkpKC48ePIyEhwR1DJiIiqjBGF6+a2D30iovbJi4BAQG4+eabNW1+fn4ICwsT7YMGDcLIkSMRGhqKwMBAPPPMM0hISMBtt93mjiETERFVGFdv93DiUgnNnDkTRqMRffr0QWFhIbp164b33nvP3cMiIiIiN6lUE5cNGzZovrZarZgzZw7mzJnjngERERFdJ7zi4pxKNXG5nj557wX4+geg18Apoq04T65O3HCDXNG5/UmZnv1Ci4GafsY1mypi/6g4ET+2eLeIn1Cl/Nba/qmILQFyReJWY2S/E3vI9G2vW2Sq8ebcAM2x6y1dIuKQuLYivvnv9SI+8c0PIl5tkStex1jlatTqlNHs4PoiTmj4j4j/XKst8ldw4IKIrUHhIj5bJNOhm6vSoferUnCLjx8UcWAteU7H1h+XBwiKEGGRXaYdA0BGnlwFWp0OfSFPpjf7qFLCS/JlmrUlVh7PVqxOhw6GI4q3r+ZrdXpzYYnisF2dDq1Ok87XtDteBdqgWW1Ze97qlGT1exad9Ga9X4C67aWu0Ow4xVgvvbksKcmaflD+X7g34ne02wtbkeAJmb6cuDjHYyYuRERElYmXEfByYfKheOhM20NPm4iIiKoiXnEhIiJyA94qcg4nLkRERG7gah0Xm4dOXHiriIiIiKoMXnEhIiJyA5PBCJPR+esHJoNnXnvwzLMmIiJyM3ctsjhnzhzExcXBarUiPj4e27Zt09124cKFl1axVr2uXBhZURSMGzcO0dHR8PHxQWJiIg4dOuTU2MrCY664RE8YAn9vL9RuM0y01WtSQ8S3Pf+diHt0byzi1gEWTT8LXvxKxMO++FbEb78p67V88e4AEW9+aYGIm/zrNRGfaSXXW8osGifiiGYdRDxttax/AgDPfb5Ljn3QoyJudLGmiA//KPf5tv5JEY8Ilj9oXlZZK2ZPxkUR3xYn68zMPHdKc+yzf6aL2K9GVxHnlsiaJI3DZf2aNG9Z56TgnyMiDoyV9VrOFv4tYltApIy15UyQoa7XYpJz7fwLqvYQeX62onwRW4LluarriJh06rjYvLT/INX1WgpU52r0knVxCjXtqjouRarjqcZtU22vru9SXKitf2JU7WNX1X5R/7JSn5O6vovd7ri+i6aWiqZd9g+UXuNF7KOpIeN4G7320mp0lLfGi15fBk8oBHKd6dXtoapr2bJlGDlyJObNm4f4+HjMmjUL3bp1Q0pKCiIiIhzuExgYiJSUFPH1lf+23njjDcyePRuffPIJ6tati7Fjx6Jbt27Yt2/fVZOcisArLkRERG7gjisuM2bMwODBgzFw4EA0bdoU8+bNg6+vL+bPn6+7j8FgQFRUlHhFRso/NBVFwaxZs/DKK6+gV69eaNGiBRYtWoRTp05hxYoVznws18SJCxERkRvc6IlLUVERduzYgcTERNFmNBqRmJiI5ORk3f1yc3NRp04d1K5dG7169cJff/0l3jt69CjS0tI0fQYFBSE+Pr7UPl3BiQsREVEVlpOTo3kVFhY63O7s2bOw2WyaKyYAEBkZibS0NIf7NGrUCPPnz8c333yDTz/9FHa7He3bt8eJEycAQOxXnj5dxYkLERGRG5gMBpdfAFC7dm0EBQWJ19SpU69x5LJLSEhA//790apVK9x555346quvUKNGDbz//vsVdozy8piHc4mIiCoTVwvQXX7APjU1FYGBgaLdYrE43D48PBwmkwnp6ema9vT0dERFRZXpmN7e3mjdujUOHz4MAGK/9PR0REdHa/ps1apVmc+lPHjFhYiIyA0q6hmXwMBAzUtv4mI2m9GmTRusXbtWtNntdqxduxYJCQkO97mSzWbDnj17xCSlbt26iIqK0vSZk5ODrVu3lrnP8vKYKy6LfjgMs8GIvSdkqjPO/CPCgAWb5LYHtoj47e8mafp54Y7RIp7VMFfEr5+XM9hjt78o4h/2zxPx9EdvEfFr62SK8C2qVOXzHeuK+LfVezTH3pqaI+LHOtUTccMI+cOxOukzER9POSvi2h1ridg3P0bEG/8+J+IBt8i06uK8bM2xz+w9LeKgluEizlflLtcKlKnANSwyjTj7sEzLDoiV90EzVenCheYA6DmdUyBiP1V+bcHFYhFbVenQxfny+2INlv0q9iwRG3yDHB5LnfIMaNOhc4tKHLcXynZtOrS6XY67pFiV2qw+nxJ5PoA2Vdpul5+z2UseWylD2rNZ1Y9m+1JSXfXSYPX+OtTbvizptOoxlaaiEnOrWoZvef8gr2KnRzfYyJEjMWDAALRt2xbt2rXDrFmzkJeXh4EDBwIA+vfvj5o1a4rbTZMmTcJtt92GBg0aICsrC2+++Sb++ecfPPnkkwAuZRwNHz4cr776Kho2bCjSoWNiYtC7d+/rcg4eM3EhIiKqTLyMBnjd4LWK+vbtizNnzmDcuHFIS0tDq1atsGrVKvFw7fHjx2FUVfM9f/48Bg8ejLS0NISEhKBNmzbYvHkzmjZtKrZ58cUXkZeXhyFDhiArKwsdO3bEqlWrrksNF4ATFyIiIrdwdXVoZ/dNSkpCUlKSw/c2bNig+XrmzJmYOXNmqf0ZDAZMmjQJkyZNKnW7isJnXIiIiKjK4BUXIiIiN3DXFZeqjhMXIiIiNzAZXJy4VLUnzSsIbxURERFRlcErLkRERG5QUQXoPI3HTFzGvdMXgT4WzLzpPtFmUn3PX/ziWxHPeXeFiF+/2FLTT7/OcSLe0PtpETfsOk7EAz/YKuL2iqy/0f7ibhE/+oOs+zL8QZlW1qbLTSLuMEe7WuepAlkXZGhjWUvFL6qPiFPzF4k48+g+Edfp3VrEwbvlMdbtlWtJvHRrCPRkHsoUcVh3f4fbhBrl+hg1fL1FnH1MnmuNDm1FnKOqmXK+QL+Wx4nMfBE3U9UkKcyXdU98VHVcbLlye0uorNei2GXNGrvFz+Gx8ksUzdcGk6yZcrFYjtHoLeu15Kq+L+r2i6o6Nep6LXbVeavru9hs2hoyevVXytuu94vRW6fuy5X72FXv6f2eLO8l69J+31bGq99649Ubqof+/4TKic+4OIe3ioiIiKjK8JgrLkRERJUJr7g4hxMXIiIiNzAZXZt8mDz0ngknLkRERG7AKy7O8dD5GhEREVVFvOJCRETkBrzi4hyPmbiMtt4Hs48/Olm+FG0n82Ua64uZX4i43oQBIn521FxNP2OWfSLiZyLuEPGsL+NFfH//ySJ+tWGoiHe9OEXE6WcairjhZy+KWEGqjK9IUfVR5W+HHvtNnkft9iK2qbJ5887IvgI7PSbiqPNFIk47liVi4z+7RWwy+2iOnZotU52bx8lzUtcR8Dp3TB6vVoCIs45li9g7Ok7Euaq04CxVOrT5in+MJ7NlenN7b8fp0FZVOrQ9S7Ybg8JErNgPyW0scnwGo0x5LrwiJdmoeu+CKr3Z6CXTnvPL0G7SSXv2tsh/guo0aUCb3mwvkd8zs+naac+KTbZ7Gx1vX1oNCKNOTnJ5054rMrVZPSbNeehuX/5jGCpjLjZVW6zj4hzeKiIiIqIqw2OuuBAREVUmJoPBpfWGPHWtIk5ciIiI3MBoMOjeli3r/p6It4qIiIioyuAVFyIiIjcwQbtmnjP7eyJOXIiIiNzAaDS4lBnkqVlFHjNxWT77AxhMZsxL/V20GbatEPG4rmNFPH6xTGl9zqi9m/bETxki7hIqU4bvyFgv+1WtKNxxmkytntZ3ttymRWMR7zA3EnHNT/4r4pC4mzXHbnnsVxGfWvqZiH/sLfePsarTa2UKbV6tW0TcvunfIl64ZZeIC/bmitgaJFefBrQrU99SJ1jEh1UpuyVH94o4OE6uynz81xMiNoTXEnG+Ki349AWZbu1zxZ8g57ILRBykOr/iPJlmbY2Wx7MdkuetTodWUyxyhWt1OnTBFatDa9Kbi9XpzbL9QmGJql31eahXk1adk02V9mzyUq/CrD22Rb3as00n7VlndWg1vb/o9NKLndlHP1XZcUel3Zqvzr+LmW5N5DqPmbgQERFVJswqcg4nLkRERG7ArCLncOJCRETkBkaDaw/nVufbqqVhOjQRERFVGbziQkRE5AbMKnIOJy5ERERuwGdcnMNbRURERFRleMwVl/ueegLePv5o+J/loq1TN1knpUuARcSzH/9QxC//8KOmn1cnzhfxBwueEvHGJ6eJuMVjb4g4o0O8iNMKZog4quVdIh7z7V8ifmHBFhE3HPqQ5titECvifZ/vFvHSyH/k/uG+Ivayylol20/JGi13NZQ1WuacSRVx+rbTIvaP7K45dmaRrM1xX2SgiM95yxoo+YcPiDgoLlLEZ34+KmJbULSMVWVLTl6QtVp8TNr5dP4FWZfFJ8Qq4pICVd2ZMDkme7Hc3hQQDEdsXrIfdR2XvCJtPROjl7eILxSVqNpV9V1U+5hUY9fWa5HtxYXq+i6y3a6qawNo67Koa6Oo67vYdeq4aGqpaOq+qMZUai0V1T6aGjKOt9dr1/uDUK++S2n0+ipvbRT+tXY1d/7l7qEXDQBc+jfoUuVcD/3sPGbiQkREVJnwVpFz+McHERERVRm84kJEROQGJqNBs4SHM/t7Ik5ciIiI3IC3ipzDW0VERERUZfCKCxERkRswq8g5HjNxeddrDQK9raidLlM7P5/5m4gX/PGFiMfVv1/E422bNf1MKMoX8Yab+or4uxSZ6rzoyXYiTvpyj4gHRPiJ2NKjkYiXfbpOxJtO5Ih4eHe5DQDcVO9uEX/7wzwRH90r05jrd6snYv9zcXJ8f6WL+MVOdUVcnJct4rQdJ0UcdkeE5thFdpm7HBcsU4GjrDKV+PxBmVod2qSOiM+o0n8veskUbbUT5+XnGuilvRB4MVeVDh3uI8eeL9OhfSNCRGwvkecK/zCHx8tXpSqr06HVKc+ANu05t8BxOvSFgmJVuxx7SbE8hpcqbbwgT25v0qQ2q/LDAZiMqvdK5Gegl/Zs0qQ9y3Zvo+MLq6VdZvbW+Y2ot09ZLlmrx1SaivpdXNWuopf3cYUqdnrkgMHFW0XlLQVQXXjMxIWIiKgy4cO5zuEzLkRERB5kzpw5iIuLg9VqRXx8PLZt26a77Ycffojbb78dISEhCAkJQWJi4lXbP/744zAYDJpX9+7ddXp0HScuREREbmDEpVuETr+cOOayZcswcuRIjB8/Hjt37kTLli3RrVs3ZGRkONx+w4YNeOSRR7B+/XokJyejdu3a6Nq1K06ePKnZrnv37jh9+rR4ffbZZ06Mrmw4cSEiInIDk8Hg8qu8ZsyYgcGDB2PgwIFo2rQp5s2bB19fX8yfP9/h9osXL8bTTz+NVq1aoXHjxvjoo49gt9uxdu1azXYWiwVRUVHiFRIS4rC/isCJCxERURWWk5OjeRUWFjrcrqioCDt27EBiYqJoMxqNSExMRHJycpmOdfHiRRQXFyM0NFTTvmHDBkRERKBRo0Z46qmncO7cOedP6Bo4cSEiInKDywXoXHkBQO3atREUFCReU6dOdXi8s2fPwmazITIyUtMeGRmJtLS0Mo159OjRiImJ0Ux+unfvjkWLFmHt2rWYNm0aNm7ciB49esBmK1smYXkxq4iIiMgNTEb9ldXLuj8ApKamIjAwULRbLBYXR+bY66+/jqVLl2LDhg2wWq2i/eGHHxZx8+bN0aJFC9SvXx8bNmxAly5dKnwcHjNxGT/kU5gNRmxLk3VVer++QcS3L5Kzza8myKeh5z8wRdNPxykfi/ip6XL/wVZvEcesfVvEySvlR7zgZdlvx86y3srcSTNFnFkkZ6j31pE/GABgqN1fxKcK3hXx+b//EHGd4Z1FHLFJHuO3P2Stl/B2jn+oMw5nynN4NNjhNgAQWHBWxFE1fOXYU+RnGNNdjuN8sTyns/mquiOq27P/nLso4vbe2n/JBXmyholvuDyeLVPWfvEOluNV7KdEbLcGODyHPFWNFYNJ1ljJLdL+hWD01qnjomrPV+2jrtdSojpvs0X+HNhs8tg+Zrm9ulYLUP56LWad34Dqz1lT38WkriGjPW+9e+d67Xq32vWyNZ0pP3EjLg/rjrec2xPdSIGBgZqJi57w8HCYTCakp6dr2tPT0xEVFVXqvtOnT8frr7+ONWvWoEWLFqVuW69ePYSHh+Pw4cPXZeLCW0VERERucCk7yJVbReU7ntlsRps2bTQP1l5+0DYhIUF3vzfeeAOTJ0/GqlWr0LZt22se58SJEzh37hyio6PLN8Ay8pgrLkRERJWJ0cnMIPX+5TVy5EgMGDAAbdu2Rbt27TBr1izk5eVh4MCBAID+/fujZs2a4jmZadOmYdy4cViyZAni4uLEszD+/v7w9/dHbm4uJk6ciD59+iAqKgpHjhzBiy++iAYNGqBbt25On1tp3HrFZe7cuWjRooW4zJWQkIAff/xRvF9QUIBhw4YhLCwM/v7+6NOnz1WXuIiIiKqiino4tzz69u2L6dOnY9y4cWjVqhV2796NVatWiQd2jx8/jtOn5aMFc+fORVFREf71r38hOjpavKZPnw4AMJlM+PPPP3H//ffjpptuwqBBg9CmTRv88ssv1+1ZG7decalVqxZef/11NGzYEIqi4JNPPkGvXr2wa9cuNGvWDCNGjMD333+P5cuXIygoCElJSXjggQfw22+/XbtzIiIiukpSUhKSkpIcvrdhwwbN18eOHSu1Lx8fH/z0008VNLKycevE5b777tN8/dprr2Hu3LnYsmULatWqhY8//hhLlixB586XHvRcsGABmjRpgi1btuC2225zx5CJiIgqREVlFXmaSvOMi81mw/Lly5GXl4eEhATs2LEDxcXFmlzxxo0bIzY2FsnJyboTl8LCQk3xnZycHIfbERERuZOzt3vU+3sit09c9uzZg4SEBBQUFMDf3x9ff/01mjZtit27d8NsNiNYleYKXLtQztSpUzFx4sSr2vsl1oW/txf+uUum6e7ctk7EAR2fE/HRr98U8cGxP2j6+XaATAML+FCmRvd9orWIv3tuiYhzasoJlu/g90Rs3LhIxNagGiKu7SPTqku+l9sDwO/thorYX5Uqm39efh5eCXKbRmflfcpt6/fLfvccF7ElQFY/PHyoWMQdGoZrjn1WlVNrOLFPxCF1g0V8/u8sEXvH3iTi3BKZ/puhSm02qx6JP5wp06FDVSnCAFCYlytivwiZ3mxLKxCxKSRCtYccn6JKhzYYZb/5qjGZvFQpz4Uy5fnK9y6o0qG9zPLebaEqHdrkJc/JrjqG0ddxu17KM6BNb9akPav3URV4Uv8SU29v1Ek9MJXyO0/vF6Juu07CsFNpzzrnob99+fo33IBf9jfiGESeyu0Xmho1aoTdu3dj69ateOqppzBgwADs27fv2jvqGDNmDLKzs8UrNTW1AkdLRERUMQwG11+eyO1XXMxmMxo0aAAAaNOmDbZv3463334bffv2RVFREbKysjRXXa5VKMdisVy3J5mJiIgqihEG3auVZd3fE7n9isuV7HY7CgsL0aZNG3h7e2sK5aSkpOD48eOlFsohIiKi6sutV1zGjBmDHj16IDY2FhcuXMCSJUuwYcMG/PTTTwgKCsKgQYMwcuRIhIaGIjAwEM888wwSEhKYUURERFWeq7d7eKvIDTIyMtC/f3+cPn0aQUFBaNGiBX766SfcfffdAICZM2fCaDSiT58+KCwsRLdu3fDee+9do1ciIqLK71LJf9f290Runbh8/PHHpb5vtVoxZ84czJkz5waNiIiIiCoztz+ce6Nkv7EAJf4BWNU0XrQVN+so4oRn5IrOD728QsS/DJfbAMDBJ/uKODbhSRHXnirTrKfPaSXi4A43i/iVnw+L+F8zPhVx3YSXRHx7/i8i3j1HW43w/WK57kOPIPkAslGVsnuwJFjEvVvJR5jWfPqNiM/+dkbE/pEtRZyuSgW+p06I5tjJZvmjUnRwl4hDGspU7oPbZfq1LaS23N6uiPh4tkxhVqd052Sp2kO0q2IX52WL2KeuHFdJoVwdWpsOLdktOunQqtWhjV4yBf3ClatD66RKG1WpykWqdvXq0MWFjleNVq8ObVF9BvZi/dWh7Xrp0JrVntVpxPIY3jqrSWvSjm1XrA6tevpNuzK14/byuhF/KVa6B/g8mKfe0rgW3ipyjsdMXIiIiCoTZhU5hxMXIiIid3C1Fotnzlt4NZWIiIiqDl5xISIicgNmFTmHExciIiI3MMC1uz0eOm/hrSIiIiKqOpy64pKXl4fXX38da9euRUZGBuyq1EsA+PvvvytkcERERNWV0WDQXXG9rPt7IqcmLk8++SQ2btyIxx57DNHR0VViCfdHnpoOg5cF59dNEW0vdBoj4vX/5y9inyVbRJz/lrb43Se1W4n44wN3iHj4T/+I+JZgWYfkfC9ZB2b5F7+LOHjbKRE//UYzEbdqlCji95I+0xx7+9YTIh7dOU7E/vky/nKvrKUy4Jaa8jzOp4n45OajIg5r2UvEuSVyAtok3Fdz7OM+8kfl7O6DIg5tLI+dVrBTxAV+sr6L2rHMiyIO9JK1TS7mFIrYL8JPs0+Rqo6Lb4Ss46LYs0RsDAp3eLyLJbKGjLomS3ZBicP2nIJizf4ms4+Ic1XveZnl2EtUNWFMqkInBSVye5Oq9opN9TmbVZ/BlXVRLDr1WvTquJh0/h3q/XIzlXKDXG8fvXZ1s6ZWjM7F7NJ+Y+j9OtH7PVMFfv0IzjyTUFGn56n/k6vMDHCxjkuFjaRqcWri8uOPP+L7779Hhw4dKno8RERERLqcmriEhIQgNDS0osdCRETkMYxw7UFTT31I1anznjx5MsaNG4eLFy9ee2MiIiK6isFgcPnliZy64vLWW2/hyJEjiIyMRFxcHLy9vTXv79y5U2dPIiIiIuc5NXHp3bt3BQ+DiIjIs7AAnXOcmriMHz++osdBRETkUbg6tHNcqpy7Y8cO7N+/HwDQrFkztG7dukIGdT3UbHU7TBZfdN4cKNqWjesq4o/aPCrijhM/FHHPcT9r+hmoSkW99Xe53b+WyI9y0rgecv9eMtW57tvzRHxKlY47ummQiA03PS3iY08s0hw7Y/92Ed/0rBx75KYGIv5ha6qI/3uz40eYTu3JEHHN/wtxuE148TnN19FhMi34zF6Zlh3ZRaaEny2SabBnLsrzM6n+cf19Jk/E8WY5vosXVOnQkdp0aFtmvogtETLt2V4iz8PuEwRHLqpSlQ0mmXqcXagan0WeW/ZFbTq00VumSl9Qfc+8vNXp0KpUZYv8ObDZ1GnP8lztJUXXbL/yPU06tMnx99Vb9eeXentv1fZ2dXspf67ppVbr/aLU66oy/mIt7a9Uvbc89S9bur74cK5znJq4ZGRk4OGHH8aGDRsQHBwMAMjKysJdd92FpUuXokYNxzU8iIiIiFzh1ITtmWeewYULF/DXX38hMzMTmZmZ2Lt3L3JycvDss89W9BiJiIiqHWYVOcepKy6rVq3CmjVr0KRJE9HWtGlTzJkzB127di1lTyIiIgL4cK6znLriYrfbr0qBBgBvb++r1i0iIiIiqihOTVw6d+6M5557DqdOyfV2Tp48iREjRqBLly4VNjgiIqLqzODCy1M5NXF59913kZOTg7i4ONSvXx/169dH3bp1kZOTg3feeaeix0hERFTtXL5V5MrLEzn1jEvt2rWxc+dOrFmzBgcOHAAANGnSBImJidfYk4iIiMh5TtdxMRgMuPvuu3H33XdX5Hium60jbkJggD/87psu2n6ZP0HEqVNlPZJVfWuJ2G/BAk0/g16St8I+HfqJiLPj2ovY9oS86hTy8xwR+4bFiLi+n6wPcvHT10X8W6cRIg7y1l4Qyz+fJmLTXSNFfEvuMRGv+14ut1C8I0XE1iCZop5yUNYL6dY8SsSnVHVDcGy35tjhjcJEfDZF1njxrivr1OSWyOebUrNlXRYfVR2RlIxcEd+rqnlSkJMtYv9obU2W4lOy9osprInqnX0isvvKejQGo6yxkquq42Lykp95tqomi7o964o6Ll5mi4jzNXVc5DmVqOrX+PqbHbb7mOWY7MXy8/dR1YNR114BrqjjYpPvGVWZBOp9vHTqu5h0/irT66e094w6F6jLW9+l1GM73qXcf13eiIwLT83qoIrhamaQp/78lXniMnv2bAwZMgRWqxWzZ88udVumRBMREZWOWUXOKfPEZebMmejXrx+sVitmzpypu53BYODEhYiIiK6LMj+ce/ToUYSFhYlY7/X3339ft8ESERFVF65kFLmSWTRnzhzExcXBarUiPj4e27ZtK3X75cuXo3HjxrBarWjevDl++OEHzfuKomDcuHGIjo6Gj48PEhMTcejQISdHd21OZRVNmjQJFy9evKo9Pz8fkyZNcnlQRERE1Z3RYHD5VV7Lli3DyJEjMX78eOzcuRMtW7ZEt27dkJGR4XD7zZs345FHHsGgQYOwa9cu9O7dG71798bevXvFNm+88QZmz56NefPmYevWrfDz80O3bt1QUFDg9GdTGqcmLhMnTkRubu5V7RcvXsTEiRNdHhQREVF1d3l1aFde5TVjxgwMHjwYAwcORNOmTTFv3jz4+vpi/vz5Drd/++230b17d4waNQpNmjTB5MmTccstt+Ddd98FcOlqy6xZs/DKK6+gV69eaNGiBRYtWoRTp05hxYoVLnw6+pyauCiK4vBp5j/++AOhoaEuD4qIiIjKJicnR/MqLCx0uF1RURF27NihKV1iNBqRmJiI5ORkh/skJydfVeqkW7duYvujR48iLS1Ns01QUBDi4+N1+3RVudKhQ0JCRPrWTTfdpJm82Gw25ObmYujQoRU+yIow55aHYDWYMHHl96LtPyNkqnLa58+JeEOnf4m4zWNvaPop+U+8iHdOuFnENW+9R8SP/m+XiF+Y+ZmImw+dIeJEf3lPcev0n0T8VqHs5/lwP82x37H6i/jXM4qI/922toi/mrdYxKdWnxZxUO3usv0XmdY7IE6mOa9TpSfn7dqiOXaNm2WK+J7NJ0RcEhYn4iK7HNOR8/JWor8qrfdCZr5sr+Er4uKLMh3at6kcE6BNH/YKj4IjJWb52RhV6c0XCmWqrclsFXF2YbGq3UfEuYXyswEAL1W6ckmxqi/VORWrjmFUpSTbbTIV29fsOO3ZourHfkVasI/OPt6q/GZFtcSGOu1Zk8KsTj1WpVXrZE+X+p5u2nM577aX9pdieVM8nfrrqxpz5vZBRfHQ7FynGRQFBkW59oal7A9cqq2mNn78eEyYMOGq7c+ePQubzYbIyEhNe2RkpKjJdqW0tDSH26elpYn3L7fpbVPRyjVxmTVrFhRFwRNPPIGJEyciKEjW2zCbzYiLi0NCQkKFD5KIiKjaUeyXXq7sDyA1NRWBgYGi2WKx6O1RLZRr4jJgwAAAQN26ddG+fXuHCy0SERHRjRMYGKiZuOgJDw+HyWRCenq6pj09PR1RUY6vZkdFRZW6/eX/pqenIzo6WrNNq1atynMaZVbmq6w5OTkibt26NfLz86+6r3b5RURERKUzKHaXX+VhNpvRpk0brF27VrTZ7XasXbtW925JQkKCZnsAWL16tdi+bt26iIqK0myTk5ODrVu3Xrc7MGW+4hISEoLTp08jIiICwcHBDu9DX35o12azOeiBiIiIhAq6VVQeI0eOxIABA9C2bVu0a9cOs2bNQl5eHgYOHAgA6N+/P2rWrImpU6cCAJ577jnceeedeOutt9CzZ08sXboUv//+Oz744AMAl55JGz58OF599VU0bNgQdevWxdixYxETE4PevXs7f26lKPPEZd26dSJjaP369ddlMERERHT99O3bF2fOnMG4ceOQlpaGVq1aYdWqVeLh2uPHj8NolDdj2rdvjyVLluCVV17Bf//7XzRs2BArVqzAzTfL5JQXX3wReXl5GDJkCLKystCxY0esWrUKVqv1quNXhDJPXO68806HMRERETlBUS69XNnfCUlJSUhKSnL43oYNG65qe/DBB/Hggw/q9mcwGDBp0qQbVoDWqdWhV61aBX9/f3Ts2BHApfLBH374IZo2bYo5c+YgJCTkGj3ceOEWE3wMJnRa9apomxHUUsQvK51FfPGATFve8GxbTT/tp/0q4pnt5GrPCao06WdHzRXxD8eyRPzOv1uLuNkdT4t4cUe50nNK8l8ibvlEO82xQ4/K8b7/61ERL+jbQsTFeTKt+J/1cvmFmH/VFLE6bblJuJwRH/WTD1un/65Njavd5VYRn8yXn0GWQZuyfdmhdFmgMEqVUpybJSsp+sfIFOYi1bj9a8qVrAHAXnJSfhEU4fB4uaqVmNWrQ2fmy7RndZp0tmoVaJNFpkNnXZSp14A2HVqd9qxuz78g9zGrUphtJTK12uylWh26RLW9egXo0laHVqdDG3XaTY5Tq711locuLW1W7z2jTsq1norMjq2oVNsbkbHrzOJ3zCT2QG64VVQdOFUCYdSoUeIh3D179mDkyJG45557cPToUYwcOfIaexMRERE5x6krLkePHkXTpk0BAF9++SXuu+8+TJkyBTt37sQ999xzjb2JiIjoUgE656+auFK8ripz6oqL2WwWiyyuWbMGXbt2BQCEhoYyHZqIiKgsLt8qcuXlgZy64tKxY0eMHDkSHTp0wLZt27Bs2TIAwMGDB1GrVq1r7E1ERER8xsU5Tl1xeffdd+Hl5YUvvvgCc+fORc2alx78/PHHH9G9e/dr7E1ERETkHKeuuMTGxuK77767qn3mzJkuD4iIiMgj8IqLU5yauACXVoNesWIF9u/fDwBo1qwZ7r//fphMpmvsSURERFDsgJ0Tl/JyauJy+PBh3HPPPTh58iQaNWoEAJg6dSpq166N77//HvXr16/QQVaEPvs2IjAwEMP9mom2NSdni7hdr9EiXn2brHmy7W5tltTeoqYi7rDifRF3LDot4v9cyBSxj6qGRtPjci2Hfxp0FXG+Tf7wZf79h4hjXh+mOXaDFRdEvGPbCRGbm58RsZdV1kbZt0/WRunQUi5+VaIqMmE99aeIoxuGijj9D+1y5PWfkjVozhbJ+iSncmU9FLOq3/2n5UParaxyMpuXc1HEgbXkomAlh/NE7B2h/flR7MdFbPORNYLU9VpyiuRn6KWqy5JdKMeqrtdyLlfWUjGZZXtugdweALxUdVlKimXdEquv2WG7j9lxvRYfVd0Xdf0TzfbF2hoy+vVayleXxaTTru7/SuWtmaK3vXpM6nMo7R51eWugOFp+xJl+nN2HiG4sp55xefbZZ1G/fn2kpqZi586d2LlzJ44fP466devi2WefregxEhERVTs3epHF6sKpKy4bN27Eli1bxNpFABAWFobXX38dHTp0qLDBERERVVt8xsUpTl1xsVgsuHDhwlXtubm5MJvNDvYgIiIicp1TE5d7770XQ4YMwdatW6EoChRFwZYtWzB06FDcf//9FT1GIiKi6ufyIouuvDyQUxOX2bNno0GDBmjfvj2sViusVis6dOiABg0a4O23367oMRIREVU/rJzrlHI942K32/Hmm2/i22+/RVFREXr37o0BAwbAYDCgSZMmaNCgwfUaJxEREVH5Ji6vvfYaJkyYgMTERPj4+OCHH35AUFAQ5s+ff73GV2FaPfsljN4+2DS8vWi7OOrfIq516yARt3t9ioifC7pF009Q7z4iHrVT5k4++PYoETe860UR9zTKdOPto2aJeN7QOiLuGirTcT9WHeuAVTsRHHSnTDFOWvmTiNO/OyfHV6u5iI/9LosE3tssUsTJFvltL/hdpmhHtZFp4FuXyHEDgFJLpoHn2+TlyQNnZRpzkLe8gJeeIdtDw+T5FWbL1O2Am+WYivfkitgrMhZaW0Rk9wsTsTodOrdIlWrr5S3i8/kyXdtLlfacrW5XpSoXqtoBwNsi3ysulMcICJHtNlU6u69OerPZS342thLH7ep0YUCb9qyoaj14Gx2nGGvabY7Tp9Xbm1TXW688thGO84L1054dt1ckpy4PVxC9lGtPxY+jYnCRReeU63fBokWL8N577+Gnn37CihUrsHLlSixevBh2VwroEBEReSLeKnJKuSYux48fxz33yIJsiYmJMBgMOHXqVIUPjIiIqFrjxMUp5Zq4lJSUwGq1atq8vb1RXFysswcRERFRxSnXMy6KouDxxx+HxWIRbQUFBRg6dCj8/PxE21dffVVxIyQiIqqOWIDOKeWauAwYMOCqtkcffbTCBkNEROQpXC3bz5L/ZbBgwYLrNQ4iIiKia3JqraKqKD/zFAxeVqwYOlm0Hbyji4h/v9BdxJ3flem341QrJgPATSN7ifjV1xaL2PhLqojf++g2EbfrPlTEE3tMFPH6OnIV6ImPyZWXQ0+1FPGMjUc0x37r3kYiHnRert58aOV+Edfs+YCIc7+Qs/FbY+Sq0Wf8ZbrwqV92iTgq4WYRH/1wh+bYOdZwOLL3lEzRrmGWP04XMvNFrF4FulC1cnZArEyHtpfI1bUNoXIl6yupV4E2esnlJc5elM9ZqVd7PptbKGIvH/kZZF1UpSSr0sPVKc+ANlU6/4JqH/Wq0UXy2D6qz0C9OrQ6TVqdelxqOrTO6s3eJr328q0ardcOaNNdtas666RJl6EfbXvZjl3ZlXsl6wo9dhX6oMgxu/3Sy5X9PZDHTFyIiIgqFVfL9rOOCxEREVHlxisuRERE7sCsIqe49YrL1KlTceuttyIgIAARERHo3bs3UlJSNNsUFBRg2LBhCAsLg7+/P/r06YP09HQ3jZiIiKhiXM4qcuXlidw6cdm4cSOGDRuGLVu2YPXq1SguLkbXrl2RlyfXuRkxYgRWrlyJ5cuXY+PGjTh16hQeeOCBUnolIiKi6sqtt4pWrVql+XrhwoWIiIjAjh07cMcddyA7Oxsff/wxlixZgs6dOwO4lJLdpEkTbNmyBbfddpujbomIiCo/3ipySqV6ODc7OxsAEBp6KQV5x44dKC4uRmJiotimcePGiI2NRXJyssM+CgsLkZOTo3kRERFVOori4lpFnplVVGkezrXb7Rg+fDg6dOiAm2++VE8kLS0NZrMZwcHBmm0jIyORlpbmoJdLz81MnDjxqvZ17w+Df0Agbu4xUrRtSqwr4p3tO4l4u0nWM+m8abmmn8RMWa/l5fPyWRuzqqBDu2Pfi/hos94izi4eJ+IzB2StmDpTRou4yTdyorVhw9+aY/vV/UfEXlZZk2TvPlkbpXPbWiIuUI3J78ROEdduImuynNgizydu8JMiPlukLTZ4LEtVw0TV7x+pWSJ+1CprleRmydt9wXVDRFx8QJ6fuWYTESv2EyK2BdTQHNtglP2q67h4WVT1WlR1WUyq9nO5qnZVfZcsVbu3atzFhSWaY/sGyuUtSoplPRMfVV0Wdb0WH2+ddvX2xbLd6uW4vgugrcuifs9b9fnbVe0mnboeevVgSisDolMqRncfdU0Rbd0Xve31j61Hr/aLXl96hyjt2KXVlyGqcIoNuOLffbn390CV5orLsGHDsHfvXixdutSlfsaMGYPs7GzxSk1NvfZOREREVCVUiisuSUlJ+O6777Bp0ybUqiWvGERFRaGoqAhZWVmaqy7p6emIiopy2JfFYtEsAklERFQZKXY7FBeq37qyb1Xm1isuiqIgKSkJX3/9NdatW4e6detq3m/Tpg28vb2xdu1a0ZaSkoLjx48jISHhRg+XiIio4thtrr88kFuvuAwbNgxLlizBN998g4CAAPHcSlBQEHx8fBAUFIRBgwZh5MiRCA0NRWBgIJ555hkkJCQwo4iIiMgDufWKy9y5c5GdnY1OnTohOjpavJYtWya2mTlzJu6991706dMHd9xxB6KiovDVV1+5cdREREQVoBJfccnMzES/fv0QGBiI4OBgDBo0CLm5uaVu/8wzz6BRo0bw8fFBbGwsnn32WZEtfJnBYLjqVd5nW916xUUpQyqX1WrFnDlzMGfOnBswIiIiohtDsdmg2JyffLiy77X069cPp0+fFsVhBw4ciCFDhmDJkiUOtz916hROnTqF6dOno2nTpvjnn38wdOhQnDp1Cl988YVm2wULFqB79+7i6yszh6+lUjyceyP806Mn/Ewm3PLYG6It6j/xIp4aLlOgaw6+R8Q9vjit6eeFmSNE3HboDBE/GH1IxOsHzxTxtGfiRPx8VICIF6hSczcWx8j+u8qHjv/1ufbK0vElcixhDeQ3/eC2lSIe0KqmiNf5eIv4wi8/irhW+/pymw9kWnb7Oq1EnG/TTir/SJdpzKGq1N6taXIGXiNKpmgXnJfp6oFto0Vc8ke+iL1j4lRH+E1u4xOqObbRyyzi8/kyXdlktopYnQ7trUoVz8xTpXFb5I97kSrt2ctbnQ6t/UWgfk+dDh1glX2p05t91WnPqr+G1OnQmtRmTcqz9kE7ddqzJsVYnXps0+tLlSatuq6qaS8l9deok0ysm3qs217+9OJKk+pYSRjdmKLN7HDPtH//fqxatQrbt29H27ZtAQDvvPMO7rnnHkyfPh0xMTFX7XPzzTfjyy+/FF/Xr18fr732Gh599FGUlJTAy0v+zgwODtZNsCkL/o4gIiJyB7vd9RdwVdHVwsJCl4aVnJyM4OBgMWkBgMTERBiNRmzdurXM/WRnZyMwMFAzaQEuPd8aHh6Odu3aYf78+WW6+6LmMVdciIiIKhW73bXnVP7/xKV27dqa5vHjx2PChAlOd5uWloaIiAhNm5eXF0JDQ3WLv17p7NmzmDx5MoYMGaJpnzRpEjp37gxfX1/8/PPPePrpp5Gbm4tnn322zOPjxIWIiKgKS01NRWBgoPhar5bZSy+9hGnTppXa1/79+10eT05ODnr27ImmTZteNYEaO3asiFu3bo28vDy8+eabnLgQERFVdorddtVSH+XdHwACAwM1Exc9zz//PB5//PFSt6lXrx6ioqKQkZGhaS8pKUFmZuY1n025cOECunfvjoCAAHz99dfw9vYudfv4+HhMnjwZhYWFZS4ey4kLERGROyjyORWn9y+HGjVqoEaNGtfcLiEhAVlZWdixYwfatGkDAFi3bh3sdjvi4+N198vJyUG3bt1gsVjw7bffwmq16m572e7duxESElKuivecuBAREblBRV1xqWhNmjRB9+7dMXjwYMybNw/FxcVISkrCww8/LDKKTp48iS5dumDRokVo164dcnJy0LVrV1y8eBGffvqpeFAYuDRhMplMWLlyJdLT03HbbbfBarVi9erVmDJlCl544YVyjY8TFyIiItJYvHgxkpKS0KVLFxiNRvTp0wezZ88W7xcXFyMlJQUXL14EAOzcuVNkHDVo0EDT19GjRxEXFwdvb2/MmTMHI0aMgKIoaNCgAWbMmIHBgweXa2weM3FZ+3cWLAYjNt6VJdrqD5dFcTYOby/iZ17sKuI297+o6afB3+dFvPIpecnM/99vi/ij2j1E/MeqDSK+8/U+Iq65taWIJ37zl4hXD7xJxMV52oqDB77aJ8fx/NMiLvpUppI1D5A1RTLCZa2YYz/tEHGjx+8X8ZGZm0R82uYLPduPyfNuraphknUmT8Qh9YJFXJB9RsRBDeqI2F4i690ooXJBTbXzBdq/Iozeso5Luqoui8kiz+9Mjkz/8/KRdVzO5cp2b3UdF1U9GHV7Xo42jdBHda4lRfI9H7OqjktJkard5LDd7CUrD6j/SrKaHLcDgLfqPbtO7RfN9kbH1Q1MOsVX1M1XHlu3Lovj5nJzpj6Ibg2Zcm7vjPL2xfInVCauVr+9jpVzQ0NDdYvNAUBcXJwmjblTp07XTGvu3r27pvCcszxm4kJERFSp2F18xoWrQxMRERFVbrziQkRE5AaVea2iyowTFyIiIneooMq5noa3ioiIiKjK4BUXIiIid6jEWUWVmcdMXMb/MAGBfr4Ye+co0ZbZrpeID70yS8SNZj0j4vCb7tD0c9c/Mn347EuPi/jDB6eIuLaPLHGcm35MxEX/966I/x15XMRz3l0h4vzgNSIOiK6vOfaW/RtFPPjOeiLeq07B3bZSxHXuiBXx32vkOJrNkOeUWSTXrdiTIVObg7y1F+O2/CPToe8PkhUOc8/KstAhjaJFXLQpR8TesXKFUcV+QMS2QFk62uglU56zrkiH9jLLtOeMPFV6s1WmPWdcULfLao0XVOnTFh/5415YUCzi4Bp+Ii4p0h47QJUObS9WpT17O057VqdDq+8/66U9e5WSDm0xOb4gqk57Vu9jVOUYa9p1knNLS0nWS//VP0Y5+9E/NAzO5EqXw/XuvyriR+Ieit0OxYXbPa7sW5XxVhERERFVGR5zxYWIiKhS4a0ip3DiQkRE5A6KixMXhRMXIiIiukH4jItz+IwLERERVRm84kJEROQOLEDnFI+ZuPTcHAYvqx/GxQWLtsipSSJ+5Ll5In5i7S8iXnzgLU0/tw2Sqc4Te0wU8f+yfxXxxiG3inj2KRm/+H2KiN+6t5GIp750UMS75u4Xcd2eEzTHPvPjh7KvRmEiNqnSk098+5OIY7vJY3/9hUxDTgiqK2KbajHPLccyRRxjlecJAOdO54o4tGGoiPPPp8n2rnIVaNua0yI2RsnjqWXb5I+fOh36dK52hWYvq0xXPp1dIGJvvyARZ+TIdotq7AV5Mu1ZvQp0QWa+3F7VXlwoU5sBwF/Vl61I7qNOk7aVYXVoi5cqTVr1y8bqpX/RU70KtDq1Wnd1aJ12g84q0Hpp0oD+6sa6q0brvFHV0mzduQq0sap9WOQ6PpzrFN4qIiIioirDY664EBERVSZcZNE5nLgQERG5g93u2nMqHvqMC28VERERUZXBKy5ERETuwIdzncKJCxERkRsodttVi6uWd39PxFtFREREVGV4zBWXXSu+gMFkRsPNG0Xbbd9ME/FrRh8Rx/nK2h2Nv5S1WgDgm+5jRGwyyPfS924Scc1f3xfxvd8fEfHK5bLWyzvea0XsGxYj4t82yxoyg96VtV4A4NhUOc+07Fop4ka31xbx4R8Pibju8y/J8RUuEPEf6Xki9lfVEUk+dFbEI/xlXRUAyE6X79W4OVrEhdvPi9jaIF7Eiv2EiEtC5PgMRlnPJLNAVZvEx1/Epy9o67ho3suS9VrMvrK+S2aO3MfsI3+sC/NlHZfAUPk9PldYImJ/dU2WQlmrBQD8VTVe1HVZ1PvYi2W7n7e6Xos8P4vqc1b3460qHGK/4q8nb6PcR92XXrtJpw6ISefPE712QFtTRFv7RW97/b4c0av7Ulpfenvobs+6KFTJseS/czxm4kJERFSZKHYFis2ViYty7Y2qIU5ciIiI3ECx2V2buLiwb1XGZ1yIiIioyuAVFyIiIjfgMy7O4cSFiIjIDXiryDm8VURERERVhsdccRk7ZTisfgFo++hM0fbE2iUiXr5/q4g7HJPpyRN7vqrp53972oh4w39uFfHHaTJ+euVhEb/ZU6Y0L5w6W8S/v3FAxPW7jhNx6tpPRZzUPFJz7FXBVhEf/+wLuX+vBLnNqsUivjW8sYiLVE+fr1OlPceo0npXHc8WcY1m4Zpj5505LuLwzg1EXLLptIhNsU1Ue/wsohzIcZvMMiX5hCqF2csqU5uPn7+oObY5IFTEp7NlurLFKtPW83NlirHFR7ZfyJTbW1XtxYVy+2BfmfptK9KmQweoU6VVacw+Zpn2rE5vtnip06HlX0NWL8d/I6jTpK9cMM3b5DidV69dnf2rTWHW2d5h69V9aduvfWy1yviXUXlTt4HSP6vyHdt9KdrMDq98eMXFOR4zcSEiIqpMFJsNdq4OXW6V8Q8iIiIiIod4xYWIiMgNFMXFrCKFt4qIiIjoBuEzLs7hrSIiIiKqMnjFhYiIyA14xcU5vOJCRETkBopdEdVznXtdv0UWMzMz0a9fPwQGBiI4OBiDBg1Cbm5uqft06tQJBoNB8xo6dKhmm+PHj6Nnz57w9fVFREQERo0ahZKSknKNzWOuuPT++Q0EWMyYFdJBtN0aIuuLxM4aJuI5faeKOPCK+hvpezeJOHjTfBEP3izrnMx5d4WIZ+R9KeKA6PoiXr1uo4ifn3eziPe+IeuAWH6TdWYAoHl3uf+Br/aLOO6l8SJOzV8o4uQTF0Qc5C3P45d96SJ+KUzWVTl/8pSII2+J1Ry7YJOs/WJtfKeIFfsJEZeExYnY6CVro2TkyR9Kbx9/ER9X1WQx+wWJ+MR5bS0Vs6+s8XIuu0COw0/WZSm4qKrLUkO1/Wn5GQT7yu1thfIY/hb5z0BdkwUA/FV1XOzF8j0/b3W9FpmSqK7LoqnvYlK1q7b3NqrquNivqOOi855JpyCHSefPEL12dU2RK4+t9xeNXg0Uve316r6UVktF7y29ffSO4an4cVQddpsddheumriy77X069cPp0+fxurVq1FcXIyBAwdiyJAhWLJkSan7DR48GJMmTRJf+/r6ithms6Fnz56IiorC5s2bcfr0afTv3x/e3t6YMmVKmcfmMRMXIiIiurb9+/dj1apV2L59O9q2bQsAeOedd3DPPfdg+vTpiImJ0d3X19cXUVFRDt/7+eefsW/fPqxZswaRkZFo1aoVJk+ejNGjR2PChAkwm80O97sSbxURERG5weVnXFx5AUBOTo7mVVhYeI0jly45ORnBwcFi0gIAiYmJMBqN2Lp1ayl7AosXL0Z4eDhuvvlmjBkzBhcvykroycnJaN68OSIjZVX4bt26IScnB3/99VeZx8crLkRERG5QUQ/n1q5dW9M+fvx4TJgwwel+09LSEBERoWnz8vJCaGgo0tLSdPf797//jTp16iAmJgZ//vknRo8ejZSUFHz11VeiX/WkBYD4urR+r8SJCxERURWWmpqKwMBA8bXFYnG43UsvvYRp06aV2tf+/ftLfb80Q4YMEXHz5s0RHR2NLl264MiRI6hfv34pe5YPJy5ERERuUFGVcwMDAzUTFz3PP/88Hn/88VK3qVevHqKiopCRkaFpLykpQWZmpu7zK47Ex8cDAA4fPoz69esjKioK27Zt02yTnn4pWaQ8/XLiQkRE5AY3uo5LjRo1UKNGjWtul5CQgKysLOzYsQNt2rQBAKxbtw52u11MRspi9+7dAIDo6GjR72uvvYaMjAxxK2r16tUIDAxE06ZNy9yvx0xcZr79G8ww4nD++6LNK6eriJ+J7CTipQcWiPjU/Cc0/SzcLD/c++dsEfGGJ+qJeOqJgyLe+IqcXbZ+eZ6Iz/z4oYjH1pHPSIfWkrPm/e8t0xy7ydB/ifizz+XlvmZWberyZd/uOS3itn7yae0Vx7JEHN1GznLzzsiU7ogHmmn6Kvn5gIiNcS1U73wvojNFMkXYZJFp1kezZOqxt588v7/P5InYHBAq4n/OynYAsPrKsedfkCnGVtU5ZabL+gK+PjLtuShfHjtI1U9JgdxenSZdUqRNxdakQ6vSm31V6dD2kmLH7eq0Z5Mq9Vi1oqvVS//5eLPXtdOey5ImrZcdW1rarF6KcXlTbXVTmJ3Yp7yc6aeiMomNzEmmKqxJkybo3r07Bg8ejHnz5qG4uBhJSUl4+OGHRUbRyZMn0aVLFyxatAjt2rXDkSNHsGTJEtxzzz0ICwvDn3/+iREjRuCOO+5AixaX/p/RtWtXNG3aFI899hjeeOMNpKWl4ZVXXsGwYcN0b2854jETFyIiosqkMlfOXbx4MZKSktClSxcYjUb06dMHs2fPFu8XFxcjJSVFZA2ZzWasWbMGs2bNQl5eHmrXro0+ffrglVdeEfuYTCZ89913eOqpp5CQkAA/Pz8MGDBAU/elLDhxISIicgO73Q67C8+4uLLvtYSGhpZabC4uLg6KIiv31q5dGxs3btTd/rI6derghx9+cGlsrONCREREVQavuBAREblBZb5VVJlx4kJEROQGlyYutmtvWMr+nogTFyIiIje4vMqzK/t7Io+ZuAxPSkCAxYwvarUWbW8PmyXi6W2iRbxEld76ZcPHNP0s7ShXN76t90siTtmTKuLa8TKF+qcP1ol4zkMyjXj1yzL1K2u+TG1u+WR7Ea+YtlZz7KaLHxHxmUK5kub3h+TKzTFWmdr71R5ZQvnRm2S6cebxQyKu2UmmdxcsUa0A3bIHtGQ6dH5QLRGbzDLt+XiOXB/D7CvTno9kyvRma6CsIfD3GZmS7BMgV3TOydaus+ETINOYL+bKlOQIVep4Ub78noX5q9Ke8+UxwlTp0+q05yBVOrR6BWgACDCr06HlMXx0VodWpzfrpT0remnSV6zQrLsKdDlXXDYZHR9Dr5/S+irvKtAVqTKuAu3OtOdK+HEQ3RAeM3EhIiKqTBS7i8+48IoLERER3TAuPpwLD33GhenQREREVGW4deKyadMm3HfffYiJiYHBYMCKFSs07yuKgnHjxiE6Oho+Pj5ITEzEoUOHHHdGRERUhdhtdpdfnsitE5e8vDy0bNkSc+bMcfj+G2+8gdmzZ2PevHnYunUr/Pz80K1bNxQUFNzgkRIREVWsy1lFrrw8kVufcenRowd69Lgye+USRVEwa9YsvPLKK+jVqxcAYNGiRYiMjMSKFSvw8MMP38ihEhERUSVQaZ9xOXr0KNLS0pCYmCjagoKCEB8fj+TkZN39CgsLkZOTo3kRERFVNpcr57ry8kSVNqsoLe1SDZLIyEhNe2RkpHjPkalTp2LixIlXtX/XcwysfgEomttdtP357TIRN98ka6aM2HxcxuM/1fRzpLesC+JXo7aIl325WsSTk+NFvHeBrPdRZ/dyEXfudZOIt82QtV66b1sq9335e82xVx+/KOIgbznnXL75HxG/FOEr4vcOy/OI7dRQxHmbZM2ZoNvuFLF9kTxecczNmmMbvWQNlOPZsp6J2S9IxAfOquq1BMl6LQdOX1C1h4j41Dl5Pn6Bsq5NbrassQIAwTVkjZesDHmMcNU+B/PkMUL9ZLutDPVaAi3qWi3aOi7qei3q93zV7araKBaT43otFpPjui/eRv2/HVRdaeuv6Oyirsui3l7vCHq1Wi715bhdr5aKXl96hyjt2OWt11JaXw77L9/mbsd6LdWXYlOg2JRrb1jK/p6o0l5xcdaYMWOQnZ0tXqmpqdfeiYiIiKqESnvFJSoqCgCQnp6O6GhZ1TY9PR2tWrXS3c9iscBisei+T0REVBnY7a5lBtk99OHcSnvFpW7duoiKisLatfIWTk5ODrZu3YqEhAQ3joyIiMh1il1x+eWJ3HrFJTc3F4cPHxZfHz16FLt370ZoaChiY2MxfPhwvPrqq2jYsCHq1q2LsWPHIiYmBr1793bfoImIiCqA3QbYjc5PPuzOLyxdpbl14vL777/jrrvuEl+PHDkSADBgwAAsXLgQL774IvLy8jBkyBBkZWWhY8eOWLVqFaxWq7uGTERERG7k1olLp06doCj6s02DwYBJkyZh0qRJN3BURERE159is0MxurDIItOhq7cJL82EwWRGXsoK0bZmxXkRt33+BxGnDJT5h9PPp2v6WThCbjfks69FnP3TRyLu63NUxHU71BJx8ugPRHzH/6aI+MMlT4o4WqkpYvMVeZ7v//K3iAeE+Ih46V+nRFyva30R5xw4KOKogXeIuOTn32SnjeTzQgbjKhGn5msff1KnPe/JkKnHlqBwEe89KWvmWEOiRHzwlGz3D5ZXyy5kylRlX1Vqc8bxbM2x4+qFivjvPJmOXiNA9lV8Ue4ToeqrOF9uH+IrU7rVadL+mnRomeoNAAFmx2nPVi9V2rNNtqvTpNXMXo5zWr1UmytXXPc16eTB6qU966Uwm3TyhUtLs73eac/lTXkurS89FZlFbGROMl0Hik2B4sKtIqZDExEREVVyHnPFhYiIqDKx2xQXH871zCsunLgQERG5AZ9xcQ5vFREREVGVwSsuREREbmBXFNhdKCJnLyUrtzrjxIWIiMgdbAoUgwuTDw99xoW3ioiIiKjK8JgrLi3v7wMvqx+av3VEtO0dHChi//+tF/H/esr1kfrNW6rp5+DDsnbL7GZFIv6trVwIcsuT/xVxu5mjRDym/XARh4e1FbF60vzGWll7pZeqVgsArPj9pIib3SPrtZz/+w8R13nxbhEXvrxdxKbWst1g3CLiE/YAEatrtfyRJmu1AIA1JFLEO49nidivRqyI/0yV7YGhviLOPndRxP5B8pzOquq71K4TLOJ//jqhOXZ0cF0RF+ddu15LqJ/jei1BVsf1WvzNst1WIr+ngLYui169FnUtFXW9FnW7t1Gv9op+fRD9fRxvX956LaUdu6LqtTjDU+u1sFSM57Hb7LAbXFhk0UMfzvWYiQsREVFlorh4q8hTC9Bx4kJEROQGnLg4h8+4EBERUZXBKy5ERERuwGdcnMOJCxERkRsoigLFhTouiofWceGtIiIiIqoyPOaKy493ZCPQrxgho34Vbe9+/IOIh38m05z/uF+2z22hTQve1qmOiDf9339EfMf/poj4hVZPitgadYeIbarZ8X9X7hPxgHCZOvz8psMinvR/jTXHPntApjHXfaWXiAtG/yZi423Pidhg3CnifxAiYktAqDyfkzIl2ScsRsS//Z2pObY67XnHUflekGrs59NlSnJgmEx7zjguU5hr1ZYp18f3y7TnWiEy5XnLBe2xa6nSwotU6dCRgVYRq9OeQ3y8RaxOew6yOE57DjA7TnkGtKnS6pRkq7fRYbvZ5DiF2Usnx1cv5Rm4/mnPpaUdlzft2aBzDL12Z9KnKypbmCnPVFnYbQrs4CKL5cUrLkRERG6g2JRLCy06/bp+E5fMzEz069cPgYGBCA4OxqBBg5Cbm6u7/bFjx2AwGBy+li9fLrZz9P7SpUt1+3XEY664EBERUdn069cPp0+fxurVq1FcXIyBAwdiyJAhWLJkicPta9eujdOnT2vaPvjgA7z55pvo0aOHpn3BggXo3r27+Do4OLhcY+PEhYiIyA0UmwLFhVtF1+uKy/79+7Fq1Sps374dbdteqvL+zjvv4J577sH06dMRExNz1T4mkwlRUVGatq+//hoPPfQQ/P39Ne3BwcFXbVsevFVERETkBnab4vLrekhOTkZwcLCYtABAYmIijEYjtm7dWqY+duzYgd27d2PQoEFXvTds2DCEh4ejXbt2mD9/frmzo3jFhYiIqArLycnRfG2xWGCxWHS2vra0tDRERERo2ry8vBAaGoq0tLQy9fHxxx+jSZMmaN++vaZ90qRJ6Ny5M3x9ffHzzz/j6aefRm5uLp599tkyj49XXIiIiNxAsdtdfgGXni8JCgoSr6lTpzo83ksvvaT7AO3l14EDB1w+r/z8fCxZssTh1ZaxY8eiQ4cOaN26NUaPHo0XX3wRb775Zrn695grLq/2GAuLwYgv/kwWbdtbrxTx2AKZAn1ySBsRf3GHTHkGgAf2fC/iZ6LuEvEZexMR+5jkfPDZxTIleVw9mZI8cO1uEc8dKmekZ36WKc/139V+0wuf/FJ+0fFhERq95CrQBwr85DhUKzqvVaU3+0fGiXj1/gwRB8XIlOQdh89qjh0aKe9RnlOtHB1cQx7vxKFzIm7UMEzER3f/LeJ6NRqIeHP2GRHXUaVVq1OeASA6SKY9lxTkiTjcV6Y924oKRBxiVbWr0p41q0MX67RfsTq01at8ac/e5Ux71kt5BvTTnnXTpMuZelxaZm55057L209pqlLas94hmPZMZVFR6dCpqakIDAwU7XpXW55//nk8/vjjpfZZr149REVFISMjQ9NeUlKCzMzMMj2b8sUXX+DixYvo37//NbeNj4/H5MmTUVhYWOarRB4zcSEiIqpMFLuLD+f+/6q7gYGBmomLnho1aqBGjRrX3C4hIQFZWVnYsWMH2rS59If8unXrYLfbER8ff839P/74Y9x///1lOtbu3bsREhJSrltbnLgQERGR0KRJE3Tv3h2DBw/GvHnzUFxcjKSkJDz88MMio+jkyZPo0qULFi1ahHbt2ol9Dx8+jE2bNuGHH364qt+VK1ciPT0dt912G6xWK1avXo0pU6bghRdeKNf4OHEhIiJyB5sdiuLCfUX79VtkcfHixUhKSkKXLl1gNBrRp08fzJ49W7xfXFyMlJQUXLx4UbPf/PnzUatWLXTt2vWqPr29vTFnzhyMGDECiqKgQYMGmDFjBgYPHlyusXHiQkRE5AZ2mwK7Cwsl2l1YoPFaQkNDdYvNAUBcXJzDNOYpU6ZgypQpDvYAunfvrik85yxmFREREVGVwSsuREREbqDYlHIXX9Psfx2vuFRmnLgQERG5gV1x8VaRC/tWZR4zcelUNxh+JhNCRz0q2kavfFnEE3u+KuInTuwW8ab3m2v6+Xl9lojbh8j6Ii+/L8sgf9HrJhHP+XmNiG+f+m8Rn31V1l6JfFuOo+Tb10R8qu6dmmN7+8m+fj4ma6kExNQX8ed/nBJxUGxTEX+z66SIw+rEivjPFFlLJaJ2kIgzTmgrMTZoItPa/txyVMTtWsk1K1I27xFxw0h57J9zzqjaZT2YYlW9lpqBjmu1AECEn0yTKynKF3G4r1nENlVdllAfWcdFXa8lwCJ/3NW1VPRqtQCAxctx/RWzToESs069Fi+d7b1KKeSiW6+l3PVdHLeXVmNFr16L3j7lrRXjzOOIenVZ3FmvhYhuPI+ZuBAREVUmNkWBzYWrJq7sW5Vx4kJEROQGNuXSy5X9PRGzioiIiKjK4BUXIiIiN+CtIudw4kJEROQGvFXkHE5ciIiI3MDu4hUXpkNXc3VWfY+AgEDMjJTpzQX9Wom4vZ9Moe0xQaYdf/GvJpp+7vzoSxG/8+GTIn7q1ZUibvrjuyLO7yHTm8/e9V8Re88cK+IfM/1EHBQrj/fB1lTNscNvulXE8zb9LeKoRjL1+Kdtcp9aN8nlx4+mnBWxXmpzt+6yn5U79mmOfUt3meKdvHKjiFvHthfx8myZ9twoQqY9F104L+LaQT6y/aJMudakQxfKlGcAiPSTac/q9OZQX1Xac4k67dnksN1HJ+3ZUkpKstWkkw5tctyXXnqzt87TZN6l5CTrpVCXN71ZL7VZL6261L50ti9vtnBpKczXO725tO6Z9kxU+XnMxIWIiKgyscHFW0UVNpKqhRMXIiIiN7ApCmzgw7nlxXRoIiIiqjJ4xYWIiMgNbIprt3uYVUREREQ3DCcuzuGtIiIiIqoyeMWFiIjIDfhwrnM8ZuLSecgcGLysOPZxf9FW4833RPzBrmUifqr32yKO3vCFpp+i7mNEvLnFcyIOiP5AxG/8JS/+RbW8S8QjVvwl4rh2nUU85au9Iq5/a2sRf736sObYjdvWEfG+32W9li6JssbKj19vEfETj3cS8fvzvhPx0H/dLOJfv1gl4tsb3CHiZedOaY7dpnawiAuzZU2YRuGyBk2hql5LvVBfERfn54o4NkjWa7Gp6rXUUNVqsRVp67gEW+WPqboui7+341oqvjrtenVcfHS2BwCzTtEUvXa9uizlrckC6NdZKXd7OWuylPaeXo2V8rY7Q6+r8rYTVRZ2F28V2T1z3sJbRURERFR1eMwVFyIiosqEt4qcw4kLERGRGzCryDmcuBAREbnBpYmLK1dcKnAwVQifcSEiIqIqg1dciIiI3IC3ipzjMRMXn9AYGL19MNTUQrTV7ShTfu9cminilr0fFnGX1zZo+kl45EER/+etTSK+59/dRPzeR3Kf/o92FPFHH3wv4jEvPCDiV19bLOKZrw0U8bOj5mqO/eoTz8h+l34t4kdGy9Tqz97eL8fU5CERv5V2TMR3xoWKOP98uojbxASKuPCC/DwAoIkq7bkoL1vEccGq9GZVGnNMgOP05jAfx6nNIVaTiK9MSQ6yOE5X9jc73sfP2/GFRB8vx/mx1lJyki1ejvsqd5q0TrtemjSgn8Zs0snz1Wt3JlVZ772KSkkuLVWZaczkKfhwrnN4q4iIiIiqDI+54kJERFSZKADsLu7viThxISIicgPeKnIObxURERFRlcErLkRERG7ArCLncOJCRETkBrxV5ByPmbjsfudBBAYGIrD9MNGWs3mOiMvSDgDbdd77cKaq/S256vT4zo+J+K1XZKry021jRPxS+jER920aLuLB59M0x+5RP1jE6nTljrX8RVxSIFdiviVSrtCsTkluHGoRsToluV6Qt8N2AKgdIH9U1KnHMX6O2yN8ZKqyWpjV8d3JEIv+XctAs+P3Arwd58366aQ9+zqTDq0zLL12nSHptusMqdT3jDq/6CqqvbT3DDq/KCuq/UYcg8fmscvyHlVeHjNxISIiqkx4q8g5nLgQERG5AW8VOYcTFyIiIjewu3jFxe6Z85aqkQ49Z84cxMXFwWq1Ij4+Htu2bXP3kIiIiMgNKv3EZdmyZRg5ciTGjx+PnTt3omXLlujWrRsyMjLcPTQiIiKn2RTF5ZcnqvQTlxkzZmDw4MEYOHAgmjZtinnz5sHX1xfz589399CIiIicZsP/f0DX2Ze7T8BNKvUzLkVFRdixYwfGjBkj2oxGIxITE5GcnOxwn8LCQhQWFoqvs7MvrWR84cIFAIBik2m+OTk5Ii5LuzP7VFQ7j81j89g8No99/Y+t2Iov/fcGXM0ocmmlItf3r7KUSuzkyZMKAGXz5s2a9lGjRint2rVzuM/48eMVXFp7ii+++OKLL76ceqWmpl63/7fl5+crUVFRFTLOqKgoJT8//7qNtTKq1FdcnDFmzBiMHDlSfJ2VlYU6derg+PHjCAoKcuPIbqycnBzUrl0bqampCAwMdPdwbhieN8/bE/C8r995K4qCCxcuICYm5tobO8lqteLo0aMoKiq69sbXYDabYbVaK2BUVUelnriEh4fDZDIhPT1d056eno6oqCiH+1gsFlgslqvag4KCPOof+GWBgYE8bw/C8/YsPO/r40b8kWu1Wj1uwlFRKvXDuWazGW3atMHatWtFm91ux9q1a5GQkODGkREREZE7VOorLgAwcuRIDBgwAG3btkW7du0wa9Ys5OXlYeDAge4eGhEREd1glX7i0rdvX5w5cwbjxo1DWloaWrVqhVWrViEyMrJM+1ssFowfP97h7aPqjOfN8/YEPG+eN3keg6J4aAUbIiIiqnIq9TMuRERERGqcuBAREVGVwYkLERERVRmcuBAREVGVUa0nLnPmzEFcXBysVivi4+Oxbds2dw+pQk2dOhW33norAgICEBERgd69eyMlJUWzTUFBAYYNG4awsDD4+/ujT58+VxX0q+pef/11GAwGDB8+XLRV1/M+efIkHn30UYSFhcHHxwfNmzfH77//Lt5XFAXjxo1DdHQ0fHx8kJiYiEOHDrlxxK6z2WwYO3Ys6tatCx8fH9SvXx+TJ0/WrCVTHc5706ZNuO+++xATEwODwYAVK1Zo3i/LOWZmZqJfv34IDAxEcHAwBg0ahNzc3Bt4FuVX2nkXFxdj9OjRaN68Ofz8/BATE4P+/fvj1KlTmj6q4nmT86rtxGXZsmUYOXIkxo8fj507d6Jly5bo1q0bMjIy3D20CrNx40YMGzYMW7ZswerVq1FcXIyuXbsiLy9PbDNixAisXLkSy5cvx8aNG3Hq1Ck88MADbhx1xdq+fTvef/99tGjRQtNeHc/7/Pnz6NChA7y9vfHjjz9i3759eOuttxASEiK2eeONNzB79mzMmzcPW7duhZ+fH7p164aCggI3jtw106ZNw9y5c/Huu+9i//79mDZtGt544w288847YpvqcN55eXlo2bIl5syZ4/D9spxjv3798Ndff2H16tX47rvvsGnTJgwZMuRGnYJTSjvvixcvYufOnRg7dix27tyJr776CikpKbj//vs121XF8yYXuHGdpOuqXbt2yrBhw8TXNptNiYmJUaZOnerGUV1fGRkZCgBl48aNiqIoSlZWluLt7a0sX75cbLN//34FgJKcnOyuYVaYCxcuKA0bNlRWr16t3Hnnncpzzz2nKEr1Pe/Ro0crHTt21H3fbrcrUVFRyptvvinasrKyFIvFonz22Wc3YojXRc+ePZUnnnhC0/bAAw8o/fr1UxSlep43AOXrr78WX5flHPft26cAULZv3y62+fHHHxWDwaCcPHnyho3dFVeetyPbtm1TACj//POPoijV47ypfKrlFZeioiLs2LEDiYmJos1oNCIxMRHJycluHNn1lZ2dDQAIDQ0FAOzYsQPFxcWaz6Fx48aIjY2tFp/DsGHD0LNnT835AdX3vL/99lu0bdsWDz74ICIiItC6dWt8+OGH4v2jR48iLS1Nc95BQUGIj4+v0ufdvn17rF27FgcPHgQA/PHHH/j111/Ro0cPANX3vNXKco7JyckIDg5G27ZtxTaJiYkwGo3YunXrDR/z9ZKdnQ2DwYDg4GAAnnPeJFX6yrnOOHv2LGw221XVdSMjI3HgwAE3jer6stvtGD58ODp06ICbb74ZAJCWlgaz2Sz+gV8WGRmJtLQ0N4yy4ixduhQ7d+7E9u3br3qvup7333//jblz52LkyJH473//i+3bt+PZZ5+F2WzGgAEDxLk5+rmvyuf90ksvIScnB40bN4bJZILNZsNrr72Gfv36AUC1PW+1spxjWloaIiIiNO97eXkhNDS02nwOBQUFGD16NB555BGxyKInnDdpVcuJiycaNmwY9u7di19//dXdQ7nuUlNT8dxzz2H16tUetbqq3W5H27ZtMWXKFABA69atsXfvXsybNw8DBgxw8+iun88//xyLFy/GkiVL0KxZM+zevRvDhw9HTExMtT5v0iouLsZDDz0ERVEwd+5cdw+H3Kha3ioKDw+HyWS6KoskPT0dUVFRbhrV9ZOUlITvvvsO69evR61atUR7VFQUioqKkJWVpdm+qn8OO3bsQEZGBm655RZ4eXnBy8sLGzduxOzZs+Hl5YXIyMhqed7R0dFo2rSppq1JkyY4fvw4AIhzq24/96NGjcJLL72Ehx9+GM2bN8djjz2GESNGYOrUqQCq73mrleUco6Kirko+KCkpQWZmZpX/HC5PWv755x+sXr1aXG0Bqvd5k2PVcuJiNpvRpk0brF27VrTZ7XasXbsWCQkJbhxZxVIUBUlJSfj666+xbt061K1bV/N+mzZt4O3trfkcUlJScPz48Sr9OXTp0gV79uzB7t27xatt27bo16+fiKvjeXfo0OGqdPeDBw+iTp06AIC6desiKipKc945OTnYunVrlT7vixcvwmjU/qoymUyw2+0Aqu95q5XlHBMSEpCVlYUdO3aIbdatWwe73Y74+PgbPuaKcnnScujQIaxZswZhYWGa96vreVMp3P108PWydOlSxWKxKAsXLlT27dunDBkyRAkODlbS0tLcPbQK89RTTylBQUHKhg0blNOnT4vXxYsXxTZDhw5VYmNjlXXr1im///67kpCQoCQkJLhx1NeHOqtIUarneW/btk3x8vJSXnvtNeXQoUPK4sWLFV9fX+XTTz8V27z++utKcHCw8s033yh//vmn0qtXL6Vu3bpKfn6+G0fumgEDBig1a9ZUvvvuO+Xo0aPKV199pYSHhysvvvii2KY6nPeFCxeUXbt2Kbt27VIAKDNmzFB27dolsmfKco7du3dXWrdurWzdulX59ddflYYNGyqPPPKIu06pTEo776KiIuX+++9XatWqpezevVvze66wsFD0URXPm5xXbScuiqIo77zzjhIbG6uYzWalXbt2ypYtW9w9pAoFwOFrwYIFYpv8/Hzl6aefVkJCQhRfX1/l//7v/5TTp0+7b9DXyZUTl+p63itXrlRuvvlmxWKxKI0bN1Y++OADzft2u10ZO3asEhkZqVgsFqVLly5KSkqKm0ZbMXJycpTnnntOiY2NVaxWq1KvXj3l5Zdf1vyPqzqc9/r16x3+ex4wYICiKGU7x3PnzimPPPKI4u/vrwQGBioDBw5ULly44IazKbvSzvvo0aO6v+fWr18v+qiK503OMyiKqvwkERERUSVWLZ9xISIiouqJExciIiKqMjhxISIioiqDExciIiKqMjhxISIioiqDExciIiKqMjhxISIioiqDExeiUkyYMAGtWrWq8H6PHTsGg8GA3bt3626zYcMGGAwGsebSwoULr1rx2t06deqE4cOHu3sY12QwGLBixQp3D4OIKgAnLlQtPP744zAYDFe9unfv7u6hVZi+ffvi4MGD1/04CxcuFJ+fyWRCSEgI4uPjMWnSJGRnZ2u2/eqrrzB58uTrPiZXnT59Gj169HD3MIioAni5ewBEFaV79+5YsGCBps1isbhpNBXPx8cHPj4+N+RYgYGBSElJgaIoyMrKwubNmzF16lQsWLAAv/32G2JiYgAAoaGhN2Q8ruIqwUTVB6+4ULVhsVgQFRWleYWEhIj3DQYD3n//fdx7773w9fVFkyZNkJycjMOHD6NTp07w8/ND+/btceTIkav6fv/991G7dm34+vrioYceuurKw0cffYQmTZrAarWicePGeO+99zTvb9u2Da1bt4bVakXbtm2xa9euq47xww8/4KabboKPjw/uuusuHDt2TPP+lbeKLt/G+t///oe4uDgEBQXh4YcfxoULF8Q2Fy5cQL9+/eDn54fo6GjMnDmzTLd3DAYDoqKiEB0djSZNmmDQoEHYvHkzcnNz8eKLL4rtruwrLi4Or776Kvr37w9/f3/UqVMH3377Lc6cOYNevXrB398fLVq0wO+//6453q+//orbb78dPj4+qF27Np599lnk5eVp+p0yZQqeeOIJBAQEIDY2Fh988IF4v6ioCElJSYiOjobVakWdOnUwdepUzfmobxXt2bMHnTt3ho+PD8LCwjBkyBDk5uaK9x9//HH07t0b06dPR3R0NMLCwjBs2DAUFxeX+rkR0fXHiQt5lMmTJ6N///7YvXs3GjdujH//+9/4z3/+gzFjxuD333+HoihISkrS7HP48GF8/vnnWLlyJVatWoVdu3bh6aefFu8vXrwY48aNw2uvvYb9+/djypQpGDt2LD755BMAQG5uLu699140bdoUO3bswIQJE/DCCy9ojpGamooHHngA9913H3bv3o0nn3wSL7300jXP58iRI1ixYgW+++47fPfdd9i4cSNef/118f7IkSPx22+/4dtvv8Xq1avxyy+/YOfOnU59dhEREejXrx++/fZb2Gw23e1mzpyJDh06YNeuXejZsycee+wx9O/fH48++ih27tyJ+vXro3///ri8TNqRI0fQvXt39OnTB3/++SeWLVuGX3/99arvw1tvvSUmfU8//TSeeuoppKSkAABmz56Nb7/9Fp9//jlSUlKwePFixMXFORxfXl4eunXrhpCQEGzfvh3Lly/HmjVrrjre+vXrceTIEaxfvx6ffPIJFi5ciIULFzr12RFRBXLrEo9EFWTAgAGKyWRS/Pz8NK/XXntNbANAeeWVV8TXycnJCgDl448/Fm2fffaZYrVaxdfjx49XTCaTcuLECdH2448/KkajUaw2Xb9+fWXJkiWa8UyePFlJSEhQFEVR3n//fSUsLEzJz88X78+dO1cBoOzatUtRFEUZM2aM0rRpU00fo0ePVgAo58+fVxRFURYsWKAEBQVpxubr66vk5OSItlGjRinx8fGKolxaVdnb21tZvny5eD8rK0vx9fXVrKR9pSuPo3Z53Onp6YqiXL0qd506dZRHH31UfH369GkFgDJ27FjRdvlzv/z5DRo0SBkyZIjmOL/88otiNBrFZ3Zlv3a7XYmIiFDmzp2rKIqiPPPMM0rnzp0Vu93ucNwAlK+//lpRFEX54IMPlJCQECU3N1e8//333ytGo1FJS0tTFOXSz1OdOnWUkpISsc2DDz6o9O3b12H/RHTj8BkXqjbuuusuzJ07V9N25TMYLVq0EHFkZCQAoHnz5pq2goIC5OTkIDAwEAAQGxuLmjVrim0SEhJgt9uRkpKCgIAAHDlyBIMGDcLgwYPFNiUlJQgKCgIA7N+/Hy1atIDVatX0obZ//37Ex8dr2q7cxpG4uDgEBASIr6Ojo5GRkQEA+Pvvv1FcXIx27dqJ94OCgtCoUaNr9qtH+f9XSQwGg+42ZfmMASAjIwNRUVH4448/8Oeff2Lx4sWa49jtdhw9ehRNmjS5qt/Lt7Iun+vjjz+Ou+++G40aNUL37t1x7733omvXrg7Ht3//frRs2RJ+fn6irUOHDuJ7enl8zZo1g8lkEttER0djz549pX08RHQDcOJC1Yafnx8aNGhQ6jbe3t4ivvw/X0dtdru9TMe8/FzEhx9+eNXEQ/0/vetFPXbg0vjLOnZn7N+/H4GBgQgLCyvTmMryGefm5uI///kPnn322av6io2Nddjv5X4u93HLLbfg6NGj+PHHH7FmzRo89NBDSExMxBdffFHeUyzT8YjIffiMC9E1HD9+HKdOnRJfb9myBUajEY0aNUJkZCRiYmLw999/o0GDBppX3bp1AQBNmjTBn3/+iYKCAk0fak2aNMG2bds0bVduU1716tWDt7c3tm/fLtqys7OdTqnOyMjAkiVL0Lt3bxiNFfer45ZbbsG+ffuu+vwaNGgAs9lc5n4CAwPRt29ffPjhh1i2bBm+/PJLZGZmXrVdkyZN8Mcff2ge/v3tt9/E95SIKjdOXKjaKCwsRFpamuZ19uxZl/u1Wq0YMGAA/vjjD/zyyy949tln8dBDD4kU24kTJ2Lq1KmYPXs2Dh48iD179mDBggWYMWMGAODf//43DAYDBg8ejH379uGHH37A9OnTNccYOnQoDh06hFGjRiElJQVLlixx+UHQgIAADBgwAKNGjcL69evx119/YdCgQTAajaXe6gEu3apJS0vD6dOnsX//fsyfPx/t27dHUFCQ5uHfijB69Ghs3rwZSUlJ2L17Nw4dOoRvvvnmqodlSzNjxgx89tlnOHDgAA4ePIjly5cjKirKYcG+fv36ie/p3r17sX79ejzzzDN47LHHxG0iIqq8OHGhamPVqlWIjo7WvDp27Ohyvw0aNMADDzyAe+65B127dkWLFi006c5PPvkkPvroIyxYsADNmzfHnXfeiYULF4orLv7+/li5ciX27NmD1q1b4+WXX8a0adM0x4iNjcWXX36JFStWoGXLlpg3bx6mTJni8thnzJiBhIQE3HvvvUhMTESHDh1E2nZpcnJyEB0djZo1ayIhIQHvv/8+BgwYgF27diE6Otrlcam1aNECGzduxMGDB3H77bejdevWGDdunKgVUxYBAQF444030LZtW9x66604duwYfvjhB4dXhnx9ffHTTz8hMzMTt956K/71r3+hS5cuePfddyvytIjoOjEol5+2I6JqLy8vDzVr1sRbb72FQYMGuXs4RETlxodziaqxXbt24cCBA2jXrh2ys7MxadIkAECvXr3cPDIiIudw4kJUzU2fPh0pKSkwm81o06YNfvnlF4SHh7t7WERETuGtIiIiIqoy+HAuERERVRmcuBAREVGVwYkLERERVRmcuBAREVGVwYkLERERVRmcuBAREVGVwYkLERERVRmcuBAREVGVwYkLERERVRn/DzwRT2M08ggtAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ], + "source": [ + "#위치 인코딩\n", + "import math\n", + "import torch\n", + "from torch import nn\n", + "from matplotlib import pyplot as plt\n", + "\n", + "class PositionalEncoding(nn.Module):\n", + " def __init__(self, d_model, max_len, dropout=0.1):\n", + " super().__init__()\n", + " self.dropout=nn.Dropout(p=dropout)\n", + "\n", + " position=torch.arange(max_len).unsqueeze(1)\n", + " div_term=torch.exp(\n", + " torch.arange(0, d_model, 2) * (-math.log(10000.0)/d_model)\n", + " )\n", + "\n", + " pe=torch.zeros(max_len, 1, d_model)\n", + " pe[:, 0, 0::2]=torch.sin(position*div_term)\n", + " pe[:, 0, 1::2]=torch.cos(position*div_term)\n", + " self.register_buffer(\"pe\", pe)\n", + "\n", + " def forward(self, x):\n", + " x=x+self.pe[: x.size(0)]\n", + " return self.dropout(x)\n", + "\n", + "encoding=PositionalEncoding(d_model=128, max_len=50)\n", + "\n", + "plt.pcolormesh(encoding.pe.numpy().squeeze(), cmap=\"RdBu\")\n", + "plt.xlabel(\"Embedding Dimension\")\n", + "plt.xlim((0,128))\n", + "plt.ylabel(\"Position\")\n", + "plt.colorbar()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "source": [ + "!pip install torchdata torchtext portalocker" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "4EYtOVVm3xmJ", + "outputId": "9aa7f204-009f-422d-fe20-5f890b968479" + }, + "execution_count": 2, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: torchdata in /usr/local/lib/python3.11/dist-packages (0.11.0)\n", + "Collecting torchtext\n", + " Downloading torchtext-0.18.0-cp311-cp311-manylinux1_x86_64.whl.metadata (7.9 kB)\n", + "Collecting portalocker\n", + " Downloading portalocker-3.1.1-py3-none-any.whl.metadata (8.6 kB)\n", + "Requirement already satisfied: urllib3>=1.25 in /usr/local/lib/python3.11/dist-packages (from torchdata) (2.4.0)\n", + "Requirement already satisfied: requests in /usr/local/lib/python3.11/dist-packages (from torchdata) (2.32.3)\n", + "Requirement already satisfied: torch>=2 in /usr/local/lib/python3.11/dist-packages (from torchdata) (2.6.0+cu124)\n", + "Requirement already satisfied: tqdm in /usr/local/lib/python3.11/dist-packages (from torchtext) (4.67.1)\n", + "Requirement already satisfied: numpy in /usr/local/lib/python3.11/dist-packages (from torchtext) (2.0.2)\n", + "Requirement already satisfied: filelock in /usr/local/lib/python3.11/dist-packages (from torch>=2->torchdata) (3.18.0)\n", + "Requirement already satisfied: typing-extensions>=4.10.0 in /usr/local/lib/python3.11/dist-packages (from torch>=2->torchdata) (4.13.2)\n", + "Requirement already satisfied: networkx in /usr/local/lib/python3.11/dist-packages (from torch>=2->torchdata) (3.4.2)\n", + "Requirement already satisfied: jinja2 in /usr/local/lib/python3.11/dist-packages (from torch>=2->torchdata) (3.1.6)\n", + "Requirement already satisfied: fsspec in /usr/local/lib/python3.11/dist-packages (from torch>=2->torchdata) (2025.3.2)\n", + "Collecting nvidia-cuda-nvrtc-cu12==12.4.127 (from torch>=2->torchdata)\n", + " Downloading nvidia_cuda_nvrtc_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n", + "Collecting nvidia-cuda-runtime-cu12==12.4.127 (from torch>=2->torchdata)\n", + " Downloading nvidia_cuda_runtime_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n", + "Collecting nvidia-cuda-cupti-cu12==12.4.127 (from torch>=2->torchdata)\n", + " Downloading nvidia_cuda_cupti_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl.metadata (1.6 kB)\n", + "Collecting nvidia-cudnn-cu12==9.1.0.70 (from torch>=2->torchdata)\n", + " Downloading nvidia_cudnn_cu12-9.1.0.70-py3-none-manylinux2014_x86_64.whl.metadata (1.6 kB)\n", + "Collecting nvidia-cublas-cu12==12.4.5.8 (from torch>=2->torchdata)\n", + " Downloading nvidia_cublas_cu12-12.4.5.8-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n", + "Collecting nvidia-cufft-cu12==11.2.1.3 (from torch>=2->torchdata)\n", + " Downloading nvidia_cufft_cu12-11.2.1.3-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n", + "Collecting nvidia-curand-cu12==10.3.5.147 (from torch>=2->torchdata)\n", + " Downloading nvidia_curand_cu12-10.3.5.147-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n", + "Collecting nvidia-cusolver-cu12==11.6.1.9 (from torch>=2->torchdata)\n", + " Downloading nvidia_cusolver_cu12-11.6.1.9-py3-none-manylinux2014_x86_64.whl.metadata (1.6 kB)\n", + "Collecting nvidia-cusparse-cu12==12.3.1.170 (from torch>=2->torchdata)\n", + " Downloading nvidia_cusparse_cu12-12.3.1.170-py3-none-manylinux2014_x86_64.whl.metadata (1.6 kB)\n", + "Requirement already satisfied: nvidia-cusparselt-cu12==0.6.2 in /usr/local/lib/python3.11/dist-packages (from torch>=2->torchdata) (0.6.2)\n", + "Requirement already satisfied: nvidia-nccl-cu12==2.21.5 in /usr/local/lib/python3.11/dist-packages (from torch>=2->torchdata) (2.21.5)\n", + "Requirement already satisfied: nvidia-nvtx-cu12==12.4.127 in /usr/local/lib/python3.11/dist-packages (from torch>=2->torchdata) (12.4.127)\n", + "Collecting nvidia-nvjitlink-cu12==12.4.127 (from torch>=2->torchdata)\n", + " Downloading nvidia_nvjitlink_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n", + "Requirement already satisfied: triton==3.2.0 in /usr/local/lib/python3.11/dist-packages (from torch>=2->torchdata) (3.2.0)\n", + "Requirement already satisfied: sympy==1.13.1 in /usr/local/lib/python3.11/dist-packages (from torch>=2->torchdata) (1.13.1)\n", + "Requirement already satisfied: mpmath<1.4,>=1.1.0 in /usr/local/lib/python3.11/dist-packages (from sympy==1.13.1->torch>=2->torchdata) (1.3.0)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.11/dist-packages (from requests->torchdata) (3.4.2)\n", + "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.11/dist-packages (from requests->torchdata) (3.10)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.11/dist-packages (from requests->torchdata) (2025.4.26)\n", + "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.11/dist-packages (from jinja2->torch>=2->torchdata) (3.0.2)\n", + "Downloading torchtext-0.18.0-cp311-cp311-manylinux1_x86_64.whl (2.0 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.0/2.0 MB\u001b[0m \u001b[31m20.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading portalocker-3.1.1-py3-none-any.whl (19 kB)\n", + "Downloading nvidia_cublas_cu12-12.4.5.8-py3-none-manylinux2014_x86_64.whl (363.4 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m363.4/363.4 MB\u001b[0m \u001b[31m1.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading nvidia_cuda_cupti_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl (13.8 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m13.8/13.8 MB\u001b[0m \u001b[31m99.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading nvidia_cuda_nvrtc_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl (24.6 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m24.6/24.6 MB\u001b[0m \u001b[31m81.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading nvidia_cuda_runtime_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl (883 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m883.7/883.7 kB\u001b[0m \u001b[31m43.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading nvidia_cudnn_cu12-9.1.0.70-py3-none-manylinux2014_x86_64.whl (664.8 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m664.8/664.8 MB\u001b[0m \u001b[31m2.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading nvidia_cufft_cu12-11.2.1.3-py3-none-manylinux2014_x86_64.whl (211.5 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m211.5/211.5 MB\u001b[0m \u001b[31m5.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading nvidia_curand_cu12-10.3.5.147-py3-none-manylinux2014_x86_64.whl (56.3 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m56.3/56.3 MB\u001b[0m \u001b[31m10.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading nvidia_cusolver_cu12-11.6.1.9-py3-none-manylinux2014_x86_64.whl (127.9 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m127.9/127.9 MB\u001b[0m \u001b[31m7.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading nvidia_cusparse_cu12-12.3.1.170-py3-none-manylinux2014_x86_64.whl (207.5 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m207.5/207.5 MB\u001b[0m \u001b[31m4.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading nvidia_nvjitlink_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl (21.1 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m21.1/21.1 MB\u001b[0m \u001b[31m81.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hInstalling collected packages: portalocker, nvidia-nvjitlink-cu12, nvidia-curand-cu12, nvidia-cufft-cu12, nvidia-cuda-runtime-cu12, nvidia-cuda-nvrtc-cu12, nvidia-cuda-cupti-cu12, nvidia-cublas-cu12, nvidia-cusparse-cu12, nvidia-cudnn-cu12, nvidia-cusolver-cu12, torchtext\n", + " Attempting uninstall: nvidia-nvjitlink-cu12\n", + " Found existing installation: nvidia-nvjitlink-cu12 12.5.82\n", + " Uninstalling nvidia-nvjitlink-cu12-12.5.82:\n", + " Successfully uninstalled nvidia-nvjitlink-cu12-12.5.82\n", + " Attempting uninstall: nvidia-curand-cu12\n", + " Found existing installation: nvidia-curand-cu12 10.3.6.82\n", + " Uninstalling nvidia-curand-cu12-10.3.6.82:\n", + " Successfully uninstalled nvidia-curand-cu12-10.3.6.82\n", + " Attempting uninstall: nvidia-cufft-cu12\n", + " Found existing installation: nvidia-cufft-cu12 11.2.3.61\n", + " Uninstalling nvidia-cufft-cu12-11.2.3.61:\n", + " Successfully uninstalled nvidia-cufft-cu12-11.2.3.61\n", + " Attempting uninstall: nvidia-cuda-runtime-cu12\n", + " Found existing installation: nvidia-cuda-runtime-cu12 12.5.82\n", + " Uninstalling nvidia-cuda-runtime-cu12-12.5.82:\n", + " Successfully uninstalled nvidia-cuda-runtime-cu12-12.5.82\n", + " Attempting uninstall: nvidia-cuda-nvrtc-cu12\n", + " Found existing installation: nvidia-cuda-nvrtc-cu12 12.5.82\n", + " Uninstalling nvidia-cuda-nvrtc-cu12-12.5.82:\n", + " Successfully uninstalled nvidia-cuda-nvrtc-cu12-12.5.82\n", + " Attempting uninstall: nvidia-cuda-cupti-cu12\n", + " Found existing installation: nvidia-cuda-cupti-cu12 12.5.82\n", + " Uninstalling nvidia-cuda-cupti-cu12-12.5.82:\n", + " Successfully uninstalled nvidia-cuda-cupti-cu12-12.5.82\n", + " Attempting uninstall: nvidia-cublas-cu12\n", + " Found existing installation: nvidia-cublas-cu12 12.5.3.2\n", + " Uninstalling nvidia-cublas-cu12-12.5.3.2:\n", + " Successfully uninstalled nvidia-cublas-cu12-12.5.3.2\n", + " Attempting uninstall: nvidia-cusparse-cu12\n", + " Found existing installation: nvidia-cusparse-cu12 12.5.1.3\n", + " Uninstalling nvidia-cusparse-cu12-12.5.1.3:\n", + " Successfully uninstalled nvidia-cusparse-cu12-12.5.1.3\n", + " Attempting uninstall: nvidia-cudnn-cu12\n", + " Found existing installation: nvidia-cudnn-cu12 9.3.0.75\n", + " Uninstalling nvidia-cudnn-cu12-9.3.0.75:\n", + " Successfully uninstalled nvidia-cudnn-cu12-9.3.0.75\n", + " Attempting uninstall: nvidia-cusolver-cu12\n", + " Found existing installation: nvidia-cusolver-cu12 11.6.3.83\n", + " Uninstalling nvidia-cusolver-cu12-11.6.3.83:\n", + " Successfully uninstalled nvidia-cusolver-cu12-11.6.3.83\n", + "Successfully installed nvidia-cublas-cu12-12.4.5.8 nvidia-cuda-cupti-cu12-12.4.127 nvidia-cuda-nvrtc-cu12-12.4.127 nvidia-cuda-runtime-cu12-12.4.127 nvidia-cudnn-cu12-9.1.0.70 nvidia-cufft-cu12-11.2.1.3 nvidia-curand-cu12-10.3.5.147 nvidia-cusolver-cu12-11.6.1.9 nvidia-cusparse-cu12-12.3.1.170 nvidia-nvjitlink-cu12-12.4.127 portalocker-3.1.1 torchtext-0.18.0\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "!pip uninstall torchtext -y\n", + "!pip install torchtext==0.17.0" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "fU3U7Lv3eGEF", + "outputId": "7b60bce7-4ec0-48fe-930b-972a7396e6cf" + }, + "execution_count": 3, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Found existing installation: torchtext 0.18.0\n", + "Uninstalling torchtext-0.18.0:\n", + " Successfully uninstalled torchtext-0.18.0\n", + "Collecting torchtext==0.17.0\n", + " Downloading torchtext-0.17.0-cp311-cp311-manylinux1_x86_64.whl.metadata (7.6 kB)\n", + "Requirement already satisfied: tqdm in /usr/local/lib/python3.11/dist-packages (from torchtext==0.17.0) (4.67.1)\n", + "Requirement already satisfied: requests in /usr/local/lib/python3.11/dist-packages (from torchtext==0.17.0) (2.32.3)\n", + "Collecting torch==2.2.0 (from torchtext==0.17.0)\n", + " Downloading torch-2.2.0-cp311-cp311-manylinux1_x86_64.whl.metadata (25 kB)\n", + "Requirement already satisfied: numpy in /usr/local/lib/python3.11/dist-packages (from torchtext==0.17.0) (2.0.2)\n", + "Collecting torchdata==0.7.1 (from torchtext==0.17.0)\n", + " Downloading torchdata-0.7.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (13 kB)\n", + "Requirement already satisfied: filelock in /usr/local/lib/python3.11/dist-packages (from torch==2.2.0->torchtext==0.17.0) (3.18.0)\n", + "Requirement already satisfied: typing-extensions>=4.8.0 in /usr/local/lib/python3.11/dist-packages (from torch==2.2.0->torchtext==0.17.0) (4.13.2)\n", + "Requirement already satisfied: sympy in /usr/local/lib/python3.11/dist-packages (from torch==2.2.0->torchtext==0.17.0) (1.13.1)\n", + "Requirement already satisfied: networkx in /usr/local/lib/python3.11/dist-packages (from torch==2.2.0->torchtext==0.17.0) (3.4.2)\n", + "Requirement already satisfied: jinja2 in /usr/local/lib/python3.11/dist-packages (from torch==2.2.0->torchtext==0.17.0) (3.1.6)\n", + "Requirement already satisfied: fsspec in /usr/local/lib/python3.11/dist-packages (from torch==2.2.0->torchtext==0.17.0) (2025.3.2)\n", + "Collecting nvidia-cuda-nvrtc-cu12==12.1.105 (from torch==2.2.0->torchtext==0.17.0)\n", + " Downloading nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-manylinux1_x86_64.whl.metadata (1.5 kB)\n", + "Collecting nvidia-cuda-runtime-cu12==12.1.105 (from torch==2.2.0->torchtext==0.17.0)\n", + " Downloading nvidia_cuda_runtime_cu12-12.1.105-py3-none-manylinux1_x86_64.whl.metadata (1.5 kB)\n", + "Collecting nvidia-cuda-cupti-cu12==12.1.105 (from torch==2.2.0->torchtext==0.17.0)\n", + " Downloading nvidia_cuda_cupti_cu12-12.1.105-py3-none-manylinux1_x86_64.whl.metadata (1.6 kB)\n", + "Collecting nvidia-cudnn-cu12==8.9.2.26 (from torch==2.2.0->torchtext==0.17.0)\n", + " Downloading nvidia_cudnn_cu12-8.9.2.26-py3-none-manylinux1_x86_64.whl.metadata (1.6 kB)\n", + "Collecting nvidia-cublas-cu12==12.1.3.1 (from torch==2.2.0->torchtext==0.17.0)\n", + " Downloading nvidia_cublas_cu12-12.1.3.1-py3-none-manylinux1_x86_64.whl.metadata (1.5 kB)\n", + "Collecting nvidia-cufft-cu12==11.0.2.54 (from torch==2.2.0->torchtext==0.17.0)\n", + " Downloading nvidia_cufft_cu12-11.0.2.54-py3-none-manylinux1_x86_64.whl.metadata (1.5 kB)\n", + "Collecting nvidia-curand-cu12==10.3.2.106 (from torch==2.2.0->torchtext==0.17.0)\n", + " Downloading nvidia_curand_cu12-10.3.2.106-py3-none-manylinux1_x86_64.whl.metadata (1.5 kB)\n", + "Collecting nvidia-cusolver-cu12==11.4.5.107 (from torch==2.2.0->torchtext==0.17.0)\n", + " Downloading nvidia_cusolver_cu12-11.4.5.107-py3-none-manylinux1_x86_64.whl.metadata (1.6 kB)\n", + "Collecting nvidia-cusparse-cu12==12.1.0.106 (from torch==2.2.0->torchtext==0.17.0)\n", + " Downloading nvidia_cusparse_cu12-12.1.0.106-py3-none-manylinux1_x86_64.whl.metadata (1.6 kB)\n", + "Collecting nvidia-nccl-cu12==2.19.3 (from torch==2.2.0->torchtext==0.17.0)\n", + " Downloading nvidia_nccl_cu12-2.19.3-py3-none-manylinux1_x86_64.whl.metadata (1.8 kB)\n", + "Collecting nvidia-nvtx-cu12==12.1.105 (from torch==2.2.0->torchtext==0.17.0)\n", + " Downloading nvidia_nvtx_cu12-12.1.105-py3-none-manylinux1_x86_64.whl.metadata (1.7 kB)\n", + "Collecting triton==2.2.0 (from torch==2.2.0->torchtext==0.17.0)\n", + " Downloading triton-2.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (1.4 kB)\n", + "Requirement already satisfied: urllib3>=1.25 in /usr/local/lib/python3.11/dist-packages (from torchdata==0.7.1->torchtext==0.17.0) (2.4.0)\n", + "Requirement already satisfied: nvidia-nvjitlink-cu12 in /usr/local/lib/python3.11/dist-packages (from nvidia-cusolver-cu12==11.4.5.107->torch==2.2.0->torchtext==0.17.0) (12.4.127)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.11/dist-packages (from requests->torchtext==0.17.0) (3.4.2)\n", + "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.11/dist-packages (from requests->torchtext==0.17.0) (3.10)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.11/dist-packages (from requests->torchtext==0.17.0) (2025.4.26)\n", + "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.11/dist-packages (from jinja2->torch==2.2.0->torchtext==0.17.0) (3.0.2)\n", + "Requirement already satisfied: mpmath<1.4,>=1.1.0 in /usr/local/lib/python3.11/dist-packages (from sympy->torch==2.2.0->torchtext==0.17.0) (1.3.0)\n", + "Downloading torchtext-0.17.0-cp311-cp311-manylinux1_x86_64.whl (2.0 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.0/2.0 MB\u001b[0m \u001b[31m24.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading torch-2.2.0-cp311-cp311-manylinux1_x86_64.whl (755.5 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m755.5/755.5 MB\u001b[0m \u001b[31m2.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading torchdata-0.7.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.7 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m4.7/4.7 MB\u001b[0m \u001b[31m79.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading nvidia_cublas_cu12-12.1.3.1-py3-none-manylinux1_x86_64.whl (410.6 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m410.6/410.6 MB\u001b[0m \u001b[31m4.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading nvidia_cuda_cupti_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (14.1 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m14.1/14.1 MB\u001b[0m \u001b[31m91.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (23.7 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m23.7/23.7 MB\u001b[0m \u001b[31m83.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading nvidia_cuda_runtime_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (823 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m823.6/823.6 kB\u001b[0m \u001b[31m32.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading nvidia_cudnn_cu12-8.9.2.26-py3-none-manylinux1_x86_64.whl (731.7 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m731.7/731.7 MB\u001b[0m \u001b[31m2.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading nvidia_cufft_cu12-11.0.2.54-py3-none-manylinux1_x86_64.whl (121.6 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m121.6/121.6 MB\u001b[0m \u001b[31m7.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading nvidia_curand_cu12-10.3.2.106-py3-none-manylinux1_x86_64.whl (56.5 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m56.5/56.5 MB\u001b[0m \u001b[31m12.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading nvidia_cusolver_cu12-11.4.5.107-py3-none-manylinux1_x86_64.whl (124.2 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m124.2/124.2 MB\u001b[0m \u001b[31m7.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading nvidia_cusparse_cu12-12.1.0.106-py3-none-manylinux1_x86_64.whl (196.0 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m196.0/196.0 MB\u001b[0m \u001b[31m5.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading nvidia_nccl_cu12-2.19.3-py3-none-manylinux1_x86_64.whl (166.0 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m166.0/166.0 MB\u001b[0m \u001b[31m6.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading nvidia_nvtx_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (99 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m99.1/99.1 kB\u001b[0m \u001b[31m6.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading triton-2.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (167.9 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m167.9/167.9 MB\u001b[0m \u001b[31m6.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hInstalling collected packages: triton, nvidia-nvtx-cu12, nvidia-nccl-cu12, nvidia-cusparse-cu12, nvidia-curand-cu12, nvidia-cufft-cu12, nvidia-cuda-runtime-cu12, nvidia-cuda-nvrtc-cu12, nvidia-cuda-cupti-cu12, nvidia-cublas-cu12, nvidia-cusolver-cu12, nvidia-cudnn-cu12, torch, torchdata, torchtext\n", + " Attempting uninstall: triton\n", + " Found existing installation: triton 3.2.0\n", + " Uninstalling triton-3.2.0:\n", + " Successfully uninstalled triton-3.2.0\n", + " Attempting uninstall: nvidia-nvtx-cu12\n", + " Found existing installation: nvidia-nvtx-cu12 12.4.127\n", + " Uninstalling nvidia-nvtx-cu12-12.4.127:\n", + " Successfully uninstalled nvidia-nvtx-cu12-12.4.127\n", + " Attempting uninstall: nvidia-nccl-cu12\n", + " Found existing installation: nvidia-nccl-cu12 2.21.5\n", + " Uninstalling nvidia-nccl-cu12-2.21.5:\n", + " Successfully uninstalled nvidia-nccl-cu12-2.21.5\n", + " Attempting uninstall: nvidia-cusparse-cu12\n", + " Found existing installation: nvidia-cusparse-cu12 12.3.1.170\n", + " Uninstalling nvidia-cusparse-cu12-12.3.1.170:\n", + " Successfully uninstalled nvidia-cusparse-cu12-12.3.1.170\n", + " Attempting uninstall: nvidia-curand-cu12\n", + " Found existing installation: nvidia-curand-cu12 10.3.5.147\n", + " Uninstalling nvidia-curand-cu12-10.3.5.147:\n", + " Successfully uninstalled nvidia-curand-cu12-10.3.5.147\n", + " Attempting uninstall: nvidia-cufft-cu12\n", + " Found existing installation: nvidia-cufft-cu12 11.2.1.3\n", + " Uninstalling nvidia-cufft-cu12-11.2.1.3:\n", + " Successfully uninstalled nvidia-cufft-cu12-11.2.1.3\n", + " Attempting uninstall: nvidia-cuda-runtime-cu12\n", + " Found existing installation: nvidia-cuda-runtime-cu12 12.4.127\n", + " Uninstalling nvidia-cuda-runtime-cu12-12.4.127:\n", + " Successfully uninstalled nvidia-cuda-runtime-cu12-12.4.127\n", + " Attempting uninstall: nvidia-cuda-nvrtc-cu12\n", + " Found existing installation: nvidia-cuda-nvrtc-cu12 12.4.127\n", + " Uninstalling nvidia-cuda-nvrtc-cu12-12.4.127:\n", + " Successfully uninstalled nvidia-cuda-nvrtc-cu12-12.4.127\n", + " Attempting uninstall: nvidia-cuda-cupti-cu12\n", + " Found existing installation: nvidia-cuda-cupti-cu12 12.4.127\n", + " Uninstalling nvidia-cuda-cupti-cu12-12.4.127:\n", + " Successfully uninstalled nvidia-cuda-cupti-cu12-12.4.127\n", + " Attempting uninstall: nvidia-cublas-cu12\n", + " Found existing installation: nvidia-cublas-cu12 12.4.5.8\n", + " Uninstalling nvidia-cublas-cu12-12.4.5.8:\n", + " Successfully uninstalled nvidia-cublas-cu12-12.4.5.8\n", + " Attempting uninstall: nvidia-cusolver-cu12\n", + " Found existing installation: nvidia-cusolver-cu12 11.6.1.9\n", + " Uninstalling nvidia-cusolver-cu12-11.6.1.9:\n", + " Successfully uninstalled nvidia-cusolver-cu12-11.6.1.9\n", + " Attempting uninstall: nvidia-cudnn-cu12\n", + " Found existing installation: nvidia-cudnn-cu12 9.1.0.70\n", + " Uninstalling nvidia-cudnn-cu12-9.1.0.70:\n", + " Successfully uninstalled nvidia-cudnn-cu12-9.1.0.70\n", + " Attempting uninstall: torch\n", + " Found existing installation: torch 2.6.0+cu124\n", + " Uninstalling torch-2.6.0+cu124:\n", + " Successfully uninstalled torch-2.6.0+cu124\n", + " Attempting uninstall: torchdata\n", + " Found existing installation: torchdata 0.11.0\n", + " Uninstalling torchdata-0.11.0:\n", + " Successfully uninstalled torchdata-0.11.0\n", + "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n", + "torchvision 0.21.0+cu124 requires torch==2.6.0, but you have torch 2.2.0 which is incompatible.\n", + "torchtune 0.6.1 requires torchdata==0.11.0, but you have torchdata 0.7.1 which is incompatible.\n", + "torchaudio 2.6.0+cu124 requires torch==2.6.0, but you have torch 2.2.0 which is incompatible.\u001b[0m\u001b[31m\n", + "\u001b[0mSuccessfully installed nvidia-cublas-cu12-12.1.3.1 nvidia-cuda-cupti-cu12-12.1.105 nvidia-cuda-nvrtc-cu12-12.1.105 nvidia-cuda-runtime-cu12-12.1.105 nvidia-cudnn-cu12-8.9.2.26 nvidia-cufft-cu12-11.0.2.54 nvidia-curand-cu12-10.3.2.106 nvidia-cusolver-cu12-11.4.5.107 nvidia-cusparse-cu12-12.1.0.106 nvidia-nccl-cu12-2.19.3 nvidia-nvtx-cu12-12.1.105 torch-2.2.0 torchdata-0.7.1 torchtext-0.17.0 triton-2.2.0\n" + ] + }, + { + "output_type": "display_data", + "data": { + "application/vnd.colab-display-data+json": { + "pip_warning": { + "packages": [ + "torch", + "torchgen" + ] + }, + "id": "f3713ab3badf4fa78efd311e79fdaa0e" + } + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "!python -m spacy download de_core_news_sm\n", + "!python -m spacy download de_core_news_sm" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "hFVN4IdI1_SR", + "outputId": "b536fede-6d1f-4162-d65e-607c865c8dd9" + }, + "execution_count": 4, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "A module that was compiled using NumPy 1.x cannot be run in\n", + "NumPy 2.0.2 as it may crash. To support both 1.x and 2.x\n", + "versions of NumPy, modules must be compiled with NumPy 2.0.\n", + "Some module may need to rebuild instead e.g. with 'pybind11>=2.12'.\n", + "\n", + "If you are a user of the module, the easiest solution will be to\n", + "downgrade to 'numpy<2' or try to upgrade the affected module.\n", + "We expect that some modules will need time to support NumPy 2.\n", + "\n", + "Traceback (most recent call last): File \"\", line 189, in _run_module_as_main\n", + " File \"\", line 148, in _get_module_details\n", + " File \"\", line 112, in _get_module_details\n", + " File \"/usr/local/lib/python3.11/dist-packages/spacy/__init__.py\", line 6, in \n", + " from .errors import setup_default_warnings\n", + " File \"/usr/local/lib/python3.11/dist-packages/spacy/errors.py\", line 3, in \n", + " from .compat import Literal\n", + " File \"/usr/local/lib/python3.11/dist-packages/spacy/compat.py\", line 4, in \n", + " from thinc.util import copy_array\n", + " File \"/usr/local/lib/python3.11/dist-packages/thinc/__init__.py\", line 5, in \n", + " from .config import registry\n", + " File \"/usr/local/lib/python3.11/dist-packages/thinc/config.py\", line 5, in \n", + " from .types import Decorator\n", + " File \"/usr/local/lib/python3.11/dist-packages/thinc/types.py\", line 27, in \n", + " from .compat import cupy, has_cupy\n", + " File \"/usr/local/lib/python3.11/dist-packages/thinc/compat.py\", line 35, in \n", + " import torch\n", + " File \"/usr/local/lib/python3.11/dist-packages/torch/__init__.py\", line 1471, in \n", + " from .functional import * # noqa: F403\n", + " File \"/usr/local/lib/python3.11/dist-packages/torch/functional.py\", line 9, in \n", + " import torch.nn.functional as F\n", + " File \"/usr/local/lib/python3.11/dist-packages/torch/nn/__init__.py\", line 1, in \n", + " from .modules import * # noqa: F403\n", + " File \"/usr/local/lib/python3.11/dist-packages/torch/nn/modules/__init__.py\", line 35, in \n", + " from .transformer import TransformerEncoder, TransformerDecoder, \\\n", + " File \"/usr/local/lib/python3.11/dist-packages/torch/nn/modules/transformer.py\", line 20, in \n", + " device: torch.device = torch.device(torch._C._get_default_device()), # torch.device('cpu'),\n", + "/usr/local/lib/python3.11/dist-packages/torch/nn/modules/transformer.py:20: UserWarning: Failed to initialize NumPy: _ARRAY_API not found (Triggered internally at ../torch/csrc/utils/tensor_numpy.cpp:84.)\n", + " device: torch.device = torch.device(torch._C._get_default_device()), # torch.device('cpu'),\n", + "Collecting de-core-news-sm==3.8.0\n", + " Downloading https://github.com/explosion/spacy-models/releases/download/de_core_news_sm-3.8.0/de_core_news_sm-3.8.0-py3-none-any.whl (14.6 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m14.6/14.6 MB\u001b[0m \u001b[31m55.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hInstalling collected packages: de-core-news-sm\n", + "Successfully installed de-core-news-sm-3.8.0\n", + "\u001b[38;5;2m✔ Download and installation successful\u001b[0m\n", + "You can now load the package via spacy.load('de_core_news_sm')\n", + "\u001b[38;5;3m⚠ Restart to reload dependencies\u001b[0m\n", + "If you are in a Jupyter or Colab notebook, you may need to restart Python in\n", + "order to load all the package's dependencies. You can do this by selecting the\n", + "'Restart kernel' or 'Restart runtime' option.\n", + "\n", + "A module that was compiled using NumPy 1.x cannot be run in\n", + "NumPy 2.0.2 as it may crash. To support both 1.x and 2.x\n", + "versions of NumPy, modules must be compiled with NumPy 2.0.\n", + "Some module may need to rebuild instead e.g. with 'pybind11>=2.12'.\n", + "\n", + "If you are a user of the module, the easiest solution will be to\n", + "downgrade to 'numpy<2' or try to upgrade the affected module.\n", + "We expect that some modules will need time to support NumPy 2.\n", + "\n", + "Traceback (most recent call last): File \"\", line 189, in _run_module_as_main\n", + " File \"\", line 148, in _get_module_details\n", + " File \"\", line 112, in _get_module_details\n", + " File \"/usr/local/lib/python3.11/dist-packages/spacy/__init__.py\", line 6, in \n", + " from .errors import setup_default_warnings\n", + " File \"/usr/local/lib/python3.11/dist-packages/spacy/errors.py\", line 3, in \n", + " from .compat import Literal\n", + " File \"/usr/local/lib/python3.11/dist-packages/spacy/compat.py\", line 4, in \n", + " from thinc.util import copy_array\n", + " File \"/usr/local/lib/python3.11/dist-packages/thinc/__init__.py\", line 5, in \n", + " from .config import registry\n", + " File \"/usr/local/lib/python3.11/dist-packages/thinc/config.py\", line 5, in \n", + " from .types import Decorator\n", + " File \"/usr/local/lib/python3.11/dist-packages/thinc/types.py\", line 27, in \n", + " from .compat import cupy, has_cupy\n", + " File \"/usr/local/lib/python3.11/dist-packages/thinc/compat.py\", line 35, in \n", + " import torch\n", + " File \"/usr/local/lib/python3.11/dist-packages/torch/__init__.py\", line 1471, in \n", + " from .functional import * # noqa: F403\n", + " File \"/usr/local/lib/python3.11/dist-packages/torch/functional.py\", line 9, in \n", + " import torch.nn.functional as F\n", + " File \"/usr/local/lib/python3.11/dist-packages/torch/nn/__init__.py\", line 1, in \n", + " from .modules import * # noqa: F403\n", + " File \"/usr/local/lib/python3.11/dist-packages/torch/nn/modules/__init__.py\", line 35, in \n", + " from .transformer import TransformerEncoder, TransformerDecoder, \\\n", + " File \"/usr/local/lib/python3.11/dist-packages/torch/nn/modules/transformer.py\", line 20, in \n", + " device: torch.device = torch.device(torch._C._get_default_device()), # torch.device('cpu'),\n", + "/usr/local/lib/python3.11/dist-packages/torch/nn/modules/transformer.py:20: UserWarning: Failed to initialize NumPy: _ARRAY_API not found (Triggered internally at ../torch/csrc/utils/tensor_numpy.cpp:84.)\n", + " device: torch.device = torch.device(torch._C._get_default_device()), # torch.device('cpu'),\n", + "Collecting de-core-news-sm==3.8.0\n", + " Using cached https://github.com/explosion/spacy-models/releases/download/de_core_news_sm-3.8.0/de_core_news_sm-3.8.0-py3-none-any.whl (14.6 MB)\n", + "\u001b[38;5;2m✔ Download and installation successful\u001b[0m\n", + "You can now load the package via spacy.load('de_core_news_sm')\n", + "\u001b[38;5;3m⚠ Restart to reload dependencies\u001b[0m\n", + "If you are in a Jupyter or Colab notebook, you may need to restart Python in\n", + "order to load all the package's dependencies. You can do this by selecting the\n", + "'Restart kernel' or 'Restart runtime' option.\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "#데이터세트 다운로드 및 전처리\n", + "from torchtext.datasets import Multi30k\n", + "from torchtext.data.utils import get_tokenizer\n", + "from torchtext.vocab import build_vocab_from_iterator\n", + "\n", + "def generate_tokens(text_iter, language):\n", + " language_index={SRC_LANGUAGE: 0, TGT_LANGUAGE: 1}\n", + "\n", + " for text in text_iter:\n", + " yield token_transform[language](text[language_index[language]])\n", + "\n", + "SRC_LANGUAGE=\"de\"\n", + "TGT_LANGUAGE=\"en\"\n", + "UNK_IDX, PAD_IDX, BOS_IDX, EOS_IDX=0, 1, 2, 3\n", + "special_symbols=[\"\", \"\", \"\", \"\"]\n", + "\n", + "token_transform={\n", + " SRC_LANGUAGE: get_tokenizer(\"spacy\", language=\"de_core_news_sm\"),\n", + " TGT_LANGUAGE: get_tokenizer(\"spacy\", language=\"en_core_web_sm\"),\n", + "}\n", + "print(\"Token Transform:\")\n", + "print(token_transform)\n", + "\n", + "vocab_transform={}\n", + "for language in [SRC_LANGUAGE, TGT_LANGUAGE]:\n", + " train_iter=Multi30k(split=\"train\", language_pair=(SRC_LANGUAGE, TGT_LANGUAGE))\n", + " vocab_transform[language]=build_vocab_from_iterator(\n", + " generate_tokens(train_iter, language),\n", + " min_freq=1,\n", + " specials=special_symbols,\n", + " special_first=True,\n", + " )\n", + "\n", + "for language in [SRC_LANGUAGE, TGT_LANGUAGE]:\n", + " vocab_transform[language].set_default_index(UNK_IDX)\n", + "\n", + "print(\"Vocab Transform:\")\n", + "print(vocab_transform)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "0LGQ4J3a4XPt", + "outputId": "bc361e58-ebb1-4648-c515-01b78df77fbd" + }, + "execution_count": 1, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n", + "A module that was compiled using NumPy 1.x cannot be run in\n", + "NumPy 2.0.2 as it may crash. To support both 1.x and 2.x\n", + "versions of NumPy, modules must be compiled with NumPy 2.0.\n", + "Some module may need to rebuild instead e.g. with 'pybind11>=2.12'.\n", + "\n", + "If you are a user of the module, the easiest solution will be to\n", + "downgrade to 'numpy<2' or try to upgrade the affected module.\n", + "We expect that some modules will need time to support NumPy 2.\n", + "\n", + "Traceback (most recent call last): File \"\", line 198, in _run_module_as_main\n", + " File \"\", line 88, in _run_code\n", + " File \"/usr/local/lib/python3.11/dist-packages/colab_kernel_launcher.py\", line 37, in \n", + " ColabKernelApp.launch_instance()\n", + " File \"/usr/local/lib/python3.11/dist-packages/traitlets/config/application.py\", line 992, in launch_instance\n", + " app.start()\n", + " File \"/usr/local/lib/python3.11/dist-packages/ipykernel/kernelapp.py\", line 712, in start\n", + " self.io_loop.start()\n", + " File \"/usr/local/lib/python3.11/dist-packages/tornado/platform/asyncio.py\", line 205, in start\n", + " self.asyncio_loop.run_forever()\n", + " File \"/usr/lib/python3.11/asyncio/base_events.py\", line 608, in run_forever\n", + " self._run_once()\n", + " File \"/usr/lib/python3.11/asyncio/base_events.py\", line 1936, in _run_once\n", + " handle._run()\n", + " File \"/usr/lib/python3.11/asyncio/events.py\", line 84, in _run\n", + " self._context.run(self._callback, *self._args)\n", + " File \"/usr/local/lib/python3.11/dist-packages/ipykernel/kernelbase.py\", line 510, in dispatch_queue\n", + " await self.process_one()\n", + " File \"/usr/local/lib/python3.11/dist-packages/ipykernel/kernelbase.py\", line 499, in process_one\n", + " await dispatch(*args)\n", + " File \"/usr/local/lib/python3.11/dist-packages/ipykernel/kernelbase.py\", line 406, in dispatch_shell\n", + " await result\n", + " File \"/usr/local/lib/python3.11/dist-packages/ipykernel/kernelbase.py\", line 730, in execute_request\n", + " reply_content = await reply_content\n", + " File \"/usr/local/lib/python3.11/dist-packages/ipykernel/ipkernel.py\", line 383, in do_execute\n", + " res = shell.run_cell(\n", + " File \"/usr/local/lib/python3.11/dist-packages/ipykernel/zmqshell.py\", line 528, in run_cell\n", + " return super().run_cell(*args, **kwargs)\n", + " File \"/usr/local/lib/python3.11/dist-packages/IPython/core/interactiveshell.py\", line 2975, in run_cell\n", + " result = self._run_cell(\n", + " File \"/usr/local/lib/python3.11/dist-packages/IPython/core/interactiveshell.py\", line 3030, in _run_cell\n", + " return runner(coro)\n", + " File \"/usr/local/lib/python3.11/dist-packages/IPython/core/async_helpers.py\", line 78, in _pseudo_sync_runner\n", + " coro.send(None)\n", + " File \"/usr/local/lib/python3.11/dist-packages/IPython/core/interactiveshell.py\", line 3257, in run_cell_async\n", + " has_raised = await self.run_ast_nodes(code_ast.body, cell_name,\n", + " File \"/usr/local/lib/python3.11/dist-packages/IPython/core/interactiveshell.py\", line 3473, in run_ast_nodes\n", + " if (await self.run_code(code, result, async_=asy)):\n", + " File \"/usr/local/lib/python3.11/dist-packages/IPython/core/interactiveshell.py\", line 3553, in run_code\n", + " exec(code_obj, self.user_global_ns, self.user_ns)\n", + " File \"\", line 2, in \n", + " from torchtext.datasets import Multi30k\n", + " File \"/usr/local/lib/python3.11/dist-packages/torchtext/__init__.py\", line 3, in \n", + " from torch.hub import _get_torch_home\n", + " File \"/usr/local/lib/python3.11/dist-packages/torch/__init__.py\", line 1471, in \n", + " from .functional import * # noqa: F403\n", + " File \"/usr/local/lib/python3.11/dist-packages/torch/functional.py\", line 9, in \n", + " import torch.nn.functional as F\n", + " File \"/usr/local/lib/python3.11/dist-packages/torch/nn/__init__.py\", line 1, in \n", + " from .modules import * # noqa: F403\n", + " File \"/usr/local/lib/python3.11/dist-packages/torch/nn/modules/__init__.py\", line 35, in \n", + " from .transformer import TransformerEncoder, TransformerDecoder, \\\n", + " File \"/usr/local/lib/python3.11/dist-packages/torch/nn/modules/transformer.py\", line 20, in \n", + " device: torch.device = torch.device(torch._C._get_default_device()), # torch.device('cpu'),\n", + "/usr/local/lib/python3.11/dist-packages/torch/nn/modules/transformer.py:20: UserWarning: Failed to initialize NumPy: _ARRAY_API not found (Triggered internally at ../torch/csrc/utils/tensor_numpy.cpp:84.)\n", + " device: torch.device = torch.device(torch._C._get_default_device()), # torch.device('cpu'),\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Token Transform:\n", + "{'de': functools.partial(, spacy=), 'en': functools.partial(, spacy=)}\n", + "Vocab Transform:\n", + "{'de': Vocab(), 'en': Vocab()}\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "#트랜스포머 모델 구성\n", + "import math\n", + "import torch\n", + "from torch import nn\n", + "\n", + "class PositionalEncoding(nn.Module):\n", + " def __init__(self, d_model, max_len, dropout=0.1):\n", + " super().__init__()\n", + " self.dropout=nn.Dropout(p=dropout)\n", + "\n", + " position=torch.arange(max_len).unsqueeze(1)\n", + " div_term=torch.exp(\n", + " torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model)\n", + " )\n", + "\n", + " pe=torch.zeros(max_len, 1, d_model)\n", + " pe[:, 0, 0::2]=torch.sin(position * div_term)\n", + " pe[:, 0, 1::2]=torch.cos(position * div_term)\n", + " self.register_buffer(\"pe\", pe)\n", + "\n", + " def forward(self, x):\n", + " x=x + self.pe[: x.size(0)]\n", + " return self.dropout(x)\n", + "\n", + "class TokenEmbedding(nn.Module):\n", + " def __init__(self, vocab_size, emb_size):\n", + " super().__init__()\n", + " self.embedding=nn.Embedding(vocab_size, emb_size)\n", + " self.emb_size=emb_size\n", + "\n", + " def forward(self, tokens):\n", + " return self.embedding(tokens.long()) * math.sqrt(self.emb_size)\n", + "\n", + "class Seq2SeqTransformer(nn.Module):\n", + " def __init__(\n", + " self,\n", + " num_encoder_layers,\n", + " num_decoder_layers,\n", + " emb_size,\n", + " max_len,\n", + " nhead,\n", + " src_vocab_size,\n", + " tgt_vocab_size,\n", + " dim_feedforward,\n", + " dropout=0.1,\n", + " ):\n", + " super().__init__()\n", + " self.src_tok_emb=TokenEmbedding(src_vocab_size, emb_size)\n", + " self.tgt_tok_emb=TokenEmbedding(tgt_vocab_size, emb_size)\n", + " self.positional_encoding=PositionalEncoding(\n", + " d_model=emb_size, max_len=max_len, dropout=dropout\n", + " )\n", + " self.transformer=nn.Transformer(\n", + " d_model=emb_size,\n", + " nhead=nhead,\n", + " num_encoder_layers=num_encoder_layers,\n", + " num_decoder_layers=num_decoder_layers,\n", + " dim_feedforward=dim_feedforward,\n", + " dropout=dropout,\n", + " )\n", + " self.generator=nn.Linear(emb_size, tgt_vocab_size)\n", + "\n", + " def forward(\n", + " self,\n", + " src,\n", + " trg,\n", + " src_mask,\n", + " tgt_mask,\n", + " src_padding_mask,\n", + " tgt_padding_mask,\n", + " memory_key_padding_mask,\n", + " ):\n", + " src_emb=self.positional_encoding(self.src_tok_emb(src))\n", + " tgt_emb=self.positional_encoding(self.tgt_tok_emb(trg))\n", + " outs=self.transformer(\n", + " src=src_emb,\n", + " tgt=tgt_emb,\n", + " src_mask=src_mask,\n", + " tgt_mask=tgt_mask,\n", + " memory_mask=None,\n", + " src_key_padding_mask=src_padding_mask,\n", + " tgt_key_padding_mask=tgt_padding_mask,\n", + " memory_key_padding_mask=memory_key_padding_mask,\n", + " )\n", + " return self.generator(outs)\n", + "\n", + " def encode(self, src, src_mask):\n", + " return self.transformer.encoder(\n", + " self.positional_encoding(self.src_tok_emb(src)), src_mask\n", + " )\n", + "\n", + " def decode(self, tgt, memory, tgt_mask):\n", + " return self.transformer.decoder(\n", + " self.positional_encoding(self.tgt_tok_emb(tgt)), memory, tgt_mask\n", + " )" + ], + "metadata": { + "id": "o_kLlHYAJZD5" + }, + "execution_count": 2, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "#트랜스포머 클래스\n", + "#transformer=torch.nn.Transformer(\n", + "# d_model=512,\n", + "# nhead=8,\n", + "# num_encoder_layers=6,\n", + "# num_decoder_layers=6,\n", + "# dim_feedforward=2048,\n", + "# dropout=0.1,\n", + "# activation=torch.nn.functional.relu,\n", + "# layer_norm_eps=1e-05,\n", + "#)" + ], + "metadata": { + "id": "lQ67VUNlRlLx" + }, + "execution_count": 3, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "#트랜스포머 순방향 메서드\n", + "#output=transformer.forward(\n", + "# src,\n", + "# tgt,\n", + "# src_mask=None,\n", + "# tgt_mask=None,\n", + "# memory_mask=None,\n", + "# src_key_padding_mask=None,\n", + "# tgt_key_padding_mask=None,\n", + "# memory_key_padding_mask=None,\n", + "#)" + ], + "metadata": { + "id": "DAFmeLBOSkMe" + }, + "execution_count": 4, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "#트랜스포머 모델 구조\n", + "from torch import optim\n", + "\n", + "BATCH_SIZE=128\n", + "DEVICE=\"cuda\" if torch.cuda.is_available() else \"cpu\"\n", + "\n", + "model=Seq2SeqTransformer(\n", + " num_encoder_layers=3,\n", + " num_decoder_layers=3,\n", + " emb_size=512,\n", + " max_len=512,\n", + " nhead=8,\n", + " src_vocab_size=len(vocab_transform[SRC_LANGUAGE]),\n", + " tgt_vocab_size=len(vocab_transform[TGT_LANGUAGE]),\n", + " dim_feedforward=512,\n", + ").to(DEVICE)\n", + "criterion=nn.CrossEntropyLoss(ignore_index=PAD_IDX).to(DEVICE)\n", + "optimizer=optim.Adam(model.parameters())\n", + "\n", + "for main_name, main_module in model.named_children():\n", + " print(main_name)\n", + " for sub_name, sub_module in main_module.named_children():\n", + " print(\"L\", sub_name)\n", + " for ssub_name, ssub_module in sub_module.named_children():\n", + " print(\"| L\", ssub_name)\n", + " for sssub_name, sssub_module in ssub_module.named_children():\n", + " print(\"| | L\", sssub_name)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "omnRjLHJTmq4", + "outputId": "f2ae5e44-e89a-40f0-8630-8378c32b8bac" + }, + "execution_count": 5, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.11/dist-packages/torch/nn/modules/transformer.py:286: UserWarning: enable_nested_tensor is True, but self.use_nested_tensor is False because encoder_layer.self_attn.batch_first was not True(use batch_first for better inference performance)\n", + " warnings.warn(f\"enable_nested_tensor is True, but self.use_nested_tensor is False because {why_not_sparsity_fast_path}\")\n" + ] + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "src_tok_emb\n", + "L embedding\n", + "tgt_tok_emb\n", + "L embedding\n", + "positional_encoding\n", + "L dropout\n", + "transformer\n", + "L encoder\n", + "| L layers\n", + "| | L 0\n", + "| | L 1\n", + "| | L 2\n", + "| L norm\n", + "L decoder\n", + "| L layers\n", + "| | L 0\n", + "| | L 1\n", + "| | L 2\n", + "| L norm\n", + "generator\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "#배치 데이터 생성\n", + "from torch.utils.data import DataLoader\n", + "from torch.nn.utils.rnn import pad_sequence\n", + "\n", + "def sequential_transforms(*transforms):\n", + " def func(txt_input):\n", + " for transform in transforms:\n", + " txt_input=transform(txt_input)\n", + " return txt_input\n", + " return func\n", + "\n", + "def input_transform(token_ids):\n", + " return torch.cat(\n", + " (torch.tensor([BOS_IDX]), torch.tensor(token_ids), torch.tensor([EOS_IDX]))\n", + " )\n", + "\n", + "def collator(batch):\n", + " src_batch, tgt_batch=[], []\n", + " for src_sample, tgt_sample in batch:\n", + " src_batch.append(text_transform[SRC_LANGUAGE](src_sample.rstrip(\"\\n\")))\n", + " tgt_batch.append(text_transform[TGT_LANGUAGE](tgt_sample.rstrip(\"\\n\")))\n", + "\n", + " src_batch=pad_sequence(src_batch, padding_value=PAD_IDX)\n", + " tgt_batch=pad_sequence(tgt_batch, padding_value=PAD_IDX)\n", + " return src_batch, tgt_batch\n", + "\n", + "text_transform={}\n", + "for language in [SRC_LANGUAGE, TGT_LANGUAGE]:\n", + " text_transform[language]=sequential_transforms(\n", + " token_transform[language], vocab_transform[language], input_transform\n", + " )\n", + "\n", + "data_iter=Multi30k(split=\"valid\", language_pair=(SRC_LANGUAGE, TGT_LANGUAGE))\n", + "dataloader=DataLoader(data_iter, batch_size=BATCH_SIZE, collate_fn=collator)\n", + "source_tensor, target_tensor=next(iter(dataloader))\n", + "\n", + "print(\"(source, target):\")\n", + "print(next(iter(data_iter)))\n", + "\n", + "print(\"source_batch:\", source_tensor.shape)\n", + "print(source_tensor)\n", + "\n", + "print(\"target_batch:\", target_tensor.shape)\n", + "print(target_tensor)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "YWxod3OkUXsc", + "outputId": "50dd3bd8-4f3d-48b8-cbd8-be94550f8dfc" + }, + "execution_count": 6, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "(source, target):\n", + "('Eine Gruppe von Männern lädt Baumwolle auf einen Lastwagen', 'A group of men are loading cotton onto a truck')\n", + "source_batch: torch.Size([35, 128])\n", + "tensor([[ 2, 2, 2, ..., 2, 2, 2],\n", + " [ 14, 5, 5, ..., 5, 21, 5],\n", + " [ 38, 12, 35, ..., 12, 1750, 69],\n", + " ...,\n", + " [ 1, 1, 1, ..., 1, 1, 1],\n", + " [ 1, 1, 1, ..., 1, 1, 1],\n", + " [ 1, 1, 1, ..., 1, 1, 1]])\n", + "target_batch: torch.Size([30, 128])\n", + "tensor([[ 2, 2, 2, ..., 2, 2, 2],\n", + " [ 6, 6, 6, ..., 250, 19, 6],\n", + " [ 39, 12, 35, ..., 12, 3254, 61],\n", + " ...,\n", + " [ 1, 1, 1, ..., 1, 1, 1],\n", + " [ 1, 1, 1, ..., 1, 1, 1],\n", + " [ 1, 1, 1, ..., 1, 1, 1]])\n" + ] + }, + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.11/dist-packages/torch/utils/data/datapipes/iter/combining.py:337: UserWarning: Some child DataPipes are not exhausted when __iter__ is called. We are resetting the buffer and each child DataPipe will read from the start again.\n", + " warnings.warn(\"Some child DataPipes are not exhausted when __iter__ is called. We are resetting \"\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "#어텐션 마스크 생성\n", + "def generate_square_subsequent_mask(s):\n", + " mask=(torch.triu(torch.ones((s, s), device=DEVICE))==1).transpose(0, 1)\n", + " mask=(\n", + " mask.float()\n", + " .masked_fill(mask==0, float(\"-inf\"))\n", + " .masked_fill(mask==1, float(0.0))\n", + " )\n", + " return mask\n", + "\n", + "def create_mask(src, tgt):\n", + " src_seq_len=src.shape[0]\n", + " tgt_seq_len=tgt.shape[0]\n", + "\n", + " tgt_mask=generate_square_subsequent_mask(tgt_seq_len)\n", + " src_mask=torch.zeros((src_seq_len, src_seq_len), device=DEVICE).type(torch.bool)\n", + "\n", + " src_padding_mask=(src==PAD_IDX).transpose(0, 1)\n", + " tgt_padding_mask=(tgt==PAD_IDX).transpose(0, 1)\n", + " return src_mask, tgt_mask, src_padding_mask, tgt_padding_mask\n", + "\n", + "target_input=target_tensor[:-1, :]\n", + "target_out=target_tensor[1:, :]\n", + "\n", + "source_mask, target_mask, source_padding_mask, target_padding_mask=create_mask(\n", + " source_tensor, target_input\n", + ")\n", + "\n", + "print(\"source_mask:\", source_mask.shape)\n", + "print(source_mask)\n", + "print(\"target_mask:\", target_mask.shape)\n", + "print(target_mask)\n", + "print(\"source_padding_mask:\", source_padding_mask.shape)\n", + "print(source_padding_mask)\n", + "print(\"target_padding_mask:\", target_padding_mask.shape)\n", + "print(target_padding_mask)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "92n_LBnvWzKs", + "outputId": "286a28b2-dd2d-4ca3-fa26-260bd8674922" + }, + "execution_count": 7, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "source_mask: torch.Size([35, 35])\n", + "tensor([[False, False, False, ..., False, False, False],\n", + " [False, False, False, ..., False, False, False],\n", + " [False, False, False, ..., False, False, False],\n", + " ...,\n", + " [False, False, False, ..., False, False, False],\n", + " [False, False, False, ..., False, False, False],\n", + " [False, False, False, ..., False, False, False]])\n", + "target_mask: torch.Size([29, 29])\n", + "tensor([[0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf,\n", + " -inf, -inf, -inf, -inf, -inf],\n", + " [0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf,\n", + " -inf, -inf, -inf, -inf, -inf],\n", + " [0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf,\n", + " -inf, -inf, -inf, -inf, -inf],\n", + " [0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf,\n", + " -inf, -inf, -inf, -inf, -inf],\n", + " [0., 0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf,\n", + " -inf, -inf, -inf, -inf, -inf],\n", + " [0., 0., 0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf,\n", + " -inf, -inf, -inf, -inf, -inf],\n", + " [0., 0., 0., 0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf,\n", + " -inf, -inf, -inf, -inf, -inf],\n", + " [0., 0., 0., 0., 0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf,\n", + " -inf, -inf, -inf, -inf, -inf],\n", + " [0., 0., 0., 0., 0., 0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf,\n", + " -inf, -inf, -inf, -inf, -inf],\n", + " [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf,\n", + " -inf, -inf, -inf, -inf, -inf],\n", + " [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf,\n", + " -inf, -inf, -inf, -inf, -inf],\n", + " [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf,\n", + " -inf, -inf, -inf, -inf, -inf],\n", + " [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf,\n", + " -inf, -inf, -inf, -inf, -inf],\n", + " [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf,\n", + " -inf, -inf, -inf, -inf, -inf],\n", + " [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf,\n", + " -inf, -inf, -inf, -inf, -inf],\n", + " [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf,\n", + " -inf, -inf, -inf, -inf, -inf],\n", + " [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf,\n", + " -inf, -inf, -inf, -inf, -inf],\n", + " [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf,\n", + " -inf, -inf, -inf, -inf, -inf],\n", + " [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf,\n", + " -inf, -inf, -inf, -inf, -inf],\n", + " [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -inf, -inf, -inf, -inf,\n", + " -inf, -inf, -inf, -inf, -inf],\n", + " [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -inf, -inf, -inf,\n", + " -inf, -inf, -inf, -inf, -inf],\n", + " [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -inf, -inf,\n", + " -inf, -inf, -inf, -inf, -inf],\n", + " [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -inf,\n", + " -inf, -inf, -inf, -inf, -inf],\n", + " [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " -inf, -inf, -inf, -inf, -inf],\n", + " [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., -inf, -inf, -inf, -inf],\n", + " [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., -inf, -inf, -inf],\n", + " [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., -inf, -inf],\n", + " [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., -inf],\n", + " [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,\n", + " 0., 0., 0., 0., 0.]])\n", + "source_padding_mask: torch.Size([128, 35])\n", + "tensor([[False, False, False, ..., True, True, True],\n", + " [False, False, False, ..., True, True, True],\n", + " [False, False, False, ..., True, True, True],\n", + " ...,\n", + " [False, False, False, ..., True, True, True],\n", + " [False, False, False, ..., True, True, True],\n", + " [False, False, False, ..., True, True, True]])\n", + "target_padding_mask: torch.Size([128, 29])\n", + "tensor([[False, False, False, ..., True, True, True],\n", + " [False, False, False, ..., True, True, True],\n", + " [False, False, False, ..., True, True, True],\n", + " ...,\n", + " [False, False, False, ..., True, True, True],\n", + " [False, False, False, ..., True, True, True],\n", + " [False, False, False, ..., True, True, True]])\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "#모델 학습 및 평가\n", + "'''\n", + "def run(model, optimizer, criterion, split):\n", + " model.train() if split==\"train\" else model.eval()\n", + " data_iter=Multi30k(split=split, language_pair=(SRC_LANGUAGE, TGT_LANGUAGE))\n", + " dataloader=DataLoader(data_iter, batch_size=BATCH_SIZE, collate_fn=collator)\n", + "\n", + " losses=0\n", + " for source_batch, target_batch in dataloader:\n", + " source_batch=source_batch.to(DEVICE)\n", + " target_batch=target_batch.to(DEVICE)\n", + "\n", + " target_input=target_batch[:-1, :]\n", + " target_output=target_batch[1:, :]\n", + "\n", + " src_mask, tgt_mask, src_padding_mask, tgt_padding_mask=create_mask(\n", + " source_batch, target_input\n", + " )\n", + "\n", + " logits=model(\n", + " src=source_batch,\n", + " trg=target_input,\n", + " src_mask=src_mask,\n", + " tgt_mask=tgt_mask,\n", + " src_padding_mask=src_padding_mask,\n", + " tgt_padding_mask=tgt_padding_mask,\n", + " memory_key_padding_mask=src_padding_mask,\n", + " )\n", + "\n", + " optimizer.zero_grad()\n", + " loss=criterion(logits.reshape(-1, logits.shape[-1]), target_output.reshape(-1))\n", + " if split==\"train\":\n", + " loss.backward()\n", + " optimizer.step()\n", + " losses += loss.item()\n", + "\n", + " return losses / len(list(dataloader))\n", + "\n", + "for epoch in range(5):\n", + " train_loss=run(model, optimizer, criterion, \"train\")\n", + " valid_loss=run(model, optimizer, criterion, \"valid\")\n", + " print(f\"Epoch: {epoch+1}, Train loss: {train_loss:.3f}, Valid loss: {valid_loss:.3f}\")\n", + "'''" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 123 + }, + "id": "C7_ssU4bYycr", + "outputId": "ba4936f0-461e-4f95-e5cd-2ee26d116cf0" + }, + "execution_count": 9, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "'\\ndef run(model, optimizer, criterion, split):\\n model.train() if split==\"train\" else model.eval()\\n data_iter=Multi30k(split=split, language_pair=(SRC_LANGUAGE, TGT_LANGUAGE))\\n dataloader=DataLoader(data_iter, batch_size=BATCH_SIZE, collate_fn=collator)\\n\\n losses=0\\n for source_batch, target_batch in dataloader:\\n source_batch=source_batch.to(DEVICE)\\n target_batch=target_batch.to(DEVICE)\\n\\n target_input=target_batch[:-1, :]\\n target_output=target_batch[1:, :]\\n\\n src_mask, tgt_mask, src_padding_mask, tgt_padding_mask=create_mask(\\n source_batch, target_input\\n )\\n\\n logits=model(\\n src=source_batch,\\n trg=target_input,\\n src_mask=src_mask,\\n tgt_mask=tgt_mask,\\n src_padding_mask=src_padding_mask,\\n tgt_padding_mask=tgt_padding_mask,\\n memory_key_padding_mask=src_padding_mask,\\n )\\n\\n optimizer.zero_grad()\\n loss=criterion(logits.reshape(-1, logits.shape[-1]), target_output.reshape(-1))\\n if split==\"train\":\\n loss.backward()\\n optimizer.step()\\n losses += loss.item()\\n\\n return losses / len(list(dataloader))\\n\\nfor epoch in range(5):\\n train_loss=run(model, optimizer, criterion, \"train\")\\n valid_loss=run(model, optimizer, criterion, \"valid\")\\n print(f\"Epoch: {epoch+1}, Train loss: {train_loss:.3f}, Valid loss: {valid_loss:.3f}\")\\n'" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" + } + }, + "metadata": {}, + "execution_count": 9 + } + ] + }, + { + "cell_type": "code", + "source": [ + "#트랜스포머 모델 번역 결과\n", + "'''\n", + "def greedy_decode(model, source_tensor, source_mask, max_len, start_symbol):\n", + " source_tensor=source_tensor.to(DEVICE)\n", + " source_mask=source_mask.to(DEVICE)\n", + "\n", + " memory=model.encode(source_tensor, source_mask)\n", + " ys=torch.ones(1, 1).fill_(start_symbol).type(torch.long).to(DEVICE)\n", + " for i in range(max_len - 1):\n", + " memory=memory.to(DEVICE)\n", + " target_mask=generate_square_subsequent_mask(ys.size(0))\n", + " target_mask=target_mask.type(torch.bool).to(DEVICE)\n", + "\n", + " out=model.decode(ys, memory, target_mask)\n", + " out=out.transpose(0, 1)\n", + " prob=model.generator(out[:, -1])\n", + " _, next_word=torch.max(prob, dim=1)\n", + " next_word=next_word.item()\n", + "\n", + " ys=torch.cat(\n", + " [ys, torch.ones(1, 1).type_as(source_tensor.data).fill_(next_word)], dim=0\n", + " )\n", + " if next_word==EOS_IDX:\n", + " break\n", + " return ys\n", + "\n", + "def translate(model, source_sentence):\n", + " model.eval()\n", + " source_tensor=text_transform[SRC_LANGUAGE](source_sentence).view(-1, 1)\n", + " num_tokens=source_tensor.shape[0]\n", + " src_mask=(torch.zeros(num_tokens, num_tokens)).type(torch.bool)\n", + " tgt_tokens=greedy_decode(\n", + " model, source_tensor, src_mask, max_len=num_tokens + 5, start_symbol=BOS_IDX\n", + " ).flatten()\n", + " output=vocab_transform[TGT_LANGUAGE].lookup_tokens(list(tgt_tokens.cpu().numpy()))[1:-1]\n", + " return \" \".join(output)\n", + "\n", + "output_oov=translate(model, \"Eine Gruppe von Menschen steht vor einem Iglu .\")\n", + "output=translate(model, \"Eine Gruppe von Menschen steht vor einem Gebäude .\")\n", + "print(output_oov)\n", + "print(output)\n", + "'''" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 123 + }, + "id": "IBEFEM3Ka-IV", + "outputId": "ca87f515-d44d-41c5-c6d9-7715c3d86151" + }, + "execution_count": 10, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "'\\ndef greedy_decode(model, source_tensor, source_mask, max_len, start_symbol):\\n source_tensor=source_tensor.to(DEVICE)\\n source_mask=source_mask.to(DEVICE)\\n\\n memory=model.encode(source_tensor, source_mask)\\n ys=torch.ones(1, 1).fill_(start_symbol).type(torch.long).to(DEVICE)\\n for i in range(max_len - 1):\\n memory=memory.to(DEVICE)\\n target_mask=generate_square_subsequent_mask(ys.size(0))\\n target_mask=target_mask.type(torch.bool).to(DEVICE)\\n \\n out=model.decode(ys, memory, target_mask)\\n out=out.transpose(0, 1)\\n prob=model.generator(out[:, -1])\\n _, next_word=torch.max(prob, dim=1)\\n next_word=next_word.item()\\n\\n ys=torch.cat(\\n [ys, torch.ones(1, 1).type_as(source_tensor.data).fill_(next_word)], dim=0\\n )\\n if next_word==EOS_IDX:\\n break\\n return ys\\n\\ndef translate(model, source_sentence):\\n model.eval()\\n source_tensor=text_transform[SRC_LANGUAGE](source_sentence).view(-1, 1)\\n num_tokens=source_tensor.shape[0]\\n src_mask=(torch.zeros(num_tokens, num_tokens)).type(torch.bool)\\n tgt_tokens=greedy_decode(\\n model, source_tensor, src_mask, max_len=num_tokens + 5, start_symbol=BOS_IDX\\n ).flatten()\\n output=vocab_transform[TGT_LANGUAGE].lookup_tokens(list(tgt_tokens.cpu().numpy()))[1:-1]\\n return \" \".join(output)\\n\\noutput_oov=translate(model, \"Eine Gruppe von Menschen steht vor einem Iglu .\")\\noutput=translate(model, \"Eine Gruppe von Menschen steht vor einem Gebäude .\")\\nprint(output_oov)\\nprint(output)\\n'" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" + } + }, + "metadata": {}, + "execution_count": 10 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "**GPT**" + ], + "metadata": { + "id": "CPVbpmVZb5oG" + } + }, + { + "cell_type": "code", + "source": [ + "!pip uninstall transformers -y\n", + "!pip uninstall torchao -y\n", + "!pip uninstall accelerate -y\n", + "!pip install transformers==4.38.2" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 791 + }, + "id": "ECNs9EyciqfQ", + "outputId": "20752d40-0f48-471b-b2fd-068dde63ac62" + }, + "execution_count": 2, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Found existing installation: transformers 4.52.3\n", + "Uninstalling transformers-4.52.3:\n", + " Successfully uninstalled transformers-4.52.3\n", + "\u001b[33mWARNING: Skipping torchao as it is not installed.\u001b[0m\u001b[33m\n", + "\u001b[0m\u001b[33mWARNING: Skipping accelerate as it is not installed.\u001b[0m\u001b[33m\n", + "\u001b[0mCollecting transformers==4.38.2\n", + " Downloading transformers-4.38.2-py3-none-any.whl.metadata (130 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m130.7/130.7 kB\u001b[0m \u001b[31m3.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: filelock in /usr/local/lib/python3.11/dist-packages (from transformers==4.38.2) (3.18.0)\n", + "Requirement already satisfied: huggingface-hub<1.0,>=0.19.3 in /usr/local/lib/python3.11/dist-packages (from transformers==4.38.2) (0.31.2)\n", + "Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.11/dist-packages (from transformers==4.38.2) (2.0.2)\n", + "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.11/dist-packages (from transformers==4.38.2) (24.2)\n", + "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.11/dist-packages (from transformers==4.38.2) (6.0.2)\n", + "Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.11/dist-packages (from transformers==4.38.2) (2024.11.6)\n", + "Requirement already satisfied: requests in /usr/local/lib/python3.11/dist-packages (from transformers==4.38.2) (2.32.3)\n", + "Collecting tokenizers<0.19,>=0.14 (from transformers==4.38.2)\n", + " Downloading tokenizers-0.15.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (6.7 kB)\n", + "Requirement already satisfied: safetensors>=0.4.1 in /usr/local/lib/python3.11/dist-packages (from transformers==4.38.2) (0.5.3)\n", + "Requirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.11/dist-packages (from transformers==4.38.2) (4.67.1)\n", + "Requirement already satisfied: fsspec>=2023.5.0 in /usr/local/lib/python3.11/dist-packages (from huggingface-hub<1.0,>=0.19.3->transformers==4.38.2) (2025.3.2)\n", + "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.11/dist-packages (from huggingface-hub<1.0,>=0.19.3->transformers==4.38.2) (4.13.2)\n", + "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.11/dist-packages (from requests->transformers==4.38.2) (3.4.2)\n", + "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.11/dist-packages (from requests->transformers==4.38.2) (3.10)\n", + "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.11/dist-packages (from requests->transformers==4.38.2) (2.4.0)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.11/dist-packages (from requests->transformers==4.38.2) (2025.4.26)\n", + "Downloading transformers-4.38.2-py3-none-any.whl (8.5 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m8.5/8.5 MB\u001b[0m \u001b[31m63.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hDownloading tokenizers-0.15.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.6 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.6/3.6 MB\u001b[0m \u001b[31m85.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hInstalling collected packages: tokenizers, transformers\n", + " Attempting uninstall: tokenizers\n", + " Found existing installation: tokenizers 0.21.1\n", + " Uninstalling tokenizers-0.21.1:\n", + " Successfully uninstalled tokenizers-0.21.1\n", + "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n", + "peft 0.15.2 requires accelerate>=0.21.0, which is not installed.\n", + "sentence-transformers 4.1.0 requires transformers<5.0.0,>=4.41.0, but you have transformers 4.38.2 which is incompatible.\n", + "torchtune 0.6.1 requires torchdata==0.11.0, but you have torchdata 0.7.1 which is incompatible.\u001b[0m\u001b[31m\n", + "\u001b[0mSuccessfully installed tokenizers-0.15.2 transformers-4.38.2\n" + ] + }, + { + "output_type": "display_data", + "data": { + "application/vnd.colab-display-data+json": { + "pip_warning": { + "packages": [ + "transformers" + ] + }, + "id": "f0e8f4b8126d467a890d0f8a4c9d3f55" + } + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "#문장 생성을 위한 GPT-2 모델의 구조\n", + "from transformers import GPT2LMHeadModel\n", + "\n", + "model=GPT2LMHeadModel.from_pretrained(pretrained_model_name_or_path=\"gpt2\")\n", + "\n", + "for main_name, main_module in model.named_children():\n", + " print(main_name)\n", + " for sub_name, sub_module in main_module.named_children():\n", + " print(\"L\", sub_name)\n", + " for ssub_name, ssub_module in sub_module.named_children():\n", + " print(\"| L\", ssub_name)\n", + " for sssub_name, sssub_module in ssub_module.named_children():\n", + " print(\"| | L\", sssub_name)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000, + "referenced_widgets": [ + "e737566dd38d46ab9a9ef1536f5d05aa", + "1a0e342718814cca94c1b012a913b5cb", + "92030f5fc71e411c88dbe59fde8a8943", + "27ff19d5432d406d95570656be644317", + "b5daf02a1cd94b0aa36e90619011c242", + "32d954eaa6f64d26876acff25f3cad7e", + "02da3c36eea648209ebf3a3ff3f5b663", + "37fbc1a3e5d344359599dac23c66c100", + "197bb669140543638089a414068c26f8", + "0c01df79d1fc4fdc949f895a02f51b51", + "6a8796241b4e4e95ac1cc4c3c37eef42", + "fa374ff8b9654558aaac536e6b1080b6", + "2796fa85c834469ca893bf1cc6c9267f", + "3adea502b9ce4440a4d1368c30b723a8", + "782dcc37e6cf4a40852955dba44cce86", + "0c1e4d3b2633458f87f6c89f8d8241c3", + "ef4503c9475047bfb41215cfbb9e58d8", + "5b63f473766a4f34ac4a9c433b89b00f", + "24f21c8c117840cf8b4771f03d4bfe4e", + "595ab61151fa4ad490d27c1cf80b76c8", + "86203ca640604c45896e54528289953f", + "6766bdc5fa6c4741a6ba4d8e958c625b", + "b59c28e374f8440cb92b6be3f700daaa", + "ce63c96a73ce4f43aa5ac20f3897ed6a", + "c4cc797911f94208b6be8caed9479755", + "4e6f54a6942946fcb2ef20a34a162d63", + "633a97c65c374a49b0aefe326a00c32f", + "991c897bdd4e47d98469121f14acce5a", + "b5238fc40bbc4b6392ce14bda84e1fa6", + "3f97c2dac5894369be88de9a7f22ddc1", + "04455aa7edb64e3093fc2c029b17af6c", + "d9678ea535104a10be6abcb5c1e17dcd", + "4be5388615a0484caa89d191779cb0d5" + ] + }, + "id": "4TXAf-XIeeUy", + "outputId": "21b17e58-b90c-4159-9e52-472f50022f61" + }, + "execution_count": 1, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "\n", + "A module that was compiled using NumPy 1.x cannot be run in\n", + "NumPy 2.0.2 as it may crash. To support both 1.x and 2.x\n", + "versions of NumPy, modules must be compiled with NumPy 2.0.\n", + "Some module may need to rebuild instead e.g. with 'pybind11>=2.12'.\n", + "\n", + "If you are a user of the module, the easiest solution will be to\n", + "downgrade to 'numpy<2' or try to upgrade the affected module.\n", + "We expect that some modules will need time to support NumPy 2.\n", + "\n", + "Traceback (most recent call last): File \"\", line 198, in _run_module_as_main\n", + " File \"\", line 88, in _run_code\n", + " File \"/usr/local/lib/python3.11/dist-packages/colab_kernel_launcher.py\", line 37, in \n", + " ColabKernelApp.launch_instance()\n", + " File \"/usr/local/lib/python3.11/dist-packages/traitlets/config/application.py\", line 992, in launch_instance\n", + " app.start()\n", + " File \"/usr/local/lib/python3.11/dist-packages/ipykernel/kernelapp.py\", line 712, in start\n", + " self.io_loop.start()\n", + " File \"/usr/local/lib/python3.11/dist-packages/tornado/platform/asyncio.py\", line 205, in start\n", + " self.asyncio_loop.run_forever()\n", + " File \"/usr/lib/python3.11/asyncio/base_events.py\", line 608, in run_forever\n", + " self._run_once()\n", + " File \"/usr/lib/python3.11/asyncio/base_events.py\", line 1936, in _run_once\n", + " handle._run()\n", + " File \"/usr/lib/python3.11/asyncio/events.py\", line 84, in _run\n", + " self._context.run(self._callback, *self._args)\n", + " File \"/usr/local/lib/python3.11/dist-packages/ipykernel/kernelbase.py\", line 510, in dispatch_queue\n", + " await self.process_one()\n", + " File \"/usr/local/lib/python3.11/dist-packages/ipykernel/kernelbase.py\", line 499, in process_one\n", + " await dispatch(*args)\n", + " File \"/usr/local/lib/python3.11/dist-packages/ipykernel/kernelbase.py\", line 406, in dispatch_shell\n", + " await result\n", + " File \"/usr/local/lib/python3.11/dist-packages/ipykernel/kernelbase.py\", line 730, in execute_request\n", + " reply_content = await reply_content\n", + " File \"/usr/local/lib/python3.11/dist-packages/ipykernel/ipkernel.py\", line 383, in do_execute\n", + " res = shell.run_cell(\n", + " File \"/usr/local/lib/python3.11/dist-packages/ipykernel/zmqshell.py\", line 528, in run_cell\n", + " return super().run_cell(*args, **kwargs)\n", + " File \"/usr/local/lib/python3.11/dist-packages/IPython/core/interactiveshell.py\", line 2975, in run_cell\n", + " result = self._run_cell(\n", + " File \"/usr/local/lib/python3.11/dist-packages/IPython/core/interactiveshell.py\", line 3030, in _run_cell\n", + " return runner(coro)\n", + " File \"/usr/local/lib/python3.11/dist-packages/IPython/core/async_helpers.py\", line 78, in _pseudo_sync_runner\n", + " coro.send(None)\n", + " File \"/usr/local/lib/python3.11/dist-packages/IPython/core/interactiveshell.py\", line 3257, in run_cell_async\n", + " has_raised = await self.run_ast_nodes(code_ast.body, cell_name,\n", + " File \"/usr/local/lib/python3.11/dist-packages/IPython/core/interactiveshell.py\", line 3473, in run_ast_nodes\n", + " if (await self.run_code(code, result, async_=asy)):\n", + " File \"/usr/local/lib/python3.11/dist-packages/IPython/core/interactiveshell.py\", line 3553, in run_code\n", + " exec(code_obj, self.user_global_ns, self.user_ns)\n", + " File \"\", line 2, in \n", + " from transformers import GPT2LMHeadModel\n", + " File \"/usr/local/lib/python3.11/dist-packages/transformers/__init__.py\", line 26, in \n", + " from . import dependency_versions_check\n", + " File \"/usr/local/lib/python3.11/dist-packages/transformers/dependency_versions_check.py\", line 16, in \n", + " from .utils.versions import require_version, require_version_core\n", + " File \"/usr/local/lib/python3.11/dist-packages/transformers/utils/__init__.py\", line 33, in \n", + " from .generic import (\n", + " File \"/usr/local/lib/python3.11/dist-packages/transformers/utils/generic.py\", line 442, in \n", + " import torch.utils._pytree as _torch_pytree\n", + " File \"/usr/local/lib/python3.11/dist-packages/torch/__init__.py\", line 1471, in \n", + " from .functional import * # noqa: F403\n", + " File \"/usr/local/lib/python3.11/dist-packages/torch/functional.py\", line 9, in \n", + " import torch.nn.functional as F\n", + " File \"/usr/local/lib/python3.11/dist-packages/torch/nn/__init__.py\", line 1, in \n", + " from .modules import * # noqa: F403\n", + " File \"/usr/local/lib/python3.11/dist-packages/torch/nn/modules/__init__.py\", line 35, in \n", + " from .transformer import TransformerEncoder, TransformerDecoder, \\\n", + " File \"/usr/local/lib/python3.11/dist-packages/torch/nn/modules/transformer.py\", line 20, in \n", + " device: torch.device = torch.device(torch._C._get_default_device()), # torch.device('cpu'),\n", + "/usr/local/lib/python3.11/dist-packages/torch/nn/modules/transformer.py:20: UserWarning: Failed to initialize NumPy: _ARRAY_API not found (Triggered internally at ../torch/csrc/utils/tensor_numpy.cpp:84.)\n", + " device: torch.device = torch.device(torch._C._get_default_device()), # torch.device('cpu'),\n", + "/usr/local/lib/python3.11/dist-packages/huggingface_hub/file_download.py:943: FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`.\n", + " warnings.warn(\n", + "/usr/local/lib/python3.11/dist-packages/huggingface_hub/utils/_auth.py:94: UserWarning: \n", + "The secret `HF_TOKEN` does not exist in your Colab secrets.\n", + "To authenticate with the Hugging Face Hub, create a token in your settings tab (https://huggingface.co/settings/tokens), set it as secret in your Google Colab and restart your session.\n", + "You will be able to reuse this secret in all of your notebooks.\n", + "Please note that authentication is recommended but still optional to access public models or datasets.\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "config.json: 0%| | 0.00/665 [00:00