You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: lang/en/docs/tutorials/materials/specific/passivation-surface-silicon-surface.md
+34-33Lines changed: 34 additions & 33 deletions
Original file line number
Diff line number
Diff line change
@@ -3,9 +3,9 @@
3
3
render_macros: true
4
4
---
5
5
6
-
# Passivation of Silicon (100) Surface
6
+
# Passivation of Silicon (100) Surface.
7
7
8
-
## Introduction
8
+
## Introduction.
9
9
10
10
This tutorial demonstrates how to passivate a reconstructed silicon (100) surface with hydrogen atoms, following the methodology described in the literature.
11
11
@@ -19,19 +19,19 @@ We will recreate the passivated surface structure shown in Fig. 8:
Navigate to [Materials Designer](../../../materials-designer/overview.md) and import the reconstructed Si(100) surface from [Standata](../../../materials-designer/header-menu/input-output/standata-import.md).
Select the "Advanced > [JupyterLite Transformation](../../../materials-designer/header-menu/advanced/jupyterlite-dialog.md)" menu item to launch the JupyterLite environment.
33
33
34
-
### 1.3. Open Modified `create_supercell.ipynb` Notebook
34
+
### 1.3. Open Modified `create_supercell.ipynb` Notebook.
35
35
36
36
Open `create_supercell.ipynb`, select input material as the Si(100) structure, and set the supercell parameters in 1.1.:
37
37
@@ -42,8 +42,8 @@ SUPERCELL_MATRIX = [
42
42
[0, 0, 1]
43
43
]
44
44
45
-
# or use the scaling factor
46
-
SCALING_FACTOR=None# [3, 3, 1]
45
+
# or use the scaling factor.
46
+
SCALING_FACTOR=None# [3, 3, 1].
47
47
```
48
48
49
49
Also add to the "Get input materials" cell the following code to adjust the Si atom position:
@@ -53,25 +53,26 @@ from utils.jupyterlite import get_materials
0 commit comments