Skip to content

Commit 7f25d6c

Browse files
committed
update: address pr comments
1 parent 5960e50 commit 7f25d6c

File tree

1 file changed

+34
-33
lines changed

1 file changed

+34
-33
lines changed

lang/en/docs/tutorials/materials/specific/passivation-surface-silicon-surface.md

Lines changed: 34 additions & 33 deletions
Original file line numberDiff line numberDiff line change
@@ -3,9 +3,9 @@
33
render_macros: true
44
---
55

6-
# Passivation of Silicon (100) Surface
6+
# Passivation of Silicon (100) Surface.
77

8-
## Introduction
8+
## Introduction.
99

1010
This tutorial demonstrates how to passivate a reconstructed silicon (100) surface with hydrogen atoms, following the methodology described in the literature.
1111

@@ -19,19 +19,19 @@ We will recreate the passivated surface structure shown in Fig. 8:
1919

2020
![Si(100) H-Passivated Surface](/images/tutorials/materials/passivation/passivation_surface_silicon/0-figure-from-manuscript.webp "H-Passivated Silicon (100)")
2121

22-
## 1. Adjust Silicon Surface Structure
22+
## 1. Obtain the Silicon (100) Surface Structure.
2323

24-
### 1.1. Load Base Material
24+
### 1.1. Load Base Material.
2525

2626
Navigate to [Materials Designer](../../../materials-designer/overview.md) and import the reconstructed Si(100) surface from [Standata](../../../materials-designer/header-menu/input-output/standata-import.md).
2727

2828
![Si(100) Structure](/images/tutorials/materials/passivation/passivation_surface_silicon/1-wave-original-material.webp "Si(100) Structure")
2929

30-
### 1.2. Launch JupyterLite Session
30+
### 1.2. Launch JupyterLite Session.
3131

3232
Select the "Advanced > [JupyterLite Transformation](../../../materials-designer/header-menu/advanced/jupyterlite-dialog.md)" menu item to launch the JupyterLite environment.
3333

34-
### 1.3. Open Modified `create_supercell.ipynb` Notebook
34+
### 1.3. Open Modified `create_supercell.ipynb` Notebook.
3535

3636
Open `create_supercell.ipynb`, select input material as the Si(100) structure, and set the supercell parameters in 1.1.:
3737

@@ -42,8 +42,8 @@ SUPERCELL_MATRIX = [
4242
[0, 0, 1]
4343
]
4444

45-
# or use the scaling factor
46-
SCALING_FACTOR = None # [3, 3, 1]
45+
# or use the scaling factor.
46+
SCALING_FACTOR = None # [3, 3, 1].
4747
```
4848

4949
Also add to the "Get input materials" cell the following code to adjust the Si atom position:
@@ -53,25 +53,26 @@ from utils.jupyterlite import get_materials
5353
materials = get_materials(globals())
5454
material = materials[0]
5555

56-
# Find and adjust Si atom coordinates
57-
si_atoms_coordinates = [coordinate.value for coordinate in material.basis.coordinates.to_array_of_values_with_ids()]
56+
# Find coordinates of the Si atoms, list in descending order, and change the 2nd one from the top
57+
si_atoms_coordinates = [coordinate for coordinate in slab.basis.coordinates.values]
5858
si_atoms_sorted = sorted(si_atoms_coordinates, key=lambda x: x[2], reverse=True)
5959
second_from_top_index = 1
6060
second_si_atom_coordinate = si_atoms_sorted[second_from_top_index]
6161

6262
print(f"Coordinates of the second Si atom: {second_si_atom_coordinate}")
63-
adjusted_coordinate = [coord + delta for coord, delta in zip(second_si_atom_coordinate, [0.025, 0, 0.025])]
63+
adjusted_coordinate = [
64+
coord + delta for coord, delta in zip(second_si_atom_coordinate, [0.025, 0, 0.025])
65+
]
6466
print(f"Adjusted coordinate: {adjusted_coordinate}")
65-
6667
new_coordinates = si_atoms_coordinates.copy()
67-
index_to_adjust = material.basis.coordinates.get_element_id_by_value(second_si_atom_coordinate)
68+
index_to_adjust = slab.basis.coordinates.get_element_id_by_value(second_si_atom_coordinate)
6869
new_coordinates[index_to_adjust] = adjusted_coordinate
69-
material.set_coordinates(new_coordinates)
70+
slab.set_coordinates(new_coordinates)
7071
```
7172

7273
![Supercell Parameters](/images/tutorials/materials/passivation/passivation_surface_silicon/2-jl-setup-nb-adjust.webp "Supercell Parameters Visualization")
7374

74-
### 1.4. Run Structure Adjustment
75+
### 1.4. Run Structure Adjustment.
7576

7677
Run the notebook using "Run > Run All Cells". This will:
7778

@@ -82,27 +83,27 @@ Run the notebook using "Run > Run All Cells". This will:
8283

8384
![Adjusted Structure](/images/tutorials/materials/passivation/passivation_surface_silicon/3-wave-adjusted-material.webp "Adjusted Si(100) Structure")
8485

85-
## 2. Passivate the Surface
86+
## 2. Passivate the Surface.
8687

87-
### 2.1. Open `passivate_slab.ipynb` Notebook
88+
### 2.1. Open `passivate_slab.ipynb` Notebook.
8889

8990
Find and open the `passivate_slab.ipynb` notebook to add hydrogen atoms to the surface.
9091

91-
### 2.2. Set Passivation Parameters
92+
### 2.2. Set Passivation Parameters.
9293

9394
Configure the following parameters for hydrogen passivation:
9495

9596
```python
96-
# Passivation parameters
97-
PASSIVANT = "H" # Chemical symbol for hydrogen
98-
BOND_LENGTH = 1.46 # Si-H bond length in Angstroms
99-
SURFACE = "top" # Passivate only the top surface
97+
# Passivation parameters.
98+
PASSIVANT = "H" # Chemical symbol for hydrogen.
99+
BOND_LENGTH = 1.46 # Si-H bond length in Angstroms.
100+
SURFACE = "top" # Passivate only the top surface.
100101

101-
# Surface detection parameters
102-
SHADOWING_RADIUS = 1.8 # In Angstroms
103-
DEPTH = 0.5 # In Angstroms
102+
# Surface detection parameters.
103+
SHADOWING_RADIUS = 1.8 # In Angstroms.
104+
DEPTH = 0.5 # In Angstroms.
104105

105-
# Visualization parameters
106+
# Visualization parameters.
106107
CELL_REPETITIONS_FOR_VISUALIZATION = [1, 1, 1]
107108
```
108109

@@ -115,7 +116,7 @@ Key parameters explained:
115116

116117
![Passivation Parameters](/images/tutorials/materials/passivation/passivation_surface_silicon/4-jl-setup-nb-passivate.webp "Passivation Parameters Visualization")
117118

118-
### 2.3. Run Passivation
119+
### 2.3. Run Passivation.
119120

120121
Run all cells in the notebook. The passivation process will:
121122

@@ -125,7 +126,7 @@ Run all cells in the notebook. The passivation process will:
125126

126127
![Passivated Structure](/images/tutorials/materials/passivation/passivation_surface_silicon/5-jl-result-preview.webp "H-Passivated Si(100) Structure")
127128

128-
## 3. Analyze Results
129+
## 3. Analyze Results.
129130

130131
After running both notebooks, examine the final structure:
131132

@@ -137,14 +138,14 @@ Check that:
137138

138139
![Final Structure](/images/tutorials/materials/passivation/passivation_surface_silicon/6-wave-result.webp "Final H-Passivated Si(100)")
139140

140-
## 4. Save Passivated Structure
141+
## 4. Save the Results.
141142

142143
The final structure will be automatically passed back to Materials Designer where you can:
143144
1. Save it in your workspace
144145
2. Export it in various formats
145146
3. Use it for further calculations
146147

147-
## Interactive JupyterLite Notebook
148+
## Interactive JupyterLite Notebook.
148149

149150
The following embedded notebook demonstrates the complete process. Select "Run" > "Run All Cells".
150151

@@ -156,7 +157,7 @@ The following embedded notebook demonstrates the complete process. Select "Run"
156157
{% endwith %}
157158
{% endwith %}
158159

159-
## Parameter Fine-tuning
160+
## Parameter Fine-tuning.
160161

161162
To adjust the passivation:
162163

@@ -171,14 +172,14 @@ To adjust the passivation:
171172
- Change `SURFACE` to passivate different surfaces
172173
- Change `PASSIVANT` to use different passivating species
173174

174-
## References
175+
## References.
175176

176177
1. Hansen, U., & Vogl, P. (1998). Hydrogen passivation of silicon surfaces: A classical molecular-dynamics study. Physical Review B, 57(20), 13295–13304.
177178

178179
2. Northrup, J. E. (1991). Structure of Si(100)H: Dependence on the H chemical potential. Physical Review B, 44(3), 1419–1422.
179180

180181
3. Boland, J. J. (1990). Structure of the H‐saturated Si(100) surface. Physical Review Letters, 65(26), 3325–3328.
181182

182-
## Tags
183+
## Tags.
183184

184185
`silicon`, `surface`, `passivation`, `hydrogen`, `Si(100)`, `surface reconstruction`, `Si`, `H`

0 commit comments

Comments
 (0)