-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path2V24M.py
248 lines (208 loc) · 9.24 KB
/
2V24M.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import os
from os import chdir
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis as QDA
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score, roc_curve, precision_recall_curve, classification_report
from seaborn import heatmap
training_file = r"C:\Users\ErikV\Desktop\VS Code\Coursework\BENG0095_T1\Dataset\diabetic_data_training.csv"
df_tr = pd.read_csv(training_file, header=0, na_values=['?'])
test_file = r"C:\Users\ErikV\Desktop\VS Code\Coursework\BENG0095_T1\Dataset\diabetic_data_test.csv"
df_test = pd.read_csv(test_file, header=0, na_values=['?'])
mv_admission_type_id = [5, 6, 8]
mv_discharge_disposition_id = [11, 18, 25, 26]
mv_admission_source_id = [9, 15, 17, 20, 21]
'''
# Replace "null-like" values with NaN
df_tr['admission_type_id'] = df_tr['admission_type_id'].replace(mv_admission_type_id, pd.NA)
df_tr['discharge_disposition_id'] = df_tr['discharge_disposition_id'].replace(mv_discharge_disposition_id, pd.NA)
df_tr['admission_source_id'] = df_tr['admission_source_id'].replace(mv_admission_source_id, pd.NA)
df_tr['admission_type_id'] = df_tr['admission_type_id'].fillna(6)
df_tr['discharge_disposition_id'] = df_tr['discharge_disposition_id'].fillna(18)
df_tr['admission_source_id'] = df_tr['admission_source_id'].fillna(17)
# Apply the same replacement for the test dataset
df_test['admission_type_id'] = df_test['admission_type_id'].fillna(6)
df_test['discharge_disposition_id'] = df_test['discharge_disposition_id'].fillna(18)
df_test['admission_source_id'] = df_test['admission_source_id'].fillna(17)
'''
'''
COLUMN DROP MODULE
'''
# Display missing value percentages
num = len(df_tr)
mis_percentage = (df_tr.isnull().sum()[df_tr.isnull().sum() > 0] / num) * 100
#print("Missing Value Percentages:\n", mis_percentage)
# Drop Unrelated && Highly Missing Columns
df_tr = df_tr.drop(['encounter_id', 'patient_nbr', 'payer_code'], axis='columns')
df_tr = df_tr.drop(['weight', 'medical_specialty', 'max_glu_serum', 'A1Cresult'], axis='columns')
df_test = df_test.drop(['encounter_id', 'patient_nbr', 'payer_code'], axis='columns')
df_test = df_test.drop(['weight', 'medical_specialty', 'max_glu_serum', 'A1Cresult'], axis='columns')
mis_percentage = (df_tr.isnull().sum()[df_tr.isnull().sum() > 0] / num) * 100
#print("Updated Missing Value Percentages:\n", mis_percentage)
'''
MEDICINE COLUMNS PROCESSING MODULE
'''
# Identify Medicine Columns
medicine_columns = [
'metformin', 'repaglinide', 'nateglinide', 'chlorpropamide', 'glimepiride',
'acetohexamide', 'glipizide', 'glyburide', 'tolbutamide', 'pioglitazone',
'rosiglitazone', 'acarbose', 'miglitol', 'troglitazone', 'tolazamide',
'examide', 'citoglipton', 'insulin', 'glyburide-metformin',
'glipizide-metformin', 'glimepiride-pioglitazone', 'metformin-rosiglitazone',
'metformin-pioglitazone'
]
# Encode
for col in medicine_columns:
if col in df_tr.columns:
df_tr[col] = df_tr[col].replace(
{"No": 0, "Steady": -2, "Up": 1, "Down": 3}
)
df_test[col] = df_test[col].replace(
{"No": 0, "Steady": -2, "Up": 1, "Down": 3}
)
df_tr['change'] = df_tr['change'].replace({"Ch": 1, "No": 0})
df_tr['diabetesMed'] = df_tr['diabetesMed'].replace({"Yes": 1, "No": 0})
df_test['change'] = df_test['change'].replace({"Ch": 1, "No": 0})
df_test['diabetesMed'] = df_test['diabetesMed'].replace({"Yes": 1, "No": 0})
'''
AGE MAPPING MODULE
'''
age_mapping = {
'[0-10)': 'Young',
'[10-20)': 'Young',
'[20-30)': 'Adult',
'[30-40)': 'Middle Age',
'[40-50)': 'Middle Age',
'[50-60)': 'Elder',
'[60-70)': 'Elder',
'[70-80)': 'Elder',
'[80-90)': 'Elder',
'[90-100)': 'Elder'
}
# Apply Mapping
df_tr['age_group'] = df_tr['age'].map(age_mapping)
df_test['age_group'] = df_test['age'].map(age_mapping)
df_tr = df_tr.drop(columns=['age'])
df_test = df_test.drop(columns=['age'])
df_tr = pd.get_dummies(df_tr, columns=['age_group'], drop_first=True)
df_test = pd.get_dummies(df_test, columns=['age_group'], drop_first=True)
'''
DIAG COLUMNS (ICD-9) PROCESSING MODULE
'''
# Categorize ICD-9 Codes
def categorize_icd9(code):
try:
code = float(code)
if 1 <= code < 140:
return "Infectious and parasitic diseases"
elif 140 <= code < 240:
return "Neoplasms"
elif 240 <= code < 280:
return "Endocrine, nutritional, and metabolic diseases"
elif 280 <= code < 290:
return "Blood and blood-forming organs"
elif 290 <= code < 320:
return "Mental disorders"
elif 320 <= code < 390:
return "Nervous system and sense organs"
elif 390 <= code < 460:
return "Circulatory system"
elif 460 <= code < 520:
return "Respiratory system"
elif 520 <= code < 580:
return "Digestive system"
elif 580 <= code < 630:
return "Genitourinary system"
elif 630 <= code < 680:
return "Complications of pregnancy, childbirth, and the puerperium"
elif 680 <= code < 710:
return "Skin and subcutaneous tissue"
elif 710 <= code < 740:
return "Musculoskeletal system and connective tissue"
elif 740 <= code < 760:
return "Congenital anomalies"
elif 760 <= code < 780:
return "Perinatal period"
elif 780 <= code < 800:
return "Symptoms, signs, and ill-defined conditions"
elif 800 <= code < 1000:
return "Injury and poisoning"
else:
return "Other"
except:
return "Unknown"
for col in ['diag_1', 'diag_2', 'diag_3']:
df_tr[col] = df_tr[col].apply(categorize_icd9)
df_test[col] = df_test[col].apply(categorize_icd9)
def fill_diag_missing(row):
diags = [row['diag_1'], row['diag_2'], row['diag_3']]
valid_diags = []
# Store non-missing values for later index and Fill
for d in diags:
if d != "Unknown":
valid_diags.append(d)
# Fill based on the number, index of valid values
if len(valid_diags) == 1:
# Given 1 combination: E1 NaN NaN, or E1 at any other element --> After Refine = E1 E1 E1
filled_diags = [valid_diags[0], valid_diags[0], valid_diags[0]]
elif len(valid_diags) == 2:
idx = diags.index("Unknown")
# Index the missing element, given total 2 combinations: 1: E1 E2 NaN --> After Refine = E1 E2 E2
# 2: E1 NaN E2 --> After Refine = E1 E1 E2
# or NaN E1 E2 --> After Refine = E1 E1 E2 (E1's idx=0, same case as above)
if idx == 2:
filled_diags = [valid_diags[0], valid_diags[1], valid_diags[1]]
else:
filled_diags = [valid_diags[0], valid_diags[0], valid_diags[1]]
else:
filled_diags = diags
return filled_diags
# Fill
df_tr[['diag_1', 'diag_2', 'diag_3']] = df_tr.apply(fill_diag_missing, axis=1, result_type="expand")
df_test[['diag_1', 'diag_2', 'diag_3']] = df_test.apply(fill_diag_missing, axis=1, result_type="expand")
# Encode
df_tr = pd.get_dummies(df_tr, columns=['diag_1', 'diag_2', 'diag_3'], prefix=['diag1', 'diag2', 'diag3'], drop_first=True)
df_test = pd.get_dummies(df_test, columns=['diag_1', 'diag_2', 'diag_3'], prefix=['diag1', 'diag2', 'diag3'], drop_first=True)
'''
PREPARATION MODULE
'''
X_train, y_train = df_tr.drop("readmitted", axis=1), df_tr["readmitted"].copy()
X_te, y_te = df_test.drop("readmitted", axis=1), df_test["readmitted"].copy()
categorical_features = ['race', 'gender']
X_encoded = pd.get_dummies(X_train, columns=categorical_features, drop_first=True)
X_encoded = X_encoded.drop("gender_Unknown/Invalid", axis=1)
X_encoded = X_encoded.drop("diag1_Other", axis=1)
y_encoded = y_train.replace({'>30': 1, 'NO': 0, '<30': 2})
X_test = pd.get_dummies(X_te, columns=categorical_features, drop_first=True)
y_test = y_te.replace({'>30': 1, 'NO': 0, '<30': 2})
'''
*备注* X_test进行完encoding之后没有gender_Unknown/Invalid和diag1_Other这两列,故写了这行代码
我认为这个有点奇怪,因为处理ICD-9的时候我进行了“Others”的分类,且test data里面有属于Others分类的数据
'''
X_test = X_test.reindex(columns=X_encoded.columns, fill_value=0)
# Train the Naive-Bayes Model
nb_model = GaussianNB()
nb_model.fit(X_encoded, y_encoded)
# Predict the Test Set
y_pred = nb_model.predict(X_test)
'''
Case Check Module
'''
print("Encoded Features (X):\n", X_encoded.head())
print("Encoded Features (Test):\n", X_test.head())
print("Encoded Target (y):\n", y_encoded.head())
#print("Missing values in X_encoded:\n", X_encoded.isnull().sum())
#print("Missing values in y_encoded:\n", y_encoded.isnull().sum())
non_numeric_columns = X_encoded.select_dtypes(include=['object']).columns
#print("Non-Numeric Columns:\n", non_numeric_columns)
#print("Missing values in X_test:\n", X_test.isnull().sum())
'''
OUTPUT MODULE
'''
print("Accuracy:", accuracy_score(y_test, y_pred))
print("Classification Report:\n", classification_report(y_test, y_pred))