forked from felixchenfy/3D-Scanner-by-Baxter
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathn2_filt_and_seg_object.cpp
399 lines (329 loc) · 14.4 KB
/
n2_filt_and_seg_object.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
/*
Main function:
* subscribe to cloud_src, filter it, rotated, pub to rviz.
* seg plane, do clustering, pub the object to node3
*/
#include <iostream>
#include <string>
#include <stdio.h>
#include <vector>
#include <queue>
#include <ros/ros.h>
#include <pcl_conversions/pcl_conversions.h>
#include <sensor_msgs/PointCloud2.h>
#include "geometry_msgs/Pose.h"
#include "my_basics/basics.h"
#include "my_pcl/pcl_visualization.h"
#include "my_pcl/pcl_commons.h"
#include "my_pcl/pcl_filters.h"
#include "my_pcl/pcl_advanced.h"
#include "my_pcl/pcl_io.h"
#include "scan3d_by_baxter/T4x4.h" // my message
using namespace std;
using namespace pcl;
// ------------------------------------- ROS Params -------------------------------------
// Topic names
string topic_n1_to_n2, topic_n2_to_n3, topic_name_rgbd_cloud, topic_n2_to_rviz;
// Filenames for writing to file
string file_folder, file_name_cloud_src, file_name_cloud_segmented;
int file_name_index_width;
// Filename for reading chessboard's pose
string file_folder_config, file_name_T_baxter_to_chess;
// Filter: voxel filtering (filtByVoxelGrid)
float x_grid_size, y_grid_size, z_grid_size;
// Fitler: isolated points (filtByStatisticalOutlierRemoval)
float mean_k = 50, std_dev = 1.0;
// Filter: range filtering
bool flag_do_range_filt;
float x_range_radius, y_range_radius, z_range_low, z_range_up;
float chessboard_x, chessboard_y, chessboard_z;
float T_baxter_to_chess[4][4] = {0}, T_chess_to_baxter[4][4] = {0};
// Filter: plane segmentation
float plane_distance_threshold, plane_distance_threshold_0;
int plane_max_iterations;
int num_planes;
float ratio_of_rest_points = -1; // disabled
// Filter: divide cloud into clusters
bool flag_do_clustering;
double cluster_tolerance;
int min_cluster_size, max_cluster_size;
// ------------------------------------- Vars -------------------------------------
// Data contents
queue<PointCloud<PointXYZRGB>::Ptr> buff_cloud_src; // When sub cloud from topic, save it to the buff first,
queue<vector<vector<float>>> buff_T_baxter_to_depthcam; // to avoid that new data flush the old ones.
vector<vector<float>> T_baxter_to_depthcam;
PointCloud<PointXYZRGB>::Ptr cloud_src(new PointCloud<PointXYZRGB>);
PointCloud<PointXYZRGB>::Ptr cloud_rotated(new PointCloud<PointXYZRGB>); // this pubs to rviz
PointCloud<PointXYZRGB>::Ptr cloud_segmented(new PointCloud<PointXYZRGB>); // this pubs to node3
// ------------------------------------- Functions -------------------------------------
// -- Read params from ROS parameter server
void initAllROSParams();
#define NH_GET_PARAM(param_name, returned_val) \
if (!nh.getParam(param_name, returned_val)) \
{ \
cout << "Error in reading ROS param named: " << param_name << endl; \
assert(0); \
}
// -- Input/Output and Sub/Publisher
void read_T_from_file(float T_16x1[16], string filename);
void subCallbackFromNode1(const scan3d_by_baxter::T4x4::ConstPtr &pose_message);
void subCallbackFromKinect(const sensor_msgs::PointCloud2 &ros_cloud);
void pubPclCloudToTopic(ros::Publisher &pub, PointCloud<PointXYZRGB>::Ptr pcl_cloud);
// -- Main processing functions
void process_to_get_cloud_rotated();
void process_to_get_cloud_segmented();
void print_cloud_processing_result(int cnt_cloud);
// -- Main Loop:
void main_loop(ros::Publisher &pub_to_node3, ros::Publisher &pub_to_rviz)
{
int cnt_cloud = 0;
while (ros::ok())
{
if (!buff_cloud_src.empty() && !buff_T_baxter_to_depthcam.empty())
{
cnt_cloud++;
// Get data from buff
T_baxter_to_depthcam = buff_T_baxter_to_depthcam.front();
buff_T_baxter_to_depthcam.pop();
cloud_src = buff_cloud_src.front();
buff_cloud_src.pop();
// Process cloud
process_to_get_cloud_rotated();
process_to_get_cloud_segmented();
// print
print_cloud_processing_result(cnt_cloud); // Print info
// Save to file
string suffix = my_basics::int2str(cnt_cloud, file_name_index_width) + ".pcd";
string f0 = file_folder + file_name_cloud_src + suffix;
my_pcl::write_point_cloud(f0, cloud_src);
string f2 = file_folder + file_name_cloud_segmented + suffix;
my_pcl::write_point_cloud(f2, cloud_segmented);
// Publish
pubPclCloudToTopic(pub_to_rviz, cloud_rotated);
pubPclCloudToTopic(pub_to_node3, cloud_segmented);
}
ros::spinOnce(); // In python, sub is running in different thread. In C++, same thread. So need this.
ros::Duration(0.01).sleep();
}
}
// -- Main: set up variables, subscribers, and publishers.
int main(int argc, char **argv)
{
// Init node
string node_name = "node2";
ros::init(argc, argv, node_name);
ros::NodeHandle nh;
initAllROSParams();
// Subscriber and Publisher
ros::Subscriber sub_from_node1 = nh.subscribe(topic_n1_to_n2, 10, subCallbackFromNode1); // 10 is queue size
ros::Subscriber sub_from_kinect = nh.subscribe(topic_name_rgbd_cloud, 10, subCallbackFromKinect);
ros::Publisher pub_to_node3 = nh.advertise<sensor_msgs::PointCloud2>(topic_n2_to_n3, 10);
ros::Publisher pub_to_rviz = nh.advertise<sensor_msgs::PointCloud2>(topic_n2_to_rviz, 10);
// -- Loop, subscribe ros_cloud, and view
main_loop(pub_to_node3, pub_to_rviz);
// Return
ROS_INFO("Node2 stops");
return 0;
}
// ================================================================================
// =========================== Cloud Processing====================================
// ================================================================================
// -----------------------------------------------------
// -----------------------------------------------------
void process_to_get_cloud_rotated()
{
// Func: Filtering; Rotate cloud to Baxter robot frame
pcl::copyPointCloud(*cloud_src, *cloud_rotated);
// -- filtByVoxelGrid
printf("Node2: filtByVoxelGrid ...");
cloud_rotated = my_pcl::filtByVoxelGrid(cloud_rotated, x_grid_size, y_grid_size, z_grid_size);
printf("done\n");
// -- filtByStatisticalOutlierRemoval
// printf("Node2: filtByStatisticalOutlierRemoval ... ");
// cloud_rotated = my_pcl::filtByStatisticalOutlierRemoval(cloud_rotated, mean_k, std_dev);
// printf("done\n");
// -- rotate cloud to Baxter's frame
printf("Node2: rotate cloud to Baxter's frame ...");
for (PointXYZRGB &p : cloud_rotated->points)
my_basics::preTranslatePoint(T_baxter_to_depthcam, p.x, p.y, p.z);
printf("done\n");
}
// -----------------------------------------------------
// -----------------------------------------------------
void process_to_get_cloud_segmented()
{
// Func: Range filtering,
// Optional: Remove plane (table); Do clustering; Choose the largest one
// -- rotate cloud to Chessboard's frame
copyPointCloud(*cloud_rotated, *cloud_segmented);
for (PointXYZRGB &p : cloud_segmented->points)
my_basics::preTranslatePoint(T_chess_to_baxter, p.x, p.y, p.z);
// -- filtByPassThrough (by range)
if (flag_do_range_filt)
{
printf("Node2: do_range_filt ... ");
// my_pcl::printCloudSize(cloud_segmented);
cloud_segmented = my_pcl::filtByPassThrough(
// cloud_segmented, "x", chessboard_x + x_range_radius, chessboard_x - x_range_radius);
cloud_segmented, "x", 0 + x_range_radius, 0 - x_range_radius);
cloud_segmented = my_pcl::filtByPassThrough(
// cloud_segmented, "y", chessboard_y + y_range_radius, chessboard_y - y_range_radius);
cloud_segmented, "y", 0 + y_range_radius, 0 - y_range_radius);
cloud_segmented = my_pcl::filtByPassThrough(
// cloud_segmented, "z", chessboard_z + z_range_up, chessboard_z + z_range_low);
cloud_segmented, "z", 0 + z_range_up, 0 + z_range_low);
printf("done\n");
// my_pcl::printCloudSize(cloud_segmented);
}
// -- Remove planes
// 1. Seprate cloud into {near plane} & {far from plane}
PointCloud<PointXYZRGB>::Ptr cld_near_plane(new PointCloud<PointXYZRGB>);
PointCloud<PointXYZRGB>::Ptr cld_far_plane(new PointCloud<PointXYZRGB>);
double th = plane_distance_threshold_0;
for(PointXYZRGB &pt:cloud_segmented->points){
if(pt.z<=th && pt.z>=-th){
cld_near_plane->points.push_back(pt);
}else{
cld_far_plane->points.push_back(pt);
}
}
cld_near_plane->width = cld_near_plane->points.size();
cld_far_plane->width = cld_far_plane->points.size();
cld_near_plane->height = cld_far_plane->height = 1;
// 2. Remove plane in {near plane}
int num_removed_planes = my_pcl::removePlanes(
cld_near_plane,
plane_distance_threshold, plane_max_iterations,
num_planes, ratio_of_rest_points, true);
// 3. Combine {near plane} & {far from plane} and save back to cloud_segmented
*cld_near_plane += *cld_far_plane;
pcl::copyPointCloud(*cld_near_plane, *cloud_segmented);
// -- Clustering: Divide the remaining point cloud into different clusters
if (flag_do_clustering)
{
vector<PointIndices> clusters_indices = my_pcl::divideIntoClusters(
cloud_segmented, cluster_tolerance, min_cluster_size, max_cluster_size);
// -- Extract indices into cloud clusters
vector<PointCloud<PointXYZRGB>::Ptr> cloud_clusters =
my_pcl::extractSubCloudsByIndices(cloud_segmented, clusters_indices);
cloud_segmented = cloud_clusters[0];
}
}
// -----------------------------------------------------
// -----------------------------------------------------
void print_cloud_processing_result(int cnt_cloud)
{
cout << endl;
printf("------------------------------------------\n");
printf("Node 2: Processing %dth cloud ------------\n", cnt_cloud);
ROS_INFO("Subscribed a point cloud from ros topic.");
// cout << "camera pos:" << endl;
// for (int i = 0; i < 4; i++)
// {
// for (int j = 0; j < 4; j++)
// cout << T_baxter_to_depthcam[i][j] << " ";
// cout << endl;
// }
// cout << endl;
cout << "cloud_src: ";
my_pcl::printCloudSize(cloud_src);
cout << "cloud_rotated: ";
my_pcl::printCloudSize(cloud_rotated);
cout << "cloud_segmented: ";
my_pcl::printCloudSize(cloud_segmented);
printf("------------------------------------------\n\n");
}
// -----------------------------------------------------
// -----------------------------------------------------
void read_T_from_file(float T_16x1[16], string filename)
{
ifstream fin;
fin.open(filename);
float val;
int cnt = 0;
assert(fin.is_open()); // Fail to find the config file
while (fin >> val)
T_16x1[cnt++] = val;
fin.close();
return;
}
void subCallbackFromNode1(const scan3d_by_baxter::T4x4::ConstPtr &pose_message)
{
const vector<float> &trans_mat_16x1 = pose_message->TransformationMatrix;
vector<vector<float>> tmp(4, vector<float>(4,0));
for (int cnt = 0, i = 0; i < 4; i++)
for (int j = 0; j < 4; j++)
tmp[i][j] = trans_mat_16x1[cnt++];
buff_T_baxter_to_depthcam.push(tmp);
printf("Node 2: subscribe camera pose from node 1.\n");
}
void subCallbackFromKinect(const sensor_msgs::PointCloud2 &ros_cloud)
{
static int cnt=0;
if(buff_T_baxter_to_depthcam.size()>buff_cloud_src.size()){
PointCloud<PointXYZRGB>::Ptr tmp(new PointCloud<PointXYZRGB>);
fromROSMsg(ros_cloud, *tmp);
buff_cloud_src.push(tmp);
printf("Node 2 has subscribed the %dth cloud with size %d\n ", ++cnt, (int)tmp->points.size());
}
return;
}
void pubPclCloudToTopic(ros::Publisher &pub, PointCloud<PointXYZRGB>::Ptr pcl_cloud)
{
sensor_msgs::PointCloud2 ros_cloud_to_pub;
pcl::toROSMsg(*pcl_cloud, ros_cloud_to_pub);
ros_cloud_to_pub.header.frame_id = "base";
pub.publish(ros_cloud_to_pub);
}
void initAllROSParams()
{
{
ros::NodeHandle nh;
// Topic names
NH_GET_PARAM("topic_n1_to_n2", topic_n1_to_n2)
NH_GET_PARAM("topic_n2_to_n3", topic_n2_to_n3)
NH_GET_PARAM("topic_name_rgbd_cloud", topic_name_rgbd_cloud)
NH_GET_PARAM("topic_n2_to_rviz", topic_n2_to_rviz)
// File names for saving point cloud
NH_GET_PARAM("file_folder", file_folder)
NH_GET_PARAM("file_name_cloud_src", file_name_cloud_src)
NH_GET_PARAM("file_name_cloud_segmented", file_name_cloud_segmented)
NH_GET_PARAM("file_name_index_width", file_name_index_width)
// Filename for reading chessboard's pose
NH_GET_PARAM("file_folder_config", file_folder_config)
NH_GET_PARAM("file_name_T_baxter_to_chess", file_name_T_baxter_to_chess)
float tmpT[16] = {0};
read_T_from_file(tmpT, file_folder_config + file_name_T_baxter_to_chess);
for (int cnt = 0, i = 0; i < 4; i++)
for (int j = 0; j < 4; j++)
T_baxter_to_chess[i][j] = tmpT[cnt++];
chessboard_x = T_baxter_to_chess[0][3];
chessboard_y = T_baxter_to_chess[1][3];
chessboard_z = T_baxter_to_chess[2][3];
my_basics::inv(T_baxter_to_chess, T_chess_to_baxter); // inv(src, dst)
}
// ---------------------------- Filters ----------------------------
{
ros::NodeHandle nh("~");
// -- filtByPassThrough
NH_GET_PARAM("flag_do_range_filt", flag_do_range_filt)
NH_GET_PARAM("x_range_radius", x_range_radius)
NH_GET_PARAM("y_range_radius", y_range_radius)
NH_GET_PARAM("z_range_low", z_range_low)
NH_GET_PARAM("z_range_up", z_range_up)
// -- filtByVoxelGrid
NH_GET_PARAM("x_grid_size", x_grid_size)
NH_GET_PARAM("y_grid_size", y_grid_size)
NH_GET_PARAM("z_grid_size", z_grid_size)
// -- Segment plane
NH_GET_PARAM("plane_distance_threshold", plane_distance_threshold)
NH_GET_PARAM("plane_distance_threshold_0", plane_distance_threshold_0)
NH_GET_PARAM("plane_max_iterations", plane_max_iterations)
NH_GET_PARAM("num_planes", num_planes)
// -- Clustering
NH_GET_PARAM("flag_do_clustering", flag_do_clustering)
NH_GET_PARAM("cluster_tolerance", cluster_tolerance)
NH_GET_PARAM("min_cluster_size", min_cluster_size)
NH_GET_PARAM("max_cluster_size", max_cluster_size)
}
}