forked from felixchenfy/3D-Scanner-by-Baxter
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlib_geo_trans.py
127 lines (89 loc) · 2.95 KB
/
lib_geo_trans.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
'''
Geometric and camera related transformations
'''
import numpy as np
import copy
import cv2
from tf.transformations import*
# ---------------- Basic trans
def form_T(R, p):
T = np.identity(4)
T[0:3, 0:3] = R
T[0:3, 3:4] = np.array(p).reshape((3, 1))
return T
def get_Rp_from_T(T):
R = T[0:3, 0:3]
p = T[0:3, 3:4]
return (R, p)
def invRp(R, p):
T = form_T(R, p)
T = np.linalg.inv(T)
R_inv, p_inv = get_Rp_from_T(T)
return R_inv, p_inv
def transXYZ(x=None, y=None, z=None):
T=np.identity(4)
data=[x, y, z]
for i in range(3):
if data[i] is not None:
T[i, 3]=data[i]
return T
# ---------------- Euler angles
def rot3x3_to_4x4(R):
T = np.identity(4)
T[0:3, 0:3] = R
return T
def rot(axis, angle, matrix_len=3):
R_vec = np.array(axis).astype(float)*angle
R, _ = cv2.Rodrigues(R_vec)
if matrix_len == 4:
R = rot3x3_to_4x4(R)
return R
def rotx(angle, matrix_len=3):
return rot([1,0,0], angle, matrix_len)
def roty(angle, matrix_len=3):
return rot([0,1,0], angle, matrix_len)
def rotz(angle, matrix_len=3):
return rot([0,0,1], angle, matrix_len)
def euler2matrix(x, y, z, order='rxyz'):
return rotx(x).dot(roty(y)).dot(rotz(z))
# ----------------Point's pos transformation between world/camera/image
# Distort a point. Input x,y are the point's pos on the camera normalized plane (z=0)
def distortPoint(x, y, distortion_coeffs):
r2 = x*x + y*y
r4 = r2*r2
r6 = r4*r2
d = distortion_coeffs
k1, k2, p1, p2, k3 = d[0], d[1], d[2], d[3], d[4]
x_distort = x * (1 + k1 * r2 + k2 * r4 + k3 * r6) + \
2*p1*x*y + p2*(r2 + 2*x*x)
y_distort = y * (1 + k1 * r2 + k2 * r4 + k3 * r6) + \
p1*(r2 + 2*y*y) + 2*p2*x*y
pt_cam_distort = np.array([[x_distort, y_distort, 1]]).transpose()
return pt_cam_distort
# Represent a point from using world coordinate to using camera coordinate
def world2cam(p, T_cam_to_world):
if type(p) == list:
p = np.array(p).reshape((len(p), 1))
if p.shape[0] == 3:
p = np.vstack((p, 1))
p_cam = T_cam_to_world.dot(p)
return p_cam[0:3, 0:1]
# Project a point represented in camera coordinate onto the image plane
def cam2pixel(p, camera_intrinsics, distortion_coeffs=None):
# Transform to camera normalized plane (z=1)
p = p/p[2, 0] # z=1
# Distort point
if distortion_coeffs is not None:
p = distortPoint(p[0, 0], p[1, 0], distortion_coeffs)
# Project to image plane
pt_pixel_distort = camera_intrinsics.dot(p)
return pt_pixel_distort[0:2, 0]
# A combination of the above two
def world2pixel(p, T_cam_to_world, camera_intrinsics, distortion_coeffs):
return cam2pixel(world2cam(p, T_cam_to_world), camera_intrinsics, distortion_coeffs)
# ---------------------- Test -----------------------
if __name__ == "__main__":
R = euler2matrix(np.pi/2, 0, 0)
# R = rotz(np.pi/2)
# R = rotx(np.pi/2)
print R