-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpeeling_color.py
218 lines (186 loc) · 8.59 KB
/
peeling_color.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
from __future__ import print_function
from nis import match
import cv2
import numpy as np
from matplotlib import pyplot as plt
import argparse
import os
# Parse arguments
parser = argparse.ArgumentParser(description='Code for detecting peeled areas in vegetables')
parser.add_argument('--folder', help='Path to input images.', default='potato')
parser.add_argument('--image', help='Name of image to process. If empty all images are processed.', default='')
args = parser.parse_args()
# Iterate through folder or select specific image
path = os.path.join("./img_data/", args.folder)
images = next(os.walk(path), (None, None, []))[2] if args.image == '' else [args.image]
# Loop through images and process
for imFile in sorted(images):
# Load image and convert to gray
print(f"Processing {imFile }")
imPath = os.path.join(path, imFile)
img = cv2.imread(imPath)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
if img is None:
print('Could not open or find the images!')
exit(0)
print(f"Image Shape: {img.shape}")
########### Process image ###########
# Crop sides
# h, w, c = img.shape
# minW, maxW = int(w/10), int(9*w/10)
# print(f"Min: {minW} Max: {maxW}")
# img = img[:, minW:maxW]
# print(img.shape)
# Normalize image to min and max intensity of 0 and 255
print(f"Original min: {np.min(img)} max: {np.max(img)}")
norm = np.zeros_like(img)
norm = cv2.normalize(img, norm, 0, 255, cv2.NORM_MINMAX)
print(f"Norm min: {np.min(norm)} max: {np.max(norm)}")
# Get separate channels
zeros = np.zeros_like(norm.shape[:2])
(R, G, B) = cv2.split(norm)
zeros = np.zeros(norm.shape[:2], dtype="uint8")
red = cv2.merge([R, zeros, zeros])
green = cv2.merge([zeros, G, zeros])
blue = cv2.merge([zeros, zeros, B])
gray = cv2.cvtColor(norm, cv2.COLOR_BGR2GRAY)
"""
Threshold grayscale image using the following three methods:
1. Binary thresholding with threshold = 127
2. Otsu method
3. Gaussian filtering + Otsu method
Input: Grayscale image
Output: Three binary images, respectively processed by the three methods
described above
"""
def threshold(img):
# global thresholding
ret1,th1 = cv2.threshold(img, 127,255, cv2.THRESH_BINARY)
# Otsu's thresholding
ret2,th2 = cv2.threshold(img, 0,255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
# Otsu's thresholding after Gaussian filtering
blur = cv2.GaussianBlur(img, (5,5),0)
ret3,th3 = cv2.threshold(blur,0,255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
return th1, th2, th3
# Roughly segment vegetable in image using thresholding
# Will refine later
imgThresh1, imgThresh2, imgThresh3 = threshold(gray)
redThresh1, redThresh2, redThresh3 = threshold(R)
greenThresh1, greenThresh2, greenThresh3 = threshold(G)
blueThresh1, blueThresh2, blueThresh3 = threshold(B)
# Display
titles = ['Original', 'Red', 'Green', 'Blue',
'Original - Gray', 'Red - Gray', 'Green - Gray', 'Blue - Gray',
'Original - Global', 'Red - Global', 'Green - Global', 'Blue - Global',
'Original - Otsu', 'Red - Otsu', 'Green - Otsu', 'Blue - Otsu',
'Original - Otsu + Gauss', 'Red - Otsu + Gauss', 'Green - Otsu + Gauss', 'Blue - Otsu + Gauss',
]
images = [img, red, green, blue,
gray, R, G, B,
imgThresh1, redThresh1, greenThresh1, blueThresh1,
imgThresh2, redThresh2, greenThresh2, blueThresh2,
imgThresh3, redThresh3, greenThresh3, blueThresh3,
]
# Display image
for i in range(20):
plt.subplot(5,4,i+1),plt.imshow(images[i],'gray')
plt.title(titles[i])
plt.xticks([]),plt.yticks([])
plt.show()
###### Segment #######
# Refine previous segmentation to get outline of entire vegetable and
# separate segmentation of peeled area.
# Use blue channel as it seems to provide most accurate segmentations.
# Of the three methods, find the one where the masked area is smallest as to
# not include bleed.
"""
Perform morphology to remove isolated black dots surrounding vegetable and
close white areas within the vegetable
Input: Binary image
Output: Binary image that has been closed and then opened. Sorry for the
bad documentation lol
"""
def morph(img):
kernel = np.ones((5,5),np.uint8)
img = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)
kernel = np.ones((100,100),np.uint8)
img = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)
return img
# Use morphology to remove isolated black spots and remove white openings in vegetable
morph1 = morph(blueThresh1)
morph2 = morph(blueThresh2)
morph3 = morph(blueThresh3)
# Get copies to draw on
imgDraw1, imgDraw2, imgDraw3 = np.copy(img), np.copy(img), np.copy(img)
"""
Finds contours in imgBinary and draws outline of first contour on imgDraw
in green and creates binary mask of first contour. Both images get cropped
size of first contour
Input:
imgDraw - RGB image
imgBinary - Binary image
Output:
imgDraw - RGB image with outline of first contour found drawn in green.
Cropped to size of first contour.
mask - Binary image of first contour found filled with white
Cropped to size of first contour.
"""
def findDrawFirstContour(imgDraw, imgBinary):
# Get mask
contours, hierarchy = cv2.findContours(np.invert(imgBinary), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
print(f'Number of contours: {len(contours)}')
cv2.drawContours(imgDraw, contours, 0, (0, 255, 0), 3)
mask = np.zeros_like(imgDraw[:,:,0])
mask = cv2.drawContours(mask, contours, 0, (255), -1)
# get the bounding rect
x, y, w, h = cv2.boundingRect(contours[0])
# to save the images
imgDraw = imgDraw[y:y+h,x:x+w]
mask= mask[y:y+h,x:x+w]
return mask, imgDraw
# Get masks and draw vegetable outline
vegMask1, imgDraw1 = findDrawFirstContour(imgDraw1, morph1)
vegMask2, imgDraw2 = findDrawFirstContour(imgDraw2, morph2)
vegMask3, imgDraw3 = findDrawFirstContour(imgDraw3, morph3)
# Threshold different images usings the same method that the binary images
# fed into findDrawFirstContour were used to find the contour drawn on them
# Sorry if that's confusing!
thresh1, _, _ = threshold(cv2.cvtColor(imgDraw1, cv2.COLOR_BGR2GRAY))
_, thresh2, _ = threshold(cv2.cvtColor(imgDraw2, cv2.COLOR_BGR2GRAY))
_, _, thresh3 = threshold(cv2.cvtColor(imgDraw3, cv2.COLOR_BGR2GRAY))
# Get peel masks. First erode the vegetable masks and then bitwise_and with
# thersholded images found right above. Erosion is necessary as we don't
# want to include the contour of the vegetable which will be included in the
# thresholded images above since the images fed into threshold() include the
# vegetable contours
def findDrawOverlap(imgDraw, vegMask, imgThresh):
kernel = np.ones((10,10),np.uint8)
# Erode imgMask to eliminate outline of mask when we bitwise_and
vegMask = cv2.erode(vegMask,kernel,iterations = 1)
overlap = cv2.bitwise_and(vegMask, imgThresh)
contours, hierarchy = cv2.findContours(overlap, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
print(f'Number of contours: {len(contours)}')
# contours = contours[2:] if len(contours) > 2 else []
print(len(contours))
cv2.drawContours(imgDraw, contours, -1, (255, 0, 0), -1)
return overlap
peelMask1 = findDrawOverlap(imgDraw1, vegMask1, thresh1)
peelMask2 = findDrawOverlap(imgDraw2, vegMask2, thresh2)
peelMask3 = findDrawOverlap(imgDraw3, vegMask3, thresh3)
# Display
titles = ['Blue - Global Threshold', 'Blue - Otsu', 'Blue - Otsu + Threshold',
'Global Threshold - Morphology', 'Otsu - Morphology', 'Otsu + Threshold - Morphology',
'Vegetable Outline', 'Vegetable Outline', 'Vegetable Outline',
'Vegetable Mask', 'Vegetable Mask', 'Vegetable Mask',
'Peeled Mask', 'Peeled Mask', 'Peeled Mask']
images = [blueThresh1, blueThresh2, blueThresh3,
morph1, morph2, morph3,
imgDraw1, imgDraw2, imgDraw3,
vegMask1, vegMask2, vegMask3,
peelMask1, peelMask2, peelMask3]
# Display image
for i in range(15):
plt.subplot(5,3,i+1),plt.imshow(images[i],'gray')
plt.title(titles[i])
plt.xticks([]),plt.yticks([])
plt.show()