(Last update 9.4.2022: stopping criteria)
Run the demo files.
The codes include:
- unconstraned CSC algorithm: CSC_unconstrained.m
- constraned CSC algorithm: CSC_constrained.m
- the consensus ADMM-based CDL method: CDL.m
- the consensus ADMM-based multiscale CDL method: CDL_multiscale.m
- the ADMM-based CDL method based on direct matrix inversion: CDL_mtx_inv.m
- code for generating Gaussian random multiscale dictionaries: initdict.m
- code for visualizing multiscale filters: dict2image.m
- pre-learned dictionaries (.mat files)
Training images are collected from USC-SIPI database.
Reference : F. G. Veshki and S. A. Vorobyov, "Efficient ADMM-based Algorithms for Convolutional Sparse Coding," in IEEE Signal Processing Letters, doi: 10.1109/LSP.2021.3135196. Email: [email protected]