-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcalculateFES.py
883 lines (597 loc) · 29.7 KB
/
calculateFES.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import copy
from scipy.integrate import simps
import math
import rdkit
from rdkit import Chem
from rdkit.Chem.Fragments import *
#### PMF along a CV in a given time block.
def get_block_fes_using_cv_weights(temperature, simDir, systemDir, colvarFileName, colvarFileContentList, cvmin, cvmax, nbins, cvname, cvbiasname, shiftCV, startTimeInPS, endTimeInPS):
"""
CALCULATE PMF along a given CV using umbrella sampling type reweighting method by reading specific time range in a COLVAR file to obtain free energies or binding constants using block averaging method.
Parameters
----------
temperature: Float
Temperature at which PBMetaD simulations are performed.
simDir: String
Path to datafiles.
systemDir: String
Folder containing COLVAR files from PBMetaD simulations.
colvarFileName: String
Name of the COLVAR file containing CV values and converged BIAS.
colvarFileContentList: List
List of strings to identify each column in colvarFileName.
cvmin: Float
Minimum value for CV to calculate histogram for PMF calculations.
cvmax: Float
Maximum value for CV to calculate histogram for PMF calculations.
nbins: Int
Number of bins to calculate histogram.
cvname: String
Target cv to use for obtaining PMF.
cvbiasname: String
Name of the BIAS column.
shiftCV: Float
CV value at which PMF is set to zero.
startTimeInPS: Float
start time in ps to read the COLVAR FILE.
endTimeInPS: Float
end time in ps to read the COLVAR FILE.
Returns
-------
feDf: DataFrame
PMF along CV
"""
# Boltzmann Constant or R
kb = 8.31446261815324*0.001 #kJ/molK
kbt = kb*temperature #kJ/mol
preFactor = 2*kbt #kJ/mol for entropy correction
colvarFile = simDir + systemDir + colvarFileName
# read colvarData into pandas DataFrame
colvarData = pd.read_csv(colvarFile, delim_whitespace=True, names=colvarFileContentList, comment="#")
# discard initial few frames [frames where free energy is still being mapped]
colvarData = colvarData [ (colvarData.time > startTimeInPS) & (colvarData.time <= endTimeInPS) ]
# calculate weights of each frame in colvarData
weights = np.exp( (colvarData[cvbiasname]) /kbt)
# get unbiased probabilities using umbrella sampling type reweighting approach
fe,dzfe = np.histogram(colvarData[cvname],range=[cvmin,cvmax],bins=nbins,weights=weights,density=True)
dzfe = dzfe[:-1]
# combine unbiased probabilities and bins and convert into a pandas DataFrame
feDf = pd.DataFrame(np.array([dzfe, -kbt*np.log(fe)]).transpose(), columns=[cvname, "fe"])
feDf.fe += preFactor*np.log(feDf[cvname])
# shift fes to set non-interacting state to zero; consider that point in CV to be equal to shiftCV
shiftFE = feDf [ (feDf[cvname] <= shiftCV) & (feDf[cvname] >= shiftCV-0.01) ].fe.max()
# not used here; uncomment if you want to align PMFs according to shiftCV
#feDf.fe -= shiftFE
return feDf
#### Calculate average PMF profile.
def get_fes_avg_sd(fesDFList, cvname, nbins):
"""
Align PMF profiles using least squares alignment procedure and then
calculate average and standard error on the PMF using the block averaging procedure.
Parameters
----------
fesDFList: List[DataFrame]
List of dataframes containing PMF profiles along a CV.
cvname: String
Target CV along which PMF is obtained.
nbins: Int
Number of bins used for PMF calculation to obtain average PMF.
Returns
-------
avgFE: Array
Block averaged PMF profile.
np.sqrt(varFE): Array
Standard error of PMF profile.
fesDFListUpdated: List[DataFrame]
List of updated dataframes containing aligned PMF profiles.
fe_minList: List[Float]
Global minimum in each PMF profile provided.
(Not used).
"""
localfesDFList = copy.deepcopy(fesDFList)
avgFE = np.zeros(nbins)
varFE = np.zeros(nbins)
nsamples = len(localfesDFList)
print("nsamples: ", nsamples)
for run in range(nsamples):
avgFE += localfesDFList[run].fe.values
avgFE /= nsamples
# Aligning PMFs by minimizing the differences along CV between PMF of each run and
# average PMF of all runs. This gives the best alignment.
# \sum_{i=1 to N} ( (y_i + a) - y_avg_i)^2 is minimum when a = mean(y_avg_i - y_i)
fesDFListUpdated = []
for run in range(nsamples):
# calculate difference between y_avg_i and y_i
meanPoint = avgFE - localfesDFList[run].fe.values
meanPoint = meanPoint[~np.isnan(meanPoint)]
meanPoint = meanPoint[~np.isinf(meanPoint)]
# calculate a
meanPOint = np.mean(meanPoint)
# align each PMF using a
temp = localfesDFList[run].fe.values + np.mean(meanPoint)
# update dataframe
localfesDFList[run].fe = temp
fesDFListUpdated.append(localfesDFList[run])
# Obtain average and error on PMF profiles.
avgFE = np.zeros(nbins)
for run in range(nsamples):
avgFE += localfesDFList[run].fe.values
varFE += localfesDFList[run].fe.values*localfesDFList[run].fe.values
avgFE /= nsamples
varFE /= nsamples
varFE = (varFE - avgFE*avgFE)/(nsamples/(nsamples - 1))
# shift PMFs and avg PMF by finding the CV that is in the non-interacting state.
# Here, we use max of CV and max of CV - 1 nm (arbitrary) as a range for finding the cv
# to shift the PMFs, which here is the minimum free energy in that range.
#fe_min = 1000
# any CV is fine because it is the same in all runs.
#fe_min = find_min_avg(localfesDFList[0][cvname].values, avgFE, fe_min)
fe_minList = []
for run in range(nsamples):
fe_min = 1000
fe_minList.append(find_min_avg(localfesDFList[run][cvname].values, localfesDFList[run].fe.values, fe_min))
#return avgFE, np.sqrt(varFE), fesDFListUpdated, fe_min
return avgFE, np.sqrt(varFE), fesDFListUpdated, fe_minList
#### Helper function to calculate minimum PMF in a given range of CV.
def find_min_avg(cv, fe, fe_min):
"""
Calculate minimum in the PMF profile in a given CV range.
Parameters
----------
cv: String
CV name
fe: Array
PMF profile along cv.
fe_min: Float
Initial guess value to use for calculating minimum.
Returns
-------
fe_min: Float
Minimum along PMF profile.
"""
for i in range(0, len(cv)):
if cv[i] > np.max(cv) - 1 and cv[i] < np.max(cv):
if fe[i] < fe_min:
fe_min = fe[i]
return fe_min
# Defining Delta FE as area under the unbiased probability curve obtained from the aligned and shifted free energy profiles
def get_delta_fe_areaMethod(systemFEListUpdated, kT, cvname, cutoff):
"""
Calculate block average binding free energy by computing binding free energy in each
aligned PMF profile using area under the unbiased probability method.
Parameters
----------
systemFEListUpdated: List[DataFrame]
List of dataframes containing aligned PMF profiles.
kT: Float
kT in kJ/mol
cvname: String
CV name
cutoff: Float
Bound area cutoff.
Returns
-------
avgFreeEnergy: Float
Block averaged binding free energy.
sdFreeEnergy: Float
Standard error on binding free energy.
"""
localfesDFListUpdated = copy.deepcopy(systemFEListUpdated)
#avgFE = np.zeros(nbins)
#varFE = np.zeros(nbins)
nsamples = len(localfesDFListUpdated)
#print("nsamples: ", nsamples)
freeEnergyList = []
fe_minList = []
for block in range(nsamples):
boundReg = localfesDFListUpdated[block][ (localfesDFListUpdated[block][cvname] <= cutoff) ]
boundReg = boundReg[~np.isinf(boundReg.fe)]
fe_min = 1000
# NOTE: any CV is fine because it is the same in all runs.
fe_min = find_min_avg(localfesDFListUpdated[block][cvname].values, localfesDFListUpdated[block].fe.values, fe_min)
boundReg.fe = boundReg.fe - fe_min
#print(boundReg)
#print(kT)
#print(simps( np.exp(- (boundReg.fe )/(kT)), boundReg[cvname] ))
freeBoundReg = -(kT)*np.log( simps( np.exp(- (boundReg.fe )/(kT)), boundReg[cvname] ) )
freeEnergyList.append(freeBoundReg)
fe_minList.append(fe_min)
freeEnergyArray = np.array(freeEnergyList)
avgFreeEnergy = np.mean(freeEnergyArray)
sdFreeEnergy = np.std(freeEnergyArray)
return avgFreeEnergy, sdFreeEnergy
# Defining Delta FE as area under the unbiased probability curve obtained from the aligned and shifted free energy profiles
def get_Kb_areaMethod(systemFEListUpdated, kT, cvname, cutoff):
"""
Calculate block average binding constant by computing binding constant from each
aligned PMF profile using area (spherical integral) under the unbiased probability method.
Parameters
----------
systemFEListUpdated: List[DataFrame]
List of dataframes containing aligned PMF profiles.
kT: Float
kT in kJ/mol
cvname: String
CV name
cutoff: Float
Bound area cutoff.
Returns
-------
avgFreeEnergy: Float
Block averaged binding constant.
sdFreeEnergy: Float
Standard error on binding constant.
"""
localfesDFListUpdated = copy.deepcopy(systemFEListUpdated)
#avgFE = np.zeros(nbins)
#varFE = np.zeros(nbins)
nsamples = len(localfesDFListUpdated)
print("nsamples: ", nsamples)
freeEnergyList = []
fe_minList = []
for block in range(nsamples):
boundReg = localfesDFListUpdated[block][ (localfesDFListUpdated[block][cvname] <= cutoff) ]
boundReg = boundReg[~np.isinf(boundReg.fe)]
fe_min = 1000
# NOTE: any CV is fine because it is the same in all runs.
fe_min = find_min_avg(localfesDFListUpdated[block][cvname].values, localfesDFListUpdated[block].fe.values, fe_min)
#print(boundReg)
boundReg.fe = boundReg.fe - fe_min
C0 = 1/(1661*1e-3) # Standard state conc.
freeBoundReg = C0* simps( 4*np.pi*boundReg[cvname]*boundReg[cvname]*np.exp(- (boundReg.fe )/(kT)), boundReg[cvname] )
freeEnergyList.append(freeBoundReg)
fe_minList.append(fe_min)
freeEnergyArray = np.array(freeEnergyList)
avgFreeEnergy = np.mean(freeEnergyArray)
sdFreeEnergy = np.std(freeEnergyArray)
return avgFreeEnergy, sdFreeEnergy
def write_fes_tofile(method, fileName, analyte, probeSMILES, minFreeEnergy, minSD, formula):
"""
Write binding free energy or binding constant along with PROBE details to a text file (tab separated).
Parameters
----------
method: String
Enhanced sampling method.
fileName: String
Output file name.
analyte: String
PFAS/Interferent name.
probeSMILES: String
Probe smiles string.
minFreeEnergy: Float
Binding free energy or binding constant.
minSD: Float
Standard error
formula: String
Generate some interpretable formulae of probe by counting halogens/carbons/nitrogens.
Returns:
--------
NONE
Output file contains the following columns.
1. Method name
2. Analyte name
3. Number of carbon atoms in the probe.
4. Number of flourine atoms in the probe.
5. Number of hydrogen atoms in the probe.
6. Number of hydrogen atoms in the head group of the probe.
7. Number of carbon atoms in the head group of the probe.
8. Approximate head group name.
9. Average binding free energy or binding constant.
10.Standard error on binding free energy or binding constant.
11. SMILES string.
12. Approximate formulae.
"""
labelSMILES = Chem.MolFromSmiles(probeSMILES, sanitize=True)
lchain = probeSMILES.count('C')
lfl = probeSMILES.count('F')
lCl = probeSMILES.count('Cl')
lBr = probeSMILES.count('Br')
#print("\nlfl")
#print(lfl)
X = 'F'
if lCl != 0:
X = 'Cl'
lfl = lCl
lchain -= lCl
if lBr != 0:
X = 'Br'
lhydrogen = 2*lchain + 2 - lfl
countP = -1
if probeSMILES.count('P') > 0:
countP = probeSMILES.count('P')
probeSMILES = probeSMILES.replace('P', 'N')
rdkProbe = Chem.MolFromSmiles(probeSMILES, sanitize=True)
label_i_head_group_h_count = -1
label_i_head_group_c_count = -1
if fr_NH2(rdkProbe) == 1 and fr_quatN(rdkProbe) == 0 :
label_i_head_group_h_count = 2
label_i_head_group_c_count = 0
#print(probes[i], "primary amine")
elif fr_NH1(rdkProbe) == 1 and fr_quatN(rdkProbe) == 0:
label_i_head_group_h_count = 1
label_i_head_group_c_count = 1
#print(probes[i], "secondary amine")
elif fr_NH0(rdkProbe) == 1 and fr_quatN(rdkProbe) == 0:
label_i_head_group_h_count = 0
label_i_head_group_c_count = 2
#label_i_head_group = "0"
#print(probes[i], "tertiary amine")
elif fr_NH0(rdkProbe) == 1 and fr_quatN(rdkProbe) == 1:
label_i_head_group_h_count = 0
label_i_head_group_c_count = 3
#label_i_head_group = ""
#print(probes[i], "quaternary amine")
elif fr_NH2(rdkProbe) == 1 and fr_quatN(rdkProbe) == 1 :
label_i_head_group_h_count = 2
label_i_head_group_c_count = 1
#print(probes[i], "secondary amine cation")
elif fr_NH1(rdkProbe) == 1 and fr_quatN(rdkProbe) == 1:
label_i_head_group_h_count = 1
label_i_head_group_c_count = 2
#print(probes[i], "tertiary amine cation")
elif fr_NH0(rdkProbe) == 0 and fr_quatN(rdkProbe) == 1:
label_i_head_group_h_count = 3
label_i_head_group_c_count = 0
#print(probes[i], "primary amine cation")
if label_i_head_group_c_count > 0:
lchain = lchain - label_i_head_group_c_count
if countP == -1:
if label_i_head_group_h_count == -1 and label_i_head_group_c_count == -1:
label_i = 'C' + str(lchain) + X + str(lfl)
elif label_i_head_group_h_count == 0:
label_i = 'C' + str(lchain) + X + str(lfl) + '/N' + '(CH3)' + str(label_i_head_group_c_count)
elif label_i_head_group_c_count == 0:
label_i = 'C' + str(lchain) + X + str(lfl) + '/NH' + str(label_i_head_group_h_count)
elif label_i_head_group_h_count > 0 and label_i_head_group_c_count > 0:
label_i = 'C' + str(lchain) + X + str(lfl) + '/NH' + str(label_i_head_group_h_count) + '(CH3)' + str(label_i_head_group_c_count)
else:
if label_i_head_group_h_count == -1 and label_i_head_group_c_count == -1:
label_i = 'C' + str(lchain) + X + str(lfl)
elif label_i_head_group_h_count == 0:
label_i = 'C' + str(lchain) + X + str(lfl) + '/P' + '(CH3)' + str(label_i_head_group_c_count)
elif label_i_head_group_c_count == 0:
label_i = 'C' + str(lchain) + X + str(lfl) + '/PH' + str(label_i_head_group_h_count)
elif label_i_head_group_h_count > 0 and label_i_head_group_c_count > 0:
label_i = 'C' + str(lchain) + X + str(lfl) + '/PH' + str(label_i_head_group_h_count) + '(CH3)' + str(label_i_head_group_c_count)
with open(fileName, 'a') as deltaGFileObject:
deltaGFileObject.write(method.upper() + '\t' + analyte.upper() + '\t' + str(lchain) + '\t' + str(lfl) + '\t' + str(lhydrogen) + '\t' + str(label_i_head_group_h_count) + '\t' + str(label_i_head_group_c_count) + '\t' + label_i + '\t' + '\t' + str(minFreeEnergy) + '\t' + str(minSD) + '\t' + Chem.MolToSmiles(labelSMILES) + '\t' + formula + '\n')
################################################################################################################
################
################ UNUSED METHODS ARE BELOW.
################ Examples include average potential energy or average structure properties using reweighting.
################
################################################################################################################
# UNUSED METHOD: Minimum along PMF as binding free energy.
# Defining Delta FE as minimum free energy in the aligned and shifted free energy profiles
def get_delta_fe(avgFEDF, cvname):
"""
Calculate binding free energy by simply taking the minimum of PMF.
Parameters
----------
avgFEDF: DataFrame
Average PMF profile.
cvname: String
Target CV name.
Returns
-------
minLocation: Float
Location of minimum along CV.
minFreeEnergy: Float
Minimum PMF or binding free energy.
minSD: Float
Error at minimum PMF.
freeBoundRegArea: Float
Free energy estimation by taking area under the unbiased probability curve upto 1 nm (bound region)
from the average PMF profile.
"""
minLocation = avgFEDF[ ( avgFEDF.avg == avgFEDF.avg.min() ) ][cvname].values[0]
minFreeEnergy = avgFEDF[ ( avgFEDF.avg == avgFEDF.avg.min() ) ].avg.values[0]
minSD = avgFEDF[ ( avgFEDF.avg == avgFEDF.avg.min() ) ].sd.values[0]
#print("average")
boundReg = avgFEDF[ (avgFEDF[cvname] <= 1) ]
boundReg = boundReg[~np.isinf(boundReg.avg)]
fe_min = 1000
# any CV is fine because it is the same in all runs.
fe_min = find_min_avg(avgFEDF[cvname].values, avgFEDF.avg.values, fe_min)
boundReg.fe = boundReg.avg - fe_min
freeBoundRegArea = -(2.4942)*np.log( simps( np.exp(- (boundReg.avg )/(2.4942)), boundReg[cvname] ) )
#print(freeBoundRegArea)
return minLocation, minFreeEnergy, minSD, freeBoundRegArea
def old_write_fes_tofile(method, fileName, analyte, probeSMILES, minLocation, minFreeEnergy, minSD):
lchain = probeSMILES.count('C')
lfl = probeSMILES.count('F')
lCl = probeSMILES.count('Cl')
lBr = probeSMILES.count('Br')
#print("\nlfl")
#print(lfl)
X = 'F'
if lCl != 0:
X = 'Cl'
lfl = lCl
lchain -= lCl
if lBr != 0:
X = 'Br'
lhydrogen = 2*lchain + 2 - lfl
countP = -1
if probeSMILES.count('P') > 0:
countP = probeSMILES.count('P')
probeSMILES = probeSMILES.replace('P', 'N')
rdkProbe = Chem.MolFromSmiles(probeSMILES, sanitize=True)
label_i_head_group_h_count = -1
label_i_head_group_c_count = -1
if fr_NH2(rdkProbe) == 1 and fr_quatN(rdkProbe) == 0 :
label_i_head_group_h_count = 2
label_i_head_group_c_count = 0
#print(probes[i], "primary amine")
elif fr_NH1(rdkProbe) == 1 and fr_quatN(rdkProbe) == 0:
label_i_head_group_h_count = 1
label_i_head_group_c_count = 1
#print(probes[i], "secondary amine")
elif fr_NH0(rdkProbe) == 1 and fr_quatN(rdkProbe) == 0:
label_i_head_group_h_count = 0
label_i_head_group_c_count = 2
#label_i_head_group = "0"
#print(probes[i], "tertiary amine")
elif fr_NH0(rdkProbe) == 1 and fr_quatN(rdkProbe) == 1:
label_i_head_group_h_count = 0
label_i_head_group_c_count = 3
#label_i_head_group = ""
#print(probes[i], "quaternary amine")
elif fr_NH2(rdkProbe) == 1 and fr_quatN(rdkProbe) == 1 :
label_i_head_group_h_count = 2
label_i_head_group_c_count = 1
#print(probes[i], "secondary amine cation")
elif fr_NH1(rdkProbe) == 1 and fr_quatN(rdkProbe) == 1:
label_i_head_group_h_count = 1
label_i_head_group_c_count = 2
#print(probes[i], "tertiary amine cation")
elif fr_NH0(rdkProbe) == 0 and fr_quatN(rdkProbe) == 1:
label_i_head_group_h_count = 3
label_i_head_group_c_count = 0
#print(probes[i], "primary amine cation")
if label_i_head_group_c_count > 0:
lchain = lchain - label_i_head_group_c_count
if countP == -1:
if label_i_head_group_h_count == -1 and label_i_head_group_c_count == -1:
label_i = 'C' + str(lchain) + X + str(lfl)
elif label_i_head_group_h_count == 0:
label_i = 'C' + str(lchain) + X + str(lfl) + '/N' + '(CH3)' + str(label_i_head_group_c_count)
elif label_i_head_group_c_count == 0:
label_i = 'C' + str(lchain) + X + str(lfl) + '/NH' + str(label_i_head_group_h_count)
elif label_i_head_group_h_count > 0 and label_i_head_group_c_count > 0:
label_i = 'C' + str(lchain) + X + str(lfl) + '/NH' + str(label_i_head_group_h_count) + '(CH3)' + str(label_i_head_group_c_count)
else:
if label_i_head_group_h_count == -1 and label_i_head_group_c_count == -1:
label_i = 'C' + str(lchain) + X + str(lfl)
elif label_i_head_group_h_count == 0:
label_i = 'C' + str(lchain) + X + str(lfl) + '/P' + '(CH3)' + str(label_i_head_group_c_count)
elif label_i_head_group_c_count == 0:
label_i = 'C' + str(lchain) + X + str(lfl) + '/PH' + str(label_i_head_group_h_count)
elif label_i_head_group_h_count > 0 and label_i_head_group_c_count > 0:
label_i = 'C' + str(lchain) + X + str(lfl) + '/PH' + str(label_i_head_group_h_count) + '(CH3)' + str(label_i_head_group_c_count)
with open(fileName, 'a') as deltaGFileObject:
deltaGFileObject.write(method.upper() + '\t' + analyte.upper() + '\t' + str(lchain) + '\t' + str(lfl) + '\t' + str(lhydrogen) + '\t' + str(label_i_head_group_h_count) + '\t' + str(label_i_head_group_c_count) + '\t' + label_i + '\t' + str(minLocation) + '\t' + str(minFreeEnergy) + '\t' + str(minSD) + '\n')
def get_unbiased_property(temperature, simDir, systemDir, colvarFileList, colvarFileContentList, cvname, cvbiasname, propertyFileList, propertyFileContentList, binding, selectProperty, nbins):
kb = 8.31446261815324*0.001 #kJ/molK
kbt = kb*temperature #kJ/mol
preFactor = 2*kbt #kJ/mol for entropy correction
nsamples = len(colvarFileList)
totalDataFromAllSamples = []
for run in range(nsamples):
colvarFile = simDir + systemDir + colvarFileList[run]
# read colvarData into pandas DataFrame
colvarData = pd.read_csv(colvarFile, delim_whitespace=True, names=colvarFileContentList, comment="#")
colvarData = colvarData.tail(98300) # remove this after making sure all traj have 100000 frames
colvarData.reset_index(drop=True, inplace=True)
#print(colvarData)
# read property file
propertyFile = simDir + systemDir + propertyFileList[run]
propertyData = pd.read_csv(propertyFile, delim_whitespace=True, names=propertyFileContentList, comment="#")
propertyData = propertyData[~propertyData['time2'].str.contains("@", na=False)]
propertyData = propertyData.astype('float').tail(98300) # sane as above
propertyData.reset_index(drop=True, inplace=True)
#print(propertyData)
if selectProperty == "netEnergy":
propertyData['netEnergy'] = propertyData[propertyFileContentList[1:-2]].sum(axis=1)
#print(propertyData['netEnergy'])
# combine colvarData and propertyData
combinedData = pd.concat([colvarData, propertyData], axis=1)
totalDataFromAllSamples.append(combinedData.values.tolist())
totalDataFromAllSamplesArray = np.array(totalDataFromAllSamples)
totalDataFromAllSamplesArrayShape = totalDataFromAllSamplesArray.shape
#print(totalDataFromAllSamplesArrayShape)
newshape1 = totalDataFromAllSamplesArrayShape[0]*totalDataFromAllSamplesArrayShape[1]
newshape2 = totalDataFromAllSamplesArrayShape[2]
totalDataFromAllSamplesArray = totalDataFromAllSamplesArray.reshape(newshape1, newshape2)
totalData = pd.DataFrame(totalDataFromAllSamplesArray, columns=combinedData.columns.values.tolist())
nameList = ['bound', 'unbound', '']
# assuming cv is com
if binding == True:
totalData = totalData [ (totalData[cvname] <= 1) ]
dname = nameList[0]
elif binding == False:
totalData = totalData [ (totalData[cvname] > 2 ) & (totalData[cvname] <= 3) ]
dname = nameList[1]
elif binding == None:
totalData = totalData
dname = nameList[2]
# calculate weights of each frame in colvarData
weights = np.exp( (totalData[cvbiasname]) /kbt)
# get unbiased probabilities
selectedColumn = totalData[selectProperty]
p,dz = np.histogram(selectedColumn,range=[selectedColumn.min(),selectedColumn.max()],bins=nbins,weights=weights,density=True)
dz = dz[:-1]
average = np.average(selectedColumn.values, weights=weights)
sd = np.sqrt(np.average((selectedColumn.values-average)**2, weights=weights))
pDf = pd.DataFrame(np.array([dz, p]).transpose(), columns=[selectProperty, "probability"])
return pDf, average, sd
def get_delta_unbiased_property(averageBoundUnboundList, sdBoundUnboundList):
# assuming 1 is unbound and 0 is bound
deltaAverage = averageBoundUnboundList[0] - averageBoundUnboundList[1]
# error propagation
sd = np.sqrt(sdBoundUnboundList[0]*sdBoundUnboundList[0] + sdBoundUnboundList[1]*sdBoundUnboundList[1])
return deltaAverage, sd
def write_property_tofile(method, fileName, analyte, probeSMILES, propertyAvg, propertySD):
lchain = probeSMILES.count('C')
lfl = probeSMILES.count('F')
lhydrogen = 2*lchain + 2 - lfl
with open(fileName, 'a') as propertyFileObject:
propertyFileObject.write(method.upper() + '\t' + analyte.upper() + '\t' + str(lchain) + '\t' + str(lfl) + '\t' + str(lhydrogen) + '\t' + 'C' + str(lchain) + '/F' + str(lfl) + '\t' + str(propertyAvg) + '\t' + str(propertySD) + '\n')
def get_block_unbiased_property(temperature, simDir, systemDir, colvarFileName, colvarFileContentList, cvname, cvbiasname, propertyFileName, propertyFileContentList, binding, selectProperty, nbins, startTimeInPS, endTimeInPS):
kb = 8.31446261815324*0.001 #kJ/molK
kbt = kb*temperature #kJ/mol
preFactor = 2*kbt #kJ/mol for entropy correction
colvarFile = simDir + systemDir + colvarFileName
# read colvarData into pandas DataFrame
colvarData = pd.read_csv(colvarFile, delim_whitespace=True, names=colvarFileContentList, comment="#")
colvarData['time'] = colvarData['time'].round(1)
# discard initial few frames [frames where free energy is still being mapped]
colvarData = colvarData [ (colvarData.time > startTimeInPS) & (colvarData.time <= endTimeInPS) ]
colvarData.reset_index(drop=True, inplace=True)
#print(colvarData)
# calculate weights of each frame in colvarData
weights = np.exp( (colvarData[cvbiasname]) /kbt)
# read property file
propertyFile = simDir + systemDir + propertyFileName
propertyData = pd.read_csv(propertyFile, delim_whitespace=True, names=propertyFileContentList, comment="#")
propertyData = propertyData[~propertyData['time2'].str.contains("@", na=False)]
propertyData = propertyData.astype('float')#.tail(98300) # same as above
propertyData = propertyData [ (propertyData.time2 > startTimeInPS) & (propertyData.time2 <= endTimeInPS) ]
propertyData.reset_index(drop=True, inplace=True)
#print(propertyData)
if selectProperty == "netEnergy": #-2
propertyData['netEnergy'] = propertyData[propertyFileContentList[1:]].sum(axis=1)
#print("netEnergy ")
#print(propertyData.iloc[0])
# combine colvarData and propertyData
combinedData = pd.concat([colvarData, propertyData], axis=1)
#print(combinedData)
#totalDataFromAllSamples.append(combinedData.values.tolist())
nameList = ['bound', 'unbound', '']
# assuming cv is com
if binding == True:
combinedData = combinedData [ (combinedData[cvname] <= 1) ]
dname = nameList[0]
elif binding == False:
combinedData = combinedData [ (combinedData[cvname] > 2 ) & (combinedData[cvname] <= 3) ]
dname = nameList[1]
elif binding == None:
combinedData = combinedData
dname = nameList[2]
#print(combinedData)
# calculate weights of each frame in colvarData
weights = np.exp( (combinedData[cvbiasname]) /kbt)
#print("binding")
#print(binding)
#print(weights)
# get unbiased probabilities
selectedColumn = combinedData[selectProperty]
p,dz = np.histogram(selectedColumn,range=[selectedColumn.min(),selectedColumn.max()],bins=nbins,weights=weights,density=True)
dz = dz[:-1]
average = np.average(selectedColumn.values, weights=weights)
sd = np.sqrt(np.average((selectedColumn.values-average)**2, weights=weights))
pDf = pd.DataFrame(np.array([dz, p]).transpose(), columns=[selectProperty, "probability"])
return pDf, average, sd