Skip to content

Commit 5cdd3b6

Browse files
committed
G1
1 parent d5a290d commit 5cdd3b6

File tree

2 files changed

+33
-91
lines changed

2 files changed

+33
-91
lines changed

src/first_order/goedel1.md

+31-90
Original file line numberDiff line numberDiff line change
@@ -13,102 +13,43 @@ def LO.System.Complete : Prop := ∀ f, 𝓢 ⊢! f ∨ 𝓢 ⊢! ~f
1313

1414
## Theorem
1515

16-
$\Sigma_1$-sound and computable first-order theory, which is stronger than $\mathsf{PA}^-$, is incomplete.
16+
Let $T$ be a $\Delta_1$-definable arithmetic theory, stronger than $\mathsf{R}_0$ and $\Sigma_1$-sound.
1717

18-
```lean
19-
theorem LO.FirstOrder.Arith.first_incompleteness
20-
(T : LO.FirstOrder.Theory ℒₒᵣ)
21-
[DecidablePred T]
22-
[𝐄𝐐 ≼ T]
23-
[𝐏𝐀⁻ ≼ T]
24-
[LO.FirstOrder.Arith.SigmaOneSound T]
25-
[LO.FirstOrder.Theory.Computable T] :
26-
¬LO.System.Complete T
27-
```
28-
29-
This theorem is proved two distinct approach.
30-
31-
- [G1 in `FirstIncompleteness.lean`](https://formalizedformallogic.github.io/Foundation/docs/Logic/FirstOrder/Incompleteness/FirstIncompleteness.html#LO.FirstOrder.Arith.first_incompleteness)
32-
- [G1 in `SelfReference.lean`](https://formalizedformallogic.github.io/Foundation/docs/Logic/FirstOrder/Incompleteness/SelfReference.html#LO.FirstOrder.Arith.FirstIncompletenessBySelfReference.not_complete)
33-
34-
`FirstIncompleteness.lean` is computability theoretic proof, while `SelfReference.lean` uses a well-known self-referential argument.
35-
36-
### G1 in `FirstIncompleteness.lean`
37-
38-
Define a set of formulae with one variable.
39-
$$ D \coloneqq \{\varphi \mid T \vdash \lnot \varphi({\ulcorner \varphi \urcorner}) \} $$
40-
$D$ is r.e. since $T$ is computable. (one could use Craig's trick to weaken this condition to r.e., but I will not do that here.)
41-
42-
By the representation theorem, there exists a $\Sigma_1$ formula $\rho(x)$ that represents $D$. i.e.,
43-
44-
$$ T \vdash \rho({\ulcorner \varphi \urcorner}) \iff T \vdash \lnot \varphi({\ulcorner \varphi \urcorner})$$
45-
46-
Let $\gamma := \rho({\ulcorner \rho \urcorner})$. The next follows immediately.
47-
48-
$$ T \vdash \gamma \iff T \vdash \lnot \gamma $$
49-
50-
Thus, as $T$ is consistent, $\gamma$ is undecidable from $T$.
18+
### Representeation Theorem
5119

52-
### G1 in `SelfReference.lean`
20+
#### Theorem: Let $S$ be a r.e. set. Then, there exists a formula $\varphi_S(x)$ such that $n \in S \iff T \vdash \varphi_S(\overline{n})$ for all $n \in \mathbb{N}$.
5321

54-
Since the substitution of a formula is computable, there exists an $\Sigma_1$ formula $\mathrm{ssbs}(x, y, z)$ that represents this:
55-
56-
$$
57-
T \vdash (\forall x)[\mathrm{ssbs}(x, {\ulcorner \varphi \urcorner}, {\ulcorner \psi \urcorner})
58-
\leftrightarrow x = {\ulcorner \varphi({\ulcorner \psi \urcorner}) \urcorner}]
59-
$$
60-
61-
Define a sentence $\mathrm{fixpoint}_\theta$ for formula (with one variable) $\theta$ as follows.
22+
```lean
23+
lemma re_complete
24+
[𝐑₀ ≼ T] [Sigma1Sound T]
25+
{p : ℕ → Prop} (hp : RePred p) {x : ℕ} :
26+
p x ↔ T ⊢! ↑((codeOfRePred p)/[‘↑x’] : Sentence ℒₒᵣ)
27+
```
28+
- [re_complete](https://formalizedformallogic.github.io/Incompleteness/docs/Logic/FirstOrder/Arith/Representation.html#LO.FirstOrder.Arith.re_complete)
6229

63-
$$
64-
\begin{align*}
65-
\mathrm{fixpoint}_\theta
66-
&\coloneqq \mathrm{diag}_\theta(\ulcorner \mathrm{diag}_\theta \urcorner) \\
67-
\mathrm{diag}_\theta(x)
68-
&\coloneqq (\forall y)[\mathrm{ssbs}(y, x, x) \to \theta (y)]
69-
\end{align*}
70-
$$
30+
### Main Theorem
7131

72-
#### Fixpoint Lemma: $T \vdash \mathrm{fixpoint}_\theta \leftrightarrow \theta({\ulcorner \mathrm{fixpoint}_\theta \urcorner})$
32+
#### Theorem: $\Sigma_1$-sound and $\Delta_1$-definable first-order theory, which is stronger than $\mathsf{R_0}$, is incomplete.
7333

7434
- _Proof._
75-
$$
76-
\begin{align*}
77-
\mathrm{fixpoint}_\theta
78-
&\equiv
79-
(\forall x)[
80-
\mathrm{ssbs}(
81-
x,
82-
{\ulcorner \mathrm{diag}_\theta \urcorner},
83-
{\ulcorner \mathrm{diag}_\theta \urcorner}) \to
84-
\theta (x)
85-
] \\
86-
&\leftrightarrow
87-
\theta(\ulcorner \mathrm{diag}_\theta(\ulcorner \mathrm{diag}_\theta \urcorner) \urcorner) \\
88-
&\equiv
89-
\theta(\ulcorner \mathrm{fixpoint}_\theta \urcorner)
90-
\end{align*}
91-
$$
92-
93-
94-
Let $G := \mathrm{fixpoint}_{\lnot\mathrm{prov_T}(x)}$ (Gödel sentence; the sentence that states "This sentence is not provable"),
95-
where $\mathrm{prov}_T(x)$ is a formula represents provability.
96-
97-
Since $G$ is undecidable, this results in the incompleteness of $T$.
9835

99-
- Assume that $T \vdash G$. $T \vdash \lnot \mathrm{prov}_T(\ulcorner G \urcorner)$ follows from the fixpoint lemma,
100-
while $T \vdash \mathrm{prov}_T(\ulcorner G \urcorner)$ follows from the hypothesis. a contradiction.
101-
- Assume that $T \vdash \lnot G$. $T \vdash \mathrm{prov}_T(\ulcorner G \urcorner)$ follows from the fixpoint lemma,
102-
and $T \vdash G$ follows. a contradiction.
36+
Define a set of formulae with one variable.
37+
$$ D \coloneqq \{\varphi \mid T \vdash \lnot \varphi({\ulcorner \varphi \urcorner}) \} $$
38+
$D$ is r.e. since $T$ is $\Delta_1$-definable. (one could use Craig's trick to weaken this condition to $\Sigma_1$, but I will not do that here.)
39+
40+
By the representation theorem, there exists a $\Sigma_1$ formula $\rho(x)$ that represents $D$. i.e.,
41+
42+
$$ T \vdash \rho({\ulcorner \varphi \urcorner}) \iff T \vdash \lnot \varphi({\ulcorner \varphi \urcorner})$$
43+
44+
Let $\gamma := \rho({\ulcorner \rho \urcorner})$. The next follows immediately.
45+
46+
$$ T \vdash \gamma \iff T \vdash \lnot \gamma $$
47+
48+
Thus, as $T$ is consistent, $\gamma$ is undecidable from $T$. ∎
10349

104-
## About Second Theorem
105-
106-
To prove the second incompleteness theorem, as outlined in Gödel's original paper, one can derive it by proving the first incompleteness theorem again within arithmetic.
107-
Although this fact has not yet been formalized in this project.
108-
These efforts are being undertaken in a separated repository [iehality/Arithmetization](https://github.com/iehality/Arithmetization).
109-
110-
Notably, the formalization of the second incompleteness theorem has already been accomplished by L. C. Paulson in Isabelle.
111-
However, owing to the technical simplicity for coding and others. this formalization is on _hereditarily finite sets_ and not on arithmetic.
112-
113-
- [L. C. Paulson, "A machine-assisted proof of Gödel's incompleteness theorems for the theory of hereditarily finite sets"](https://www.repository.cam.ac.uk/items/bda52431-26e0-4e86-8d63-409bcedd4617)
114-
- [Isabelle AFP](https://www.isa-afp.org/entries/Incompleteness.html)
50+
```lean
51+
theorem goedel_first_incompleteness
52+
(T : Theory ℒₒᵣ) [𝐑₀ ≼ T] [Sigma1Sound T] [T.Delta1Definable] :
53+
¬System.Complete T
54+
```
55+
- [goedel_first_incompleteness](https://formalizedformallogic.github.io/Incompleteness/docs/Incompleteness/Arith/First.html#LO.FirstOrder.Arith.goedel_first_incompleteness)

src/first_order/goedel2.md

+2-1
Original file line numberDiff line numberDiff line change
@@ -224,6 +224,7 @@ $$
224224
\theta(\ulcorner \mathrm{fixpoint}_\theta \urcorner)
225225
\end{align*}
226226
$$
227+
227228

228229
```lean
229230
theorem LO.FirstOrder.Arith.diagonal (θ : Semisentence ℒₒᵣ 1) :
@@ -258,7 +259,7 @@ lemma consistent_iff_goedel [𝐈𝚺₁ ≼ T] [T.Delta1Definable] : T ⊢! ↑
258259
```
259260
- [consistent_iff_goedel](https://formalizedformallogic.github.io/Incompleteness/docs/Incompleteness/Arith/Second.html#LO.FirstOrder.Arith.consistent_iff_goedel)
260261

261-
#### Gödel's Second Incompleteness Theorem: $T$ cannot prove its own consistency, i.e., $T \nvdash \mathrm{Con}_T$ if $T$ is consistent. Moreover, $\mathrm{Con}_T$ is undecidable from $T$ if $\mathbb{N} \models T$.
262+
#### Theorem: $T$ cannot prove its own consistency, i.e., $T \nvdash \mathrm{Con}_T$ if $T$ is consistent. Moreover, $\mathrm{Con}_T$ is undecidable from $T$ if $\mathbb{N} \models T$.
262263

263264
```lean
264265
theorem goedel_second_incompleteness [𝐈𝚺₁ ≼ T] [T.Delta1Definable] [System.Consistent T] : T ⊬ ↑𝗖𝗼𝗻

0 commit comments

Comments
 (0)