Skip to content
This repository was archived by the owner on Jul 1, 2025. It is now read-only.

Commit ef91953

Browse files
committed
goedel2 wip
1 parent c1cd584 commit ef91953

File tree

1 file changed

+49
-0
lines changed

1 file changed

+49
-0
lines changed

src/first_order/goedel2.md

Lines changed: 49 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -171,7 +171,56 @@ Thanks to the completeness theorem, the following holds.
171171
- $U \vdash \mathrm{Bew}_T(\ulcorner \sigma \to \pi \urcorner) \to \mathrm{Bew}_T(\ulcorner \sigma \urcorner) \to \mathrm{Bew}_T(\ulcorner \pi \urcorner)$
172172
- $U \vdash \sigma \to \mathrm{Bew}_T(\ulcorner \sigma \urcorner)$ if $\sigma \in \Sigma_1\text{-sentence}$
173173

174+
## Second Incompleteness Theorem
174175

176+
Assume that $T$ is stronger than $\mathsf{I}\Sigma_1$.
177+
178+
### Fixpoint Lemma
179+
180+
Since the substitution is $\Sigma_1$, There is a formula $\mathrm{ssnum}(y, p, x)$
181+
such that, for all formula $\varphi$ with only one variable and $x, y \in V$,
182+
183+
$$
184+
\mathrm{ssnum}(y, {\ulcorner \varphi \urcorner}, x) \iff
185+
y = \ulcorner \varphi(\overline{x}) \urcorner
186+
$$
187+
188+
holds. (overline $\overline{\bullet}$ denotes the (formalized) numeral of $x$)
189+
190+
Define a sentence $\mathrm{fixpoint}_\theta$ for formula (with one variable) $\theta$ as follows.
191+
192+
$$
193+
\begin{align*}
194+
\mathrm{fixpoint}_\theta
195+
&\coloneqq \mathrm{diag}_\theta(\overline{\ulcorner \mathrm{diag}_\theta \urcorner}) \\
196+
\mathrm{diag}_\theta(x)
197+
&\coloneqq (\forall y)[\mathrm{ssnum}(y, x, x) \to \theta (y)]
198+
\end{align*}
199+
$$
200+
201+
**Lemma**: $T \vdash \mathrm{fixpoint}_\theta \leftrightarrow \theta({\ulcorner \mathrm{fixpoint}_\theta \urcorner})$
202+
203+
- _Proof._
204+
$$
205+
\begin{align*}
206+
\mathrm{fixpoint}_\theta
207+
&\equiv
208+
(\forall x)[
209+
\mathrm{ssnum}(
210+
x,
211+
{\ulcorner \mathrm{diag}_\theta \urcorner},
212+
{\ulcorner \mathrm{diag}_\theta \urcorner}) \to
213+
\theta (x)
214+
] \\
215+
&\leftrightarrow
216+
\theta(\ulcorner \mathrm{diag}_\theta(\overline{\ulcorner \mathrm{diag}_\theta \urcorner}) \urcorner) \\
217+
&\equiv
218+
\theta(\ulcorner \mathrm{fixpoint}_\theta \urcorner)
219+
\end{align*}
220+
$$
221+
222+
223+
### Main Theorem
175224

176225

177226

0 commit comments

Comments
 (0)