@@ -171,7 +171,56 @@ Thanks to the completeness theorem, the following holds.
171
171
- $U \vdash \mathrm{Bew}_ T(\ulcorner \sigma \to \pi \urcorner) \to \mathrm{Bew}_ T(\ulcorner \sigma \urcorner) \to \mathrm{Bew}_ T(\ulcorner \pi \urcorner)$
172
172
- $U \vdash \sigma \to \mathrm{Bew}_ T(\ulcorner \sigma \urcorner)$ if $\sigma \in \Sigma_1\text{-sentence}$
173
173
174
+ ## Second Incompleteness Theorem
174
175
176
+ Assume that $T$ is stronger than $\mathsf{I}\Sigma_1$.
177
+
178
+ ### Fixpoint Lemma
179
+
180
+ Since the substitution is $\Sigma_1$, There is a formula $\mathrm{ssnum}(y, p, x)$
181
+ such that, for all formula $\varphi$ with only one variable and $x, y \in V$,
182
+
183
+ $$
184
+ \mathrm{ssnum}(y, {\ulcorner \varphi \urcorner}, x) \iff
185
+ y = \ulcorner \varphi(\overline{x}) \urcorner
186
+ $$
187
+
188
+ holds. (overline $\overline{\bullet}$ denotes the (formalized) numeral of $x$)
189
+
190
+ Define a sentence $\mathrm{fixpoint}_ \theta$ for formula (with one variable) $\theta$ as follows.
191
+
192
+ $$
193
+ \begin{align*}
194
+ \mathrm{fixpoint}_\theta
195
+ &\coloneqq \mathrm{diag}_\theta(\overline{\ulcorner \mathrm{diag}_\theta \urcorner}) \\
196
+ \mathrm{diag}_\theta(x)
197
+ &\coloneqq (\forall y)[\mathrm{ssnum}(y, x, x) \to \theta (y)]
198
+ \end{align*}
199
+ $$
200
+
201
+ ** Lemma** : $T \vdash \mathrm{fixpoint}_ \theta \leftrightarrow \theta({\ulcorner \mathrm{fixpoint}_ \theta \urcorner})$
202
+
203
+ - _ Proof._
204
+ $$
205
+ \begin{align*}
206
+ \mathrm{fixpoint}_\theta
207
+ &\equiv
208
+ (\forall x)[
209
+ \mathrm{ssnum}(
210
+ x,
211
+ {\ulcorner \mathrm{diag}_\theta \urcorner},
212
+ {\ulcorner \mathrm{diag}_\theta \urcorner}) \to
213
+ \theta (x)
214
+ ] \\
215
+ &\leftrightarrow
216
+ \theta(\ulcorner \mathrm{diag}_\theta(\overline{\ulcorner \mathrm{diag}_\theta \urcorner}) \urcorner) \\
217
+ &\equiv
218
+ \theta(\ulcorner \mathrm{fixpoint}_\theta \urcorner)
219
+ \end{align*}
220
+ $$
221
+ ∎
222
+
223
+ ### Main Theorem
175
224
176
225
177
226
0 commit comments