-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtensorflow_implementation_v1.py
470 lines (400 loc) · 18.6 KB
/
tensorflow_implementation_v1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
from __future__ import print_function, division
from tensorflow.keras.datasets import mnist
from tensorflow.keras.layers import Input, Dense, Reshape, Flatten
from tensorflow.keras.layers import BatchNormalization, LeakyReLU
from tensorflow.keras.models import Sequential, Model
from tensorflow.keras.optimizers import Adam
import glob
import imageio
import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import os
from datetime import datetime
from bit_operations import BitOps
def make_animation(folder, output_path):
with imageio.get_writer(output_path, mode='I') as writer:
filenames = glob.glob(f"images/{folder}/*.png")
filenames = sorted(filenames)
for filename in filenames:
image = imageio.imread(filename)
writer.append_data(image)
class MutGAN:
def __init__(self,
batch_size=128,
epochs=30_000,
sample_interval=50,
enable_mutations=True,
mutation_interval=3000,
n_mut=10,
mutation_prob=0.02,
combined_mutation_mode=True):
# General attributes
self.batch_size = batch_size
self.epochs = epochs
# Mutations and selection attributes
self.enable_mutations = enable_mutations
self.mutation_interval = mutation_interval
self.n_mut = n_mut
self.mutation_prob = mutation_prob
self.mut_prob_reducer = 40
# Define whether to update parameters on the self.combined or
# the self.generator:
self._combined_mutation_mode = combined_mutation_mode
# Input attributes
self.img_rows, self.img_cols, self.channels = self.img_shape = (
28, 28, 1
)
self.latent_dim = 100
# Training tuning attributes
self.lr = 2e-4
self.beta1 = 0.5
# Samples and logs
self.sample_interval = sample_interval
self.sample_image_rows, self.sample_image_cols = 5, 5
self.collect_logs = True
self.log_interval = 10
self.model_name_suffix = (f"_m{self.enable_mutations}"
f"_ep{self.epochs}_bs{self.batch_size}"
f"_nm{self.n_mut}_mp{self.mutation_prob}"
f"_mi{self.mutation_interval}")
self.UNIQUE_MODEL_NAME = (
f"TensorFlow_V1_t{datetime.now().strftime('%Y%m%d_%H%M%S')}"
f"{self.model_name_suffix}"
)
# Adding logging variables
self.log_ar = np.array([
np.empty((epochs, 2)), # d_loss_real
np.empty((epochs, 2)), # d_loss_fake
np.empty((epochs, 2)), # average d_loss
np.empty((epochs, 2)), # g_loss
np.empty((epochs, 2)), # mut success rate
])
self.n_of_mut_res_to_log = np.ceil(n_mut / 10 + 1).astype("int32")
number_of_mut = np.ceil(epochs / mutation_interval).astype("int32")
self.mutations_log = np.empty(
(number_of_mut, self.n_of_mut_res_to_log)
)
self.log_df, self.mutations_log_df = None, None
self.train_step, self.train_writer = None, None
self.seed = tf.random.normal([self.batch_size, self.latent_dim])
# self.seed = np.random.normal(0, 1, (self.batch_size, self.latent_dim))
optimizer = Adam(self.lr, self.beta1)
# Build and compile the discriminator
self.discriminator = self.build_discriminator()
self.discriminator.compile(loss='binary_crossentropy',
optimizer=optimizer,
metrics=['accuracy'])
# Build the generator
self.generator = self.build_generator()
# The generator takes noise as input and generates imgs
z = Input(shape=(self.latent_dim,))
img = self.generator(z)
# For the combined model we will only train the generator
self.discriminator.trainable = False
# The discriminator takes generated images
# as input and determines validity
validity = self.discriminator(img)
# The combined model (stacked generator and discriminator)
# Trains the generator to fool the discriminator
self.combined = Model(z, validity)
self.combined.compile(loss='binary_crossentropy', optimizer=optimizer)
def get_model_name(self):
self.update_model_name()
return self.UNIQUE_MODEL_NAME
def update_model_name(self):
""" Updates model name if it has been changed after model
initialization
"""
self.update_model_suffix()
self.UNIQUE_MODEL_NAME = (
f"Mod_E_GAN_t{datetime.now().strftime('%Y%m%d_%H%M%S')}"
f"{self.model_name_suffix}"
)
def get_model_suffix(self):
self.update_model_suffix()
return self.model_name_suffix
def update_model_suffix(self):
""" Updates model suffix if it has been changed after model
initialization
"""
self.model_name_suffix = (f"_m{self.enable_mutations}"
f"_ep{self.epochs}_bs{self.batch_size}"
f"_nm{self.n_mut}_mp{self.mutation_prob}"
f"_mi{self.mutation_interval}")
def build_generator(self, summary=True):
model = Sequential()
model.add(Dense(256, input_dim=self.latent_dim))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dense(512))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dense(1024))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dense(np.prod(self.img_shape), activation='tanh'))
model.add(Reshape(self.img_shape))
if summary:
model.summary()
noise = Input(shape=(self.latent_dim,))
img = model(noise)
return Model(noise, img)
def build_discriminator(self):
model = Sequential()
model.add(Flatten(input_shape=self.img_shape))
model.add(Dense(512))
model.add(LeakyReLU(alpha=0.2))
model.add(Dense(256))
model.add(LeakyReLU(alpha=0.2))
model.add(Dense(1, activation='sigmoid'))
model.summary()
img = Input(shape=self.img_shape)
validity = model(img)
return Model(img, validity)
def create_mutations(self, weights, **kwargs):
template = [None for _ in range(len(weights))]
mutated_params = [template.copy() for _ in range(self.n_mut)]
for param_ind, param in enumerate(weights):
mut_engine = BitOps(param.flatten())
mut_engine.mutate(n_mut=self.n_mut, **kwargs)
for mut_ind in range(self.n_mut):
mutated_params[mut_ind][param_ind] = mut_engine. \
mutations[mut_ind].reshape(param.shape)
del mut_engine
return mutated_params
def compare_mutations(self, mutations, mut_log_number=0, n_tests=16):
mut_loss_res = np.empty(len(mutations))
noise = np.random.normal(0, 1, (n_tests, self.latent_dim))
if self._combined_mutation_mode:
valid = np.ones((n_tests, 1))
original_parameters = self.combined.layers[1].get_weights()
curr_loss = self.combined.test_on_batch(noise, valid)
for mut_ind, mutation in enumerate(mutations):
self.combined.layers[1].set_weights(mutation)
mut_loss_res[mut_ind] = self.combined.test_on_batch(noise,
valid)
self.combined.layers[1].set_weights(original_parameters)
extreme_direction = "smaller"
extreme_ind = np.argmin(mut_loss_res)
to_print_and_log = np.copy(mut_loss_res)
to_print_and_log.sort()
else:
fake = np.zeros((n_tests, 1))
curr_loss = self.discriminator.test_on_batch(
self.generator(noise),
fake
)[0]
original_parameters = self.discriminator.layers[1].get_weights()
for mut_ind, mutation in enumerate(mutations):
self.discriminator.layers[1].set_weights(mutation)
gen_eval_imgs = self.discriminator.predict(noise)
mut_loss_res[mut_ind] = self.discriminator. \
test_on_batch(gen_eval_imgs, fake)[0]
self.generator.layers[1].set_weights(original_parameters)
extreme_direction = "larger"
extreme_ind = np.argmax(mut_loss_res)
to_print_and_log = np.copy(mut_loss_res)
to_print_and_log[::-1].sort()
self.mutations_log[mut_log_number][0] = curr_loss
self.mutations_log[mut_log_number][1:] = to_print_and_log[
0:self.n_of_mut_res_to_log - 1
]
print(f"Current loss {curr_loss:.4}\n"
f"Best mutations ({extreme_direction} is better):\n\t",
to_print_and_log[:3], to_print_and_log[-3:])
if ((mut_loss_res[extreme_ind] > curr_loss) ^
self._combined_mutation_mode):
return mutations[int(extreme_ind)], mut_loss_res[extreme_ind]
return None, None
def train(self):
self.update_model_name()
imgs_folder_name = f"{self.UNIQUE_MODEL_NAME}"
animation_path = f"images/{imgs_folder_name}/animation.gif"
os.makedirs(f"images/{imgs_folder_name}", exist_ok=True)
# If collect logs => generate folders and writer for the logs
if self.collect_logs:
self.train_step = 0
self.train_writer = tf.summary.create_file_writer(
f"logs/TensorBoard/{self.UNIQUE_MODEL_NAME}"
)
# Load the dataset
(x_train, _), (_, _) = mnist.load_data()
# Rescale -1 to 1
x_train = x_train / 127.5 - 1.
x_train = np.expand_dims(x_train, axis=3)
# Adversarial ground truths
valid = np.ones((self.batch_size, 1))
fake = np.zeros((self.batch_size, 1))
mut_success_rate = np.zeros(2, dtype="int32")
for epoch in range(self.epochs):
# ---------------------
# Train Discriminator
# ---------------------
# Select a random batch of images
idx = np.random.randint(0, x_train.shape[0], self.batch_size)
imgs = x_train[idx]
noise = np.random.normal(0, 1, (self.batch_size, self.latent_dim))
# Generate a batch of new images
gen_imgs = self.generator.predict(noise)
# Train the discriminator
d_loss_real = self.discriminator.train_on_batch(imgs, valid)
d_loss_fake = self.discriminator.train_on_batch(gen_imgs, fake)
d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
# ---------------------
# Train Generator
# ---------------------
noise = np.random.normal(0, 1, (self.batch_size, self.latent_dim))
# Train the generator
# (to have the discriminator label samples as valid)
g_loss = self.combined.train_on_batch(noise, valid)
# Collect log info
if epoch % self.log_interval == 0 and self.collect_logs:
self.log_ar[0][epoch] = d_loss_real
self.log_ar[1][epoch] = d_loss_fake
self.log_ar[2][epoch] = d_loss
self.log_ar[3][epoch] = g_loss
self.log_ar[4][epoch] = mut_success_rate
self.log_tf_summary(g_loss, *d_loss)
# If at mutation interval => create and verify new mutations
logs_were_collected_during_mut = False
if epoch % self.mutation_interval == 0 and self.enable_mutations \
and epoch: # equivalent to epoch != 0
mut_success_rate[1] += 1
# If mutation probability reducer is not None, then
# reduce default mutation probability
mut_probability = self.mutation_prob
if self.mut_prob_reducer is not None:
mut_probability /= epoch / self.mut_prob_reducer + 1
if self._combined_mutation_mode:
weights = self.combined.layers[1].get_weights()
else:
weights = self.generator.layers[1].get_weights()
print(f"\nCalculating mutations with p = {mut_probability:.5%}")
new_params, new_d_loss_fake = self.compare_mutations(
self.create_mutations(weights, prob=mut_probability))
# Use mutated parameters of the model
# if they better obfuscate the discriminator
if new_params is not None:
mut_success_rate[0] += 1
print("Applying new parameters!\n")
if self._combined_mutation_mode:
self.combined.layers[1].set_weights(new_params)
else:
self.generator.layers[1].set_weights(new_params)
# Rewriting logs with new values after mutation
new_d_loss = 0.5 * np.add(d_loss_real[0], new_d_loss_fake)
if self.collect_logs:
logs_were_collected_during_mut = True
self.log_tf_summary(g_loss, new_d_loss,
include_layers=True,
add_step=False)
self.train_writer.flush()
else:
print("Mutation unsuccessful, keeping old parameters.\n")
# If at save interval => save generated image samples
if epoch % self.sample_interval == 0:
# Plot the progress
print(
f"## {epoch} ## "
f"[D loss: {d_loss[0]:.4}, acc.: {d_loss[1]:.2%}] "
f"[G loss: {g_loss:.4}] [Mutations success rate "
f"{mut_success_rate[0]}/{mut_success_rate[1]}]"
)
# Update TensorBoard stats
if self.collect_logs and not logs_were_collected_during_mut:
self.log_tf_summary(g_loss, *d_loss,
include_layers=True,
include_image_sample=True,
add_step=False)
self.train_writer.flush()
# Generate the image
image_sample = self.generate_image_sample()
self.save_images(image_sample, imgs_folder_name, epoch)
# Create an animation
make_animation(imgs_folder_name, animation_path)
def generate_image_sample(self):
gen_imgs = self.generator.predict(self.seed)
# Rescale images 0 - 1
return 0.5 * gen_imgs + 0.5
def save_images(self, image_sample, folder, epoch=-1):
fig, axs = plt.subplots(self.sample_image_rows, self.sample_image_cols)
cnt = 0
for i in range(self.sample_image_rows):
for j in range(self.sample_image_cols):
axs[i, j].imshow(image_sample[cnt, :, :, 0], cmap='gray')
axs[i, j].axis('off')
cnt += 1
fig.savefig(f"images/{folder}/{epoch}.png")
plt.close()
def log_tf_summary(self, g_loss, d_loss, d_accuracy=None,
include_layers=False, include_image_sample=False,
add_step=True):
if add_step:
self.train_step += 1
with self.train_writer.as_default():
tf.summary.scalar("Generator loss",
g_loss, step=self.train_step)
tf.summary.scalar("Discriminator loss",
d_loss, step=self.train_step)
if d_accuracy is not None:
tf.summary.scalar("Discriminator accuracy",
d_accuracy, step=self.train_step)
if include_image_sample:
image_sample = self.generate_image_sample()
tf.summary.image("Image Sample", image_sample, step=0)
if include_layers:
dict_of_layers = {
"Gen": self.generator.layers,
"Disc": self.discriminator.layers,
"Comb": self.combined.layers,
}
for model_name, model_layers in dict_of_layers.items():
for layer_ind in range(1, len(model_layers)):
for param_ind, param in enumerate(
model_layers[layer_ind].get_weights()
):
tf.summary.histogram(
f"{model_name}_lid{layer_ind}_pid{param_ind}",
data=param,
step=self.train_step
)
def save_log_info(self, path="logs/"):
# Creating DataFrames from the collected log info
self.update_model_suffix()
self.log_df = pd.DataFrame({
"d_loss_real": self.log_ar[0, :, 0],
"d_loss_real_acc": self.log_ar[0, :, 1],
"d_loss_fake": self.log_ar[1, :, 0],
"d_loss_fake_acc": self.log_ar[1, :, 1],
"average_d_loss": self.log_ar[2, :, 0],
"average_d_loss_acc": self.log_ar[2, :, 1],
"g_loss": self.log_ar[3, :, 0],
"g_loss_acc": self.log_ar[3, :, 1],
"successful_mut": self.log_ar[4, :, 0],
"mut_counter": self.log_ar[4, :, 1],
})
if self.mutation_interval == 1 and self.enable_mutations:
self.log_df["original_d_loss"] = self.mutations_log[:, 0]
self.log_df["best_mut_d_loss"] = self.mutations_log[:, 1]
self.mutations_log_df = pd.DataFrame(self.mutations_log)
# Writing down collected log info
os.makedirs(path, exist_ok=True)
self.log_df.to_csv(f"{path}loss_log{self.model_name_suffix}.csv")
if self.enable_mutations:
self.mutations_log_df.to_csv(f"{path}mut_log"
f"{self.model_name_suffix}.csv")
if __name__ == '__main__':
gan = MutGAN(
epochs=30_000,
batch_size=32,
sample_interval=200,
enable_mutations=False,
n_mut=150,
mutation_prob=0.0001,
mutation_interval=1000,
combined_mutation_mode=True
)
gan.mut_prob_reducer = None
gan.train()