+Carbon nanotubes can be manufactured at a large scale using the electric-arc technique (Journet6644). This technique involves creating an arc between two electrodes in a reactor under a helium atmosphere and using a mixture of a metallic catalyst and graphite powder in the anode. Yields of 80% of entangled carbon filaments can be achieved, which consist of smaller aligned SWNTs self-organized into bundle-like crystallites (Journet6644). Additionally, carbon nanotubes can be synthesized and self-assembled using various methods such as DNA-mediated self-assembly, nanoparticle-assisted alignment, chemical self-assembly, and electro-addressed functionalization (Tulevski2007). These methods have been used to fabricate large-area nanostructured arrays, high-density integration, and freestanding networks (Tulevski2007). 98% semiconducting CNT network solution can also be used and is separated from metallic nanotubes using a density gradient ultracentrifugation approach (Chen2014). The substrate is incubated in the solution and then rinsed with deionized water and dried with N2 air gun, leaving a uniform carbon network (Chen2014).
0 commit comments