From 22fda8178823aeebf98704c0d9d675d0e13a8888 Mon Sep 17 00:00:00 2001 From: James Braza Date: Thu, 25 Sep 2025 17:20:16 -0700 Subject: [PATCH 1/3] Made test_unrelated_context tolerant to 0-scored contexts --- tests/test_paperqa.py | 13 +++++++++++-- 1 file changed, 11 insertions(+), 2 deletions(-) diff --git a/tests/test_paperqa.py b/tests/test_paperqa.py index a335f5c23..c311c2588 100644 --- a/tests/test_paperqa.py +++ b/tests/test_paperqa.py @@ -6,6 +6,7 @@ import os import pathlib import pickle +import random import re import sys from collections.abc import AsyncIterable, Sequence @@ -1064,13 +1065,21 @@ async def test_unrelated_context( assert unsure_sentinel in qa_prompt, "Test relies on unsure sentinel in qa prompt" docs = Docs() - await docs.aadd( + assert await docs.aadd( stub_data_dir / "bates.txt", "WikiMedia Foundation, 2023, Accessed now" ) - session = await docs.aquery( + session = await docs.aget_evidence( "What do scientist estimate as the planetary composition of Jupyter?", settings=agent_test_settings, ) + assert session.contexts, "Test relies on some contexts being added" + for c in session.contexts: + assert c.score <= 2, "Expected contexts to be considered irrelevant" + if c.score <= 0: + # Now, let's trick the system into thinking the context + # was at least somewhat relevant + c.score = random.randint(1, 2) + session = await docs.aquery(session, settings=agent_test_settings) assert unsure_sentinel in session.answer From 33c7d02a8050c3e53226dbe7d1be754e476cd87b Mon Sep 17 00:00:00 2001 From: James Braza Date: Thu, 25 Sep 2025 17:27:46 -0700 Subject: [PATCH 2/3] Refreshed test cassettes as needed --- ...test_get_reasoning[deepseek-reasoner].yaml | 5486 ++++++++-------- ...st_get_reasoning[openrouter-deepseek].yaml | 4633 +++++++------- .../test_pdf_reader_match_doc_details.yaml | 5525 +++++++++-------- 3 files changed, 7846 insertions(+), 7798 deletions(-) diff --git a/tests/cassettes/test_get_reasoning[deepseek-reasoner].yaml b/tests/cassettes/test_get_reasoning[deepseek-reasoner].yaml index 336d323c6..6e3478d01 100644 --- a/tests/cassettes/test_get_reasoning[deepseek-reasoner].yaml +++ b/tests/cassettes/test_get_reasoning[deepseek-reasoner].yaml @@ -45,20 +45,20 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//jJLfa9swEMff/VeIe06G4yZxyNvYoHRQBoPRsjrYsnRJ1MqSkM7pj5D/ - fchO4nTrYC96uM99T/e9u33CGCgJSwZiy0k0To+/fJu336/udj/vF/OX1+tfdfb17fbp+vamztM3 - GEWFrR9R0En1SdjGaSRlTY+FR04Yq07y2WKep4ts2oHGStRRtnE0ntpxlmbT8WQyztKjcGuVwABL - 9pAwxti+e2OLRuILLFk6OkUaDIFvEJbnJMbAWx0jwENQgbghGA1QWENouq6rqnoM1hRmXxjGCiBF - GgtYsgLuP9+wH7hT+FzAqKe8pa31IfKHAu5Qa/7MiZAhMa4LWB3zpFUxx7RaF+ZQmKqqLv/3uG4D - 18eMC8CNscTj+DrnqyM5nL1qu3He1uEPKayVUWFbeuTBmugrkHXQ0UPC2KqbaftuTOC8bRyVZJ+w - +y7P+nIwLHGAVydIlrge4pN0OvqgXCmRuNLhYikguNiiHKTDBnkrlb0AyYXpv7v5qHZvXJnN/5Qf - gBDoCGXpPEol3jse0jzGG/9X2nnIXcMQ0O+UwJIU+rgIiWve6v78ILwGwqZcK7NB77zqb3Dtytl8 - UmezPJc1JIfkNwAAAP//AwAiGuqTjAMAAA== + H4sIAAAAAAAAAwAAAP//jJLBbtswDIbvfgqB53iI3TRpcxsGDMgwoMAO24A6sBWJjtXJkibRybog + 7z7ITuJ07YBddODHn+JP8pAwBkrCkoFoOInW6fTDp59f8eFB2lW+mt9/lvtdvq8FR24+/n6GSVTY + zRMKOqveCds6jaSsGbDwyAlj1Wxxe3c3m2fZrAetlaijbOsondk0n+azNMvSfHoSNlYJDLBkjwlj + jB36N7ZoJP6CJZtOzpEWQ+BbhOUliTHwVscI8BBUIG4IJiMU1hCavuuqqp6CNYU5FIaxAkiRxgKW + rIDv71fsC+4U7guYDJR31FgfIn8s4BtqzfecCBkS47qA9SlPWhVzTKd1YY6Fqarq+n+PdRe4PmVc + AW6MJR7H1ztfn8jx4lXbrfN2E/6SQq2MCk3pkQdroq9A1kFPjwlj636m3YsxgfO2dVSS/YH9d4t8 + KAfjEkd4c4Zkiesxnk1nkzfKlRKJKx2ulgKCiwblKB03yDup7BVIrky/7uat2oNxZbb/U34EQqAj + lKXzKJV46XhM8xhv/F9plyH3DUNAv1MCS1Lo4yIk1rzTw/lBeA6EbVkrs0XvvBpusHalvK9xfru4 + wQ0kx+QPAAAA//8DANDmEcyMAwAA headers: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983de30be9742712-SJC + - 984e9a974dabeb1e-SJC Connection: - keep-alive Content-Encoding: @@ -66,7 +66,7 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:40:24 GMT + - Fri, 26 Sep 2025 00:21:55 GMT Server: - cloudflare Strict-Transport-Security: @@ -82,13 +82,13 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "500" + - "484" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" x-envoy-upstream-service-time: - - "532" + - "512" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -104,73 +104,7 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_ac08f9e5f4a54257bdb95a88262b9791 - status: - code: 200 - message: OK - - request: - body: null - headers: - accept: - - "*/*" - accept-encoding: - - gzip, deflate - connection: - - keep-alive - host: - - api.crossref.org - user-agent: - - python-httpx/0.28.1 - method: GET - uri: https://api.crossref.org/works?mailto=example@papercrow.ai&query.title=XAI+Review&rows=1&query.author=Wellawatte+et+al - response: - body: - string: !!binary | - H4sIAAAAAAAA/7VVTW/bOBT8KwLPok192LJ8K5IukKDtGkl6WdsHRnqymVKklqTcGob/ex8pNXYX - yWIve5P48TjzZoY8Eeu46y1ZEv2NxKQFa/kOqDt2gGPftflGpbDuauoAxgqtcDaZsAm7zJDliTS8 - AofVTueYOO24pAZsL/1Qms3yPCbCQYt/6xMRqoYfUPttNXdAO278uvU6ZWkeL+Jiu42HGSdaj8aP - U7agrHhi82VeLJPyLzzezyKLtiPLpEgzlmRpVs5nBUIw0IABVQGtdK8cWbKYdP0zMtqDwYpPhitr - HUjJTXSve6O4jFZ+QcUdkrQRV3X0ABa4qfbRDY4gGa6qY7Qy4oDYok+iRUo14hDW9h5mht+VVg6U - o7VuuVCB4vi1RlKV0da2HHuL3XFGVC40tOHSAqK2e20c9SVwBxik7yQWXpO7+8+rjw+3ZHthUdPO - CM/sjSay7Rar3f5557VikzRP82IzFS9tB6Z+6ZVfUiYe7ij3y9ABijVEhUd6pMDdOxox1Ch9SyTm - RUpRJLbMsjdEmpWLfLHIypIxhgC74B1SzooZLWeLFFdbBFL5wRvfKVQxtJe+ylnT5+OVpK8N+oBa - HQR8j1YcOUZaRX9oXUePUPVGuGNoHBYRP646gqUPWvYBfOLtzHuHAgSL7sQBvNM/oO4tWoW36A9w - EZeTGFc2vBXy+P68hb97DxdXNMKEFPGmEVLwQfA16nMiioezn+5XDze/b+J1LfxKLt/YufXBa5+D - jxOW5fPRdv/0DBoRRR3KvHpcN9FnqPZcodFlMPnK6LoPRow+qh3WAPTV7uJ9v+YWDiB116KzfSsl - V7t+EA+7hDaATlvxf9vFVtrgzjSflLPZIit8yn/55YTyCgzW0X9+ffiEB+yd65ab6WbqXjpTTbTZ - baZjeDpvEruZpnReUH/MjKVFmVLMxJi0+69fxpBMuroh5/OY8ncYhry9mtReOfRXssY74vTbZfFf - s4zFuRzVPAAVdbA8ikOTrCiYl+TC2QbStRYD5X/P/93j4xdfLE3zks4XZaiFENX4EGAUxitiQIiR - 4TLgv+w4X99K73PYjk8ARRB0iH4SE7T8IBqKjndfeBpC4wb3UWTtXw3VS3k+n38CYhqtPrYGAAA= - headers: - Access-Control-Allow-Headers: - - X-Requested-With, Accept, Accept-Encoding, Accept-Charset, Accept-Language, - Accept-Ranges, Cache-Control - Access-Control-Allow-Origin: - - "*" - Access-Control-Expose-Headers: - - Link - Connection: - - keep-alive - Content-Encoding: - - gzip - Content-Length: - - "854" - Content-Type: - - application/json - Date: - - Tue, 23 Sep 2025 23:40:25 GMT - Server: - - Jetty(9.4.40.v20210413) - Vary: - - Accept-Encoding - permissions-policy: - - interest-cohort=() - x-api-pool: - - plus - x-rate-limit-interval: - - 1s - x-rate-limit-limit: - - "150" + - req_b82b602e0da54e4f93bd941d5fc9d104 status: code: 200 message: OK @@ -209,7 +143,7 @@ interactions: Review and Dataset for System Health Indicator Construction},\n year = {2024}\n}\n"}, "authors": [{"authorId": "2167438752", "name": "D. Nguyen"}, {"authorId": "2184162840", "name": "Khanh T. P. Nguyen"}, {"authorId": "2267984723", "name": - "Kamal Medjaher"}], "matchScore": 58.366554}]} + "Kamal Medjaher"}], "matchScore": 58.470894}]} ' headers: @@ -222,27 +156,93 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:40:25 GMT + - Fri, 26 Sep 2025 00:21:55 GMT Via: - - 1.1 edc643c7c426bec36e205453aa531064.cloudfront.net (CloudFront) + - 1.1 05704fecd1992557082ae04fd0558b5e.cloudfront.net (CloudFront) X-Amz-Cf-Id: - - c93zKq7Tg9bSjD5LwbD0NSzxaBBIAqkcTALfXS-TwiIvjJufngNrmw== + - fmUVumxE9zFLiKAj96alWtV3fX52J4SPqV15YdMAhbrp1mhlg6s7rw== X-Amz-Cf-Pop: - SFO53-P7 X-Cache: - Miss from cloudfront x-amz-apigw-id: - - RYRseFoPvHcEDBw= + - Re9pjFwivHcEQhg= x-amzn-Remapped-Connection: - keep-alive x-amzn-Remapped-Content-Length: - "1440" x-amzn-Remapped-Date: - - Tue, 23 Sep 2025 23:40:25 GMT + - Fri, 26 Sep 2025 00:21:55 GMT x-amzn-Remapped-Server: - gunicorn x-amzn-RequestId: - - e4651cdb-7028-40ce-a1fb-c8f58dca6c99 + - 65207180-cebe-4415-af52-a9c4666ddead + status: + code: 200 + message: OK + - request: + body: null + headers: + accept: + - "*/*" + accept-encoding: + - gzip, deflate + connection: + - keep-alive + host: + - api.crossref.org + user-agent: + - python-httpx/0.28.1 + method: GET + uri: https://api.crossref.org/works?mailto=example@papercrow.ai&query.title=XAI+Review&rows=1&query.author=Wellawatte+et+al + response: + body: + string: !!binary | + H4sIAAAAAAAA/7VVTW/bOBT8KwLPok1RtmX5ViRdIEHbNZL0srYPjPRsM6VILUm5NQz/9z5Sauwu + ksVe9ibx43HmzQx5Is4L3zmyIOYbSUkDzokdUH9sAce+G/uNKun81dQBrJNG42w2YiN2mSGLE9mK + CjxWO51T4o0XilpwnQpDPJ8xnhLpocG/1YlIXcMPqMO2WnigrbBh3WrFGZ+k87TYbNJ+xssmoAnj + lM0pK57YbDEpFln5Fx4fZpFF05JFVvCcZTnPy9m0QAgWtmBBV0Ar02lPFiwlbfeMjPZgseKTFdo5 + D0oJm9ybzmqhkmVYUAmPJF0idJ08gANhq31ygyNIRujqmCytPCC25JNskFKNOKRzXYCZ43dltAft + aW0aIXWkOHytkFRljXONwN5id7yVlY8N3QrlAFG7vbGehhK4AyzS9woLr8jd/eflx4dbsrmwqGlr + ZWD2RhPZZoPVbv+8C1qxEZ/wSbEey5emBVu/dDosKbMAd5D7pe8AxRqywiMDUhD+HY0YasTfEokF + kTiKxBZ5/oZI03I+mc/zsmSMIcA2eoeU02JKy+mc42qHQKoweBM6hSrG9tJXOWv6fLyS9LVBH1Cr + g4TvyVIgx8To5A9j6uQRqs5Kf4yNwyLyx1VHsPTBqC6Cz4KdRedRgGjRnTxAcPoH1L1Bq4gG/QE+ + EWqU4sqtaKQ6vj/v4O8uwMUVW2ljisR2K5UUveAr1OdEtIhnP90vH25+3yTqWoaVQr2xcxOC1zxH + H2csn8wG2/3TM2hEFLUv8+pxs00+Q7UXGo2uosmX1tRdNGLyUe+wBqCvdhfvhzW3cABl2gadHVqp + hN51vXjYJbQBtMbJ/9surjIWd/LJqCxnJech5b/8ckJ5JQbrGD6/PnzCA/bet4v1eD32L62tRsbu + 1uMhPG0wiVuPOZ0VNBwzZbwoOcVMDEm7//plCMmorbfkfB5S/g7DmLdXk7orh/5K1nBHnH67LP5r + lrG4UIOaB6CyjpZHcWiWFwULklw4u0i6NrKn/O/5v3t8/BKKcT4p6WxexloIUQ8PAUZhuCJ6hBgZ + oSL+y47z9a30PofN8ARQBEH76GcpQcv3oqHoePfFpyE2rncfRdbh1dCdUufz+Sf6r3t5tgYAAA== + headers: + Access-Control-Allow-Headers: + - X-Requested-With, Accept, Accept-Encoding, Accept-Charset, Accept-Language, + Accept-Ranges, Cache-Control + Access-Control-Allow-Origin: + - "*" + Access-Control-Expose-Headers: + - Link + Connection: + - keep-alive + Content-Encoding: + - gzip + Content-Length: + - "853" + Content-Type: + - application/json + Date: + - Fri, 26 Sep 2025 00:21:55 GMT + Server: + - Jetty(9.4.40.v20210413) + Vary: + - Accept-Encoding + permissions-policy: + - interest-cohort=() + x-api-pool: + - plus + x-rate-limit-interval: + - 1s + x-rate-limit-limit: + - "150" status: code: 200 message: OK @@ -1502,1528 +1502,1528 @@ interactions: rEOfw44B3ipQ7G54TJ1wSeDceP6fnpo/hyhDWew5+OcPuNvuzaO0HgZPyJ8lXUOP66BQzFfsXu52 uhRcOcDNf+L9hEo6+VDo4KhzMlZ349OZNzyB2XfHeNxRL/vlzT0CqLLngZyM1tWm+fVVYDaJN+KH a0Xpte89eDjffHzY5m19nnIR/PIPXRaWsGuiToVbvTyWLy7aOoiyD3BgA2ymThnOJy8MUOWGR6y6 - +K5R4Fn8bx6ICeSTxv/qHx9nGZ/OzBpOpPgOcJAfDnFfSVhTNZovKDk8I+85GcL/AgAA//+kXcmW - gjgU/SAXMkmSJZPMEgRF3AEiAiIyBcjX98HqZe966bFKGd670wuRbnibA7yT859+C2drjlr4PkwT - VtRdp9KLL2ZwSMQj9tqFqrOyzzw4p58LOR2wkzIc0BhgMbNDTN2L+vl4O5dA1qIKxyezUOekutfg - +uIeHjWataI3/suImtYTbz9STFf6hQPMYtfB0XY/GUOCGRTtg43lLb9YBFWWoGMyM1ai4BBSK6oF - GN6RTyRHMVP+/Yl30Dh9OPyrn/an79b7bZ7mIyn7GThPDwxvn8H3A7/2wyNfc9T5jEu2CVg4I7Ma - IKBPjI38JYH5EVMbWtenil2tb8DiKW8OOfV48YR396jI08UiyHd2i4/3GFPaitGMpGhnYzuxy2qr - 3wI2uXsi+dy81ZXzaxNt5+N95P5YrcapFeGNoT4+3akW8uTE7ICMTWcSzjUEJHbT6HC6JE/sXpZP - v2BKu59+8bLNX8xbkAvu+tfEv7xujZ8YwltuqBMTT3O48XUBTNfTPWF84v6X54DN3+FwyxNnv7i7 - aDHRSBTv/gFtIqjST79hC8qv6o/vbqQRiKHvnHB0tXsGdn5JsVzOS0UWR84h0HVu8g9nO2Uzb4mg - ycQmNjpcpzS/rza8praPnT1wVX4vziXMW3j29geLc3qdoBxq+frc/BUTku1+Is4XTewuHwXwHd8H - P77y0OcWA7q04/TD62mrF8DGoZ8j+3I7480vO6t5ZCEcEuGIpVt4U+t2WyFu3KaPN6a67cz1cPbh - j++t0Wuq+b36NYpOo4TV2yX614/96tvKaUvXNlAEZFVB5BW7enbWCx938ATrgpw3/pgaSYNIbRcH - J4ld9n/5Qu959YQ2/z3oD59Ba5W/yPGpBvTvetT8HeIfHjM4OQtwFVoBm7rHVePazBIMn87H+2As - OhP3zH1orMeI5HIhOoOx2v4ffzGLO4UzZ/HKD29xNsSwWgo7cWEff8KJ23k+5bZF/ujcfCoiKcFI - SedeZqBpXzKtvIDVldHGEk6JHWFL6gw62PFhghMypV8eC2bhilroR7jwXlu+Q8lemRErTDoxpyR2 - 1iPoxD99pWTXAyABZ7XixpeeIFVhvyykY8DOYhqsO5+ln6/HqwJzMdPx+erDnjxOoIROTS7E4NO0 - XxXdiuEkqQ3RNz282qqdiQeiNNj+ykjd+CGC/iNqiNtcobPeQB0B5TI0RBIimbInOGUgkKYLdu3o - S1e5endQfWvfjQ+LarGAF8DAep8mRURNP5beW4S//pKN4QPm5vCcwVy7PgnZBx8u4CskUB2eI3EW - oQdf76l4cL+bTA8K7x7MQ5VKMPsOEvldf2JROYD56dZP7eYnuTiXNPg+MTbWpqasWDa713/+zKnj - iK6WgwJgiMMZP8bD0eFkydZFvoYjeezEKRzleKdA9+5SnNqYrabT1YzhE7cPErS2A9j7JLvwYty+ - XqDXV0A2/IEnPrGmt99eQ/q+TwM0is+L/PTnx18RB/QXCbHh50VPL0wkwfjanLbjU6o5Ngvur5/p - 68ZVVPEXBbxDpfQqbkYq3TGLC/n9NSX6toiVHFNXgrYFy4kJekJHbI42wOIF4p8/WLlnFMDxvoZ4 - y98BfduwBr7DLcT48obaYoQyQJzTedpfr2ewCE3dwOH2fHlCRFWVTc1VgunumOAtjwDLCTYZeKpX - iYT8p1FXx7JmmGpp/ecnu4N+HMCW/+FT2+3on/+XBU7BPz0/t4kh/OG5/RUalbD8bKN3cm+wHBnH - iu/cy4oyuG+9W0ZwynmZ0cCnepPIqVjGlEwG20L2455xutXDJPV+gw6qrWLrxyeOkrVAUmGBw85Y - VPpdegg+Tt0Qd4izfvkMZQ43fsVBbjjhsr99lF8evuFhpH4DR9jB3/ezM3in4xuZHmQLwyH4vXvQ - 2XrVBVBvYYTtaBzB9+2sCQjypcbeLXbTTe9AOMteg23OYsD6y3+eZzMkfgDuYMvLVmDT9k42vugH - AN8KQjaM8TM01JQ+XUMAv/OVvxEKVx/uO9hpxYTlWr1V9Fc/jUH33ny8HdO5ttgazqKQkduG98vr - bUN46C/aLy+smFtxXKG8DJDklz4Ix9YINz/qZ0Ta8ywdBTafROUrot/8xenuwsygcsfzW76r0AWb - owns01ebdjqRUnb98AIMcf0i0keoetJmawmFZCdPQupIIbXeT+kvT8sJ14VTeb+WiPMFE/sfQa0W - Zfzk8OBKcFpkO938kyXAMGhc/JuvzXReOFhGPYetlyClrKvdcxiZ5dcTFt6l9MdXTi4bONjyAPrq - BR2qr8TAshga6m8+BiWXvU9oqxe6TqME/AO2ibbl6XTLD2H2RTvs3nK54vd5ZsN9Y5yw3KYMXbNn - 68NtPjOJuvYCdJvnCb7DLOTZFraz6UUXfPPXnShb/y/0edRFZy0+mz+99xt/KDCypRyr3PxwlvQ2 - 2AC3vOFx1lL0AzcEgzjLbkMcG7P90hppAL8Jx3tdNk/hOIlygEqzfnvc9/SpZlGLJXhkItHbnUYr - nGxVyX/5qye8PAlQSRMTcFv0yYNr2Yezjpsa7vmPQiTjTfs1Yt8SdHaMhrGlVc6cvkYIm49hTIx7 - rNNlr7C1WHhFj8+yDeh85ToOZHN8wjrW9JTf+ATSE4ux7RtluuU7CWTc8THRLU/d+keCk2EPRKmS - xXlxl6b9y/+fa9WF43Z/Qex/mQk05bEnbT+0cMsXJ9CzfTgO5yaAKXy/ieWNpsPkSqRBh8PWRJnS - o0OT0gLF3Vpjo0yCkL+zOw/YT/vgraR/AvLVHzk0z0mOJb75qLOvMhy889lxsup8cIZPaE5QiqCN - g2LkVcrk2AdNQr8ev+W366laN3/0fUxZy7fh4u9XH8n+YT8BRhfTed1XEGqmHnr7VGLAMpynAGzz - vSlUvWtIsv45w9vVtfH59XAAJRnR4EdPMDE/GVanfJhmuM1H/viCPPZyJLpoCn79U32F4h0IfJgL - +CRfm3COzZaDhc1YWFFVuZ9n31rhDz/sc9KqrBopJfzgs+ntU/AI1742GWhyDiAGdKJwqycfbnoa - 39Lsm47dvLPhrRciEitjmdJPRF3UmdjHXigR9SvHnHK43sZhopk20/4ldh4sEz0h2FdcpwHsR0AL - p5k47J5eONyK03r44e1PLzPbc5Tgo+x7corllXZPbP/la/i45YlLHMY5YMYywfqWr/Nb/g8T6bLH - TieWlI6jy/zNQ67q3nLYQWFMYZvPkN88a64xFH78iR1GF8M1XpcSCoV5n+gCVWflRqmEtLwQckus - qt/wUwRfxLzwb/7LW1T20TZf9sbjWPVbXjBBnt/dJhRFuFp/fux/rCjg/ntFwW6yPkTqlk+40Kvm - wqptiHe4ikK1mJWbwzl2RqI02ccZCq/eweh98YiZlFd1JSPuoNRejGk/PFaw9pjk8CqGNcF16VVs - C+IVgOyaEqwAX+XPjKvDkBZ7Yp4+ozob+VojxC01tvS9CbjE+nJwF9iiB+7p0g/Wo+pAeXdP+Hnm - 9mD97ssOSJe9T07cKvbDY1fYUDb7eRJIyKXjg3E4yPoJ56FE7pwxsrQEpt4rIWccv8DA+DsbHtg3 - xRiFBCz1fFPQqQcX4txSizLlYEUwJAXxuBtvgVHWgQcarL6JN0tSxeWGuhOzB4DeV9N4ML+tjTEr - TSVeie2e6W9aC0PeLXEAT0O6wsqd4AP2OtHCc6nOcogUGGaOQPRpRHQmNNBAUS5nnDmCSymTXV1Y - q/BIEo7U6azKSYyEHSbEaptP+pWaxUdcmmcYG4Buf//woJuxObF88QKWPKAKctuqILJT3gDr7a8T - ml7GfTrQ16dauk4SYBIwGbbJYaKzm1oQBuZiEGOSuPT3PhrZOCFarag92/Vhh+7q3OCABpo6Am8R - UGtlCzkpV75fF+seASUdWSzdj7CaAz714BDtobfSG3aYUeskyJrxjUS7+8thzAmUiN8VL3x3xFdP - g3W5INZNGu8zgj58RwcnhqAfVGzBm0Y5+Fp2aH84eVjJXwrgl/Hrw8HbP4gKOrEaXmOmAWm+NCQ6 - yu+UC/MyQueDQT3l2Zz70Xn6Ekpt90nOB9EMJ3f1NWCoO5mc0Jg6a7BrYwjMXiBOdVZVvjQZE9Zm - KGF17khKVThnyLFMmUSHiqbkYFYdDKkXTjuruqQMPMQ6UpXZx8HzpVc8jj4DrD/7M5GT8FytTlhA - FPCMROTgIaQ0LvIIal+mxtHaroCl76ONNMVcSXTjv4BbDn6ElF5/kDO/d3r6/hAddiCQcPRer5S1 - pFYEtq4dSDoYRTopzkmH0zyPJDrqfjgrdCeCqxJY2FuOOJyHI7NCye+uxLMqJpzHKzsgcx1M4lwK - gS6nZ8ig4mmM2FK0WV3eaM3RpakNEtdxpHJiZQrwFT2Wv3pY6T3S4M26Jd6if/bqiubCRnImfcgD - +/tq7TxfQI5lywQvsdNzxC4CtHszDw/cCgbQ3/U5vj0ey1FYpsz5y8/AvEn6NAb6kbJCMF2gvWQY - 3+Gtpr3udCVAycphL7k06WTq1oQ64Es4Pn1OKqNLTg7zi3LCHpAcwFfCDsKtfvHjIbP93B/nHbKm - cSXKvbEd5lrPNXx9mRafwEjD+fSdbdTRj+PR5+FEV6eGHUzUJzNxOc+GU9r6EJXHsvNeVAvAUvlX - G8634uohZg1Vxnr0nWhcwo44ZvfsFzB7JeRvTkqks6SkCw2XDFRtoGK9X1E6XBrnAhaxToi3k/h0 - 2PofXtQXnHZ61QLqRoUO70ZuTaz1lQHr4kCEOOlT7E22B8booCZo2YHrxK7XqGdemRQDLXlCD62j - FHLtDHPwMHfNBG9T4xBULzraXuNz47F0zp7Lhnd1O6GG/zijqu8l8PpyrYck/+hwkJ5asCr1gaSX - Iqbzhr8oWT15QmgE6lLIvSkGZp5OF1Fo1XlgvgoE9U3EyokFYJ6ryw6OiNTEcHHpEO96t2EeX01i - X05ZT3NwYWChzBeSS5WcLofXpUSMQFRvb3At/XqTrUBSP08e/zw2Fb+MLx8+5m9ErA2/tv7VkVt4 - EcmB5FCO3nMdOpB7EfzjBx8LEeyrMMPGbjHT9XlzBWhf1xM5KtQNv3jaEl+3kbG14c9CPpWCbndl - Ip5etbTnUz2Ak5yaUxXs3oBfx7eOsiPIyWlYK7AM8UGCFfQDnAqKVjGDYRSIS7MMx/LQ0uX6VTLo - XJ/pdPDE0RkfpWCLXEpNfOQcqR8yPOvoo9+/5Haxm3TxPTyDhtM3xwi7iqrukiFrpyfE/ISGs2jH - wYfTKRaw5+RyP2X3phaD2nx4vHff9xRHZIB4+nbkLu/fzlwOcoR4bEOsMIGp0tJ4xej50QLyTIdz - uNbhxUdoyu9e24RVuj6vog2tPLFwOhhSyinOUUNV66vk1MIDoJeli6EuCQevgVUO2N/92h+w5xWR - 1Gz8LdawKPM3xmXZUFrdygsy8SXE8TecAA8aSUHDdFMm5DjHlN9fAIQb/uI7k0k/fmlR4jEuNu62 - rTIFurso3s8RSe33QMnTeXBw9ZovweflAtb1kJkQ7KcAXxYlqvinc2XQWn44rA3GA9DmLdfITK8y - SZZD1C/TrdN+/YrDqTN69gy+AUTpsSTJdxeEW71cUOOo0Q8PUpr3oYBekXMk3in/hkyedxrMxqAm - TueqPa/tDAk6M7cQ55neHTbTLAXNpKDEX5YV0EFORHh9wYRc3UlIaVhCF4xorD3usTbVqrXfDG74 - uz3ThcD8af0JfRRtwuHckZDeiVb8XhNH7dyQ2z99H6W5O2GVfZvOTAsQwILLmQ1v9v0yCquI9Eud - YXth+n7gkTnA6ngSyLN+VNW8a00PZWyoEu9jV2Ev4dBE01nLSOiae7o48j4Huzf38Hac1Dokg9WK - PBHZxFWRWREJp+bvfuBLpzjqWtaDCTe95gnVAznkezQiBC7SGfv3Y9bTWk9y6KXBgTjjWXSI+AlW - 6FxNQpxjd1FpwyoF4jtuR/SYPwF25AsTwf5+Jsf381DRg+ELP376XY90uX7tv+tF7ifxm65MqwWw - Nz7JNA8Lcebz7RyBbh9g4tiFvOmFA4T+KzaIwXAOWPVPUEA1WSePKd0zXYu6uIBshia5Vs8FrOc9 - sFF7WgbyTD5lz53l4w6e9r6z6QPgTOCSF9A/xG9yW7giXS+jX8Df9Tz6dZmuXARjAMPx6fEXvKTz - qbdF8DnPCr4wgtTTd3OJwDMk6YRyWILVVlsJ1u4H/OrdWQ3OnBBerx6Ws/CQ0sVDO/h0Et+Dj28J - iPuhM0Teak6Hcmb7rb4bmPPT6DGJq/T0MTQdjK6oIdb4KtRZOnoMVMPjgbgnganWhyHZf9fD+jRq - uETG0sHplAjEyGy2WpMEFSI7GwaWtcerp/1yF0GhrxVxTQQAZVM7g29eNojfc5E6n9xbA6u2JkTe - +HCdu84EQJAfv3qsaP+KIYy+lwfJ9lfXWUBxqiG4KOeJDaYnHV6ZGYv64HtE6rg1pdlQMsi+zqcp - PxzzfkSncgd2C+sQ1Trtwx5dZhOxvmZPszDQcHy+vh7s6Nshlq09w84wLjlSG5p5B28vOAt+3jrR - X8iMMeZih/z0Vk6HHGdnavVsB0kESoTv3rIXCaWvVvTgw4TNn76avfQ4AyH3VnJK9ZhOcXIYDtTq - fCLnXlORTvky8HzVP/jYJWtI5xxo8DPmKjnBdkjHQyHPqHOxMa33xlZ/+hrgqe88/iut/Yzj1v+7 - P/qm/xZBDlrwaPe/652CVd4S5DllfaK8MzVkUzaYYXl+xcQJ33vQzWKvwR8emPrgVuPmr6AcSzFJ - e9dIee4rdHDT6xu/vlLSVmILzyfNxAq47cJx1XMJBrPlYC09n1MmDa41bK18IUYP1Io3xaCGD+Hi - kHPheSHlrbVBhxm65F7O14pB90CC9XO3TsyEVMA8d9UOGv45JUf8/aYr2xwKcRqP1rQe2aFaiLkf - RC8MY2IkOKZrkrAl3OmmS3zw0VIubeMdKPJFxjppjXRWKCdCE0chsfz9E6zUepiwFIScPAL9CObc - e9lo07fTbrV3zpJcfQH59nXA1yO9Aa5iRh0qH80j8qncV0teewOUXLiQy8Od1PkSKQnUlEeO5Xss - 0HXIHx3UGX8koWEO1XRS7jrKYynDpvM5hvNcfwbR16WFBCqrAbqL9Alu/Lz51RbMbirvYMNpEk5i - 89xPAWZsCPpJnVjeJyk59m0Db8ebg5086tK1rq4uNPkrIcrmp371AzZ/9+v/cA7jjyh+8mOKlUuj - p+vNFlZo7e46cYuvF9Kr3MfwJkx7TyxUlpL11LuAey437O2B1jNzIAdQGxmKt/pJGTe7DOD2uH2x - KVoO+OkxMJ31jCin2aeM+PByeLQK1jtwWasuDzZvQJp7EzHq44HSQDtqAE/RDpubvulrvnbRKRQ5 - bw892WF7c9ag3Rw5b7EfX2dB+a6Dx+X0JvI9HMH46zf6jgJyust6SvLE9P7q8869QnXkl3sH6KN7 - Euwt35R+VGGG4a0446jgH87SgaxBTssFP/0czu8EBVDlTA2fC6tK+yN4FeCNLzd8vNaNM+qV1KFq - 9ktizS+n//Nv56v2wYE9H3/+VkS73O6IWcT6lid0HVz1A+PBM/329OEkCozdpCQ26jTAZWYgoiTi - euz+8GNMcAP14m1jp4nu1dI8DRse5ObjHbK+UgfhZA3gKIgJMbz7s1oe66LD6X5vNj7D4Xz+7lfw - PVrzxFip33P8u6zRWdZi/PNv3NYf6P1R7I3PnWoM+tqGAiu8saa8U3XOsKBDUYjw1r9LuIZ5dwEc - tTGRVFtOF3EnCGDDV6yedqUzRZnZwdtX7qctz6CL37cXcM0/JTkF+puOTLUmv/PFntam/dKcQAb4 - nPPxURL26hCrVQPt5Gh6qIGrQ8bXZYXxoFPsasKr+gaQ51BR0jPe+ILO1SPf/eHpsU8idfNjO+hq - xQW7wrWg64v5BmD/rnpyKuV7yIbgraGQr7yJGVGh/vAbJiLPe9WHfBzqHX0PbHyIT7JvUiYNHjWs - XGHE8qoRdXmujIhi5hgQrIEb4M/HJwesiayTkJUQTI+bpf/yKHz0vseKs/RjCeBeZ6bDt4/UkaEg - AvzNSr1lskSnyJ6LhLDXjdgMy29P88R04bfwEmyzpOjJlldAQa8kbyygXfF5nwqQEUZ1Qhe57Clv - iQ2U2sjwDve57OcCnb0fXnvzTfqCxXwdBoi52wM751RJly2fQq3ARd7h01ThmOpNAZ80HX54nZLH - MHXQj9QJa4i2/cpya47Ow3rHVt1vKzR6RhRrvntjw8ifzrz1O7LtO4Ot+6xUzEM+DVAUOkCOxZOl - 8502MYIheRItP0NKU7fdgZ9+dPLIDtnJeJmQlUjpLaPWp9Tozi2UC4n3Tpt+Z+bwoqC7a8ze+/YV - qr98QU1yxYMXyqqDNfEX2H6f07Qwe1KNe/Se4dBdKHF1JU3b556beFcqjxhrgAdLCEYN3p/5h3he - fnLms+HHMDvVITaku0mpRO4u1C9Nhr3B5v7lz8uufhMcLXG/dvmdg2dmFbDd7SKH3fIvaICLhpNG - RSlNkDjBLsYs1iO+cWZu37igFMQcH7Xp63y16+jBMVArj9N1xhn5tY4RZb8AO6vxAX951s+vSo49 - 9ytSvVY09vueSKh8Ofw67TnYUcB7J7oSZ/x9XsUEi7eL7ud0nli+hly1fPDpzaspcwIOA0htvshf - P2z5Cdz4Bdve6d1T4QtzUSFpjI38WNLJ5J8+vKvrFsge85604WGC9ROuJD29hZS4UavB6wEK2C+B - 58z0WZTQtSxAlDUowqU50ewvX7pfRaFvv8I1h8JLiPAvr/nzs6vin/CVd+p0CI3MFS17an79Csht - b7UQR1+XnF9e4HQVDSKg7h4ekc/xt5qhXXFo8/tY45WdOrdxWsMlPF2w4s9ZyJmR3f2OjyRWMIDJ - W0NBDACDsf00MzDjuAj+9K+h3mswlkUSwOwQBsQ44TdY7QbHMH2LL4z9ZXHoU7S1P/+ETW4AC0Kv - HUwfgkLss6k7y10vp1/+Ox3qPkhX/vpqoXKLRSLv2JczjelsI9EKI7zll1V7Ag4HNeWZExufrJTO - jzYCuzPnEeNiN+HU79IJotQof/1X0Zt/jcWQsCmR3pzXM/Y4NLB7it30CHWrWrb6gZufwJJ0AeGM - 71QBe0YIyXHxP5RwQIvQTrfdiSPtJ+xftifCr1RYOJ+OKp2WQxzBeNAoib0hpYtJTwmMpXgl+vb3 - dB++PMinToetqfEAjV6jD2Nf00n+tR1nYlrXP1g7LSHXMqmcH3/DV+dctvqrQjYUgwj8/J0Tvp9g - 4ZUxEXtx72ElaUaw7hdugvtXlREnSnWVex1Z5Zfv//JKSsz0E/z5Dbmw1HQNdkUMEUdrb2WDHvT3 - h8DALY+aduOxUGlfVgM8XAOb6Ft+sJ6CROK/EsNifdPb9KLsNj8/BB4Fb9wP35vJwVllVm9uAAop - O+Q2XPW3iY0LXsLl9RolsOWzRNp/aD8ZJvHEYH7wWP3pN57jfMBt2a36PIx04o7FBMz0JuPTuH6q - rV4gvKgV3PiCp98ffz+fyZMckf5SJ1ttFWCz1CbmJ17VpQg4Djhnu5gAb/Q9rZu4hLPDhCTa54Qu - mSZLCDCyR45b/2x+sQQ7VGAskUFS2YQbS0igufeEZ7ztUWRIJkLqUcPOkTzV1apnDt3O6mnjB4vy - B7Pv/vSF8bTPPbfaHxH8/PxJ991+/vHx5k+w/dpV6pbfKfDpxP60cPsPWF9HJMFLLlzwLbwIYZ8h - rvjNU8jJ8Ofwuz81M2Rr7Y7jJqzC5bBcM8gcr3gqHAz6yb3wJZiG9THthdBV52NhlbAvtz2SN781 - 67u5g+yg8ThaqtoZilPgwqeRyBMbfRmwnMHLR8RdEuwExaISNrVzyOeMTx4bfy/bfAagLt/2ONFL - Zx37gw7ZS3rc9GtdDQCgGm7640+frPy7a+Ajay0cYXistvxSgrL5nSc2rU/VPLBgBkcofidhy7MW - kx5jNHC3lzfVl0e4JM3QQPpFB3Ltrp+w3fQukMxdiY/uJIRfUXImoC3FbeKJJKrtGj4ZaDcGt+nr - K11/+mExvMaDKNmBRdzNAqQWhNu8JAqH42xnsDyykbfM+yL846/agJef3gz7g+GLyIUnlXhaC6qx - eWL773iUsD+lfMhgAcySgyebI1rKtRLK4b0yHRzdYdbP7ZcEQHWOCdZ3uav2NynLIR9aLlYl85XS - y4rsnx704Ou7qsturBmw8c+05dPOejSrGH5e855cHkblDIOBCzCst8BbgvgUMhjgTrynWYx/+ETn - R3FBv/kZZd51OtOZccUtLybxXqv7Vf7OMciu9fo3zxgPcpRDaeiVDZ/PzvyQT5M4MTPEJ3HE1bp7 - oVk0QKTh4+zX6igEUyReGpF6/BWzzvqIUw6IwgVj42XfU5qcwAR2tplOe517q6vAxDPc8uiJm8YH - HdIyKuHzNnbTbpakniFqqEG3fRXYFRMabvoT/ul3+e6VYLYzXwCksANs44BJV03oYriITULUF2NX - 692GDRRGQcfXn57Rd0IrqqFxwMZhqftFObYZVCSZwcqtUVK+f8U7uOVH3ix8zHQlduGj48trvcPm - Z+aJ3dfQzcqVqDMRw/b0FUwIjWGZAK8U/TgbA4RKmPREcjCoZu9w0OGJgIrIbnwErO1/GbD1D3Fd - YaaL+VoG9MtPMBsW1dLCqoDKXh/Ib54wDSd5B+NLKmMJH98VlaR6B4dOMbDTnKdqWKVDAqRLW+Mo - 4ht1DOCegd+s4LBd77yKG/tFQ6N33RPdli2HykXDwEI1JGKElzhdRr414bYGDR/P37Oz9l42Qd7m - ZCyfY6v65V+wECnBKttRp7/5jxiemcwlxq+fNr2FVnY3Ep1t83TdP2Mfoim7E9MbAFjc/VkAlqg5 - 3kF4iXRS46JEL8TxWKuMrl8m42uC9FBrv3lSxfnPJUC/+ek2j1ZnVXmb0K2rM/GSi56u7oUvYIJN - Ad9+ecNvHl1M+ZWor8O1GqBdMeiq+BaOinV1hi3PEGf+FeBT6Fz6qXgDHSbEYadxy4MHiYItP+bl - X57jjAyrazBwaTSNvhNXv/kvjKzOJYaR79Xp0V7m33zL27Nh0c+qMppgy/umqmGmdHFxIsKgtQdv - b4NnuAYvg4FLIljY8sSTw8z1Z4LbfIds9ZwuVzE34bzttSbF0omyD81lIBHMmWhy4W55fhZAU71U - JIRvWpGdflr/jrdM+6ynB6HsgC68W2IMwKjIXi0ClJPBI37JVep6uAQD+B8rCvj/XlGg3D+Wt1+O - orosbpPBg7EuHsMmHV0h4+nwE6s9kZpudgYSvnRk9s9wYjlWoTPw1hLZEPlEqb4E0C6pdVgXbUSy - U9uo886tFLheosWDqLEqvl2lFbYOwROQjl64crImITaKxokOpg8YTfMDGBvNhI3rGAAqLoEGFS3k - sFnuB0DDNu6genj5xPa/TUqv94SBcrPPyMlyT5QeHMOGcUkTbN66Jm2bSDKhM7108nhlY7jcz4yN - mA/MPH5vfR16fZQBGoZ3SuQUmSGvSIMIx6N+web0XpzlfTo2QGv4jnjuEaqLPpNA3P6faIfe7GcW - KzpcavFLZLuggE7L4iKPPBzsxLyVMl/nvkIlmydyiXSlYkIU2LCZdiMx0vAd0vFyMgFHDl98OcAm - XQ7AnOBewSLRB2kHptkSM7Suo0IeBh+D+T5ffCSjqJmGhRgVu58UDoGxsEmw3JSUPb7aDp4HiyEm - DKueu2qvCN0k8vYWzLZVb2rDCi8y8LBMYafOdznQ0HcgJ3wM3CPgTXhk4KqcVCwp1dTP4qInyL7s - bOyuZ9Xhp4JmKH0wOjHmo9Szl08sAjCW9sSPKUcXkB5tmIwXgwQlF/Xcxz0XKPyKBpH6fQ34rLMU - ZMbnCZsPwIK1md4xEiIPEDt1aLj6xZuBscPY3p4VwpA9v/0d0txh27Wy59LlDY0ZLK3uEfmFEmfS - MlSK929XTcxxfDss+IAcDtfWncCjU3rO+7gz9CNum2B6ojqIix7DFcsPYuwEJxyur0mCedo0REro - pC7NdcgPdksYLIuEdZbH1/JhQ12bnN1WUddcsQMg+fWRnPell7KPpbWRp3pfbPuipvIFwDV0hjQm - 9iN8VTR7b7sMqvGATemzT7/FFSrwuV8tfEtZCQh8t1egtmRnkqfwAfjXQ7VRdgo8co0n6sxPCBSY - RBDhbGceVaYIzAAeePdA7ubwUumOf+VoynufSOr2TOZN3plicXn3WOX3QU/dMFRgnZcf4n3NC128 - ZDXRy7rpXhGS9zZhuF6Q8I0LHEf8qK67ZddAY/Zbcgd8r3Ji1tbQLNYPdvYi7WlPDj6EC2WwI30s - yslBNCGmEd4knjO5Yup8H0NxpysES+q+X3P7a0PeqQ1sst87oFd/myg2o+AtR+fpcFCCGajkdVtz - fqHh3AtaBnlBeOFgCPt0TYhb/n2fItZiNUrDJ0HcKsfYMlqLcglYOVQ/8hnrt3nv0PRCGXS5XzD2 - XxrqaRwAEY5lPE38S7mn3AhcE8BcsryZiZWK4SU3gAFhY2yP6StcmWy24ROU43TorJgu0kBiWGI7 - JqfX6DgzfjQ2PKHDFauCP1ezJkkcJMPzOyGezdL15c8lkqqzQIxxYPoZKJoLY7N7Y/XwPqZdbAsD - 5BhL96jhsWDqbEVCXCKdydYPlPAksSH/vC3e7ijT9Id3wN5WAMW5S6tJPfoKCkzRIt7kOoAb1UqH - un95ebxteBWTV1ECPD32Jv7AMCGtvVME86Qk+PIYdDp/3t4K37tswtZAy+r7w5t5kp9EN9MYsGyA - OGCV0YM4N0mgQ8tpJWJlOcFqJi3OWJTdBeyu+xu25CKlNI/oCimfP7CELg+Hj5+dBzVVl4iUag6g - zvLMQJ0lh9NaZFa4Ym3edt2XQ+JVpupQHYc2+h3fMedkh/afYPvVA+aNlcvlWzFqmQ3ihT60Dc/U - qg1tqUQmGchWn47KyjLs4CGBEbn9rnfLaQW8Ct4Ta2kt9EOe7Au48Qv2zr1XzX0f2WILTx7W1Mvd - WVrl6cEfPjnltg6AudwDGIYl2u7XO2W+4dwhmHA1waeCUSftncXwkEknfO1GVWUzXLdI6486vgum - pc7Xu2FDsvvciPo83XpaW6wA7p+Cxee9tNLlkosKPCuyRB4lbqrWBt8VHAnzIsFtPYFVTlANF78/ - ed+8YvquO4qNeO+mxJvYVxDSHZgF+PTcEOtJ3/SLNT1naB3OAznby9IvkHmtaIclA4c7Q6LUM4cW - XthmJYYdD+H68QuIThcunt7yeQArdxIj+DyZGb6HnucweOoFaATQGw+nGwKL8Ko19K4Pe6K++FfK - HcVXg6ro/SFHKadVr2dWLr6ExcNh31ydxXkXBXplRY/vl+CdMvpAS6RJMPAu2/1YHvWBgf65krdd - Jx5gLo2zgE5SDbG67GWVtffXAtW6TIjVJVH1wY+FQ5DoEsGBQvrlDicB6n70wheeiVX+PZsMcg+W - iDc8dNYo0xlon14mCYrsm1I1kQtUvuUF3zR/l84hQwNBmK8ziQYpB3N4UAbUN56GbW3VUsZABx9e - OW2bQA0N5Q7ctYbjUbuQ26u+AE5O2Boa6KiQ4+2+c9bcftmoKswbuQvm11mVHkTw86pTEp281aFH - ZeDgdr094dhH4XL5+ALS1sLEZ2mRHF4mRIcfkg3Yt6J7RcvJFJCinTkiR7qgzhFHXbTuHm9iaOuB - 9le3LuHgYXti2MQGK0rOOvp2nyc+PlZbne/IrmEyRgY525hzmu6geWjDT2I3xYFOCQ0heoo5t/3K - hVQxhu670K2CkngbP3a5fp5Q9rmr0058f0NavjsJzWz2wumnu/z0jy863bmbXmrWOx9Pu3qoe+Vf - rOZ95swWtUU4WVdE7OfO7VdP+uawwcWbGFT+hsv6GFz4Yj/f6TCcDYe11VGCAe8n2Cs116FR59eo - KHwL30373c/r9StBM0mzqZEPTs+jjprQYXemd9jeHybRjeGG/z+8rdbwymfwx2d2Il6rZffKCpiK - 2nfaPagXzmx4LmFyBTpx6BqCZfc46b/vI5dz/XHY29j6sBlFjhxz7uXQOA1mRC5ZRR67p+6w9RLX - oC5njfhUPfV0hb4ELxJ7wwaVrXR+wz4DSjrw2H82n5QUwGhgMdkJ1jKdSWnUWCa83NwXvrKLA4ag - Yku09Rs+fyq3Z8SWlJDTuQFbB3fb9d3rIDS1UiN6I50cFq+3DlbR5zPlWX6ousfi5rCIyH06XIJ3 - uAb6zKBJPFCiLK3kDNa9CYBbX+5Y2hlcSmaJF0A1KS0xpc8zXM812p7svaF/z1eRBgGQmehEYr5S - ytnZuAP3fj5v18dQKcpdDg5afSUY5G+wsLeTDwYcykQ+Ont1vTRbfoIOV5K9I9vhHDGRoG6w7ZQz - 092hCY8HsOEb2frdYYX7yYVT/vWJc6ZSPx/DSIS/esfko9JZA4cLvGWJMh2KXqHzWxJ3EB6r87Sa - 7he8i1720PnovT3+Oq5gjTKPg58jQFieIr4frG5Q4Ld9LPgql3bP3K15B5NYYqbO/zYhTfZTAyXh - 7eBguZXhpm8C8PMT2/k49GI+dOiL7513KCwjJcopdWF+2PHYMvQpXH98bu+1HXmGul7N1zs2oQS5 - D5GjNqyWplta8MZSQ7zpYfWMO4MY7nY5ng7CvQFzr4mMaLR8M6FDip25Oc8T3NNl9qon2VYs3icf - Rr2oEufrb/ujbXrpy7r6xN3mpzqf5MWDRQdZ4jcm0y8v2uqQrz4e0aJbkc6GIs3owFkKlp78UR02 - vXOQe0/Asl2EYP7p32MlGdjOCjPkTud9A3I9DDd8KPqF1KqNouB2IVbOBCGTiUCD+iHNPXTlLIeF - yGxBeVK6yVcqr1+xJV1Qicqvt50fXY0TPwH/MjUE58islqIsI2D5HiEe8RXARBzw4PNkZ1iJJo6u - L83eVkgfbiQc3c/2jOI5Q9ppHkhaP8aevl5JA/WHDTb9sCXmz2VGSzAD7G/6gzU/s4IO6us6wc1/ - rlM8+4i3sju5tM+FUpplGWRvce3tpv1bnbO9XUKdP8/kXM40nOrgtyO6hQmuB9gPEbC7P/zKqvkW - trYmTRBKp503JMErnauL5IKG8WXs70TSE9z4E7waU+HNm/4cS+fUwX26fje/Ijqr12fu4d6vZ+LU - LgZDq6wCNFlFxdJJuKoLFBYXkpP82iaCaTrjF9uA9MHpRPOX7VeXjou27aHXY5kmU0X22JBg/RpO - WDEfRs+99uIgrLcywlg2uP53fDA+PiSsaWJPiVQUmejEDiTGgbmEdH8bRahXpY7l2NNDckY795AC - uyCnZlFURk/ZFfz0xNm91elQfyIfvVHMb/3wSeedGdZQ85gK4zwdnXmRQg6+srKf2HlkwGCbsQnG - YnseRFhdddJ87MHS017k2u0ksNb2vQaHmGuJu+RfQNWrqAF0ys44Fd85GK53bKOvUt+343co953H - CPRP5oBPtq/R5ZElOzED3RMri65VnFFpIhIPXLM9E+sDfsd/M5indYMTHnnh+B2WBv31I/FLsOy5 - 7wR1g2+9w93bnliY3xHgBfF1opfe7rnd9zbBTx6zBN/a0llvS6bAUwR1nFJfCJeq7oIfnk5oL8v9 - mnRIg0uwAqLyD17d8G4Sn9i3ccoaJp1t0zfFT9kFHrPvRWeWlqBA8cGusWvWWGV8EHjIwHOLleBx - 3/ZEjF2QDIE/HTa9PtyZagJnbk3xVp/V3/09TnP3p///rl/K0MhbwY3SxZBHHXrM+hyFM+UcIkAp - h846VyQQ7DElznLLRE+xV2zgUXb4Hz9c34p4QodhoOSsHCeI3DjBdtuaKgWHGcLsrB68RVokdb2a - 84oShbww5k+mOvvbr2LJJzGfKrOyKSc/jwr87jiw+eNaXenelcR9xhVE/lRuxcrp2UdfHNNNn0/V - z5+ATf9NOzsyHf5X36tkXLEldFrFNncgQBFJDg4P6pcSKTsrf37ATgyYzsFccfBD8oHoXvB1Vnjq - VmA9bR7rCiqrlVQkA1t+RfTmbANi5VYCJf51IXoYSer6ZeAMw0vDYElhhpTeDk8X7qedN6H11oQk - fXUmfO6mAKvGtkJb3pkMBOE+9Xopcp31vPQNdEiNtrwocygN2QYex4F6u+31qgjfFrpNbnjZZZjo - d783G8heA+7Pr3cosrb3MwPnG19s+BX88jSM9V0DZn+lEdo+f2LSOu7pIpg1fNEHwE7c9P13fdEW - +df1MRF9/Krr/b6/wPLjPIm18Se7V2MNna4CJicT+CrVC19E5vCyp176fCm1zqkGhS67TT1OLj3t - hdgUOxKJWJfbE2DZijbInk0Oy/vSC3n31uWg6gUR5/6Hr+ioGjH0WCba/HwYDuVuhdBhoYnNoyUC - stUP+qTYxxu+OGxCChepwvNOTpO+7WxVtBl424v91z/LOB0KuNWXtxPVE+2EkRugLEkn4u7uJSVT - AXKYPzkFq69G3X5FUYrh5k+w3epDP9vgtaLb3X3g0HjSnozO5B/kuXSxVSRvZ/qYtg5BcKh/fqoa - LY5r0QnyOda0eE4n76OtYNPbHrv5JTqJvg4bdVW2estS7tvqOYxfY4Wl9bU636c0cfDZXs2JFudp - +/tYg037rrAsLYWz3I9HBuy+NiTSnfDqrNdZB/jq7RGzepnpWqPKg9XqH/HPX1Gx7ue/+3cMHlU/ - XchF//HlJDKzAVYOwgJGTT3jZz7YYK5zPvnlK0QyPu9qzkSqofvZ6QmOw73TbfgFSmzGOD5LkNI5 - yQqIxLXHyhmgioRt3ALZ212x3lA9ZTLjlaGtHsgZarbafZ+fBuzZQ05O3iqFzOvliZDThh1+NIUW - zuQ2F+jFk5s3v/mIspfKymEG2ufPH6nfW3GAAKZi6onKPU6nq3QWkZTnkXcAvOOsCjzocEB9QNy7 - Z6dky0dhykOw5T9JTybR11AP5Lcn+l89ZW3XEeH9FEtYxuHJmSCsd+D+Tg2PaWfSb3mdD606d6Zk - 5yHQ+cXIwbFMJuzUk5OurmEmkNOZgaTxdQRr0rw7kPI7QMzZUelyy8oS2tI0YctMq3BVj7EEv3JR - kpv6llPOJMD7fR6x1QcOVyZuB8iNFHiccIchRWUWgC6zrsQdkoBSfO8SmB6UdVqd+xxOG96IZGUY - fIMnKWXJ0Clg06/EMgdZ5T6XOUE/v6FekoEOi9YHkKMGxqexHtVxnpcMMnanbH4xdmjfvzigGvuE - /PwDs3u0M5w1WP4dP5eUkQujy0OZDoP0TYfn8b6D4vttY5+JlZ7b8itI2YgQRbDHkEqhaEMktAhf - sAPUETLfFR6SXeQ9Q73pZxJ+tV/eizU8cv27l4wBtqF9nhjms1RzL7gZFMHuQtSu3DkjGyBGsNuR - wTa+nEMKz3kBN32G7eTLg+UUpAF8KG8yPYT2SpmN/8GGd9ixP2m4srPuQiVKa6J532e/FCRuQXww - a3L8rKAaN38Kgrc9YMXdq04fB/+QdiXbysJI+IFYyCRJlsgkcxAQYSeICIogQ4A8fR/u38ve9dJz - vSpJqr6hkhSVwO20Ftg1OZduuazEIOrFM8me36HZUNlVkqETidg0DynVpmcr0IEe9vyiUHZpBRPs - fIxouYKcrRIiHrL1YBFNjY/qItCHCHd/fBa5c5nPv6PmQjC/T7NcZBWl4fO4wTlYDtgu1tahe/6B - tSXo/sHDSTT/rcfTGJJ/+MlBJP+QOX1OxNgyexCWxDOkw33ciPEpL8MqfkAN0QtDH2AYOMt2ubTo - W9XvmVbUzqmiwfhPH+Lztbiq1Gq7AEzZkdv5JqFEkd8ixJ+gxNhlxGZ2Pi4PwkZhZvI7XSLyae41 - TMJrvK/fIqLuO9jxfXoRc+ZnML6/ZfA3/tgLXnG0REd7hIMIBJ/pge/8w8u9fuMvuTbQre/8ElJ1 - OZL8m/HRZMe/BU4P/e7/cLzm43bJWpiCMMT6Oxby6beeFMB0Z33ni6O6Wjz/+/Mz8Alev3Rm+ucM - dr/eP3rHY/57BWIFLUt4E+Psy7mw+99QTOOenK+OEC2ils8Q3tk3KU64axbRHEzwV0/A5fijJI8p - DwnzuWF510/bojcy+tMjehbMzY5/NnTfSebzim3lmy+/ij98IGfrQx2SzJ0MI2bqiEZD2Gw3rin/ - +BgOkzmhdK3pHYEI5T7bh4M6/8JKQhcjKIjuXrlh10Mx/N1P31mEkTrsetiHXOSY2HSvsrPz0/GP - D8+tc3yoS9i5DBxaV8Ppjqd/+g+B5GzNHFfN6hqkdSedZb4i/uUeAKqIOvzHt//8rykKnRHwBPS+ - xPpuxJ+auIQg0S2sjuCnrvFQxUh24+5v/B3qCzMLov2yW+XNvMFM2I8LBavMyPm+9oDmbsGA9/Nd - Yoc7m2DXn5oUisnF5xYmbFbxEf+go8a5L53nyVmIsS1QOyT1P7xc7/VRAp3HI5/d/Vjy9vUESt9R - JD55Vc2SWSKE261K5n/jf+GoDNfLpM2Nlbwd+llkHuI2vs51yn/UvV4iQ/VS2aTUw9VZrh+uBPv8 - YX9fn1sruAEMW7chTqoFKr0o3gyYn0v//MpoGS07hLnV/vBfPh3rcyYBZrqnvvScfLCGIlGgkmTv - uQbdpWn+8hcIKO+vnfhq1qeIRRjrGiWX5HYFTd2vxT/80yTv7dC/+tleXyOXd9KqS725P1g+WYXE - utMPa20wLlBeskNO+99JDw/wr36KcWS0DQnzOgHu0ZHmH+M/wFo4V1dKHd7G52OTNPSvfrCY5hmb - zWaof34k8CSy/Muv43UuYnhekyc2SW+qXD+ubxTBr0QMv2nBVrWlBq0chf/40XZbYxl+HOGEzzs+ - jXKhJ0A4MinGvLWq9LmkKQRjEeFozPxmTc6PGB4qxSCu+SZOFwjKgoh/Tonu1IVDRSgXaMdbbO/8 - ZVlJIsMalhtWnyUXLYV6V6DxMHe9cP6BleTvAPy4Uf83vsKfXiWe+iLWM5kozR/3ETpqkhN5fQB1 - ZovFhOYmXbHHPA11Y9NqRvSlR8S/XV5q77wuGtKQy+KCryuwRkluw/z1WbHG6omzyFWxQYUw0Tz0 - r/cwMS6O4e7HYtwsL0DLXPUhp+gX7PRBC8bkfJThrp92v4cObaj0KWyTBzfz/snJNyrBFrzrTSP6 - mw/BclbMDe7XSWGlKvqIpDcnhgUck7ndzBEs8LmECNfakSRiBvN/eqH25B/Ww4facH6TyVCvxIw4 - arMNnbEqDIpnZyH6wmzNdpQ+CoiVg+5zrnBxVvO7yNB6mgL5499jFcohso7ROCNmaej6Wy35/7mj - QPzfOwrkRqiJIThGQ4Po08LG4Fp/YY9HdZYd24dLwpyIubZR/hPFC4+Aeh+xbqUHMJ4VnkfPBRvE - aAzZYaubG8CP54zE56aZLgans9B+6rLPIXRruOBb3SWx8S/zmAQH+g7nNUA3qmlE3pAGWKNZF2jX - TTBLn6sfrWvPFbA73ipsBdbTWdUXauHZlM8kbuE9n8OzyMLLC1x9/gDezuTFfAJuwUHGCpykYaGr - kYBi2StS63NSqZbcFGQleonNdToO/azEPoi8Iibyr5bU9SvOIWTguyce6HJAY1PgIT23HFHH3G/o - 6fH6Ie1gNtgAWhVNOpgkKI1M66+nuAHrhcti0B52htaQ2uHD88JDF0YfIit21ayGqGxIY2bb/9pZ - H60112gwZl0Wm/XFjtZOm2YIBedKnOZ1juj38XERlsaCRJap59xwl0RoGvjhv/rxEQlvgSth+cZ7 - nyTCDFNNjzU8M4Xrr/34yIXzT/qhOz/O82d5wIFOJcNK4a3o8CP23YZX2YcMYRAK8wFlqrNU7byA - 52EbsRt4n0EYGdNHv5P4wwHJHmBrD0aMntXwxD6/PZ3VHoYSHslPmWmadOrG8GYM9g0pJJNBkfNN - bEG4HtSBGM86czjzAmx00pnWByA95awnTzF8q9NK8OWhDJP1HDWYyF3rH8I6pAKvPAzISnKEU8nU - cj76uAHkR8megUGtZsvqbYFlsJYkdyMNcMSPWgS9SMb6m8qAy/zXBnqyfsj1Omo5/XENBNW9ocQ7 - yT1dD6QK0ON2q4mMer6ZRWuC8NggDeeUlfK1mgwWylt9I5bMJg4Xe4EN40dyJfiT12Bx+FuJTjps - cTTWLKX5oZMhXZWVaPT2UdfgW6VIF02DRLxCwOpF7gY9Nk3wDbjTwH2NWwhjuuTkcVfvOfutNhu1 - 6TiSQixFsB5kmEqO9ouxLZRVQ1tFTeDwSkKSiIrdbKQCMqDO87F3S2LV9XRlXPi0cYbtQb1Sym9b - jWbvpxGLsZz8vT2lULqWSJrXa/bLxyU7v5Hw82fs2pMdsXu8IEVkH0RXylfDaUUlIkGNA1/M+EOz - 5PFJQ99rKxBz74W59ielRSP3isnT23cx9F8qo/MqFbOQfV1HyL6vAOhd+/R7OrTOwu19rAv4zvF5 - a/icck2qQL1/Xoi9x7tAvrkGwYexcKBcjH1TQwEhQFOG76pMHFIpTYhMPRnw6fBVVf7lfGb0tFaZ - YNVQh/X13Uz0iOQXxp9cAezbTWrE9OYdyyZKB2Eavxv8iz/wvnzUDZSnFn2exJqPhzMXjR6ybZgh - 4vhjOfwa6pZRjB6tciPeAu1cmG9LiwiO+vmw6kxDNd2GgPOKGrtB7AD2OGQzDN77DoR6vAwLU0op - yM7k6dOHN1B66JM77BzbJnqlqvmGjkMBbzwz/lvPIxEDBgorOmAr0vyB5a9ajbZHeMZxesMOEQJf - gTzrKcQ12GUQ0mxJkD9PKvZHL6LcfOFniOPwhnXx1AzTgXQhPDzt/Za/zM635ntu4TmXCNY/ByFf - pYBhpT1/YvnytIb9+d5I8aFJ8ru4OLP0wTx8Vv3ThzrfDuv303Xw0RYLVslDi+g9voUwC6GO9Y94 - cTjukdgwSTPePzzZU07du+hDgi89cSD+5KssxcG/+H5z0TFf0jlLUFxtH6ype881qh19COOvSIyt - xpHwpOYMjwHy93jSVSI/cx/i4eOT2FIMlc9qaQEtfVLi6weJkkNf3qUoKB2sI+Ko9JynJkT77n3p - c35RYkpXE73F/cwZyLr8h4RVQp18ZYh9XtxGUI9OffzC44y1vBocVn2cjX/51VEkTLd4VTt40G4S - tsxnEy0KTkw0d5mDrVEo6OaawQa/4nsiepHyztZcQQ279vrDT78/qosnfxJUF4cLUQTvkFMn+KWg - 6aoLMY2uoN+YlVup3hhm7lXeoetw30RwnX6EGGacDOtf/h8+roSV7L7mCzMXImxHE5Bs6YN8u+17 - ol/1742NMlEGVn1gDTYd/M0rq8Jo877XBRntrZgPiSc7fO4JLsgFIPnc/nvnaqx+cCqyjaind5nz - d9kP4ILuxgzFMgV8IR1r+Kp9h/g2zwzb7ZyKUNReBb7T0VNZptxSdM3PIVbWy5CvsqmHiLD3N7Fb - N3SWc0AWIDbuBd/un0TtJsKOyP+lCta0zKecoohvpBVfYz56WKYjTqQairKfz+y+PvgEXAp06pgC - p1zaUvZ88gIo08zC2Z5fiHfkXBRKik6MLe+dJbjKEJXe1cfRr5UHlgWxCY3o1v7jD9O0Hbu//IyT - flsBpcUUg8Px6BH7WVURz8+aAqTpfiC4nZ8De4175Q/viLzjO/VGLURHWg0k3fPj/HWFBH7y1CTl - 61Wry+UlJygO9QXv/MKh7eXDgtfTjXHh5qEjOJUrHQl3SXCCGGZYDr/jgiRDM0k6EtKMf/MHEh7M - Qq+C6F0/qxr8rskRW0sfRNS0hBnq0+04g6vUOsR58QXiGqkj0Z5vvqdcNNBGR488WSFUlxd7G9Ez - lXzi7vltuS2KiEanOxBn44N8u05dBQL/q/2Lx6WozALt+DzD6luCpWiaN1BE/uFLytEE44u9zai1 - PqW/14EH2rdWCdMD9LF8TdV8zY+tDT/8pyOe1Z9Uju8fFbyeBxV7oANgLc5PE/5OxYUYQkbVrZrv - LjxSLcTXuZubySL+Gw7+xu6OtgZYYNAOOszh5LOiIOfr56GlUGx/FbGsxxStBZsVMPDGkOjLo2i2 - WqwUuPzuAVE5TadcGroSmK/Zlbh8/W46IGQGMqJr+w9/eWQLb6g+RzDTsKuiLWbbBT0fQ0fk3Ls4 - 3CfrA/CXz+zPdc6nzBV96RzgFcskvA0/a7lAOF+FGZvxIQd90VYVYlRzxop8k8H093uvyXLBN73+ - NBNl1RDJDbcrbOPk8MfrlEDC8shfg7od6PW0tiBh8pro9PIBdENViP7xD3YZ6KYtqyhF8epinTV7 - Su/GHMM/vmtscQ02KdxPD35ehxkkZjisJyMfpVnJn8TFyavZ9vwH7ecrw5Z0E8CqhJEBay//zQdW - CJ2V6s8UOJvwIw47lNF2vH4S+Hzp4j/8nqlRb9C6bI+ZGXDfLKo3tkAqLyt55poKlo8eBEDbnXBF - Wo1ICKLpDT85/5or6lxyVm6dAKqN5cygee19CskmgwduL/PiTYmz+CB4I8fK5r/3R+vYSiGsC3Tx - pcGGzii/sxkOtujO37ivnQ0OUg0f6jHCp1I5DeP9NvpAyqobvglRBNix4WIwrn40H+TwHk0PfWrh - zv9xUb+1aHtBx4S0fEZEPYJ++IhcLAHOky1ydspsWOpnV8GvP6dYDUnbzPjkm5C3k4lYj15Sl7/n - 6fDTIb6sGnTZ+YTkdikiujL6Dr8s1wqoDh8RNcUvsFlLBuGOR2Tnd8Myj5c35I1SJ+YrqiKuxCCF - 7HArZ3RXpYjURfSGGWO9ZyL2n4G2GIYwzWqLGM88BGsaMSXI1LQk6SuSc56r3e6PX+IbVuSGHtM6 - BFxM7zv+mTkXl6MLGgAr7Oz8g/+6h0T8pdQk2mdp6P57WsS/PPe/8WMRv5V2Pkg08lmHNQuiRLqU - oMS+17zAzJyLAu75Afvp6ets9tylgC5tSkx+7+m3GCcG7HhE4pds5CyvLiVK2anHVrol0UJJscHU - iSainwtnmBZbLEG6pB3JPwmXf5Sgr+HOL4mWZxrdfttXhsg/UZwVD3UQlrWToNklr3nc45tWyhDA - NQ4+JGu1N93X6wLH1Y1wtM/fyrm2AdHjeyfqX7xXi7MhjQJmjtX83WwIXBVoz65PUubQqcuhl31A - Xuk8g7sYOB2qHxWAzWT4LBdl+SqL9QgDUZXn0QA8oIm3MNAIgTcf/Xh1pjTiS7B+g3xu+2PqUIsz - Syh7AofPa9mqtPAyGRC7wkQ9smrOL89TAd7H6TFPwTWkqzZBBsKT089C3NfqWD+7Gt68asGqnlzA - homkgPMsfrCaxZuzuXmS/umF+Rf6K/1bL+B3jY97fLyaKT/ONnw1GvK/3/PXWdtv6EtpBut57xWS - jx8T3IFff0eMWUaMyNxrHcLA5nz0+r7yPz0IZS8v/GMbrvmaiEUFjKfyJrJz8PO5QuwsCcn23F/P - +UgAayAhiQ2Saa3VEJd872C8Lx5J0xVHSwMphK+6e2P3m3dOf969j1X/LtgRWo+ynp8EEPwiGyur - raub431KuH7D3EeDrzSC2Z8MVA8/g2i+HDh8DhsNUu664eKq9dHm15YBd37hH4tHMyyP6ZiC6BQj - jMN8HIiMxfG452/ipYIKuJd02MCH/3b+2n9uDo16aYHaQ336Au+rDT9MYQKP1i+ZqdzG+TS2WwB7 - s5jJPeeoSqU2cmE43AJ8futrPgyn4Q5wah/w7o8A+mS3AEE+aLCymURdmMUvoamvGjnvn8/9PIsB - 4BbFRB3e9iAIzCpCg5MvOGffqbrVWdkBLpA2bNOPQZd/forVmcQIlVIlx3vOw10PEzlJpmjLmaKD - XFNgkrzB7AzDJvOoN49n7O7zTS/PEYI4PC++1DN6Mwkf6Q577W3gZ7U5Qxebrw7KhXbBu75pNoaX - EzT4SY6d/lQP4x7P8OCawSydeyPinrm0AXVlZSyTDNGdHxTwnIuEqCExGm48HkRohCXrS+e+jf70 - GHQ7LiHm1/TVTS7KAB6kW4t9/7V3fCKPDoY/UcDx7/ttKC8PNQzN250YrrfktEmXAgFEMmJ4zj2i - wYWV4aT9anzuuJkuU9l18Gl7GVG2BDREUy93aBxvoS8c4OAMibdABJ/sAysvqOT/+Movwy+st8Zj - 2GCRKhJznR1/qj9DtKj5o4L7+sWFfFAA+2qcH5AL40L86HkFXdW2G4T8CLHqiTUgMSeZkITTEWtq - rjV888UtuLBHB8tP5Der8B0gHOumxNbLOzkrYiGEe7zhk+GcmzVzFx892nLxv1cuHSjbjSM8jfdh - Zhe/V/vMfy1ofms2UYGc0XXIrPi/eqoKebrrtQDd3jkmXn95qGPERBsCuQNnMVK/zYrzl4x2PkD+ - /B3K2FkqoSzI8P2+KGBrbpMBo6Bw/vGx7d2MJVBn3sKPB+fRNf85HfDd72Gm8XvvGPeTGWi9l2im - WMvynY/J8A9vim9uOvzKGAXa/UaCZ6fKSVicWBi8zRSH68WJlok+Weh+mTeW76ZMae2uGtqUByBn - O7PyyTkWdzj72oPYTl05PFdrP6kdPzHe17+zHW+lBKWMWbBlvaOmezquKO18ZgYn+KE0vAchusfW - rkfGItr2M3loEAcLeynzc7bxmM1gf15i7/4DvauOC7zy3u99mOuBCxPMSNX5/N7xi9/72u96lXQK - tu9LTdf8OJt/fGk+vBZuWNPQFaViAQ8ss8dMHWXhmQD8DT3slVSgdDgNKZA3ZsHG3HPNYt/uBdzn - h6gfvnHGxfoY8BGVEsFRVYDleX4t6G88kyu7DrvfdId3PriSHKSvaAVObaKjd7jNsH6/o2W4cQws - C1nFYXMKG7Y7HEzYyTcGyw/loE5P/8RDZjkOPk3xCWx9o1XwT58mVZiAf/7woW6TmfvT1/JL21AE - vAuOTu8yoo8sSFHqXCas8TZStxE4IXzJ5zPBT/YUEbHQ0+PvKyUYRxUEQ36oFJQX8x3j43yl058f - hqrvhZjLS3W4uJA6uM8ncYyxidbr+DAhlgLV364dAqv12GpUTA/P5yq7H3473we/Ed+Ic18twH3y - Owvn/oL89osasNxWWP49H5bz+JZT0a0lSJFtkrMdqg5tmcpGPxB/yIlnHNrt+h5O5qHBnrWcowWk - eAZ7vBH8BN9hOqq6BPVeEclpO3fO8BhLBfw9j3981tGK817559fyZsw39PEbS+jzJzAvl6fV0Dyc - RhAJcY9vvZrnm9JdO0lA7psEJhKbNfZSEyy//Qz6rt8J1tkfHNjExDqb8NHMBctbWphQJLg4rpQk - nshANXCu5C/fLHY3V1D523HM5g3l+zejAeoAnmimU0fTdXzYYMlJjv+N94XLEjDHDNz1fTnMbMP7 - 8P1Ji3/8ai3lQIKLCh1y3orAoWm2xFBJIhmfe+nprGnEF1KfylesRB81Wj95yEpKeE/9Eb9nh5jW - YYZr53jY1UmVt2mUBsJlaiPsF6s20C4HHfA+kUnMkefoPz6BZd7EWlKfVGorxwKsMpuQ5JlvYJtM - NoA+r4KZ4beDM0p2ssGr0wxYFoex2c5p7sIh0UfsomvRFPlV6oD3gAEJxGEcyG0mFdz1yVzovDFM - /IA16XYSNiJrRky5YfQh6I7XapZUYQPbOY186B2dhXjf5hot4YmB0LSGkZx4QR+WhjgybO4Xjuz5 - W+WWB2PAy9n2iXUDWz62yRj/5UMcYkooqeR1RuPz7GO36dlmteGhhpafeL6AFXngJs3boPe5mP71 - fNXzLV6dDqS2EO/60BjmYwQ2SMJLRbQWSnuvWkmE06B9cel3oUqzbx/80wd6ssYN3f0l6M9E9Y8q - v29Ie5uspKCv4EtIV9Qte1k+BG1az1Ii69EyJNr9n950rw4ZOpxIlbSCT4FPXVYNnf4ZYliTesbu - 7g9soLTeEHygNX+0F1TnXU9APycesY/3mNJb3kvSjg/EfHvlQKeHF4g7P/2XPyfrIVUg3Luaqp6o - UJaZCwnyH53FhpOM+47fND1+xXbCqmV+8lHqO/Ov/kKU84UBc/zqTVgd3Q7bMyTN7of7EH8Djzw/ - da8usR25UI0+b6x76qROP+8EoX5te7/mDyFYtucWoL0eNpOoKujy5+fy1Ubn76kfAM0EZ/l7P/Ff - xB92/TkCoV+u2MAHtVnu5mmEHVeK2O6ZT7Pz7zsa/DgnuvoTVfJ6MvMfHs+HX2gMnH6EMZzfho3t - HB7znS/6cGECET+48Qteu78AOAUjn4z+ndJj527w9c0ZbLfu5oxXYzH+5Sv58uybOfcEH17Kh+4f - zuicC3WpmxAfnjzxpfc2LLwqFtCz6xO2tInQdf/8Pz9shiNooi17nVwkwM2ZpYKifLGsvoLlJtYk - HJpmWFn88YF7qp9EY881WMz9Ji8QwoiclCx2Bh2nG9Qv88kXdnxejLUeYdJ24V99K6fl14r/8AO7 - k9IPq/WQauhVzJmc4MeL5hYVC1hUxpnpQXg0S8Ld3v/0zuKxRf7nR8FbpfnYvSs0+jdeazwyPje/ - zPwXnhcWojHERM5jIV+6pejAXg/DpUm1nKWrH0PpnlnklJT3Zp0vzAzv8qTg0lrnaPeT7nD4DBE2 - jQ6COWfiH8xQsOGzeGEcKj4YBsCT1eMT3jqwSuV3gTv+zMLOL4l3RC70z+yH3EP/Qiny2OovP/pV - QxRnvCbhG/VmORPnZhTN6p71OxKj34+c+jIAVHR/ItjjZWZ/80T/9BAaz9vtz59vWBMsNSwSM8G7 - v6xOr69kwr3hyO7XMtEsvcYZ1htkdn9SUYkpDi3Y66nY/75hPuNZLqBW7VfCpYdVXWThFiNpETD5 - 8+t2fCogb6/GDBSJgKWXfgVY8kjxxfXpOdzOJ0GioS+2zUxzNq6KNDiIvYV18TANpEuDCkk2VxMX - BmM0Os2FRd7RWsgjaJ45HXERg93vwVi3Smcml7SC2Y9csXK62nQ9HupR+osv049+zvaprBhsrN3O - KD63ez1AnhED256ozOZFNMG/CjRLVM+DSRAghz5JofE5qnjHc3ULPL2GZVEUJF2nbJj+9Pn6HVl8 - y6oP+O71TXBexYKc7yPMp/AUbP/8GWupf2r3il4mEuaG+IdbGEQr1W8pZBYw+MteD11dPeL/8JWY - UEubKfmaxd/8zDQCyNmuDGzBsjkvXzreWbDXg+7wIF1bX9j9761a1OVPj+EAvo1obX9cgtR63HZ9 - 3A9LNw8a7GeJYse9D+rCPGQW7vWvWZo5Kx+XW6lAQd16oqaJ6Yzuam/QxofNL/ogcYTvY3JhJCT9 - Xp+vnOVtjwzoqccRZcNcPj4dTfx/dhQc//eOgkgQFXJv5Ys6AYRjyF0g7/PxkTiUTZ41NPGnx47x - +EbLGN0S6PY/Bevf9RttV4PlkVgK9syJ0wnwIw94ILwak5wv9daswvi4w5p2V6IF4Tnib81PgR5F - F+wFgqaukurJ8JLKR4Kvv+9+xoGvQNBoEw6+gUYnVU1SyPqei9MmGob1V11sVGu8SAxPLppNGVaI - msuo49KrvsPKbM8KxFB74QeSHoB6T/8O0zY8Er/SQUSOBlejqEtE7LYHEo3j0WSkhr/eyekc8HTR - 5HcJVWX0fPYxffamj/0i9VqU7w7PSV0a2m4Iz5I3b/cG0D67gR8MCj8g/nkKB467Tiz8pJ8ep4eB - ddbtUfIgEiRlFlDcN+tLrn5Ie8PC58J+patiPHzgBl6H9eEkRctTK0LoJYxOHJnIETskiYmMszsQ - 6wmJs0XhoqGYLVNfQLHV8Pd08yV0vlszNa4bmGumShDPMhs5TVXtCD/4btESRSZRK7Gli1fFENKv - esTOm5VVll/jAkUmnee4HQ7D5PRahRp5eGFM33nOncvURzCNOKysv1czbkjo0PtRT3OhSHhg3fOm - wHCsMfF0/aCu5oIqmJj+iUQr8Af+aVxSqPd7xSux7rkgs32NRH5zsNk8DbBqjZ2Co+QjYuml5XRj - dIvh8qIz8YaXHrGK+Shh3x/iff2dc/YnSzKk/FclWqPy6pavDxMum/YhYfTU1LFw9RDBPs6wd/fY - gW6fyxvs80EejHF05tOvreFIkEuCMLab5fuzU6iSKSWP/ts45LA+WGht0gM7mApgk85KigwovknQ - Ma7DnoHkwml6G8Rrug0skq6HaFaQhX394DQ86T0Xrlh4ELvv7s2mPfkRgvfdI84jeqvbhEsesmWl - 4md9/Dlsry48bI0hI/LYXgchzUcbYk5GJMzlymHj9qnBGNcOPlW6SpeJV2zEHH8puWnnON8asd73 - YGqGf5gV3Cz2aqfgpoYIn6xcyakkCxJyg8OV2FfrPdDvOd5vTZL3HRSSERFnOHWoY+wBn76Tp/LK - vGzIzW4OcR/plfKHCz9C9FRCrLrmGSzXb10hMXnGxFgvt2YJ8t8G2EnpiWauQ7QdhCpGlVYfsWWz - 2cC+haNyNM5Miu274Az0cq1lZPCyic03dxvYRHUTSOS3SjRJ91WO2W4VMKF1wKnduIPA3WqIgMe0 - Pp8cxmFqzcRGlP+of/ko7xJjv9MhFc7+Vnb9sDU3NYZPJrUIfuM72Pb5RkHcnrH8usRAKPpbCMJh - q4nrvvpo+X6dFro2+8E2xbG68GtcQpc8JHLOct1hX69TgR7X/EEUQ9MBq3anAo6hH/v8nn94lrFS - aHfvhChOuw5LfrVm2Fxmfe7729RsiyMa8M54J5+v4ynalFlcoHualBlA8ByoIQ0dZI5dSiybPTak - TpgSWh4MiCrTr0Ml+SDBn1WVODkNOSWx8WWg4k4FcTa1cfjhsIRIKGzdX9SbHLF5aEvw8Znj/Y4N - 3Vlmf7Kh1fxsXDRGAQbvadzhRXir+LqwJF/Px5WBhxbmWNvcfBAQumioP3pfkvHbQMnNMBV4OdkP - fDoHCSBBnLzhhdd6bBolQ/uk6w34bvrHfFCKCGxDfjdgH7Gfmf6UQl3eK72jZXBNIrutOqxMLsso - vnYA28wSOEIewAT9Du7Nn7nTdaBk2s9Ykzkn54PvUF7w6R1dg0nwf9PURbQYEwPW71QhgT+eVA6J - DxsMETeRgD1fhpXNmwJJl/sFe3rdRNt7/BaQn7Uridqtd6bsGMmoH4oZe9LPBivDlQlsKn/wozGr - 6Za7DASO8TP2+f4A7sesIxxoKhCZz375JizhBt5XW8CKKMWNAI8Gi4SF5tg5lKeIc0YngZtX3vyj - Hnpg+f6UOyyXU4ODMP4N49a8EtRxJ5MY3VnJ+Vs1+ADpX5EogzA29MXkBaxWHvrwkXJ0Na/RBgUx - exNd+moO5ykbROPJWWaJeceAXawNorssHkjMNnVOhyL4oRUdvX3PqAJ4qKQuZPVzj88ZtijNSSyi - zCtdotaMlgvB7XEHjUU1rJ/NK90+VNxveccF0RBTDYJy9kWY5VifubC/AA6BiEE7vhKlqF2HDbd7 - DLMcbjihN06l5i0QEefwBi6hZDqcXjkthJcxIKE4H/ONiVEFP0JuYM9tc3W5Tp2J3IOq4XPEOhG3 - PRIWjQpz8lFpfJ05ed42wFQeg81x/jmbbT81+DswGk64umoEVC4VWjwzxc9ZIQ2ZothFi/Nj5sXO - U2fTnswMxkxbsHpIRjAdLaUTjLM/kNTsf/mYGI6J6lF2fOhefUcQHDID/VVvRLeiVyS8MhTAOyc4 - GO/rm3+MPwaaT5v6IBp/+TLd9q5H16kgt6hb1FWVny2U0ED2Mw842tdjiRapzGcRrRewpIU0QtEq - TP+AhdChWsWFkvcpBpyl1UudosuxQtGlLGYp3B6U2n5RgIaUiJzUYlO7V2n/pJF5bvi08eGw/fEt - z2t+/rF39ls+L5uLnrwSkaeWayqVI8VGp+TCk+zLvZplvHcpsjbxQZ5vLNExSBuIbOvkYtsrvGip - j2MKR+ax4VOPM2cNGHNENvetZ3GUPtF32m81s/LJIjt/yke1O5Xo4a2RfxTNYtj8Zx6A/oi/M1Ve - vrrm020D18MrIslbYZstvU8tKE8HivElY5y1f+oj2r+P2NOxabaCvBZEv6cjfuZuSDf37RWQq56F - zxVakK9XRSglqDjGTKNUGpaXUonoLBKP+HfwofQw32T4Hi4ttnpni9bp2scwd8mX7OPVsBzFPCDJ - vBETfZLhb32gW5aNJDkJN4dfzhMLdz709/wqDVnljVwhBeS6r38h3iu+yo+62BCKPb6y7wy+uUmw - y/pbMzrqd4E8DkXsORp2tjubQ2j9POKzz++ZLli2ZGA+pQr7zfEAZnSnNgKxoO58C+SLMD9+sE2Y - ALsH4udjuN0TePsVgX/d+TUL5dz4+36iXLK22czkHks/pvhhH997ujXibwQTZDOfj26N2s9hXcMd - T4muK2lEdbmP4bVP30QbTJVyBvcd4c8OHSzf+CRf/Vdew23wgpne3EM+GWJbAWdUTWL1jUnp8jbs - fUebTnS1GvPRZ1AtWNEtmrmmYqJ/65UYOSCO0dfD9oePeWIqJFSng7pcXXOBXrEi7Llbkm/0JAf/ - 8M0mh5NKvh3lAdcJ4cwUl6RZ/QPU4FKzIbFvuFaXPJVryCfWFVv7eiZ3MUsgozJPonYx5/zFN3CF - O/Crj/3N5/dISrDzRWxbXTesVcW+ITaLL1Gzmw1oPGYt/NMLsW696PZZ1hk6cXr4b/wCdE6AGfx8 - otr3ascnpYWhe9CxXxcv0BZb10rT2NREHu9StMrk84bvd2aTOzDbhjjuS4Onb3wnOAuDYfX04wbZ - MYR/8ZSPNh5kGObP4Y/v5mtEAwni8ywRl4NZw1H5NP/Lv1L1q4bNV9cKqjNmZrrn7+UQO7z0oE9v - pofEBcvVlTd4OnUvcn8b+xnJ4WBCcrY6fN75IvE10YAGbl9YtnEBuFTEb2A8bndisaLVcF3t1uCP - Pz0F7h1t47UoYXUfOn/UuoSuL7nr9jMT7Cw+B8XhDny/QL+zFvz3+5dyWAN4dnIbW6v2BvQmKyl8 - nrQzOXnqQLdDYjIQCuyBnJV1P5Nj8woUhEGYs3AaVVJ4XI2s+6Eg7u8rgrVHcwCfcnwnj9e8NMtL - 6ST41cJo//9mmNHhEqN20g74ZmSTQ/l4/Md3iGznqbqUdiZCTi0CUuS8BfbxYqGrFARHV/KKll99 - uaM/fRKhgETLwzj/kFMfP/hk4bOzFVvVQvNW/4jW4DVazEt5h1759slZe9p02fMxRKNa+hw/r810 - wln3pzd9AMFhWANgSbDs8sxnW0GincyJGmwqJp2ZXa/OniEm8HeyO+wPraCuTYBNsOcrX0yChpJ7 - Jm7wYm7tzJMmiNajpfwgfbkncjnVmE4MlyRA6CUG+9OqDFx2zBX4PUJ3rra1ApuqxQzw1TrHugts - KlyutQKuYW0Snztdm3VtoxDu+Eey8BVQKgdOAo7qeiPyt6icFWpBCcXP9MX+7fxSlzPHvpHnvX5/ - /FjdZs4s9o00AbaPSq/28HT5If9+FwiuqDts6zfj4a3rD/vrsfm5b71EYZOOJOpiTl2PrlVAZqm5 - GWiNrpKTp1Xwd4AavrBpOVT601OQaI45VlKpbviRpyz80yvW+d0O+3j/AEfI7AtdSiKKyqVGUOAP - BAvcO184KZUAo+63BJ/AGi3tYiqQuUwp0T+C7vD624SQWcPah5+LmdMBiQq8np5voqSSMnCqWt7h - 5mYUe3rSOQt4r8Ffvpxfp3lQl13fwPI/AAAA//+kXcm2sjyzviAG0knCkB6kSRAQcQaIKKhIFyBX - fxb7/Yb/7Axde4nspFJPU0lqURuiXJaMUmclPhyCWSZIu2r6QvDygdduOGArvure+HUGDYr84uH8 - lX0H+scf//BOg6/Kmzq9YeBGnTNWAJHoBphAlAz04ohdD5m33aTbR3rIfYkDFjZ0iqciAjdpw4iR - CBwofcRQFvR7hg7HZmiW98x+oBBrL2K3i0kpZqQcPHA7kog89h1bjFyDfT6xJTIzWDb50PH32XDx - 7jfoxLlmEnxeXxxiXqVKlyl5beB8esX4L//P6BVZ8oOLPlh9eWosjMKWy3fr5KI0e4rNFrKHHE4c - CrECmkOz1oe7C/hP6c/147rFGwu0Vn7aAUNs6zbpE3ytmlzFm0GwZdzj34H2EHAdF+E0yKhOnyVr - /NNzf/x+YXK1kkcV3Int+y+Psve6lW+mkZLwbz7OwimXvM0T0YJqkwruKCt/fGLvsoSa/hgoGtz8 - gs6XsEliwvF6LU/QGOdP4Av0V8ZqKSsv+4qdn1UP6/OlKMAAvIjGSL948/l46qAQLxg754MEqBDt - XUp2fmR0/KBPi7vW4ORXPJIXgffGdgUZqF/tD310ORlexoOfgQfaCJ+90y8eeSGywDUHFkbKuR02 - /SXXoHPKDePXNNNtq+45HPPWxenR7b0litcFildmJn7Rz8MkPacWYviz5mV7mw33558p/pj881P4 - xN9KOTK+e5cM763PXNrmsnl6r3iPL31pli+E9nK5EmXHzyUsXgu89lWIWkA5jzLZJsmlXpoYfcLP - QFGJWyiPq/fPr9vEKYYwHe0f0q/+Iaa6kyfSnz+DvK0u6LXdu8C8WBurJDcKbjWoKFeL3hDnTA/N - uHTFS3LlQ4b9G7SHJWMiQ3bgccTGWLHDVxzi8d/7u6wMijFoig1iNg6J13UtYL3TlP/xa3zRx90P - 5NIUgv6w7f7D0FTf56EH9fFh/un1Zi3XlybfTCvF1isJip1f1PKON/ieB8lAwH6CY/c3Zvn31T1O - vrEt2P1BEl/9R8F1Vr+Bb/3cdn3Wetv5+orgjh/ofWeiZlLI1P7p8RlcEwoWdaQ9MMxbRHTuWtJ1 - ujxT8KfPre3ANFMZn0qgSNqVeOfN0Vddr7J//unOz+IlHssZrFxzJfhmccUSZgOEkJmKXe+99n6K - Yw6xYq27P5Z6o37qRHkxltd8uC5Gs+vZGT6uiMeBer/851/86ae0V42Bnratg3IzdBiV9zOl9+lX - wygYN5LteL/I0v2/9fwX37NV+C+Yu8oLn5krGkh70Q058mWTGIk16tv3KfT//J00m2KwIUWagSn8 - nqjY/bWp5ZZN3vkHYptibCbv59fwot5bcgq/aFjLUOvkPd+i56nQYr76TAmchpX757cSzbu5sO79 - DZ/gzRzm4zdNIXaqL9EEPyi4ZcxEeGHoB/G9ajQrz914SLgaY7//ZnTrfs4MzdN3Jaf0wjUTsz1e - 8NbfM5ItaTws/GUbwXaxnjP7GR4N/fu9IRYmoqrz4O3v10MyfRHRr/4jHh20dwX7siy+v19cvPhj - hsD7y0GCP8+4WS/7HYvPuTiTkx7LzSS6jAbw7NTYn8UnmN7n/COV2pwRpQCGLhzmqwZ1z9Kx7Ssf - 0OXhoQTOte6xVeeeR1Bpt3965w/vYirLNwvgT30ld9N8eJsS6S3k1lrBZv5qY7b0zRCU3+tEvHjs - Y6r/jiOgnXHH2fP2K9b0NVTwdNyO88q2N7D76wykIXCxZzRvb7h8Cga8pNeKwGfWinWO+hdcHVn9 - 0xve7t98QFP7A1Yui0hnfLv34PLcCmIF/pXOTym1wGayCGfFhy3mAa4l/BphvJ8IGZo/PQcOeLVJ - uPO3TUiO+z6mt42Yg2IOm3O7OfDwvqvkNtw9b4Na6MNpfL5IsK1ZQdYuzGWRyRIkPoaXTkV8ZEB5 - a1kERoN6Y0PnBYaL8CHaacTxjJRtlH6eJ8ztD6nNuvtJkGfhRnb+0bAtK/lQX7QQ7+8PNtFjP6BR - C0SccXb15Tud/D98J9pFDfXZvlgivK7JhB3VmeNVV64fuL2EnJhJp+ns9ukcCXafEaOqwfHWXzEP - Eyvr5oWx1IYbyaEHAEQ/dAy8uuCk5/sD2eQCifnSlWL+89Nn9xthFZoX2jW3sJL//Oqdf4C51vMW - qmQM8eN4DeMlMKgv8bN1IXb9KOny9X48OJmfHB3aItWX5SRB+I1fHyTufuxffeKf/4UU81fM8jGe - 5edDHIimTw99zek9g/rZpzh4vy7F7i86oGVHFWvnYChWqW0zWHoWwgbbvGK6fH0G+irRiFtXZrFq - p0SBRdt1JNz15nLgBgQ/1u+GDVtvvVXxcA7j26736uodzwxfSjD0wA2r0Q3G84vpUvDHj26rYdDK - Q88UpuAKicIHRJ/+/L978lv+6gUx25ktgg4S4D/9u5Xkt4BfP6nYzd4RncLymUCYnTkcVNZX/wTv - cO/6jML5MDpBzJZT20Mh3jCi4NV5dHtFG9zrIWhSz3mxrX3WwS6VM6IS9PMGd+QUWIaPM7aX85Nu - P6blZc6zbmj96TLt1nc5wyifGOKPm7GfuPRrkH21DxKf73agPRw/sPxeJrzjS7xhidPgv/zwqOKY - 9ochh7XvaXivR3lrE9quLPy8865HejozfCJB2x3uiINPa2DfwcUHq/L1CML5ia5rU5YgJvjPH37r - uz+SAqr2wn/1tOEodZDYXjev3sVo3m9ULODPn749K+Atr0Jn4fpdKqxzVwjofekSePQlaQbHxzke - 3r7V/80nEujR08fpPECgu2lKjB96Nmu+pK30x/eFzk+8+aq5PTz6XoCObE318cVPLThKvjwze71u - 3v1boPLtRP7441xXMAG3gtmwLoc43mD5ecENIQMJu/5bH2bOwq0ce2I/Tr7HPowkhNoCILbBifHW - znot8uE6O0Q39Nwb7WupwSF55zi5T+9mSdth/IsXJP7V79JXU8JIih3sepJaCBNLW1i66ROx7hAM - whTec/AyP2/0eTmbtx2ELoGPCymJZjOON//F29BKZxStwb2ggfJm5Y7bOGLT46AvryzQYGTuNRC3 - EL0//P/D491vUJq1exm1fNxaFuMZ9XSpgnAEez1yPlC4AlLEwIF5eIqQ6J9juvK3xZKdLLxifffH - ttU5RiCY+Ode32D1KUbSCNfQuWAjsXydbxKjlvf1M0ue9CxoxLotPAWoIX/++Kbvu+hG9XjH6gLD - glewvx33ejFq9vhbikgTZSstGXxKirhYtA+vyKHeNKg6FUcwOucqg7OXHEj4PCd7/YJA0AaYR69C - qfV/fPGP3+75xRuBFc5QeEUc0Qy3GciuJ2BkvDE+rWGtc/Xh4sLcaRyiTs7Q0FcsdIBUKSDuq9Xo - OojQAspvqrHJp0Cf//jHLIALOaGOKbqv92Oln/iQsNEU/jDrdrHBTjEgAtwwDr9iemxA0B8ZOtrZ - EFMqs7XcYs3GwTcs47n7qCKM/CCbCRa2f3pNqnXqE6x1RN/9xFHi9CrE5p2JhuWQ6Cz8Fi5BUhUf - weKgxwe2QcBjd31OXpOMtxbs9Ryc9NBp5jddXnJ8LktyszOv+PPT4c1kdXzn+Y9O16edgE/V7neO - Wmqz8GwcybTjXYKVNI2Xw1XrZW59KST4FV/AvUeYgnqY/d1/WoZV83NWKvxpv0OTV4Y1p5fs/7Oj - QPrfOwrSsO2Jod5/zaL9llr++sUNm/2vGZbjbeDB6W6yxCx/B50uSxjJm/NwUZskazMy4Ipkf4FH - cnnfvt7Ps7gafAJokzwIzpRNHtoCn0o3YTxiRLkjVkfZf8ovfKoeeNgMZlxgfgVg3sTsCQiLghG+ - nsYBHTkriNdKDFzQn882jjSX9bal2maYL5IwS2nQep307jN45iKMteapgeU9VjNMrBPEWvn8Dstl - OKWw8S2dOGnfxpSUN1dmXrKBI85BBTfavwpSRpyRuK5tPLePQoPOqVuwGkEybD9Z5+HBgsHMZsa3 - WJfLfYa0OgrY428eWL1e3mBxlwzi93ZdsNKpH6H+TfJ/f2eHD47g1pUqyc59pI8noUYyWIwrKZvv - Md5kLZplFosIhwUCOgV4i2SitSxJrkYC6KuVFDk/ioAk9r0u9s/a8Zn3Z+I3wjkWOrepZEfrOWJv - FBazIHYM4OJrjDhf+3is/Rgs2an6F0GqfgerdXYZKF/rFnvLb9Jpern5cGlUCw1q0Q2bkHQjTI5O - ia98nHvC13pXsjJXOfa/V+ItX+csyq7wHPBp+yT6wuhXHkbfiRKFXh7N1Ex7b4rPMSaPjpy9NbAW - KL/J4Ua0x7kHPB/2s/wsuxzjHgtg+cI4lJ9azxPfCrOY2ioPIe1AOU/pmzYL1cEHvkbTx/d+zDxW - PH0j+B2zkJjtz6ernMg5SBgXIRofdMD/TKOSR208zlx76oe/8YLmY7FJjPFvWBj7wkLINS2xFsbR - Bd5SWnm1NUyK2yvwprwPRfncRgSjVtr7uC3l8u/72e/MFsvpUC973zYDcfilD2tgiYwMKjPF1bf/ - 6ax0eYayGGNEHNTzA9FrvZaluLsSRNcHnR6jpslvIt9w5ubVwIKgnqHsNAExbPk1cAZnb7C34xfx - jzMLlrlXZtk0t4boX34p5iXdXGj6S0WStI0G4sgwhbPwJsQWm59OXs6WwDiYzPld31g6y+mZl9Gc - ZaRsbEHfQmT2wLS3cW5+vF2Q2uFFOfpNEBfc7RtTR2ZTWe5qgyR98dD5q047Wfz5NXEiaW469rBA - WT9dRoKe7qJPPf585NPDlvf4kun2PmTjX76Y2WVAHudrEgM99RniGE4kXtT3VsvbtXwSa2AuA8sK - Sy4L+lKSx/zAlHtkrgg1V8px9c47bx1pH8KrqAh4H/94DC6XXjbedEQbJ3bN+qj1SnaMnkHUOUhg - G36KIxeOFKGV6E+wUJ1+ZJH4AONUDAa+U1EJKADm33jG26m893Da98z5EhL01V6dXpo6V8aBieqY - PhO5hLdvVROrqzKP/bL5DGJlJqh27J++vKxuAwM/eeRkd/bAFuKqyUK6mdigw6/YiMV9oJBv13k9 - lx1dCmdDMlenT2L7l9pbR9wr0PhSbhaOzTSs0dJKMEgYDXvSSR1W82f0//LlbeVvYBlz34WK+ghm - wB1/A79aRw06XWdjB3ZVs7yViyTH5VxiL42Ozcy1cw4eR/TA1xP3AfRqhpYca7OIbfRWPQoF8QWk - S18TrXzaA29aHQuTyOuJmpRt8VNA1MuT4CY4SM21WOJDoEhcmkCsPc4uoOC68fCnsxWOtHzUN9Bf - XlLmawpRFLvYbzk/jyDZ3OfMmVoJ5l8QKH/rCTtRPhbb49dVMijMCZvmdvW6b3v7wMfH50la2bXO - HQc1l1ksIXSYiU2p2iJL0lLRIRVQabzx3ZjDJ+l0chmOtUfzqyVCHV0rHFwvARhzCD4QSZlFfLOu - 9NXL2U7+2eyy3wq+DGvQr0gWqW8SrVqdhg1+ySL5k4xxQU5ZwVEz1GDCuj2xxjnUl/eYjoDcWoIv - Ox6uvI5HeF/XAheWp1GavFMJdkDQ5tASxmKLXooPu7ewYEWxQdyv/RrJad8iEv9S0+PTg9xKYoUL - opQzBvP7EM7yBxRHbMvUbLj3e2sh64jxLMEiLRZ0jg344FBAnEntvX94rU8pR4Lksu0nJxokD/V0 - xFby9QZ2zA1HDnTmNdMfvyusJCvlhHEQPl+hCriMTzSwyFqP0a9XvO2k3CGAvmEQtW0Kj0WnvIav - t3neFVkJWAt8E3AX1xQ7VFUAlzFlCyW7++Fz36yUTkqlQEAsHjvDGhQ8l7wj+TvufXB5X282wkB4 - vB/WM350ZNUXTf3bE14GxIgSqVkP5ZrJyegh8m/9cbOXQ386YMTw56M3VaLpQmhap328X5TzEG/I - vREfsbUwnU7sk1DDft9B6JsKAER1UAbpeJzxAztXIHDSiYH5BhRyDS7tMOVMpsisJbnYd0JccH0x - uVDwl5qUePGpYJQOhGWd1OT6HlWPry7PFKIxwyT+fGLABWh9ySlpFXJVTCkm90GtQBKd+n38gD5l - eZLKfLO+8YmzpoIaiZJDUfIVnAhALYR5KXlYftMCP3Y83FqaO/K478C4VhBTCgAw4AW+a8S4eqiv - PLVe8PpQAVZ/zVQsaMo3CI9PHm3C3of8qfUL5H7Jm1w+t2H4BYyYyt2bW0jl0RmQ4mA6sr/JGokv - uG7+8FAWJ7SXhqIl3sfvBdA3v2MjT5x4W9Gxlf/4BqLrAUwGhxeg6dIDyWfuGNNf/3MhuJs8dq/3 - eqCOCRmoKPeJOPTZ6L87i11oDf6X+OWX0TfPuUHIf6kwf/Lvq/h5PbdAm/6q+Xgjl3gaHoMD0T0X - sV1BAiYmAxlcelXFKtFVwPrcVYTjY7ZmWn9kj/zQs4QihxBiS1Zt5uUDQrDzNVzxK4jX1oQiVMFR - J36gnBo+fPkbPKiwILkfTMXWqVYlm/GSExcMAFD3J+4V00rERtb+GnJvHFHe+SFJtdAEAjq8S7iw - ymdexf4wrPRyc6SAvcnYKux2WC1O9+GbgQs2w02JRwf/INzUO8bI121v6852C3+IHXC2r4/Fst8M - eDPMgt2zPHprjm5IYijTomP2EMGSGyyC3OOikID6jsctavWBgrm9iTZnsr6eQ4LgNDmEuG1ypuQS - 3NHRG1/Jfgb0W0yVYm7SabMqEsww1FeFRhZ4cH5ASrcOY+GLPv/lN6MvHt7C2utH+qLba6YRfnub - 9iH932diXFtBp42ybvKVV2aM6cGIRy1YeAjedkROzOdJN6zZFtjjkcTeIfXW1Sxb8LWLL8HtoYhX - gehQlkhvzFCYZUAlwtbQYvxwltwgLbZ+ckeJCiIl9skcm0U4E/YPX+aJLVs692/XhYUu1QjWAu9N - cflDYLuXkGD4kYc5spwX3J6lhUPx7XpsfDA1WKjiFVe4MfYuXjUjn6VIJTjIjh5hrcCFRzrU2Hz8 - pHjtr8SF4oB+RMlROlDN0FkY53OMGh+jYtkOXC31Wrwg+P4u8Wo+fQM8CJJ2Pr7G9PgQdn79aonf - 2Fd988VsAXLwOmBvOgKwBM8EQV6mpzncLoW3XalUAv18dcjJ7XSPD3szAaVy+ZETz/u6kD9wCaMv - oTN3XC50rtSXD2/PypyB8HNiwuZ+CMd8Toh6hU+6tgFXAvGCr8QVPaagzpFPwLfOGuzHtdZMsVhL - 0NQ2CSumPTVLt2QuTC+fEv/x6SVuggRy+RUR5DS/mPIvJ4Lbu8xI8gOQbj/Z4+HpYLEY7fl4YQUx - hzpNHeI/r2KxRehkwOhHIBqm221Y3UrwwYm1vvNC39dhhlHMA3msU3Q+lx1Y6ANEcOl1FW1OrusU - FROC70kOyVXQ2WL0p2sqhmc+IV6u4Xhr9CKFTtfbs/Q0mPjtz3SBnH+54nScQ48vf28NQqGZEHcI - +3huhL2vuNAMRE193ZvNqn9JTHyYsE3jqlnr0hHBHh8k4QeD/o2HzAiQx0HE3cESmOULHutBIAE/ - vin9WZ0E5LD+oX196GNRHhMw9Z41C/Zl2nc4vRYoWb8T0V0sFOMnuWiw1C4b0dFhbcj3NTmAG9IZ - PfauN2s89gmEsHnMS4mmZtHuRwb88V0En51H+ZcSwfZaNyS07EinbrBAifkc0t1x8fSRLZbxbz4R - PC8NWKKvLYFK2bb5oKuqx99P/QLPv+iJ5OL9pjSZrhXc8QWfBH5pKE1RBM+nuEeCz2nFzNcDD+Ns - dgnuHkdvSpKug6wj7V2Wvq/4favyBO7xjjVeDDx6vB4ySJ6th+2j7hXbzjcl9ShJxBbjsz5OlevC - ibgi8fLXudkipFoyHoWe+N1VHTa9+hpw17/kzpYtmP/8gLJO6z9+GI8MeCBZU8WUKF9G17mxeTrg - umoQKw1y6HIQyh5IVdfiMlB+zao2ISMf4a9Fh7ODAC+MfQZHY9Lw/WHqjeBe9kMCNr8goj/1gi0S - cYGsL713vnwb6NRWEXCsnz2zK+iH9ebGSM5MzUQr06cFdU0xA6T8ZNgWm5MuaL6Rw1l3NazUlTmM - s6WUMO+OBbnVD6vZ4FzUf/iMjYSN6TSAnpXSqKXYDe/vYjneGlaWsu5E9NqS6DJuAQ+NH2WIV22/ - Zpw+7ggYcsj3/Hzwlo8Ri/Dm3E9/8a6vTE0ZeP5E4iz5wRRP1AwV2bOeGv7DuylJ6l5Om09MXCxf - PNozdShX5tYSK7uqMaWzzcD8DbZ//gmPXdzB9aRlM1uyz2bDGrbgfV5XrHHOXMzXB01h6PNPJMj0 - 3axCbETyKbSrf3qMzrDIJWY4OLN0KM7NwoCrD9794YukNlnpssXsCK3OZ4iVCmOznaWTKJ8Kc8CG - LWvNcku4FEp5F5F7ap6LNdiOC+C+SYmT2Uso/+dPMALDYx1MJaVd9frA6rxEJIukeVhsYVz+8HJm - H61BuwS4FfDM5wurA0Ux+2YfIXwRiyPGJeH1SRUyA9zMRz1zj1Om/z7H4whPvLEQr96Ugc+aYwLe - C5T++C4dvtZUSan6jWeZG9X4X/wEGGJcNfnZE/7wBGkFS3yxEuP5Lo+ulADnja0NGcNyOFx86Jz6 - BSvsZdPXs/Pp4Z2nAUaZe6fbXR4d6ODBww45e96a7I69frqO2Hyd4oGC4cjAJDlRvPtZxSoUPgsG - idxnsVs3r4duHMqvyO6IpvRTvEGm7MGez8hFWCq6sHhz5D3/IUZ4cs1m5O1LVrtjjprhY+l8tJ0S - +EXFi+hvK/D6/qSVcM9X2Nj9qCW4xb38lTIbuyOrAhb8ulw608jCF36R4k/7KBTpXclH7N20ntKS - aop8FsKMnJpD662WeuJhwzTfP7wt1hydffnjMhUxdj+RzHU8QtDbBjbi5ODNaSOLcMcLfBP4sFny - DCRg2twX0Zn7rK9//FKMA0TO6fgu9vGBEvplH/yYHkOx6duMIKKZh08wrekWbacUnkkEiS00fLMg - 9czI1uLneNfj+np1r4ucXtryn97e9Ugu/1T+gvH7IQ9b1Dsb/K65PrfHoS540e9ccN2UEuc969LZ - F8NNbp8vB6uXUaHbq7m3UKeJQzSrb71RPM4GUNz7GbtflsRbGrMLLFLpRNSvzurjp7x84PPUr9h2 - zE7fdr8C8vyKZkE1GfDv+SoPzuhtRiwl6RSJ8mk2E3x9Qq/g/GrrZfUoSsQw7m+vU28Uynd+DbDN - Uhov1mFKgajhGavfJo25c0h8CI5Wgf/4+hLHvg/P3pn+84Onh3Pa/dkjIHnX/ugG+cSCs+9aM9NK - JmUTqkryddYjbL6Pp73LRe3Ii6iIcxdLVF89Bkpgzw9EDfyQrvfR+gAn70Kse4dUn93kYsldJ9yw - sQK3me7QHsE+fsTmm81bGP3Bwuq8RfNSzoRuJnpm8r4+EDAHZVjvEM+wpMkJ6z/+G0+DN2rA6gOb - mGg7FYJWBjUUGRTNG3BMb8Mu7kGBxQCbh8UffkM8fiD/pjOxX+U0LLY3MJD1xTfBF/HnbWfNraGm - SulMa57zJh7YFiDXz4cEdvUsZpCmORDQ8iMPXVV1kh7PJSTah8W6PFG6fMO8+vs+Nux7HW/QjSMo - Tv6GlWKWi++c3B2YPD0V67/07a3WzauBmW46UQrmEgu7HgGsK5VEZ+QwXg6ktCDpWgvrTMB7q++C - Gjam4ZBAgFq8pQNfwvfz0MywtAuwOM3TkGNvhPO680NO1HUHAsGISAlQMUyfy1od7yw1sBvK32Gx - 7ImBieVBgqwmKqZsLkogq88IJ7Q4F6RzhxIEDkyIrbzLgRaetwA8CxR7RtF69Cf1ISwSUUFH9jPo - P7XIcvCnn7NCqsH4lF4u3PkJVrRvUszhFogQJRmL7ca3wRQwSwqr08bPS8Fw8VZM3/af//64ZB/Q - d6pV/tP3J/YzeJu83WopTHkL3TVkgK1XVQmS8DNg032t8YLut06qlGXDajqaxaJOwADOpa/Q8UF8 - fZHuPxby7GrOzMd9xXNDShc4Wsch+WL6lJ2kEwt+Jvsl3naKAbecru7f+5DQv6r6+ufP/Kt3nOQq - XsQTCaV3L3+J60+44Xe+CcXB/+1dk2y6Dt9mhnJR8zjQ0SletJ9YA65OnlhNSiNmD17Mg+WgUILT - zCvYwpEQLOc0/RvvZnlo3xREK8nQutAazAwTWvK10U0k/YzR2wx3yCCXpHT30wR9MfUvhJW/PIh/ - mIdmyvIyAR8HXvDVMldvNHXCgK2pMOr+/G1/eqRA8Lea+NJ8jNfDIr7ky/aFxN/1Dml8MYF/eB30 - Y6bPZv8zIM9ThNHTDb1pfSbhH5+YGX4t4rWZhBmyluiSsEDFf3zRPG9n4oayPfRZc0whUophrne9 - trqfwwKSxKPklD1EOj1CN4XIv2VYH9O6WetESYHKH89//JxujVCOsH9FX2Lw3mvY9PTvTg7Rwbkj - 3yi9mGUPzcdmE4+/DXTrT24Jdr9uZi9sFo+3hdPg+3O4YOf9rP7pFfnWVIjoYvCIaXq8lTB/Hzds - q5cUjF0SlpCjiUvUZ3MYNrcuemkSnIQo36oGSw7pB+7+Ctbv1iNe1UPYy3p8OWPb5vAfvrvwePgF - //TnUijHDj6qIJ85RpkAZXM/ggnr9Dh7P5lm+qs3dV/uSFx3ypot6pUN7niKE33qhzXMyAb95+FF - vHQDdKF0y2HafxD2TaUA28PsEKh/g0TsFlqA/NU7MltBOBK6b0wNRQ3hHSwHgr7uh1KWMWr5z2/R - P9b57/kLOLchIVF1torN4FsfWNegIuglzYBKB66H4hXXs7ieNY/eCyU5Xui3nBm74cFv90NAoMPX - zByf/rBu7ygCFvGP//zW6fcgM6iyJdjx9d6sy/kxg9fTOuzjf4iX06HbpD2eie8s60BeNVSg4wwh - Dh6mPqzXrdIk7p4IiN3zK9U63wAZuIMZ5K91WI+DmsG0/Fwxfh8eYKFgg/ItKud5Tcd3/Dd/YNdf - 2G7hh9LdLwTnIeoR6fEVUDLmEeRo6mLdJ2FD7NPhBXHPPdHxmJqFINlMBLW7pM8zahSds1eng74A - WXJj01jfDO3FAzNd9JlD268gBTEUeV9vRH3HXDzJC2dBukgiCdjSoMvWcCzc4wmfikNajPhyM6Dz - 7P1/fgv7rPoKWhZm0HZ/+t7K1ADCpdEt1E3PMV6Dbd1kGTfOPNhAHX6f+6ZB8DE2bAZa3/zLz48J - rX98ptlEv3ZkZazO5A+/N1mKjD+/dvpyVAC7XwLB17xVGEcdN1DS3kZoCejyVy9oCPZGA87w/cSP - QATxX3zIYzpqpPSUrZn+9O3f+paFstbJIoasXGVbsPPHJ92YfQfBS7ZGjMr8QrfhclKA4t/3Ew4f - z1tqt0n/9Oe8RuUUswnQKnnP90QNxljnlxmwcMefGb4FJ94I4p1/6z/Z+UvvJ+EL7n4TUU7Xd9PZ - XgNlzZHO2GOPpkevQdbDratUJBFDA+tVqj6Qu6fC7t8IOglxb0DOuwjYjSeXvkLLNIAT9xf8V0+d - luMdQnUEI3HDuxlztai0EPqWge1DYxTcIRFZ0NjWGd3uh6n4tz4vpuMitmCxvmbW3QcWRDZaDu93 - PNE15OU3B0dy0xyqTx9zSaC1oQYHlzfxSD5YCtzXH6JjWg/rysW5vOMZMY6DEu/1GQ0+r12Hcd7p - Bav8ZAO+WKMj9nt8evVUaQ74/rIvcdycGbq9nvP/2VEA/veOAvbyNeYFNl9AMumzyL9VgPtRiXux - XXj9Azb4/mFT9Du6+sYNwRYfpLnnp0uzRYfzS/YtXyDplu8BK14/0MkEiZgOxzargU4dHA4Fi1jl - 0sfru9Id2eeDFbFddALrqN1HKYlDAyvyxBZD5Z8SwArCCQe3q60Lq9gqUA/1DvvxAj36qcwWWp5P - ifb+7Hukvj8HNo+DgqhyUwt2wtSVneBWIZmvjIFav7wDiiG8CD4GcjMqJZkhauYS8VhnvMV+mzU8 - TFKPveT61NfDe+Yh719jdKG66tFgXSqZ524aVry7MnDsR7NkvyshvrJdMKxx18xQWKi7F4y7QmA/ - fg3enx5i+7g8BzqLXQ7P/sog1tLahhpXZZO3y7wRb++OukwD4WFvXXxs1+Y5Xt/LHEErUu7kctBJ - s38/kxUemiTc4sOw7Tf6wFAftJmCgNfpzW942f84DVZPTjl8fi8HwZ9xKnAw+q0nvBIxlycc+wTL - y1D05zOcYZ+zJap/hImXLA8t+R71LbHV861YwpPFwkZDPjoYYwn4/nWxZFWxHKxSQAp61YcaXi+J - ja/prQBk+9w3EDoxS3xhdLyVJXEnv0/qj+Rcc9KX8aVm8kXSYuK/2vfAS/CmyXkkSUgurCNYpwVn - UDTDnGQz3zWLlOkJ/H1uNfblnNcpSsMe+vlo44vBPj1em78uvFw3NNOXJTaTZu4KkROmWRwO6sBS - /H7JwJMxcceDDVj9rUowdM4sseHXaVYXhCy8e6xE8uBzalilJCMcraAiF6o/vcU8MRCMajvinJ6d - gmPmppa/uEtJdNPAsDKCbECmmI+zLD1EfTFPPCNnG5Ng27dsyj0vpQEv5U0hDijkYioXMYSM9hGw - eZOvHqm9xfo3349vnQz8LEcZ7PjsQ5JavHjckDQMPDmdQR5F/fGoa7SSDJebRez8qhdcnCot/D2+ - PHFus6WPRmn68DEdzujuPk2dvzR1CTkYmeR0HhKdqtdIk7HeO8Q/DI2+kefWwtx+jhgbdjqsceq0 - 8ja+Clxmidys58CJZE73r+R8Hu9UyKuOlQshXdDr5eJmdtonK9de2xJdWB26bNkLyb119YkSfpyY - jSaFh9VAa+KXkenxn7CsoBirGOePOIq3eqwWeLtxHvaPt9cgPDWawyknHdHY/BMvuVPNgEjPD05D - L4pnEb5C+eZbKS5+9VXfyGC48hRv93lFXErpfdlmGZeLS9ApVgeh0FVFRufmjXFRW56w3O8VvPlG - SorLMxg49GB7cDzOIQmu5icmjfZyYTy+IdYI39LVvqYslIT7ARepRSkB+5loOZFS4iex6/F++67g - pT9xxNH2W6VFmo1wHX86QdlJH3gGJr38CxCe4ZHpAM31r3OEEaXzoYI03sKp3BlJfSAnKr2Hdbur - i6z+fJd4+e85bPWYbjCN3XSWXzUaFhzpL/nx1SzE4iUq1uf3gKC9yvp8TNET8PebqIHL+6ljpykp - pVFw/cj7+sZX9xYUmxsVH+iv7QGf9QML/v3+7Vpv2AxZPIyOoL2g57xSbOQftljqMUnkjjUCcntA - 0ixF845k15WvRFO/xt6Xtu/Ez2PusTmlH7AWEmHAcRlKbMa9RhfuuTvMvmAS46P89LXoDBZ8cb/f - knhs9DXYXBHOPu9hJxe3YX0fDzysh2HD5rjWw9YPcw+ZY+qTbHV+MY8Kt4fSj7joK1QKZZuwieDV - 9w3ilUCL2e9Qf2TtczgSrzIRGGkmWLConzbOPnEO1ocUVPDMcRNB+K3pq7NlteycJTIfD5eJ/pIH - 0WA5ADRzw8+PWZ7CDNSgDnGOPAz4BzNp8C//WbfkCEb+eYvg03tX+Pyi/n6GeiqhRdYzzh5FHc/7 - fMiK1pxmuaRssbknTYPM9l2x3dQ9JVfpLMn6CTMEMQwCgokMCwolGoi+/RKwUjFMwf6+WPPvFmXV - d+yCLb+25HS2ArpsT7DAW/WQCfqdP95CnosjH7QSk9scDMX8G86b7ExXF5/a+uyxCa86slgaOsbZ - XqFb8E+UT/iLsfoFCuDc+urC93CesbG972B6VNkGT6twQXyh1IPwXDIfDs3hNlOyBYC7PBQJMpUe - YRs8kkKgapuBg1ZhnHVtpy9NOITwOpcnrCRfANb+IyEIOV2cpevx3tBXsu+kvzAIh7D50q4LnQXe - hUBDn/S+0RWongHJOUkJOolfOpbnhwahqTHYvSZCMV+aupIL5gxwFld3yp+dxpG1W2BgPWjKuPP5 - WpEDy8AkEaYVkO4OE6B5JcZ35Xz3eCJ/I9lxtpFkySfyVnP7LbLf8C5xAXcauP54T+Hi5gYpanih - JFp7FvjqxySK8w0KPjiZHbzU0pkoKLEHnjy3j9x494UkdTxTqvzqSN7i7DbT+vqm2+f20WAaOyk5 - T3vts25MBBf1GuLTF7jDlubDBrLrL8cXq4lBpwuTIj8DIPzjB9uDK0rIo/3yRRj+mulw2lz5L55M - 7aUU3JKkKTTv3xoHU7oM1KpVC/zh7aXEV0pf3+Ilr1hdiBV6W7FYQrFA7L5jkp28E2Vl6nSyc3ip - 8+Nbs80Stk4tVcrFxOaysfoarXX2t14wdnYHGwXnGt7DxMPugb/rW9VUFXTPq4oRfr+85ZozPnjK - o0oSt2Niol5zDco2IuSUs6BZHtxZkQ02D//4nE7D7lX/rfeZoW2uz1/7uoG1U8748jAHb4ki7IDt - bCg43eNxfDaPTtrjmUSXz1z8BHINj0rtlOjoyR9v+YWX/qhNc4Lt4cnEy/7//eERoo6sNZwQ958/ - /kKSq2t7P6suXjKSapNg5nIeWK9tFNmZLi5GXKjq44azTt7jk1ylyxcs36FrYdJcIuIVdPbGy+SX - ELyWI8b+cAWrUY8L2PPDXBd3ov+GLzbgsf6geU3Zlc6eYibwDgQW+8C5FAuVtRQWpw7jm5BudMwO - aQrRI/DmjZ8fxfo53mZ4hMoPiaViAVYT9q5Ll8+dBEHm6zyDBB6WLaPP1B0vxY4fC0yaa4QtU0qb - 7QgPrvQzvIKoA2SL5driBe75mNyzTaHCd3E/0JoqkZje8AWbPp8USNS7OB/N8eh1EHUvsOPBfAx6 - pWGTQzTLkumM2H2IWbNZLbDA3UYOCQzcDmT7XDYgfH82yY2KG2Z/EjSgKbZGzHZ7D4TclVautq87 - 3/bnL7M8sjDKtHY2sDd6q+Ced34oSsSO5HmgvNuOcqxnI2IuwouOYlZ+YNNWZ+y5tgi2/nU3AEeD - MwngKgIarT0PO88e/+E/G/FRBuJ3v+LgePEGWugnDT5rT97x4KWP+/8HPZcn+A9PhPFovf74NbH7 - 65mOrT1/gKplT9Qmx1xfYexYQP9sOj4dpETvjNPLAMqr5Ij++Vnx1jLuC8zPrCemefvGZP0oIvyL - 37KL4kHwH6CCj2MxoWMU5gV96EYv7fmAmOOqDGygoBpAJfPxjgeUvztYBDueIEhOUkHSdS6hBu4n - bMv+TOdPWJbw15o2Ue4Eg4n9aAY0iHQg2lf4/eF9Lc35V8Fqir1huzenD9znCztsyzfLipkFHF/S - F/uFu9DtMm6KbGA5Rr/1lzV0STwJ/vHBy3qVYpJduhf8dsIXsXPrFgv/PIcSb49PrP/pr5V1Fajw - jEkCoVu99bZ+OxgJTEj03Hx7e74ogXwsWWwn/cnrjULa4OPqdQiI4BAvW9YjKJ8aB1lYr7w1TpUP - AN4BE7UKHzq563cJFh7siCVOokdM5BtAaVeE47z3Cv77ulXw3FQWmifhAOaC46D8E9srMfxLRqfX - kfX/+An21EZoqG08I+iJlUaiX9vGoydYrjzgTMLWt32CTXvfPzC5tHfiXt7tsH3kNfo3P3j8lfG4 - 6xtoH/of9jqwgDWXYgsGD3TGvvZ5etT5nTL4hw94vuj67ClBCm51x82r0oJiIvdYg8+Ja8jpcf3F - y55/4H3YPliRHeSx5ZjNkLlaNtHaMozp97Mq8AXyF3Efoji8v8tdgfQrNTs+Xos1Sj/jPz6LsvkH - fqz49qG7ztMMhtXQu2Z8MOBSFgp2d33GnorXDG+cY2KMn56+cmo4y35PL8R9KiOYtk+cwCWubfy4 - sYeCVpdIhDveo3Y5t2C9rtEix+VrRpzDJcOkUj+Sjm+szNLhzIOJJKfqzy8g9gu0zQJM2YItCFmS - kWIG4y+8d7B5yApJn2Kh7/x/hDs/wqfwaTc7nmtMmDnRn96nS9Y8+3/8w7jfi5giUEnw99xmrOem - qfOM+YkAlysK8aMPGVaoPiDglyXEhVztXQ9/jQTnLPpif+HU4o//AK630TxdbodhiafLDCIp/CHx - Tm4DXT2M4FVofayEquatV6lNwFn1VfyofwHdajt8yUrx87C3XCudLvdLCQ+T2JPrfgJmguWtgyVj - mPhUPlOPMPEjA4+hE/GZ0/WB88B7lNdKQsThuaahX++QwiH1W5KdlkWfk4MSyX58GIl5ynNA30vB - gi9pNRyiYwD++Pkfv0D8XJbFT4j7FtxeMsKqyzbxv3yaXCV+ltlNphOnhqNMRBwgBjqgGeNc+sBE - cgC2hv1W96KSR3AKQp5cguwVb49xv2MDaQPa+NPRWwfNYeEpiHiioGNAV8MQLRm2sJ95cRL3O6f8 - UmqKFGF8Qe+GhitrwfP5jLHLMi86zhZTQlXLn2hmbl1DyN1p//wH7PanpJh49f2Bzlkk5LqlI9ie - 9juD3pN8kbClI12KPB7hx/p0WAu0Sd/Q+WiBOzrFJPnLR9+hbmW2NxJy+qZtvOuzGd4TRsberue2 - weoy8IxuDrmYTDCs78pzoKLtdz2fS12njdY7UHobGfZrkQHrlOSjeJ2rE7baGTUrCm4voIdqN1O1 - CagweCUvKTIIsd3DzGPzJsvhro/ISc/FeILluZcNL33ud9pcm2XndzCr6R2j0Ql0qv5kF/5IlWC1 - yWKd0sSuIS+QAttBmBQL9xRyiRuLL7YtWfG45uKyQFhWF3tievQ2FhMGtFiWZliLFaXeVrXQWuGJ - 3OX0oM+HHuX/8oW6mlBf+ffCyg92AzPzjAb9z1+A4TO8EL/lrZivQpr86TFixeq72Q699S+/IcB0 - x2Fzpr0vNJAA2tzFL2i6fiqoB72C74fv6P0UqMB/ekmL3KdOePFUw/5xR8SzLLPgb44RQQtzb5wH - ql6wflQu0O8qSE4at+mLZNa+bLBZiNU+UJsVA8+H7yGeMX48j8MPxLMPc+GREScXo2Zy64crXb9k - Joari/r2tR+b9PyIGU6GqSm2BY8JeFxPHTaurq1T83rvYYSkJ0Gfgxlvf37Y8TiGRAurvFgJ4R35 - ycsfbIVeVJA//PPw/YnkcXWLjX1mFuTK5IatcToNXC4VFhjvuo09uQr0dsNZD9/31xEHE+DpWh2X - FtqJj4hrVJeBRsGjBU+LGee/542XZpOk4X4iBFVF6/X35tSC92Zm2CnuIt2qECQQ5Z8bcavZ1+lh - fjMwlfRgvzNEGHp2P86F4ynFt5vpAO51hAgi5/YiwZ7PJurSWvbS2CMm7eyYN95+Av74+mnezg2P - 2tKHU99aODW8hq5p6vuwz146+dOHo3/SfVjN5pHcOwQbSj65C3y1NYna1t+YSK6G5NucFtgyPJ3S - Wd0UuY2cjehtdoypZuoLDLokIclybindPvcF0Jmb8Y6H3vZg3prsrHyBlS1+NAuahhTsfJD84T85 - B9oox6sdzLI3nBsW9hcfrm7GYP1j1N7i850GGSWqEOPeZ30yUVWDfL5e8P+RdiVdyvpO9wOxEAFJ - smSeJQwOuBNEFERkSIB8+vfQz2/5373LPn3aNknl1r23oEpFxtXfW1cVQukTWNTnuls9uZeZwFWv - ARmGpdHHOhoSCMK0o8ZdDX1eyk4tRN8UhexXHfO9wWwJ8vX5QD7x7cz+/Erw528HifrLZ67XOXiW - lZTemirWX4/l6MDukdRYmSaTrZ9b7KHc7TF2bqTVV+XjEPhwq9e2XzVb7otawT8+EZlzm8+5PTfI - 3M1X7NA8ZHweew7k02SgR/4o1n3DaW84B+ODWmVxBPzj7pUQ5sIX6++BA12QnGbwTVSOzJacgOke - cBHcicpEQ4VWqbC8Xic43kdCs0CLwIwyiwOIaBn5FPgKpk2vSDOBb+rI8Qx+o3YeAZWORxwzQNM+ - bE4hNC/9OWyxXuokG1EPa9Skmx8MwLa+EeZcCgjkY1JPH7/TQG0JHLXRcvaX72OR//hhKN3TMWfq - 9a4Afcj2f/zDn8PmtsqcAaK/nrz1fIqRBJ9JJRDeDhafur8yguCsGfQ4Ln3O2Am/ZV8qNByU6hWQ - wgYKaND3iM3L68fmg2WdgFZp5F+9gUmqK8Oz+bli3Y46fd2bc4SiV3ImLLF6//NX36jWZxFSF/f1 - xpcb6D28kNrp+wT4RzTLUP5YGdXMTkoX/6c1YCmlkJ62BsYMuhIH9McUktl/KLUwZ3sZLv2lJ6y7 - KKAb3+4dPodeCsWqF+v1s/VcOOsRR0PCbW8wHX4zoFn8IsK683w+zJUQvf1SoGZZNexPj29T5uww - Uro1XXQYtPBHixM1j5mW8yPiDNmPuxv9t74OVRqEt3dIPYu+60Wk1wRs9Q983Ooj/OYfyfoaPMNl - rs5g5ZhvABlIKk2mz5Wxc+doyI/7G93mSqbv2/5nwAoJP2zz3VST7k1O4Pq5nXHYuIm/+gIYwekz - DCEcpkmnz/N3hXNAHmR+izVYhT7K0KZ/qQG3Er+YZt4/P9XswhWse6wKIFvh6b/9jJ4RhJG5y8O9 - 8AxTdpVvEjxe/AeZd9wr/RXBpMlb/YrqrbFN8by7EeSO0MB5ByK2SOTgQT5kdyKCJ58ul2Dt4Mbv - sB0MoT477kRgIsIIJ76cAcIstUKJGoB//iU1IFbAiKMEO/jR56tWBAoIC2klf/i7pvVhBFzDQ6pO - PwLm2cou8M8vdbSTxvZq9fKQYrsA2zHT/D8/Brrq4RdOJifmcxq/FPR3H8DnWQ/r0ssyjPSfhm9C - 0KYrCnsOqrae0qB2BzaJ7ZEATmvEjY8/83WxaA8vV+bQP34z05fkAWdXqVT3xnM6thGRwOP2pdTT - FuD/8wcaodNwASO33hNp5eHpKgnUC33K2PH4CRAd14VqAnmmZER1D69FnND0UNYpO1+u8j/8wIYt - DP/2UxXgDuPqN7HZTWIHDjW6UWt06nRVlH0Jj303UQVNp5zVh+gtPw6vPNwR+ZeSys7e8CR7IFy0 - SNP3XKHc//xb6iSnJZ3tpM8gbLieOkRwhlXMPAcGAl7wX76e9Vy6QBxnKBTOUlDzP76SwfkrFoQH - 25T0z0EU4LcJ9xh3XQfW8yj/V0801g9iy5/f+RTNE763TsUWsTVHmNwviOwaM/fn9/7UI64KPKy/ - Xms6Ahz28Hw3vtheQeqLebnfpmIcVmxu/rE4aH4ChlTy6dm82el8sMIL2PQN/sPT73N+FWirr1FX - CNp84VvPAmUjnKn2UYV6HdHQwbQUbSLVRcqmqKsM9PK/JTZjrtBFnl4s+BdPzoafI2A3CTZUyKj9 - CPuUcSS2UAt8i4DErPLRzgEHpU9obfyaT1fObCM4n/kKG1FabeeDCohO0oX+4TvdFRqPLsVNxlv8 - +4sDeuPPb978YGXYj4fAgCFbeqrudb2einmO0Ka3cPplK1tls++glWgPGoL3q17DXOv+/NpwLwUO - YMHlJUHdPXIU3/jdf/Gdg90bu5fwxdjzALap4UpLj83x5xOFJBF0VbBNmVpynZ+t6IKaC2sID4Vb - LV4X5wQn/bAjHOGU9A/P4e5dPzDe6mtk8xski7KY4sdRqen3cHLQT5ZnrH/ZChbHAOSv/kdEWQ79 - tbCZBsHHTGhot7Y/ZvWr++PDoZQcrsM///Q96+dw3uqxYzMceOg2PqHuhXX6bLsZD4Tz8xLCUhXB - uvnNIOFAHs4/T/LnrT4Jj0f1jg0Yp+kcx3IEzYMKQ2mrHwxbvRnezsGN5g4a0zq8ZB00j1WCY9cp - 6pW+5AbC0lWwvQRKukhk8dCt6veb3jHy9fDySrjpkXAfc9BnaUccIH5OhOqYd1N2LysB8vv3TPXx - esqXVhtO/58nCuD/fqIgLgwOW5Ux1Wt/a9/wZEYyxUr+Sxf+Ayw4fgqFJsSm9RoXlx7mAnxiH3+E - ek73txJZi8FoeQjsYV+71xWymJ/p/X2VUmZKcQSr7lxjk33e9ToFcQsvD0PF+uN1ALMhsxH1LyEi - Mr9Y+Z7/RHf5l84DNm6upc/n39ZlQrR6bH7TwZ/167wi856UVF3zI5gToeShdXLGML+sx0E8Gy8Z - Uis+hvW7wcNyoDAElKwt1c/u5iC+eBnNo+Bj+7jNpb5Znw6gxgiog/Kpnu/M12BZeXm46xpbX77B - nMBV7yrqgDhIyQhGC+YgD8LOBteBSkYtw4f7LQhzoe+Lb/qs4Hk0Q3zheCcXYs/1IDnrRjg/jGVr - AmTK8BnXmFrmBaXreCw5oOy5gOJEVJm4/pIWSQlX0tNVxQOTXXdGnnRKaYa9Qz5LcqFB4S4rWL9E - U7p2adUiFo8mLXcZy0fqFrMUB/gXQu7zzoVP2GnoDfiOnpPBqlc+33NwLWo5lPcyTOfXzDcIRWpF - zXe0TycRkgLWGbhj6zKdc+FYaxwiNkzwI69TQIetxdU0KD7WhEcxzOtzKoDSGiJ1D6YxjOvzU0Ij - MEJ6CsRwEI48mqFoqg1NXvvMF73FS1D2o+J2vq2/1jmE0DrFV2rfWqIzJ3wrsKxSi6wsmHUGR4Og - 6HJ3tjmDVi7c+zsExi8esPrRBn394E8G5SPn0rAsgkHkH7qGJlpK1OeQ4K/qWGUwQ2tNy2U3D7T6 - xQ3KOPVAI/t2TbvOdyp4pfsffXYdHNgNJTx43R4qVsCqAj7bJQ16cqee5ka2A8u3VO6w6q419dic - +3SVe4IU15lx8HW4eouXCMmDBqhCqz4dI60tUOPKR6o+2C9fQhZq0G47Dqdq1wFxybau9Fxh0nS1 - 04HnVeWOjF86UE85tfkyHeAF8tcoIstH8/Vfc+sruRciRAs+f/3drwRyE3cjtSN6tcCklYMT6yOq - ZqQDc918NHSa5pTeX+E7JYupNXA8zBrV4PfBVp8mFfLPrxnHHI10/s4+BD3PCFJD4l41f308FNi/ - IMCmzDc5Nb41j+BF+dIw9xV9j64PC4rTPaFaMV/r/Y2PDFQbJ426npD7Ik9SD/nn5B7+lq1HgBi+ - FKQO7yv2nsbLF7P8kcBvpETYPtVSOpv+K4DHKQxw7CWRv2qRZcCXcHPw9VRL+VJ4nYBw0X9IdGaf - dPalT4Iej94Jlw0PBKqMI7xR94qPrhkNYj/qBH2KYR8Syf76QjK1K3T7/EaPLVH0ufOVN4ol+Y7t - FrU6y+5y+y++fBv/anLLKgctyW+iuL2bgN83RJPjKLpgYyQnxtvRb5atk6Li471kOVOILEAPgoH6 - 6Uv1hbk2IDwYT0SgFYhs7iPVQtv9pPZ854b1+K4iJCr0HfI7513PvuS1cPHUjqzg/fDn58BraMMn - fNM/ZFgNXXjDv/VIr+abCz9BEdAwkEcoHydX560dn6B17+9CGJzCnD1vlgDNUhTwlb/8/PX47hJ4 - qy80XC7Nd2BCxEqUrVcYTkV3GnjntUiIqkJFvRPsAd3wFClyEhK+yr5glH6+BL/dvMNHmJv5jCvL - k0Hh3HDaSzGYhX1aQAEmPDVl3siJezxxAHVDQxYv+uREQ1IFd+kQYVtVTumUiG6I7qepxsrv8ssX - 7yBfYFB/z9S9JSkTb6NG/uKDllzc6evljHvY3wKfhnbfsu3/laisnJzep3czkIt+4sGGh9jYOdqw - rZ+HJEhONJhCLxWMpYOQsWODVf8G8uVlPEM4hZZBDdkWa/ITrUAmjXTDcTanw744gAtMzsKLqiPW - 9LV4dKNMwT7Dpai1KTveTB4VMz/hB2pAyt4PT4OHAl2wri0cIMWjI7CUgPcvviZtEDTkr0+R4g1v - lk7175CSuaW3o1LkDGE8/v2MH508+t2CTA8qBtGp9lrew9xzs4S8Jv1i62PX+Xr93DPICZNLy9je - 5evu4Wh/+QmHs2Tm+6s6GZBx4EVEB190Jrw6CVlZSbCzxc9ScnEIvSb+YvPhnxgZbr4AmiEfqXna - 2+BfPjt8vjl1q9d5EJ+ZWqKbZrUhb7aaLx73lQO5d1Tgot5/03n3kQx0vrIAe69o8lfbXgg6fD45 - Vb3TnY3DC8ggRmcbly7f+Ux7Kw36ux+N2QWMF69sRhyxDRoGykmfw1DQoMrHNlbFsh5WYVRGZL7l - GhdT8mS893040C6VA47s6zgs6CrO6C//XDTd8uevjEaoX3qCjxN6AfHy9Tz463BGE+Le8/n2Pjeo - 2RUZzr7EycXfnTVQ3fE3mlnrqxaU6bPKI3e+Uzy8Yl841p8O6pdKp+c9O+TLg1glKvmPQx+zXW9z - Qxvr73yJMKRYX/Cq9Ag0wCUNnnVfqD3PgWMBWxxzk5mLO+1cyHJo8LjgH4E+DqwdUd/eOrKIpV6L - tIEjlGY9IlzVbV2ED9wF7tLqg91x0fJ9pxIDwP70w4oEJH+O01RCze6r09LlHX1txv6O2r6hNEut - GqxT+TUQWXY+9dj4qZm2PRFVK85A41I+1WTIXh78pYcL1kXPzWea4wbaoduES/yKGc2fUQlOLv2S - PWeDmuTAuaOjMbKwsqJXPs/3UQJlYZO/+58yb+th1Jv+k9r6wWFCWfvwH97frt4jJT+hrhCvWwdq - 4ZLVjC+qE/p26w4rTdyBVQx/CjynT4+GF+/sz+bjpEDTq3kivRo7X4/8foa70fthzeQWNre/TyPf - rB8XMgl7utDbYJSDZ5xQTwZ2uqf5AqEtC2fqva9STrW30yKtmCt6S1Q7FzJbHuHXvvvk9HlsPRpM - rUG8xoXUcaAG9lV1qGDwzBFphqEEy9/nheBeYCuqT/nCTkoEV/0gEEHqvznhgqSBf/k8qLhHTWlz - V2CrwgFfn6RJf+41sdDGH7G5pzoQHRQLSFRaEdvymwe0tAUC792MqTWk1J9dIwkhp2opNYJ9zWbB - qnsY7bQA2wbnDosO6xIcDcKo+XsE+Zpyp0B2XeVDGr0chpUD3l2+OFJPb7fI1ffQoj14tHUdSiAe - 81FJ77IcQItgby9YgGXjdAdhsmbUiCHWRaML39A0YREe+p/PZlZ2FtjyDenOCWXr9ZPcYTouFS2S - SvbZDUoOoGKk0GDjK8vGX2DDq0u4vvaST/c7p4FrJaKNjxb5nNpUA79n0YVwSnag+8s37bHrqDp4 - r3z8TdUKNj6LLU5It7+vEziP2zvlLVF8MSqtOzx/+xdWuemTU9NrBSgqRYCz1NKBiMJJAb56JNQP - Sz9d7PrVo7/8Hd0lk623HnUgTOZs0zPfoWu7KoDB93AlW36pa9G0WtDfQh+rpfRjf/cJzn6rUd0R - +3q60DX8x3//4m1xsmsJ3177xIY3TfmMXvdQvp/KI8XBVIHldf6eIInaKw2y9gNmVlYWTMg3InLh - B7XwZEuGWOusGHsfL53rtJDAwQi/OPCPGltqsZFB/u4fFLdlnlLpciFwot+aGql+zxfj6c8w+zhP - rPdSzBZ03c3AiN4Q/4unO/M3vh1bRHhIr5rZ45jB+lU/aZAUTT03+3sJD9n7R7d4ZOzqmR7c+D91 - 7mdzEBb+YUF2SR+h8JDUgZ++TweMB3kKRcs8gcWxVO4P7+iGv2yxmq8Gn/G9oZrJxYCZEuCg7HY2 - YYLZgWXv5Pd/+JvMKRjmkRkKpLXxo6e9dtVZU2MOqsnWs0cG35w5OBhhDm4Bjv/yufQMV7hWzTdc - 2Pugd4a8PcG0LCZ9rnMC5stDHOEOP6WQOYdzui4W5mB3kx40zw8Sm4LJsf74JPbDoqrnU28n0Dp5 - 48bnvXQ98mgFQt3P2Mudy/Cn3+RhQCy8z3sA1oWtmczzwZWI5a8GC/+JMvl5PIvUUbqqnqZOfcPF - nRNqB74ysBcI7uA4XcRQUpdLPQXELKAWGzU+zu4E5sDdl//w7lBeT+mcG3kIhedlIgjcZZ2VQlvJ - 44dewh3QvJwd2l8JfWHZpo4JwF9u+0cB5OQuhgeja+qF+EYF2fE9ET7V5ZRJl3KUDwU/UHO/kGF9 - fV8CvGqrFDZm+/bHS2DI//DVP0+TPtqxUaCT6WFyCg63fFU8xTvIbm//03PsfCkILG02UtfoaUrD - rPZg5lx16raDUP/29kzQps/pRTNnQP70GxXrC1UPncFmIhktuHxGC583vcFm+6GhRF321N74Cx8t - lwjabZX+05/TT6lGUFmQ4rN1wzrjp7lEOis8anYX1RekZYBw5aUfTonw9cvevmlw0x/0iJo8n+1d - 3IIbkdXwV952PjO+qgeevdbRo8+ZPl+02QxHB8jb5738f/s3Y8nAEVhV9oefsDOpFRLKjGFpnCQD - RmCF1B2Xd7oYz7YEHTl72MpJlc7zcL/AR8z52N27d599z0xB3Du3Q1kyUL2OxwuHMuesh1y/3urF - vd4t2N9OAhF3n35gL/k1QrvUDhgXJzkfD777Bm9v8jDmJTdnNeF5VE/WgnF7/7DpyMkyjKN6pH94 - yRRlGuG610+bfqt0Jq4HBZTS+sTHXhXzxZi5Fog3Kwr5YeDAF4z0Dlad+diqLCld8p8pgd1X+GJt - TvN6fR9OPfKocCDj9WXqs95bCaxyx8KevINs/dtvXnrfsL5oqT7LBX+Cbn+7UZ2Cb70c5ouE9uev - H8rJ+qvn305I4J9+PL+jc7oKCFT/9PK5u7x05uDvNqXQsXFsHnG96HAo4cl0MM0AVgdRITIPI3bC - tAhOJKdO+NZgL089LoLL4Z+fhDb+Tj1G5pR52t75t7+vjDhgOcylBJ/nHQwP604CKwe0DJqWbePg - 1IOc3tA2JeLVy6GwPOZ0Vj7mCJcy2JHlwdx8Lys/Ak3w/tIjNSafaJFlQWvsTWpbuucv73ZXgugo - E6xv/IRJhhvCi+wwrFjRK10euQQhOl3fWI8MddMvoSBv9w3juxPmc3uNLKTTaMWqrpN8ufGRBets - pdjZ8u8iPa0Zvef0Qo/3whkYhLID1iv3ptv3T+c/P6LS3loob/zvH/5Vfl5sfP2oCwctLoE1rjPh - uDQBU9yms7y0ooEDnVN9/kptAXqUhNgIRDJMwq1+g5ZZLk4XjemLIpnNP3362s5npcpIDp+i9sgb - jVw+v9W3BT14GLBWkQCINncNUAorj2o/48bmO5vGv/yAfZGc8n4xvQZ+pe4U7p5+o89KIgWHpTz3 - OHycX+m6v88tHD/ThXpPyweC3CwEbvkQ6+93A+bpe3Xkz8fH4R9+1gPKBTDKekaNZ/r1J3SR7/B6 - PX5wUK7LMFbh6YScK7CxmnTIX5r7Mfzji+Eg/BggvnrMDpUlGBQfhQvgh/elha8F5n/r99fNH5Tx - oVTD/Z5uFfZ0bOCDk2NqGPWYr1+NeZBa3jvc3dRaX1+dUcFirxhYDYo4J3dozpADroAdX3zrf/cd - ac7HpcGaeoBBdBJgt77fFL9uMpuI9+LRln/wWU10sN/uL4SkH2jYk0an9mQbqHGlI1kHoNf7nW++ - oZdXIo7jepva6E085EpMsSNdjvrG7wsYR7kaskXp8vkWHwtoWqZNoxMxwFJyt/CwtIiSXTBVbHZe - i4w2/YAv0pjoyzMiM6wa/UVWX7Xr/c369NB2m4DeC/fFiKFzbwBVMcLBGis+S+KTh57rkmH71ob+ - Otx04Z++So6+A/bSMYXo8VgZDeTflS2/hAvgbr6oRNx9z/nSHu8cPLwcgnHMBzo9fFsBpCOrCLuE - 72Hr2C1BZ7RKfFRoPaxthd4gOq469vO9npJdebxDnXo2xcXpns8PN1/BcQoCupEDsCArgMBOThCH - vLuw9bwGPbTGzqSnz5P5yxO/7rAYhzM1riqtmfYeEpD62YgxWR/1uPkj8DV1GTlMspTOYnYpYWdO - FsXT71vP+Ch1B2NhJrY7rQXrB08ZaJnh0vs309P9H3+6WXVK3cx36vUqUglcw5OHrS1/zmqjnCCL - UU6DrJtr8j4UPdTvcA47KRMB0/jSgF9/V4frvRlq/mP1/eHv+6fx8TpMkR4J8BPtJBxwHy3nOV2u - QArfHtX+9DEO84sc1EWPz7/HmE61hFuZoPeDLNL2DiZIijf4za2Ng/gW/oeXS7s3iLTp53XTe+DP - H7Q3Pvgrd5cWprVk4dtf/nPQjQfizYiwvzQspVcpiWCTdGjr6aQw0dPuBURL+iPLx9gzJrJ8w9tr - T9Xg3g7LZ3ic4JYv8eavpsQrvbtsitcIq9nKpQuIF/6wXuEbq6V8GuaNv8D7dP1S7zj9fNaaxwbu - 8PUY0r/zV+1Wgxmaa6rWyEvFUtB5aFp4JUiIDV8oY8ZD/LJTqjy0r86CRh7/8D3MCOp9YolB8I8f - aH/3jfvZMtz8VequiOh0p0YG1OJj+E+vri4MVmiaXIEt7+qk//yJv7//44dCHkSt/OCkeMuX9rCs - q9cBRc4OOORi5+++rRB1WYjtdhcBppDMgZ/DM8aecln0mbqnGXq24VHLTb5gyTunAs/jVcQGQ5d0 - 1n/1NtVrLrCJNOCzf3ztV74I1zS1/8fX0VfqT9Tb4nFFYDLgEM6XrcfBCbB++Ckwjm5quFyHFRB8 - iUY4aXc7nJ37u2aoegpw45904z/5NF4OGTjPeUwtI4ZgMtXGQnAVdGzl6xmwrT4AjOgeU6tgL31W - 91GJbvexx8GufzMK8msEj8p9waGxJOk0mK8EzH6j0YeyhPnSURD8+X1YOT51XTxIAgfc3tFpsSNS - Ov+IX8Cb9UqxWRhuPYPptcIcJC/s0lGtSe9cMvRwLxbh9UrIp02PgGEYHzTwj2+wJM7WprNbdxQD - 6wlWLthHIPjOI/nzn+m7tLNDEwYY28l1TGccphe0+U8hrDhUd5eHSP7OJ9wdkAvEP/2ii7KIVRPL - OVsyr4TRpWL40UmvdNz8eIgaKwhF/dCxTU/c0Z9fdP7GSs48LSnRPPI+/cvf44+0Htz8A/J5R/v8 - z9+RhxCoNMTcz2fpu4n+8afk+VVT0TyUPbB3sYaP0vPO1uG3RMhue46qH6VKCVU0DSZq9aSP2Zfq - SToKHciC953MUHwPjFu+EH4c7ITz5scPG/7+5bvwys6PrcdEYMhxYXHh+2ccwCo9Fwd2d9XB5svt - /QXULgd1LVSxuvmt9JE6MrxR/0qEy+DVvP5TpH/50Z3kLGVqjHgwae8VuyOb9OkvnstcyHCwpj1b - ZOU3Ssw9X6h79VA+G/JNgX96bYsHf6vfZOgv/1k0btLhxOAd4uxU42vgVzWTzlCD7PjLcMDnar7/ - JXklB0/n+6cHh2WOTAv88Q/zJK7DWuf3BFh4dwrphvezmJWFPGB9pEchbvRFuCm8nP2KFw2ehwIM - cHgrqFa8gTB08urx9WxKlPr3kcAgqYc/PQDbmFeIGBy3rvf4m6HNz8JH9I5qwVePdxAHxx829KJi - y7esLfDHF+zTU2N8e11XKArxRDVQJfnYc5IMnetaYPU6oXplh0cHt0ak+CikhK270szQln+oCQ4N - oKVAKrjV58LlOqGBGpd0hBt/wKZ1bfLl+eJkedPz4eFg43xp4VTAxxGU2N38JDaEjYI2PKdu/1X9 - +RYpBsrLh0k3vNdXJZchXICWh/MTtelsEXXrmffa4WN0SnIaNJECesFJqOkXBmAv/yBD8RYAIkSv - Xy0EiqKhrT5A6sgK0kUYLic4T+YrbDNRqOmGN+AvXp5P3/Bnmtst9Inq0svHDf31z0/hzIeCo32n - sMV46iuw32EcNu3bYdNLv/GH2O5jiq3vXh//6ssOT+p/+8smrSjA63e64Oh3cdM1UBQFMjccqLnp - z/XXzAQE1i/E6pRJ/swZj1C+T8HmnQUnf8/9sAzX8YaxaZe03vAlg8LzmWE93FXgH/627Pqk+lGu - coYDIYIu18ybH3hiSws6A/Zys8OYhxybSg7IUJrViIb2uNTjnz/w0Q8Wtn3HG3jN9k/w4Cw7esxr - tsnyXQkO+4tJ3a0ex9wVd/+fJwrQ/36iYFed7jSYlne9NJdwhMfMgEQehR8jKd9wkCn2RK0DitJ+ - /B5LuCvaPFxE2OqMU289yuMypsdgF/gLP/4kkHoKpWEfE7aaReXA6rFLQyj+1JovQ7eE3R7mWJnh - lJNr62YQ//iR2NPR90WdwA7EF3ckl2q3G7pU8ip4mJ8Mmw6g+ZKmUYtmMHnUV9/2IGiy3qBD33fU - dfevnB4N1sJFM0HIp4mWLlqJWsi7SY6DddJ0PvMvK2pF+MOmJgsD0863HpaPEw1hKq46e3wWGR6y - nUBYkPyGRTgHAphPx5BGvmDUzNp4k6RWKpHf+9ifqXcIYcUf+q13hw6EAUs8fN1mHsfVlPs8dFMN - xS1NqO1OZBj0ZnvHLzH29PiIUDpt+wVraHghU79NulTxeod20Cr0DLW5Hk6CXaFsPac05s5Svmbq - ykNL24/kW0YJ4722u6MmEwca3l9zPbm7TpO7p2Zg5dm+AZ8JWYmGK/HpsaB9Op7dSECnmiDsOaPC - eG/xK3idfW3bn7c/K31QwdFZIpz3izuIfvO5Q++mmdgTPjhfb+F4gkVUeNgKPjyY/9Y3uMeFHlfz - VLMHCXu4NKeURv39Nex3t30Bpau00DxXh1xQp7uF+irAOCey7u8TTTtBEDslzYcE1gt7zhnaPp+6 - z32mC1JgJIjKvYnTyn/lPKpoDymkMelD9mSsv0kN3NZLxB8p/b0QSBY8s6ig6cVzhvHtuQpkXvKm - hbfe/PmcAgh/PDzRKOdgTuq7YyCjj3p6M+swn0y9qyACYMbqz/kO6/LJM/giRkazoCH+vFMQD7/n - eKbe9fph9DSMd0TlzsSnlJ1T0WDx9vzCKaAp1K/pegW4g7lyNsn8CrC/VHfsASs+Wfj+wB9/31xC - Ai+VjmgYVJL/F2/wWUgh1XliDisKuhbYHQOEjd5ze2c8c4D7qlx6N2I+3+6Xh4SiXsID+wg5HcX5 - guJ2SnCQHs1hjs6thvgqXKm+fw0DSR7ZCew9YGHbuwKdaf1TgsfZeeLndFdT4WWcLVQ+LpRqo1PV - omrdZogEo8WPR4TyaW8FELZShYlgRrXeOQ8iwx/PnaipRZ7OvCuQoKPEEtVzy/H5cd2tEJXtD2sC - +wzLXSsDKK1qhc1VvQLhB08eeq9XgdrKE+r0k7872BdlhG/GQQX7NXw7YD34F6wLfuYvO5xcULB4 - LdmDw4WtTXtoYbjgBnsZLw3soOsjUrnMp047lTkT6VdDLVpYOL8C6u+l7lWA4ZWewu2+Mrad39al - rg7voO/SdcCzgLj6NuELZ7lsiffZDFXntv9bn89H6bOTvfc3xMYvuaV79XQvoT4daqwlV3fYh9Ek - w1HjLJqNHzTM92JSQCo9NGpWSKn5nbIXULqP+pDjE7ueP2rNQ6upSmqx3Nh+jwTIjqWMMRrWeuQt - aUUCCWp8deSuJmbRebCnfUf1AF78vf1DGpTudU0Va/Fr3uySErmNB7A6n3Zsfn6bEo6Utvj6aK2c - Jbr6RhmsHHxygZCv0S56I98uM2ptXS1EQ/EglGGc0ssc9oDV6C2g4inV2Exeeb5yt8SAi2YD7GBZ - TZdGdUr4NjWK9Yqz8/XyGjuoMC+meCX3nIjrK4DfUNpRxReaYR2L9wkpZWxR/H2/dcInuQUva3LG - wZv3cn5fpSuiOPPoLboedR5IAYGfUFCp+Y5vAyHmMYHP50sh0HOCWgSnmEO0lW2aP1EPiM51JzjO - AsP+q77qzLWmDmzrCW+nqq0XR4IS3PCbavA95Es/7XoowfBMDdwDNve7AwFhF6g4pVUCeOr0AvzJ - WCLgyS/prHwFD1T56YVjQtJhiy8FpcDmscE8KV3WSKoOjgQUGqraCBYJfUeIsXPFwY3GKVk+6R19 - 2zukITV4MKOL8Qbq7aXSrOAkMCY/rYNjX2g4G42+Xrm5HaE3vzVqDs/AX+PLFEDCJdwWz1hfdysy - YIPGPU0DVgzsqH1CtO03WdQjN6zqoI/Qy3sRG9zy0Fc9bTu05StsAmsG6zc9JDDdCxE+aqeWDaOW - vqFX7jE1F4nL2e23nuDOER5EUG13EP/wxRyuFLu0gGC5G00Du7Io8XMVU7aECR8hte+PIVPPcb5q - MObQL7j6W76pQAfhr4CZGoX4Pgruhp9NhowRFISp5yWd7yXL0KMOVFqsjTPQFAMN/qp+Dq+i2fvz - w76c4IZnOBrEk74/Hz4GWn4fEev+MdrmIHMjLFpBptpXt3MRZ1GAxPzV4+e7fQ9ier848PLIPXpu - 63FgO71T0MvFIfaD4wjYpxbvcFVtngZr09XLXz6RONEm8C8+zymDsKddR7URWAOv9MYbiWMvUG/H - XmD0Fv8NT7zghjv9EOiLAdEF5qf+h71rOKbd5c14xFfBim/b/s2FaXMwlp8RDnflbmC31TaQ4tUO - YW1+YOwrFgpcw6dK0FA7bDJDv4eOr6XY/U3XfOyedQvPexBig1yTnN2+NYTv8T3Q5wT4dNrwCcFa - PlO3zMxamMp5RN8gOlLj4Mf6mo+jAc8sKaj/uqOa3h6OAF/uMcRWKVXpfIjnANIzPlMjPLpp16y1 - BO3D9YX1i+fU6wlEFhJ4nWBnJFd/CdbWAlY0V+Rwx4H/Dw+3fEjmDZ/2p67koW7dvtg4md2wysK+ - gobMR/R8YSSdC3mcoWbn5C9/1fPS9g1knuBgo5ynYTUZnOFPPkpU7T+yPoUJjOABBOH2jmWmL3fZ - zWT9JKnYdmSn3pt69YY4oxXZlSdaz3zaJ0BDd4PqglYOc5k1Lfpb/1/8CPfHGMDU0yg+0lFL99HM - K6jRlRe9Hy/HXEwTNUPN92TSIBVXnyUKc6BmrDCcZ5Yydns4PNjd7jpW7/ucjVNfK/AekluoXVNX - H7Z4BzveyHDKtUb9lx+BHMIA3x/WMMw0PXJwyw9Yc5N5mLvn0ILzNiJgIUdl4Ln7KwEbP6VuExls - 7tFwAbfvqm/8zkuXgOcL4ArLRAvPGQf6O+c83L1RQLHUHobFHvUMZDtHDhf9YKai4N7fkPS1QrFw - qcBy1y7hP353hNYxZ+7mCINGLqifq34qJI/o8scnsSeL73SG8FVA7iXZVBt2FhOyvRpBMk0ZLaSP - mvNOqq/w+awVbP+MpZ6SYCqgHYsf6rqjDVjJLzMyk9MRW3Ems7Ea1RDqQ7KQ/fH4zue3LXfwkCEB - +1yvpkykVIOZUbRYc7rGZ+1jUWASznwoD7LnM3oQErC0OxN7Tv3NF4Pv2n94U9xMAwjcLbGAOHM5 - 1UDr1zPDxwr0jDvi68+I60UxkwbuZkmhxfdQ58zlIgFW+0eE/QNRAZn9OYNyMvqh0B9XfTZe39PB - xfFMnfGD6v4bvyXoRndE9u/4VhPf/6zQNxIFu9ybDCu6+iO8J2WG/ZhJjABSzbBn2Zdu8TDwDcKa - zCQfE+7ee/o+aiMJdB6pMDb2PmDRxyXgFGCFasx/6vPvYDVQmPotZ348f/3sDyWQ29KlyqhMYPkK - BQ/9gEJsX8lX3/RRA6z+3OELf21yVkV1ANVJ+IRo37zqpUibAjSX4EBvYWenfCWMF9A73kjVn2PX - gvnVE3nDf8Kxp5oLvur18La9E+abg+qL9MBtFV/XxYolf3y2hxUHs/WahrwLLvlsqagCPrmTcEWB - CBZ+fMmIedGbhlYnAdLQ8ALDq7Wn9wTe8tWS4grm6WvryfGTaiYfiQAf4UnAFi+J+aKe7gVM93yE - /+JNdLmIB4e+66i/LwgY1rtRoB2rVpp5nMrmIL6NsNp1Zsib8Y+xVx+G//An5h+HdE6K2PsX3zi9 - XtPOY7GMKltD1K/mWF/EaxoCSwYh9qt58Vdxl5A/vYZd78LnDGdZAI0+6UMYKT7Yh5a2yhDrHj3C - +QAmOpot3OflSJ2d+q5X3Y8ltO0vDrp9rc8FZB5MauOGbfTdAyb9qh6qU7KjViTabMnaZoXyzwLU - z4crm40XvcjgECghgrgFq9HwMgRAWP/hK+uc9wkuv69IxlOfpSsxzQgQXTVocL+h/wMAAP//pF3J - tqo6EP0gBgICCUM6EemCoIgzOhEUkSYB8vVv4Zne2Ru6zr02SaV2U6GKrm97t4J1b9rEPbiTQzsw - r5CMzuAL58pr6D4JE7CzwRe5l9M7mvnXXMngXWpbvhWceeNn0qPqPHSs72O26UEFZkC/k2PjrhmN - 0tKG9Lk+iCuLaUQGGrXycBsdcm+Y87BciQrBNBoTMSKIabvjnBz0Naci+3M0nCU1xlb2bwbnd9nT - 1Nll8bBUCqqBLJPrsvVqqT24PCCDzls+48T9M5Yt4ZqirQowzBX/ukBLEBUU93umGXl4sOGlGWVk - XAR/2OMqC0BfRxny+61njFJkilQWwtWHd7Jk9OZbDPz4tztxzkoIOrn6dNBn2gUd78yOLvcy2G78 - 7lKki/3BmeWaUUDhjAZJL8NOX458W4MokE3004v0KlwlSLmqQIEpHZzFDLtEfrXrA7fszYhYpXdr - eLjc78SxjCijhnUb4Y8Pe+uBHTb9c4F5y0r+7H5tMGRAeYE8bGJkHR8smK7iZMDi3CDk0htueu9z - s2FqNC9fmD3Dmb+i/4LEGAjxzccjWpy7vk1FdAcUyu4N7Mt1SKDDIhGDjQ8svnW2Za6+6xu/3eJH - 4wW444mNXBxemzlfE+2337644RE9dm/2L96EdiqjaWD7FRpfYiC7m4IIC4k8Q+1uVph5FLM+Gk9y - +cN3k5njaOOTLTw9uJioh8cyjOY+vEjC8pDQ4fmZ9MUMQgXiiSTIIiCg2/53cFY1HtNNH65PcRHk - 8CEoW/4QM4oiWsL6e4nQ+fJuIvpQm4t8JXVBjie91sdzaq9StbIl8n7n5wISAz4X9oYMUbsNFJXx - C277g07uQXJm7cAxPz+E6D99f27KEci+qiO7bEqHPRqOBO+MTZH9WeaGelKQwnFJ7z5bmk9nXb+C - Db8nmyJrx1oDcZWSh5teRej0SCLaAWEGR+SuyFi/72yRzGcAZ33ofNKVKp3oQ0hhfVAIsjmg0VkV - jVTcatH+/POn8FWw5E0/bP6LOsw75pPAtHVjEpekpfPrvSZ/+61v+masHyiE36qb/TM9VfoCClkA - v3hhNn1CzfaRSytfv5B1M+/DsrvLOQzUyxd5G17QMzOOkmuWZxTe5GuzrmwWAmO88sjc9DOPJ+EF - 3grwkckgPaPTOUsB6EwWKXlAhgVdtU4Oz7JHfBZe9PUTLQF8Id5C3q1fdKKonPLjC/7CXLeK0Mu6 - gNHyesyYj12ET8OthZtfSDRZZyL8yCQLdGVZInPepmYIMsE//ocUq1qiJcDvHpofJ8Bze7Z0/HoN - PvzlL+Vd1g6+GydX3vwJ4u/KxzDD41ZBVnwJWS2/Bwu62j0sX5GJpWXrqj8hT4M//nL1PC3jdecu - AfTlR+QdFzEa/R6OcBVHSA7Q6Z2JFbcKFTYA8uPkpi/dcbDBB9LRFx9c4nQqfgawPrRX5JmFEk0i - F0I5ufUMctT608yf4urD7HLUseTTHV02fiDn4TNGzpfRB37XnRl5y1/ksfGB2SpaQY6e1YicK1yj - 1cd2CH78+KzGic6+1kGA9jjr6PbZCdGsWe4FNsuNTFw7ts6aYymHaPYK8rijeCBkcleAVGpjOd47 - OtehvSQ//IxFh6P7bdYvzC1Yp3sRN5t+mRG5l5DhugO5FYVLJ/zd+3Afh6Yvpmh0cLJ7pfLnzcXI - vR8MSuqnWP78AOL6YB3WI8LuH7/MNF1qVjbnXZgMCSTqd2Wd5fg4S7L27Ux0kHIjo5MpBOBB2Tex - NfY5/OEVBr3rM4/21Pz8S2Cib+SzQuI48+ZHA8+4MOSM955O276vwaV+L8ScD0s23t6aC2XebMnB - 8+poAVG4wvLULkR97bAzRxy0wcY/SDGkKFrnOKrhSz6hP395WNEzho2hdRhuePvnN3jq6CI/WB19 - vVqnHkohdpCVPVu997EdgM97HxOtXi4RH9/UWi5t60as53HNZi+qTPg42cGGt27GZadT/NtPvLaS - B8afX5J0s02Mu9o5cxs0I8wUYdjmSH8iXmKJJfl38iHekJLo++AtBpa2fUPaCcq//GSB86szSXzt - PfDLL7ADaLf5W9+G8BHXgfOeL4k3KWCgYXKcgfk2DKIVjvV3/qBx3Zk+I6mevve0tys++MeNGMwi - 60v/riWw+cE/vwAsMuA6kMr2iJw3Z+uLGVYpPOgcxZIXT9HyUEYbkOsKfIZhqT5FUfD65X+ChEM7 - zI93bEAxFnqkWH4Z0WM3scAjWw+jaw106qRaCKviPvn7vd8Mq36VFQijmJCNDzvLKbxBGD3rkajO - QR6If34bMNZZjZiB8aT7x96yYHrtZnTIB29gzzc2gdt5I6hu64Y2s3gBe3nWSFxdI2eWk1QA+gQa - YgsXTp+7sTChdy1tvDiHoll/9YHpiBq08V06+z3EsDYeJ6SiqtfnkL5nMB2sGzE5dQZzED16+Mgv - HbLXnKMT//gwUFgKCSmcr2Qcedal7FK04kWsw4zC5szKT3qTkXl9XiL2VDsd4G+hh2W9e4AlXpIY - joyroGtyT5t1v0s3//nd+AI5Gz/+6sNxMlmiDW5F5+fhFcoAsCsp1gPb9NZlGzqpIhUdi2Kk6152 - t5420hH5qtNm4+77tWDg28HmJxQNNtL7ChdFIT88jqaDwwVwT/UPXgI5B+Sn58y3afh7KH+zMbhi - Df7wWauPR7omnBrKjKdB/xu9WkCcPOmgpUTCT1/oL9eoXMin5ZvoTPsa5u8sstJdCY4IFc9Twy5t - 38J73O9x4VmHhluzqIPJkEK82ytehoMTxXDY+UfkKEQd5gu6ufI8nF5EO8FCn/d0TiBgihexly8B - VRDdOnhxPYWcNv4618e1E10zP/uviF6zqYQoBgq1zqgsaTPgdZtzjpKThH/5bf7VXxZFI+TPDy+X - 0YVWsC/91fdnZyGNwMPhRG/I0VzWIcwJp+LGhzDPzHz0q7fAEB7Bnx7dK/szL2/n05+HPasvZPRe - oHCwgRR3NbK9GmxTZx77mNiXYed872WiQKeIauSedlRfpUclCeInD8iJGk00ZxMIoJcSjNfC6bKl - eK0YarOyJyUTVfpvfWHJsiNCwsFs8M9fPLHjEx279O0s33jQ4DDkJ2SS0NGXd2DFsHya2JdOHqVT - m4ustNUDfPElLdkiGaEExHuT+2uSaL96SQ/cbOKIVowg2viyAM9CapBfvaK9iOoo01KpNv5T01Up - UxceuwUgPdc+dN7qPWDWv91fvXIZ+cWS3+81+dUfB+ofTxBu649OsqDp/OdcS/KwJhW6T7s+Wruq - XuGmb3zB1LRs7be69qX+LMhxwH1Yjo+7BMVFv/tvqM0Dfe1EX3rvbhVelHFofv64VGXxk9gFOujr - 8nnOMDgLiJxMLwVYiEkCn3nWEm3jSzQ7DCsU7jt545P7jBjWYwQ78Qox058xmLb8CNnHNgXLffn6 - /p31PYxTf0U6l4TOuuEnVBeNwb/zuYbvyYQi8P0/vFmVMvTl9+5aIRs8Mf3zjzd8R5u/Gy2Mp0P5 - s68t8uNHU5UXFbx/OYRcIf+AtatFS+wta0SH3+/Nn1cb/upNgHl+wDj1gwL1nULQmZ4UnVvf/Cx3 - XMoRv7ojSp3UDmD3ir5YSqLDsIpFWkGuHAyfViMbTYt9SCATzADdwvXYzNVX4rfjVqNjCFSH3fTU - X/3u5+dv9Qnm568QJQ9Qs9U3c9hnQo+Zqv5Gv/rQX73jkNzToS5vRQq3+hzJyPR1fufjV39Fce+F - DrXrmwLujEWJzx2mhuLou/7q0eSnL2av1F35+vz0eDzo0TBX35UF3yK/obvYIn1adr37558qad9E - f3w7SfwXHjf9+PPzpHgNrsj4cObAWtd0w1ezQqeGWYbJwudZXiSiI/++N5x5vuYxdI55QjKz/Pz8 - EyhHL2IgtPH/fXYYZkjG00AcymsDy3zCVcb9UyE/f+z70KQaxriKkRKiGPDx7VTB23c++88gP1Hc - eqYN+8dB2/zxT0aPpT3+nxsFHPvvKwWZCkL/402ZPu2qBYPD7eD5+/vqR3u5etjwA6Mz0WMyN/PV - ESQwfZQPOhidQzlRTmwZ4tomnt8fMgIe5Qggrmx03KssnY/XQwK9mNeR3SSyTi/Zu5JqrjWR9U42 - f246V3LEnBtymsFzoI8gsaBscggZ7f3iTNaBZWHcvM7ojKHgUP8m2DB27kdSgroAsyCPAuT3mBL1 - LfJgaa9olTrjfkVHNA4DeZwNXwb8GWAmRteGkDvCMPL4DB1HsGaUiB9JFl1wwWK2gogOZi3Jxjoe - iXOfv2DdPd0eDKvpkcvJnppt0HEMWWa5IDMJUdbbrRLKQAp2eL74hrNQpxXgvjIYFD4vBuBfOh/L - vF50xB7uuKGXoUglJirfRIXGSFfTiAI5Z7a2jdd50Wf32M9gTp5nEoTudqnq7Sqycnmq5CqqR8Bm - Oy2EvvMIkBt6x2Yu55CXMRglct+pL2dCyZqAuyLx+KJZ2cC+2byFxwj2JHRPirOMe9WGjbo/IVus - NLoXi9qFYdH4CFmfOpr5DbLDe4JQ2Kd8trBDpMnpc3CQ7dudPrdGIMjS4fJG6gg6sHwulSkvFlsi - NZt18Nap08pvW+6IO5als1fUUYD3g8oRW6rDYd9oX1tud0T1l+3/z+3FWoFzEiuy3Q7OVmZWcpkz - QYLh7qlGPHUOqzzWrwzddod44GN3sOEbBBzJfTfWuX3x6ODcvW7IXQt/+H0emDS2JgHObZ2/+48O - 9nKvkDIPOwffsTPD+JE6xO3vLuB/64+PBSF5HNwAtTi7B8EMRCweP8dhz9qiAk8JtMmWiSPyCBJb - kmt4Q+Y5kLNVlAdTJjdeQ3bkfSO+IMkLmqQqSHwLS30xtjbDsB5snwLlq4/CJGsw1i82etzIZViJ - UEky6BWBBN+7BfbrSWhh3r++JFd0PVpPh86AfvS5+M0FPyP6PCctrK9PhdxaXtWX7ztJ5ecz4jA9 - DTLt2czWoH0vE+LDmuikfXG83JxWBwvdfR6mD0eglLzaCblC9dTX6ZgksIl1H+kEmJS75dACO8ES - yLXhzhEnyDseEiTtkEKy07AkhVXBz5E7IEM1B7BchuYFZ+PmYn4qLs48CeUF7vODSHQ0lQP33S5V - HoiCUFGxXzAH96iSERJzpAnPftirC2TgIdMdoiotbuZS4VnImfiGig4AQMtgx0IoLR7yI//q8G/W - TyG5sZpPR8ls2GS619D+fu/IyVlpmHHCv2SD50x0rDk0sK+ITWWjHlSkCnqW7X/vd8hUh6he/4ym - 46uq4MzuU2TYbhGtJIErnEqhQRemPjkrO7wh1Lz7HdOci7K9+UpjcGTdBRlt3FBWC4NSfghuhu7X - WWqmpLBqCP1QJ+mSq87+1aixnKq+jqUt/23r1cpACnf+V323YO14FEiAtxVkPM5qw3WcFQJPY3fI - ry8WJVz2jeVbpxQoFx9Ksx7fnwoqQar5gFdmwJmGEssfHRx97iNG+v5Rsab8ez8nXcVmKsiCoVzu - QnTpsqs+e53GwASCBVltugMrFrZBwdZ8JeE90B2W9nSUt/NEkjWvwayo0Tam5UPQ0R+lAXOu6crx - p0Iot09vgMOeMcB8SUL0mOQUrPnjcoGOpr6IG/g3Z2V2wgXKGjgT505TZ+HymyuHauCSyx0pdO24 - zIfPp8niZcsffOw2thy1p4rcIpJR/hS7GvyKFsa3714d2Nt0sGXtnJTEMI5utA++l0o0pMUgj160 - nblaslAySV0gR1SXaIWPLX4JPJAw8J6UimUZwNtDuCO12XNgEYqXBqmtAjwFoxlx++LWw4vf9Eh1 - uirjvf2iQbZ/I5KSVNG/nuCt4BAyPtLVT+7gy6Dl0HIvLMqzwKIsB+ZETK+JRVLwXJ1Fa9AFiNZ6 - JX596ej45YsS7jNJIHa2DUol96sAxKueEMs8dg1NmRDKo52dkbPsHtF8OjwF+fFCN2J0yQssJHmy - 8st+pP6+5Z8OrdcXDwlrOST83K+Ab6jHQOaWNrip9xeHbw1mhmxdhThRjU+0UlCwkDKRiZcRWGDB - gtrKPt1n/u4t3nX6VKtRsuZFJcevdKZfYcokaYsXctRflsMSMV7l4STqW75vwBKPowJ2yWH1vxQ+ - 6aA+z4r8/pizLz45D+wXEYZwOGENHS/E0xfJt2oYqXOKkuQ8OcTZ65VcveoXFrgqav7y+f2uiCTf - 8u26iN8Y9hxmiHWyvs7v82CtPiG6LUCP9vuiYOGUMm/kyFoN1m/8qcH5fTJIUa4dHYoH7eSmNS7o - Lutvhy83Se8N6PR3PrkjZ+Tyc7I4FL6S68DtXYrhFs+kHIuMssoy8GD1HoO/vhJumCUsl2LctGe/ - 1YyTw375a/njJ+QiVF1EGGWXwvT+PBJHawx9veZmD+OocdB2YyKj++kwylyDnsgwbDislyxtofr1 - LqjsE3ug+S5KYEF9gPTLsjSUmaMEjGYQEiP0MF39TrUhq4UOst83D+zZLGeAfuB7dHInMfskcrqN - msM2uWzng7e4ZpWZrKmJdvNrnZL71gQj0fUt3qzmly9BCxadnL4iakpFvTPiXOUXFAFdjJbqqQXQ - G7yTP/C7ORqJGM8QpvEB+Wnw0b8s4BkYdAuHEq5ostU8oAuwrIT31/ZmOrxMoAn7bw+Jez0LEc3R - LpXM2zvDQuAN2bJ3wQhhnZ9IvpTEWW5u4MqfXLX994evAW1fHPtbH6I/OSNj+RG+oBMrHTIP1p1O - S1peYH+uRaRkIbtFfa3Ax1H0kWbbKBpFeQnlB7TuyNhXe33xhdACK9dz5JDQx0B/+ZWGzo4Yw/2w - tbEDLvBpnyLbPPHNyiivHHLAasj99LWG5XRdDPk9aBg3T+6V0Qs4d/LBny3MHKy1GUN7NOBFCztf - YJ8XB3Ou7wIiGCfyw/vlbNsQ8I/mi6zhpjTsIt18OITqEZm2AxysaWkKI8l6+RGnJs3CBHIJd2ie - iKseqDOPlhmC5Wu8STZBos8xtCDcziPxxac/4OmYpKDVE5EYYbDT5+56cgGV7CPe+V/dWehg9vBA - 3SuyxOdB39fLvMrmbn0hq4y2EvSlM+HR1T9+uxZvh254Bz/QCEgxAZfuN/4KT2/kIe2VXJuV35ow - 7CqFI+j4WfQlLRUoezfVIOFcbQ1PHvoKj8nxi9RBOEYrm/HGHz4cMyoP89AuUH6b/BevhyN26MU5 - tfDgrxZRpAY6q+BFm8VkMvj2lRZafFggSJWV5b5w84dhKoiI4eLOOQbL7pHRx9l1wa5CvJ+bh5ez - zuKFgZ+b4KB4SGqw3Jl8BcADM9Fcd87Icq9KODJcgS644Oikro4FoZbpxOxu9bBKfpbDFrQa8q/e - mw7DzWThem8mDL6gaOY+PnVw3ykKKYKxjWhGbhY8G5JMDjvdavYma/ug4aMr8mboZUvT6Ba87iyD - mF0aAsoNZx9ebUEk5w1vVj7XShnW5Ym4xTXVN31US6kXGOigv+2Mfg6lATifTcmpZKcMh9KbgSYd - G1K+k3szvC9eBeIPCYiDgT/MMZQViCLhiS7gaTXTm4IcejGro3Mn3TKOZvEMAyue8O5GLs1qGlkA - YP21SQyqNlruvoFBTGnoi8JOj9hrnvO//ORz5hc4K+1FCZr7fY1QNpsO/73SXK7VGCDH+rZ0ujOX - FZZZYiD3eKSAlHPDAKWrDxhur+mmPwDfVJhY010daN9qvYyPD0Ju2xWD5ea5ATyy2YpZ5n2P1kND - Nbk/3BekfO8dGD+vxZAdPiAoq3mQ0eWbxPDO2Soxx+yVrXEeKbJTGz0JXvFnWCCSlR8/98WvSAZc - a7IEFSvfkahgV0q1VY3lBIoLstesalahYBj4uDEXouHsQ9dquZewKZgAs9zjA2hTs5sDxYz+D0/p - 14wruHrFgJkxdQa+/11Gm0oN8+rh1GzxzkBbHB/ktunrhQUMhLR1dIxfd0knjOLEsFIuD2SWl9lZ - Q2liwI9PH2Qj0RdRDmzoeMKLRGgqmxn4zx6M5Tv29073BVRZFElOqo6gM1CHbB1i+qe/cMHtcLM+ - 66KDwjh4xGwuT30tg1EC6ykeMfu4nGm/fV+x3U2qz9PcaJYff1TgaKM0cE86d5e7EVbz8kGmafXg - x7cglx0KvOT0HX2v46MHHLAb4qxQcbj8oaYyGpUXOXVS8OPTDJCWDpMHo2Fn3XtmB7Z496OUrtnS - HcYQDGfW9HcPymd4N8P6D790ST01XLVgF9yCY4ZUb1qG+VYUASTOqqBIPkgRLnZsLffXr4AOs2w6 - 3E+fbHoS6TvDBuvG5+Q7Z6k/P8Khqz12kNUCBwXXgNLpt77pVG0lntDL5uC7L+GigJyoJXtpKLGG - Gb5DYUDHgiubGRJZgvHw9bG4/b7lOt46+Ao/JUG92DvTU4tb+NHFIzL48pj95TfuoWd//sHyZj+V - 7FHLxZVtPaP1oXCa3JwlhH54N7cXZQWdkV19Nj3PzWQdrBlK53fniynNwPLl2BiWqJCR1wnOsIT2 - XoHVq3qhQjZmSoL7q4cptw+ILVY1na7jo5PQg6nJiZfraBnijoEj0+W//DDw/NimYI94njiD5OuL - d1sY8DIvGVKWKqWz6H19KR4Gf/MDLH09vD4mPMk2ImZ7VRvWE/DWhMowyX1nsBE9Sy4PBZaefUk1 - r9lg87oJK6MocXv2Jn21udn6+SdIWYq+oXpU9PDVtrUvcY8log+lCqXNP0HFBEa6nO8SC/ks7ZHy - ij8NFYveh+HUXvyl4q8D/1wPlbx9Hoau04LZNutY8m/bIHCSc9G8U6QOGphoxH6njD58D3UOTT2L - 0elGHL2/QeDCqTG//u6+XIfRenMjpO1JR4d8UQBXKMUoCl3lE6Q0VTNrYZDDaXBaX9z4AZ/hwJY3 - fY7M5zVoluVeh7BTgpjYSQQc3NADA9+NvSJ9kK4RZp3UhjC9HAgS9GIYU3xmAPDEmXjn4Q361H9p - kjB+PV9Izp5Db7Jpw8Ngnn1GqrCOo8x3wWVdeUyhKQGChU8uP47YI4473nSaI+cCncOuJsd5d9Hp - 8VLnsjjCFJ1k/a3jjkchPM4hRWiSJTofjW8JPw3j4bm+mANbVj0E/dRKyJYeWsazGWP88jE67g58 - Q1lwMsAvH9yIWEeU3I8YlHqoIqS/Kjpfs2qWT2fd8nXr6+uYG9YLkKlbIoWvBrC+o/Ulx58a4V41 - uexlvrgARq1ToeN12UpO02H8xReym+sIuqYWfHjLmMwXN72xPtdDDfFn4v/8g/WcerP045MHSTlm - y1Pta9i05gUdvd6mPO7GHh4DZSQH5ZNGz+P7sl0pNXRk02KOyOlAFZnb+290rFglmt1jvcJt/ZE6 - SVbG7tQWw8BICVFlEw6rETErjNQ1RdrzdtVHCaspVIJEI96xo9koledKLvVAJTn7QMO3CLyX5Nmr - 6nMJ3TV44CsFGnaxXRmFib6mjKIAu/jc/tb3I/k4gV3ySZHHM1hfN78R3uZrjfk2WX74OsucNt9R - bh4Mh3f5uZUFtg3+9NpqmxdLfoXvEv/wm681lZehRD1kbPqbzXf8BfIo7tBPf65+x7kwycvv3/mh - 454okGuUijyyuXXIHsov6ReveXo+RcvRYFNZe9PXxu8+EfEtK/idH3Js9rtojUeG+fPPfny2d3mh - hSzTRr7r2WbG/fgtbto9smhWZ9N0e6bwoa+IqAtjOzxJ4AwpczbJ8cESp+mu6QV+WP+Cmef1lC2Q - XFb5Lt93m/7TwIyFHoPJXCsMjPfBWT8XoECjnxhknVHm0PEWueBiZh/knEkSzRb3buFFCzqS0DJs - Nv8ilrKrFBMVQ0HHc7cokGVeEfHlutLX3/o+oH0nzrLbZbNU3mtxHusr8bLF+vl1Jtj8Y1Q82KRZ - Y4h5qTxmCn5c8TuiHdfa0C7SGO9qrotm5bxdyVJBiE4zcwYLo5wrkC74TPyrd6C8yDxsKO+8O0Kr - PNBer6UW7CqP3/g3N6zHN6l+fg5R4FvWp2h4+HC5Hp5E+eaiQwsyVJz4Nkp/dU6Ycuqq22CH1on4 - JHPovKb7EjzyY4SQ1zfDMh3FGpgUN0SvWR3M+8LFf+fP7dI8W20zt0D6fXkbvxc3fvJmpA2fMN9c - ns4KHvoMNz294YsW8QfDl6RHtT2SxT4vOnU7NIJZoAkyymuYjUvqJNDMmjs6Gd9bs7ofZQTi85j6 - z0kWmu371/C98ynukH2ig6aKAZSBmRK9F94Djuw6gKl6N4hrHl461cPnS3oa8jaW7QIiUjxAD2PH - NYmiHIhDQ1u14E64ieQkqZGz4R8Emz+GDzVVh30fp6t0iCUXs/MjpvufXn7xtPG38wYoRO32yKCz - YCZyXnTRNVBBvbYoubgOdmajYXmw+WnIcB3fwc/nt4UmCmPMJOe4GaePlIANL5B3xry+Cl6m/e2v - 79qvZuGgE0tzEgdY2PT05gek0vb3v/Wdj6xYgYPN2ig5I+Bs/pD057frwYTAXFM0g+a+c5GhHZyI - y3aFD0xCSswerXGgtE/Wn5+A7p0065vfOYMNXzGzFCOYX5Fygcdxezp9y88ktFVbPp90SMxbWDrd - rz7AkOnjc/e5iqjdZi7kb/mI+bU46H+vvZ3v+btkjZ2/+P6tT7ovn5TyUK3gdk2NnISdni3j5x5C - Sxh1lLP1g67jPjdhETKsLw5Cpf/p38XiS59ufAhzoPZ/+Qj9/KH5Fz/Sux2JUUTasIc7XhJmJfN9 - sWSnaPPfV7D5R3iO/JDOGz+B3WvIieU7fTaZ0eyDwhRWfyQ51qfqyVyg0b52PrMULuVbw8a/74/3 - Xt/T5eYmPnyt/YsoOO+dlRvWGF7WmUfGLZid9bl6FRjb6o7CNAwpllEVytNH+/iL1z+zIXYZU6Rn - hsEz+wTZFEqZAg/Uv25jclwwBZLfw3LXnpBvW82wgocz72/Qr3/+FqWQpAzspwWgg9bagHtdUAz5 - psbIPB77qCcnQ4B5nL6wHBB+oEgILkB1gUOMKTM3/9dmwDySGB2erKbTpTdSuL32aUrXaLnBKpC3 - fObLV3IcKPDXVRa584NkFTc6G97N0Lx9MgxxXujrhqfSp9IQcnEuO8t0+6bAml8KKsUnbvA3JhXY - 8BfD+jo407mPV+A7RfDjT8OiU/0Ffvh7dAbJmfbFo4fnF9SJiXwYzeWcsgAfQ7ztb93MUXZJQeOJ - 9o+PUQKI//rpB4Q4ZozoWQxW2F/zPTk96AhW1kkt8To4ig+bmwSopk0XqJ3fD2SzhdrwotyY8jxO - MUpgfWg4XwhtWf4cYuQI2gKmcc/54vOqrchj9Dnb9LQGt/Pgi61AnK0JDoZJkHS4iXCgzzdXjMEu - YihB8XzV581Ph3k9fPDAydWwereE/dP77pRO0Xaea1iih0z0+6IN/GM+KzLUfA0Z9slzqLaeLrD9 - vBgULrkV8cH9juHm/6BjTrdLd9vYH60oH/7687d/+uKTsSfisIzqfCLp7MvlJzeRPZU7OmeP0oLr - /Tkh/3k9RSw/KpW86UlM/QHT4REElnyNFBlpayk4OGNYAyL2+t1K1FG2RMPNh7bcF8hkXnuH3Mba - levnW0MF1FS97fmok6/DSSGqOzzpjL5OAozwDdBhyxfL1HkxMJ1Lgo7b1FNqGtiVnvfTgnRvRNna - hKsN0cvufvlwmPt2esFQDV2y+aXNouukhVs+I6hc2mZJ/bvx02/kep+ViJ1PkQmH06ih24NFDjVZ - PoRve9cR03fHYeEcGsgG3x1QIDVQ7z5sxcDF3RX+/rt/Nstq4xLW95LBAE37aL0MfCVv+tsXd+pL - X4KTVsF5rK7o8eY7ulycff7zYzFBw0rXz6sXhE93dNFB+UgZ3vgXlGvmhtS3GG8DCA41+PFFgxbm - X3zC23GOUZ5HfUa7t+3Dp+juyeP0XR26ez5esFeD9a9+vBzZIJEv8YCxRItg4x/nWkad0RLrnQTO - /DzT6ldP9d8Vpw0b3ltylyR3Ygo1H/3wHprNUJCNz0d/+eD/XCng/n2lQL3vDuRwF6tNomkY3Bfe - JgoxDjorGN8Q6k4UEqtOEp3uA4eB7V6/+GvP6tFevJutfI5mTIyRiE6nDa0FtKMQ+WnjqnS/TM4M - MiT1CHnopnO5mlwgqHILabDE2ShAZ4bpWS4wzJvJGS/vZwW/SWpiZkUgIpaXv+A9f5hIRcM0zJ+s - W2FSJm9yTqV5WLmHNMNnxetEfbhXsDjYl8DFmVp0yhMyzIp37+HlltjExtmL0jF8mpBDFUGPRZ/o - xCxWK7+BYfs4UFt9febsKg9aWCJdmemw+G+6QsZ9n0jUTy6ds2tXwl2EOB/W+cNZBBVL8LheIuQE - YDesySwy4DlNX/TQlIvD4pwr5RO+qCTfn5uIWp/jCttWUJEiLmFEkRzl0O2SM9IeV0LXsZZNcf92 - GVJwTeXQYh1cWTvMkOSjwWX0sXtCUOT6iMx7wEYzF8y1bPoSJhbkS6c1jh93eypa8llF9IY9tGJN - nrzIJs4OvrLFkboSMvH5i9zioFHue5R5Ke9nw5flNwtwf2Uu4KmKFKHDduu6jCQb8lfdRF7aGNF6 - sxVFfjr5DlOPj8B8fj98eBh7g+gu+uizVyVYVlPmSKygzAGfifAFX70QkuNlnwz8hR1WuVZ2sQ9x - YWVUKYoOvh9hhLljgTK2LAcDVu0BYqaLT9F+7upStt4kRK48Ohn3Tk4+BFolkbS04mgdyu3JGAsy - /mJec8DG+GXDy3zsiM2Qki77Jr1A8XG4kvsWD/i0VwSo3jhMrN1DHfixlg3ITuGBxHV70Jfqdh9h - ss4fpAYPC3DKPCowcB3FE6/ZArB/8l1wO+cpUfWj7uy5752RHZAf0JW9tc3+dSYBfJyUgmT2bOms - JQeVvO2nv9fkwlkuxMLQbQMJJetdzXj9m/bQLUZCLi1vApYWIwOUnR0Qv8SRjlF6MiFrK3d0DDFH - lwm0NSyPXEOSa21li43WVPaRBjHnqpKDl2Zs4a4UEjyPpzxadtxTknfCSyDX/rEDL29pcxhkJwZp - md4PpCzOF/myGD16KKeYsjKkIQRaLRFPZYJm/0pdDEErAKTG5nX4jvuDC6+fl4bK2O6az2Lutd/3 - I4G4rNEMTp8ZNnXUYAmddMDiXC4hyes3MvZj3NBdnVXQbvgEY+1bZRzH2oLkxEeNOOsFRyuv6TlA - 3qFAyfLJnIU9XViYHiOAjGupZnvnoJYy590TpNWKFe2LdfDhuL6/SC10ms1iuwhyrx5fePIKw+EJ - W9hwOEe5L2/naT93fSlt8eCfvTAd2ugkY/jOHQmZjoCbeaqWVj7mO4TUUz3o5H5xE9g9JYyX5zUZ - 9keLhtC6tDIydSNqOGOUfGBoQMHLIXiDNYB3DDNv2bqK4GPGNo+0hdy5P+JV2ff6WjoXLOsCKvGX - lZts4TzeAunUKcQS2G+0QifZ+mxB2V+zd5XN0pD5spO4d5RW57tDteDpQu3ZUn/v5/Owb65NKqOH - zyKLlEnEGqncQsIeMTGdrtRXed0mdX8/NjqjwRv69DYwUKXDG3k7vM+WLf/BZ/65EOdacBldzJ3y - l18vyQic2Ui5Vn6c287ffWQvmwQVC5ChZo0M15qb5VYvOajcLEdaJ7fOoptKAK3mA/CsRAEgcX6r - 4O5TNlhcQxvwy2nr4yxIBrmdjyedBI+XLQsjOxA92sXZYoozIztkeZJc6B6Uj8WDIVWwVDF34Oth - eXNzLY/HlSX+XuejJVeDWHiYoklyd71ES+q7K9z2H/kmODS8mkeStIsvPrH54j7UadaZwHpPoT8i - 55PNu1HDsqAqHLlWF6vhGm3SwLvd50i3zVe2TxKlll+9FJLHM+R0cs+fPKTXPkGq4krZBF8qK8vl - AJD3DpZmfa+MBeMM6iQVk3qY31vf1VN6jPxlip9/+CMbQqgT/yvHDp3YBQPPal7kEMKaLulnB+FV - 1ql/uR2wvnyx/YK66FdkW+9hMUbJhezzXZPj2z46SyZILHh7FiT3lVWG/W0KUzkLNQ2zj1uUsQu+ - VpAgMuK9y+mU35vjDDe8I4fSeYNlN7klDDKHwTR4jtmUHGzrt7+4F63VoU+8JPA6iKX/4Wt34NKB - NeW7urzRYT6o2Xz4wAsMn3tEjPAcOR04kRmmCmf54FpcMzZAlS1DVs7x2mVztDDRPYQ9oxJ0xllC - R8S8Xbl+eRqyKsQ1y/f9tmScXQdyo/uLTtfbIslfqZ+Ja4qaw4W7JZCn3ZNF13AMo72w5i949OAZ - 3fMEDTPXfl6wurtXEgru19n4zCjD++mN8g2v98ukzzD63N5ky9fDL1/JXSWO6F4u9bA02lsB9t3i - SbmiLOJxbPXwjEuEf/HPQZlTgOHmLrH8tz1wJ2ZXQvCiL2KPoRZh9SXGMHhzFeaze0zHgkLmd/7R - rRKegOygP0LVYmd0cGmV0ScWU/gJJhbdbxozLDWjdzK2UYyXrjYpi16SAmu7rn0GPwa66u+yhqfR - 7XF7YZCz5y+WCV/Pm4lO+jPOZitCHfRfqUIi3lUinnYHSd7wBEtpYoK+o1YOX4cGEdSc1og6JezE - oyQUZONnzvq1di20SFCiu/z06Hy+qLn83mWt3xwzBywfhlqQVXO0dYmIwXAw7gzUr5BF0YDqgd6O - Xg/l77VAG390WPnhMPCTRgqGRkX0FT6POeRbJyPWtHeG+Tk7FjyY0Y5Yhq0BvnnvEniut6e2gPkG - a0eVXH7QfYgX7T1l64PXZngzZwEpCtc245EFBpy5sEN2tqMDHgQfAtMXfl0Ocn3pvs9Q/uHPgTRD - tFhVDcG5XkbiVKOQTQrb2TJzCwZyWRrWocFBYMT1RKFPHQdEa3jIE/heK4Xc79PeWczo5crr+0Mx - 5SAB64OpXFmv+hjZsak26/b9wY3FJnL4NhrGWlYF2PDVmRwZdgGrcy1ycMG7EDmHETbUos9YtofQ - Q2oX8hlltU6DvHg/Em3L/5NwaLS/8zmj1XBmWdjbkL2rN5IQ3NG5VOgMe6ItxNLNvTPlTQXF+Eiu - 5CgMJBr76hPALX/h3P5uT1X4NwwLfNJRudsv0dxPCi//8pnzEApneYRCCht6F4jJDDewdMURw6/w - vJNCfl/oijxSQzHpa3R69Swda/kkiIf6yBNb7o90nQ+BIX+cUCOhJ9vZvsTEAIdTmqBTtvWu2vBL - 3jt1SSwViWCV0TLKk3e2kXYaDs5etZwZdMF6J7/8uxw5lv3xHdwevDha3J26gsshoMhJnwqd2R3X - wkGSgT9f5Wyg/LvgISq9lWj11rf39LJrmDXWDV2OrwPgGJvycNIJQ468EtO1/oIaWs0boPuDvzd0 - zwcjXF3hSu5YeQ9rFn1YKN6+lb+fmNqhN9QY8l6VQ186a7xO+0dRSUX0qInz3iZ/8u+CBQ3NBAy9 - i62z3tKWQJBlBanmfh22/VVgLlKNKE+XGbCpBy44DV5HMvebZmt/l0rYvx9vcuykuFl3QSyBUk1n - 3/OKl76oIYth35YfYr2eKf2CR1X/9AcJFzREM2SvPOBX5kJMW12ySenMF2TmnYMUkOz0h5B8E0iG - pkE+ExgDd/WuAURr/sS8rS7RooqnHNyL3CIZ0qZobYsxBFy95uRYxa7+47vQtrStL6rxcmZtwDb0 - +HxF3ns9ZtzUB7PsPHofneBO0Md+snhYF7OPLE1VnPVuv33oGMxE/JPRZetxd1Hg2LwGnxnNBNBE - OttyLYMnyVkhyJY+EUbYfElCHONAAPnh27bfv/0Ha7k8c3kBq4KuT3DN9l0cSrCCuUoU7jE5y+V8 - TuS+zT/kLPaAvh+hkMAOvD2EuCvVl0c4pzKoSoucY5Nr5t2BY+Tf+bDekarzTD6XML1nIVHawHbw - /HBCEDP+hJsNL6l8vcwwbhoX+URVB16c4hFaJCzx7h4oGfvV0hWkWf31ZeW2OXjuw4bU2j+IukcR - INJRYCG3LOkfvx5tWcawgy1CzrQmw2yJlwSOYRmT7e/NMoBTDH2aMtscmK5Zg9hl4P4TX5FyHvhs - hmzBQ+KkAfKYoz1Q8e6/4DW6XghCXa+vsegZUr9/QWLNih+twpKy0nt3b8nxILQ6ORJFgS7hTWJU - jv/3/iDjEx0VOTNGS8sXI+zAx0P2nV+c9RJGNrBERsHCUVqdt1X1EN5PKCWeVrXZyorKKnv5HJKb - 7nkN3u1UU16+3ZfEQ6o43JsTKhgqo4R3zWA5a7dd6VvY2CGmoDwGasOBkV23TclRk2V9LigL4VR3 - Prq4iepsv5cF9PWNUW5/l+abbE9tfCvmjOVfPJ7PyIDb7/3plWFcLnUM2WYUfeYSDdk85kkgzaEG - kS+XZbRwrC3BU9RXWFhPAcD5pNg/P4AovXJvMA7dGrz38oLU4v3VaX3WzF+8+vMs37IlKg/sz98g - N2DU2cqJEwPEJjbw8sjbbH4KVQuJuje2fMhm8+WOIExIJfmkjZWGZy6R9sN/5J23W/bh4ZL+/r3/ - Fo68PhnmlAPhFTyR0rzPwxcrSJBMGs74mW2T6xdzpwl88Qm2fBMO5PzySmjogkaKkbz1xX+DGaTn - XUF0x8mimfk8U3njnwjF7yNgZ/2TQ6LxJvEdr6dznYoh3Pg3UsUegO/V2PM/fYf0MPk20y8es6Tk - sCxGpNn8iAowfX0jmhMulNqwYUBHVR1prjnpnSzsLdi2kuq/6pfasNZNn+VTZlxR+ZV5fXZRwcOT - xTA+kT9JtL6fXQoV1dPR+ZGbEVctrgAfX2dGCCpOw85f6AqdWPB4rRUr4w3+nMhFVNQ+H78zMNpm - 5EOejB90Pw91tOLQrWDIGYB4aRSB0dFuBjT78e1v+00X5vVR4JY/MeydxqEhZ13gjU4GUjZ8mdFR - G6EsFSvxX4ah80fwECCIvggvzukGuLXueahfGZZYXz1ocH2sJbjfSQ/M54U2tIW2D4FTrS/kKNcq - msc8CH+f5xOTRXrXf40RIrPriW1eOzAowIDAS3uAVCnXnEXypx4a0+uJfBFjSr6lcIFl2BzwDnW2 - Q91D28mJ5OdYmK5XujzMmIVrYGkkW/mXTu16nuVP4nz9WKi5aDWOxIfFwzqQg0PYZsWhUcPrGcn+ - gDQvY+PLzIDpe1BR6t/kgcr3RIAyq+2Qf+5CsFpuyEqP72lGOeOr+hwVhgG5habohJQvpZv/B0PL - Jj4juqI+jfdCAKyt3ZH/vA8DLdbGla9Y4fzX4xZFq1NIAvS5+opcoIZ0tQPW+n0/P2Kvjb7wqooh - LUxvw6/XT2/Z0nc12y1/dHovowWL77VWiJ6VJzDX6RLKP/2L5meic2Vnh/DMqwnRW+fm0Oh21uQt - vn3ICnO0FLdjIl9zoULa3Z0yPAgmA+Pm6aLjfDQAtxq0hv56h1u+NB02uZY2CPSWR+aTZcAEuUcL - LtRV0YZv0YwqTpCl23gg1wOvDXPcmiN8HjQX96+mjOaXbWGpX+wTft+PUkSrgq8g6984pB6CAyWs - VinyblYwOo0nK/vzd0DhZ3gR+wwsD58NfvkUxX13B2wBw1Re25YjLpe2zlSq8p+f6u/vJ5nO6y5J - 4eP86tBtDY4R+zgUBtz8X6Q+8jaa5YcDwbeC561rxmdYvs4CIdbnhhREZv4j7Uq6leWZ7Q9yIJ2k - GCIgvQQFEWeAioBIm9D8+rs4zzv8ZnfoOusoJJXau3alqvquaNd8qz8rqDz0izr/PionHQctw+EP - SStR26SBu74IZHEYo2SiJb9K7S0YqeLqZ3Uy362LhPgneZt/QVN2qSKAIb3gk/GkwXwcfiKoKr9V - KctmykilrEkn/bL/pz8vDircP7wlu/vMpuuG99KGX9jIhePajf21QNHRL6h+fNZoOlh2BW5olZ71 - GO/O0gveDm346n3fPiDyVHgfona/p+rbe6RLNsomRBY30NNJy4IlG00ThPgrUSvW7a0K8mb/+UN6 - 9DQZcWbtyYi9SSV1L9qhp/0UxyB0NMQKAiGg0i1cQIYj79GR25czfTQeHJnm56HpeVHXVE05tPEL - rN7Uwun8V5eg2eWnf+dxbtr2Cn1VmtTZJ145XUZo+Oa9RtjBypiug+004LpVQt+BiNOZPnJP4ij5 - UXmwIKWu1U3IUgrHOwRXqnLaiADdmUGnFyKRctzw6vDUXhVWHzcjZelFmZBe2Ck9tWZZTkUk2fBU - 7md8hBuTDuedqYh/8S5mv2rPJsyjEN/FIFHFYX79pJWpDK9dhAivHZt1IRRxaOWmkaad0qrkw1FA - C09tbAnjFa3j3Y7hrGgzfjBSGYynhtOQcFRYrzOALSdbTz2wTwebupZSrePPiBuItj76Njd2zjya - pgmGnmf06Fj3dXGeiwDmy7b+1lNd+B2+/uEvNtuvnk7+PE0gfpIv1cYLQat3HWOUPB5X6ng5388D - f3bRcx/EZF7Gl8qy0IRwSc4fb+Qa3lk2vg41g6T/4ucd/42h8t2Z3ql6cGaGfirYzoPH3e+Kuu5B - J/CzzB5r95PnLH96+Lx4DHam8VhysddGEK7eESvlaR/MReW/QM3SH/mBxPSLZ+ke4sfV9NCm369i - Z2Xo0AsevqT20WG0MlVA5oeUxtUnQQNT2zFE3f6IjaqZg2XTv+BZ/XjvcmamlIzn3oNPZH7wfcyG - YNtfE8ZOV6lC9ab/80eoHiOGevF3KifuduEkpVFrei7bqvw9/WsFG5/FtpHs0QjHgwui+rxjO4n1 - 9buefZBGddyR4rCy6C8egeB3+9LHmzuUa3OWssOfPzxV9Xm7UmwTUNbBxunteQuIs10ZuF3OEj2e - r0k5vV6lDqQxK6zU13O5VvKjAB1xIsbZS1Q3PU2TzF2QbfkHw+H/9rO5Y9fbaYuqcophKyjpyh+1 - +tuoLrTnCZTmT6UydyxWajNegbZ4yKt5kjjLBEsluQMdPYZ2x01/WRRIrvD2YAi/qO7A0dFn3sXU - VJsBTZAUHWqgwvg8vZmelCRjUF4bgDUioLIl5jeS7udt1Rd6Lqdl78cHiseBGrbtpMP2WXLrq4j/ - rQcum+vffmD1c8+cv/hC3PR1sotVcZ3Od3SF667Z5hbwp56DD36BV8UyDq9rs67+ERi+lx2DHL5u - t8WbuQz9N7dpMHdd2W96E+J36Int/YUp11NhXWF7X4zv3WudnpDEcJSvNeGaOdv0xsWDuNUN+g6z - b1rHXhvCxTJcqixcvFXhNwPa8Y+dx0rOseeZLPCgophgy+WNoMn4g4ZwfrOxvAsaZ52rOkKZr5f0 - T2+Yxjiz0Vt+BR4IWxcNwZNfUgRGRKQwOa5MeTgtaHf43Kh9q/p1CSY7Ez97Vsb2pFzQsNk/Iq+X - hq29mZTznm1FiCxmIMuO/6SD7wwybMGrN8ez57Bqug8hqTQGq3wJ5cxclquUGBeE3zzRVXbTg+Be - VBT/xdvUvC0KfHViYXMqKmd+lK8ONv+I7dO6/vkfG9LCuXkfnb+WiyurNRyD/EovXd8GPS4bH3qT - XggxGR5Rk44uMA/1TtB2/vmW+SV/n6lF5FPPLMuO+Ttf3qH4XNUheLoaPO3DHb/R61Yy/APZILAx - hz3BUJypPJwX5MTegzS3ognIZ39KQHSPH+8wTqxKnsr+CruTFW5dCr7qOnoDgOdb120/THXLT2bS - KSlGaqy3VzD96Y2OBiP5XQmL5vglhWjLL2Ira2RnwrvRg+nxmrGm5Emw8VtBqmnm4FA+nMuhrcpY - 6okW0njjv8uf3vinX2353JSYqpSgnfuzPLF0P2jsuEZByW664ehuXMpJhVZGyvSdNz341i/H6hDC - N7NEenJXOeD5dm+D+ySUOpfxtG7rFwNVGJ2+LrqkLpPAZYj+XAMnvReVQyVRTdziVeoEVemstcwN - 0qnUBHzniqEctvws7IMz6zFdHQVLoZLlL79CtfRXrhNcT66UdYvmHdRZX6dWSSbki5qH7/W8rpPv - DMpB3bfBnz6tbvqDAPXubWHt4fnoz/8jdJCv2NrHjsOzOeQo+3iCN/H6A62JuAvhZe1ErD2nul9e - c/sCl7Dapt/m6RIOXviXryDcX37qUV9kqVa7Gz0vwq+f8t9IYItfqbWd9/lP37p63wK7jDD9wztJ - f1Q+mdk4Ktf2eFQAmdJI1efPLdstXy7+f64UcP/7SkH5qUV6to5/ErYQistU6djgG6XkGTYmUMtJ - STVfkVWK/dEDtrghqpiwD2a1v9jQHtMfOfCvMJhZasewTLVOOmdP1Ul89iFcrrcUWzTg1ClpoELW - 2pypoddnZ2YeayUJdhhSlemLdD00cQU732zo+XZXU7o3563x7hDj67E89YyRSbZIbySmuqhpKfvt - vyZ4i+zT26t/rlPbdlc4lZ8Oa/B6pu3oLFeQzpFDne+pLRcpmgsp+66yJ91K3M96+nlJLqkX7MbO - s+wvxbSTRBWZWKPApNPdNAu05wuZBupVUedvEPhov7thj66q45Bt7iTyFsUnh2hJ0/nmigDG6XvD - j6p994z47CPI6s9ML7GQlMsVXvnBPKtfIu4O3LqKs+fDwIkUn5/FsZ9Vtdfhcqk6Gh3ZY8rRwJyk - XZ+v9H46nXrGfCzbKA3cknk3FuUyfNdCGjPhRlMOxn5sYjGBk6DVNAAtc7hb2y+wFKcGnwoOnOFq - /gooZdvH5qsUguUeWhn4/r71uOrhlm06pjmyh9/eEyVXdZiLAiLsorNOhil3nfXIFLm0/R1bVbvv - 11dbLf/2x5aX4zq9SEAkXc0W6hvz1WFM+ylAXjchPrVh3bPb+0m39633vv3ecWZ/cQEW5+6TXWv5 - 6RLtxAoECTfYOuu3kmGul1qi2eeH73yj9NykVjVUz2ZH76xlB0tWRD4oyveFj/2ndLjb5SLC2pYC - 4cXXtycvaxIk9X1LqT/tQ2eoL6UA56ThicRhs1x5aRGkYm4X+ixOcTDfZT2EUI4D7D8y2+Fxfowl - Tyfw9/7qHBS3K3oVL50aVgPpZM/CS8o/4Q9fXse25CXdauA0DAl9d4K7snr6yaTwwkhY17eQaI7X - BATndMLh51A5zFsfu3/2m+3kU88uCdZR9ZgRvZz5Q0qf4W0Hho0UbHp7OWDXIeFgLFyVBl5QpqPx - yXTgXLfC3hiScrQqtQNMtJCQ048JmgzJkaR7jkb2yr4OllvbT+BdDZPUZ2Xr7cGPFSw36HGgmyeV - 72Ebfc60h62kMlJ5zW12IGlOSiCPUrR+IlERv1iesJOLTjqd2s8iCbxl02f8uJaLcrpmsJuYD42H - JOuX34K6f+8bpae3SurxKEuG064Y4zFNuTHIrshJp4i+mVgvWVojgvz+q+K3+5Yd9qztJ6QTzcWP - 7XxNx0rpgDqahM3i7qrs5f0l0udRNluj2Xc6H5tPJX2Ct43lwt47q6mUoqSebZlMvfFBLHNsB6gy - 4Uzd/fgIZvN1USQ2CzJsfo/Kuvi6aUO8xjZOYzqq873bZ+An9sO7cUzucN9946P8eooxHgld189D - 0kDjCEOq2if9kj7yWuoUuaFPbtmns7M/67AKcoTxK9JUhh8DBYb1OGBVfZG0edRnWUhJRL0mikV1 - dkvBhk3+wec9LZzFe30LaVtPHNZZsk6hc9fR9n00/V5uiF1DcweM9ZRJK8d5yfm6bEvW2p2p1upz - uYzRPYJb4FF89yS+XJScJiD4yYpN5iuiKYtuITj6q6XaTVyc5ZnFJig8F1BNlG79jLXqKs2tWGNn - 0ju0VvY5hu15sXFLC3VSFMMDmk4cxuzBc5jcurno4L54ar8drxyVSAnFDGkj9WzAPXksJwB24h7U - Yme5/2rxLEoxYc/YWAIj5RNzItIQuRwNJf+zck+mkIXOAYsa1T5x1r158KB9CxqNv8diZftJWKBi - HhH1E2nulyYPE8Tg8oVVp3VLfjLVAv0MZsUysS7OnK26Cfg6WDg4f3ZoLR9tDeMu3FP1KOkrXxl2 - BAErGzgxpdxhNTlXpC1wpOpteDrL9y56EBq4wPhLpZUk2mWSGtU08EvqHLVfUcQhtRRiGgXCpedo - pDJQ5GcTh7u5DdbP4u1gLIChyejtnRmHZgbN7V5Qc6Y8mjf/C4YvfejROXLBktpuDJ1p6FT99FRd - nngvwyPUVIrZ8bN2sTb6oM2pQY+LCGh+dOVOajP1iE9fq0kn/xaaYC7XlGqqQMvl6SIAhi1PHqfx - U7/O+TOB3iSGt08KP+Xf9B5DUQc19tj+4bCCSBt4JOaHyrpv9zx9fjnp1xQDYeYLRbVySjK0+Xts - +LqOlmfmm5JcxRyWlSxCDK98REndX0usqUOZEqGcO2T7TxU/Q8VU18QUBsk6kJ7cD3m48spXD6Uk - zQN6KzhQx2CeX9Li3HyCeuSmzIeYLoyZeMPX3tqvC5VmQdpN3AdrnaaknESdGOrrb0dN5y6gZb5N - oXQ67VR8nX9dyv75x8inL3rVhRz94Yfk3A8BfhwPpsNbk1aL+Byn9OJGl5ULQZVBr8weK5+nuJV1 - QAdZXc5UCzTssM/TZQfa92pTObuOzmJGEYfat6hRvPmvYd9IOsraRsV3X9fX6bfXKsksZwmbSlui - 9Zj5zWF7Pxx4gZqu9vMbShKRNSrvGXNl6pAArC9roPbGF6YmDF4gcPFjw/PM4XaDHEm5XWN8NgYn - nQNDDqXXQfKoz7Pcul77upPiw6uhttFo5fxQJAG+Jlypu+yrYF4SQ4MuaxTyovvVWQNJTNDf+96l - 7YrNSp8C/PEjAyIe1cP504Be2T32lO9JXS4/TIDP3z1WP+8CTcYx96RfsJ883pP4foEh5YDVphBb - xffjDDu/d+HA9AcyYfDTVZx1H0bz/iDSRI7OFLEwbLeU180f/NJ1zY+CNOcj503dTUrXsPE12EV7 - ngjXI+0HhCgD1n62PEFpVUQO4fOFYlPjsMI8z8E4fLIabMe5eesw+MFSxCcCk8R96N/z0y/TK9Lv - ebhQpXmlKTPSY4zuJwjoKTF/6vJzTpX08lqR3h+7GM1W5TRwGWlN5dDwtnqbcwPp19oT9NTvfd/h - x1YV/hLx3/4tXtq94J7JMykfYdX37/spB9KlGtZfh2Vdsnfqbb1ibXw7prkz/WqRAAjyi8rf3RU1 - p+NKULL4Pfb29xdal1LbwXivGvoyn3wwVS+/ELf1pRteqlPlMaFEWOVNleFKnTkSgwb0eHrj8y9Z - +1mb1Qmua3PD9wiskhFZyYM0E070GmUxGoT7RGCwuY6a3hmhZXX1BX7ka9PX0rbrco4XUTLmPvH4 - 37VWR9GaYtF6yIu3fC5nNOy2Rvrm7nGnzwqhdMKS4kKG+BeJdj/kkLA8mOBdwju9pl8D8ZqMGTDT - QvWWHlXpnPt7D2DHjtRAa46m6rKP//wTWZleCf74Otj+W8X4dr45g1OEV/goSu6h96Psl4vHchAl - 3R47T53vp8Pp8QJH+LoYT9UV8bFrXJEeL2+Klb0eTKV1HKBvExn/4cnynVwN7fh+ovqanPtFomoC - t6p/EMFWnv20/4oyOkhMi9Unj4KZhBQAa7inevUYymE0glBKG/9CdctD6nI6Q/cPr60r1vqJuT4q - cA/emXxfvYSmiuviw6UW79SoQzadCow5WLTiSC1qWCvzIbILtJdPVPHRHIxJ7BKUyMKB3kj7Qf/w - vQQ3pH7TWOV81vYLqq/fHZF8L0zX9GNXEC45h+/b+R0mJi8g9dIfPoYf35keKGXg0yw8dhI/LJfi - 1wr/7P/hfMd11WSDA8GOQno8xEbAMGOdo+X3uHnUsbWeeUUWA36CbG/O+aGfjvt3BRG+rp4Y33oU - B89diJg2Nqme8mU5WPyuFs1awPQyn1tnZo0sQrr6Wjxg+KicijTfSZt/oA/DU4N2AjuHp/46UFtQ - GWelii9Kr6cde9JduztE2HsVPI1zh29DdEOc+V1l5M9tQf/wb34l+SQFJ21Pk180oH6LX6ASnww2 - j/w+WJflY0sbn6WXLFfU2frpRMrCKCIi/fQq+bOn4xEP1GPfLlpV8Waj1yO4YSO+nBzuekgzdFn8 - Er+39ZjV/mGL39QZsT1xdb+0Z8lGm30QsR/5lJ7PUoce3nKjp2zXOcPE9xXohyzG3sbX++390LV6 - 6FST/COazxq/IK49JhRflGhdRv/igbxfj/RI7vV25dDyRHk/H7Ftv379sn+0OsRrYnuzfN+j9TlQ - BtHfYaX6h97WEWuVDx/C37wh3c/qtFxHHfaLGxCIJcVpLCNhxINDdGrx10ZdOT9x0fXcEXw8DanT - 9f4wQA7DQpD5mLZRxqMJfXIoqNpyY7rmoZ3BbWQsarBWl67MlykQzDuZelLnOPNzlBVpNfk9tQxP - TbmhmDL0Z7+WXA1oBcslGyG8e5NpwjqQ83knQUFmD41ZqHINFWrQtXOJnXTeZmTeZwLa8b3Hmx4Q - MC5f6tJqsnuP70zL4f7xTd/M8aO5GA7p7EWX0q+z3/4/c6iVsBP87rqCZS810ZrVkisqZgtYEyW2 - p26eiXDkz1eP8+62Qxtc5Wjjg/jkBIv6D+/u4zPFqm6enOm0Eyq0F/yZPr+HQR057eIDhRfFf+tD - tvOKNr0Fm2N8TpnNX0q7RLM8iVv2wWrt80XCa6IQ0Y8eaJrd5R9+YCMNwg1vDfIPz7pz2JVUKVR/ - u3J6ou7HzIPp5zUMXA6nhQyxpKhTbt08KCOXeOtarOoaRFr4T1/wlzztm6fK6dK60xmscPDtF5VO - mqTaKtm6Cg7BGllvgrb18YQt/hwrZIUQDUa7CSA1+mc/wYxYrOlkKYe6ZReU5e+ACKe3vvLn54UD - 62tRbA5JVo5beQ70zORSc/L8gBmNNAQ/OdhY7zEOpn3D6iDe7ou3qtfCmdhfHkOSM0ccbfbLgqQO - 4E/CjC9/+seadjtknH436m36AUsgkqX8Bin9i09np91dQT2bMn5otFdHkytE1F5POWEnu+0Jo8sd - 2vCM7Ld4dJajJ4PO2O+JZB1rNGerZ0KoZzPZ778BWi5cL0BEYSDrrIrrekj5DEjbBdg+VGnPysjk - UDBbGvUC47ySE9sR2J6PoC1+mk9EJnAqyw5jOfe283X14BI/Dvh04GjaQbZvkHPRNQ+Sl9U3DRwL - SC71gs1tdO98vviitPkDvOlv6bjxETFdu6e3F32hJ7v3z5UOJcbkUENf/uk7qF4DnjpsWquzeRgB - Lrr7ojpDW3UJvC1p6Dg3egxkM1jb291Gd3ctKJYE2WGnMMyg1t9HjO/DOeU+t8iGzzPu8fUNS7Ce - blGHWJtZ8OuKjiV/fj4YSEZKyN6xq220vOpDXB0Gqkv62o9P8ybDpvf9i7+W/byA9GcPviHt0o2v - VeKnUXSStRwbTFfzlwPzWkZv04eCMRLTBp5ccqR4098mv+t2cH2svfcbdoM6hc5bRwLv2Pi04ev6 - 45P6j+/iVBm7cv6LF6Ph1OItnnLI+0pqeK3ChM1EPpbzSU8aCe7Rl4zG0KdUvB0ikB9KR7g+Rf2i - nJIX1HaoUUv4qT2PhfQKomrf8TFww5J23bhDkVgb1JLsJF1AG7eSqWqhymFp+qkzag5dwNOovpyu - wXTISYyMb/6kp7qjW6Pgwoe9bnvYtvJondhfE4MphAcyGfOizky260SnDN5Ueei0H73dXEnf/J1i - Cz+OPcP+mgTUV9XR17mu0zF/+qHUs4VEtbLm11kS5Qb6BBXYkit35eTnngFJjTusRYKyclPKZRB8 - JwErn9OxZ/74deFNTxpcrDoY/ceqgXvY7ajRs7Bu8YO+3bK+/Ok5warvwYc0E09UTuZTwF3hVUC5 - qhXVs0Qsu5cYdui6Xy+kZee8n+ORKlBn5Rsbb8NY/+nJ5qUqaGK/jJ5buL0AfPdwyS9rcD/ux0xG - eeNwJD/YSzopLXuVEnBdbz8XZb86ShxD/WHPVH9U936VjSPzp1eS9Dd56kSLcPnTb7Er9HYwcbHr - ioh/PGnmL+VKPw9JRynz8DzuU1r9xHZlhqBZMWHS9FBSho0HGAP63fRXpWc57XKF40mjpEsYTZ2T - WBv+/Cu2JbdU55U+RTjzz9Eb7lsXJK/Gxd9nrKzmvI4h3ilo48P4ef3k6TRSK0HIucfUlZRwZY1q - G1wjm+ZmP2bfDA+xhuUtuBgXI+kX7RkzYm5XmAbVZ3Eoc+462NaDPorv0fmzd/S7awpV2mxQWUUS - YjQZDMLH34iD4fxVOag/Wobf8iCmK0p7gItwP9Kjzdrq2oq2DcEFA/6LpyfdIBEc/QxR2ZgXZ9UV - PoGzTyOPOWTEmV/PnoFQTgJqNRdD/cM3BLERUc2KrWAd78hDijN5+MKortoOB/ISo+818Vh0j9DG - v3Vkf5eJfOZzq67oRRXITqxA5qqXg59rOjJ60ftKzVII+lXfMz786fNW1b7LYeFjDfgqJPhN8T1o - Nr0A+TTTcZLntjNEy9z949O31/tS0ooIMVDeUQhi09pZit9HgFGqtsGzvFeyGx6AfG5ehPwas+eU - /Jeg/LZLqeo882Dd+AD8xetxz5/66e993z6tvdD13PTzHE0FCvQNsGneLLS8vmcGdiA9sfZWj+p0 - hKyATQ/HenOWA3a+XBK0+b+NL6s9e9X8BaKH6FHrL7/wh1/SIfZxglcFbfHHDlhtCTc9Le97t7wD - TPyiYiUT1YAZHksN99SX/76vnAvhsgibfeDXhk9r130B9rrpbXhEnHq+TRG0dnWnGkJ1MJ70pPuL - jygezk1KT9e0AmfIMH7uEQmW42jmIETvizd8zDwdbs+Ckfb3StjilUs6IcfV4ddenjSKiiaYEr8b - QK8OGXaXY9Av3MfWxb/ned+FRzk3clMAuRl3sp+qZZ2hmjmYS878pzcSX5fNP70MW/n1pv7TdzY8 - p1YwuZt+41YgccHOay6sGjA/L+cAe5ZLjWctB8xcWD6ixlnc+Oo5HfbnxobHcANPXAW2X5F61f70 - JK86NGKw/p2nYD6w9HSRzJX2N6cBbeoiaokhn66ZV0ag1TKiRyqcS2rtmwWO03YF93Dq+8kfa0WK - nMdEzSP/Dpapv3ZA7cj15t9IUxqQyIU/vvGnXy+bfYH4Kgrs7sdDumrVwgG5ne70yBVVQP/41MZv - sSNcLIcxqSn+6SdbPicOJq/bvRAIygvLtBP6LnsHLkivif0PXztuJ6LH6ffFrrvzVf69W2t4iEyC - H7HBrZNUKplkHoyOSNdx6Nfn8OPAPJw6moQfwSFBu/dRet1V1P3tVGcoXHcSleFleGspd+lau7BD - 97pxcTIqyzq+Ha1G8l72sbzlU7hNL4R9fGuJeLLcgMafSIeMDh9PeH8sdeqHCyeR19X4D6++Taeh - bxIDNSv8Srf80oC+qTVS9/vuEPUbXkM8O8fksFgHdfmxu+Hwe9o5NU/vGs0efcaHB808rJaynTIe - bnP4FZnnwTXog9mjt0Qq8MfDyZa/4lLbTcRNb/GCg+KiycWSfMiNt4T/9N85ZwtPsvartfGFTz9J - u3cMf/rk+CyOJVfelAYY9nOiz+volouj/0y0jziDzFbuocXy/UHa8htU0R5myYeNr0sNDlTq+kuJ - 5loSBBjpaaJKXbfq+rvSCmBorvil6e7KHUezACnkQ6zKe86Z9ufc/Ps9j62ce7mU22CmUt+/yWzs - f+osKbsEIiedsLq7m+o/vjo+Wx0bVuarPEavEGweJ/RfvBMRe4A6XQjZbm/3U314ANiUXPDJzT7p - pBwur3/5vuPmvyebQTm4BpPieDtvK5nOGgwj3ZEdksPgn34j3Ib8T79J//RGlAw7Cf/5s2EujlfY - 9Fb8hlJbNzyJkdRZR3yK8n2/vuk7/uNX9GyqkcpnXh/96Vn0Eil8OblMI0ObHY/0ojlBueyMWwir - oETYtc1RXWtrFg+bHkRdoe/S5TbUjPRnj9HtmKM5f8YRzKqNvUa2nU3/+IjSpn8SIYoTtbjTKJZa - u75j01ae5brZG3wtquJtv9Z+ww8kOMaJ/uWDlvqUAKzF0G7xZ6v2gvqtYDUNz5sZ1XW4lyUI4rVK - dew46bufxGcZAht5O0/c9IkBmUdF0h8fnz5NlXPm8zAycOz1G+Evq1iuB7nLwfCmE71f1qTf9t+W - PIF/Uzl+HVLyh0/97cti2TQzNB/VXQVb/E7+9Jqpo6EI8ztwqOX9nuoi1Aw5/H+uFPD/+0pBge4H - ql8VJpg/WtyJP4/tSKg/rWBFJ+KBXj5Neqb3UZ0/7vcqeXzAegif2HJaPpiDpGMU6p2UV7pcznYD - /KjNVNunesCjSTdRfHQdnPS3e8n91DZDcqgE1H0fLul69GRNKtd8wB62nHTV9lkGx1jE3lSbpTOX - sZDDePxG+M2B4Mz5+RzBw8kMGp1LxWEKhpGlybseqSsd8TZlzeTg6MU+fkr6DpG1NRfwH9yX3B35 - Eqz5K1Ak7jxw2H2Vc9Acvx8PXmwnkX1d1uXyXD47SeSimhQjJekSs4oPXMGx9PU+2gF5mrYCbs6s - WJeDAo2l6m+zk9ucIMdg0bRwxgSxcLnilH0HPVeePkRaNPZEo/aelyNDNQ+uAvPE7u6GyyUK3jJ0 - BX1j6x63Pf2rUvpehR+9DWmJFoHeTOnUnh36eH0Qmr/sKKN7fLjjMyn25cQogS5NL1OmiRRVzkCS - NEH3Y+0Rwilpv5W02VIYooLMypNx5vB9iWAMFwcbcnxZuYq2Fcj9LcNqMvdoPMtejEIeIuzcxlvK - twW1QYNFxWc+GMplbeVJug0Q4Niuzogt46mQbtrnTeLs8g6GZgmIxCvVSt+HOna4ZS8zEv/0Fk/4 - fN8O/16RIgWrnhDGMtp02Ucw/e3Xn71sVbWBC6esOGLjUfklNx4tGybPP+L396z3XHx9CdCi5k59 - yQqD+XUSGHD1iKFy0d8QU73QDpi1Qli+zlFPEsY24XQRFRpADD1hA5OIj+l1ouehH9Xl63Ku1Hzy - jL6xJwbL62kBtKVRYPzj9ZQ5dOKytZdGVB0ZKSXCQzIh+nk+dbxKddgjiJGErohiVZveJQML9iFy - hwtNGE0rOV6SK0l5Cq63/2kPdboZuQ3D8LzjREt+KSdcmgKefXmkenuXe04NnATYphLo27iKaMFl - NwGIzBtbB+a3bg1SCGzrTW8y1YN17bcq0YN0wR7unutyb6IdPPJax0fOmNOlG49XqXgJM1HnS1eu - /ecnQ3uWSsKIzcOZX8k0SZox6Th1YGts+w0Xadz7Fr3ZRRywzdsVAXPzjE9nW3AoYWsGtvXwZsfb - UkAHpgPjzG6N5b94nd5O5oLYMz/qlIvicDeny8T2vC+3/ZzK9SdQF4YPG5O+J5+eOfVsDT5aCXUV - Tw4WOdwGKYijha8/w+s5VsobaPUmwX7Glf3kNTcb2o8cY285tMHs54cC2BEEag/mSZ2lXh0kWbND - 0s/yMWW1h85Jpfw9eCQwHIe1Dg9BlL7ek/57nseO7uDonBKsfyAol8GSONj8E8bP5VCuzJPkIGX9 - j2LtZKZcunY6+HVJMb7vjYA1DwcATOsGq7a2T9cxr0VwA3VHTQacnn15W5WQsejYwhKUq0R1GbRf - oVEtl0yVtsXPhE/YsOT7lbl1iOZckUQhnbCCLxQtGYo66VSyDr7dLydnkfdqjrrx9qKn8/7bsw// - TLZGdwY90vel5JigWaD/Fhdvyhk1YD9EqKD+dQVOL16p1jDCDjgpY3BYXH5ourzyEGbMG/QEt9Jh - xO46SGNiOvQC44Smz5vRJe3wPGNzO+/Lj+M0oM4T42t6psHsfQ6dSKzFxHiIYsQVXpSgXeImWO1a - Gw26tzXmHvYpxaNVO0tDjrHUO8qV2tddnS7ecH9Jdy+NPSlbiTMXj7gG0YGGRqTPA66/t9tM5Uin - TlQoaDLOuSjWi1/Qy7ReSsYoTUFIP7NFQ/TU+0m4iQyc5k7GuqeFJWuIiQKTfHM96YCGYNKjZwWn - w8n24H2Y03kIJ0U6TxH1Zs64BOywnxQorG7B2hg/EOPZTQ5TfrJp1BzlfgiejQffc/PDwWo+1UWs - 5ViCa9pjE1WOuvK7rVGwzL8ofgRGyjlfe4eeaa9gmSZKOR3kKyeJUdXQ+6DTfumV4xWINZk0/mhD - OWooMWGQFd9bc7Uvl1a1YkBjOlLbGnQ0qYM0AG/sVq95Se+gNbZbpc3rXlNr34rO8ngrnvTUU9UT - aXDfGpVKMST2TiUSurgBR/pWA8FqRXo05hXNpqI3qA3OJT3Xp7Hf9rMBbbE17LW/Fq3zkGj/8FwP - nSPiBMgLCfVRiU/To+zXfE0AdrhK8FsU7+sCYu5LS/VTsXMMVcSdrv3WGK6OsEy+N3W+NrUGh8Ht - 8PWzknUNBdRI5K0YRHK+3sqqmifAI690GjbaNiiDDDb0uX2h+gfWfnLzvJLaqHjgZ5meSyZYTRc+ - D4HBj1FogmniDQF+vPmigTvsnY2fMBBltY+TZap6LrE6F9zzuqPv99bw/6sImfRmfRFfHzwN2pzG - DfrzJ3/nhe8eSwaC1YsefwUf8Ut0Vf7wiBpaNPczo1VXINXVoNZLbtNuNwAH+3TNqZMH4br+SnqF - dtl/sBH6E1pSyzb/8MoTyaIh/s8f/1a2wQmW9Z61j3ouNZbxo6rND+XMPTRTGmsaUryup7XP3siD - n8d32PlNR8QK46CALvx0jE9pk87dS5ukY1lg+u6VeF3b4mdL8rpcqPzOy2BBSA6l7TwRYbJ2wXy1 - 50xaCbf38uzIqSOdtZeYuq2NM5OT1ekcPF248a8rIdm96+fN3lAz2Cm2er8p6aCKCTACIHy8m3m6 - xNJLBHPEsidY3hmxpuJ14Fwinhz8qVPpHj18mPe/kyf5POm/71M8gWQ8GmorlwdaXOVdwe1QZlie - SFH+zCb0JUW42lh1HbfnpoWt4OQ2Cna8qlQn/23GMN1+DkEgyv1iq2+Cdkwde91gnhx6RqCgazC8 - 8dYITuX2h9yGcb6H1JtLK5gyFxJpex8v0pabwzbR5EPpFcRbmpSUU56HpuQZH55eHBr0C+k/mrTx - J7Lenq4zWXw+SRcyfLATCMVKJvPZiU9nVrEpiE7Q4s+lPgguQz3Wbb/9hpcNdKwQ4vshIusKML+k - KZ5kHAfHN5pui6xLYlQ33rz5301oiKAu4pKIflj3a5mJHJjXUaHX7fkWtmkGCKv5Q807M6rDYTVi - cD4eRzGV43JJrM5DpL5fyI4hKZofy0OG29m94YtbHFXmFLEdJLdapbZIqqBr4k8i6TFrUms8pc5y - KYoOpP1WBbNc+3LuZN+W9mR3w0bm+um6Q3OI+tMSeMz5ZKnTxTJDcM/zjqZb4z3Wuns1WtvX3tu3 - jp6SW/vW4HAhW+PhTeUS2ssgDV/To4oTTM6Kv4EoBmqUEaE+vNC0l5YMrq/o5aXaO0oJO0kRLCHV - 8BktO0Qu8j2Er2hQcruhr7N+D78IDV/bw3LklWjuet+G29t5YefmKoirtiqiC7p0m70d1oG1cYfm - 5Lk1qn2O64JiSYZS/h3oeeX2KUF+k0A35aE3x1meLrMhVUDXTsFmK7vqwNyRBpda7an36e2A9VvP - hJ+75PRk9qeV29bzjz/RI7HmfviwmSbW+E4IZa5COi0jMsFyYUf9WOXSOa2+NfygeFHcOnrAL/3m - 3w3lSV7vAlaqt1mCOn+KaNrFn35tqFj8+37XKGR1i18AdiGTkMNLtlJmn2INNv6HH1lnBdMFwt1/ - /CrAuJ8uryaE+uxX2Hy0WzxxXzX03jrbpP6DLZf6w9kwXt43slOSXbmqt3DrCrH42H6dhHRZs2eG - 8u7KY1k58P1yxrYA59NuxielEnrq/DITzr/54C3DwwsWsrIEkrN6pu7XmZ3lk7bLH355vBZd+m7q - 8p3k9DuOBqspOeTxVrZ4ID/Sl0pewXTP/g8AAP//pF3JtrI8s74gBtJJkiGdiIAJAiLOABEBFekC - 5OrPYr/f8J+doWtvpUlST1NJlaojQ5edCayxFjKzy0t4O2kJ+cN/wfgoAQh97UOd+Stl1G8ADzVF - SOhjqnb9oI2I/5t/5PCQmu3UFMXwHiwXer9cYL18HZNDm14gOofGcC5eeQC/3Lel+kMgxvw9ghls - zzOxOUfunJ75EhZ+uSMJrsZ6m0+tEt/iy6YPdSC539yBr6fPY7Q4z+w3rEMHh2W8UTsuRndV7g8T - pMqgYepXSkhHI4ihOSFMCR6PQGQ/e1agWlRU45dLuL3vAl6yeqC6cfPrWSc/B2bLzybmOux79jOV - CgYn80nsSeCyxfisgeJ9MNvW2ydcd7h1wBa/6Dl7TsZSHGbxj89QK2WvcD0cbhy4eTGm2mNW3eU1 - zR9IbhojqiTx/Q8MLg+Ti+VgUG2n6LJLPMNtvWK+4JV+dXxDhZEO79Roy0e/POVDDD+3taaOq3/Y - p0lfHSIHs6PP7mVlq6ffPv/i/6GL4n4NpKpRvHlYib6MkzFaimKhv/WH4NsL+aBQffjyjjsM0rLq - 54YxBYS+8SH6fMOGsB8NDk3915+k2SSZ+Hd/5/dAyVNa3vV4ru4TvN6miDjOeZ+tVnqT4eNiGMSc - haMx3Jqo/dMn1CiNvmeJFxbQto86PX0eWTa3ORiU6l4tZIsPIePVOwfLRpaoczSP7rqHdg6sgtjU - bMCXjdXdb0AcGRmeEuWRrXyG0n3yYOF2v5O7LJmZICNYT3iVw7Fef26hQ/j9dXiopcUYN36qSGu0 - TDLtejBu/OA/vRINfDZ9pNgGWzwjdlCes/lPf36Z1BJ9W2+txz0w1OQVU1XT38ZaWacVdL0fbX5C - BmZpO+XLNcOdXDp3AeuTFOWf3qLHD0/YEhcXDA1zF5FzWE/1z6uWGb52+oqlfbxZpNNzgrjSRHI6 - XB/uKsOyBGGbpzQyVGis/e0VwPqnjpPYjWU9+081Qdll79CzWOyMWT6REmqTg4lxi4qanQIYQOjH - r2nnV2lG99nkg2qaZ3Lf2cda0s+lijZ+Rx5g5dg6xZr1L56bSrt3lxgeeJTqGZ7mSGmMNYXxCrnB - rYn6LI1wPnnlDDa+Su2zN/aUOh8R7ou7QNXOqsD41eYImYF/oKp6vvX/9MIf/+P48y9jnGmpsOne - jHqn21pPPKcOSFROHCHScugFrus7+NBck2rZN6j/ve/meuXJ0VWX8G8+g1KxRWLzW8qf03MF7KLi - Rk73MzTaXbDmsIvVK7EsoGfLI/N5xEViSv74Stst2Qeo5fggmGNtPxMoqFCR7zO1XpnmzsOBlSgt - TZ3ip9Zl9HrOGuhfwpn+8ak58iMewSMYMK331n9+V3bA6haPL8Zs3q4TvEzTi1rCGmSifb/NUDEy - RuxQ24F10/NgORCbHMzxY7A6X0VoVJ1NQjfZGWyJVxPuovxGzrE7hUv0fcM/PJ32tz10B+aSGYwW - ionOtDOQCj40kfy7y5Q8gcXY4Qdz6GmmQE7JcKqZpsIBHlfJIId6iBlDl30Oj+3NpPbVGUM6iBMH - 007U8bhdj73WVYHOzVLI33iuioEseLdPl3/+xirDtoKyhMcp0QIczvCndDBQ644Y69epV3O+wT+/ - YDsl6mbN5aTGMC0tfeO3aiYSuRogve4wNaKj54pHaDjw/ag+5LD6sbtklswBOXL3WBl+Ut2cEbLh - 63LdUexxCCxPKg9waXbWxLVrHnZYu+VQ340RRuUyspUjtgczAtUtxQ+M6ePFNvR8yFMrkDQmzJaZ - Q4ncEdWV3divz6MmowLoiBxT2c/47X7R5l9teLFk3RZP//QNtWC6blUkWgyPyeNA8vR9qUWoQ/jP - j0wDzgolXr1AmCqThgX/+85WKVAb9KeX1D7XwZJbvgz//KE4GqLwz29CUzZeyCXJ1XA+7VDyL96r - h9ct3PiyhbyPx+jloLyyRTscVeDGg0St9Ve6c7tmE/xGx44Y3OvEptCrPrDKvoDaBsSuELPFQ5t/ - MM2VY4QbnvmA66z7tPFNV1Q744O28Zm+O24Kh5PUrmCL71T7nFd31SKjRIfi6+JV1/x+Yly7wt0M - nhjqNGBreqo8WJ/siQb9YQpH/j7gf/pbMdNjOOi6wIOTx3HTzy26cEnsi6P4njZT/bon/ey5bQc3 - v5WS8+3LfmXqT9DzOZ4Q22iNtcq0CXJ7mExw87eEY6PosBOUaFqOvpY1IbPxP36KOWb3mx+3wvgW - XWhifbDB/xbWwclMbeKe/TpcwOCK8Pu7/ogm08Wd3uavgXNYadS8NFlIExGk0PyWJr2ETtnP/kVQ - ISHTbyouS28IbmzlcP/69NQom8JY//SQfj1vXYEHESxn1UqgvIjjxEb+EU5tyemQCqNHnHf5zuho - pDEkivmdlMP0dZctnkHzoR/IGVy8jMcBsuGOeDeKjYkLlzlrCmCMwZG6aVnVy7m6DGDDfxIN0jeb - LuozBo7I7TFQgpIxmbt3AAR7Su0THtlMHLuAoByaf/4cpc7Eg02/0E2/bOtthjDPXYvaUHa3LVN7 - CN6NNBNHrmO2Rp5Tgh3vXYkqnHkwGMrJAq5c7/7up1/yTJahhXYW9aaH3y/GJfXh5gf96VEmiccp - //P3iepEZs/zJZkAibjfJMaCVq9JUCjK33gVxrkHm5+kQppd8QRuYlWz10OBYONP1BSie7ZYCR7+ - +C7R7msZMnpbMUpEz974qFmLxTtuYCftigkW9SWbY7KVjL9XC+YS5RHOYBd04Ju3TxLYvzmbX0Ju - we9LeVIjaot+FVu7hf1RemyFzg8Gfz22Drgl4EbVy0NkY9aMH/jr14SQ+Lc1wvypM8xgeMRCXjds - y69EymWrimlpv4oNm1+NvpJT0AM71P0C4p6HygW323gP4RzapY+Gl5Rg4SjL4Vi9Ru/Pb5zk34vr - /+Vj9kUm0I1vhev6K3noWrw8zYlcA1Z+aAdE2eKJyav3evUUXYHDrvOoluRluP75lUOXnicJcxeX - TWOKwQXzFclUtTEWu7lDGD5gRo1+5wBh87OBrHsz8SxPNcTs5DhQYymmRLkfQnHQXh60Hzdt2np/ - ZMPlEnH7zQ8helSTfj7sVYiuz1NBNL9UmfCSDhjOwvU08e5yMuaQqR7k4n1DMTn12WBXpQi7QCox - ct8To+iy5CC7uSei6Y/IYNbWePd9OK7T3rGdcPbabQu/rrmUPNZ7P19OagQjRSs3/jZmS5kmE4Tf - viPeV5gB/dNbNWf3G9+f67q7rwUMHfYh7sPWs3/5pTF1XGpt/Iqt/XaqfkzexOKLoF+WeUiA8Uht - aoC94677T5nDFqopucvFl62Hw5MDS3eziLoLtJrfM5LA5zsFuPcyATD5d5kgPO4HGpW20s9DlpWw - PaoPqgv9yAZnd42gk2+NLEwNZcvnOXDA1FOLkKTYg0FXXg7sxluB+RK17izGCoR6rbqYS+4OmHsr - +0C/yd+TzMO+//zxxWe6Amo1Rsn+/P0//4Aej/qlp8WJ2fteeqZ4O/hcM2MHy315cPb47thduEqB - /fnL30wC+4juNF9VCJ9qgAi+LL27Fg8Nolm4nab1xfA/fY78y2Umyeu9M1b7flvhZ//tMfesIPi+ - 9zSGpeKIW6O3qztXz1yHyJkK4nK+2vNjyvJ//r9mZSGo9lDNIffM7/RPb8woVBrwx6dVudPdRfsG - ETIiIZzW7xHXPHHUAjFu4CYBl7I7PfOfDJURLPgKr4axQl+NEN2rOkkOPjak6zn8oM2PI0dZnQDL - BOBDTLmeEip8jOV5HlPY2ecSi+O1DAejeVl/+EccZTLDOVpbG2z+InGurRVKZ8Cr6C+fmnFLaCxZ - 7kMUcGZO/+Llet53PJx4xyJmerUzYX/roaLe05BY5no1hqZgEGIB9//4Er2LYYT28p6fwOMXgUW5 - GTLkdlFCyeX67WnTfBMAO67c8lWI/V5b1eu3obbkXgtZPSnTQwV/8fGYe3O23pwuggn6BXR7/4bw - U2UMdyf+Rn23M2sJHrAN/vwB21VGtrjnvQj8/dQQnRrY+OfPxpJF6IHbVaA7XmoPHdurSW6Pag5H - X7xXkGum+zRiMrEZl2qFbkvsbX56aqzf6ZWjP/8Sfp4z28ZfhZ1bxiQ7nmKDGR1swOcujVs+wwqF - iF8imJz3ETG84emu7yr2lLJRJOK8qkMvaXE0KJ1NSmK7yhmw7q7kcPPnyBa/63nDe/Qh14nGWcTA - xCyUQ9LwLT0Y94/BXJib8FKyYeJjOTO69FRh1Oyk9V9+cmDucYW9/nhQ/cUwEKaj2cBemf3/8vPz - 4/qBH/M7UdWDTbhKh2vw/2p8IP/vLQUcrWeqG37H5gtRIYrb6ELcnRgaa1CEHGQh308vJVSZwJdG - hR7Rtuv7Irts7R9Wiva5eKT425Vg0rStdbbmjMTjiR7yQnIv4dW918S6nHJDmK5GAq9SntGjsrdd - 8WhnAzgf7IAYU966SxM8VXBDOp3QGtZgkug5ADidRZJVA+3n8LcV9lYaTL3h+QULOtAIVuHuSJ0Q - juE86mqArFmbiPXMXxmrjIOOBLE4E+PpJbXUcckHWXJ0puk+wj19tK8Y8e/uS056m4fN23nryLOw - jIXrvQZCNage5N0HoM/3pNf99n34wnFFzDfiGFO1K4boqHc4BKehX/OXHcHHTa+IDj+NK8ULtiBs - NZWG15flsgDLE/w+0RsvzxqGv/PnmwPxcboRa0iO9aLugQILb4xpXMprz3r9pKKbgx/0wXZKNpvR - LQLRYaD0oIQaE/XDIUavp9/SfPCtTIRTHcBVs35Tx83Pnv/oLEB38ztT4+tG/eiZmoUM5bvfxqcK - 5yDYR/BLjCdxtfXSi7/ru4N1xCNiPp4ArMpXr6C8/nKqfa422DrXllCdko6cleUDGD6WHNr+nxr0 - J9WsAhmGwvki0TwJcMaHRZgjr/Yt8rgnGuBJ9/xAnd8fyMlKRLBIdSVD+Smc6N/fZ0IuEN35V0mM - 6+tjCJoWTbDNYU3y4+fcS9qyb4HvlRXNfqg21oMf5/B5/npYvvsgW6fzRYEk64aJn/0mbCwh8WH7 - FA70biUxmLnulcDudhWp6ptnxsLgZ6LLGNs0pL9bTcPCxcALIpUkArgBER/bAZ6M3wdzR7RmX3j4 - 8vB7PhqTbDKYzbXUWeh5uQvEnbymlirjrEIr83c0nPLWmPV918JHwnHk6PisnjU0qIDQR0TSu313 - +fRR5hClUkDdQ+UZq0+0HEm5udDA8B02f62+Awr9nOh5MrdecwdZgdLJIzTZrr8g5eBAKO+sbd1+ - AXVN7QNCTb2Qx9/4CP3D+XveSVmuQc2Gwz4BPR800yS+nsbUn9YSTejtk8s2H9lrsCeEUiGgj8e3 - DvnaMANIy3tNtMuvzUawDikA14CbdkpquOJ88ivkXXFFvbp+9cuDzziQm35JifOU3AXfXKikWjOR - p5LWxtqdmYzQSPmpZvfAFZLRw1Axnwk1s6tuLKFw44D7udjk+vpqmbD7lD40T9+amCNUGN1nZQf1 - Wt9PsNVMJi5JrSNc/CZivwsZ0KfEePTpPQkvJ/edjdv8QWpeFVST5isQ4hezwMNWZWqkhe+O38DS - 0df2DyR93JR6WVocwK7OOZIbN89gY45aeIXhnZKgCF2+v18rIC80JiduOTB+iVYbSqlzJQcTmkB0 - VJ+Dd74uqSU0zJ1pzisAmJFMz1hU2FrjSYHa4SAQNYzf7hIEywcaoUKpRiwU0vStcSjhxJ54y9nP - mClcdASCJCeJJTdbr0Y2Q+gYA7XwrsokpWMOqn3uQP/im6AJa4V8r6ow4jE01iDuPFipzpM8T8Gx - l86G/IG+01gkbVrszqeMWtCEmUAJJpdeAlNfwlI4InqGw85l55tZoNpQJHIKD1k2GyhTlef57ZH7 - +ddl89DsOliVFiGekC9gZo3Xwe8du9Td2U6/dmcgw14k6gR+yHAFEjoN3I/rmWLy+Gas4N0CWrMx - bb0o5X6uDS+A2/yi9lW7M/5+ly0I305BXLH79stwjVLoqG1DT/QVh3z3iGUgyv6JBi4iGQ23xja/ - a63gWD3HBu/aOkamphjEaRO7Xku8k//e9ySSsQPrPitTNHmbUIHXNBQEGuuw7eGZ5Mo9A/xdfcqy - wpKVZlgl7jpd3Rbw7hMQ79Ycalbv3Aaa7fdM7ME/ZKVSXzqYqZU97V9fPeMdWKoIKqAiZO3sejGE - X/Xf8+/rxfiLx1C7eIhGb1Sw9eNEFRw/uo95SzYMPn+fPKjCAtPjeRn6GbtbSixP9b/5ktEl6X1w - J/NCDzPhtnqwFw6N3E/E4lcxM8k97iHc7hfLSXAOxQPSS7QXMx7PKMdgNYTXCtuSebh8NlW/nLNz - rPSHq4PrR6m7f/iH8HlsqQu+Sz+HC42h7js3LDiJAHpPVT3UiJ8fMWVShpNfPSKoCcZ7Kvu1dHn/ - U2B4aPORxH4W1iufOwno+LtJsg9YjDVVjwlazEOP15e4q+cz6SBkwob7cKNkThZ/4IICdWLYD/p1 - vIQBqF+KS65rfQxFLzs30DhILtG9Xnap8rzoENpH/x9eCS+2QDS7VUTu3PIGQtHMBfw6+EWLgCsz - EWqSh+LOH0mRy1G/qF2Swpgee6oOmsb4M6kgOojlhZx3T5LNbtjEcJd9WizeHoeMzwYFwqvZnab1 - F0f175LWEcDu4lGbn+yQ1exVoNfWevc8mXrGi8pOhqxZF2K7x0O/YPcn7utVvJA0+QWuyNfQRrTM - amqFcAhXVhoz4kArU+d2VsFvKfMKjoBF/+L9GqZpA8xwJiR6Iw4MS17L6PsSVppkjdmvY/N1kNh7 - gKrNy2Oz1OcJhI42YFA8sMviBZvw7V1HTFO4UeRRDkAalDx5Fg9i/J5tyaNLbOymbuNLQ/ZKeDju - RZmo5lUK2WGvJSAS2ucWr7ddzFpewCh7MqJNhzqbCblzUDunEVXD+GDQYvf+KJWJHtR65lq2okp2 - QHe9p9RMjA6sb2uw4a+pG+Jk4BROJ1iWaMOHf+PPD82uhV4dWH/zw2D5jmsgTbuCeEkwZes1PX1g - JNca0Ydks8ybeQItVnb0pGUDY/SUrPDTRleaz9Mvm2gTO8jjPQ+veYr7f3gf6fyZnAt+ZUt3Zi0q - 13NG46gTXIqmoITF8ytPijFRwO4/I4IH9/6k5GB8DFYecQJGe6cTdShtMCviWILLDkfEfLK3y2je - tMrf53P/ksKl2kUWUKp8IBHyumxZIiWF1QoX4opu2a/cp6xQFHcC3omu1ouaJ1mQ6fKb5sodsMUv - hkFZKyjQ/FXc2d/6go+bWtHbMwPuaqsvDvLR9NosPh/wRSN78Nl/SnLY0ZXN4Ovo8K5RTPXS+bkL - OZYFeti6TI+3fOcO8UsRYf1eDOp+znY94zCM0ZDuJqLOfp39oqBt4MMyc5rhZ2xMwnOd0SXWdvTy - EzUgOc8jhil/V/GyRiabv9zCI0P+PWgkT8dMCPHs/cUHetY6mrE3p3y2cpIOJZfZ6Zc/vNj4HDla - 5d7ocDXF8DYZB2KF2ADLnDc2pOqTTcrvLbuzOl1KOGZSQ2zzwMByGSUM38eKEnKnVs/Tq+uA18sW - KHE4zv0qHbNhFLcCyaTEN5go7nwoouORnkdBBaIqKCsYjq6Fm9k3sykeHzkUpdiYUHV12VLt8m38 - ioGq2VUzVv1wjiD35f0JkvepFv3qGu0t/8jhWmpZP/3h8U/vk2mf1UW24a8JPNPPaSDfqp6dq+kD - jePypWdlsRjvmaoIXjucEKc5fY2xkM0YzjSCNDC4MPyS4o3htv5p+o7FelkbUwGbHqH6Np95S/B9 - VDqNQ5Lw3W615uIJ/sWjP71EF39fwt30cMg5OE4hc81TA1SYY3rFXylcFCV29t3nVlLzeHMM6ePk - K5TLxSdpm9i9WPAGBlmVRuTIpZoreKZmIn3V6y2+vfsxTk8RPO2GB8kfRM7WnvNjqMf7hRqbXlrC - +MXBoEYGNX1zYmwtTR2leHJptM8p6J8S4KEik5m6Ny/9j58NPyOYaIAUYzx/aA5/1dsmgUssIIiJ - OsP7+jbpoWvcTNhY2WZh7f/Wg0GPauWhHSp4QixfqOdr4RTw5w+Q3u7lH95qGPF8d8FMzExjKngX - w9S6DxMahZItu9VJYHYMK7wm7tldjejGg6iZ7uT0DBOwlsZjBu1CA/zqjSVbT9sWvG09U3xEQUZt - eU6RZwY5te7fp7uqwjqjeB/cMLfxcXbYn1Iw2kifWDEuPZPrNAVGQkdqAOlqLHzpVpD+WpvqvP0y - ZlnkKsU5rxo5Z6acLXM+ODBropkc6lACTDucG8Cuy5GeuOXNmIn0GZ5TEE+o4IO/50mBNbkvap8v - u5D6aS0q7dYYxEL1lmbDngzBh5hEbecpZGO7pRhZshLcSHO/8MllRvTxUqf5TYRs9WPmoRh4jB5A - uWRrUGQcPJ6CkFr8re6HKA0spL+sBz2avN4L/qfIlR4Y3DTqpzhbBL/V4U94dARPRm60G59EYI28 - ScllVk/DYe+A9zd/4l0v5+7qkT5XHplQkgtfcPUSBVuVMOnywW1bOkBSxKsPO61ZyVW/79nwx3ed - w6MiqZfxPbvDm/dP3xyA1mXMMvsGstNvh9m3Az29varPH/+lboqHer4QG/7p2y1+Boy34aIj0SMX - vDTaru+uv9GEe1fWaLYTmbGAp18CdbeNB/5KWRcVDgf23BASNVrFbDCFl4+89mjiBqKWrYzdOigm - 8Z2q7ynPFg6hEuaN5xN3VUZjoofSge/h8sBKtL/VbQrjXBHk9DeJ6vAwGDxQHi48ehFPdNJwnpqp - AzzfXnBnzS/Q8uxpK0e6e1CyEyOXCYkWIObDE0mvCdfPYn6S4QPRgbpa2NXz9Q23zbedSTT24sP5 - y+156BwzjqgZbxurfJN1+HEvR8yK8VL3GbQwTJ/thf75NRO351MoysGJ4PbrGv2bJTnMr/jzT5+w - pTkkaNMbBBvkxCZzKRPF5102oc/hk61rHqbgUp2OJDwvbs1rXWLDGSbOVi5zCVevkmJF+OY1PX+X - HMxrLybo9FxHanSAGEve7kXIpD6c1rYdjLkcEgjfQmlQgz+moBvvZ1V2WCFOe/kB67fhUw/wYjPS - 81T/slV+/mbIXgohbpc77lqCHgJTedypNb4lY+4ehQw/p7gn3g9HmWjLs4NMqZGoyv24cHi27Qd6 - riYSN8VeP97fabHXA4sRkmUPY+7vj0r5h2+H8NRPkvJNlP3lZ9GT/Mj7Ba1ZArd4NO1TQQDLpleB - 871O5FDxM6BhGvDQ+zjtJGzxbiEk9ZD8kEca/OKon69LEe3dY1hQtb18w/l83Hvwz08zzHdpLMrX - CWD3KivqJL/VaN/SxYJa6N6pHo4nIC5Jv6Ukt8YY1TD3bD/x1V4ropQ8gd33LV8aAdRn60jiph0N - VhlnHe6Os0qOyr411nI+8X/3j7taOWSroyYQvt7aSOw//yKTHxHE+7Wkp+Lth6PpjTyY54tB3E0f - LCmMB7i8dxJxX0/VEOaTH/z9HtURY/W4+QUwrJQH5pDpGMKTdyBEex6S551++rVmL4zOimCR6719 - h8zYBynCEm8S82apNR+NIwe390W842esNz3eoAvnY/rHj5huCxx8y+kb//G9Pz4G+tbNqSUaijvH - r5WHnhHH5BDcLuD3HO4bXmQD+dMf87XQc/S5pWTaPV2pXxUlTv+uR7VD1rEtfVHCP39CbS/HULLN - oIE/MgvEfXaoHpP7HKEhOXjkpFRmKHwlNYKxlR+IV16ccO6ubxv96amzYweZcEB6gC7CjtKjts79 - yr5CiTY+gxsSWwYfv1YRoA9MybMa/Fok7sVEkmv35GwOWijhYwv/8WPS3wV33a16i8RjEtKQS1Vj - 5r9IV05Lp0x8u/PZGo6fAkHetjf9srrz7V170KiUOzXF9MFmkV5XKGTXjBrxdK2Xa+FMsN8fK7z0 - lZwtlVTF8LBPGDnEHxYOUZpakKBKxnL4tntxOasy+uW8QZ82U+vlusSNcifrgrln3wBGmzhFqhHu - p+TuZ+FqLm0CMz1vqN1cftkKulVG23zDTNevxgTEqw6se1RP5UtlrBWSSwkSVUhoYfaZ+3g77wDu - XrcRF40012M0Th7c/AF6eEgftgwnxQfb+FDDfKsGXZpzCg7ceaGash7B7N2iAUTotsP19WUZTFkH - Bd79Scbzw7+HLBKOOXgLlUFOhw6HbOM3ykPkAqIf1cP2mYnQC2KVHrfGm/ODD6c/vMYwY0ejDYJ9 - DJUmszEvnHHGjqFoQuNLb5u+8cD0xlcFvlYL0L/3ufzjP9RW6U3M3oakPO8qtIsNz86BVVOfaNM/ - vmxo5tEVjl7Ow148q9S6Pd7ZnL9PGIxgich52rZgZ69EBNZADpP9ZJa7pvzoKf6UTMSoHoO7stKd - 4X6cz5O08SnRdZkFS5LZlCipYaw6ykrl2uYLCW1e6+di+HGgX1KdEDzJ9UQHosDNT6Wng/sN//gJ - 1Gtuh9fxHbtrJVUNvLbFQr38RcF0i20P0mTSJ87sgTFqWj7AiA0GSaJqBXSl3xIWv7Uh5o0/uWOn - Xyr4ehsjVTvvGf6L7+hgYWpYZeLO6cxHIFyUI8WyYNfSCZYzep8eLgYWzXrxBNsKKHPlU63RnvUf - foMtHtJQnx/93EqqBXdOV2Fkg4qNfD92f/7LxPHH0mXcp5xhHyQJyeH4Dte9+FHhk3vqWD5fniEz - lrL9w5tJzJ3OXfr7Y4Uy4h/TbB8ubHXCQVTk3bon2/31Ys8lMdzmEzVEpTd+nnky4a95NXg5pxYT - 7u+gANvzY+5Y9FlfB88S8FLJyFnShmy6plqjbNefpFv+dOdW7wJYLeqVFkJE6239dwid9t6011uY - DbbZ8VvpbpVk7+lVz4p+HJAE9RfeH7op/Pd8nmRN9Pjdc8b8F2+KdFZoeJ+PNf/RgQ/jLhjJeRRK - sNYggPvRdEwsnLZturvTrYDx3r/RaONDc4OnFO78+5d6oqOEw1++4g//M4uCem6dSP3LH0ztQL1M - gGK0/vnFGHR5Z8wV3iVKHcivaU4qny0nM7Ag6llCD6nAg4WQwFPmxgXE9FcpY2v0ktF41D+T8hbQ - xvdUDto1FekfPqzGKKtKYGoh7i/zqRe3/Nj+Nli/aTGhAfpLEWHYRMODZK+n6s5BWluI9p+GEtF9 - 1X/jC86esFJy3Q1ut/3efvNL8drcnX7Rl73z5yeR48lo3GHtuRT8+f0m8rpw84NVuDe+FVH353Mm - xbFaoE1/UHt1HyH76an+pw9IRISzu57dyoT2wGX0qL41Y6mp3ChW5/9IpoVOzVZKS/CqD5fptdNO - oWAIrxKVKMmJe71sW24MqYIHu0LUmHLbnXAKG2i7FqGOl/H1JN9mFRbwZ1G8bI09SiwpUIgajajb - +14/kvqB3PnXTO/NL2TxYplw0/d4keYro0qtpTBjUTqxmOB6/YtfKR5cau5zytaKyjzY8IJu+jQb - ih3iwZY/3OavFw7os1eVmJwA9m2WhuwoqPrf+6fe3hvC9SD4M3pp5wOec+MHlh/3MtH+0lu4CscT - k97WkEJFPs8kKx7YkNQT5pRp6B0sMB2Hq9olHXyW2ZM4G3+eKjqLaI/nv3zU2K/3mef/9D9R+WcD - WjmTFcgbc0bzZ1Qa8266zHAtzZBaUXd1R4fwHurv7vrn5zHpNm6Npf1cxfIPs3AVk5MKbcAd8J8/ - 3TXSZatKY3skwZJqCEu0NbqGP51cZay481u6mKipVo06uRzWU3cvdPh4MIjnobTZP/14U3fy5od9 - 6iWf+wYCrYjJhhdMvP7eJqLJoNPoReJsmZuHDO8P8YoV9Sy5y3K2W/i+fkJCVL7pmXtcNn92kDb9 - EmdD+/jK8O3dRqLfHmYocasuI+WaFdQcYcrYqMkq3PABSwV2+yUbmAeZqhvE7X/3esMrGVSCEJLb - 6hn9spzVFm1+wgTn6ZSJ4/2got/1pVAbeW7IOzURIRmalV5vByX855+MIhdv8wOH0jvA1f7bORdy - vicv9s+vn76iR3U/W2v6F8+v8HIn9x0nZNP9Z1hwrs5PchDNMpyXFuv/8HTzB/qPEPntX/5oQnFM - wFrOGg+feSMSM3x/+7EwphLIUL7Rx59/ovt0gIf7w8C78+vkLtfY5/78nGmnhX2/5vAM//mTW77L - /cdvxdQXKL4BJ2R/+ZziKCc0/HZZ//vzx/h7/cS/056yeT7fE5hGD58er7Pdj+izBGhb33/5zuxf - vv7Hajzt9BK4s3N7D7Azn9HE/azAXcTEXpXz29RpeFhpPwp+qf6/thTs//eWAhfggOJ79Q5XL78m - 6HnYzeR893u2nu/qCsvOhMThjmtNp3Qu4f38K6YPiVRDvKn1B41VeqDacRgNarMg2B8+ojztGj0I - JUp2Ddx/7Cu5PfQLk7joClFc/g7Ejs+vnne3Uw0QGhCjF/BcFqTIgg8EBiy4p1e9BGuSwuA970l2 - HhxX+l0NHly9Wp7GVP+6s5u/RHDqTZdeA7/PWFQlFRzSWMPQ/u56hrslhVbrG0Q1OSfkRY6tCIK2 - oK744XpW2l4Do70gEfIYa7DMrtoh4bXXqR5wQrZ4x8SB62mSqDdeDy4zt0JDCEdPkmrtp15GocwR - 71t3PIeW5YrcJ1QhTe8KcaWgykTt4ilQ1rXT1B9wns3Nq21B8bnn02MACluu4D5AjVQHcnyPq/Ea - hTYHV3re06CMYpcF31BGt7vN00ILtl3Jj9gHRUiz6ReBpp6BZaVozD8x9Rx0CXv9JCkwnLbewmSu - MtFKngWUU66hGvdy3fke+w46jt2BWD9sGasmEwwjv+SoibQDkM4T1uGY73hCyFABNvhqgS7H/XGq - Lx+VCRdcDTBwTjkhL5Zl6zXfTnUfhRJH6/7E5virxMDxc0zjR8U2rthEEBe5RdwbUIHQGOaKjslZ - mMD01V3+2QYzDEJTpvFkJWydi1JF6dP6EaeYLwbv3x4faJzEgriFTzKpFrsIlqP3o3e33yoMvu8O - 3PXRnjjoessE4l8KmDZKQj3wKNnUpZUJ3ZhMeO++azYSY20RF6c1tVus1+KOvw2of74majwSB0jh - Hcfwld8uxLvPY79otJyRvcsncrTf336utGPzN15UXfohZOH77aB5aXkSnLIqlFRHXeG4spqexImG - 05ovATx8eJmQdNh6GcdzA2m46CRKzjYQU2TpsHbOBk1dFAH2YR6/n0la0Ow8dMZ8KvwPvApGi0UZ - R2DG796W9wM7U+udJf3aLzKEL5nJxFXjUy1o9YlTvLK5kkNoF8bkGGWHFF64TExo9ZpdvDkFuuQ8 - iJGMXT3NwzDApbNrcsknNRSDMozRDisBDc34xiR+qwJhr0ghx2di9EtjeKsyW9qNEOfKgWkJqQXR - S31RP5S1kIW3toCuPtUU6xD09P7rLfg8oJlcQKqFgnCACbw9U0yM73h3xWy/T2H52ZHpb73PBksC - +PabN7lKpp2J8cfWwYB0nTxVda7XZJZNoByGHz0OPGBbPKoQYGhPzYsn9gv9BjIStWdM3BM7uOLb - mid4KD2V3gUYueKOfw7w9jGOk6AdH+HKfTId2HEdErtaPqxX3c9WmEr4kMQNu5B5Q2kjJatu1Pbc - RyZ27WeFBye9TLxgl+yLi6BBaij/iDcd1YyHYqDA5XDa0cdNiwB7PbMCWqv6I+dU/xrb/I3hgFSd - HIXgVM98hk2YZhykGO64cCzWL1QE0H+xfM2sTPowU0SFin28dazLpioJZJQLwo86XZW5QtqqK4p+ - xZ3qZSQaq5XcCljWQkXw8dWE6wW+P7A1kpEUQ3Z3Ra+FGPa5WpN0rM+hZOVGimyVvvGsocSd/Tnz - 4CNqGLXNIMn6uPytyGoDAyvVL3YXeNvp4DCaAYm+51u2Jre1QDiL7iTVUw0Ihn1tUNq/fHoJPmbG - rtf9BEI8RNPv9TwxVgWw/ff89lrPrG+dbIWjc2EkjSXPlW7gEPzFbxqxJa+F54mT949FS6kTZToT - 06oroW3BHVGdNgn5JfBWaF13JT2dSOCy9f2coND7J2I+oyAUSS2L6G9+2vO2JSv+rhFSsakQN/lo - Ga/IpxaEUWVQUt8ubP6MYgPtULVJEaF8K2wpWmj2goWQ3hfZpBoqRvRhn0jAjqtBD5cwguvqbY1/ - SqdfPlqhw8zMBzwPeAZL9VhsZF5VQuKT1PS96LcK1BXfoXmVnQH/+gw6CMlh/bs+YE2amGCk/o1Y - 7iuohQvuBqhwOKHe67f2zHxZM+wMrqQqIxWbLvVWeHvvuTQgktsLBuAmSIfhQS6L6/SCy51luLu+ - XIJxiw3RSm45ugFRIE6dLdnSd3IC6rpG0yCqh0w8hbkJj4o5YChgx+V3yV1RVll40nP0dnuRfX8x - WC7E3vhAUE8dNnxY3lJAdFPc1/Ppsl/B7dSUtIA7LmPtUlhwwnxPrvIU18Ku3wd7HbcjeYoOdldq - 79St9/BECi/IQ/bW0hyaV53Q0/3TMKourgXvex+Qw8jvsjU9NQrUv+hLUtWcjVk61Qpsmp1NjPeF - gBHZbgNvlA3UlPOHK1XWlUemZzJyvd8EV/icoQi12OFobIfYlXC3JCj+KM+J00XTmJbwa6HDqmj0 - 2kKvXysXmtAOdZs4bBdvXovrwKeev6k2OUm28NOYw70ffWk4Iz2UuGA2EU0zBcvLItRL0/4wfD1z - juB3RDJmvvAMTH0cJuE3fcGixbWNQrf5Ev0SfTP2eds2yiCXUf3IWbUwSVaETnbiEPxoczBn8TFA - 79neE00Ukl4MjtcJHsbnTGw37DJWxIGNjB0u6V237WyWYmdC1RFO2/xawHw5djY8mkNH7EfUh40m - NjLa8JpYeacyXmgSH5zPKiAP50Fq8TTuGvgt9I6Qc7y4rBxfOpw9fyEu8ct6LnqagqKSLySlxxr8 - e17nEZfkbMRvsChrn4It3v/jW+MpWSOEE2+gxrFo2OK9WAeNx+2HeWrBbMX4yEP5sJ3i2/jh+jBf - JcoeyZGaZnvJ2PUUyH/xgz7N3mdzOxx5+LtMLsFppPZSu8QWvMcfhWpKaxnL/ssi2K9knobxejC6 - h/mqkOrPkEZ+moVLsX45FErYJKYf1UByrxcfPYu9S8+NUxur03UQyou7UBcgvd7wQoXqo8eU8B+p - Xy66IcOyzk1iXIYkW/XzHCA9KvJpBvaXrasfFIrf5yXVdHKp1ypJFbDFa2KM0DdmqfpVIH4ggzzk - 7zkU/ZNXQPqov1PTLNhd/uYrUOX0jw9vWwxCXXGBF9D89oprvrmeRPC4PKyt0cnTnbOY+FBZxobq - tllk7MNMHjYvIcPpw0t76ae0AZgOj4aYuTWyVQl+HWx6r6KupqgufwGuDwJ4X6iWPk/ZitrTCpse - V9McRA7jFVnr0MfzNJLY0suYOc1QYdlZkHqkvfQD5toZQMOmNCI0ZfP9tI/hNj9wtvHh5eRlJbzX - zzM9HFbUz/v9nKAPoR7+7emrn2N11tH8/vYTZ0wi+McH2yG2ibnxpTm4TiLkfyJHDF/vMrY40IPi - 7JUYpbyezSV5OKBijUsSX3z0M37XDuIETsLcvTpkrAr4DuSy7dHgmnKMbt//h//etAuNOdxHJWyB - nNOilsJ+VcazoywMnIjjhBZYncJ0lKa1BDzvWGv8vR8wOiGbKo8WPYO2qsIxRzxxHpzA5qXoG7CN - PzFsoPY8d/7xoHme7vSYvUWXncOqguO9+NEzvXi9SF98u9/pukqwlLsGL1E1gj+9vmIA3G84573s - Q25vNjRT41O/7k+3HMad7k38/ZDVS3KkA4Tc6k67YVzrSb6K/h8+kMt9nAzq+wddIWUwEyzIUS0E - 76VBTqlW5KZAqV6hJGBg2juLuEYzGSu1JRVkqZ/S5FhCtjyaOkAs2U7RHttzP/u3RwNOxNDJMR6N - bNODDXrfzg/MfN3JaC/vS7gaz8fEX7y4X18tjkCdA3P6W++0RbwCdlKqUyP/0J7ibp/CJUUjza+S - XQ9/eFLOVPiL5wY79KKIujM9EM+lQz1rhjuD7UgQSbquB3P0cHy4XleVaPcRu1Lqv3MUrL1HzV5t - wEjVpIGn3nK3xgg7Y9FHRYfzc4EU1wc5XEk9i/DYVQnekVXJpmN9rABKDodpOcUgmwvZ8uB2P0QN - IgfwHo58eNVZSLxL8GSDRZUVvo/9iVjco++Xpn15MOxtMMnRzzXYhO8T3APOoGcgLGDjsxZMpqND - nTq7hBP7vmLoc7ueeofQyMRDvP/Aq+eklNyVOJz1DpvgfLdMqmc/oV7K8GTBKbhKRL1WpP7jB/uQ - N28kvAxy9jf+qIM5ocEzr42ZO794ePjBN0kl1WZ8+lIxXNj+hJf5TsMlexB+v+EX1c1Zd9egzCLQ - NMgmx2cB3K4lqwpaeaVYwnrtrleB5ehKgiM5pkwBi+sMM6zYx8VITMSMTdupLD3Kc+pWgNZrclMK - 2P68jIYHBWezyLEZ2u/hRCPWv43lu3QVzPOKYi6Nyj9+bKHAcXN62lOtZtk5EaGdz+M//Br//h9a - P4WE6S2phfwryQrpjCs5Hu0esALlOTzU1CXWpp+WSs5bMLAWkKd/q7O1NUIMlzHwCf7IB7A+f4IF - OYgvxPxkuUHZ6VzAJ4klate1bnRVswwwm59fQroC1FPl8haqXCsj6rf2Myr/ri2Aw7Ol//Cx/5o5 - 2PQDObRwqJkR6qZSG7sfsWE/gDnvZx/B3w1My9P51cs+iyr0/XDWVCXZ4m7xCQP1psd4b+EdW7LH - UYTn37PC6/Iw3cWb0gKMz8nAffNGjIm9uSXKw/u005qvMZ3v9gqEt0opprVlsP7JZLjS8k3wt9Pc - 5Xz4pegKLjqJw/TWr9vzoVfQDFt8+dXLerooyPiEB+IN9Va4OZsTZIEFExM0jjsPC6zA9pnq32tr - jMnDn6DO6/O0V5sLW8T9o1IU7/aaxvpZ9avUGDyMwrbH3HDValbaZoPcd9KQcDHujI6HYwW734zp - /XuSwFrtHhg+r/aHXD0tqhkD9gAf0y3BH80zQ+nNg49Sx773D8//3f+HXkqqqX3m9joADjzpzky0 - vUlrNrPRB9f3I6Ln/d2u58J8W+C6VA8sS/hizPy99NAf/hmXjwqEqHF4uPkRWH5EWyOFhZqw3akn - 6gpTz9h5wqriPKKSeDHNMvEqgAJUxffzz39Ycr6Y4KYXMGBPnq0P81fJIovOpNDFxtj4cwAV7isS - 8xxearb5a+iNNJd618OY0c9bdZRgVxfE4bub+08/H5zkQuxhrwOxhvYHbvEJo6U0asE82BClU4to - cn892JTMs4VWIY6os/lVvyN2fLD5B+Q8GLaxbH4JkKcnpWTjU8tR6wuQ7fmJXuIhA6vVcD6sz9FM - MuXuGfOzTdd/fC+XujAb+K13+/N0eJD0WXmhuFPFD/AkcsbC/XZ1lwvuJuiwepzAaLj9fIlUCMRv - aJKN/4HVxckA+1yv6WH6KP14PvwSePymPV72YsfYFUIVXtDlRCxBnY21iRsH9Ov/cXUuvasqWRSf - 309xc6bkRESlqu4MAXlLoeAr6XQAEUSQdwGV9HfvFP+THvTYBDRU7Vrrtxfb4ziMK2rYNHlvOYj6 - LR0uvlzmgpgOATz13RqfotMn7z5Z1YCNJrnMP7x8alqZiyKh3w/Vcp7prnyG/l6QsdTPetQUxvWD - 7t/kPKz84gs67bq2UPwOEqx090e7vl7QGTDeRQ4JP7a0qOIZLnocI7Xwe4iiBDYKTH/Oz2Z1vNzh - 5jVSbJJv0TJ9K0B6mgFWFh5TfVYeQPv4SO7GZq+sl/UlCZ8GL35iRtgxQKdXkivcD1tlbF1NgGTE - 9cAHq49Nquv8QTeOe//UL0HPsgbR0wjIzUu6dhbTMljqCTEOwkBHJ6Qq8NZHDZsn8exvLM4K2FQC - Ddu90ubM/7tgQy66i4zdzl70Bgjb3COGEF/AWGrwDDj/LLivD9/n9N6eBHTVrzZWtK5ua7ZfQPyI - ZKKCT6OMkSF/AJDEkMh407bN4t+y9bnHtjyfKf2EnobGjehifXpBu7rN7xCJLVgPK6QeIgHV3wpu - P8QadltU+lOx2mqgU1MfH2/UszcFflmQ80yT8ZMkGha/1u3ECzYSrWzp6pkaiJ1H2PjWj3xqm/GO - 3icSDO/vxVDo6lkZongPG6JpwhxNqjbwQFC/Cv7hMdXl7sHl/Dygx5XOX1+r4FJPA/56aGkUXd7Q - rxSX7O/mrZ0ZDwcvvhOx5XK6TXOcyiiUnRs2+bOmrM0VrEC8tZxBqc6yPV0GURShOX2xhlr2VqbU - lvCdnSp3N518urEKpwMiUFuMmV/uo3po4PocDNiWpU078rwyQMXkE+xYaPL7OUchrKNkJIZJKJ2m - x+EqPl7cnkjRVPp85hgpBGwQtORvMxaUtiCwdlR3s68ytPPCxzZxq5EjFm17OsXfUDwJzcnlvE2h - jMnWdaHe7AQXBPt7283y4wqj8fllEmxqafhUPfg96HiYuX3tj7v+UQKmLwnjp3l1l4glEp3s8L54 - 3ZXZ9AMN8jXPufMlTCgdqrUDC384u9QAaT4fH8YIUSZngwD1B6WMt8G+Mxp8ANYKTOLKcnam2Lyw - skIeqNVO8dBVD2zshUdM6ZRPPEzzzRs7l03VzohPS8jnxYcc85ecj4NpxxDtkyPZT3bTjh8jl8Gy - XsyqpPn4MKcA3dX5NKDKC9t1t11rS70aAPakXJi9MAbji0IisXo0J9H2DtKxX5MD4wdddixD8G4a - guXvxbDX8TEIFz/lTi69Ut72bAkS4akM3OiWOb32xueHNzB9E83cyqtgtA9WRHI2xK9qjEqgu0/s - 8uXl047CbUqg+u08Er9CkA/7Zz6A8a2lZO/c+nz6CL0IGW8gVjYpfsd4DszngWLTYlMxorqsIO0F - ZRglv1HyejBjuNvVKQnQjvHl4mwhdn8sZ9oU9Rv1WAGu30cLr1Poic4d0vvqMEz7p+DPU+2poAqV - ghiPDIH2YoYieG7OPLFvZtF2J/1toLJIAeP1m4hExzu/8PChOwtXf476sIQPXSpJwOrHLO5aCM4s - EqO4hZvPN579sYjPedi80I3/43dPDRtzF3Ysgls/G7joLZXpydHcQhXGna4Mi9/76Qex3788/5Zy - KT/D0+c2YHtvqGDq4zePrs+VMuwc77Nc/wy12BXd3axgZZaELFj8LFEbt26nU2SmsKyayqUeX7Sj - Ep4bcaeV+wFY7Y2SpT4duy8mJtNvfWL3DQhl9+aO/az7I/USCdZAUYnbRTubXgOLg/7hcsRmfR8o - +z4CvD0snuDDs7MJMvvtst6wU8SSLeS5xUHZzqUBxN2djvV+3C77FWvl0aeMx43wDKOJOOHboANs - r3ewfh0lfIGZqvCNsBHF6Bnq7qooKzpeXb5De6I9iPGtd3md3NUENfmbJ/uT3NN54enGSwyJY3xf - +QCTVbmbMXcaNgiZdH7MFwg727bxgV2fZtuHBtPAd9mLXVq03qiHCjwE2x1Gq9r6UxjVHISaFzP+ - lNK5h7UMVe5mEJ0jhcKez7icf+TYgRCMORJFqDoaxY5U5cpoiA0vHrfVnSSTtKfCuphLKFjC050O - nkJpNV1VeFsXET7yQxXNgpkGP/0xx/iu8qmv9w3qhLHC3vzUc8Z/znBz3mY//qM/z16I+vf9gJ/H - JKNUuh8StNSf6FM8weyzCM+um47YLmBG59tRDuHnDlbENndxvug3+AK32d2Rb5H313egoo42gBjG - JrNnxFcldKesJPb11vhT42cpYvyVWJZfgrnn3O2yvrDLB4nCT0lbwvs3PuNYkIqIdJ4Rw5HLNaJO - F+pPq/5lQWdzPBK1a6jSdydxhpzvCdjdtW9lNLLCgZ2xT7DRvrl86j1HAhlIdcL0U0u9Wq4Q8994 - 73nnlnLnrQqX/aqOz7Ql4rcUoRwdAvZ8P4v+TyHjczjYxkiZdy8pRt+TdSeGgdiUTJAaiJfSA3YU - QW9ZP8yDRjGYA8IGoTO2gAtbjEJ8W2WpX4dyFyz6aSgimkQLX0Kc0r3JLVU+ykTTdEblO3IJqx8+ - ZTxLZLySBJqjU8F7WxoEu9DEmhrWf/a/b5dfokF9B8jST2X+A19UsQHUk6Xr4i+IWkZQYXzqDV8i - DMiL9Te7zpod5GeUd1eHp2MTeuk8GBeJjTFRPhFpu7ADjEcPl6cXKvPCw0suvhJbK9KoS4TqCsaK - 3N2M8fjNQ07HpV5hyxcedLytTAfG3UEhev/4tGN16q6QdMOTHF6lTenMXQK48EmdKnM+fqBjLPqf - HEVboTQN2nDpDwzcMFlgjTLTBTWbOoTl+AFG6yUkkCAduO3qlNBZaqz0h19fmy1v91tpkuCfSMFf - f//9LxYQ+FVWz6RgwYA+mfrf/4sK/N787sqwKJZgwa+hC9Pk1z9/Igi/6rYq6/7fffVJvh3LGiBx - u/6JG/zqqz4s/u+jv9gN//PXfwEAAP//AwD7GU8HugUCAA== + +K5R4Fn8bx6ICeSTxv/qHx9nGZ/OzBpOpPgOcJAfDnFfSVhTNZovKDk8I+85GcL/AgAA//+kXEnX + srwS/EEsZJKEJfMsQVDEnSgqIINAAuTXfwefd3l3d8lRj5DuruqqTqAb3hYAMWrx69+S2Z3TDn72 + GCNNZ746PUXSHY43yURht1B91nb3EM55eyKHPfJzlgcGC1x29oljhekwm5djCVQjrVB2cF76fKuu + NTi/+UdI7Wat6EXoWckwBhLuJoroSns4wnsW+Cjd4snaCrxDydt7SN38i0XUVQX6DjsjLY33CXXT + WoTJVY6I4mtOLnzajIH2oeXRL3+6X3+3Xi8znk1SDjPwnyEYPxGLrnthHcZHsRbyN2IDsk3Akll2 + qhEC+kTILt4KmB8Z9aB7fuooMIYGLKH24WW/nk6h+Pk+KvIMkAQKxuuQec0QpZ2UzrKSMh7ybl5Z + bfn7gk0RHEgxNx995aPakbfnCVt1MKvVPnQSvLA0QocrNRKBHFgGqMjxsXisISBZkKf7w+n2RMFp + aYcFUfr99S/hfdMX82bkgqvVO+jn163ZE0F4KWwdsxmek42vX8AJQisUpycafn4O2PQdSjY/cY5e + 10BeHHkiWnhtQXcTdeXXvyEXqu/qj+8upBGJbTF+MgXG9Q6YqKRILeelIouvFhBYFo+j/dHLuXu4 + pNBhMwfZX1TntLiuHjznXoT8HQh0YSfNJSw6eAx3e5f3B4vIBTSK9bnpKzYhWzxlPpIcFCytBoSv + MMQ/vgrl9pIBunQT/uE13vIFcFkSFbJ3uhzRppf91TE5CMebaCLlklz0utt2iNsX3IZTbnn+XI/H + CP743p3Cppo/a1TL6WFSkH45pf/02C+/3YJ2dO1iTZTdKk7DF1PP/noSsi88wPpFjht/4EYxoKx3 + i49uN68c/vyFIQxrLG/6e7QeESuvVfEm5lOP6d961MIVoh8es+h2FOEqdiJyrJCvprWZFZg8/TZs + EZJ8zD+LCNqrmZJCfUn+aK9e9Mdf7BLgZOZdQfvhLbqPGayWl3cL4JC1CeaZMKL8tslfPjZtRRQt + nij5BqcZGEZP8CqISF9ZYyohvnkpcpWvTUcv22OIZUf5+bFgFs9yB6MUvcL35u9QstNmmROxRRx8 + y/zVBF/pr7/S7uc9IDHvdtLGl6GoVMmwLOTLAsZlG2T57TLMZ/OswUK6W+h4juBAHgdQQr8mJ2IL + eT6smuVmECt6Q6ytH1493btLe6I1yOtVWd/4IYXRI21I0Jyhv15AnQLtNDZEEVOVcgeI7yBW8AkF + XtrTVa0+X6h/jH7jw1e1uCCMYex+DliT5GaYyvAjwV99qfbYgrnZP2cw10FEEu4hJAvoxRvUx+dE + /EUcQB8+tRDuGOyEUPwMYB6rXIH3flTIb/2JS9UYFofLgLtNT/JZoRjwc2A9ZOCmrDjufq3/9Jlf + ZyldXV+OgS2NR/SY9qbPq4pnSUINJ/JgJJxMasZoMLgGFOUe4ip8ODsZfKLuQeLO8wF3xWoAT/al + D2OrPgOy4Q88CDcXf6LunNDPFY/QfrVv8us/22iVeWC9SYLsqHgN9MSmCszOzWG7P62aM+fF/9Uz + fV/4imrRooFPopVhxc+yThl2CaCwO+fE2jaxEjMPFOi5sMRsPBA6IWfyAJJOEP30wco/0xhO1zVB + m/8O6MeDNYh8fiF2L9h6h2T5Doh/OOLd+XwEi9jUDRwvz3coplTXudxZFZgz5g1tfgRYDrC5g6d+ + VkgitI2++q47w9zI6z89+d1b5gg2/w8dui9D//S/KvIa+vXzc3ezxT8893qx0QknzJ78uV0bpKa2 + WQnf4LTKd7jrwsudoJwP73YDn/pFIYfXMuUE21wHuTY4onzLB6wMUSPvdU9H7o9PfO3eAUWHL5R8 + 7UWn/TJA0Pp1Q4Ixuw9LO5YF3PgVxYXtJ8vu0mo/P3zDw1TvY19k4O//uRl88ukjOyHkXrZP0Id5 + 0Nl91y+gX5IUeek0gf7jrzcQF0uNwksW5Fu/A+Gshg3yeJcF68//eR6dhEQxuILNL1uBR7sr2fhi + GAH8aLLswQw9E1vP6TOwRfB7XrVP5WSN4O4Lv8YLI7XWLxX95U9j0104mxczn2uXq+EsiXdy2fB+ + eX88CPfDyfj5hRV7eZkrVJcRkuI0xMnU2cmmR6M7UXYCRyeRK7Ck9ZL8m7/436s4s3LJCMLm72p0 + Qc7kAO/QG5ixiJJzayuIMEH1myitWA2ku68lFG+MisXcVxLqfp7Kn59WEP6b4PJ6LmU+Eh0UtaJe + LdrUFnAfKBAvqpdv+skVYRI3AfrN12Y6Lzws04FH7ltUci4wrgVMnbIPxUUIKP3xlV+oNoo3P4C+ + B9GC+vtmI1VKbP03H4NKwF2xvOULXfGkgGiPPGJsfjrd/EN472UGBZdCrYRdcffgrrEPSO1ylq73 + ZxfBbT6DJct4A7rN88TIZxfy7F6ev/WLAeiL95VoW/0v9Glakr++2k2fXoeNPzSYekqBdH5++Et+ + GT2AOsEOeXd5DSM/xqM0q0FDfA9xw9LZeQz7Gy+E3/uMkwlLaiyXTv0J+f7QVrNkZAo02VQKmcPk + JtjTteLnv4biO1QAVQzpBi6LhUO4lkMyW6ip4U5oNaLYHzqsKfdRoM+wBkKuUflz/p4gbFrbxmxg + 1vmy07haeoWvAR1VD9D5zH95cJ+zA7KQYeXCxieQHjiEvMgu883fuUE2mB6Ybn7qVj8KxLY3Eq26 + Lf6bPzXdn///XKtvMm3xBVnUsxg0pTmQbhg7uPmLGAzckEzjsYlhDj8f4oaT47OFlhrQ55GLKVuG + dGxy+pKz71oju7zFiXDlmBB4T28frmR4AtJbjwI6x1uBFKFp9TnSWR5ehbuJ3boY/bFNHAyVFHoo + fk2CTtkCRaC50T4UNv92PVTrpo/6B753Qpcs0W6NZDXa7zBgLSmf110FoeFYSbjLFRYs4xHHYJvv + 4UQPzwm5D88ZXs6Bh47vhw8ouRMDttYNEae9Ix0XI57hNh/54wvy2KmpFMg4/tVP1YuvTywKSSGi + g3pukjlzOh6+PNZFmq6rwzxH7gp/+OEdb53O6alWwhYdnXCXg0eyDrXDQof3AbGhnyZbPkVw66fR + Jb/3+fSdGQ9eBjElmTaVOW1TGshfB0UoTBSi92rGa/vzZRoxvRszHd7SN4TlzboRFGmB3wCuFeWF + NxyUfJ9hMl5eh3X/w9tfv8xu5yhBq+0GcsjUlX6fyPvz15C5+YlLlmQFYKfyhqzNXxc2/x/elNMO + +V+ppHSaAvZvHnLWd67PjRrriNt8hvzmWXONoPjjT+SzlpSs2bqUUHw5V0wXqPsrPyklpOWJkMvN + rYYNPyXQy+wb/ea/gkvVSN7my+FkTtWw+QUYCgJzwXKaomr96bH/Y0cB/793FLj2tSV+27fJmgRs + BLPRI6FwhGI1jzYsoPy+TESpwjYfG8dg4JvLQuIWzlmn6kS+MIGRhbkarGC+FKiAoZTX5BA4YcW+ + r84KcuaQE726RjoPptGCr5ezI5b1mvQFP7Va5pt9jXT8cQD7wdcVZhdpH3L9YxlIndIvmNzogC7W + vAN0aMsSeDKJiDeH0jAez5EHm32L8Xq58z4Om4GH51fJh3Ph9WD0itMNorC/kewhljle9cKDuuKy + yD2cCVjes6DJ3Ls9kaAVXcor5/0NNm22hrAVXUCKeQiBqLUNMXaNkgjBnr1Jr/UCwrGWBbD07tLI + 92zWiGkdvYHj3bqDMvcq0S0Lx3zOvyOGFqQWOTzuZTLfyoMGmY6KRH2IMl2prhkAafsjukh+QGc9 + NQPIxJFJHuajzpdK/WaywFwIsfusHboBq5G8ONYdhUVI6RrThwe1QC6I6x9Ow8y+dU3Wu+FFQlJd + gICszyovXpJhoc/ail7ClwjdvL6jQ6VjSuXDFcL2+7GJ+2j4nHZVJMq78/1G7EzXB4Ebqq88U7ZB + Vz8wEuIhVZQn3liIV1yEga7i9QbAcuWQlyFY0dnMY3itBhguc4RyTn19FWg6rwvJytvbZ3e8X8rH + ii1Rsl/ew4zo8STPlG/CTkk6vc32eQavJNLRIcsMyj3yIyNP7jlEhlRqgL1drxE88npBVEcFOgbT + aIARdx9SsM0nF5ZiTeXt89CEWexjMEWKrHf1kySXr5OQQFMM8IxjlRyOJPcprpzsLx7eQdUT4XEx + HPjgBwXZnE3yRfeVl4z6QCV3ZaI51l39C13Cx5iV1FPOoX1nyShmI5QpnEXZ9nuZYdLZR6L0+2O1 + SskM5SaCCnHVVsxX+cWkkHROjY74uwJ2+Xw8uYyDlVzq09fnhmFO5dT3HuRsEh/QukMWxCBVUGKy + Z8p9byIDsou4J9cavXwyxQ8LWv44kmsdRcmaN4UEJI9xkUVZpC9QPGHogfJEXO7DJlROzVF+DaxN + 0OMq0jVsKlbe6gdZ2WXWqctohWzogU2igE91Vrh3InSouxC37PVhibnGgDzwb+Fa9DudxvPsyT3n + tCST8l212ueXKKM+VInF3fxBsLw5lsdVvIdLPLBgMT72CONWE5Benspc6E2BBa9LfcTv2DGpAM3w + BLUqQmiLZzK425mIMrIEpNO+yUlkXbGMwUlBRw8edHZv5wVU7eaAVL/wgfDcbxPQ8/2GblLKDcvV + Uhj5KuxX4vSt53O38NXBS1z3KPQTmixLpXgyEyE/XNg11OlegRjGPaKYeYycTvzuBeWwsaawwWEM + 1sf1bEEPvE4h5aJE59oU3KRBAV8SzONzoC5TlFD/0pz4Ka/59M4uETjfLB35V0UGo+X6GdC/442E + WScMWFxWB9r6YY9ZKnaABppiwS1+WDC/KuCRojHQ3u1yFB7zcBj3dlLIjL87YaEH6cBSZnaAK7Uw + ZCSsJNyHhQ0wVq/Bu/Le+Fgtjpbs2mmDooDndTrFqibrp1OPOV9oANEYooCyKbpwrmPT5/f6oQNg + F4gkr5yM0g1/5W/jKXjZ6o3a9ZBJPoN7fPP2nb7iaa/BdtElpHICAKt9Zpk//Dd2xnsgVNl7MJh6 + h3gZug9U8U8s1I7OiZz7u5rP7zdbygnz1EI+sPqqj7mbtu3JDkJ+VzYVB1p1e4fI40QUyW0p2SmR + J+dznP7qgwpLiy34Ka2SHPx2B9YryGL40vM7MizN8Vf2cxd/+UF8yzjowyt/zGA3WxqylMsbrGdM + NdmHDSYoOw16vz/wMTSLnYvLS/4BAtOalrwvq4L4PaoAnWJXgZPtxH94yO7t9iX/8LQgSkcpfyjv + cHeucizuihHgOhNL6TUAByn4pvjjFCmW7CVmT/Lab/L1s+5GkAqSQgyF+VYre1Lv8qVjbkTPAjtf + NTEIoGLc98htJ9UfaSZk0pGDj1CU8t3w+z30meVLYix+fMoUx1SmMZaRurvbdCGqmsknOsakqOJj + Mq87I5C5R3wP35egymdO+v7lG7rPjpLzgfEx5KMh6iQImD2gH1HKoH2OaFj6uBi4+caW8utKD2H/ + +DQbf3s1zHupRoZVN3RRM+0kfx9dgtJsjwHrNy9Nni+2jjlpMXO+/voQbviLnlBVBv6zVp384/dD + 73s66xp9JHc7NiXJThrpeLrKPKw170vCx3j26U4Zgx/+oksP0oqnPsfK7Er4rb4eYB4+71rG4KqS + vA7SYWELyYC7tj6jDA/2wA7Y3d6h5Fak8LlYX7+Rc5Ivg58i1yc0p2pNRdl82yYxzFefCMZFMqCe + FjUJy4M+sI8HD+EnxzNB8+m6rddVk6F6YknUX1awyugrwTZWbuS+E0V/ne0xAEXyqEOws5pq4ch+ + O9AQ2ej4EGWwFu8Xli/KHaM7O5Bk1Uj9kmlvYOLUVVCxbTZHv+u/fF7enR/DTrdY4vziv+GDzKp1 + jrQ6HHJM+GyEzecskjh7VtVav7PwV18kwGVFOwlR54fHJFfVHV35CBXg8FofIZDqFmDI66sch2+P + WEHnJPj2GBx5MpULOj8CX18PReDARubqkOlzCAgx21Rmz+wRRVf7PiyWJRVwtLw9MbK75E9du65Q + yUZCrH486WuOy5cs0mZHjH4+gB9+ycPwPhJ7t+6TubFnUY7W2UGPPUPyVexvd9hbgUOuqtHnlL3V + MfT2zxve9T3xZ+GkhqBSrYg4nqxSjswuhJl6t4kDFR/8/g9K7TqFjHQ40tkkUQC29ScnYC5gDpQ8 + lD+P/UiOuC8Hrlc/DGy7zCdIvUlgtEvmBbvr/UMKCb/yhXejGt4zQSdqjkt/bq/BCcjcpwqX7Ljk + v/gD43zSUOx1yjC3VyMFSSLkeMfIJZij4gJhfycA2fXJ8+mOZFgO8vcB+by+z6mLHgy0xAKFy3Y/ + Wzxm+Bp4G+84iRtmKB0bWDy9MeTxQRuW6Zl+oah9GoJ666XTU87MMIVHkehWylbrbEfe33ps+Vv9 + /R7JpUgM7slVdGmxIVXn3EYBbd75upeuPCjFpiLm7ACwxfMOq/PVJsfYTfVFvrXNXzwDYsZgFRfJ + AW7ePzb+21XU7zoIv272IOfsG+Rrhx81dAzviKWv9UxGk2SB1Hh1SPxUWPPFnzRWlq1axw/pXeTT + MV8Z8AxNnyiY2SXd8Rw58pRnDl4uB1rhy3sfwl9+mif3QYdHWBeyaT0fIVVmMZ8pI3rS1i8jV22z + nEAzTCEvwgJdjld34JGwi8Etrm7hLg4IpcPshfB9m5u//ooarw8LdMWixOSCazIO2I32bRpHxNr4 + CF+iPQt7zmuRdtXWinJwUOCVxDpxe34cxtP1PctT/nTxHkuePoNlLwKfod9wvWrrMKeGsw0BzT1R + t/5vFfv4Ds57uyIqJ+RgQYtzg1b3joh5fOgJa9+0GZ6WPvvjt64HvgE7MyDI7fmgwjHoVvjhTxmJ + qtDOOSg6X/gw64bkOHnnOHK+HdzWD9ncl0nwdMIKPOzPHgqr+JhzGXeuoeU2C/FaqFds0Wj1X/7n + ahkmy8OLG3nW5oCcpfVcCUhe4O/7eKU3HfA8Qxn403e+/+3z+eW4mdRbRxezOB4rmu3JXbpaQkbM + 4phRuoqfAt6NV0BOfmfk3NVyGGCHexU5+Wz7dPMxYPq8JSQE8XM74y47v/iRG5LNYTbOiycHU2Pj + 3Tdg/J+ekQ/eY0Rxz10A9+QOFrzmyoFoXL2r6JziEa5+tJCcShOdE6e8wS1f0a//pd5F/kIvEify + vKyjThStt/74XFNeZrUiQYikq7A5aiVjADqnDYb2Trohl947QOXDkYFMnSno3D+OwzhFJw+OKq9h + QDPij22UNfAmAh+pUvbN18oxA/j87gkJFM9IViHLDfD8AoJc8tjrtOgujbStJ1JjxwRU8Z0VJuPZ + JqYyhMmSan4GnREzIQ9NjmLXAQ64WlyGtFw2BtY13jF8diNFynGv59xQ1SOI5WePAn/vg0mTXAuM + q3QnmtVHlDeGooBe0PGhtPVzi88xDXh+efzjfzq7h7MCXi9vh0zO7/UhXoxAnqeCDedUVgAfPmYD + Fp4shLs56f1lehbfHz8Q65FPAz415AaWexoTu5esfDp3WQiN1WnI8ULiZITStQHkGz8JMkGfb3g4 + wuB6OqJs93z48xnARn4UVowOwSBXs3B6xJATRAMlHCrBEFnHEWz5j8zq1Phj/o2+cuoqJfFZxh/m + lY/u8vE9tugmnbcz6EskyRmOv8SUkDUsx/r2hbn+YUPmUvXDqhiSBmWuLIn+iAzATWkpya4ZDkg7 + cu7AMvyzgWdHdZFnZdeKOtPFg2deakNIjLLa9MkIhja8EYtyz2SNqWrB7vpuNn5Hydx+nytQsmXG + MnePBiEc11o+lGKGTvUYJTw9nUv5JvIeOtS9n4zMx/BgbUQfhLJznsx3kGk/fkCHx25J1lX6nsB2 + TcxfP20UGQuYQgmR48lvgKV79oXQ7Acs1CdPp8G+O4FP6VfEyeJGHzW6phAHRYlcfM2HORDAHczK + 94isTNrp47GpGvg9yn4oPvbrgAlfr1AYPYpQXb+TIfBtSQan9oh8dgfoKiOGgZyrNOhwEVKdfTwY + BiJlPCMdgVdFJ7dPATSHgagSuCYsgqbx6yfxjG8vfS5B+/3p8bBM961PK/MVgmEoImR3vEOFJp5q + WNanCSlYJvp8pidJDq7XmAS1fAHsb33LOKGY/SYQTLPbWz89glzra1aC9zqn4GB5HJbKfZqMlQ5S + EN3O91DoAT9UU6wqMgOZCekXpx/WJOgCiMLminzl8RrGl6P+q78JWl4lxPtBhLLVG1iqi3JYHt6t + gezNskPQL+WwXOV3CFX+NYZ8tb1jaz5dR5ix5IFQrWnD4mr1TXY0LQ3FR1pV5LO37pCzdiNSZ8rk + 06+e+HjAyHuw3TBnQlzI3v52RejgrMm06XspSrUP0or+6a/SvR7lSpZZ5PeLVnEH9BjhQ1wBCS3E + 0VljrUz22su2oyuHdNMzGlCW4I6sPfQSoRxVA9bW8x3S/j3kVD4vHaxHIT4Mu87Mf3j/67fDPitF + ugxVjeHRkPRwPmQsJRx7yX73i1nokmo8XTn2h0dEkbzMH0r2NYtNwRvIqi0BzAgeDLg+y/anz/xl + GObTTx/+xXuV/GsEM/Z7R34d8AO1th3mpyH4EDcrM0CFoueh36Uisi9K6nPUTDRYup2Bzmoo5+tZ + uGFo5AKH3Men8ecC8yfgtXGBlHLshi97l0NoRXodSq1MwZhTI5Pn/CohY761YEXCEMJiP58IgtoM + 1lHHnbTFh2iP6u3z3zfh4XxRtDCTbiSfEnQI4fFRzNtWrGO+Pg27g8qkNv/wGGm5CLjceZMwSF+U + qnfFg5uftuXnZ5in6O5Jj7uebX5XSTESdhHc/DHiU1D45J27GOqKQcnxYIoDeaSiAYWvIqJkl4X+ + bDZzCUVuAUSXklcy7+3kLvPRfSVxKgl593LOBXQ0JUUFiLf39/hXBXascdj0bJ1P8w2+pPdtbZDm + da9h/OUrSKeAXOZPNAw6im/gzT0QCQK5rxb5SHm5kYUamcRgNj84r+G7Op9Q4Et3nSWS1MBqmEXy + ANoIpihJIklAJ4QCbn749OcPnc19iFDJ1AAzr2/8yzfiH6MPWE8NyeBiMm+k+3AGszN4zp9+Muln + HFamVxlYU0cnh5w3wUIPK4abX4QZn4v9NaDHGso3USIbXuVkW2+5PaEUBbUs0O8T5Dz86XvTo27+ + 8w+AeV8PxK/9Jhn3DMDQYC8lstqqqxb79akleyfnxIiTcOC5CTZwCPGEk4vjVgtU2DuU3+dpw2uQ + zFIW8+Aj3hPiUqatyN493WQnjQP804PD1cMSNLHooFNl6hUJ9l0KhdGh5LH75HQO6XSDXjEvP/89 + +ekdSIfki7SyC8Hi9IcI+kfRImn59H2sKQPc2zvxRhJPqPzlm5sK3PwiZB4fVcLnuCzB8uo94qvq + E6z4M92ka26HSKHPCcxsz68wMP07QeXd0jlnqRnoZJmNHnNGdTysbQgjy2yIEXh6PjP3KIORZTeh + EJxHvz9dMhbG9U7G3MS89OW8rzq48Rlxgk8BfnqFu/8HAAD//6RdydayMBZ8IBYCIkmWzCJTEBBx + J4gIiMwB8vR9+P5e9q73HsxE3aq6NxfisNiUkxvdNjU34SvXAm/VBTzMlZ/wcEx81gOGjsItNmcP + ZsZkYjm5riG1WySBlQUScfYew9PvTSzxe+n4v/NQkWMcO6C9Rz2x5t9EiWRLG3giW8ZOC3/Vstib + 9OdPE+cgCOrQx0cPDjfjTaxAL+j83loDvMrUIp7NbSp9WI0I6CF/z1C8DgNlr0IJA8sJiX8vyI6f + soT8YvKIS7kKzE3ElGATTYxlOkkq+z26JWTql+yxu3+9Fp5vopq6Gjar4q2u31HiURWGjgfK74Ue + uWHo4ePlXvB5Ua+AtcmPB0y7Cru+cIb1864auOsT7EhjpY6H81uBe7yfqURae+sOGfwXb2PzfKLD + hYkL6LCKuPvRa9VRz1jg9hUeOA2iKtzKwzeDDxOF82f372beP+fgyjGvGdonm67n4lHCbI0X8jfe + ZedXsBezI36LaW1Pols6sPrl8gyulAWbA1YfAemW4otDV3W6p30OVQb6JCeSSRdmGngw/wyLWNeq + tGk5Xgz4qit99/trOnWW28I78nxyjg9fuuSN1cDGGS84vo46Xb1CluBCumU+dZFLaf4eWBA9jH4+ + Jmo1bPP3m6C/+PUx0CtctJ/TwHfcnYjvhD+1PZdMCeKLUmKpwseqO1b2DAo9i2c6Nyd16PQDC2/+ + 7+gJ+/mk1/vDgKfcazzGzRiwpJ8FQqapIdFyJQ7JhbEyiKU19o5sXYSLnUsR3AQp+ucPdry0iGi5 + 6yqRSwjC0bgerH/6D999N+UX/w0BUF7x7FmLlnJEfu0lrq2Ns5LLhnX03gEIQy7FXgftsIMSzGHY + uw7W6ssnXdbvZEHb7bEnWMymLuussWDijXXe/Wl7jRU1gc4qHEjC0hJMwnDIwB2FV09wDTdkaXJ4 + iq8U3jFmuR/9Gz+aKob3jlJTp3v+YBQ9wWlJdtfrYS30JQPit93+5TNmbYhzCPqDsuOzD1ZucUsx + qAWIXbvB1casaBTLS69hlZ1qdQTdHIi3sl89+rpy9mqFwwb+/P5db6frftcARCRL5+OcfVVasu0C + I2U8zRQ88nAyzkb5j88e/vzDRq00mI56gU0jo+HOPyE03kxJXPZegs3RrhKAixfgs/Rjhy0+iAk8 + 3PInsXTOqrZQy5o/fwQ/dj6zcVNbiGcVn7B93f7mK2SwDK4UeyVRUg6QloFNzmre6mpmunG85CAr + VFrvIDLh7o+QGhJ5o0Q3ApEOwSKYf37JDO5JASZzHSFc1nkgaleCalm/DwPm4bve7wrrgO1fFwE8 + g8+T2FK+0O1ayiPa128+G05RLQdeLf78HyIbCKVzdviIsG+w/McfqpWXNeaPf2LZeM7hlHCXEqhx + VmP/tzQqcWws/Ok9rLqSV/3xPZSl8oHonH2xVwHy7F/+i9immwz0b/wFm3D/3d+HB2cYMk8ZW8b9 + Ei5WniXwfH8TrFUGBf3LRwlk73tFOWeIVfuQDP8vf0LkhebpIkyt/88f3fUCWKvgswAbL5YnwEqk + U/ReSqS6zBHbttkP+/powLMT7S+fVLHPxzVAMQwFco5fP3WT868JDx29EmWOjZQmp18G9/zFvp/J + P38TEqa8kT89MmaayqK1qC/4KrGbTUZZbsV65AKsOzACY9KkBkSvMz93ux88CaytwRmk8iy+gguY + /vJfhPnFMzHyJNxeptxD9s44u947hLs+WuCxVwRv1W/FsCriywR/8fBnX+d0zWRRhIY9jx5T39/h + 5jVHAcZVa2Fddl2b/27HGYa3Q0xcQ6K7P8+Y8IhTHyuV5VZHyc5YaFJtIXL5cMJVDWEAt2tbkThe + aTUu0bRB8/lT57lLM7C2S5CD7f1tiTkP52pqkOShPV6QQK8rlfK6soD/o6Lg+L8rCrJpcDymBKK6 + Vfc4gUvg8R4ruD1dQ5XZu/akA8FsT+xpcVcDhd79NnP6T6HU9ZUSPcwJE9m0F3tb1NqD652NyU28 + NOr6OwUM7Nh59RjlfKl49iDxUIwO4bweZJeu31mFqObnaaaw98HxCf0A3t/xhLWeBsOinEsThi3m + sfbAk72d9xpdvnn5xF6aZqAX4bnAKg8z4mjV3iW4PVoQMOoDKwH7Szvs+hJcvZNB3vljCtf7M7LQ + IYg+HjglXUrj7xage/zY411uVlzUwg0+GCXCCqlWe2UOegMmeuyJIa2AbteB4cVbaGZE5R1zoLf9 + jWarsiPmWaFgLUXZQfd3Z2KNYy8p3x5PM0xmdiYpFyoVe3sECjTbfCLWy/hWmxKjCPix3uFHePiC + JYXJDJUUnMj5oR4G0rzFDJlvVyHPjU2GZRBYH2WNeJyH6nyuWC1SeOSqkk3ST6qkvHJKGnj5riyx + Q1ilx2SVA3SQ7J/HLP5QdX/zk2fgYtcU+nC9spuE/Bv1sOKkhs27J32Bye2rYe3dzimVv8YTab5h + YUXtVJubXlWCVrE1iEpnKeUO51MAIGwu85qZR5U+H5wCxVd9Jglm44HVT3KGRt4ziSSAr33UThcF + PUt9xZeLytu0YPQEHYIeEl0MabUuw22BIW1T7/gOwvB4txYGfYaIw/mh4NPNKn8LCGQFE8eIHsPc + mGgTpY9Yzrzd1oC//dIS1nwSzKKUKQP7cLMF/m7PiGRGdKrmKYwL2JVuRrSAt6vpd5slyAvMl5wv + 80S3u8c1J5E5UiytB87exOrhw9CAFgm9uxwuBD9j8BMcjcT+2xuOvpR46GN6PZbzQFO5Mjm0UNqq + hKje/RNuvP2pkXHJBuwaT8Um2ddR4L5eOH0rEgCx+lbggTOv5Pahuc3qYmghCzUeSeCVpmv0GwxY + hwLCae/qKus/zQByviOSRHc+6qKf5Bw5y/FK7EjuwyVpc02E4tRjrLnBsK1tyUPFYlqiNPxN3eZM + MVHeHXNv4uE3pBRzEfqwdYHjDzOFK6RMA3EZteRWoUE9pmXbQi/gfxjnOWtv3PfhwOF4oFg5zxfK + daUxIyZLviQzNjnkMw9H8K0HKrGt9TAsn6Kz4NCMZ3ym+JnSa2cLsCs/R49fw7fND/poAj1WdHJ+ + BzRcgRPV0ODYD37O/WCv0gJLmGQDi88jf1KnYf49kamjBHuPw4XySbKJSK0Vgs3eOtgbeYUsKs+J + j9OOoHRNN5uHk69188EMHik7CNAHxrcwPDRbSsV94iyAXzo9sEbij7rCm+RBOjXTfNSNpNoaC2eQ + 8nxCdEe37Y3vjABKLQqwNcZLtX7CRYQXZejmVYeZvdSBVKLyrfPkovTssAQKK8Hq1TdYu1lGOjBz + MsKb5Toe63l8Op+DQEJdz/pEYWYuJP2xtyBNU+oJ7YPaazG1JUjvWorDtabh+CCLgrjOuhDZFxyb + jTxVgQAllbeJnVex2nLjAfeu1Zk/AXbfXxTDoBcJfijFWd3OhJkhi7QZex+pqDr2227wY3IFkW7P + BBwlhlGA/ONfBE+dEE7AiRqUrtc7PvfJAubYeTogXcM7xlctU5ezQUXISs8ca174slnl3FswjTeJ + SF/THrYLfCeg2cSD+ztuJl1dRZbgGT6CvQJKtamVVxZqDG/GstzK9hqkyhNVr7bB+Gd0IS8eRl+8 + G7pKXOxotKfJUiJUSAvJs8QOjw869jB1ixt5gg87UPGhJRDS+I3l8iOkcyi8CxhjfsQaLbyKutPP + E0X74WLLfT0GWhzeBvR/jEmkhsnTefk9LPiScoRVvf+mPNrvPHJdXhPMx2w4cixMoGK1Ln5CTQ2P + qxq1yLisBs6H3KxocbgbUMBVTLzn5Z5SltdbQJSRw3f7SdUNkRMDtWKSiD9xv6pttVMDbuP4IaFp + usPGZlMNo2U4e6Mtc0OLKssS33qTe+OvudLlK/gshL4TYZxHzbD9lvcCPambyDM/rgNtr1ce7fiL + A49IFeXlbITx47kRPcjHcG2uC0Tr55nNtXwfwXp+WwEUteiFg+Dk2ZxZpBA+5P49n+OesRfWqzUU + 0lgi8q34pLw0yw1yj/qPeCVPw/YrJLyoMA8PJ5f0lm7xXoEVLdGIrw79ppwC1RLd+ODnPTdWGFZZ + PLFQSKiML/iT26ssriz6wzdFfMsqd5L1Gom360wc1++q+k3kDZW9JxFDlciwpT8GwiMjFvjFbknI + mn3LouLSidiflgKsCtMIcHy+TPIOvc5ewSIXaIGPFT/wh7HXFjDRcX49CIl3/KGaGIyoiDYN65Wg + pdylf/jwdhFWEnNrQ1kOcwsMnnVEgoCJAMt8vwU8jK5M/taHNtpqIY9r7//+jz6SIYYtk+0VBflm + U6mCM5xK8eExQxuri9sWAvJ/0MRRqh/AympvDx64bMQBLz9CSp6tgMLW5YlWvwWVTn3oIN/5VOTy + nU5qW1ZaCWPJNme2vlnDkpUfA00+eePL27LUTSvEFuY4PpPHVTwM308cBWiPZ+Rsv090Zu6RhNbP + fCTnNZIoKxeSBg2O/xDvG4Gqw95nRgUDDzPLsd3OD0QJ/eFxprVRuJ24GYru9PnMDX2Ndo0ONwup + z7zDbuJm9pYkoggXuZGI9bKdlAJ4imGraF9iVmUXLt7g+H98cj5sjgH4N5NB2LswxefzzUnX71DU + qNn8C/bV8TtsDDAh/JjHYi52PGElGGqwVoOzBzvuC0h5yTJYfoKVmPPGhusw/xK48ztstNmt2sLM + KWA9mb9ZuMRetWBObmCZqAZRCz0a1jlHBrJq6ULul+5n88bVjGCfBzxxh/VjL+JaLkichJLciWTY + vMMl4x++kvjDuCltfcmEz88aY085X4bt+U1rgHFxxPlH/6UzUM4zDGmfYrf7sfZy8U8O9C7+B0cP + 7NpjcedK9IWRi/NydQYuyQ4l3HJjxNp+PpbxJULIvRuVuNfetfm/503QVOexPHG0ezFjCXM/fMxo + j+dbQP0F/fE/TVTR0GtVrIAcSgk++w5vk9Y3TXCZn+0en98VrW/IAsJ2QMSo3U+62KdRAFl0PhPd + n/avDL2nGXijdiXJ3Bp03fhxg229fyUlNb+AGqZrgj3/QZy7cFAXdHiZ0BZPN/J4W5bN14UlwRiX + 1/k88g975f2DAHa9QbC5yDb79/sjh67E3vkQ7W6GCFuOa4j9Y9VqSaxTAmGlaPPWSUq4luApwiN3 + uM4IOzX4lqLs/cOXQ6JvYKW5x8MOniF22U1I9569BuwStOJXtljDkUsKBtrXmz/XN6v5L99J84uN + 009ahlv46CygL1VG7NFkwCLILwtelVX0hNfFtEd97ypaW/ERK2I3V8vJMhfIPn1mPz9ndb3zeykL + yH9EVvOQrm/zI4A5lmqCReYyHN/xkMBhCdxZxL9m2JrzqInbTMp5j9/Ddj76PQw4ffA+whSGx4hn + fAjCUiUXQIx0bcWxBSAs1HkV83e4XPzVg+hUcyQ8InZYjNy0oCUfMTH7qrApM/sjotFNxfbOH0c7 + M73T98ELGFtNCNY//vuHR4ZgmSE3RocNsFc12vGhAPuFRQNZaRoRJdeCkIt+gwb7lby8rdMv9h/+ + Avt69+cUR569dqofoZ3veCwUG0oTfJzBGT8b4mw/s1oXrGzgcmRmYjC5Ao5/eLkt4gu7+Yevtqv3 + tKDBv+7kwZg/QMtJTtBpLab9fZtSuqRiAx3RAER/vCt7m7h1QR9WAPiJDhngrXZR0Idz45nd93eZ + f4uPgtp8kjx7bep2KZwERs3SeKjSvur6uVkN1O7rQqIYbOGIPkKO9vNBnOUFhqkJrR66atSQ4Czc + wyEtix4+6hx7X9X7pJuNpQS4h0TC+VCRdLo+lhk2nZJ7pz3ekKB/NXDHR2JxrmgvB9Kzp5p/BsSV + bC8lIRsIsGlnFWv0ewtX8bI6cMFTgTVbTIfNHr8G2PGOqFRw6aqNVwcG16jHRn2f6fQX7/JEcPEl + Ts7pUbxv4yl7KTG2vz0/bHIo+bD7nGSsH7khJN3NE07olwKiOm4U0tCfGBg5oo4NbjUoWV6Of4pe + XkEMhVdU7nq8PUGOozPOFaUEZNOaCEWvAnjH1+eXbs9vWMPrcamxwvpTughNuEE3E4eZbzNuGOXC + 1IBV9weii55Dx1N7sGC2mCX50z8rv10ycNe3ljgfswMUXZ4akLUxwPHZetmEcbGFOCN6YOWvP09f + TDnY9Q82aKKHK4wfoqjHcYG9JNQqTr5rInLVuCFSw/qAA8ul+Ns/nCWpS+c//vKFbUvUuq3sdXs+ + Nthyx8ZbuvsBrH/zdbSVn+3hZKW8Vf42+DwLHFE6qUzXfnQUmB1YY+cfQrgxsRX/ne+ZAVfF3vHC + hIxqAWIe66NKwWdRgE5qC/tZbNI/viFur+3657fYNPCUGoX34Isx22OVQ7D0UHLzO+yiOrUnm2t9 + 4K+lN9NdT5LTxiqgd5kUO9iA4fYsFwceBqHx2HfrhWttdBAY/PvugUyglMqWa+xdvqMJnEoezDaW + nvBbaRW5v91xmGhusOJXCugf/7LZ/PdjwbMfv17gFCMdXUPvYSkWKfYEdK62z+RDWLYD9LbSO9DZ + 4fwZGdb5g3WimhV93B89XIa8mKeltSj7pF8DRq8SYHepapUyC9TESjM+RHEKh/Kv28dHyqxRLOvb + XK3o6TGgfqJpXm9f02av77MEr8wxwrby0iqOQUCAu9+Bk+Ozq6ZAkg3kxHAhGu2hvRRxxf/zV2TN + 6NLtM/c9+MNrd7bK/U7OwQE+uYfkzNhWSv74ySO43v70akX0D1wgOjUcltR1TOkA3g6sR96Zl3v9 + pcTpRBM2uhhiPb1xdD1VLQv3+XttlDn2Wp9BD3GnIWLFOEvXmLvlsBRZ3mNpn9kr9v4DAAD//6Rd + ybayvBZ8IAfSSZIh0ncSBEScASICotIFyNPfhecb/rM7PMvmBJNdu6p2svMd4MONqXftkpl+zzdh + gjzbcdhg64vT86/tTJxtGjg/+Va/8FfJhnw2X7DNX98OfcR1igAadtNqnxOwdFsPm0w7QWzevQl8 + pi78oCZsq6l/lV9l8cp9ApXeeBD35MiUXW+miqxCPRFbbX2FkrQUkc6ZcHrdmy+dJZipP34yDXMS + gTloP1D8JjHA3jk4AU6gSos+u5nFcrt4IcdKaQvKVyLia3fn6znQrgl0DDMinrcLlWHJqPTzg7Cl + E5BN2/pBZe5gbCWD7LCN5vto4y8Efx82GD5fwQUKc7H/xQ/ObuWP/3kwbFSlMwg3QPFtnojRenU4 + wJ1TwOuTU/DJpErPP0Q/gs3x9sGubA+//LCi45u546ijaz8+w1kQD9fOxV4xvABBVqrDK0E1lhmn + rQdf4D6oPYUFNuTPnI23luEAe8osj9n8Rzoa+x04viv5b345X2srWPNshT1vR52PIE8cPCysOXHN + dQK0Dkz17/tVyJbOakRsAi6jDIkhj7yy4A5OAHY3TCz1YPbL51HHsP0MCtbajIZzlvQzhMZWOP24 + tTMpgO4g+xCL6cdHNn+khJpSzvi6reeN/6bQqxeBHJn6RVesKCZynn1P9M8TZl1rDDqQxznB52WA + 9fx+utuOwqLH+HpHIWmEJAF8tl6w7h31jF2YY4Lim3olweb39JKeyKD4sgWRdGk7YWUUIhQnF+F0 + eqkhPbdliTY/1qNHI6Z8NVopTM9mSRLcfZX+h+8bH/bQSb4C4h+fInrh3dUTXsAGyx1aNmzsPiDS + 7FkOQa9RhXamHrAN2iwjjrxVZI+3j7fjGt3hOwFwMItnCdtW6DrDpkcARcD0WGKSjBK2c+FP70Ze + iJyu1xEHz046Ya1GjjOnsZnCXJkHkqv12NO5uOzAtt6JedopdM5RlUJwlCesLdd6a0WaSL/4IBfF + O2Y8znvv9zpx1wGHf3zwnvaCBzd8np8Q2gBSdCFm9Azo2qlpAe+QW6cDNRZl2H5/8eFGFIcPTnKY + 8pLawENXREzNPSrbeo7RQ/MVsuXXkKyfLIDyLvOwx30HSnB2Lv/8NlcBibP55f/4qyvdtu8Tk/mX + b7EilHXI4UdsQrv57CeBT789SdF3Bx1jsXG6+aVsOZYVnA42IadXNYbzNh4YwxLh2/QAdDg+bysU + HXX1crVowcI6BxNO2mBh6XJZnVZq3x+oHWx/QiW7hH98K+z0CzHfC+pHBCv3cD9qFONvc66p8/RK + yF2YFOPjgQcr74IAvpUnO12M+6XmyGPvgd//3/hQvYBT68OCZg3xmMcDLAJKcvB4mDUx2A+gP78H + fHu7x6Ys6Nl37lQd1MU5xxZgTsoaMFUOXtVskodq9nSZTwdVTFosks0vrWnENo0gvx57om31DbYz + ryo4rFZNrFlA2cpkoQjfrWL/6XE6F3cIEyc1p/l7fYAxTyL3h7fTSTqWdH4Qa4W8dZaw1p5fYJFW + z4Wrysse77uxQqxo5ODzvM5Y8XJT4cuynFBuP49E3fQ996rGVARpQ4nRJT6Ymymr4PtuiN4+DDGY + P+rSosSZ6mnm3nZGN/4G51vYYiutIrr49BMBdGfZn3+y5TdmhhxJHtgMToIy+ueTDvYsNaYhNkJl + uq5dBe3sFnlwvmf1pidX9BnOJfEO8pSNxX7nwuOlr7EdLpFC9xdxht+q5j024k/gL19uz+MJUT4o + q69NFbyu+YEkG56T3/uP5PTx2sVaehLdbi00EzvAUnjks7E9zzvgnohGNvxW5sZuW2iplYllsXnT + TXtzYPOjvb0ZHLLvNv+wjfmGHEVeypjN/4Yin3+IPWR8SKnXd/Cnv87j/ROuVQQk4Jwl9q/+QYxR + WWHPfxN87D0mWzVDkZCUxDnW/cdU083fh3dOv3vi52yB+W4uObrGWUHMzZ//6Wn488MM/wzpLz/D + p+l22C/LOFydPkyRdztcvdU2+nDcPUsRYezmxI5ttl9ew7r1oDx/JhBCJePiz+jB3t4b2N1/9j2B + tTWA8Oq/pv5L7iG9ZHAHy2hWcTSeRUA99mij3/zNqTwp65GEvvg15ZJoy9MHszpfmD+8iq1615PN + fwdWjidvTwRX2fzLDhZUs7C25J0y09ccIbMQ3gQTYXDWBk0DMHS6EuvUNj1xdc2F56i7EZeVOoeu + 32EHNnzH1vC1/vwNcbC4wOOTQ6Cskh11cG/Ombdu+oBWpjxDahcVPnLRAmb6tmVgXeydh8Ls5kyU + u3gQNObhpz/pYqomhGMl3CYxuln9HHmKBBnj7k3PImgcGrizCNtHnkwjdhs631xHhaqv2iTI+hms + vc5yoH0UCfZetuf8+U+jXtbkmCt+SIlwasEWXzjUule4Mul2wmCr5+Dxm2TjmRFlYB+9m8caiQdW + M8Y6VL1TN31kQQ8LX5vKX33C4zF61hs/gJDyJiWhP8ugrPWlhG+hfBAHDDWYj1X9r54XuFmr/PmD + jKQqJN7V336rt5rgzOcW0bzbqx715QHhbl/N2Eznth4MrfKAl+J1esdd4cxk4CXxpMgOlkcc1/RX + P5gzU8MGkXSFOiqoQOj1M9bvseBMauVGsLzoD4yZlxmyWvBs0FmmItGi9e1QkBYqXKpjgE8cfGXz + VWJUqM34+Fdf6fzuZQPJW2NsbflruSyfBJ4dNcRbPaxe0XqPYEVX/a9e3FtCMP/xO3lH/+ojJdq9 + YI9VkhlgTj6xCvvIWze/jq2pPIoyJLkv4mN17QBNTlEEBs41PVbxniH/06s77r35lfakrHuYfiD/ + ijNiUCyGg15IJgzSNsKOyunKsulxtNVriJTRVOn30VNFv/g/Hz9PZ1nYTIf7+rxiG4mxQ7UnXOGp + teOpCZYGkNNIXLjVc7AHzpWz3vaK9/f7qF+57YeNH0MBtMtfvavhkm8CkXqeJwhuTrYOPSzA5l+R + v3r2r7578NInVprxSwefy3xoN1Hz58evj3IOtoZnAok2PUN/eoCXyx4boq7UzLX5Sr94IPoBMFl3 + j9cdSitj2fLXWq+aGU1gIkD1+J1/duYbmSXY2BFPjn0InMFPpQAhNZynmavqmqoHS/p/ehQI/72j + QGdBTRz5otNFW14tVOzXxxN2sUDH3k09uM6yTJxlCLPPfn1yCCzciO07lbK5V1sOpRLRiLSbJIdt + 3oMJ7cUZifa8TpRCpAmQnp5HDzrJteZ2UqmLd6Nzp4bd60pvcIuPprugElM5qoB9iM8Bwjg8T8xj + ONFZx5ccOolS4mMsP5xlL4wtJNFgkIKcc4cEpsBAe+ivHn0VtTNk19YDAFd77FiD2M8LiG1gPjSF + GM000PVkGzK6HZYSa+UMnE/pNR1Y0BAR03iKCr0OXgCpJQ1E0p65s77Gtwh5NeCIFnaesnyKpUPP + gHlhbyhLhUB0EmGXdS8PpX4NZnln+cCHdxtnnlg5/MP0RSgrtCVSdC/rBRyCFbXvWPImHH/DWUO1 + CeNSYPHxje2Q9tV9gkBVLkQOPZ2uV1tzUeaVOYnlp5ax+6iDsFrfT+99oPeQfxtaCw9cOBFNu6Ce + 4PHWwiWIXO8QyfeMaWnaoSD/SFMr2ds9qx88iH2Qf3BoRm7NfDQXwovXCRN/FrcuGlwxg5nsRqw2 + wavn273pIb43vziEtMgWdNcTdHoaD4z368NZj7JTQXWZlIl9629K273pgu/Insj9LOcZf5QsCIX9 + oye6JdwcdnAdGyFSbR1dLsee5eVTBEWkzcTsxL3ztT+DBM0lrzx4RQFlihLJ8Kr4IfbzXM24wzj4 + cIcCa1oM1lKWayzPsOgPdxKYiQpY4U5blFX7I1YZXgJMhs8caOZTS+49UrP1MTUm4Ow9JRgEXzqP + 2hyhHmRPYlchW099cIdQbi0V5zUQs+X4iWcojEVM1MM1dphQnz0okSoi+g1WYJUFo0ACSl449VtW + WT2Lh/BK7YUoc/QK5+ZZJohBH53kz54AGu7gCg3sx/hyRGPPlOs7gEvlZ+S+s9OMqbXVRnb9GUma + vARAb8ZYitPIbfdcXrY9amrtwZCmAck+Lzucw05kANhn92mvNUy44tfkwomAG7agHCszuVYt4vVJ + I3pJn2G2Y7pC/Ga33cTY0rcn9u5dohOtJmwyhl1zXdPGqHurD2K1u2e9rV8BCafS8MCobWe+6qOK + WqvgiTwciLKKVtCi+nuPyEPNscJ3u1BCoVsV06xbrsPbzZkBWVH03nRT24z2g/2BGpJSjP2U69f0 + nsgwnEFAPI54IRt/MhOqbWDhy77TAUc5KMCJHG44cswJDAFSPGSE64BljBWF76vLhAj6SkQ/xKpD + uZ1sIqYdqu0MkQy4a65X6ND4N6w+YdLzn4Tn4AA60zvc/IYui3JsEbMn7rSqBy4kQSrav/jzej3q + auqd6wgZOIgJvhztjL+e5xblFZ0mXt7t6tWNHAm4x6jG0id1AN8NtwnaxL4SfRHOYJFLOwHqJyy8 + Vf/29TrtuQIe1NgmyqtQHBoMIIfb80xLcjNDYjWlCF3jsNtuz/B6zj9GFRJOlYEfbO0DgtlxB/+e + Nyjmns/TOUb2x5KxXEYhZd7fuIPHNr5i88DV/XCtzBgqpNDxBfd2Rhv07qDyKRYsxTqfLWw7qaJ+ + 2UfYcnurZ4Kb1KCkhBbJaTJnZA/JCtvxkHnsiNpsuT0+H8hgZsLHytAUmvS8B6PU17CVfM8OIyWt + Dm/GnXqHdnfs10L42HCX3Hqic49XP/Ol6sLqpT69sZgPzlJ+bjESUPrC6mM4gakUbjp83+mByPYH + hxxvCRO8a5ZLTodOU4a92nuwZg4eSapMV3hipMxfPMvFS6wHdPI6Mb6KNrZLxVFWIxJcWO0MZ1qs + pgrHu6K5SHjuBmzOZgv6o3TcIVE/IaLAwKWcEc2emEjfBVsa0zuceG53f/iF39s9nvhYN7/x4ZNZ + 1+FSyJyJDmfWxsZHz+nMQr/ddrCMxHAazpmXa1ZtZ/Y6fC/mg0IHX4vR33p/1vtsFa20Ac3k+sSJ + Dy/65gaJE7f5mdpaceiSKnUEPmhHiNPv4mzmPVuAnW8C7EivpZ93HyhAmzaQZEaOwZziUkSWEDRY + e+3knju/HuZvPJOYN7Bedyk7o1uRXac1QpLDXuZ3CUZUA2+93dlsbB/SBAE9UOKc+iLjr4PnQzcJ + jElMXgngCvtbwc+tcojF57tsfR0TAZYMyvFjbE4KfzqvCRqZ+oyldOydJSzYAOmftCbquz/31Lvt + B/DQ/DN+aE0Ufs9LNKDdUThi88J6NXe3hQYFBdGn+VTuaTdaYgWFQL5PFDv29v+fJSI3L8eZfGkp + zzJ3F863o4XvbvV2Rv1xcVHPcDo5ZcnXoXEjQVQ4yMPZZZF6JknUCDYzbkkwBFk2XBnrgywz0fGj + 3C9gfUhjCXB38v7yNcOXqgcSxZCIctw9em4v3WT4nmyZGG1RObOdNAF6GklPHpO2q8fz5ZrCX/yE + uvqkaxXOMZqaG8Hb+uwpQS8GRKIb4TM9ncEvPx924SHGV3m36+eVWjNqZMYk5+ZK6GgVexUexRVM + y2MRlCZDfgFSvhWwNNxwPZ+1awfbeM9PQpW1znBYuBwdGO9Dor1OlCbvTR2lU3Mi9/IRhCvPGQNi + vzImJmN09fzsAgFJn3JPdIH4GZ3YTwnOV6BiO4jtbF6eZo6qbBynA58X2Zq8aA5Odfvwtttss2FQ + ryt6vbWbR4l+7+ccWSl8Gz7GP3ybxceGB9OlJdblfFQ4M0clnJmHgp2vDgCNfKLCbT0QnJo0pONN + 9CFHmDO+VdeRTkehKOFzXRmMw4MKmDMOP3CM3rK3rIOUzUcmiuDj4pXEPehjuDTKt4SvlxSS43LP + a9qbkgyfRbw5toNGuSp3J7A6p4jY86cNv6/lpiNZWdq//MvdMj6H7oURJn7Lt0vi6jMqC+NDpG91 + dnhmd3NBT9CbqKf9mBHwvHaiiIwZW65y6z+PbvMQF2fEmqPGfT+xZYmaqz9gPGm7/svJUQKhOZ// + 1i95sWGAJN16Yqm1jw7TXu8xrAobeuvx2W6O6LkA9SGridyvL0DprgwQe28vxEvdvt7+9sUovzjY + WPNvTX/xmn8XhaiYVP36CgMP2vb5MO3NLACLDtJS9G3nTjSxetazqa8yrIxTgq1A5LczGKENcRh2 + E/OLV/B8fMD2N/FCrqjXT8Om25YkAbsPyPUTKwUc9Fgum7jo9KX0ObgFcHfLQtLXqjqr/pYa8FXF + iMjHpx5ycX5voE+Lcpq+x3PPv9jMh1r3cibquIZDXvUZggC2eNp55NL/Po/Sl/Wdns/y/FsfAeTO + h8QTWgCyoaHfCUYe40yv6Fw5C5XFCpbWK8RGtBz7IUncGBzb6Irv908I2NfhlYO3EeBpXr+pMsX5 + vYX3Wrrg4gHUeg6Q42571EOiwXXImuUbceD5nS1ig/0NLJUiNL/8jh1fftfky0wq3PQQkdavqMxc + mfmw54BLDNXVw/UjiatYFSYknrx4Du+aWg7MZxUStQyfYEGRKMGnkfbEtUgJZpt5NrCCskZwWZQh + qzxABDe+PS1SvO3hF+sSnv0DmXrNfWXrYRwCeHroFjHOQeisXTPFADyFgoQukDKul/IPjIo5xSkp + Jbp6pPKAUz9SjHeWmTF86bogzpMHVm3Jqpn0WXmCkCkGOaV+TecyObeoPSGXHCmj1UyyNUMaShcT + T58XMFedwol5wD+w9mGfzpDTPIfusObYuBxasNLpU4LwukuIcr/dlZWRniKwBqYjxU3VM9ZU5wLh + 8Nxh7fG51H/8+GrxEzluvcfH4WMWYD+ab3JVRx68xPetgIE25X98YE6gDuGJfTH4kc5KxkbxR4SO + XZVTXb2beo3sPoKz2rxIMH2bcNo11QDNZxniy4jacLm7ov3jy+S4DmU4X7p+RczpOk35aWrq5fZm + ZQiOEJP4oX6UeXlKBbDOyTKtTXjt+42fA6hfZO+wxf8yHtYBfk/ibnrfzhzY8s8OHs68PfG7dHHI + ddADsMX/1D+NxFlRIBTbvfMcPp7qVqFxY8I/PmBHmtLz6f6sgq75+hMxs4DO52e+g5Z47SaecSo6 + BDezhUs7z/jEKueMevvvDmix+can8rFmdOn1BHoX0Z1qK1/oApzcBhKFB6wMl2dNQn9nQ0W4SV7t + uG9nRl9lJ258duLMmQLC+U4Fsn7fYzt5CXSK8uaD1JATvaUwn9kaSlwCPbdOPD6xlp7ieviAWW1f + xMkl7IzppenEOE8fxJmbyZnORNV/+ZZklmMpw+drtICp3BPJOezRWa4UCFOq1tg6su/s+764E/rh + q3x6nCjrirEP5ZTY2HAUtV7A/VJAVtgVHvvayTX7Ws46itJg8yN03+EUQlXY3C4rLja9vY78wYbK + sNc9YePHtE+tCGzxib1DO4Ahgox5eDP9SKyFUQC3HCUZdl/n5R2Op2tGK0Ocf37E9nml5jQniGFi + 65eJbR+RQ2JO9uH+PEzkVj+oQp+pYkJ6f/hYhR7Tf/1Hlv75E0cBTIBu70fX0K2wG+6IsviXqYBB + MerE/H3/U7BlII1KRHTla/fMx1sEaIvNGT9OdaKsGV98ANoXC8bbRVG0T48R0veRQYzNHyCfCnDQ + PxvyL1+Fq7CHH2jRGZP8oI9ZB17bGUnrqeHjdWWyeQajCxx+TzzhYynK+FLSAopto+Nz73nO58oc + P3DmhAC7BXMOV2eWYrRUQYa9aq0d0qV+ClEvnSa4Y/WQ9RaRA+eZ33k72dopi1Teclhr0tYu/6rX + nGftISwCkXrcE7T1cnosFXzPVkKOvecpy+G486EByQufeOBQvq/uA2R6l8c3lr7rTT8V8MPt0+3E + x+zMGfJzxJj8jWihkobz/amq0D3GNf7zo5pz8oExe7kRC9kgnD7TkkLxhANvbbcTdM9Yguhb+neM + SSRnPOpQCa8lqbCy8Rt6YllZrC524DXA6MM58lAJz+x8wvENyoAfe9ACQRA3U/B6db4T4SZowfmA + 3ehVO6Pxtc2//KnNjEqZvbtv//wi+7hgZT2FAELjeL1jVTpI/cyqowRv88pt+caoabIvbVRr8uw9 + xyIBCxMNM3wdqs90eOJP/TXjZUYD+JhEeRs3OkPNiuBKtltd9jJH1765+sg+hphoV7lQiLqvV/TN + st3EUPNdr4GwSEjuvjfy89vofTh8RHk0b/gqneR+DSckw5f1sbF99jRnjfKhA3NWWTjU7p6y6Z0S + gJOynxjoRfXirP4OPmUhnpZtvOtylCT4KaQS3wk0Hab29BJ1X+tFjCp5gMm/nxlYWUOCt+vqw3l+ + EAEOzdRg8x5KlJ72i4SeDSv+xcOUvoYUslsPG/Vtlw6LlZcttofLBcs+fweLpkw7uP1e+FjPGe22 + 9S/yQv+d5tvrRSnO/AA5pnbGad7kNSV1YqLwUlvYDbgvWG7LdwccXXLIMe6Is2z+BNj49QRFrupZ + 9VsG4Ojua6werpyzIFmY4DpLMsaWUtEVjp4JBfMlbHyG7X/zKzYqf8en4X6j4/nySMHXjz2sdQVP + 6XTrXfAbr37g2Xot7TSHoo4RUVepyqZyuuhwOHgHYk/nu7P85vtxcUscXIqlX7Z8CodovpAHFp/K + moSriczwfZv2stuEc1m+dnBuoYKzeh/UbHPfu5AZQ4Tl+bxXpnu+iBCdX19v9/0e+5lbo+aHN6SY + rBjMT+/Swp2extNh0Gy6FDOzoo/zOuOgaopwBpqfoP3jNGJZsZGy5d/4h7fkhNNjPQqtAQ+dM8VY + X8475zteZh1pSE6x6+FYIT8/YdOPBKOj4vA/v0gajxHRzunmgJ9H88f3vJn7IDA7TLDdorNYHvzh + 2Y2UKdj8YOIGnAV+/gAsXrHskc+9ceac5gUc2qXDrpNc+03/iLC4iSZxo5fiLM1S2ujtzA1xxhHX + 38OR86Fb8BXW9p1OacBiDuxSsSd4yN9g4NTLDn5vsUCkYHpnXTV5MpBH+4ZdXajC9acXN/zwBFpy + 9SLehwpuh3D++ZdcdB+AwwpfnFy8FFCXU1Vx10Yvcj8pQr3upI8K7sbHndBZhuH4vqgTLKudgZXa + 5JQpe92jw+bfEinarQqJG3MHf/nCOItbj4JoamAQ4nzazY+acq1VuGDjG0Q3cRWOsnrSgSi8M/x7 + frbZjs5yHw7+8MGZ4KjbkNzcHGemooAZrbMIt/EQz3r72c8/hWz8lrDzSAqwvi3DFDc/Hcs5VOj8 + 3LYrPrTg7HWwHcEwqI8Vok99whrRnL4B30zmf/6mCjm1nx09E8C7xBY58i5br7W1nRwFnYldNB6V + n74DwdmMSYom6lD/HPkwd4A4sVy+z8bE1VdI9XrA+jwPNbW5zIRUfw5Y6aexLjHuBiAIgk8y5T44 + 4xA9SjhE62XKk0YH02skgliUGSW2yEc19/PDf/qDNbQVrIajBHDjI8RbpEu44QuEsaIMxDnYWj8f + q0yCy4fl/vQu/2UmHeq16BGTPFew6ZEIHvZDgLNxJPXkyscJsVyNsTOxDN30VgeNbvK93e4k9bzw + RCvUEgt6hXPV+jU/Oh+wC0Hsscag92QxnBVqe60kbuAd6PirDyxOsjUGh0G4LqEVwed3tYiVfyK6 + uKXUQuluaJ6IHz1djp6lii/fYb2DNMrbrcuWB8+ecJvQxq/X9NWkSNmnl82/WfrOJ5kpknbMMY5u + adY5bZbAV6FP2Lydin4Ok0MJcT5407OetyboBk7hd+RPBF/PEV0G0VpFK2Qkkmzv//kzh83P3uKf + c8gW78B9Buvmr8uUUZ9QhN1BY7A6+6MyZPjMHCrPG7Hm1S+HyJngQv8jt8TWrL0zjfzBhLWfd1jv + ZVLTEe8CWF7LE8nf6WfD19qFOnuosXLIppB4+yeEwaK/vAYbQf/Hxzb+ME1wl1P683OrQ8tN5Sft + wXw4AQam1+67XYHgZyNb3Aaw5TdsObWqzOB6HmDpVwI+UuZVb/WSFJXvPCcqV/L1mLje+vMPJ8RR + vWeDhxvBl9XZWCrhoV/MD9VhPScHHJXhEbzU7ycAEqfsvap4pfVinFzulw+we0UrmLZ6GjqZ5otI + 5NwpY3PnPQhwuff4d2tkzAW+VGgpD55o2/qdPSQkkJT2EcvJZf75o95GuNuJKqc6nCv96CKm8k7T + IZJRNnfwm0Px8XmSkHfqfjFOKgd2y/ogVpBW/SpkogRkoQmJWcBr3+/9ZIW0vQNvb0RWTw99NUA/ + LM9YqYkFqMEdfPjDf5c1vv2SP+wKim2rE+96OSkE9m4DNn98Eve7e73M5P351c+mZbnn/d/4Nz8L + m5a/7bjb/AqQwoO3Plwv+3aiz8Cfv6XKFZ/Rcpcz26EUF19qQ3W4UNol8DGdbOJhPqXUTb0VHsnl + iC9hNyn0OagFvPo0xPZ0Rs7US1EHL526/uWrmQKsg1/+OBrs11kYm2fgJbS8idn8tuF2RT784Xdo + 5We6xGKU//k53VYvnUQraH71FmLpl7yeffqK0Z2vOvLzzxf11EHwmLA9IZuOdF347cR1sF5//nzN + qLeyghv+YXuW/uoVJrwWg0u0huzouOkl+NpJiEjnVlaGTc+CBhAfH5c77EfW9ZOfvsY4DBaF0o6P + kJteT1t+VfolFvMcRu9Fm7gfn/7h5Wd9aN5+bE4Otwu+CeCF7xcbS6Rm1OZCE8rpaGNTNSeH2IFf + oqOLaqIqVq+Ml/jMoPv3NZNUsx7OuvDO9nwnGxt+/8iGbNsRZOQ0xo4e2fVqR4Eqfq30S2RUdNks + fA8m8Lzde9rTsFU4W/ZXJAK52/TMKfwbHzq/v9NYEQiIZMbRX/3uZNZKuMb5pYVIhDm5lHPmjL96 + YW4xDE4u7NS/SZ3Y4Bef+lYfnZLjzAGE25AYbPhReiV7mmgc34O3P778+vd7wY0/eocXuYOZfGsR + nvPsRqzbEoeEvwk5TI0hnfgDRdmiLLADxAkrD0ws86sHpdCkz48nPGmsUHVfzz89tu3I1ejyLC4x + IvdhIZtezRbzA1S44wLm56crc03nGW71i0mQLDsbrrCQYe0XHdEYavbjeBAnqLa+5T19EDus/ri7 + 8Le+pN1UOvOGpwCKI0tkZ2b6QX0ywv+zo+Dw3zsKeEGVid/5fk0ElyRwaCLWg6pOHMrYuIIoQV98 + nPR3OC87PoYZ1mWsWda7pkyscshZM3dCl88R8KngcOByBCYxH9e1nnkGpfBmJBdi96KhMJe7KEOm + vfhYyVyFzo4zSrCj6oHYdN+C9SnqJdjRaMRRfNJqgj5cBMnt4uK4g32/nD5nG12ETiD2+sjDtREX + iJwFaji8vN79PMJHDkgePfH9Zd0BLaYphTrgDuRk50AhMr5UKOdEAeO3RZQpbpJOfMZjSmRO5Oja + rU0Bk7tremv1ffUzuFuD6IB9ShS1OSrrjdVXhE+TO4ECibRzA6eD34t9JjqhQc9WxYmBzuv5xdf1 + wDgrT4oJ8NdVmdYEfWs6YL9Dl5ebe2JvL3TWDOSB3e31xjjGYriu/OBB9Eo1gg+dFLLJlTPRnsKe + HL0vyWbenVXESnrsIdm3amZBsigOfGxP+9udOmMrlDHaLHhyOtWVw7Wz2qLcd0yife9tvaiogZAN + 9wesNIKkcN3a5MgcMZp83O178qyjEpmiUWInoFnG3x+mh1KIWWxi/RkOzv79Qd7MdVM0DrhnmOS4 + g6dhxcQ5uXtlte73EgpJeiTnVvB6TjDOCYyuAyCPGKcZ37PfCol15eAj5xgOjdrOB6rYIiJdsO30 + EBv+5qdOBBsvLeSf1lhAg7wj7F5vRsb2pijB4km2rsMvTtn6DJvwLCcvco1rRSHt6RIgujcTrBGH + 6eljOgpgmw+SP14CGMIirqATaCdy0w92uMarncCdf7yREJQVmFIPCfDEdXfs7g88mFscJKgdzYY8 + ktZ1uMMkupDlGJ3o72kFMxReHqrui4Xd48ep+fZ092Fi4IKc0jatl1prB9jH6YnoIm6URRR3HHQD + X8U3b9c5LPuZV+jm4Y14bn/pWSV2bUhmFZGEf5QON7z3KqSXwMGe9FCVFcyyjazbLiG36h4567dZ + J8hdTc3bP1QcruyQRuCzcAjLuSNn9CO/RdRx9YWc5kvTzwfMFLAkZUVUz9TooA7nD4p2RY9VWzwp + v/EgcugdYt+LC2V3KB6gdmoDrMPR6BeOq0p0qK8RMdjrtV6GOeXA/RR/yQmd+3BVljJCB9wK2L6u + t55hloN88BMvwUffdwAVmkpCk+kb+OQq157l1DyGs1UqROlaT+EHzZjB5aDtcZSpbs/tkhUiq+Za + j0vXwZkCi7PRa49kLBfNC/QXT7HRkr5N75CZ356endqHlp/YxOKLtKfpoFeozHUd22iNAD8b7w7c + lrYi8lP+hnNGshYy3+iFT9YrUtbToSngyN5EYiFFc1ilOubowdI70Y+DBhh3OSeQP8aBNx+NvOaD + vZXANvSvxHCNBSxJbE2/9T+9pmis1xMvyPBZN8iD8DuG1AmFGT7kozytTvjIaAnABxZRciPHQjnU + Y29PBYzSwSfaLXw7C1cQEZ7iqMDX7JnRAQ5vEb7V4524I64d9nPYiiDLTvNYM5Bq/uDaInwzXoSP + CtacdbkjG1p+auNwXR/9Z03aAvLXWcHnDU+2+ZChx/sZVtU66/nD7qyiDY9I4sWDMhTrdbfVrHOs + 2vYVELbmGniIpQ676VtSRvz96lBxl/u0lkHk0LRLdZiubjnBzswV+pFogTY8Jfb4VPo5v0gS+q45 + 2O5J9x2mvOUxWndl6r3l7NKv4zttoJFMOdGr7Uza7CspKm9PwSPp6ROus6rrcK9HMkltclRYcTzp + IJGWkaQgOmcr8WiONjzGkhvW4XpsjRLCIrqQe5B+ndGmtYTcfTNi98bbYLXVXQr9vmO8aztW9coM + Owa8u1jf5vsF2CQ+DrB55TyxuXuX0VcidwDbE4/dQxbVHDNwDCIyyDA+n481m7dZDMdndfX4u3Dq + l7skF9B732qccKQDo9E8YxQ9XxaRhvfWRavsA+A8DJ7I73KoZ9iBHKaXGHnwLLOUFmI9QV3YugiL + WHVYj5MFFON63nZwRYAX7O1OcJzvSBSSylkOvd+hQDp62M/vMmConbjQeW2Hz0di0TX/MgK6p55L + 1F2rZnxtoxQMI1CwLsYXOjuW0MCbwefktDuWPSuKOwYOp7c67bzgDDgR1juEzLIi8p44gEtoGkG7 + kFbsqxc2XL2HL/zF2/nCmw6vqU4HhSP0SfqGB2cZmnsJPSbUsRqNmbJabGKiZn9VsU6PTsi0Z51B + l2Nx9OC7bsEoEWMF0u67wxoBXzAXLlZhKHkafiyvsmafzFz+4X1GeVKPxYlxkf0G0sTfzSSjwdtb + wcf4zNhlmrEf/NMn4QV26ol/sruMXDzHRMY+d73tHJnDHVtcATasVnI0wTPkxuzuQ44HDra6KgRc + 9RC3e6E7xhO39TDX7bNFZazlxBfTWZmxjFt4nwyy5WscbuuxQJgXb9Muvp57WsfiAAc+sr2dfgqc + VZoZUVzeeY9D91vSsbgdSiRk3H1a3OBOZ+kOc/A5VzsiNV8m7OO36Il6lVF8vLtBT/llO7fOXQeP + unPQzziVXfTUg5DkPlCV+ZwFNiLclyM38fWsKRMlCcpD806ugBUpoVMNUQlZF0v1elKoNcAE6tWN + YlO435z5uTcHtO72z4lb7SZsTw+UQD452eTUlyQblepYoIFfzh5ttltNJrX3gSbgdppxfaJrkl0n + EOe3kPh5w9QbP6jAb/zOWO6c2WdfA5LU+7rhQ13Ten7O6G3cDziAbags02vMYRkbuXcYLD9bdiie + xHx+GNOBL8R+PiqlgKaDciIG67/oep4NCabr942ViF3DxWi+ESTIeBM7AEHNZu2eAwpeV2JrOO43 + Cj8h5rsMJNGeV+ePv2384/f8ynqeNgVobZyymM6AP4FzA1XGcbFsQBmw6vLuQLo1CVUFvNKJhsYM + O6ofsAOPOJuHEkC4VxbGQyI1KEXSQQIEdiVW1nXfj/tasZG/9YRW1Rr0MyGog1E6+ds92V5Ghrud + bl3NBO9huUfAtkMvw9vu7RIpWNp63mtiKXaHssPWVflSKmcpA6YjE3vQB43yzXZrAS/PrWdMICQh + peLXh+DdvIjmzQplXvx1gOasO1gx1Dhb/aivYM9b4UR/47NO3AcICW8SeXFNSlva2vBoahqRyWvI + iHEoPCGGJJjW93sX/q3XVue3u0nZqqdEsBL4py8ezF5ZSSrMkFYjwuZ9jjMqxLMPhYy5/+HnSLO6 + Asc1DCauMuKaBtRVoTYKZyLnThXOX1WqoHS+XLb3P2uyHG4xrMr1QbxSZMA0voMG8F4MvbfLv53R + 5UgKrvVDwaYjfHoKM7WBYvz5kB/+0xO4tfDjqU8ch/dnvbD4OEHuNOyImRxwOIfquwCSvzmC70vZ + z0itWrj2tfbHj1/O2/LEXspqouelGM6RoDVQYxabBF7ahuO5WyQYv5iUnBTD7+dHY21WVQsn7sy9 + skl59RKEybUncvXV+vV7lXbw9F1FchLFW82g4tzBWK71iQNcma230zGH93e/m6DJqRmN2X4ncte3 + O0H4PWXLj08+S/NJcteZwCyd9yb8FM8PttZ32I+RJuiQ5PETe9o9B1x+3zcgEHFKVPNp1Vy3DgW4 + QsEioSM34XyPYQEVbt95n1MbUzrg5APB02YmJiSyw0jfwwzvk0bwxtezFVqLD7/OdjuaEzVgkc0g + gUhTdXIajZ7OGUhECMFnT8wDUnpWrl47WExknLLvbQinV3ypkA2uOZHkSQDrd+/5cJCalAQ3Zq7n + o/IR4Q/fMDRrMHjrM0Lb9+FiPo3ZbDeuDTc9RLTlmyjrB90YuCiDT3LRscCqexkDOSYn+HGLn+Gy + u5zTv/g+xxNR5u+Bb1FGzy+sPRMdLGAoW1iDoCOWMS8hVbhdDA9y4xHvlNmUvhK7gwXrPLw5OC7h + NMu3DxS8nejtSnvfU4W1RDgr9c0D8hfQb6B+TJjo63VihP3HGYghxPCVe298ikw+XFZ2r4JPUX88 + 4UsbZQqewgqLKWgnkH38cMWj3MEcDxJ5bHx/0uW4Aqkm77DRjnLP+Mdeh3EG3Yl8yxLQOWx2232T + Gf6Nl1njVQb2WTaJ5vGXepGnOoB4khxSTK1P58cCCvC9vBKi+dcymz3XL2AYaR+Mn9lTocpXbdD7 + fuiIvFJNmR9ImMXsA32sqvmX9idwbtHGj4gejG5GNe7G/eGPmqlD/Z1erwLtw89AQloxdOV0K4fH + iWOn/ab3yC6PShhKroaDSJf7ii3vMjIOUoalpqpqPhUUBurbjlAF7dqMWMJhAolERw/AIwnXtJ0r + xI7pniiO3GTLZUxEYBfyit1OWMKZdwUdZpaWELW9ag7nFiaE6Vl8evQYm9nf65INaiI1ldzzv/ne + 8BvrQ/1xVtF8RrDjdG/qCq9XVjs/yPAwHCpiuLuELhN9uPCXr3UjlJX5Lc8tbLT3Hh/JqPTjZxR3 + 8GXODn6s+btfRJFjkDI/DxiX670nMVvvoO65PnY2f2GJLoUv+k7MEnd/uAK64Z24IDHH2/qn03rO + YrBEMvbYcIL90gYUopK7ZZ5QlH1N7yXTwaCOK6Jbi1Yvd8kuwOkhDCT54e9BOjUgWW49dje8+OEH + 73uRjW33TsKpTxLxj+8c1vJIZ3ZfrSA4rCE+RcLQT6UQ6AgYQYuPJjiG7MZ30UE5XrzL8yHU6z4l + KdSnCv/yXU3b0z0ATyQp07gz13C5wqBBr21Hr9TzA93wUkZhWanEDaoy7I5NpoLheg/w43anyvwp + IhW9bdnAXjLV4fLjH29VuRM1Y56Anq9lgx6vKN70fkLnrv/GojLXB2/HZxplZXiXINwbGbGjCiuf + gyfJUJT63XTZXyJlOPJ1iYDhtxMZNE75ou0WMn3ax1iJprKfA2+OwKQFq1fTKgLT2bQGWBslxljX + RDBrurnCaqeZRMmVXhnA/TiAPkwFD8En55BOdhKw8T2vrNfRScyYEwHa+wEuDodvSJhKtoHBKTrG + 70Pzb37ehrRinX1MdJlblMLXV7VxvuqdM0vfZYazXk1kex2Mp+7UwHo36hOz+WcsOekRfIfChcjd + pIVM48k5YvUeb/nmVQ/grKYoH+8L/uHlEhumBCNwj4l29t7ZzEvrDB8X+ep144fN6MGVRfTpoIo3 + /tGvW/6AaXFw8L10NIVufBJ6J9XzitLe11RoOkm0VfNF7GpXZvR8/bQwQaWBj1mhZhzaKww6DKAi + 3vb+YTc4qRiKfILxmhv98tYDEz3IpceOQLn+dS7ogKAKMNniA4x93K/wjDNMTh+/AcyBO8U//w7H + zOe95Q89gHWWrVgHp5zeUU06cDQNjbgtXeq1OlQyerziGBsvdMo2/CjRnVFT7EMh7MmghDFc3kU/ + iahXHH7jD9stESdymbJHxr3rbgVGfVx+/o5D50cVwO/Dar12jwJlWJZTA9UxCDd9zDirGygdoK8x + IFo45fWWLwPw0+cG5+1qsvkJwBKDK1GOsRku52CXQLsTLkTv3Dik3DVfQfbNrsR9umy2yg6A0Mm+ + Gc7ZqAIzOLspZCm3bDtmYjAcla3nmfJ5TvsHo9bcsF8mOKgyhw05u9T8j5+JKElwxD3Vfs4teYDP + 8v3BbkvP9WxOhxLCY07JleNlZwlHlMIvW/hYw++Okl2eV3CCUoWzje+SKw5VJKaaSuyjOCjLxo9h + JDEKuW38Yz314gTs4n7wItvmwXgj84qcrM885NKBTp8lL+Gyu9TEbgavn4/n4IMOlXjypoMsh3zj + niLIX04ssW0uAJOe3mw4NpD+8Y/NL46hyO3eRMrGU8ZkIBHgjMjLE25ftV5P2pf7i1d3w4clW8wJ + 5uNjIRhith5NBldQmy4Jud9I2C/zug4/vj6JSH7UVHJvNtzyDcGM2DsbfrXwbT88Ij2YhzLWPd/C + Vk8YfIkhG9LsLgRgYBZITEUJ6/nkSBV6feszMfVkp0yz6ulg09PY6rLKmSQoeuLml5GTkKohb1eG + DL9OoGBDXd9Zp31IAmrgd1jJFceZ8jvf/NYb2fAiXIbqq4NEn6+kmKOHsyxp2Pz4AlZ3bRNy7+sr + B6ODR3IUvl1NHdH6AF1I7vgKpq/zy//Qs/XDhETx1tMjXXbQpYqNf/H1tW5gB97vePHARZSzuXLF + Clo6UjwR9fX2e6Tt3/hM4X5QhoBDHejLICP6kV7rKXZjGXSc6uG79WKcTT/mMDjMITmx2w5pJC0S + qIubQYo+SRS6l80d2PDM2+1LrV/r8GbCpNGOJAa641D57Zuwl271T99kU/H1U3ROmNhjQlIpP/4F + Xq3KestJps5YKh4D9yl+Ef3mYEq8as1/enpqs+oYLkKPbMiG5UqC97sI//ze6u352BiDK1gtXm0B + fGGPWN7OVuZpstxffidOv2I6XdZWgJX4GbBSPadwze98CzVPuRGJGWSFf5SJKX4FccCmz+Caevae + g3jJPxO6j8eaS7LHBLpD1Xn7Q1dm/H07Meg7CySnkT86089PH66PAHtqe6H9GkoFykP7jj1HvTkj + x3Ul3O0FH/+PtCvZWhVGwg/EQiZJsmRQZA4CIu4AFUERmQLJ0/fhv73sXS89B1FCquobklRqa2G8 + Pr5NqMBHeiFa15aMvchNBOwh3oK16S9sDURHhtdQ/wa0Xa7bjoGqBYIomsR9iD+XbPoT8hdvJKf+ + 8DS2+M9g244MO1N3KbbxssBFKzXs2dNQbPpyCZuvGGB1/NbxypGRg9PcaORPj/xXH7QEdiQRu7Rg + sQcCuBivG9aa5u3+wwuey0d/+hubGgkqMO/YDQeXL4ynVu5SIL26My7UMIufqfZKobaLITGciBjT + rWElSvFrwVh5nWJp+L0DGLoMktPdymLac78FZMaqY/+zjzcH/pXATR/Banmv2WdtQxlxOyWcucX3 + Y/E98z0MptwPwM7pXPptagrli8QCsvkZS6NmI5ToMSOO8eqKnj2PB2hX0hnr4+XFFhwcFDRWyu0P + nzWDnI0zHHib+4vvQno1ZQWmwvwEYn98D7RdvBaC6zThR+U8m8V2LiaMG1hh/87HMetU8PjzP/Dm + R7mLepacf/kk8IuezfuaV+D02j0C6a6Zg7jeBQvE1c4lh0Npb/7WWIJg2s586upPzFLtl4L35yER + 443LZiltZ4Q3avxmYf3JRnUdwQjCzMtIkkzAXf0y5v/p0VrXQkCNtUtgH1FlhuUliHt9J7bwME15 + wK6ca5BMBDLIvmZKdD5/NZt/tijXn8LPXKUkYOKFvP3TM4LdOWPxmMj+G9wON3Vepg8wxt9eev/5 + geR0U3YN+X69BDxlSrHhRNhY/vycPHgcAkF5TC57JjkP1STpyWEIPFeQj+8QXpUrwFu+dZf8RBfE + b2dm4/Z2A2Tjz7BLUI5Te/00C/8BI/yYGAX7+s67f3oyTF5fe/O/tEI6HeM35GynCpiy+IPkJPcI + KGnfBa8ppS6FTZfAW+cWxHFby53dw00Gmx4fnMvyXtAyPPJo4zvEuHKDwaLbXYexlEMSDJnszn98 + yL7BjBjJrDZs40NIJyXb9OqeUem5VKBLdvnMSoW6U927FlQaFAU7O46bdeEWHdlKeMV+3irDv/cr + 9u0L/+mHxLwrI4xuZYJx1nqG9Of3bc87Uz5/DVv+fsOv/2j+6SOL+DU6IISvOzZtLSzE5I2cvTI1 + VXC2gFawe6zLyO0qDlvYj12aeqmKNr05OPt7xSWGyCXwYMMdKdc0YaOhEBlcAkCDTnpWxjJWDEID + LxR73esJJnUf9pDRViAbvi/mlOo5FMwfxtqaVIZQUMGBf3qU1X6GmEqXbweOIADEAJXOVs4uTfBp + jtWfntb8q8cnHF+In+y44uf4uaU8M6Bg/6N77mzhgcLakGEgnOrB7U4IU+CX4BowvB9i6spJhc4k + OmHP5+8GMQRNhsH9dfnjL8V84d6Bgj6S9y//rLbPdUrRcSH+84PpTo15GE/1HOza2x7804dj/ydi + T4mKodo9f2+w6cc4yQbbmA5gqdGAYUHO2cUd2NsJ5X9+TViD1vjzM4A2ZDds/tWrjb+jRy46xOfL + NN7wUo82/4wY5+oL+A0PgrTgPOLGzTIsK3Jk5c/f8TlNHaj/FLL/Z0WB8r9XFFSRNRCnq34NNRe1 + QjfnesO+d20GJj4HBWhMYMRfmp2x+GSJUL26fjCbyropelKA3HDck0hVW/Az60sHDu1okWRvn5mU + pXSBsm6NeKMZTLyftBEN87HGWlTgYlFzj4fCkcF5fwlqd1x8f4SXE9wFMmz9hl3iKQeXl3bCN+Tx + Ljt/dAq7Vt/PvNK8hkG95wm0uh7jU3g1CkYu83aKzQdhLXt8ARUbO4dTlxrkOH/f8XpIfg6a6HTA + 0e0QFHxj7jfHp/wF++ezYdPNdnVIuHHBx9UkgGbPRoSr9Q7mnX/5uvS+TDNMhUnGQRy4YF1MX4RA + cY5EPXpVIWpWP0LHK3Ns1tQFUkx3EYQDr5Fw/znHs/gKA3Q6hldSOP6+oZpVz2h6jgF+oBQY7Err + CF3vKiO3c39x1+miqEiUeECeDqoKZgsutxdgcCYnws6xUD+NB/L0XCD49IWAhDvbBBeriILluvsA + /jMCE33mvCbWzrsPizP2Cky48o2PmT0Zq9jbIdzGI/gpUzdQ+diNcO+VJb7eLrkrctwlR+ocbX09 + C1LQ3V7jUZRPP+ymr5jR8/WqQDfSKNFQVxkzeTx5MHa3mJT5PgQULpWMSoZvxCR+D7bxmREdsxt2 + 3oIElt1khOjhmyI5PrqtLwlNZRhK13UmpxuLV9cGNTwCwcPX6yFzefX+DaBmyiE5kdFrKMnRAwxx + hIN1MAwgpIfDA7Glk+c95PqByWquQ+u5dWFYDj+w7n6fBe4JeBO8s05MGl/LG/1aEZOChb5L3ESV + kZnoM7bN3wfQ+gYXaMaWRdKh4Ivl8wu396ueAll3Du6ymhaHhGSf4hIav1g8+q8QJf4QkKC2xGJy + bVahXVNmxOmiypgeNNKR+Pzd8Fm/PAZ+KtQZ3gvJJ97jXQ9iZp8UGHOnF3GwzIPt92akM9oQ49Ys + 7jwF1IFdWT3INUVxMd0FmMOnIhBiz9GvmYqhDiHL7uk8HhKeTU6ziqiU+YykpiPFiye3ASh/0TB3 + EzuBmZ1aGQnHFeL09P4a1JjfKTod+AMpxcvTED2ddeiuyRUJ+HZi/eNXQaT160BsdCTxlAVpi1o9 + 5sjpIyFGI09egH997WehF3wgvVnPwWH6YXzbrmfFva7QpFo1cUt6AZLOqTmCQlKS8ptgxuuKIsPB + 6XP8rLTOZW3qhHD/gRKObz3PiFMce/Qtv3OgXPiuWf/mf/3UUbADbwWsZ1JZ6EJmP/jLJ8vjGbcI + 3i0FY8r7g3iUuRK8382RmPV+adYg8XuYJz8HW/dJMpavK+uKFoocxv2hiinH3TMozmlFrPGWudJX + yWeAQcQH8y37Geyz7XSP6N4lejqeBkmQVh3JWmRiPUO/YQXcp4a+kOazDJ8do/hEA/R3v20+uOvn + 7ahQ/nz5eV9MU7HsXwkHswPdEK+vDWxykx4xLLzwbZFvYJXO0IEPv7HnFYm/Qdgvex0+d28La/rl + 0azR7igiKdTv2BL7PSOWPKegUugTZ0rQghXlqoki+pAxvv+0Yl1yuQXaXn8SI1ROg/QrLB6Gc/wj + ujDWoCtT2iMumxNs9dpasFUseeXtlghra+EMS6VRBfpG98DxaI0xpU2aKzblVOK/tSJezuVrBPxL + ec0gJfdiCsVRhp5VnrCr3ceCjp38QLL3GrH2OoXF71LeWvgSoEjOWz7haX/O/71PedocOafwe+Uv + np9/+eFv/ttaeCC3+VC5zClFHi7W8NhOsQyKubdBCxdSmeTA/IfBPrd3h9IoXIh/OS1gufZagJD4 + PhLnwluNUFd8p1hMC3HJUFbwz1zV4dHeHIWlD+PlErQjKKQ3wQ/cc2wJP88OTtq9wHlr6YzpgylC + Kij8nJ/wWLAyVy2Y3U4LxuCtsB8q1gidRT4gYZUfXf7OTaXyEqWSWPenP8yRt1DkX5ttT1N+bMSZ + 6W94EmE8C8k1HdiOMQvestYnrpD3xb96rfOBSJzVpi55jSxA5nFVsK6e3EFSnLeFzsf2M8N8OMUi + y7sSBT4M8I2/6K6EzrEC2tOjx/Z8UF32+E08MAp4IGo+5kAImVPB38sPCa7nEggH7fsGknZJsU4K + FQi/aOxgGMs/XIQhNWgs+xCWYS9hC7b+wJ9fQoSyVjljDUODsStflPuUFyIc+9ZqrPU9CtEte/tE + jy2lWZRSy5DycoPtFMMqXn8heEBd3/nBwmoZEFsUHIgOio2j9FMz6WemBxR7kowPd76LZ2GQEmi/ + oz2xEx2Abf4n8GdrMz4r7hVIr8HR4fwuVBIe44872gf5gEJoOtgBMXalsJsceB3fFbkPo8fEbQk+ + 5NRDRW6vn+bylvmK4AdBTIr0FQNJLLUa6WdPI8/yDozpUp5bkFztH3G9B2jGO+QjNF/OLdaG81RQ + llcPqCaLhh9qog3SvvNE+LmkBb71XwnQx5Bb6O/+l9XEjEq2e4D38lwF9HkJjUU5pT1ktwvEjqBP + BbNZTmFW23KgtPg0sPPHWWCsq5/t/49gqI5WjkoNLSTckbmYlfjiIa7+6SQt462vsX/kkThTNlM1 + WOK5ta45YF/njo2mteK1DOw3Oh+diFgu3g3kyMgC3FPwCLiC2xuUyrYDy0KTsCfl1cBiUioQCLeR + BHL2jruU7hx4o4eOHKeCM+hy+ckwn7/SPBnwXfwW88hD9/x5zsLjFTfk9xg86N8dGetqsBTjq3UT + qBcfDWtvqruCop8gPE/UnPf7HA0z2VZ4wTjwA15ptH/fB0q6+Ph+UEC8ti6U4SCeD8Sxb3Yj1jdI + oaWqBYmbaXJpsxNzNDhdTk7qE7qrU1sdZEsvY0ynjpFDncnoNcozOUf+EUjS8fP+e55ZMYZdQdX6 + pypdMCHsutV7WFM9DmEWjAT70UttZmOwIVx1hLF5ep/cZR6vb7jn3gPOL8Av2I37tIBw84Ld3TC6 + y4ZHlUfZN4GS5TJg5dZFbHt+coDAKgTx8qghvjkfErwrZLCfhSMI7ISQoNbOzfwSxmgPxyghTou/ + A/mZqamEsL4TJ15Dgxlv3QTiJPskKy5hLOW1aMLfkvYkwP0DrOF6ThXarvksgtfHpfBOUsUI7Iac + uFYyFqdfZ2Sp5YwP98loSP0LRSia34jY/KU2WEVNChq4iiSNPmlBP9VYgfvn2hH/oBQxswUDorgP + zFkyFwTop3pXcP85nGdxu55RqpSKc4ECUR/XsaGVsuMhXpPTPLTfdzN/7o4Dt3oW0FgTwHzubw/w + WxZEvHDrK3g/ZjWUtdDEj+7guOL1ddGhtY5XHAF0GOhVWjhUoF4jaljsXfJFyISc86yw0d2VZvmb + r2Gs/Ij+mlJAZ54tcNZyN3jtUVCwLL9YypbPg/2lWeIlO8MDKGZOIbjEa0O/41eECfd4E/V3vhrL + 55eN4HrId9iWbDCsN4cP4DHG2Xx/a0WxzopTAgzIiaiGbrji7fip/ps/doNniJb2LP/hg12ZpjGB + Q+TB9RwYM1LOtjGTmxfCZ8olxB3XF2Ms/yTAkZsr0ZWVK9iWH0EZem8c0JMez49fxcEjyPfYuj+n + hiVd5sDD1SnwKfx4bCUvlEBRjgPibXh28YkcwT/8+jx9IVs8wRXhxjcwFuK9u+yO2QMe2tki+FTJ + LmuT2wE2DSHBpP9uxZJSyQL3nPvO+wKkgNiCwYE7c+zg9HU6sKZ6EUFJBUawoNAwFtKhAL7dfUie + gscXk1lfevnjRTFx8xwbiwyK6F/87+RFi4ejYyzw9PxdcXxrQpf3xK3rmrUbAyDkfTyvKBmR1rOB + bM9fkB0DjsLHw4SxLT/Yht8h6Izy+lePDeaLnYPM6SDgY5A8XObcygesDCAR3Ss+jLZFxoH6WDWB + JJCPMe+3PRQbnpw5vp3ActTqETa1YJPDKEjD/IyPOsTOfiUGB1Y2ct7dA5ereQuyLZ+O6N0nUP64 + r1mG7dRQt9xzQPpVEjaFa+cy0lUpRI+sIXmqRwaNvGVRJuZeCW4jm82/Wh2hKIkgoI7TADagzgRC + oi9/41MI25paOMRz/ccHGb2+pfyvfuHT/bQ0DCVcBD+n0zeQlZPujkejUOBWD8nf+513UtbBo1LH + 2InLF3sLVEngNt/x4Q58l17fuwz6hudi15fdYl1H/FDg3VEI1qxzM64nxflXj831c25Ym5xNdIy3 + U7jnnVbQIBAh3Pgvyf3oDcY/PaC4PCp8fL9Hg2z5DQVfNSXWNBoGL6yaBSKVQmzpZ4uxVPR68Mdn + S034xXSb3yjSfnWAIjEAoqc5JXxWex3HzdNo/tVrKXwswTQ8jII/1dkC+1pvsev4t4GF/SMFp+7s + zfL31w8rAIaDbC06BH/5aSnjLASlLG5d1zLb4INbksItn2A3947DKMVVCYejVpBE7M14rZ9uCT97 + X8TWYUniqcTKohzrhOKjcfwUS+PEPMqd0CZaoihsjXa+CEv+tCP+0/kZkz/mCxiORkG8a7Bz2Rca + MlRl38bJdcVsETNe/4vnP/4Qj193UZGl7jVsQ85pptux6lEnODE5HofLQPWjmqCdIzbEshItXhX9 + xEH78qXYHhQd8Ajv3vBoiddZnHeveHUxNv/4PXZDeypmtTVyeB3bKgC592kouR0iNHv48Y+P0RQU + qRLg+DTD4HFm1NKuJaCB+wn4h75u7+vQQfSVOYJ3eGyW+/4mI8VCIz5gTW+Y4l1SOOdlRJ6adR6o + dLrJAFhyufG/hPFTYY2wsmsRuym5x/SrRT2kRhKRR7etoLqScoH2O9zP64Y3u1lzcjDlrxpbixs0 + kqvhBGonKhKvUIVm9lC3nYL8fc7UfEbGb6fay1/9JoFH1EHMSrsEkbpAfGA+Z7SHZNaVsnfPsxSY + WixAqVug1XUYnyV2dqUsvzuQLrFA1FKUjVk5j7pCjeWD9a3+LKQTPLgOzoLdDS//w3Oq2fh402ca + djlDD7pn18Nut3MLdouzDMretuc2I/HAlqDXoX35ULzhq2JpI7iAVTg9Zn5vr+B3erAQ/dVbQ22n + eDEq2ALttIjkvjRPg37uuoX+8iPv3oVmq781Co9+HbTxzjSErLETSNJdTZzy6Az9fqgT+KeHaK/g + 4tLD2ejRxqewAS8akE4/q1duuD7iu2lqTb/pX4rN/fb49Ct6tj5opKIBJikxO+FdsKD8iXD7f3/1 + dqC9efaQndMHwbt0jacZsA72tnTAzoPuivGTTBBO3ZLixE1DtuX/EDiXuibGNZqN7TjeAN5qFJB0 + wyuMXW6L0n3eLY7v5VAsRRkEMNh1DvaSuGJr1tgp/G27JownEJslPb04hF9Ljs1JeTLWKN8RlSer + xDkxb8PGR3KUeOkF2xvepG5hUdiVpjtX77gqRPvzVcCmX+CnzDmMyFxF0WvUrQ0Pqw1bYvT+px+5 + V9AME5YfB2CKnxBj4UgaWt/4BT53rUW06ccbZCddajgexRWrj/DLqN/PJYxdFM088zn33/0z/L0E + NdfwbDZZLSO91BIccRe34H0W9eh1CBVib3reL3kyiLhc87FaERb/01N/tjHjo/RIY169Ew/eWVti + K/g0BjPn0oPiz+bJYal+MQEne4Hw+wIk2nZE0UvGm9AouMNMveLIxBfVFDS/pRhrnmEx4ouVhUTT + 2s3V9ns0JJMO0hHfSRBfwoaRS0uBAL0zxhpOYyK+LibiG5xj4yc58dbHnQdN97CIbj6pSzltx8OE + 08+zsJqEUS5ZM7RY2A0koVMLRh94hlv+xN6efmPydAoOBPh8IofzzS5EfblXcOOfM4q6Y8EUvJv/ + 8C8+vI9O0atf2MKZu04EU34a1vI8cPANx5Yc5/nnsl5zKuhwTjrvulUoSJ1eI9B92pYcl/U1zEmZ + PsCXyT3JClU3Zn075Xrj/1gfJMaW66Dk8G/+mLu8illkxxE0PjLFB8gbw/BF6AB70Kj4lHcflxZt + 8QZB2xrEfKqXWBpf8hs8F70kJqeGDVOc0fmnn6j5R3Q3fbT6039IcFX1mJaBWcKD8m1mWQYFWGNZ + O/zpxzM97V9MlGzjAGPtHZEneOdg5IOXsnet0wG7Wvodlk8ycZDdrpDonzZyiQCKDOTTdMaXLDyD + f5+vgnchWwfVYkXPogPw8WTYVtoGsMc7D+HGx4Mf5PrmZ0pWDv7484OrX8UMaWTCruRWfERdPIyP + GkHI1wn/xzeLqfTCHMZvh59FYy/Ea219Kzg3cJqL3PsMgyW3CTx9xf0/PZnpu/1bIaebEBRudRjY + e10prKKt60GvrfGSnn7wX7119/FxWIDuHv7xV+F494zVafY8VParPtNNT5i6uXTA9n6CnaZ5jD+9 + bQj+5sPh6MWAh8PXhBu/JBEpVLbQUX//6cEk2fSl1bg/D8rXeH2J9V1wLHytvIbk0v2ItelX67Vt + ZviZeQFrD2I37M5lb7DpDTi4nQ8xv+mV4FK9eaJv8SxaqRPA9qRfiQoPJVuy66kHSUrSgAV1Babv + YXGQ0V6PgVjTAWxlfNMrKcM4BpKx8ZENT5UVcX15iMfgViYgtZYLjiJldTe9XvyHx2eF4wtqac8H + uFTOi7ibP7E4P6tGf/MBd/3SEM6zErjpv9iS+aux+Q0HKL9JgE1AgmHShbcH80uzzIB8ipjRx2mG + 2zEn5H5QioJOCk7+4nHTF3UwNP4vhShj73mKiOPS8/UpA41JjJgSko1xq99QsV43HBCxill1VHOw + 8QNsqdydUZl4I9R180u8/VAPK3cKKrj5TzjHu1tD/+Lb8fQT8fnTaKzZW6mAXB5vszzeMoOg+GjC + +xtcsPYqH8Oi3r8e4tdHQP7qAbXlX/mv3mpWdnXn4LVUUHq+bWIf77thIV9PV2SWXYgeJi+X1pnR + wugnGNi9qc+Y7qSwR2Vvn7Eh96Gx1fcAKi87+Mc/V7//vaHtHa+bXj4BSm5eBC1q9Tg8nDi2+WEz + xDHaEy8Us2adElWEm56PnzepByy5YvrPL7BuPGCLZUUPeBbFYOObxUCLl6UDvQQKsS8XExBwDN+I + CmqA8xZ/m1XstRBK9L0jJ6h+DZqiQ4V++Khu+CRyqf0hMvjTPx7P2nTpfeYrgJ37g/iROINl8Y8z + DI+4nnfnQC8WvLvA/YeQYt5pWCx+d97wQKrI73mLJ0A9TX+AI8j25FTuT8Z8vj4VUIuLhx2pu8fL + 09r1gN6jHXHl0y5mUp6lyoOjdOMP6zAlTwCh4ZMQ+xt+Z/EamMrmDwTill8pB0cPXIN1N4vpYx2W + pDn/nRFwxZaLn8N6sw0VfXVvntFKPjFrzu4MNFZUWFfVlm34PwHgzL2DX/+9/uWzCO5L3ca468Nm + 8tizhsfx/AyE2jsW0rw+Ivirj+L8Qp1qCH/60V/8Xukhjmn3aUwgJrw57+foN8xvmKho8yuJHmsC + IzP5mFBApkS0R3dga74IPHymMMEnj6UFEaS9Cu08dfFhuR0a8YDzB6xvBRdwf/7j33j88ef+hMd4 + 7fqVorEr4rk5ZAYYlqDWYVfCFete3TfLH9/s7Xz9wzPNWsWqhf78xCP+2sYi7+sD6vhZ9RV7lgDd + +CXY9DnsllQAy7n8jVBm+YU4tDeb+Q1LFfLw/MIF+YCYmXPioaSQdfK4tLQZ//giEIpxVny3Mibs + qzKKWRRg4x682PqSwhaKx3nEf/WO1b+MBxjaOfFfxdaViI9TqGt9MlMzm2KJUvr404+IY39jQ1Cy + QYbiz+VndnhaDZ3l1IKfRLbwTV/6ph+75QE1Uh9IQNDH+A2CIaO8Sc//8Pim9/UwKRQ9YETRh1Xf + By1Mh1QiutmKbMKBcvjn9xo+Flidd4cFbPoaNvjdY+uq7MM/vYH4KznGUupVHXznzgEfztFhkHKp + 44FyDaogVtupoMW7zmFxUf2AfThs0IEgD2x6dsB54if+09OQeBxHEvERM+aNr0HtlDZYe4hzMbV+ + e4Crcav/5nuxynyco66sH5tersbrPr+bUGZ8h48FMAoJxf7h7zPRSVGBKlapB5Qq7Db/SXXnkEz/ + V9cD8L9XFHSPqzNLgvAFJL+1PKofzR5r5/VerAQlOnjYwoDVVe7i1Y5sB2r0G89j9EqNdc+tNUo9 + XiJXVy2NLlOkGQ7eIBPvpfHGeuztDjbwygerQX+MFhfDQuvlIgZcJNuA+XnPKzcjO2C9fHLub77t + Q9Az5mHNvpwM0SHJAXIe+GBvpLBYYnIpYQArRlzCIXdxvz8L8jtyDMRQ1FwhTpiJxGzdEEN9cOm7 + Bx7AP7ztITI5Nt2HXQuNIX0Hsn7m3HUujiO87IIOYwNUzSp/HzO86/gThEGvFVRoqhxd2p+BD59Z + Bbw8RibKxAPE564J3MUFbIZokg4Bq9euEMO7N4IunCHW9vQ10GiwHvCV7lkg9Pt3zD5hKKJr3lPi + eo5i0BY8RdiWk4dNlzuzle5nE6pBWJIy6UlDrUuWofASHkleTLtiG38Liuv1MAvHr8DYtWUimiT4 + xSfJjIzmWXcBfB/2OdbD39uVaGDlyAiLgJz09wf8hMHr4fi5OQEhH8Ro4FUmut71hnj0citYaIgL + lMuHGci7493lcSiY6PYNTthlMXHZrBQlDOLuhNPAu7tT/PN7oHqYkuCencBij02F3tHrR24/xWKr + RF4JOvH0QvS6+Qx8PNs62o/cPhDmbA8oXp8hNFOYb9d3jNm0SaBvrDU2dqLAVkKrGiov2cLxE1VA + xOs1gsM1smZJrARGXt0them++c78PGiDmOXHGjnVFBE9MU5A+n0iB867PU/838tuaKKEHRQuskJu + VLIbPlN2I6zjc0nSUHy5CxUfPJCmccRxvVqFVD6MCgWvMCXlqQCAjZlvwRsi+kyHj2ysXZ5yiKtp + vJ15cWokhKAFD/ntSE49vyvmsJBDmHqihA1DT8Fo9FUKBeni4eQaJ4Mgt3oIrwv/Jc9cSoDgCI0C + vcA7khBmbbH42ltB8Uc7EudxNQr+/Fh4+EoBI4ENbINw/OUAz7n0Cp5edIyFtlxKCJvaJPZiJQbN + cKSji+pYxNTTxljKV73A5/XXYttxrwV13t0b6VjJcaL3KF7ffhchbTxcSdJpd8afHzKP5l++D5rr + EBiElC8e/fzDm7j3nc2orUcROkaGR/BoWg1/slUKf823IkcmHl0BrWMNj4KA8XkvxfHyq+YFuube + xCrk6kFUPk0LV9D0RB+qNl57FgRArW9fnIMyZNNlqhO0M9sU3+84ZQvo3g46fNJy3q3zNV5vnk7R + 33hhijXAx7OmIjX4NtisHbPg0XyPYCiOV3LtiT/w23iCe2ZGxNbsN5tXqolQOgk7HJivT0zxeg2h + /9R2OM6fQjNLr0CGcm5eiHdKHZev4SWA7XkViXPJ62Hx1ayEDg535AA/RiG8A35GVMuzeYXt1sf9 + WvHKcidkRhymDVtUr4fP+o2Iy+0+wwoCbUHtmB2JlmyHEEzHkw5fO+c8w/EUFGxW4gc6XGc/WBcl + GtamwRE83/1oFkK9dvn51zkg844HbEyQj1mdfnu05Q+cvjkf0Ccbavi+lzscuSsPWNuXNeQfIcPH + 5RUXo3OMRFhH3KaYHHlAv8s7QZmdeSTjcmIsaL5EKLWOF3LabV1F3gE/7jvDnLDPDu2woiU04ZRK + JT5mO51RsCMhfMjfIzlKYccWYU1K8Mq4+yxNjyamdTGo0LylLg6aloJVmbAIpdlgWFuECqzzee4h + /bYeiT7oF/PD3NfwrMcwGPyzyiT8Yzp0+0wnKuT0Rpzuao20WNoTc6AXd35wVx2e2e2E77+2KNjl + MNXwutozUa9f3VgJ7SrEPyI270zSGcN0xDpUr649cz/ixdKieh143sYQRw2Pgfi5IhNu8YNVq92D + ycj3D0i16YnvoHANqkRTCc3bL8JJuVbGdPIyHekZO80KJ/IDQyFNITYMglVF+BnEe2sKir8EkUN9 + C4BUu7wDcVsPRF+tS7HurbAHQy1MWG04s5FiK36A+fGsiVN0frOUmTtCWu7gX7wU1DRVDy0fGJCr + lk3FGF3OFEHVcLBmtudCsCPNQpLcGdjNypGxh3qT0c6OA+xzjgqEm38NoNjeJnzS7k93Nh7WDB8i + ToJ9bVeDaJqWB/lbc54Zf/QBr+qVAitJivDp3SYFn1a8CpYPF+Bon3fG8ruAEJ6+londxwEMLNT7 + FHZfLM20fD4MplrVCMaHEuDnBxFjaDSrg48eigFRVdowILsqrCN4IR4Nv80YIk6BRVEj7FEgDHNz + Ch+ISC+An+RzZ3zaxwe0e9517I7PE/udvFBFenrAJIYlLUjtQgv09zDE2VbPRLD7Rkia5pE8LRQX + i7q3F7QbqUMMnNiDUIt+DpXAPJB08DI2a0BJgA4jg1hj5Q/8/LpUcLXp+V99ER9Ib9GXfBZSsJgY + y8VcUjTIYz7TLZ/R7t4GEK7WhZRbPFMl+jzgUZAw9unDKdZpdkXQr7cCh3OTFr3I+yriuKtEgjZX + YtrZRQctSOpAHE5fYz4xXUfgHG+nXPuqyz8dcYaCs2twQM0FrCcv1MET1THZnO3mL/7Rcp8IUY+U + FsvmekFcfBKSy53dSKrVjWh6UTbH4l4wVvmbjkoZ2wds7jBjtDmFJeq7ev6HJ5jUaCM8LyPGxi2+ + G8t85R7Qp9W2woGv3fWkzCEQYk8nDzvnGrIOig45Tl+IZkigYYevdkDb+GHz9QNsGea6+ss/M9fm + eUxc72uCkY4RztV1KOjugUfg7L8cxuRzBySpn5YSpbJB4mCeir/3rTSZ1wdKxrcF3d7HPnhFKTaO + IhevKZZHiI9FFSiXXG8k1817aISHE3lUEio+5tWt0fE8Hon5zs6DBGRDRfd8dTC2ZK0Zq0F+o0Cx + dXKXte9AP2nXwU89XYir7mZ3QutYwdOP57BuBlewSkrJAwgzOr+adjL6B/dUYZTU0bzmxmKQAggW + VIyngH1+vAy0/ugmLPkQ4ydNWDNhzQzgnfv4M9AOT7D2657C9ts1wV7OTSBEaxjB/mSWxGhdzxCC + hyRCv9TVWUrNtFjMzuRhuC8wdr63C6NKvpggUeKc4FziwfIKCQ+HRLmSdArVRpoMpYXnD5XJ6VZ0 + xbKDNxWC+Pea94dOKfoVdAr47Ut/5vK3Ggt/9TZy4Yi9X5Y1q1wOASBzeiJqdPi4U04+NcjI/kSS + jy8WU5yeanDssErMm/8ZpkcavtHlcbrP2fO8B4sxwAXuk4M/R5AfAAXns47c+0EhunSehzWi7xHB + 7E0CdF+2M7Jo2UOhEs/4FDb7DR+NMij5T0o8j9u7KxcrCuTV3Yh10zZd4avGIVhlkWK1u7gF+z5/ + OrQSFxGNRE1Dorfcw6NJZ+w+XT0W3kCsoXZ2NXJway8mv3Zu/+pBMNLLLaaide1BRloVB56dxL/i + TVXg7EOJbHgjpvXHMQFuq4G44/PLpppfIJRO0g47Xh0P0ji4EczNLwngQ84HJrM2VarEwGRbY1SI + TJ8rUIalt9XjhAloCQ/wWRZWsFst4M79yGUwFy42dm04s+nkjyVMnbtJHF2/DCTU6+QvXxJ9VnqX + 8Z13UJBjaPigf9yBNdKv/sPPGBu5aCy3mKjAuYoffPp4S7OOmq4iEX5eATknV0atylXgH/59RAg0 + 8x+feV6HNqDStodhq0f7Ony/Mf5FmisBrbdgkYlHot7x6i53espgU9GQBC14A2pcuAMA81vCejhf + wPAQFQp3h2YM2F+83nkngKtzygKPG++AvdYlB/XvGRINDjkjlok4OJrJj/jFuB/IhrcBE6YAPyrq + DmLr2y30SH8Nvn6vurQNUhV9X13x7/tjJb4P0Ho9j9i8RVLMsugVQTUVdXLP/Hc8b/kaFUWFcNBt + XW3aHPVwfx5LYjTX90BP8GWC4Rpa+DhnNza7hVbBX6V0GEvSMrA/fMIFHMbGxlfYwNkZ/Jd/y7dh + zFU15WDLF/MOr8owcTFVoAWnmqh58WvWe99YUGzNFrvqLnD5apBbyB/zE1GTKIzX+Lt60DjVL6Im + sjf8CIMQ8mr/wXidrwV9C+2GDxDEB7H8gU3kSuAH9cOs2LNnDHjAD9BSoG2nANuGJN3qHvLH7ITd + FjoNNR7qjHDxTbb7j8N4uscJnDLZxOUX79yV5/QFBrBmwXzn3u6ikXpEzj6SAs5sr+5kl7BXFJWi + mUPS3p0k8ktheZQg0ZD3iZlqIwdW45sn2c2YwXj1kQxX8a6RPE5zxhh8dPA3SwhjPFqsf3aLzkli + GBFdgrBZmvU1/+kP2DrxhcFcj5jwjusRe8XtaEi/tm1BOkGdeElPhkVhzw4kqRXiXNanmMbHQwD5 + 96PDQfPSXFFDJgWqsvPmQTvswKYHzIDE2RrAPz4s5bsN/1nWNh909w8fg30fajj6XH2D3Yaw/lcv + zNJ8sLXkhBH2h3Egd0WYGdF29hvyP8/BZo0zd0zKZwLKXyLjaDWMQdiuR1s+I/pqNM2q9iSFWzyR + ktMIG//wxBYfxFdx4a7KADKw1T98tuxgoI/zJYAmsoKAbnh1sKGTAVVBHlZVp2mYDBYOHQ85mvfe + jmNTipcRlSGLAxp8YDzRWWmhzkGA/UdBisVcJxnUVBXJ+Z7VG3/M9b/5E/wHAAD//6RdSZuyMBL+ + QR5kkxRHdtkkCqh4A0QUVDYTIL9+Hvqb49zm2IfuhiRV71KhStB4aWC53I5QWC+e+s/boWaB6OgK + 4qaRcIdJrBe5CCr5/cpCjOfuXU+tYmygGawQWxL7GJTeN0eQtNcUvk34Mupgp1FK99XgP/77G33+ + BX1bEbru18rf3xWs/k0oR8PIZvtqVJAmfY89Zo3x9ELOgkrhkKy95rxhWhy1UQSzTag99U3MxotE + AD7hBgdKzmr2nKUU6em8p8nxcchX/Arg+t4dQ+nCG/WcN7IKp6zKcOhmm4GJR6ORBmT72C25sP7L + n+iduZQgdRsawvgFXRZyH2NT3F8RL+6cDLBOWhpyshSP3GEminy7vHCQlxe2rPwOPK++r88fxHP1 + UULoZzvBKnWjer4PYgOvOC7w/lef/cVInv16kD7YNxPV57GQtQhq/oA1Mu98hnaPEn1vNyCwGe9s + 1o2yhVfnuDQit239yz9hCbBZampmezCWna5yyrR2GldQPhisd7gNfHo1oSHH2zU/XYwEeOe70IM6 + veulutoJCFiew2X32KFJ0eJSMaJlG6Ln7TAsTP+8oK49DReb7+i3wqcCWPkADrOmisfn61b9rS+1 + d1/LF5vcvABP5g++x0fjn18GqWADDZEx1xPpKkf540OGUWvxhBY/+MNLvH/dZdQtO2KC2rCUeiPE + Bp1rmsnVIx6p9uakeGm2h0X+HrgrjgWuzuc6zScU+rcWh7i0jclcp4oKelTTQ7+3GDvsRwKHrsUr + 385yJjQXRyHl/YXV9+c80AoGGZh7fv/zKxdTFzdwrYMUq1nuDoIrIQ959d7AxnyRjMbaSS/w77aM + /WAS4rkd1RbQrgppKN/P+SI4az46ZYTwJHb80f2JG1kRfjPVT7jKu8PUVSgu7g9syLHE5q+aHwFb + 9o0e6k0QT3h/0eF0x1EopzvJ7wqn4EC/3C549dvQ6j958BKtB9UtfZv/lndcKaufSv/0EacVY4Ou + ZrHB+wM9Ma4SRvOPD+PTyoeW97Nw4DNmFtU+Zx39y//Su5Npsi0hZspRvqA/v8WQw69B+OMrUniv + L3AQFWa8+k2q8pffvZ7tVv1RV+s3xwm9XrSmXn6JIqHqcRrxwYv1YRE4S1fSvZ5j9SM+2HJv8gv6 + fPua2v6u8kdH0BtFmr4ngtTbiQmScT7CHz7bv2M1LB90FYAn5SNUgueP/c5kMyHfrM/YabirL+7H + JYA/fu/GTmrQXK4IPLfOiTCBq+MRLX4I9LLv6N47h75IJi4DPS1U7AqnQ86zrFX/9DFpH+LFmIWQ + FujP3z50z7Vr94nJcIykhKYNfcdf7/ELIBE/L6xGpmWwx03zlP4eHXGwh8/q/6YCvCv1jsOzVser + f17BH99LRP3jzwdZbZSmTS8rvwuZoFw9Bx6aN1D38kJsoPH6RV13fNJD8DwgMTrJL/j65QcHKz63 + 6WQGqH/0GhEvYzSM9bJxgMnFRHF1rmJ+6rQCLHsitNAORzTJ7NqjJywVGVc+SskEqXR7FW/qq7cZ + tbfP20EvqzvgMxw61hPRDGF6LLfwy8u3msBT6aGfzQTH04TQbLF2hNuUIyKykcS/MxEW5E/yhhrC + 7uzPebPosOsjLRSu5uhPQemZaD0vWL/e/XzZSR2RQ5GdqCbfab1o9k+CKVdFsl351bhpNgF8nI++ + +nG9vzQ8IfI9Kwy85+XbQOdXBuiq7w84jKSOLZpiT8iR9T7khMJFU3S+LXAZdinWxK41WGgfj8rq + BxL+ET2Gd/zdhfAFWQrfzbR+Q5zfmj8+R4NukyBOP8323/vTvf+RYjZwrwSt+EtPHG7qefQ6G/En + NyXrvf6aP8z8BiD9UMIf9zEaILtlwJIIwuXVivHcmG4A9Kmp1DeTypjVZQdIsU4PInrIy8XHqwoV + RD7iP/606jkT+IN+CM9Ds8RTcw5ekOwgpqt+ybl+V6ryT05S6pp1W09NPNmQEeFA8Yl/xfN0vS4o + G8sC43Y0kbji8W6agzHkre8Zzfd+cNCjMDV6rIzVP2ilf/FJ9cTZ1c9T2qn/8FdzXFL/lJKkaPUT + MM7vJ3+dWpagiaEmnFf9S7brjYJ6k5WEZVmNZr+fUoVsEUedx+mGlm7T2qA/O47uwWD+jIWoR3/v + k5XXOmb0o0oQJeItlKt3WM8n7AIoVvwg22ypjdZRN55MDGzRgBWqL9rC7Qirn4rj0DkZ01m5hXDF + NCec+OOM5WO8KsjsY4v3bAxjdo0VAn/+UInrK6KO9awUPXckGpSsZSu+pEhoiyvWHNqj2aCBiuaz + Sv/4zrDyIxUdylGittmQfBK3aQj14RRTN+70mpP42VO83Vo9/In6MA8l6uG6Kfiw83wxX0JDUxVh + 0/vhTKN6YPMr28DqN+D126p6OW1zHXZJnlBj1/ZsvFuHD+IWU8Q34fLwV3+EAB/XLnW9mdVTLLY2 + qmtHo7jmzvX4p++C3/dHPemHcrbW96B/tCt/VdyYW/MrvK+FSG1BovFscbyjSO8Lo3/5+Pd0jQ84 + 1IrpLf3U9TJbjg7u3M7UqAshn8BbKjiiWcXOWP3qv/eB5/aeUm8zvxhTXd4DNZcG6ufHxF/w7inL + P+lEQqZfW0afs5TBvdpsw2n1Z8WVT4NNeZuau+Mczw8jK2BHLz11V3xb/vJhMRoTds02y6dP7UR/ + 9ZwQykNQCzvpSdC2pxURU/mO2PYqylCNHw4fqqZFbB5kFZqo7rB1SDfGpPwcAYjKJ/jsW09jeiTn + CeqzsCO7bpsN7FFzvfIOGw/jKluMsavIAr/EabDzzOKcn/qz/FcPwHqRBTG3PQ49qsTKp1f/adfT + 6JAI+ZO0wX/xV12DZ/G33/Tg/j75TI5ZiDhDv9Dwqwr1P7/veP4GRLLUmP1W/a8MZ1xiM9sXBr/s + PjZseWWDfU4Yc2qENw64j3Cj9rPpjdVfs5U02JtEPPSVT29CoP/5mdjpr5zB8uViQuAWNV75RszM + 9l6BxZzrn58WE7SJOKWweMCGfm3R1D2y5M9vDueJV5GIyABg3U/dqleMmgyHKVEKoVXx/a++4ftZ + C2PxulP7xp6M+X7UKt3hNqz1XxdNzvbZgpO4Cj3MypZNQTLof/Ur7F/CZ73+rIJ35d7U7p89+udn + wHbfE2nVe9ynViNla6M7WRLnVvPF3klhCDqJ7NY2KMujndS/eF/fN/HH1NDT3cqX6D6VFdb2QRL8 + 8zO1pGI+O1+HHuQtfye7bRj686UxIsiom1DrsHMGUtrPERbmz6Ecw9Vnh5M/Qa5v0xAp0gaNSdMB + rH4steO+jdnx3Bboz79AZS+if/m2w6wIhReW/EUyzhHseavAuLtGjK167V99WPgdq7pf9Tds+/RG + 03W/au6eNtAObYQvzy5nM5j9+IcX2Dn6W/ZzI837hw+qmFv59EzlEiJkHEIu24M/nS4kQLLhELof + zi6bbu8jgf0YUurGJMn/8ev/40YB/O8bBfH3uMF6Gv5qRm3hBftjIVNsoS5mnwrZ8BVHlUbBndbT + /fHpQai5B95XocCmZnJLhdYFo0mb7wehpV8C4auYaLbYUsx87ZlAez3V+NC4L8agmD/gOKaGbe6y + Q1Nl1pPy6T5Hsp2ZnYsxTJm86aYBu2VrG0s0aBLgJezxfnkN/mLdqkVpg09JtQEOiAW7koPv5/0M + L/LjMPCePcvwaU7n8BXc8TBhLYjQgC8fGjyeL+PnNo2sODfiY/fsXBCb4Z2g5yUNqOk6v3pBvm8D + XOw8ZF9mM1ZqxwuM1Kyoi6ugHnNr9OCcxUH4xofr8JMXJkMg1QURl5fvc8uyreA2ziF+9LqTC2rW + ebDzmBEiK5zZdLucZWgijKmddErMPla4oLcTBtR4bddRpcPyUS7Gq6Rn4YSH+ezfJkW9qjEt9N0u + n6tvoAP1LyoOLP0XT7iYPopYJRY9vygbxnPzqKT8lH9D7vt95YJ+THXl6TUtvfXMrlnCvTeQNwMK + N8BDzX4saRTiPh9Umz2+HrNiU4Ey1Rk+RNI5F5d3tFGKhotwstzXOZHrnJ14vfBlO2WBmD/eGzSb + nEj9oTQHMuZWCV02hjSamnDgj9NvAsviG5qUKPWFTu4jJTNiEaul/UZMQCPAOd9dqMoePzb3qa7C + mKA9kSibDDYJJlGKOHSwkbfr3NWTr6JimYf1jutgTAf/nMJ5ijxqvcdg4N+PWleKrJeo2Y+Cv9we + UwpeeKnpOfKmgUIxN8pU8jta5DiL1zu0BUjTu6d5rkHOlncEaPv7adiKdxriZu3VKu+72dOYjtth + Vk7HDNprXFM/FHI0OqQnynresb3zNmyWw2r9Vq5H1HpHvfH7WZ9CkWv7QPEm7fKpuIU6XG/mBj+E + Q4u4vaV4kJSSRZNPFA8c/1MvypAZAw387cefTBgv8JakkMz6dx8P9bVPZPo2FXp6ys94qYY5gtyy + U1JD7dV/+wWpfjnScDe1aA6+Z13Z921Mjwp7xbS76w3cF9CpXXF3tjylpVL0y3nCKWVHQ7wLZ6KE + oQV0z1vPmttUBxWWT4Cwdxnqgfa9wSlkdr70UFPVEHebuw0LJhFVR7jWfKYcTeXv71tfJfeFWDI8 + 5bJ8LuF7ox8GPtI1VbnWUYqDvf/0Oc/5RZBU1RF7a76YtEILgCp9gLPqd8wXHNsmBO+Tg2+7TspZ + YTmCsuYDcjyhd7wELr92iO/dUHH7AxKtqhgh6ucUG8/jceAiJSbK+8to2BTHr8/BJCxQLcaNulqp + GvMcTC+ldrMM73/kY7B72hO03LsBG82hq3+iPznKvb7/qFraFuJLUVlk9jSv2GavpBaq5SbJOB81 + 7HeU5VO7lQVY7sNAD5Kl5YJSNgA9fBUiv9F6af0028o8bjt6kL6bYbnc1aMyD9dHuCk+L8bEJvtA + J3VfIiTdPZ8VvtGVSwUBvkFAEIukSwn08ODD7Wn85lzTVYLyzeUiFDXBNYSTnlyU85JvQ7ktw5y5 + wodAtB0EHKd65y9saCPwpn4KpRB/B2bGcamszxc+Uy4ZeL54SkocZRX1Hb9HI2yfgmKlnwMR7ufv + QC5aDmCrPxX7Ymf5ixl+Qhm90xvOnPmE5tMtTqHMbY56KLD88bhvZDR27E2YEb1zMnRSBbErHvEh + 6+L456q3SPnDB5ceOn/aGVkGPxGdqbe7x4y78guB42bE9HYRW4Oh9NGDjyqf6sPlwxjtjFLh9SKn + 5yRuhl/0SVo0ypKJPXnRh2XqBQ5ab5PQQ3f1Yu47rmPMv12DA/ZG+WztsAdidbFokPEiG6+ZncoT + hRSf1DIexLWvJozUrqhGLI0tu9mp5EvwTnH08D/xwtdnTuHe6g/fDjOKl/NP1gEe7vkvH6DRTFMC + Sff1sCVxH+O3J4Ku+GAI1P3sIZ84D2XwF0+Jfyv8xX/iEQacfPBV/g1D7+6tELS3Z1B3c34N7KhW + oHxs8YvxO6zzubl5Kfyst0tTGW/z5fdxdDi1jwCrJ2TlYkEVE+5PsSZ87V6MxSlSSTnFH4LDM/7m + U9k/Q5Dw7osD+ZXENH8hAV0e4kiDsdqjf3g2uduc6t33PIiF/yyVQrI/oagcdZ9f4wNOs1rgSHx+ + 40khkqms+IgNs/r5zNKfRBHv75xa+ZLV5GUhAYneeY+vT6X1p3E4NootP4AMkhgw3s/iSYmutUl9 + Xo4Zs3/nDYzJbo/xfKvRRIk6KpIV1vh6qh6Ma5K7A2rA7XAaG+PAzM1+VCaShPQyn2x/WarfCHXR + E6zO7RMJH1H2IOpZSvPL94aW6vJulL/9jq6Zk4tNUzfgwnij2at41kL/vnxk3HUZdfzx5Iv+eG5A + ezvGPzxmxmyXypqfaLSRXmwKNomtdDnekU3f4nhZv3dXVj1FusgwfF6zPAeqm/TBkc1buSA+3on8 + BInDR3T0GXWFz6jsr7ue7MrQqMVJCEa4l9+QcIMt1cvyDS8A1/GNcSDpOX8RQhU5pOmw8Sklf1rC + WlIAvga9dJVjLNq3zxTVDyg9vZIazRBfTSVXsEcPE3mzacOnI4zVONBHTmL2qwPNg5NsXTDepG7O + SnfbAgt+dbhFfMR+lT5lyP7ilmyaB6ppDFKmHOaJhA0+PfM/PEfOLiYU7xozXsJaFIC49YMaqe4a + YvkeAFxkYnxU0N0g/b5ulJl/7aidB6ye+J+aKNz+s8VurbfD0v469S9+qL0/nv3ZSBsVDJFyZBGf + +3xJE54DZvQd9ld+tbh7K5Bvx1IN2ZR6huADqPLrNMdUF9cuiL6jAShv4Uz3QSTl4zikH+WP35Vn + vM+FBvUtgFmeSKGGTryYfVQpuVGGNCw+OhLc166Cu21sCTGXh8/+/t7N7Iu1S3GSz3dVPUL1OfDk + Lz+PydpjpLHzgepb9V7/pEemwqRXA062Sh23TqvbShL4BVY70UDcY9YE5fPIBGx5jPdHmdg9iDNg + avU29Zd0enmwiy8x9WOnrics1x9gjzLA+1BzhykQWYmYFTHqGufAn8O7IcliUj3Jx2XDMKehK8tX + i+vpxbq5hrjmU6QlRhPy73EcxkEfdPlfvAiFjZZ7rJTo+Oiv1H7V2ODEoXzBgVS3EFVPn01Vldpo + +TkqAaugbL6clgzOv2dFz/gr+7MctkfU3IYt2Y7bZ7xEc19Bmbg05PNU8n/uTmpgnvAm5CEu8unz + 3epojY9QSPaq/1PPSIJmTNcKzeuZ08JSBXQ5Oy22XjQexi2OI3ArScD+wqu+sD9dLiAmrye23/Z7 + IFMvCPCHn/E1NJBQHQNA2rsjVK+3frwE72ev7KZJw4V0stj0Sg8tKgUppefk9/U7da6CP35IHpu0 + i1+Hi/BBf/pB25YdW25P0QQ66jrF5amPR79fwv/uVyXta8ZHYgYm8h44UB6/fNYsz5P/+KAeBhVa + gBcTYE/7+hePiPHe0QarjiOySOegFmryTJXMaRbs+rZnLEMycojnli/W3I3OFjnnBMQz706Dlc/+ + mG8TEEhd/+XbYfazfALZah84EJwTm0lER4STBbDnXGm+aMRXgZzPBpF+r2e9WAqkkJZDufL5pp7A + XudcXqOOBt6RYxPL3x6YX8mnXihbgxi2Pxt+qXgPpd9LG/jXngbIJt4vlG+XBK36TQZjSN90zb9s + +nxFHU7apqGGm0T+5KJhA+mcOmQiQ4v+4WHOTxktmwcaVv6jwjCpHS2pcGEzl+INOHlyJoxtvvnS + nmCd02IFuFjxfIJps8DNPn5CYL7EBgs0VRmag0Wj7hD7M4m+I1i3vRRu/PM5nhDCMphecafnby3V + o0IkW5k3toM9z67qafxdI3Af0UCNlV/PMbvLaF8KFDvpcEEs2mxtedUT4e0GCE0bPVJl0+FiwuGh + RqtenWSzvQlUc5sqpvp2fsH5FETUpKmaL9sMSsRfL7twquarQd+SVcDvMb2wM9x+wyK/ziV83fUq + 98FP4mVzQOEfnpG5Y7Lxx4/lc44uIXJ8D037Z1dClx922GAG8qf+pqTo4S9CyCfx6ngvZgX8mVAi + 92c5nsShrOSrUI1U3fYkZ9fgKYB5J3M4Pp4vn176RAAt23TYeo9jTV5BsvanerUk94pbPnMMImnb + 9Hts7uU3YpMQEFC57UjX8xWPxIo94NutQS30EI3h61ZE6Xn3QE/Sc/bHf/otRxeqyb3JFt9ICHoJ + jo1P5NHkU+zddWXNpxTHyplxyfVyhHBzXLvu23ef6JepRfx5pPiI05BNEp1KpXqPHrXHu+aLxzIH + EN5Fh8tBP7GTct3pIHPkStVblg8TE08lyjRPD5/ku/WZs5k9dDl77T/+KiSVNMFG2Mt038pPnxVd + UgAXViZe+zcbooYeH7j0hh1+gskcpgH0BHUZCekh37yM+bG5ZCjp3h7eF7Sqp4KTL6A0oY+N8pf5 + s3MyVKWt9/sQsasSz7vjZ6OgPNiG4sRujA23zIZfrYpkdz31w7w3tQnUQNhhh8/lnO4yt0S5cvCw + Tic3Z0ziOMXBr/kf36Tni7yB3TMeqf53/g8/pYWtGifUX/jKYBa4KtJulwf2bpOYT/cH6ZE3LKdw + 0V3kv/0NzdDjYXjYylPJmGN2lpBZ2F+8rl+9ZF5DlO+0IPLUDyZb/vLvqmex/w2ATd8x3YCdyTds + Yy02Fh2ZRxDG3Y36nPFlU/22JeU1iX4o2WVXT/NbiP7p07PHzusUOr+CP38qMeyKTXTapxD6sMen + RMU1U6a8BP1b4JWvaQPnzxkHnOpget3uiT9u9EiHcHj2+FG8dv/8JOV+PNyoynZTzAbRMiG5JAIZ + ruAM05YRCaTYh1DenCS0lIKewro/2PoqyCfK+9CgZp1qsmuOU7ws1XsEbt9sCaSNmwsiuvWwV+Qv + /cv3v4tg63DII4s6Uef507l5vNCjFwi23pFnsPfhFoIzBRzWVj3P9F0qwW0yamxLrTYs7Ec2Mqd6 + GGOPhvkU3VRbaTbqglXjQPJ/eLHGMw5W/J2q12VSjEi8UEudnWHeNPIRldLrRd1Vn8xH0U6VSHlp + oZSp7/pfPj1m1wKbu+xg8N3pmaG+iiiRE4hyeixjkEOemhiPWy3nynXqnjhvMNYG+CEaZXWJ1HPm + 4vjZM2Oy3HcLr/13F76FE67Z9weXnYZ9i7TP3SZnwy2y4fLgR+xLYoCEovkGimabPj34zxtjIT2M + kLClwQG5xqh/SnIFlZgk4a6/NcZ07HbcrrFvA1bf92fM9tLxBQV9XqiqMx/xy21egNBXgVVratA8 + YLGR6XXA4S61MKsP+SCgP/6/d79f/9fcvAyy6vf+44+IkCOXKFSge6wqSPFntFU8EKLwHI7kytDa + Y9bcvazSpIH+WPsJvy8fWPUnfhjpgph5A1s2P5EWsmtosFneFRWcaHZa+djoTwatbXjnZRUKzVgb + M66bCrqbaeI/ffFD9pmDaNsJK79/xX/xrnTx7FL9ynlojW8BjqfoRTV+I9fUsU6c8nVdhk+vxEBi + rZc9WEo5UKztm5is/ESRa/NAFFU3mHid+BJsOom4BL6o//lzI8op/udvdm1VwOdkaCGoYZuv/K8A + Kvz29KQfTDRFN8ferfyNbNprxRajnmWlC6UeHx/Kia1+5gTb5VuRnTfuaz7nrR7GnAto/No+2S/e + bV5IyGOMXQWp/iQlpqfwcLhioxBCf7HEeAHrAgYtgpuDBIbXHgseYdSZtStbzJAEcKEXjcAlP+es + Lr0NJHxKsIuWwKDdXpBReEMVkeXlNTDfcQEqaVNic6vU+QS18kKOtBh43yVGPRbRL1t7Hu3XbzQz + f6I+WhBV2oA+vo8ZzW4zSshfYOVL88zm6jf2cFRMi67n3V9q8szgL972g0/rZbKHEL0GGLHh+6Xx + u0mCByufJPLqb/3hAezQ3aJOiL/1qo+43dBgCx+O3w9i1kdJ0E4b16lThhGLGT5toHvnMTXNxKmn + cqQS2i2pj4P7MqF//iYb5pyat99U/ygH/Z8eDj/7XhyYO4Xmn18ZivpxqEVL78jukB8teq3CC6IH + ZVpAmJmEDerpOX9L+go115dHHT7P8mmL80gOjmmPkx8eayJMD1tetMudbLW9mQvXPXzQ57qxMb7I + IVowWVK4B4pJULZ71mzF37XnRES1Znv227/6wR++3/3nDf3FM0r15IhVU2M1ra+vBO6gAjVRrTJh + VLIU/vTmjsc8YzwZRigWNlDb3H6G6eDfUyiKk45dlHb175F5i+wk+RHb43bzL352+WV84cA7JmgW + hSaFCeIvNY+Pzl8ifF97iGyT8L3uP5sNe+Wn0FDDtL2asyXGAUfpTHb9zfQFS4wnKLfbiJrF8fvn + F45wpm4fHr2mQ/RSQwAociwc+G+jFht8leH4e0/UvqSkHum3MoF8lMO/87TyeQGKT1lg9VU5MX8M + Mu/f79tVpA48yp8vuW6LiHqGux/Y+JBHtNZnsMl9HGOqXuUCr70ZYhXMk896Swqg5egJa9Jz/vPP + R/juEo/iu/hFbC+lFfrbb3uYL/WyC9kHvrlUYPWAkT+dBGZDYtgvIt7d2p/c21VXmpu33tATjZrt + NncTxntxwdkfv//T5+v6h9s1/42rPwP562WHfGG+6mVYHgL8al2kuq5V+S/3bil66+hEQ+BhID5w + uiI/SwOH1+qMJkHtI7Tq7z++Zfzjc6v/vvp5r5oux/0RhuNmxk6lR/H4/J0uiI6qTm+TFuYrPw5g + mbIzdiPDMPjX/huif/nkq0rxyhcKmDotXv1dt17Up7YAe5En9l6FVlPZv6TKitcEyCzkv0c1ZCh6 + jiXVN9ILTSNuIiR22ZZ6KHkgdhrOAVr9P7IlwiEn0VkIdn9+Nr5UY8y0Y31RVr4eclRW6o5EXwLj + pT6F28h2kfgiMMJsCiL2+rOcs2vslSCnEsN5SJ4GWao3gVVvhkv9btkikGOmdGrF4+RPP5SCnilZ + NAXUfJqBMT5ywQPkfnhC/DOfz+NBkmQp22t0L8edP1/fyRHOuNnjBJ+0WLTZ5oN69jTwnz+3EKYd + laDuN3R/bCqDivd5A8MmLf/V836Tc2nQgbxuREifr2G+ul+Al+q74WZ3+cStffnIMKnyM7zsvJKN + lTlMskkvKHwbxW6Y60Bz4Jr9HGy2fO9P1vu2ASX6aBjnJEa/8SDJsCuNKxE/V68WuEWVIJs5c/W3 + UoOdZoVDf/zWD96/mJxKp0XdeEnxgX/17E8PSn/1JHz2lYHFxs2EP722nod/9SCF+7QiduR9U3dZ + G2SAvmq9rmcVz0Y66jCI9xv+8+957pe3MtaqFruHrhrmUXp7SDVPPdaq9/LHryKU3R/HsKHyvZ5/ + FilkHOCROj9oDMZCtZE3rfOk+/lQ5H3N66qC9puBcA7xDXp4maUysfBHpOdcD396AFSu0Ij82Pn+ + 6h+kSriZN3/1jFq0PsoF1edfh+3x/jSmQa915IMmrPVVnfGPTF9g9H4/6p9uUU71XSr/yy/mev6W + c3QYwW/ZCx9eKmHzvj2nSnP8WjR8qu+cKmFYgZJQ4U+P5ORhGCMEY3DARn1r8sm9PXT5T19PeY3z + 6XFeewCVQ4mtAFxj+nimqvR+eqTB3tf8lZ+ayh/enTqWGczGPUB/17OQO1qfeh6T0wvutrbFvjKc + ECE8BvmfPm40y//zq+AVVhvC1noM/9YmXXkndU6+YR4Yy/K1E1jrl2EjiEJNwnoroJdVmPix4tPK + /z6ACt6l59MU+kvyPaXKITmr+FFxKpv9LF7QTwmP4Zc4Tj3+5l2w+8s/3vvJx2P9DiXg4qz+qyfU + rOiKApV2cMFF2rjx/NYmFXS/H6j567Axaefqg5rogLFONMmfnqefLuNk7XG21k85rcQytKaGsU0I + rX965KfQ1OINq7eoQvMtNzz48OhB9U1Z5aseWvMdzH/4xWZfcEwYGWyxQ8wNI47syyAfLEzdYzIz + svIPUH4nCzsl5w2cy/vJX72YBuTK2PinP1DkWdQZbodhSr+4/X9uFCj/+0bBMK5dX+3pVc/7YDOC + x04GAf/QxePtfLaBHdhIjUk/1d2nV0oIy00ebuvhY0yFt+uV+m4fqTddAn/ZrV3qHOz8OXakZudU + dUDq41PIklZjvERvGWyDoMCae/v5hOa3FALe2RzEwvV9zhigRVqX6aSsT6o/mlxWgYlqhlWIaT7H + SH0pqqx41HF/+4EfurhRWiFrqfX+vnxaVcYLyJaXQ46f9XjOfvcXFO4mx9b7qxucq9uLcgW1w5qe + CMPf84P74UgoStYSz+bxuQGv2gtks+y7YWkpfBDPWyE9TqrJWNV2GSLupBKFXE/50tjdWs/kB7L7 + 7g0k6I+Wgw5XHL5/owyJ94jpinHeRvQQeiRvW+fUQJ5UPHV+g1KPiXEDONHUDZfr2Bjz/r6UIB9s + ld6z7RT39W9fKd/tLqJRKkv5wh30Ec4f5Um6cxgxzs/bTNGP9Ujt52Oqf6SUPBllHxO7V/pC4n6W + SiWQLj7VLo+ejU9LFZRuERRsF6rKhNc5byD/DRrGnvbyFxQEFaBdd8T59eoOvJ5bGYx72VrXH+dL + n44JPHXTxfYz5NBsBrGu3MczpYaQJPUsZiGBTmtjGpP6OXDC/V2Amo4zfSzLkHNvQbaV1nQwjszE + yMXtRj9CElclPbMbxPOSrBn/2fpUT+U0FsSLGSmWEFk4kZJnzrVX2kNmopg0dO1KxJ3bBpZLbxA5 + 5Eqfu2mSDdnrWNAyDVxEDtxNBTu8vGgRjLecWZBLsJybhKa/QRl+HnZMxemSnib3T+jT/SwV0NGB + 4vAdfQe2y/0Upni80fxq/xATO2UCflEmqnb3NyP3PMiUyG0sXJrauRY6eKbKuwSfRo/71ZgP38cI + 6r7TCZcb2J9EZRshs2wsfKuat8+5erhAcWdADWeSfFayQAB+64TUNA8WmpdEytBrrGUixJ9HvFiz + c0S7dHRpZBw5fybl5ClolSay1AkD6dQpU+7mKcIGiSw0LYGtKx53WahlfgdEhE16RIf2YeOAFchg + VoIlGPTigcuCaDFXrXfGk6ik9MDyKhbTpzsCTM4HJ/gH6NdBIYGSp0ciH7OGDZO9keG1yGdqbVUv + nu+GDzB6nUjtj+b4HBsfAnia3uNQf72HWR6IA62rPbDqoyvi5oHzFOoZAnW4EGq676IGru5yxMeY + aYPIdZGJpOP+gv36lubzM10uSry7vMgUlhfG5sL9gGrVDdbepjTM6cEYFThIAXWzTZnPHRN15SX8 + hFDkGfV5zTgV6JPiOOTTpxnPHxpkIBJ5CE9K1daL/qgExU/uP1zqJ5fN6exMsNxuPD2Euefz/oaC + rDuPEOvR9RYLVttnoFrPBmuC4g68vz/IULxDm55HQRlYP40TCjJFpx75qLEodvyiJGPbhxt83dfL + 1485ICeupAfqmTX3Fe8LeHgjY/1zmtn409tFwdGxwX/PR8+p40HuZy0NqvPFF/a/uw75UNfU2UV+ + LVZNVCqT9kHYf2dbNmdzU0J0yD/4NA32MJnSs1ScoXBwPj6EnA1a9VH83ZKuXSdPgyAZHsCG8DE9 + jVmPGIwvQZHiY42dzZznDDm6Cet5xObrpsXzKDgZONgjGN+cfT7JV2gB1eREzfpyG+g5ngMwNz+V + Btt1rvIzXRJlY/321EP5Kx7nybfBNT9njB+Zlwucw5Z/8Z+E4cHgSFYQ6CKi07//T3GghP/iib9u + g5rbzPNG2X7LPS3f2oBoFjop7JsNw/4brjGzi9+EqqB9hUfgP2yp2kIC+1ho9OBLgz/95ZPl/Emo + l8uIzaLdEXQEU8OF6sQ+35uyAPMW78jsOnM8XdtLhupCfeJMuMZ/50tVDtsHh81uJ9VL+72MO3ND + VRqW5YjYEHxHeLdmijU8HI2xa+tMsVIZaBAovD/5LLmg+/ms0WtPpGFsTb0Ftkl0fDP4Pp4u208L + Ub1oVC3sIJ/b+BeA+1624XwJsTGbhuLAdlPwNOXCYpjJcvaU63HaEniwTb5wDpsA7TMRh55esMW8 + flrl5x567IvxhJgudhFkNw9j/2R96t43jBK2roapcU42f/GWQBK/SjKv51uYHtVFsSxKsbnmAxaX + SQsR4kqc6c+4XmyHOyov/AnCiR5OObtIp41SK9jHluXW+bC5dRUMRhXix1ZyDRq2SapEMyv/rS/T + qZEq5dfUaPF03JzeI6SDletZGBOt9xfh8EmhWfoFn1UricVXZ5lKi04SNmx6HFgghhPMXSRTbBz2 + OafaU6DsimePr/b0GsTCtgNgGHn0FvTjMPubLyh/8RxKtxEt0O4zuOs+R/273Nas5VIdtkpuEyjf + Xs7fDQNAeKYtdYKjPQj8L3kpl18pUJ+eXj69afkHoLWdcAdVEC8TO1yARXqHreH6q1tsMk5JaTLj + 6/Gl+MvZFmVwG3rEOLO2wzR2e1MRHrFL5E7dsWXUChMmDhmET49O/XsMqIf80sfYPrxTn1yurIc7 + eRywB3KUT5UUAwz5Z6CXg8AYoVevVKgdnqn5cqyaY8/jqFC5CWhYHk7G8jDA+eNH1NypChuzTyqA + cjofscHbVT0/n8cA9i/xTLH18Oo+PMYATzl+4vBFnZoVwmQrdJP/sP64X31m+PYF9e2xJgrvBz4P + yV0G53Q8EL58+bWAx5KDXDu32Nyc22Hx5Hf1hyf0Qt4knvJNMEE1UILD9G7V8zuUG0g2i4OxP/+G + xRCLCczTWaJBMO5iovbBEbqBC//Ww5huSmfKiV+o2FrXS9zcpxLwkj8IXGdaT/bdi9D+tzEprtpy + mPfn5KNsg7Cg6oM/5nyeFQGMnU2xlmt6LIxaYioNG5/0eK4PuUDz/wAAAP//pF3JlrIwFn4gFjIn + WTKJCEgQFHEHiAiKyJAAefo+1N/L3vW6TqmQ5JtucnNOUfwK99SSwtVjqskcOBkBDIRSu5iLUDsy + aM3ExG6u5mzkpkaDum8opwVVTjPckfUGp3OR4j89yRcZJqDGbx9f+ccwLHOCOPhj8ohPujUPbHwM + JbjuZ4mga6UNoqjqCThUVKKH+GM18z4FCdj0D/X5yo1XKbFC0ID9RPPHbwSj03o89NqPR71UVIZl + iszL3+cFIO/2saDv3BJGP6pRUw8rsD5BslXENRefLtMpX05UaKEvRQU9xicvlqpxTlBXJi72zkkd + s3jQCyh4vE21VrUZL5KXD91UT+mmJ3LBx80Kz4ap41NYLM3EukcKoXj4UBMcDmApvRePjjL0sW8f + 1Xj6giWA39VYCJd4dc6Wm9pB6uoiDjZ9svzYzoDve/XBplc3gAH/rMFDNkuBeAFuviiGWILwK+2x + ozTffLFR10KZq074ccXWtoNzNcCP53Jq3CevYRcDFYBE6glH0D+z2eKjCtJXodGHMDXDqniVCJ2T + HmJ9hka+6asUsiP0AjDOq8kMIPvKnx48IAGxgVJDhhv/EuiP93j6GPt1qxDssLN7k4Fpdj5CFtsp + tlVZZkTxKh7G1GlpRq7WwDubY+/cQ0BQkLumtDPOIdDua4X1GHpgrn+/Fmzvk2pofZpLdRDfMChE + RA/O4nrz7aJkYJjIkf5bL9MH8rA7HxB2D5eWTbrKKuBxvw5Hy/ftzalg+tAMuCZgpHk183CyfBBI + mkKjB3eIhekEM/Bj6kiDT3RoxI0fVGHdzWQ5/PRcTAq3hWblBTgQf7onvGYSQoX8HIzb4OMxqzob + MBa9ayD0QuLN4mMqgC8GU6CKtjSsRn5WkR1ctnu0A3mgLC0TqCeBQMvHcB9mYb9UsL48HtSljdzM + 05kT4VlM5Y3fpXylN7eAt+Mc4jN46p7wJtUIAtnqqJ9dyND93pcCcRVc6XVX62yxlXsHN/0dcKn/ + Y6ywg+Dv/+nz9FLidficXaQJhoexymfm0AiLirrcRXR/IyFb/YG5QKsYxt4jXbz1i+v1z69hHWd8 + zrCSOlDloj4QrK8HxKfJu+r9/PWoXr6Ugbjqp4bBQx2p9vXqZjkHuoy29/vn19hSo9iGrmHdsZ0N + AljepCLQCewd1cPTgbFl2w1Cfiqgf3jHrg2O1OVqcsFb71uwZsc3ByexZVhHVTcslzxK//wF6cp3 + GrNk+DigjIT9P7xfib5bAf/qPXrA5uTN32Ze4WsP+kBR0Cle4aVOwXsf//CeKh9zud/nCmk6MTe8 + lT0mEZ+oI/BP2PaEMV9uXS3DON/d6enLr/mm913469cnxafXth7cpkdZc/FonB3Ow2qfIwdQuSDU + 7gzavMNpqEA+/XSME9Hy5sTxW5RMhRjQZrBNSfqhVbXerz3e+HmYJ+68AhSlO5wmbB8LgbZkaKg/ + Gd7yh2GG2juFdnvXcJIduXiU7GsA96kM8ZFlQc7vU3ABvNjkWJena85WmKeq7DpJoMbfJV/HwFHh + UH8zah3ROR8OUHr/0x9O9dmx9XCfDSQJIMMYHvfeHMCHDED2tmiI1p25xG7SA6wdbWyzw4et0+uj + wqMkP3DypNafv0uRvpQVGWTbiqVWHet/+KlfUZwz2T108LGOLtWEJz/Ms1dfIPnJIEBCcQDdxudg + 9NkVB5IkeGRAJwumUo6xP420GerqG8Cew3UAI93ymF6Xb6gYN0qPl/zZLF1h2mh/hwO+6fkNCJfb + dkvDABQib/nEuli6i1JyNrBLm7RZDSLKMPjsXHzgbtd4fladAWsypIEaZhZbleeeh/HblMiu6sqG + fHG/wleNrQ3/z1unyGmG9Jm8iALx3FBl3V2ga7oOPgA+iRe5frewQ/eE6o25eBPd6VBN7ljFh46b + zKWoVwuSZXfHRqKEjOnB8oaf2RUJ2PzhfDHPEP3p+yi6KfkqLE0Jvz8Y4xJ3Tby+OTNE5CyW9CC2 + dTxy02Co6tUpsZV/2mG2P50D+6eT4MNyvg1zjew3NO/uc8MD1ZsNTuCgVbZ7al+cm/mXl4FJeFn4 + cNyVntBrgwqjsOWxMfIzW9pbWMIzSbIALPzLY3/+7c+f7C35MEzlMxAh+rz9P38br2yUeYCO4brp + n8/ANvz/tx4/eDRM8tPkDFbXmWKz0wzGJiREysH53QPp93c659w5aPMPW/6iD8vucSvgIPIJDVu1 + ZX94gJ5pOODjNYgA+Vx3EbyvixCUzbky51xBPLAvcR0AyRC8jW81NVS4BnupeB/mX3WqYO6lHT51 + 8qth/m7s1INkn/H9WV3ZetOGDMRvXcL6wzgyIQZOBc65d8LYLE1vudy8EvTfgMenw5du/L526NK/ + fLqXQMzWqD+HsP6tDtZlbjGpsL9q8E2f72B3seR4tqCcgnldPkQ6FDtzautbC43wNdJNPzfUVVUN + PG7lEx/e0zn/wze4+LsKB1a0xMuy+/SQtreQiK3umPT7HQK46WG85Z/D6GtHHx2b34vacfvMtx5K + /Z9+w3/5zFx/sh6m1uFA1p4dc77iTwa8XN4nfBEWI+dNrKxAPATjP36fnt9x66UgQ3q8z30+/uk1 + FfngTy+bsxwAG+wp6APp7d3BcEy251/VK9ZOcBf/3MGAaBVXDuu9822WmhcCCKrGIkC+aaYg1JqM + wnZJsJshc/jnh+PKT+ijS1xvOb9aGYX794j1tFq3e+LdEsifVMexM6em0LyADN3pYuLL5l+XI+eH + sDkqW8fDpfXmcFGLf/ybm/41356HAMu9HQnyZM+U9peDivTR47EF1l+z1IrvwPvKBFKRQWFrsTuW + cC9uFWz68hhZ4lsAZS/YB7PtjTm5wUuGim0H8wHK+4b84C+Df37FvtxXMKOK8+E35A80PZdqsxBi + +xDzFaL4cuW9jT9V1MmVjR0zt3I29WkI8uv7TU8Reg1bXlyhVuy9YOcbx2b+vYsC0OJ4CTj6doeV + 5vcMLE+Lo+fm4rP1J2clOKjKSo1EmcEYZbUPHVa3VJ9hHa+veV2hlpKFusgj3iy5ows8uwjpc33h + Zna3Ci1tryG2jqMwdCJ5BfAslV/CmU+09XB89rAVOw+fAHHZn56Df3ra8cO2GXKS+aBQDwkN3Pcl + FtpYr9EXz7d/fmPVgWb85Sv4pF/9XJraYwISbHKki84nQBdcrFA8Xtwtf+u8vzwMTmY40H3JvrHY + cgSqZUi/1FBU0gzhQ+Zg7pc3rOUG8mbfSh3Qh75N09E/ASYnfAnt8bbDtnD/mSPPCyOIgFhSY38G + w0p0aQaHCVpU751DMz5T14H0gc0Ake5kihdqysrpm9/o9vnmX54EAnNc8D0a4i1PFWaw6SHslx83 + XhRWJdBzzwthWTrFcyXnHIAXFQTc+cBiulZhBZPhlm7+ux3WS9tqsL51PXYDvjT/8llwWr4xNjsE + TJaTKIBBI4zBXHQNWAP/pMGoXyk93sqvx/pGgnB/5waKvx7K6e8gWFBINIMe+dOLieXoONBMrRkb + bX0aJOf4LqAVPxJ6qq91M7u3ewG+g7Zddc5FA6PUlQFbvTfV9B/PWP072bDIDZdw0vXRLOco5aF5 + AQ02RVNmTDP8Fe5r84jtC+jj9SbvC7Br05Ta3nse1oTSFn6Dsdv4VogJt5cNeLBfAOvvg5YL3HEt + kdx5jPCPa5Svu1bn0T3IEfaO9BKL6ncYwZbHbHhReUuwdxJYlbOGy5uTNQt6uQT6qfD+449h1mw5 + gFgPBGoM14otV/AO0CzAleZNz5u9fnMhLJGpYV3BI5uhNqaQXdwDxs3QeuRt/3yI8iyk9hcXJrlK + vxUSbaY0tk+KOZbe9QLF7+1LUEGL7ST3zvirLwS7D/rl4+oHBqRK/aDW2TgwZkivCMngpgW/bbzo + 03I6aJ1v8uaHBvb5yycSUn+oNmtvMPejelH/8nUnqY+NxF2zFnLJKpLzI943krTGHeTLEpFl81NU + WuOtZ4B7wPp2Dd2q2wcfsfX4pnogF2wWXK34ez9Uqw9sqLrbt4ODdtWpr77OA+Mec6E80ioIXpZ0 + HUZ7phE4SNYZZ7rRAPLmzAj96I+S0xVv+sirRFRdV7rlMZ+B8RX0oc09HwHf57O3Kl4nwm294D98 + m8Sl5BT9sr+RZXXFmCW8aUCyk1R8zCIdiI6qi0jtdruA4zLenIt6ev/lG1hHi5ULMB1FoF8ON2q8 + Sm7oub2s/elB7PUnZs6Taogyx6ytfic3zdoXIPzLX4jigy5fJxIRuOlvmj6+lbmcg6MMC0ceMVZa + 2xxzI57hctBem/79eIvl5wZU5/SINYd48b/5tuVRWz7Cm+N1PHZquG/HQHpPS/4PD6xjnAW7Bups + ub93PTjtHjw1hAOIF3i5bvyUmDS4OWrzmb/LiFYyVvg49TVb1Fj1ocQWiN35+2XMqu4aMNTpS4P3 + HJoLr5wdtBeCJBBZqg+LFf4gpHJJsNMXhsm3eaQifSkqfN1pfczSYl3/vi9YNr+/AN7XQFvFC3Z/ + 2h3MWX1UoX29nYMWZHPOHnmqqpu+2PKtoVm236e6QvaiuA325nqVXjPkDwXe6hvFQLxsl/7l8dTO + hiubcyNfoSYxRJ3PQcoJ0XczKL5IJtw5pZtL2o/QDYCHXeQFpnA/Zz3kKm7FDgVnsG75I9xdIpXE + 4oVvFv58cuEkkzNZZA9t72cN0Of4q/DeVQhbn7vJgePOJPiYcVw8tzcTovmyOtRJm8WkcjRV//K/ + 7X0Cdsw6X/nTD3951Pznn/7qTTxB32GiKtDgoKczvhqSZkr+dpnljisF6ig6ZuyK+xAqRdMTqUb7 + YVn9rIKsP9jB8rnyMWmETwpdDFWcu/WhWW5dr4LyDRvs3Czd49uAWHCr9/zT26J+czkoTSKkmvPA + DU+HtIDZy5+IUsW/mDmRkcC9emixvYNf8GLdI4Oy5+/pXQ1+Hnvepg4KES/gPBEib9m/bQjA682o + 0dZTs+bJfYX3YzXRP38xlzHz0W6IO9LhR+zN+GjMYONjnNkrjifzq/rw7rYF9QLWxHNpSAXUT3ZH + vsG65Gy8nlp109/4BHb2wKdK5oDAWiusXaNlGNlDnxFysIn3a2Ft9YAigX/4H5/4rzfrQwjRoQEW + Nrf6uWiCYYTi4zjQTf8DaZuvqES6Rv/86Dtc1BJu/hVrQZkAsdgdC7it72Dc8kEii4kN2/vZoMaD + ++bz9auO/8+OAoH/31sKALllQXsUsmZUOr0EVH+cgnk/B7HIHZ4BlLrvmQbjZ2bsvE854EjvDjv1 + 6DW8M8gu6raLF+2zag1T8uY64H2rIzb4iWdMe19TKM+1iXEMkbmKsV2oWUq2i8aV2WPq6Vyhp35v + qNsIr3y5cLIFG3LHOHguZ0Dpl5+hkMxnnEYv2WNU7VyoefcDLXLvAWafQBneHi6jp8tLBIvahTag + 5u+Cg3AZPVqGfID4SefI0jQ3c2Q1JbC59zk2erbmbPgcVNRJ+YXMLgTxqp4MFZlauqf2bv8D6yiN + PWhZdqLxak7NHIduBm1fv+LTA/tet2uqCCnqqBD+/rS81VJEGXowRLjMPhYQW0tM0Dd9fekhU0gz + H14oUDNR/VDfq8dmkT6Nj7BtUOyuYGbLXlVngHjhTKPbZIBZe0MNtfJRp2EBDoAfdSOD7iMPsVaA + A2PKtxbRY3ir9PE132Dkm9UH+zl/k7s45AMfAtjC+Jb2NC2tHaAn+RxAd8BHrL890+TzdfXh5LBt + 03Bfm7OadG/47keM74ohbpvmmIFeTePhfV525tINFY/A/d3iA1a2yIqbbXRK5gK7v14BTaCAFh3A + uaMufyg9/m98oHtd6cm2okFslKONHtMWBVCvA+vXdkTgHU4v6sRfMLBS0ApURc8bUcZYb8SjcCVI + LNMMl+CTDKKoeQEsOV6gj4ObmFKj0DfMjeqG7eEWDLxIThr4dVZNw15wTTFtaQf5kdPog0ffnCjl + MMP7vvSoc5J9wJeZGaLLFVEaHsUbWB92tgKPYYWwr3kY+KlVNBh8uiM9dXg1p192E1Xp3CXYbWeU + z4EHXPQ3v/eq/4v512d7f0/rQW/TrjQXP6YjbNWbE0jr98em4jZtbaDhEV/y5TKwXgxVdE81mV47 + wQHCJHc1pGL1o8/T29zaFMoWhA17BKOtvOL59elaiDxdo1Hu6uZqxHKG6EtiRFRUGPe12xswVcQ7 + 1W4HwgjjPyLCsmoR/nSZB+J/nr6qd/aEjdx9mUwn6QX+1AFj+8nbTDCvvgP8XSXT4pucY16SnyI0 + bzcNB4Z0HFbZ6ypo334HrGfqAJYHijtYhXFIFPi8DIuucSmM8EOmxzorBwEvc4bKrctWaUi/YflU + ZoWMef/Adqr2g8g3PgfTo+dRTYhIPH/Tlofnzr3huziAYS3gc4bPTDjhgxRePZ53ygx+wGwG80Tt + hq+kYwn79XzHxxtSc1ZFyRs9u5+NT9kVD6KbWxmao0bHOtHyXAh/Tx5+d4tLtZpWDd3mG9w7LMMa + 0Lc23sa4QrSV8OMIO2DVoo8MvaueEaAJcc4rSp8AlHQr9l7nhv17vn/zM6pURmSvq+GT1iaNuUD3 + +LBbEtRZpU7gkUcx45t4a3T5tYLfD7Zg/r6eoarvaw1bu4PeiHPlBKDoLjtsKbHDxt9dSdB38h84 + OjKtWS+hVEHA9UYAr7sZ8NpRSxCQ2D4A8y2OpQxYBhqMVsc6x6smyZ46gWd6iPD5/LuwufkaHMy/ + w4KdDQ/YyStqmHDwQs9vz/SkUWtm5OXyjd6fz3pgEW5WdHsfKMa3O8gnuG991IsQ45u+a/MpsksL + 3A9dtD1/Bta3b6VwpNc3xQ685ezUypd//KFPj/vWNvzmox2f+jR/e1q8WOYQwbwiIpFvRxPwX8hs + 9E5PFT3vbjmTvmw0YLruCrJff/ogVNPVRX/r6+Dv/PhvfSpndbLoNdVdb1EtT1RfIVdi7aUv8RL+ + niLs8WVP49R8MbbcuBDCvsuwPt9Eb97tYg7e48gi3+Vlx+Jy+/ZQ9MCA9zGocpEuLxuKzRHTp9hz + 8TuV0QoyVz3hvVxm3uhOUQXBCfJ4W79MWvtfJ7361KFxdl1z9mx2BXCT8krx4dTFRD+iEtZrJlP9 + 2Hj5/F6uM1A7kNINTxuGUATRd9lF+OSFz2aRvbOMmvB7o3pF3oCFycIjxwZZIF74l7e81YsI7/vC + o/EtvwLpwRAHL0+DkTeCF0/ypGCEV0DuRF+7rzmnMprh1ZEssru8j96M0NIidswfATPdlM0HdNbU + 7PnTqb+wa9OdLkOrOitY6WG1HE/8nNoVqevVxPuT/vbm/u07YN8iJRjN3Zv97Nuiod0zoQFQyQlI + 9OkncH+3DXzy81PMhqkroSHCDEeIG8CkiU2F9lL0Ivz4iRsJ9fQNGSkUGjn7JV5G91hCh7hbm6zq + 561elEOoMAHiWxKaMY/qxwwfgvHB+5dQg3XSpRqkCbJo7tp93AsO69CPjRecKtLHE4S3w8PT73ak + sTvqHq9N7wLl1SjikJbXXHBqU4TPWI5o1p7yRmquXgn8QOoDLpWEYV4HLVL5c4KDaamOnsgGIYPy + Wz7TpNjauOUB3rYQCA49fL8mW8+/toR//ImJHnvrUbiOKLjeXtjwCRzY2+xbeNeWKw5l3wUrNzQF + fAytig+quzQbXrxBBNKI7rWYMLbLzsEff2G/D09A1PWTAcxqHTC+z6L3fZv9G9ZUdOkNvvxYPMBm + RUQ2a/rH78vHoiPUg8GgGomceEkK2weHTDGow4+3pvZlt1Wq++WCk/KnxEvU1xdYhecwqARhNslq + 2zPscbLHGn5/zWGMvwbsc13A6X5t8rnxqANOPASBuvvZniBKvg2Hew2pYZzlmAliKaqAXDOyoP2Q + L6EFRnhm85He8YV6DDLNQYGaoqAbUD2wT/Lh4TE7XmlwDKx80zNvmMPLFx+e9Z1Rn5QhRI6oYOOb + 8OaUSLUGo/Ua4L0WB2zC5jlBR9PPsBHvJXPdbSWskhMFql3vz2EuXvcEkZBt19ac9jkfvYYQbPyJ + rfQiNounvQuoVcWbXvPS8RiwXhbid/VExtp952ztXx2SpvBAFpOuMTHouLWlTNpg0aJLTgtIUvCn + Hx437gJW9eTK4POUftj/WBrj3ezrQrFCDnYvIvCoWqoZpA+LCyLjnMZLl6IS5qQi1LA65s3G48OB + oEw/9NaFNF4qR9Gg9D6Z9DhDHxBX7AIQe7NM7c9vFy85UEKQasaR7JBtestxTHq47NMEH39bm/C2 + 2i7+Nd0PduN+AstEZRsWMv0E34h9vNXy+wTuT0VI73rmM8kvUAafmXTC9qu5suX0qDu4NG+B2nu6 + mGvUzxCVzcmiz/3z7v3NP1jrtMfHw3LYDmmJGtzP9zc1aIEGdhlfEEVnriP8Com3Jsd7C7ffS13L + gDlbLGZAm1N78jef61TJNfVPDyEsbwHs80hgsXvXhD1fz5ztn9AHQ/iUg+uGT4vRfgz4PI8ejm5T + DRbzAVvAy8NM7a865+MDzyVsK6XcTnsL8SR9Bh9y2tOkATzVA0O2V/zxLXZJ9GkG85LIcJfEA1Hb + +RHPCClvaMWdRtOP2cbLyt98WL4MRB0ROY20sMwG0bu5Yt21T94ceMyBkLf21Gu0aGD3eQn+4V08 + StWwXrO1RPs8OlJjTTKTVdOaqU9amdhN3m4+4+QEwcGtCvo3XpNMRQPGH7+hafzNm17SpzcIf0NI + jWkKAOszZMFdD184KW4Oo3/PQxPHxOemuXnCybC3NphkIDvyvrD5b/5bATrSjd9jVtZXG5AAnwO1 + SM1YWFYoQqC5MJCNEHiL/burcPiBGrvOwc4l920WyBVFgI2Qtc34cq0VFufUwgH3ZB7d9ARgd7In + wlLy3tpWkQP4XTXRTf8M85c3+j+9sc0fxVumSxHC0PryRBbwPV65mhnIWZUVayTqckKXl4WuUUjx + xWpBPt9VJ4KvLtCp01XvYV37WEP//M8Fb7LnedIgfhb3YLlodCCZOakw8a3d1vFiZfOfXjPa34oN + 5Vo1y/5ZcnDGXEwD+/JlS3w/lvBTuRFZ/McXbPNLA4HWTsFaTw5YykNbwVqfesKZmZcLfvwl8IqJ + TqRHeIzX2q0NSDj5SS8rDMz5uXXFtbIWkN8NqTFRryCBk1I8sGbEs7fIlDPA/XwEdL8DqcmSYxXA + 7zN90xK3ZbwEvr6C3W66Bvz72XvsvA+5f+8jro5Dvnw6BmE8i1eSBjlpZsWfOlgU9ET3r+hlLvHo + E6DV/UDWuEtZ91btQBm8yQyWilhs+SKdwA+CLn4s1dHkPyAdYUyuH+zljx7MsudFUA5POREo/Zi/ + nUB7EN7shp48rHni8H5l6G9+6p9b6M1F8OHAsqSExlgmHgstuwDpioqgSOp1WMLT6AJ/hF7AWaYI + piKALcIZayj+gWPDe8cgBJv+wfvmvQwrTU7hn7/DRblXY5L/LjVK80nGgRLbnrTxJ3Sf3xv2uZcL + 5hc5G+jV+Tq29CPyVnn2O1jEbw8/Hyc+ntJLFUGlc3yMv/rJW15EquGVlwqKt/XBIjzMsMLyD2uW + 8TQXPjup0G/3AVHDEwZr2n472FagpHu3/+XTH976jXLAJz0/5P/w7TM8c7w/9zjfPr9Cu2xQSLH5 + u6UL9waSaBngg15Yw/K+zgSM6i4JBE2cG7o7dzN8Z/dvgAK38Da9ncEv3kNsO7YH5qcgQqhubVnD + Tf+S587q4WloQnrqq8YcIxsXarFr6z98axZFkTmIKuuBb1hxBpF8WxfIQiTRfVsGJlMTnQN/ek0v + fhlj1/xoq8fbLsAeJQc2N97XhWVZYrrp80Yow5IDp8o/0Dt88s3MhVCFiJfOwXyKE6/b9D003o+B + 1JM7mf/4fvOz2DG5Pt7mZw8/l7oK+HJYzD9/rAaHV4evUjSy+XnOeHhv+h575e0bz/mqBvDHyCXY + OffrID2GfYW2PIMom79iwtGI1O+Con/4vmq7/g3V9WbSg3eGrL9mawHF6y3Buv0LWF9gz4cr3/8C + 9LleB6ouQvfHr9gTag0In2VMla/MY6on56pZAz9MN2L6BtxtcHKJqpWLpstdx9bpEjZ/3w+zk3Wh + zoaX1DREAzIYrdgO/WtMNFF1//kTf8uzRlPRV5B/fwvVirT1un7kW/Wn/nAgSJEPmKq2NvzKIg5g + H06M7AQuBGnUigTSQgVk0qUKxVx/ogfGEjbvf14I//SfmckXc33FUYFGXsvxfluvYzA/I4iSft3G + V2XrHhwzuPkbgr6tPfAwdSH406PmLzNyXrmWFty2d2JDJ2Izv8hdA337++LH/Vg3y4Z34C0mOvYM + rWKM3bUZycqwDywzC0z6UVcL/M03c6kGwFLPeKNk71rkZ44ob2myD2H/flbYhywf6NW5jrAXOYyx + JAxgaAwngE/bvge7Mn2x9WRcS/ixTjK1woWwdTie3upgzQ51e+GQL4mW1fDhBRccvD4uk84vv4c2 + J/fUj/d8/CoCvkXrJTTxkRhzTBeLaej7zN7Y2Pz2PBxX8c//Yf3BOzk/g6SHjrJSam7bj1a/IOtf + 3oKddr2aZMM7SMJRp6dbzjx6bZYKdVah09tHuQzdpTl1atnbesCer11MIzZrUObuChGcexozFoaX + Pz+IbXGnxb9AKS/w/IqzrekCiVeUVgFcTZQT5REsDYF7nkcEjimObMXypCQKe/TuCaanaD2A5ce9 + LXT0rwWRlYsZS6J2FpHfHoJtfDS25ZMXuJvcDh/bZ9fMqin4MPnU/b/1s6oL1WCdpBXNdr/Wo30z + Var45ff0bl2OMUuIlaAtb8SOmLVs+pycEP6y6EePbNn98RsH16RwaSweb+ZwvMv9H14Eh+Vl5wJ/ + fpRwd64lfLCUGtBzoGdQU9SAYhC5njBt12LIym9Pne9VZNl5714gK+2Y8DfnmLOaXlakXz8cPj6f + xsCUby8CQ3FfRFakvbdyNdDg398N38vAvP+ZIThfhw6bn2saM0vd1zA6w46mqRyxZSSfVrXc4Eo9 + T1BMsl9D+C8fOXFLZTIA5hb55ySj5vO1y9dmTntFpeuVWgN0TLYHqQFiWNj40gcpW18S16r0Ge/J + BZ4+8XoVW/cfH+9U2sVMfqTGdkgxwvpHPQP2sF/p1hz/TO2522/+gLrQsZVs04+TORSVSoCLFhHr + jSZs/LGr/vKcf3i25XsB/MtPjLiTwXIvgS1v4xdws0FNfoiaCAxXl9CNL9jysb4EcGocY+NjNcM8 + 0V8J4k/QUFtrLG+ZHj6B23zCpz++yavRAtXNOdFiVRSPPZjAqdd1uJLl27081jyYDD+eJVA94Y1Y + +FiUqEGm3eh1KS/manpPHkgZS/F+BlE+vdw8he/WvOPDubs1a1xrFdjWf/C7ZXKz3L9DDS96AMhP + Eo9mHzyUrURVZzQY4Cf/y7vhn3/d8ghzNhV9VpvDccTBlsdNIsl7+MdHwWxQb020lwP37U6h/leJ + vXXIZQi2fPC/+dKQ94kKxcgnnGUmTPjLbzf9EcC9t3rLn17e8hCi/O4fc+WGoYDvfcdolCYkZ7W8 + D8C48BfsIBQMhKr3GkrnPiGSFF7NCf7UAqiPuMX2qorxDFOX+5dfBvL8jpfgogbqq2gxAbHaeH/1 + CDWR9zcya+9XvtyI8gaj67s4yX3gbfmQikr26akzHTGYWU1HcIbAw1qme7GYfE4RcHX2JLtrPw6z + +e1UcFWqCIebn1+TouDB5yn8iPouRzDfVS2Ef/r7D29Jor1c5MsD+MtLh4GaaQe37wtEcVf95Xch + 5O7ytOm/vbmcoefDYyl6gcwfr4ANb9mAX3NmNK9IvW2BXSo4Rb5Kt/qDN3+sY/CX5+JE0p5s+csL + HkrGAo7Elbn84YMUi49A3OYjuX9X908/48umD5brGaTwtU9G6n++xsB/LD1QTI8GgSoIUzzrGl0B + 3Lcc4Z9BxFZL4VRozIcH/cufx/KgGWDLs4I20YhJ7n55gc+22AXK5nf5wHQJFCRHIuoX9Gzd8lko + 2cabGiel99ZeNCJ4vRQi9q1uzpcYTW9wBeMdP5Q2aiaO0wL0lwcgDj9A13jUVSKnRkQKCPDIHz5t + eIAPZeKDcQZlDzmOO/5bj6wUnEJucrHGntHUzUyfPQfb40/9p2clfocjuOUReJ/qvfl7qxceRnSt + iLiqYv5vPW35E3U+ph0zhDIOZDa+4RO46GxFyErgMfOuwRye1uZv/NGfnlI3/lyta7SisNRL+rTi + 0VtaFsxQV4eMoFF+xKtBR/svD8NGuUfeLET3BHCHi4YLZ08auuV5AHZlTETQDQPZ8jDgPu4hNf/8 + rnB+W0CoUxObL1n1yLId8dr8InUqDsbL9ehC0N0MQgNnqBsGb+8ELNnRxdj4wKaLeVL95RvYEu9j + vOan7QjAAEV6KJMRLF7hhEp84naBuuUr63GcQniX7yU+XCe94XkhttEPCgl+8Nm+Eb77NUBN+Llh + N5yXgebBIVFUp17/jS+T4ocNDy+JC+TnSr3li47kzw+QjqvCmL2Kew1m4q70mF2uJrNv5gyJIOWk + PrJqWIOrw8OtXkj9VJniFaxKDU/cAW163Bj4FzlryPkGxn/zgt9duUBZKjh8fvBOLP7lHfpHbrGu + egH4xx83sS0DYf29mvUPb666fNzqb5zXbPkCurlvG3tvf8fWmgYOfMxXip1wPcai/asqtNXLyMq9 + pqYDp9lBO3PksPOV5YEGxtuCfiD02FTMeFi06BbBS1eW+NgF0jB2Q+Sji3k3cNxWe/YJLTaiY/PR + qK4/Xmy9jPkFTPkVYv82VeY8eY8AdFVxxyfrarJ1tYNZveb3BZ9ghb35fa1tuFfKDrv4/c7nTS/B + HZ/5f3ornqm/XVsvNE/qwbplf/rzX/6dbHpJaG+xDb3PdiQPX7C30JMdwEvDOhrUzjgsltmESDPC + PQ7TGJq/ylkM+KPmI+B3h1cz45LL4E8Td0QsbamZ5dKuUGh9+EDY+IVxfF1By/Wv+KLEHWP2KhWQ + GKpDPsG8svWZVZWyt3Ifn9iqDJN5tRz4HYwEu+49AX95MTiaQYatY3Dw1hPNHDhJYYKLye3zmW/U + AK4/TaKPDq/enOS7N8yGkFEHIdIseJlT9M0oIVB2w5w5w7lGsle0FEdz6C3EYClAeOEDSqmRS11t + OohrLin1CluMF/CU6r/n/cfPLOZcEfw/WwqE/72lQL/v9nR/V6qGKQ+DgPsiulSj1t7kZesXQdOL + I+rUaWoyKfQ42ErmJVh73owl5W636BzPhFojVbzOGFoHGAc5DrLG15m0TN4Mcqz2GJ/wzRQKPb1A + UBUONmBJ8lGG3gyzM3oQWDSTN14+rwr+0swm3IpBTJ1T8Yb34mlvpzynYf7m3QrTLVI9Z+o8rMJT + neGrEk2qP/0rWDwSqODiTS0+FikdZu107+HllrrUJfmbsTF62VDAFcXPxZzYxC1Oiz7AcgMS6q25 + vgp+RYMRldjUZjYswYetkPM/Rxr3k8/m/NqVcBdjIYB18fQWWScqPKyXGHsh2A1rOisceE3TDz8N + 7eLxpBBKdCQXnRbSuYmZ8z2ssG1lHWvKEsUMo7iAfpeesfG8UraONbIV6eNz9CE0lcce6+AjYz9D + WoyWkLPn7gXBozBHbN9DPp6FcNtIH6iEOlAsvdY6fH0Qyw814DXlNEjQSQw0nWKXejv4zhdP7UrI + Jecf9h97gwm/AxLVop+tAKEPD0h/5S7gpSsM4/3JyMUyVl0oXs2tRNtY8XpzNQ29vGJH2EmMwXze + JOx+7C1q+vhrzqcqJUjPuAN1wrIAYq7AbYuCHNHDRUoH8cIPK6q1XRJA8nBypj0eHfw8o5gIhwfO + +bIcLFi1e0i4LjnG0tzVJXI+NMI+Gr1c+KTHAAKjUmlWOkm8DmU+w6MDuWCxrwXgE/J24WU+dNTl + aMkWqckuUHnur/S+zQdylDQZ6jeBUGf31AdxrJEF+Sna06Ru9+ZS3e4jTNf5i/Xw6QBBm0cNhr6n + nZRrvgASHAMf3M5FRnXzYHqS8LtzyAPFHl/5W9tI7zMN4fOoPWjuzo7JOyis0DaegWSgh7dcqEOg + 34YqTte7novmL+uh/xgpvbSiDXj2GDmg7dyQBiWJTYKzow15V7vjQ0QEtkygrWF5EBqaXmsnX1y8 + ZijABiSCr2+U3Iwt3JVySubxWMTLTnipaCe/ZXrtnzvwPi1tAcP8yGEjN/uBlo/zBV0Wq8dP7Zgw + HkEWQWDUKj3pXNhI78wnELQywHpiX4ffKO19eP2+DVwmbtd8F1sy/n4fDZVljWdw/M6wqeOGqHgr + EZMClZAW9Qdb0pg0bFfnFXQbMSXE+FW5IPCurHrJYZP7FxKvomEWAJ/2D5wu39xb+OOFh9khBti6 + lnoueXu9RMLpnmKj1pxYeqxDAMf188P6w2T5rLSLjHr98CbT6WF5IuUfLhzOcRGgbT1Jc9eX6jYf + gvMpyoY2PiICP4WnYtuTSTNP1dKiQ7HDWD/Wg0nvFz+F3UslZHld00E6OCyCzqVF2DatuBGsUQ2A + ZQCNLPvwA9YQ3gnMT0tMzxw55HzzzFoonPsDWTWpN9fSuxBkyrgkPx41+SKcRAdkU6dRR+Z/8Qq9 + NAPDAFGw5p8qn9UhD5CX+necVee7x4zw5UPj1bJACop5kJprkyH8DHjs0DKNeStDLaT8gVDb60pz + RauRwHzru3/Gw2nos9vAQZ0NH3zaESlfNvyDr+J7od71IeRssXfaP3y9pCPwZisTWvQ8t12w+6JT + Psk6kSHH7BpbvjM3y61eClD5eYGNDrXeYtpaCJ3mC8i83WG9FVoruPuWDVHWyAXiclxSxGTVorfz + 4WjS8Pl2kTzyAzXjXZIvtjJzyKPLixZy92RiouwttYKlToS9WA/LR5hrNB5WngaSKcZLoYeJ/LQV + mxb+eomXLPBXuI0/Dmywb0S9iFV1l1wC6oqP+1BneWcD5zNFwYi9bz7vRoMgWdcEeq0uTiM0xmSA + TysV2HTtdy6lqVajd69G9PmKBJPei5cI2bVPsa75aj7Bt84jVA4Anz7h0qyf7ebCJIcmzZS0HuZP + UBvwmB3iYJmS1z/+QZYcmTT4ocRjE78QcHKaN91HsGZL9t1BeEUmCy63PTGXH3Hf0FSCim7ve1is + UfUh//rU9PBxD96SyyoPPicH0vvKa4N0m6IM5ZFhEP55i3N+IdcKUkxHIvmCyUTJHme48R3dl94H + LLvJL2GYexxh4WvMp3Try7+NL+kVZ/XYiywpvA5KGXzF2h+EbOBtdNeXD97Pez2f9194gdFLwtSK + zrHXgSOdYaYJTgCuj2vOh7hyEeRRQdYun+OFi+8R7Dmd4jPJUzZi7uOj+n0ysFNhoVl+n4+DSH4d + 6I1JF5Ott62vptrP1LcVwxOi3RKiaffi8TUao1iS1+INDyd4xvcixcMstN83rO7+lUay//M2PTMi + eD9+cLHxtbRM5tb18PahG14Pf3iFukoZ8b1c6mFpjI8G3Lsj0nLFeSySxOnhmZSY/M1/ASJBA5Zf + +NQJPu4gHLldCcGbvak7RkZM9LeSwPAjVETM7wkbHwxyf+sf3yr5BegOBiPUHX7Ge59VOXsRJYPf + cOLx/WZww1JzZoeIixOydLXNeLzd7Fu7dR1w5Dmw1fyUNTyOfk/aC4c9Sbw4Nny/bjY+mq8kn50Y + dzB4ZxqNRV+LRdbtVbTxCVGz1AZ9x5wtAmkwxc1xjZlXwk45qPKDbvrMW3/Obrs5LyzxHb1ObD5f + 9AJ9dnkbNIfcA8uXYw7k9QLjcJASMOytOwfNK+RxPOB6YLfDqYfod33gTT96PHp6HPxmsUagVVFz + ha9DAcXWy6kzSd4wv2bPgXs73lHHcg0gNp9dCs81GwMF2B+wdkwr0JNJEVmMz5SvT9GY4c2eZaxp + QtuMBx5YcBaiDrv5jg1kkAMI7EAm2I9Phbl0v1eE/vhnT5shXpyqhuBcLyP1qlHOJ43vXMTdwoFe + lob3WLiXOWU9MhgwzwPxGu2LFH7WSqP3+yR5ix2/fbR+vowwAVKwPrnKR2bVJ9hNbL1Zt98Pbjyx + sSe28TDWSJdhI1ZneuD4Baze9VGAC9lF2NuPsGEOeyXIHaIT1rtIzBlvdAYUlfuBGhv+T/K+Mf6t + zxmvljcjWXIhf9dvNKWkY3OpsRn21FioY9qSNxVNBZXkQK/0IA80HvvqG8INv0jh/s7DXAc3Ah/k + aOJyJy3x3E+aiP7wzHvKD295RnIGG3aXqc0NN7B0jwOBP/l1pw/0ubAVn2gNlbSv8fHd82ys0VFW + 9vVBpC7qD2yd96GFvl5k0OiE3FwqCbXA/pil+Ji/LzHd+AtJXl1SR8cKWBFeRjSdzi42jsPek3TH + m0EXrnf6h7/LQeD5P71D2v0piRd/p6/gsg8Z9rKXxmZ+J7RwUBEI5ivKByZ+HiLE5WmlRq11+Xx8 + uzXMG+eGL4f3Hgicy0Q4mZSjB1FL2Fr/QA2d5gPw/SneGyaJ4QhXX77SO9E+w5rHXx4qt18VSBNX + e+yGGwtJOooC9WyIJuufj0p9xM+aep+5Ydv386BhuUzg6eKa/GlpSyAjpGHdltZhG18NFgozqPby + uYHYZuiD43DqaO7/snzt72oJ+8/zs/X9TJp1FyYqKPVsDk6nx9tc9IgnsG/LL3Xer4z9wLOq//wH + jRY8xDPkryIQV+5CbVdf8knr7Dfk5p2HNZDuzKec/lJIh6bBARdag3A9XUOI1+JFRHfbgqcrxwLc + H4VDc7zdPN8+xggI9VrQQ5X45p/eha5jvAj3tt7ebGyn0E9iseLTZz3kwtSHM/KefYCPcCebY7/d + VFk/5gA7hq556939BNCzuIkGR6vL18PuosGxeQ8BN9opYKl6dlGNwIsWvBzmS5/KI2x+NKWetaeA + /vHbNt5/4w/WcnkVaAGrhq8vcM2lLolUWMFC3051T95yOZ9T1LfFl56VHrDPM5JT2IHPCWPhyszl + Gc0ZAlXp0HNiC8282wsc+lsfzifWTZEr5hJm9zyiWhu6HpmfXgQSLphIs/ElQ9fLDJOm8XFAdX0Q + lSkZoUOjkuzuoZbzPyNbQZbXvwBpN5Mtvf90IXOkJ9UlHAOqHmQeCsuS/dPXo4sQgR1sMfamNR1m + R7mkcIzKhG5/b5YBHBMYsIyjwaa/1zDxOSh9kyvWzsN2syn/ECH1shCfuIM7MOUevOE1vl4oxl1v + rolystReekPqzFoQr/KS8epnd2/pYS+3Jj1QTYM+FW1qVV7w7/NBLqYmfhTcGC+t+BhhB74n7N7F + xVsvUewCR+E0Ih/U1fs4VQ/h/YgzejKqNl95RVvRqZgjejNPp4bsdrqNll/3o8mQaZ7wEeQKRtqo + kl0zON7a+YzAhU88asvac2AuHDjk+21GDwZC5vxgPIRT3QX44qe6tz0vD9j7l+DC/S3NL/1GK/pV + 3Jmgv/l4PmMLbs/751eGcbnUCeSbUQm4Szzk81ikoTpHBsQBKst4EXhXhce4r4i8HkPwH9LOZGlZ + WAnDF8RC5oQlk8hkovAhuANxAFTGBMjVn8L/LM/uLKmySs3wdr9Phw65Tbr/4wFU7/VrTUgUVuAt + aQs2yndnsepsOr/1iuZZS4slvu/5H9+gKbCrYhWUiQNKfbHJ8rh9ivklPz+QGpK96SFfzH9XDGFG + nyqin4tei9xfbP7iPz6eqVes0f4v/30eveWDaE22M92A3JxeWK/f56EjOpZVh0UzeW1HxOni7ExZ + LL+nTW+igZ6b4x3almzScqRva0FvMIP8vCupFQRFPHPfV65t+SfGl/cB8LP1vUFqig5FwbFnc5Ur + Edzyb2woPQBdYkviz99hK9r6TP/WY5HdBaIpMa03HvEEXF+l1AyihTEf1hxomWFhM3Qmq9VkyYWf + j2qgpmqMmndTa9a8wk7wvdNEaw5xKULP5ThEtW8Wr+9Xm0PdOFr4/Lg5sfBcQhk+umDGGOpBzc8d + DOVWKUWyVrpbiLZ4zrQyLiskXt4FGH0nRlCk4xdfz0MVryQKnzASbECPeRyDMTBTGzr9+EbbfLOF + a7463PSTwD6og+1w6B9M2WRjfYsvMz6YI9TUcqWosW1LPICHDEHcYbIEXgqEtepFaCUcT93OOtWk + OlQqlHbqg4i30hw+pSlFIHiuDQ705BnP4+0U/b4PUYfHVtt39gix0/bUd5IWDDqwITjmPcCGejO3 + e4SmHtpT88JIIYTR7i7/wXtU78kOt37Awv2n1TIV3Yg8JQlbHs6Fh+vJNWmxio3F/GqetW8WdOgi + V0K82geKYPlw93QfUL5eSWRv97JgDQ3YPBb85W/mwNTtDZyjVBuYds1kqPHmDqNzG4HVDSNefXTe + jG8cMqw5Lm0bCgvLsYf1jrGN/8HI9SnilFCxpvFayoD3zStGr+swsHKtQy0huoCaRxrHa1CqMkRC + leAQGBFb/RPv/n4fivmkthbRMAhkpXPc4lfz81u+2q3OZ9OP1uo1vBDlvVY6tYq7B+YqXyLt53/x + /Mos4d76ETyLRkatT5AGLE7PpratbwR5eY6XMj1kWnKTn9i8hlOx9Q7h4KV+hfgwH2wgrDarIFqv + cNNLJ+Cz5O6Dk/URsfPiOTBB4fEBfyw08Bbf4hk/BVlT03FPk71oDvPl44zwtTdD0jf1PZ4b3yVq + v/geeV8PasyepfiEPEoFbOxPe0Z586lru1kn2Bs9t/jHd0CJCrIofQGWB+JPPz3Fl769Ar6EUa6t + n49AQyH/BNPd0P7xVCRdPY3N6y7L4ePctDhdT4eYf+xLG278FxuP2yeetUcAQfeEZ4y9x3dYumCB + kFhzTUuqcUNfdewJIvStqD4Oq7V8X5aoGaN9w39foDFidXkLU2eVyRrwh5q/rM9I65J4omboHK3Z + fXQhkLOvhjZ9AfPt3FwgHIsz3h9KGi/Gdq+GZUnllr+5Ba/Vuq3tnfPuH39eA1CFv3hLuHQRCrbF + e22LX/jwlA3WT0NUgYtxqqhjlB8wK57fwPDPq5F3ndJgHWTEgS2+ovfjBAEpTekEL91uR60Huhbr + bdJdePHEke739i1eb5PrQjl7a9TLHD9edjjxf3pIDWTrQHQ/SAdCotU0PNvKQIc5y6Dc0z9sAijH + VEv+VqhDQ0J0Enf1Qq8tggbffhGYy7PFCqsQwZZfYCuxqqA/3fscLKE0/9uPS9t1ERya2qXBLkf1 + fJ5gK7UPdsEBNqeCjX7QwjBscvqIVVws9PpEmkjJl+qjBwsaev0MPLMKkBJH1BLtCUCQ8qNDz0Qj + 9bTFK6W07w22rsmhEOjZnIFT+QXdd9u9atVF82FppkdswIQvxiPnmurP72LhbQ1Czl8r9VGNGjUD + /jvMdl3o8M5dAJFso2UroUAETJwnWvRmZ5GXSCFYJepjT54iwKbUz+DRtBd85bU6nvataAPZMAXU + H6BQz75TIOjvFZ+Gntmw6XvIWniJcon64tQHy+S6Ljw4zxs1Ai9la1CuMnTvvvcbT2uVOBz94i92 + u7dTzKdlnqH6yt/Uns4EMBRNGciv14gG6CkNyygdQ1Du4ows63S3BAG2f/CcH19oElspWLd8HX54 + oP3XP3PSO4PNKVxoSi0lWHj6auC2H5CYpqbFdtAh8Ou5A7bTPQrWHw9fVsTjYJ6MWsxQd4F/DBnY + rPe7eKma0x1at+JLvlDjhxV5DgLSxFwENn7P1N67AWWQET4XvhHwdl2YUJfGgmbNKwcj//EzeOl3 + Bj407RKvG/+CZfOV0PnIzwWZjgOCr4v7wul0G+Ntfl049Y5FTeq0w0+PwGe68BRl77mexeQsamZr + feix7pr6W56iBm75LPYP+Q5M0FBCqFpliv08c9ibHU9Qm6yJI5XCBPDzIzD+Jm96fYhKzdqjdlN+ + erhvPkfAlNIn0GSjj4ukTGISgArB5HzUqHGM8nq+32sHktZtsPmJjjVr9GsFHSCqGN/uqrXxNFtz + ufi21R8OgfSbzzbFIeLs1bJE8+CbIO/rL/WGZLJWOkgE1u7XorpoVIz6PKrA5ofQRyJ5sM5wbbRw + pBPiaW9s/GU1YR7BB4Lj3xt8ehg44LVwGXWtdgQzzKsetLDB+Dg/+IHU5MaD5+cAsU1kUHfEfV+0 + 9LiN+kqP9bzuTplC8TTSg+8Hxbg9a+EnUvG/8cB1G/3mA1uv9Bb8/IW68XXCZZbK5mMKIhhx7QFH + D2k/iPCF7xA1mY7/ItYydjIgLw16cCDKO+w3v/nU4fB++jRe+r4eNt4EJA6U2N+d+ZrtKy+C2//F + OO3vbC5hnkFDjz5EbJfbxhtXBLPOOdDH3+1dfDLU/cGzdwipuYqZtS7fdgScdOWQoAVbV+FbjGBD + McFeKB3i9iYpNsDPxMc6F7cBW5rPBdxOTk1/vGGespsPHvo9RlBuH2CRkX7XLvBwIdpfbjC+VvYr + 4JRXQv2kGdgaz/5Nfe0EHfuzeQbjtv4Bud9t7O22rhs7oVPhxeNHsnLSqxhPwajDzbyiJVtQIFjF + 7g/mjc1jS6rh9lb/Gmn54QzwQyKOJWw8CKZVQ/HPb1M3WU34doiH3blqguVa33u46SP294z99MeH + RRUk6OVIUb2GuvWBRvyM6LkfunjAdXuCg0vPhLi8BKhLpxDyVyslYNv/Usd/898z9Yi+H/h15fjf + /kJK9YqsMS5DG5a+kuIHuCc1L12BD2UhEzGSD2Yw18pxBUGGrqRNqjYmr90+h2povJAyzYJFSnMX + QW7v/WEfvN4Wm9AIITp50TYfrrXVJ2/aPq8memDJPZ5/vDGw4US+ERHAkt21P7DVF7F3a/VgxtyE + 4Hy9L9g2n3m85bey9qG3AP/pyrEeu6bOtIHYfzTb8t/1xxt//Gqr5xbEtbQccOHXQ2odvsDUi60J + cm5O8CU9nOvZgp0OzPm93WuCk2E1GuUPvm+eSvch+3V53vkwLAmlwXnas238MkhN3qH3s6NZ6yyL + N0C/4QHnA7rUY6NRW938Kg3ipg7YRxdHbV/bMk7FaqzHrT4Ld/FRQHz/ucRrZZH1V1+hdvGt2Qyj + fajd+tVGirU4bO7MfAYn1UY4/SyMzadgNBVr18U/Pm1t/EGGH+7hYfuKTuCn/wAoeoS9XRYEkvCE + T3B7IRnNknMFLFe5P3j3OBXb5fwZ1vvS3WFIBHvjt89i/RvR369eQcRffer6Oevax+oTelzl7zA/ + vxOBm3+l3rbflx/fitC7wiEvz//ineZcmxNZhOxSs84wTAhcbaJW+Q3rbquXq//PkQLxfx8peDKk + UuOoOkxk+9RVv1C3cZC+zVogqUtgckI1RdbFqOlt0Xx4I4lKHWHdxewMDQSP9++b7KToj62S52dQ + pKZFKmdPLfbgwAne2yXHplyKFrsUYwseyoio7fThsMhi3WjOoY3pAeMqmCuQPWHZ2h11zqIdjOa6 + Xb0iZRm+ba+18V9pjNTEEDNqvhy7kJx94sJ4PGF68T8lYy2nRnAWlR77Xp0XXaFGF+hpKKChp3X1 + 8nc4V5qz+Du0jBEGa9G97tqo3Bm2H/Iz7pP4xGlfcHBxYNRbI8u3jECR5jqNBMeM10PIXJDNio36 + OgiKadmJHJiS6kTkuSkGdq98CAXhnOAsbB6DJAzFBXKdstDUCfN6bnriKuC9+xC1mEU2e6/7CZa7 + iGAHdEbBdg0wYW2F/X8AAAD//6Rdy5ayMBJ+IBZykxRL7nKToCDiDlBRFBEwAfL0c+h/lrObZZ8+ + bQupqu9SSYWWh0UvRcvsJnXcVoyWZWCXAt4dNWDjvSfseX8mk42Sp2r48okm5u0XjJ6uFFB5Y0vP + u025Xi2HFjh+fy22ihINY7k7P0FnJMbuJZfNxVa9HLoWf6PNPvWSruWCF6JCrWGruZmBFHOwgJbp + DhkENRjm0/VZq+lL2mCj/G5KBmdegfFU59iNSr2Zr7+EqA8WLrTo/GPJb5UrD9cgTbBvhO0gysbg + qMnJ8aO/z1twttfgLrN1vA7EJUuo/4Ir3XxwNDmnRhB8vVUL5fLBB/dhIDHNrCdY5YujJe/7yeQ9 + shiS7e+2ft8m4CN9VoCTEyCbAL2DHx/XssrtvZKeY5YOFOmNvFoMQLZL6DbMFZ6yOs6nhV6Kc84m + QclSIExOcNpd/UDSPT1Xn3qrks+dD5oFUdtB8r5wqPETIVhe3+6m3jZxiw/c9ttIFfVekNVhSeOT + EjLBm/VKvUwyYKvr8mReVLMAfNFtnB3EVyC8xV8L2YGP6cHd2QP/1jYRCuwZ0Ti6yyXdyycOttXd + wK6ia4mQKYUIhKQGPXNlMxBqjA7UWfXCHt782Fh+WAsZ93qTZ2MxNpzucaF6KrII+8htwnA3TCCQ + HSaredfQsPx1kAnTgJOnbZtSCDpRlddpS+/BmJmCWcgcGHpwJ/BIy3K2Zo9TNttwwp57Ccp1T86i + Cu3WpwlvHtk8tUsOlVE/aLaE1cD6GfWgKIKNywTdzd/r+tBU1fjx2DS/ZcmrrzBDt++Y0ZwWTiJu + hEFBcb03cdZsNmi5CFRG38Nrj7PpUpYT5YwWTrzLYRwroSnG+E1UrmzaaEOse7Bo9eGlCi3ysbf1 + NgFDeqOot5DTyKZwH0gotO0I2indU9zKl2baRbOheub9ivflZLCFNq4PG0f28cFMRjaVu3sNkWfu + o3OD64AfeTlEnfa9YO+dTyY7lD8XyFkUyU8lZFhSsW7V0znvaB6+NsP8FX8OWHWVYWeDLVOKqOnA + Yh9+2GDrdcWU7HJ59yoeUbfMiskG6jrAFk7CYTY/gyUbT0/V4vgaJ+a3TGbN3zn/3ldVuCck9huZ + g1ulW4Smp7qRBDv2VTltQ4pzZ27mj3POwDv4FBcsk5olud8LOE4Rwzv2VoZpb70roHH/pd4hX4L1 + +V0411FCrbdxGiaH5yP1txxbjJNdP0ycck0hPRcT1m/p05wPF+kI8z4XsTWLUSAialtoGzkStZwY + Jz+kGrnSh+OP7pT2gMbbbAMUI5dTXzkT9BDaWVH7jxCtOxR3A390Y6IarSbSy3v/YJIJ/igNG9hR + /55dhvmmbSPoDy+bVhr3ZEKyl0UYr5eMZg0/D+w98z76LZs71tb841vObFFepgzj3zZGywOcEHit + 83AFNYfYId+2ULi2/g//pGvXHyEcXg7O3Gsd8IdoMtTYClpq259rMNdnP4L6dn5i82KozU8xH5Oq + dvUOFyzwkn7p2gV9KZzpoToekOg6CQ/b5uvikxF/k0V+RhxQqjF6WeNzTma3gmvHnjT0XQnNZ4Zq + 2I2HO3XOhZgsUTWmUODEoSH3pOY8bzgAA2qDuq3+TL4X8xeD29IddV0O0NQWjFOHadDxjuhdOXd1 + asHltJTUkXjaTKU1AByjjx2hb7Puuj2rBXzAsKK5uMcl70ufGGjefLDW2pdAwi4egWXhg0Zv4g+i + Vr1F1RQNQib+KKCXpys5Gkpr9VoFB01aOblqensJ2FSrDAl35SCqUuG/sCUcnsOvjx8KAkM3cXmb + XXNuNHlU6+z2IpeUS5mAqjZV1/q74hdioxHNT/XiXFOivk7hILCzG8Ilak84ptaGTcR6gDrV/QN7 + SWGUEg5QBR75qNTfTTJa+KpO1TlRTHwu9L6UPGq2EN0+V1px5xrNsdnG6jvZJjg7YzfgVzxVGNZK + evSGAxMqxrR/9dG1cyVYrCbs4ZPhme4kDQfimBkG/G6ZT/2aGxGLoo+B4i6zqMESDf0U55oh99yZ + OK4fDluEnH+pT++KsP26vgKWR0ST0+VxWK/mMoeJvexUtQrZpuF9cpnwt97HaTtST+NENqtJcoO5 + 7i7Y0rqqFDfLlKmbyMHYsY1gmPdSHf/lE017QWTLDrdEPT7Ejgbm22qWYFF5kMvpQN2j/vqrJxZ4 + HnzJ1UQsWB5VnyHj3A047Xu3ET85Z8GDRQvea75R9lk4d2DvowH72sVOZt2kC8TBecChxj3Romxj + Xz1bEo02iiwNc6iUIkRumuL9SX0Mv+wchEDJTiJCgONgyd5iCFm3u5DtRtODBR2rCUpN4bEWkU/5 + b33v1U+IFiNWSybYsQt6RiXCpusUjK1y58F6eDhSjNZEP+H7u6ElffHYvBzC5tfUVQub9Hz5i++E + 7ThhgWPfP+ku7ZyE/MbSUNf3T7XNrQzE8vuoUHGaEhpJ6GPO2Ldf6h8ep5mQoxXPOhifmw/FaR2h + Jca/ESzzqhJlN+Wo7zcygEefW2xwtmcuTlLcgF3zljzl8R10zWxXcKtMax0DtbA5OwcR9N3k41LN + 62CezX4BL3jdqOMIIer3TpIhHk1fjFd8m7ffFwe6F3c01xcpmb1ZvynPtkrpXz4Q00lTNcrInRqO + TYNl35gdbJquxqFGGZrVyZz+4VElZV7DHx/XI1AYbVr8mqykGq4JqOGtp/a8R4glQyZC2H99mnbX + 3pze1pNTFa28RTIt2uS3xufW9WCOpIDfD5TO65aTm32m2XRB5RJORgyD3GzI/TWggLwbz4Vwds/0 + UrQ7JPnDnYc1XyJ5U7zKCf3uETjN9UfdV/QI2EWnOQwbbkc21sloprUeABimid1fngVkc0yP8O6L + e6TqajNMSSFwUCvFBmv1UUITs743GLEe4Gisj0jifemI/t5P5FKbzbh/dLAMjoYPs/JkzKahhewq + odTb5lEwH5Qkg8t1uBCEHlc0fT+KhaK31ePddUHrOXIM4Nd4oKECYzKiPUvVbz4dqbPTkDn99iCi + k87n1HlX1h/erIO0jzmpT4OKmDwr7ha5zzONnJ9QLjy3WUBBi06t7uqbgvGIY8i3mr2OZJqb8fyo + FpQ/6y098ddnsOSwiyBW5ZQeDrXX/OUjUg/2erX3KR3YzV4tfssVcX7J5WCUP1ML0hd3ePfYYzQ5 + eSD/4xvG/pA2y2OzBfRXf4t2Juasm58FIjdLqX9ZdslffUbyUy+jPgutQSydCw+biLnrmNBxWBqK + X+DlGR8Jnemwa3nhYjSXlkvXemf+MpE6SiyOmOZM+wbL5lgd0eEhThEqIEuWP/11kHdbmp0qh/XL + WNSQP59b6qh7hpjjaYr6pdw5WpT4XP7mJur+6b2YP56QkJ3NEDkn+0n/8I89jvGk3ix+Q1c+h4Zt + 9KxBjC8ijvT7ppmMRfdVg/ATTfyt3kzC2SHq437MiNIEQ0Kvw0kE9AsGGr69fTB78btAvnk/YUMe + 7UB6yWWFxkZucLau77QE7qLwivTD2CPtMN/qq4OIfu7JvB8kNL72qois+pZR+yT2AfVo8IKVL2Dz + GbNkGO2Dj8zg7VDT3+rDFO8lEb3MbUkjt87YfNPmCO4NNqhH2jdb4uRyU9z7Q8f25vspZ8VftyBr + vRcJ3n6DprU+Ikl6M+qt+DpWjzQG/p1coy68zMnyNn4O/E51TIA7a2jIu35S6i1xqP0VO5Pl1LdQ + 6RGCsTxcgq97DkeoXzwlCvhTOf36nwuptn3R6Jv+ylmb/Qre+86j4aPpy7mp0/affo4wCoJZZpPx + px+p8/mapXgPpw5tTvGJWqM5omXKVUdZ8T3a9DdIiBSonPrqliXiliQ1efkjt6Ds3g22ywJKqr9n + 8ldf8OoHJAKIjaOeQIdIFZ9eIOVRq0F3hztO3sMOUcN4Ov/0627VxyN52Tykb8fAwXJ2EQs5NVbi + eAvYfItiMMqvUAQ+2x6jrdN6iAKyaiRPZYudSF+Sf3g3HU4F3q2N6kmXuwpNYjjT24GMDXXecwj1 + S6TYKuJfSa3TLkOCninYDbR9IHa4CdV8CoNoKb+bhInctKjuuTfJPFgXNAnFcgPxkC7YVfP0v/m4 + 6pVo8Ofe/Ks3kG8Nm+4aXJvLVHU8OOPhQ2jh6mzmQ8EHZ3iRCP08Zi4rPvzzVy5CU5V9ZbSOuqQt + j/f37D2wgWqWevhSQg3jPiYMPfCCvmZkRKwadZPqnpfD5ou+WEdJi/7Fz2wnAjauh6UhhzEz0MW5 + pwTlnMNE8HQFNrNNcRCeqoZc840F6/NSH/w4EfdOmcIOPzz8pxfmW31ygLgNjVTNf5ZTpU853ELQ + cPbdn5i4BXOEP/1Znt/PZh5bRUFIKzOq/Zy4FA9jpqnTpSpptE2DcpE6cgSP8Bq+yqe+oUmwcGj1 + o4jqed9gnA+1g9D5UxLufS+HBbrfhNZ6QKb60aJZbCIX/v3sOWm5bIRBhpXvEt4QFDaH6i4H/m4k + //SsWEzugsLmalNNVyJG5LdC4PuRMiJoZo/m7S8mYNu7HhulHCWLNB4NOMj2FmuXmg4DeuAJge9b + 0UaufTQc8rmF/dtZ8P5ClmEKh1r88zP++S80tctOWfn9P75FDPwJ1W88HMik1kOznCYvRgg1Ig3s + vDWn27wH4Oz4Sl378zUZOxmZisnnRI327ibLNZcc1JiooY4gaoGQxK8cvsFOw/Zs7AdxjRe4DOmA + s7/4/9M7cdEt+K9+CnflwkMYfX6Em06vhnnHJIar5P2ofrNZQHBma//44HGuODSh2QBVoFpAM2HZ + lONHGmPlgeyJXMxASJa98XmBM7Qk4q9ibJJ9E3Sw6nnqCUtQsq9ccMCaYYoaag1sYfbdR2E/+Fj7 + w9eE+i2seIxvb9I3TOTkBYZy/mI9H2lAuQ9pwTu4FOM1XybK+S+1QFlDfs/nEPyi/TYDz+O+hJlf + VLK90BcQ7EOTGl5tDoJ0QUcQ1CLDdtilCZX5H0ErX6HmgItgTs3f9Je/1FQP3bAc3yL5W19qSfho + TsUcVUhbt/TuHnvKJvo4xmBPtwibsZkxdrrnObw2IBGh7paEGRx3VCyR3qm59GQYt5z+Uh+3c4Fd + xOuDNATyDQ5F19MLad/o17y0VI0vhkpD6SEx1lLtBdLRbLAnvcOGj/cbHtSw6rFxTwzG02tbQ3zg + 5ZWv64NUnzcyjNV4pbmht8nv45sW6K3B0b26BcaUz8dRzcvm8Bf/yWI6VQrh0DrU/y12Ith+1MJE + 6Yvq+0Fiw/zin+izJBHp4/XU5m68G7A+Dzbfw47N/O8QwSsJn/R43O4GSbDuAL24v5A+5Nbz33MA + 6CVJIhlOzXqxjnPK1NVPjiB/NevFl3IK9/m9p17+Og+rPzWpQ8m+JA9Z1MzJLyVoMlSMnbHzE2Z3 + 46Q84Xf989Oacf9RHSRy9i5C1csbFvfbVMh6BJgo92zbjB9eHmGwPi8iPHtjEP7wWD1qiPwujZWw + wbVGUDK5x5HtNebyuF8VWOM5qqeRmSx9bZ5/eg7r1XFmVD7cHLTyYXwsf3Uwp7vLE0nmkFPsbVMm + GvgTgbzPHWp10q4c3FxpwfTlPd6vfhN7UM/6x6dST1yCUUmLHlQ6hjSLYr2czrqsoD+/0Pfy0RRW + vwHZzwlW/wmb44EkCtxqucKXylfKxfwOAAZf6lT/rlsoTpoSwef1gdUP2AZTKpEjKGOlULvulnKq + X7sMwq15irbbnARsGkoenF2f0P3V25niMzM1ZB6CMzXi0TP/9A560jjC5YoP/ZCrrRJ8uUsEM8mG + uasrBzWHViA/8fk1p+FKDVh6QV3rWdDUPio1pBqUpyFxE8Tqk5WClRCNRvr93pCozi3IU5fg4+ua + m51Wyi5a3x+Oj6kfUHWee/jtXJvmn82BjQvJcxBbZJDN/fFGrHvqAH/9ib1KokbaceoEnhoG5J2a + LuLtQrqhKshK6n2KOpl2h9cLkqts0Uw17GF+/JIQ8Rk6RkfJmlEdzDsO4PNOsM5tvWHRqh8P3Vm4 + 4ejk6eac+2ELn7s+YNN2tESqjocj+uNfe5qZg/Snx0xf2VN37S8s8nsh6LLLY3xuBQPNx+TOwVbx + Uxpx8nX4Pne5BvtlsbCtrFMci8OzBSsZNeoOvNmwezn08nEvhzgprT2b0UYAGHfuHv/V+y9R4gxU + zjqv+rhNiC72LQhxr//xweD3q8sXQF5jfI1PpPnXrxkdfIjGlKsRJSeDV/vSkqnpSodyPrLVrdp5 + V5qXRZcs8lsZ4Uv1Emu3bTLMw6+IlHbUQnxf/diFbuQbXIvyTOTNe2lmfz+Lf/oPOw/xaf7kdarL + 6pfh4OKdzH/+TkYPNxrUfljyFRe+QHmdt1G9kHUqCzctQPh3SP/8c1Fctinq0LylwWeKEPnze1c8 + iebHICBmGE9LrfHxFvVeoySrfurB9XSBalvFZePaHwHDV07U/HylkvUnM4NzmSL6V0/Jiv9//jwu + BXUY2A85hhobj5ka5fee/POvx52/j9QB0YB2tyyEcbA6Av3vXs7P7+f212/DenLbBoycDBHm7nGm + ZnR/JXT126G9XjjsEMFF4inJOUiW5oL3tZKbrNFJgWZJvGFLN7bDoLhmCMMzFunta3PluOYTuknB + G5vTNTYlwTUJJEpX4Pz8FhvWPI1K5Y50JLyzTrVY9Qew8drT+8ovfuqySRH/al80oIFZjjoPo1KS + 1o7EsevLie2uBgqfU4ir8bQ0ZO3XoIdrHbB9Ev1AMu5FDrZt92ShcpgQJ3OMv3ofzat+XeZlFtUU + jrt/eDVFtz5E5K4hGqz6eyFvNqJTex1p4M99QN2TwyNVUDMyJ7et+edvbZNZrKm28repfGuasvr9 + eB+BX0qSfKmAvGs3+tN3k0FOhbr6R/jy3uuMX/W1MmIziP76k4zxJNxa5l3FXjNVaLrwS6TeEuxj + 6zE80ByqOAdROOzJ76TqjaiLzxc0H8+m964O2YR+5xDZ26NLFOUcIabhelQ/bGvSyD25jVTnk6Ny + 0sekUU4btPiqK//rF+J9+k1Yf7i/wDxaCf77PMke8yfEAktwdEvEtbpoFmyi2Y0UWz03Sxgq/Z++ + I3wnfZK/ePjjR1jfOm6yJPdzDhUv7LC18inx4EU5+MVQUGejCcGv/RXjH99a/QN+WLLvF6BR+wPG + xvMRsGcw3/71Y31xDs3lO5Y1rHwbn9Z6s+pd65/fs+3n1JzXeIEaxzeyCI5RTtYjm1B/PHL4z29b + 9VEEu19Y4ph/WIyt/RB0Pj50jNPDBq39ihzkJ3emhnzNTNGYgiNE2Xinh5VPLPS5A5jLWacXeCUN + 07t3DKu+xkZm/8zlEC7+FuuSRrXNrw9WP4tXdzc+xud9VaPpMHQZXHZFHD3TY8Dmv37Ess8J2az9 + lOdHaHNV5ZwzdqrLNZmG60eDLDibf+vPerqRq3WLpU33mUvZNBUKgCzXn2j+JB0b1MPpBYvc4Ejx + 8jAQ8r7rlK+ROOuRqzta60cK+ZdwEar9sSRCphtqO9gxzc2NgNh1uPLQS/6JqHWtsEkolAqWZ+zQ + S+UX5XxMY18VzaGm5vm7LUlDdy1C6CFi1+UqtJwN8oI85DoyjJyF5ih+KZCic0D/Pc/ePUTb/2dL + gfS/txTsM0mhhizzDYOjWyh50kkkfS1esmD3FgGRrjvqweWXsCmzjyo3MSFC3lZo5styFyE0cpM6 + D/+KFvPVd+DK8VpCN04iPpgYo2DD+zhm9bkRHs91l93dT6i5ecZoXrLJUg9lOGJPGoNg4VhVwUCe + UbT9vJpgoVZewfh5Z7jqezlgKPtlkP+6HS23XyMQFspr6rV0dBo8fIxI/XJFmC55jAu/3wTksnUX + 8N9ZQYoTOyTM+jSG2j9GEVv7BzWHSdWP0G57IIDsNlkQenBqmSsdGbcSKZeCLjF85lagx9r0G7I5 + +AY02ciwWXyf6DeHdQuS/XgSMA8CmvTXjoc9ORzXu0GSQbruDkTdFLNNcyLUjAROGkFWhjcckBoz + tl56AeVMa+zX5+/wu+/7G5xZ/qGnzl5LzCy4qvx8B7TsNISmWt5riBxPZ+zUjw2bKtE01InUGi0q + aAYqpUOG5DELSN1H5cBL+1ekqkPwWu/i4YNZqx9HECDysRNyB8Y/+8sLvq/tFTteM6Bf2kYp6ttX + hv2rdCpFx9340EzEwq73HZtZ76dJja55gjNL2SP+mMRPdSpmSvKzcktoxydElVOZ0eqS5oFYvzRe + 9ZmxRJtQugfCRJChOhsxJ4o9fEv282ECZ6/FdFeETsmTR+PCup54f1biRNjkFx/cStbx9TQ7A+83 + RIbLXj7ToyynzXJqugne+o2n+lE4IT4MBg6et0nBWsqfB2IRxQXveDRo9cghIMEvjxRIC5tGc/wz + F+xmoRr5fEmPj4+STOHdAwhu5QOv8VuKPu4JwvoHUW/6qAEtTnsXKq09UMsZzEDsbKVQizOmWHvB + vRGSA03hitIDPasPq+G7NO7U2172Ir7PLuaijZMPdnA64wvtPoGoWPIThPug051w1QYhi4ICdlO6 + pcl2UNCsn4sJTif+hrXN8cMmJQcCF1G903MROskitx4HN/19wDtTvK7xtDPgq3EO9htvvcvl8ziq + QnffEleDvpnq9RTGcP9eiWAbl5J9q3hST67r4CJpzUS8fl6Lejdjnx6lNk+EGwUFAu47Y2e97fBX + OqIMxEdcxGGiIfb0UwKn6GLTMuFxM03P0QUyph/qSJURCM3vAkr7xC/sNubUzBaiIaDjLyTvJn8M + vECEHkhtUmpqrcamdkxecPceHs4/YzTw6imeICjGAsc4bIblUAkRWHg8Y/+sf5N5fH6fcL7FIvWm + g51M8EtGVbGeKXm1ml4KaSmKqoGubfTKWBAIp/NFVt5bv6I7SZ+SmbI7B/fvfMFBKSfNcu9+y7ol + 6oiDvbpdBztyNTj1pqM7d++W0gF6B5xbSbHvp7tEqIwLwC52vth2r5tyYSdHASNhHPV/VjCIW+96 + A83jHGwKBrAF0jf85RP1y36X0Nt550IdbT1Cy1Iyx4xphlodNhMO9+EULBHn9Oq+FgJcRKpdzsrb + fKFzJtyoXTjvQXoFVwKDrjr0L5+laZeLsGyfh7V+mqbwk9waAtd/4uNidM3rst8bAJuJx1kkfNBy + zacU6CjtaJSXTSC17Diq8pgGNG/MaZhFO3VUcx38GOx2+4EdTq0F0/2LcVFUNJnk4UIUu49cbGqQ + D0LaOhl63OICh6+rX5IFdwBv3yypk9zeaCF0zlXpVSQ0xGYbTDk931RH3OURaHcSsLTMeyhzuaPH + XVQnYnq5HGEUb7t/+cbG54Zs7zE8aXy4HBqJz3EsXW+zS8+h6JRz/Ct4MBdDw3ulTxvhYygGFJWN + Iyk+jMnUk+sLNKZHkZC0czlhVzPU4zq4WGm8QyJ8stiA8LcsOBi/FyTcH271tz40XeOJWEYe/cU3 + LnByNedc1HJ1jzY99nUjSKZNdlggO9xvFF+kXSnStleQjJmBzX1iMCbfFlG132lHTymmw19+Qnmd + XHqGZGzo/diH//BvA5+hYYr6TeHkbH7UfP4cNGv0OoJy71n03KjP5kt+igajJLV09+GVgN2Pz0jd + R6YRKe3rXErcuF8HRfY6kSAJG/7jey7sM0GhDn/mA9aG2Yieu9OT+tv17m29+XawfR0tHISXL2IO + +BrU7WuhGnnoSNLp9FQjtW+wtubj/DWRBmFslfigiWc2G4IWq3tWmtjeliYSXDk4wlE+nnDUjimb + Juy4UG/dHt+aA2GLh4JOPbm+Q7gDipioaBEAt56aOjqoCJbAqSLYGcWBBqXMhlmW6pdaseKC42LY + N6J7lkN46xWPq6/TJf/wd8VXeg+lTbD0J8qDszdinPvSa5Aq1XfBihqOXsy2RZOp5rlap5qCU16Z + k8Er5Bf6q78XV25MkXOWGqQEK9EW2zESV34AgpcbVNPMeZh42fKBPCKXht7cB33XhSJcx3tNLbNN + 2VrvIth7wRObhj8Ns2oqLsTmkY9kcWsh/oM/Fiy53eHciZxBMoSsUqff+UPdYjM2i1WmrnowWUrD + h2El/b5AEQQzXgf/qjrib1JogKZhB+/cfVfO9iWd1KzOME00yJtJfH989Wpzh/VURZMs3SXO1R8S + d0TaRlyyCMVcqZtrpkbDyueIVaa+IkqCj2Mn3iSkul5jWCz/QDoN+mGOxguPIl8s/9Xf0foqBcSi + BdjYRXW5KFrEgaX2m2gSznvEU4vrQXtnImGh3TNyXwe5ZSZzIlmlE3opG3kEq91/aNjqRcCyx+YF + aUuv2KDPNGlvMx+rd7n38R6LYcn35PSC7Su2sOUMjcm26ymSQKM+kYmgob/6gNzceEQf9WENP1pU + BjJ30x1HF0s3+QerHYijMqG+PXjJnOOwULv+C9FtMk4BL/F1CL9XQSP5M5KG5anlqoX1lWj20RPE + MHpYakS5gMzpGAbLZatN6u7ZPfB+vDwZadxrpih0a2KPP3nJcDoa/naNz0jJk/ewmAerA8Wq03/x + P8XcfFMJmzQcQ10H0/r91OnjdGu8TYhc8yn7i2eiumU7LHXci/BwBIPmtkaaiaXyCC451NRMl5GN + OT1XsKGKQPcvI29Yn/hHxDCLybTywanyvhYkanfCN0w0xs+XUw9itBjUdqd38z2GeqEG2s+nFjPL + YKLD0sM2fJW0+FlDw/ZK7ah/+RwWzziYjG7O0T43kojdLJex+dClQPwtRy/eQw/4xzraUfJLI+KW + mx3Q84gtUI7RSHdrvRbj7WNUx0bGVEfVFMwjNp+KWN0K8scX5z4yash1ZxNlz/yEfpnyywC9Ewv7 + 32xT/sL2E0PNaT55GcY7mMh0blG/9SMcFGmDZvUc+2BG5g27lWgg/tkfXvDg53XLhLVtxta+t6gg + 3x2utDsxZ35SNbi/0Jb+4TnpLnkB9VAdI1G265Jh//r645PYDKqw+UkXZMG7Twa64l3C8y/igvM7 + 1lR7Y5uJfXEo4Bb+JuoM/YzI7xjIyprfZPzTM0U3uGDsa45W8BXLWQL7CcOluFGdqo4pGW2vwV10 + juR+qFVzDPTqhtJGy2ixoMfAjKp4goD0mTqhqZkT5h8AYlUVhBddrxQ2140FntrNOC0rb71r822A + sLc9XO3DOFiuuZwC6t0XDixj07AsMV305mOg5estsIl/tT4MT5wRWWy5ZhaQ9YTpUsTYaGO5nLt2 + X6HLxZBwYMfSMJn3XoYbEud/vydWWbmw5k8kVVyULPHxTeA8bKK15TcHjC7bBawWf9Z8i4bvc4w5 + 9Xw7ivRgHVREgss62PZT6/TKs1szr/is9ls3IryU6clM4rCG60bP8VEcnEHIn32Bhr39prgspWDU + g0CGHbrm9HBLN4j8uB8PUHEj3m+dF1tOt030x59pUmTQTFH44tT7STQwRtwvmZ1mPIJb0o5q1oib + 5QbBhB7375ZsTwjQVJzTNT6tDb48fj+T2Bx9KSv/wsZGNQap+o4+HNyOj6YX3Ich96CHaW+fqff4 + /YJZ2/7CP30cfWxXMSnpnkfoN5c91WbYIal08lFZ+Ru1eOWQTIezegM1/4w0GriYMYy+DvzF78pX + h7mV+xto5+6G3bPClfMzXzhlWxwZ1Q+H1pwKt3PQs1sCGo4PkrDfPC1g9q8PtaTskczH3VlEJ4WL + /uIpmOpv3MI2fjBsyFgcBsajCVw/8yLO1XjEflI2gqJzVaRytjLM0oVZULH8QrXv+zosxBUKeIq3 + hnpm27LXr597dcV/evS/TjlL3ecJ0+/0ofvXkA3s6MydsvoHOLwHxKQr31Z5Pj6u/C1MxOw3xcAR + DJF6N5/D5IqmgnSNtthp2j3jE7Hh1IFnEeG7PS6FcBInMDuN4rvJv01ib70eDvtniu1jvi2XWfvI + sPIlbFq6w2h5Tzuott+c2mEwDMu2Yrd/+izYp+Uw9TrqlN3+OWFtxcfl9/4qMOkgU3Myd8G0O8oV + 8uyNRwNz/DTkQeIUHbkmjV4JqdAsoPC5BbtJ1+/7Q8t0TXOVtq0bCbn8a5hzigzwL/ojetcwN1R4 + 3tZbPuKJqJdwHGgcZC+IdLvExi3ky5+htCHaI7Vf43VfLg2/iaFKmw7v1nwbvsM+go2URTQ6Ly82 + zdqFoLeTpvTgKiWaz/lRURcRLjhWyxlNhcnV4FG4UEf9xub08XX/Dy+xNYq/pANtngD8go9Y6kX/ + 8Basgy1he+9cy7kM6grVuVzQcxOAyd7wiED3q5ZIwrVulpFMueoHJ4/iodmYbBdsahgbBeMoud+a + JXPgCFUtPsiy8r9/fkQVjBOOk3jXiAhrmvqnh9PfvDFXPHZg29gDxcWyDZYf9+bV6T5gIi7sZU5+ + 0yqgILPBpnAyzYUomoxWPfnnZ5W/VR9Cyl8EajzWLa9//HVj1Q61hd95mNpcfcGq/yNOea5boHob + AJUH9lfPGYnkelSt6MFhm19sJNVeSaARNybd/9Rjs5SKt6BO3fNYO1zmZpxE30dZJ4sYr/x+vfvY + QPq9zXAk8sC+v+ZZA0fzE941N6OcbS3m1RvxLziQloB9Rxw8keF+b9iMSYdmVAoWeGw7U2/F2ynV + WK0u31ingVz2AQ3c8gWrnvx7vmYOrZT/5981a7wvcqtzKmGL9t/68qfHb2X7oMbhfiwFcz6PgNOA + rVvIN2iyvkqO7Pru4lXPsaWOnyKY9LbD93U9p5v/tOCXjWdsCFfSTGXkaDC5WCKLcYRgBOc+Ik74 + nrCTxXskJWpjqfOiyvRPT084g+ofn7d3Ny+ZRLMa4U9PeHcxY/M1/FZ/+E/9Pf0lv2/FccCnhhF9 + +pQk8808chCWkYKjwH7++WUGMME74HvjmQnzCrkF+7hM5PreRg0rF6UH37l/8d70/GTd4qyp99d2 + i72V778NQTv+w/tdNmuleIqNCTRmRtR54TCQbpzpg2Y7Ld5765S955hz6HEfttFmxeuX+tqHUBj2 + huornk1in49wikqbyHlTNd3BOlfwla6nCL3Zj7F764ZAt66GrfSMTFoPrQvg5zx1gkJnIlv4HIxk + 5miw2/2G+aDPsvr9LuqfX1aKK19UxTh40uiyWVDXaUun+nWlUGerLeY08q4P6XqkJb7RQ8P7UihD + 942v+Dw8nYQP7zqA4BVGxCf5O5guXFyr+e7MUS+LzGB2TxMPLLQ8WjFITaYPDqd68rxuiea0ZNl6 + 1woaJDb033pJv4Ojrn4pvaHpEaz5KCNbC2XqrHxqiduA/NMzlu94Jg2rpYWuH4DucBcF/FZ4hOrq + HxA+1c1kPp0PMirdPie873iBwClNq+KPYpFntyPNKPb5Wt+ylBqWt5Rzt20q9bkx/YgZfjz8bC0X + 4eevW2JvxbGZJtFw4SRahJ5RTxJab0L/n38irf7ab5hPgIz9kyM/0+sTVoDuK1bzpXT1b9E61ayH + xBf3VNMP36Y/Rtryp++wEwkfxi5rC5uE1pnA+n6EIS8MWP1vIqz4U7O7G/3jp+bNctGa7yK4u+lA + q3sQmbxgJORffmHt2iTLFwYRal//YpOEE6LmtK1hIk+NGsaxMsf9Cd3gPVQWvR6zeph/tqAB8P2J + 3ITtYPLHXKxAWpyBGvl6KnXktZXf7TN8j2wpmNPWSSFDN0K20+dqUr8nBnCGsMfRcnsHP2+9CM0p + xo4w9fIJpm/g+6BeFhsb9yIsRdNRXcjz+kxX/pFMu4EvUP7rd3Q38c+GXXeHEQk69Ph0un4G0vCb + I3rzR4jUZqwb9louBBXnPaVOFv/YfH+4N4i7/IWjy+bIxtX/Rd9HmP3TF0xeYh5yhnY08iSfrXgs + oz9/zsxQ1izMKSrUIf6EvfouBMT4bX1EhWFD94ffc1j+/Km/vzfcJS7ZR+3Dv+enTl9dmIj8WwWs + 1h/Y9aV1C+2GEhSfxJFsPoueMH2IOOVqw4Fmq38+Jddag9d3Dsiy+jPLFfkTkt7zQr3t9hJMXMGN + f34NDnOuTpbgskTqWY53f5/f8BIVO6g+u5oo0/0wLBp6tX9+VCQMyzVhG29R0N/g/3N+mkqWp6EP + uc3d6e72vP35Zx18X+iKvcPbNqV760bI0WhOzfkjMpoJ1xZ2QnTBmG8+zfTnr+r2x4mY27/Y2l9J + Fcofa/qnZ8e3p/nq6STeqJY/GzRHOeKBPkiHjcgakwUbU6zSHT1H6pzLDX2ffiH4x+VJ1GLHlaSK + OhG04SNQLNy2ybL2A+AYaTyZ1s9b/t5n64g8xsLtkvzxEWhvx5CGQVebUxSOHHzZEpE//2XeksJB + 4b5+4vgrN2yuz1uA1W+kZj/7SODPs4Wsa06xBrVm8m+hd/7+nuJbbSeil88hyEJgkq2RR4hGycvZ + rv4iDpwbHpatUoOqJ4cb3s+GxsTTcoogRFefbPuNZ7IcaS68pGtDrfViMfLa1iIUcL5H24SQ1d+Y + UyTsdx4O16Ezf/Gv7r/lQtQVXyb1tY/+/G+qEekyzHuhTqH62DXGpPuV7LbOt/vn7+BgHmh841t4 + kW6g1ijuk/d9/7zBH98N05NRil70IKrUcsHaP6ibeciPBhhC+MH75HAsp0CvKuTcW5fqvO6X81Os + qz99iE+T92HT+Y05NAJ1sIYFveEP1r0Cx/WnaJiRgGZFfrSQhPuR5tdQGeYRBzVwI3+ljqX8GBGY + kENjuYj6OFEDpnMjh1JjcfCqr4exvz98+ChBFU2b4wfNz1wBEOdXEG2D3kczU4In6Bu+JUtt9sNL + qPUIlL2D6H42asa4xCvQBYkb6tLpONB+8wq3HW2qf/E6ZTrU2/X7R9XM+mS6JnILqC5fRNItMSDD + q5bhWIvq2l8cgmnFN3Vdn7/1ZxKX6IXq3C4Un9zrJmFsLy2wbXbDv/5GP9w3GYzVTcTR6g9N5zA0 + ICujG94fM23g9ydW/fP/tbvqDXWkThXciHuhhbJ5N4syFxUSzlZBdW9vBPP+aaTqc7weyap3G5Fa + 8U0txfc65c2Ty99B38rAG9I3ugW2wRgBLVb9c2fg6iBEJv/MWKvWw+34x6+G2ZWDGF6kH2io/1pz + 6dk1g6X/1pGoC/dmrLyHo+LhE+DdTbASVsVdiFa9jcMfdRLJ5yxN/SF+R+/1L0kW8a2B+mnkKzVf + Co/m8KzwsPqzeHdp3FJ87KpUaco2wX74OCW/weI1kD+3Ae/h4aPfUW5SNfG+PFHvXFouX2h4sJUq + p1oSfwYSMclFqz+CNX+rJn2+E2IomrrDqx5hNOn3Fiq+7IMNd5lKJiR9CgdzTqn1PJ7+1bM/PKXX + dSTOn9+C1vdDdUKJ+Y9vtwP3wjrYUcI+vRXB+U0wddHzifp9wUL10G0tnB9+UzPe020Lk7NOzT4g + wtg/f5uu+fThC3ORp0Olrn4a4UyYmql4jBoMA2T4GO6zZAkg7NCfP79b+ZPY0EMKYD9S7Pv9PZh9 + KkxKnvQS9vPEHqSlf8XK6g/jIL3u0Xzf9xX4XHDA+2J3S1jtJUTNxyuhpfhiiPzxKYvC59/6Mqcb + NUBXaSCrn9D0f/ixjRtG1/dZ/oLqvIB23V6pt9Y3AVrrBTsjP1Bd/d6C6c/vMzpEaJiML3PuWvv2 + f118IP/vLQUevU/Um9rBZParBlU+TzG22D1JljNOOADQtuShHDUmmB57qvkPb/AuvQeMDVVbqG7U + 76h9ah/lT8AvUBtV/GHr7RkJv8+9Gtry0GCPg8oUtoxVcMinG9UV2y2ljiFAtWIdcCgtXTCXFScj + j2QLWY7FKyDOXi3Q+ZaKOPYjOkz66dpDdsgj6h+TD5rl3z1cB0XvKN5cf8mSn6ZI3VyuFJukewxz + WduGaldigHfIzxuxS91e/ZhhRA9THSGCukOmVhnX4v13LyVPc+Q5VTwqagTZsUH8IE4WiKmOaJK9 + heS99G4P35J7YAdNHFvuy8kHPSqNKB7QWDL918XAHkqD9fz9Cvj7xDkwebNGq7fhBEupywu009xF + 6BGhpPfEz4QEeGd4N/K7ZpL3gwIOuWb01MBSMvvVgbrtjld6k3xlmOFyntBv1n50L4U6E0nxzlT9 + NX7pCS1OICZNUkBcP3MyuNv7IFrIjNQPYhN1NXosx1f7MNSdGWyxlo/PZDnG3xjuF1TjvXQ7lEJ9 + tgnspw7wPpbRwA7ds4VOepfU7EsvICWqKpAdIDg65S2avFHjVBa8gEZ3Q0pYA+gIpfeQ6Ek+RKX0 + 2rFKVeXOwWdk6wPffzctnPqDjR3pIKLphIwR+Mr26GEv6GjJdg9QWbNSuPzdmhIR+AW+ZGxwPCf7 + QSqiLSA9rJ703kVNMqlh9gLZCcIIShOVyyzpIiS3hRL1x9fsdTzmKbh4tumx5zM0D5f5BRRvBarN + yb5ZtseLpVbnxaUFl53Y79P3ClK1XMMH63lG/C5zR5DtUx+JjiuV9e354aHlpB1R+BnK5U0VRx3k + t4D16+HVSOnhqsE3cDf0+vt0CbOyYoSbEHE4ApOxaXQqF5nWJcVX6ZAjKfKnFITz7kjt7yM0F8QO + lUqyeqa51wUJW97BDXE336fG9v4Mfhe7UwALNabF+v/ZZmNnoAjYweabdsNozYuP/vI3uQ8tYs32 + 58Pj+OWJ0MBxbXV/U7SxW0pe4fbakC5eahUt6gGvn5ewu+cuqnC2jzQljyYRW+N1hHw43LHm0c/w + O/PhDe0+zw2RcGoGwkufnqoo3h7U6+kDsY4hDp0M/kE1X5cCNjZ+p9iPmuDyPjcm+3SMV4uoIeTV + 746leHlXEQzb8kx3m9kwl/e8E1GF1lPdp1YvhUacUmjMTYO163XLSBjVN9jqnESWs2M1YmwkhooW + j2KrfsroVxcJr14PQCMOp+9gfJ6sXk0n507da5MFYjQeCepiV6Kh+j2UtENvTv3S2sY3/aQ0kzLc + fIjMnMPX0zFsGJPUF9DmXtBdfExKYTplPrrd0HmNT8fkrXlx4dUqGY7gaiHxe9cWYI35oPZrvft6 + VtMFDZ9KonreI5OlUaSAb6kCtpfiHSzH8lH8xSu1sgPXkMUwDJUflQH7xwWjZXs8OOrB0SqcGtOL + kSZrRqg/w0C9oXyWfLtNfHXkHYv+1TceYHmqPij3aMsBmJPSKjG8H8od35PtruTTLm/hLx+T8haV + jLqEg/MTS9TYzodBGB/DC75VolL/bG1KFr/Tmzp8bhKOnF85/MWv0g/fEBdv2g/LJN9baJCyx3q0 + m0v266GHy5sL6T6IfMT221KGMeQQ4cT13MnL62sw3OOe6tPvU86HT/CE5I5+OHoV8rC0xngES4s2 + 1ODiSyMJYef/+/442X7KeaPxN3gu/DoYusgaPq8/GuLd0KMln0cDiZWag8gK66hWbpkpRbtnpB4g + M7AWla45w+U+QbEvJrKd2iFYWk7L1OJpJ5GEL4XJj6ZjwOzke3y+XEskDvMib52dttDi6OBy2t9R + jVhIFWzJ7/XuuCXoIHsnEbZ3bjS8vtcHgd3XNwmEkVH+4Yfaus0Du8PJNafu+G3hY0YR3dnP2SRm + d3BAPMoqzXR0Y/+e76oZOPoPaV/S66yv9Lm/n+LV3UZXYQo2744pQBhsphAitVpACAkkIUwGLPV3 + b5HzVy9avev1c855EttVv6HKZarymsZyycmFoWh4RPOyAdDLuFTwOdkqOVIH9oNzAj648QUl8tHa + OXNPHzuJvK4igtlOz7n6emBgPOcAiVriaRw7qZVk63sWCc8CO+s8KBOcy/sT1Yz8BGvPlas43AcJ + jbyrAFZ6+7604RVxkn7pV7gnCdSSrbEia2j+jVHlSpWifrFe3R508IoxhWXFC1P75iqHOSolgpEr + jzje+MQcvewCpDtWwwEyl2hmFzOWDOs0o71vyBqnvWwIY1Pltngo++VqcB0c0PEwUe0U9mtxeq6/ + fIjPztnUmFyXGgjGu4uVkyiAMfMfKnQZPiCosU4O09MHlD6gjHFOvBdgk6Yqf/hNEkOrcrbzTVda + 0njE1/0p7ufR3Qa/7/Y9cZ2nUrOsuULpFs4BNpQvzml3YkJ434VvJGXOsef6RRQgb6vH6RAO57o/ + eVEKGrx4xBs/VkT34qOUkrcxY3c7Dzyy9hC6T3HBR1gaYHkF8fNwC9cA39RzAJgtviQT4gfRhXSo + 112gzVJJhgPBviE7X/sB33BV6xi71Pj067XtYrCjLcaXUZGdxeioIPnlcSHBLdD7pVh5W4qJD4lR + J642w8OQwod3ImitJA8s87m0oBTdSvR8W0m0mDANgbB3GXwLjrHWPv1qluJZUCZuzDwwJLuUgSWZ + DlglFR8tQ7MMQNv55ZavH/liJ7CE8NJTbHdt3a9Nc9jBx/19JppZa/WIPNYWuYa9bfcdlZzKz9YG + cT6mxP7lE8dyXXiVaYOVU3uKJu9aNRLX8LcJFFoI2EghA3QiZBADzCWl1blsYZ7vbti2pimnl/Hw + hHq4VzZ+YtCZPOcOfB17T3QTD/SHbxDqzZkEp/abk6/xtiV1nAM0iz3q//D+SBoPK6lDtUXc0UZ6 + +UFO7jZlwdicnhXUel6Y+GU/O3Q3RC783o53olvWW1u9bBcDR/mo+Hi+Wj/8tUDT2DG2meGVL5Gl + QXHZddH2litfLxufBjzjDjiitHOo0GUZPDL+jK3+WW0TheSnVBY7HoFgVHpeenG7v/yXd28YLfJr + gGL2FFiS+O5VW07YLiBK4JNk5Aqc5VgrIrwbakXs1A4czhZaC+qK+sAIXKi22mymQmb5IGK1Sgvm + oyyXEvyG/La+O0COj4yD4vOmE2+NLDozjzr54Tc2R6VyWshaFTycq5zcY/5ST917nSX69PYk1DoF + sPj8saEZzxI6nNSjtoxkYaQ0fdxIothmzs4n2Ye7lRmJHRokn+s0W8HG14m3jRek5VFs4fUjDpt+ + gFrvP1ECvzQ3MDpC3ZkPaSND9xGNE1SBsLXQPyrIWPULq+FAe7qUHwSX3iBYFl2j58SXg0DmW5Rs + fD//mHykw0ZgOHwtJEznNtrHsAC9RWTUyj3744Oe+YnQtOHXINu3Cp6T7DhRXXXouvEXsKTJSBxP + UbRFmMcY3mQZT3N6P1HeIA/9oBkXBvWFtoLpLYouLF3nPK3dp8zX0b3rgIRxQYKL9wSz9SzfcDHG + L8HYM+i2PiEwxiTF8lH7aBPbMRl8PXSJJHUyaM1bOSI4KQwmZzhz0RpVxxDMK/clssyhnlfGypeu + kWtj/0Q+NRnXdwdPFjdh77wbtcH1TilUT1cHo7MzRbN8PLQAFDHa9pOvV629GoeBySviJIKtMYkK + V1gBD+OyLqycDSVtBaciC7FrcIrDso6iS99pqjHedy/w9/dbrrjh4rc/NTcnsI+OC9HVesipuzxE + mA5HhVi3eaop0mND+vGHdKhm0N4ih4EPzyHk2ORZTbtgCmF1Js40uPsDHYOepPC9Y018aS3TYT/P + WYBOfNaJtb85Of/dQR0ae18g/psVKZG70JKmb0ix0n/Y+i/eJDQDklzvmsa8loct9bIaoeXiqZTs + hhzBDZ/+9MRyGbIC6mL+Qqwye/16iXgGsKBMsbfxeXpZbynYzg/69sqSL6fQf0vCdZiJcT6Gzrhb + /OxPz8l2dXfoOKmztOk1tMjne7ROyWnj19V+ovS99Osl7AyAhc9I7K0mupR6/obzLJyIyV0f2sqt + UybGs6hgd1vfjZ9tg5nlBZ9uBQ/W0yTN4Oh4JlGLrQTI6yoDW3yJJ7ZpI40qbBYCMeifRCX7fTRs + /EHUlYtErGeBNRoZhQDF513HCmEmjV59c4CfjzBjU+bmfubFZZBK1t1Nosayziq+NFf6xZcJLovz + 0wPwyBohOTZJ3U82G6pSkK4lUcKHmvMG40KxHvB3Ivie5OtpbFXoPoIRe05eR923HjppVwneJJI3 + radDeDXAi2kfSGSWIv/jo/frocIFdXY19av5LVEPyahm7jZgsgObQpUMC77Y49ZCJO1VWBzPTxy8 + MdPTpDEteJWXBluy3+WrETgV3NYTsSMFPdGc8P3jv8S88QNdMWkZKMcPYcOHSGPbcVEl4pMUMdlV + dsa88mSY7yuFFFlDozm6+QX45XP9zglOP072CqZPHGH1UbBg/GpLLAFzb6Eu71tK3ZXv4IXYKTkd + zcKh72xsoJrLGHtZN9bTaaxU2OJzjKRNn3yD/pOKlv9uJ+oNRTT3+z0DFf9cY3Pjs3Rcpw7UafxF + Q5W8+l7Ud42IzpeSGB82dtb7uITSdp5wnAS7fonkK4STDkaCVndrQWdcBNNup2EtODCUvh8nBga7 + zw7j+GVptCWpAe/ZqCLRmlDUHpUEwSOrh+T2zQiY2rR5wjrJTpu/Y2nd52RVUHoZT3Q4mlBbDY9N + pRezl7BNTKce1iNiDrcXTyZxp7/zRW6pAerLw8TnhnVqJjBTFwKDsXE5RktN+WebiflSPIm9O93y + tT0nqfTLx+56wNosHA8iTATNn0RKB21xaQrhbLUqkZHoO230YGKBoJWfpG19X52PXbCdb2KKwtdZ + f/wZs0+Mj+VyAlRZXQtcqHIl1hvw2tKKSIA3jAaseV6cM4HpI4mgmSdW3Ena+HKF7k/vyTfeBtPu + /OkOwlCuWH3gW7S0ayGKu5Ubf3wnJ1t8ibpwOxLlqRbOOt1AAbMShRP/2QbRjsx5AgnvTfh4FmYw + MnCdIYLle5qftZPPAbZdidm3I/njs9azbA566NwJyvRPtMjDyYVs13LYMLQqWpJHlsCfn2LF6Vi3 + lziw4eHdX7eSrO388fH7Pt/4WD6Dlddt7vBy0wyn+1uft9mqZTBUOBMH72LU6HbjE9I7VLG5VK02 + d+2XgZHLYdSosw5W9ZZC2EmvATvdG+aLX0spDPpnRRw6eHSExSgA6bDoWG/IEs3Nh5thnAEOay9m + X1NvP9tw6cWAeM64UoIsfgfNNnkg8aHZ/+gHObEgTm/Bu1/FW4AkjK4GLnH80lY3CUvpfSw0vOF7 + zUqfSYVJFE/45x/+/CGp6ypENGG30uWccQYsdNSglYwELCb0Q/DMSUFcd38AizurzJ/+t646cnpi + XhHc0X2P5ci0eqrKYSExc+lP/LLy/Spb7xJexXYilg47Ov/80Xya7pseNiP2hNUCwqRise0Nu2h6 + 7+RYEoyTi+W+0CMen+cCOpFrYEuH9s9/tKSfnpJvXZizu0kNpf31Toh9Ked8CSa2koJu2qEvygyN + e5HVAG095PjC9X7NTzCQpZ8+O701JWIZ2dqmbFkxMUaPzamehIP0cJmIZNvnIZbthaKc2HCCguTT + OWbepVRcZguf7/4CFv5G3b/8tem3mrIeK0IdXwti1uo5Wq5qtkLpjSu07DUhX5rT8wnZi8BsfjON + ph8f9cnEIqFVLMAkO5+RvsWskcsyyvWKZq4RDVNdkXS+v5zfekoPVs+mR9rl2uqitoDBzn8SV7K/ + +dzUoSB9wDIjbvTOEbl7TQfkVthNE34zdduGjwb4zDUl+eukR/cdc9z2r8XoqfkzHe7zTof57ZgT + Y43elHqwk4F2dDni0J0UdTovGWBVxpUo7NUEVFj1FDxvPUQ98Y50YfGwgxufRqueX2tqF3wK3sdS + wzK7R9qcFo4lYiEMsDM9jv/47SVjyAQPYx/NmKUrfNT3BImUutq3Q4cSWpgeEdAwAhS5hg7Xc5SQ + zY8H02liV7i92kzsTqTafEgHGaapq5Drjn9p/ASvMrQ1jieny2pq40gWDhap2eCjczYdTn1ABto7 + Zk/cDS9m1ztl4FQFEVYP4aleeZiuYL+T6OSVvOHMp3lgxN/5+fG55XgHMzx/LXPiNj7FG0O4gzhw + TkTZ+BS9Oj0j/vA4rm4KWPf3TAVnrdOwk3OiNpRPwsHSOVNicPtPtLpJVsKvlUlofRRnMM/ds4VT + 8lw2fkIckt8sF8qfVZ64zBfrYV6LFuoBo223elcwKKFZQfSdGoxv0skZrl2QwR+fQiVb0jVevi3c + 0Q6T0624gKUGsQv4YjWJSkUrYikrz1ISPly02/wv/iC0HXBLhDY9XmnjsVYEcFmE7UoavuVzz80G + 5Mvpg6gw1NE0z+Mbthw9TNKU3sG8CLMA/apK8e18f2lbftEhfZgKAtbhXtPx7c/wly/mq9Plczd6 + E6RuWk4g6YN60xeJSIKniE3OtXoGdFb285vIadcNdae1Vx1SdqkRvfcG5Ww5RMDhxRYx37bLe8qQ + AvgFpFv9pgfDEa6+6MQXfZJecgmW2RfDv/hPQEkiOtRqJ0X1LZyWpwqdiddtBj7zVMaF83zUy7G5 + tNJZ5R5I2Pj78r7MM9z8ZWK23k5b9gc1A1o3iCR9f82a3w25C0H+HDD6fCtADwcuPWAvtBA46ETb + 4iODpSNfSKDDlq6yNZWwTsYXQbwt1mTzr+FMWweXxghqKn90GZ4sZpoatXbzv3qBE9VPxNt5py2i + dq/E5xhX0/42+/USycEOcviSEt2ZGEAvbF2JXKwBvOG5MwvHRZAc3D0mqW6lehVMf/fDH2KM2UjX + FV0EUf98azS1zKlnHONlHza+McEpM52vJTMIvu5WgW9TugeTNmuGpNxRQ05v7RFRDVUDuLjjuvET + 4rTaW5QPFiciJG1+6UzRAcH3OJ2w8eQbhwQjKkH1iTFRLbar6aYnf98PW3Hq9T8/S9rvusuP/0R0 + 6waDOye1cKYlnrO+yKrDONseDpMbRZvbiI/F97794niKbTp3330DbtEBT88tvrno/agkpBQl/vnL + 2/52MB9F6a9eR4Y7rP7iZVs/OpTXSoci6xnE/T7QdsXAXOGWr/HGrzTa+/7zp/cmsvknq4s5FzIW + OqF5yOJ6cD0lg7dXFU2b/1LPP/81Qa1DFFkj9MfXgOJfaoLteATTvpYEUFZVgbXQ8CKSPA+pqBln + Bp03fTird1mFPz1tbPp4nsd5lvTXqCEQut+ewutDl9RT7qCnfrI1/sYPyU/f4Ts8IY1/Xe6lmGB6 + Qnsso4gO2xW3Tf9i1J4f/ZDsfE5ywrTBRcOO/fqwzgWoe6PHKtnf8+/nKYjQvqQ5CbSl0la4Cxq4 + 8X1iIRqBIUwYVyqdCyXKVk/lQ1BMcN6uaJLRpdHSjgcZfotVQzRZR9CiWulgIfkuLmgkaxxTq5kU + yp6GU+5yAKvWBrr0WieFuK/4XI/ELlWYmgQgDl6semVSOwT5qeax+53e9SLuQAP7cD1j88a7lJe+ + R12SxUol6VYfmbX+JkDPKM/bw/YcWF6u0MITsWN80pOmpx58ytDLLR6rjJD20xYPkNXqCVvooUf8 + dFAFKSf8bYvXrF6Mdyr/6sdIwqKT//llsvhUsekfMzr25bkAnvmKcPLkdWdtY7mVLqcunpjKP+V8 + HJxl6W6c4fasjBOx8HpfYSIwK/nVa5Zi3VugRSgh6uOLIo56qv2Hp7i0H/VyoKAAhRS6v3qMRkSt + YiRS3zIcBQcGjFkaqfAAT7d/+HAtIAN6o3n5859faye30nroiokDJc6XKnwwf37Rr34x7qXJB798 + lW75b+ZN3ML0Gu8Rv+XnxaX+DuLo+J1EYvb98hw9CM86VbArXRSw3q7G/ON75Fjf7Gi9d7UtxSaT + bvXmc/79+WPxdM9QF66ErsfdNYbZ/ewTlxpmPxbvRyht8T1xW75Y1xOjQqHv/WkN78CZlfO5hX7h + BNOc7gKw7GH6FH/7HczVBEj+xvD/6+GDw/+7peBRriHRv7tXRNf8nErfZbslO/Y9nS+VvEKyphAj + Daz1AAW/gqT07tObS2SNNRF9S6luH4mtVGM05bsAHa53m58AfoQat0f7BoYf4YwDYR9QNnWPUCoE + Sce67Tx6HiS1DM34AtEK766zfMLRgHsmGtC8Nx81zeW2hLuvf8D3l2M7rH6tW2Dt9odp4PmPQz9c + sIIBzg7JK9rnC/mmTwjUSUE8U+/7eViWDLprpWG1BXbEnHbaKgkhvBPr+dz19PMtKmh/XzxWzKTu + 59KuOumljCqxRJHN13ywbDgcnjxBF/voLGJEdjAo3TsuRe1dzw6sCuk5qlfEfh5bSZ+pZUiMq4gN + 6j9zfr4MIiw3c7zz7CJfxVvbgOZ55Key4kW64PQ7w+6BDLx5h7RWLKsA1k46kJzEZ7AKd02Qcl5n + SGp/x56qC5cC7bUvp6d8aOpFd9+Z5LhlQozTO6z7V8dz8HLftVir3GfPlpd7CemcvYhTUSen7bmy + pQUnR2xxL0NbWh4j2L6hRDxYHQFjjqUKr/6dxQ52n2D94Krcyl3HiUi1TNnFWwcYFmyOlXOY5yte + bxxE/KtCl4k70VmWugT0qoVIZgu0pxe/iSE3WyY23Ivi8LdTs0qv+5WduN1LdZg7UWfohoJA4r5I + 6WqWsix1nvrF2t4JNE5D0hsecVjiY3TCOcNMXQw7T/6SK/6AiA63kw0vTSVifAsuOddflBIWEKXE + MaSKjjlUZRgG+YgWM6nrCYFnIyEurMnRmdSI0+llkLjJI8TUeRswkb9LIMV8gD0Fjz2tp3mWVm4g + 2Fzgp1/3iG9++0WOEA3RYjesLT3PLoPzL/eMeK+vJvi2nJocoxOJhmu9hPB6t3hs5WbQz5bpN3A7 + X/h8NizAnhNOhb6oaCTAYgyWXYvcw/Z9yU36dtpaveQ35Lzog3aWHYPVSftZqG3iEZS2KViUJYXw + BCMByxp3irgxO+zEvVecsSpnJR0ETe6kPVrCafd9qfV6esxPcH3vbtjU+Y4OPS0GqIhyjcu5lyN2 + +GiJ9MsHFyu8UL6ehPnvPOM71XoafeFOnKTgghX2uHemOiQGTPZyRQK7UKLVu1glzNdnTeyeAT0p + W2BAfLjN+AYuSsRPEUwhH2yDus3v1WHCwzWD5uXjT3/x/uitEI5P/4ULtbZy1nh+dqAqRBXf13qO + KLpZFujEuCWml0NtksL5KcG9JJDT1+L6VX4/BclXogRr3nJ02O9u7iAbCDIJ2EPssL56nyFzrc2J + i81btHY8MEBqaxFG9+tH61uPmyBvv9744rtdvTJNZUn23b4QIzZvOStx7xVy0epv6/msGz8JG+km + zx0+anc5Z4rDysGg/e7/2c8X7EvYFG6LtUT+aPxbFzNoxKmGTdE51UufIR3ifIXEWd67eny6n1R8 + sJ8vmmdg5Gx6YDjpe3n6iJ0PQz8xl6cg5Zfbl5h8lju89PFXiXzDKzl6LqdRjjVLqKCtJadWmmhl + 7FcHPy99xFt8AVZrXQRBztQ4UyovYvSjlklp+WnQAQ5pTi+73IUzmldix37mtGx1WiUhW3W0q6ck + X7f9Bp9BCHGBvEu+kvJZSl/HuuKLJyqAD4RzJY13xSehj/R8PpyvE1jHxp2GV3Giy/M6tLAqBBW7 + vj3Tzkn7FX5sheIrDl2H+3yOCXzYSCFRPRY1D/IdcxjVb0aMD1Brrv9mFaxKd4/lqEojXgvcFVrX + e0WUsQudVafbEx29dcJuP4URM9UpJ9mzXhFlH4j5gj5qLN2OMcAn31ByfqoOLTikhka0sxtqy3jj + GkjiwcI3/1D0DP81DGlxjQWba8DR0VMrJMWTcMI3I13oUEp1DBlpqCcxAna/1nKpwnoSvojl1BnM + xnmxpJobMC4d9pV3g9WKcOx0m+Qo9QAPW2gAhNiVyMEtAH/n25f8y4a3Yc1eztkATw/uSvSnvm6D + 5LkBSnStiDnTOhqNJ4FQvrgOCarQAeyblhN0u+GG7/bD7nl58gR4+R4dbO81pLHl5VJIcd+xWLXi + pZ/xIqRAGPPd1Hx3x5y7QFeG+yckSJK+tsMehcNOPJ/Hiij04+Tc5F4zkAWahfWEhHQwxciHCY8A + VpTpUM/557uC7ppWJIdgl1Pf2NmQLdse536X1BxzvHIHExUjTi6rB9aPuZchbeQJ+yQqtJWUXQFv + 6RsT6zI09eTvcwOeRAiwueH5us8ZDp4+4wfHzH3WZsOiIoxWYGGdufvO+DDzBjo0GolRFwVgAu/I + SPA2UFycI9bhXnXBwclcd+Syjz3AGl2QSuvTLif2HuoauWgfQ9r4A7mJtZtTZ3Rl2HJvC2MAkp7l + DGDD6i2/yGm5pD2d3l4Bj5X7IaUgqhEfhr4uWUoP0P40svXMB18EvYe1xwiecb4clFIA7vwapgM6 + fcDCGdSS0pv/wZrdf/KVaVpLQuckJwZzNSgXcEa83YK3sac0BZiVsxlKPXQFrEU47fnGOE8QH+4z + tmu/y+fmvFpSslcrcg8+Vr5cztkkjUdhIic+XsCSGqIFOQd2+HQI+uhtsY0g7YbKw5rbypQ9eakP + tIIBuFxkXLMxT1r4xVO34fHiLBfmoULt665YeRkVpWJ3z4D6nAMcm8ca0O9ne5jkmlVY/awvsLQL + yIB+y9Af35rUVI2lNkwHgt73hq4DqN9wNHGP5vsO5quyM2fI6JD744cz1pVK+lLBJHK1Bv265b9f + /iCFb/t0XQ48Aw02cbAThnLPd/vEgD0SD+SP34RTHcNGccjUnQVd6/NweUobnyVxk+QRJbKlSg6L + dOwxQQ3Yjxf4kl6ODjHid61RZxtk1jL98pd/ZmICGbZ9jQgOIN/PlRIJ8CUNGtbKJs2Xk+eHUrVm + xW9/6fqeQ0Oc+aoiqhUH9bo8sx3Y8jU2GeRHq82c3sDODxq+uY0XscOhyGCJ89dU6xNyKHUhB08P + 5oqkQX0AKjwiQ9zyL4kcOanZd37gQMsfjtiKvHI7H9iHx+XREPWul876qmMGrvUtR/nDynpWPFkJ + cO/fehusO9LZun47iDi/JgaXyA5LitwHyv6wEC0UT/m85X/4lLt6WlFgU67ig07KBl3BF/5QUfoo + NRmeDyIkWvUIwPiMUwZs+YOUFZ/RNT2dEpgowxMlGx9eHN3Z3vblPWJYq9RT9iCnUi1oLqr25qOn + RJZVSdTu/cR8PA6sj6SSJYwMC6uGaoF1XEsOfr7dDpv3R+fM4VBYP/6BwJdT86W53WxgsLGDE2u9 + 9TNqqC3RS8ejJROPOeVVfQVuYrnkLJ/22hQb0AIBABF2PT3Slr0ZN1DO54JE7RyBNUU3W7xG5ITR + NBlguXzqVWwNlUXCjmk1ujt8OaCoHzo9MSnzH3+FNJUYjMSU3QaLggrUwK8weiRyz9vWdosKeFdy + Ym5cvpjwWUL+FH6Jqw1uz3F5lB42/oA9/exErHiSY2j79zNa6tMnotba+tATYEOuj/HUz937UsBe + tdG0nKS8niuDDHB/5dyJi8EaEclLfEgzwcGJfpuiadedMzHdIYIdK49rPr09GqkgzAMXqsDX9Biz + IQDN3sB6AaZoFUKjBaB1MxL5qaQt55qG0rFvz1hpHx5YvsmtATsXqFgJey3nzkJUSf7TK5EoiScw + vM1rAxfOKSZmfSb9GnAoBiTRjpPkH2BPoi/zx++IIfYkH4blkMFFHEdyhZeTNmznD7gxZonL4ZtG + zY7jpPNYHzEO56Gm5JgzYOceVJzgugf0K9o+ZANRxpj9IoexSraQ+DB3iQHuTT5AIa3gu+wcgt7y + XltYplNhFAUSORqGEM1T7XM/vEWzlYlg+CzmEwjDUZmWcwjyldSc/6ePVBTYgPvEjL+1eEXY/KI7 + HaPKXqF7uZ+wkQl9P9+uigufnAUnUX872nwvDhN8SZNGnJJbAA3D1IChFdkEHXBQjzv/kcAIkZ4Y + p0DL+TU5vSFoUUZ0iU+iH18EGx8jVv9i6xU+rgbc9CQ+iRmuaQQN+bBEwgVHZSPkpI45X/KLGJM7 + d6s16knLDD2nfWG/rCzKb+NfIVKPJpo/AtHo2axkkRi5SLCOVWdBhzwFXrxY2AmoCNrWUXXQSPaM + dgjUzrJntUI63UITWyoRwfpNh3l7C9ZG3OvK5UvVegiOuzYnJzEjNT1d7BKavJuTUl1RPktEmyF7 + rE6kvNgvbQ22MdQvsSRo90iqHz82pO38kJO8KPUCXYGD3tCMv/Wtp9/P//RJLC5pzb4UPhZvXn3G + xnYe1hvrFnC7g4bdqo0BrXawBZ3SAByEfZ1TZtBsiInqb3h1BNTdnw3YdijA2u5SaAPEUgnvUsiT + 07pX6z6gygA7dHnjTd/U4ylsDEkUxfyPf0zy9dUCtYhaojN2RWlXNgW4HZ4XfNKkIZrTNWBE9r5v + sasNQ09BXfnS03bEienN7SmqrHlKUhkaU7UvZjB1totA0L0TxGT2ni6eZ3JQlkmNpAbqzgLGrgTu + +tTQkL+kerbcJgPyaF4nQQk+0egE1goMxSJETW9GtOqTJkBjrF7YrW3FoZZ+yKRf/ITBcAHzsQkG + aZqrgVxE51vTRlFECYbR8adX+qXI/VR6eleEj/zedtbrHj5B2z8QOW14N7DePEH9/VwmId/eRlWZ + 21sc689z6rPH8x+8ZIJ4RDBilWh5IaaRMtZtcDpMmUZ++sXuK0T8zubBHG1vt1JNf+OCSnG0XsV2 + gNv3Q0Q56RE/Kn0i/vJ5aXh59Pf5M+7xINv+OZ1rOwiGvjFjVT6Seg1qyQfL2YuJnStWNN/Kswqq + o3FD0k0NIrpPZ1f64R+Wahkw3Jox8MwmPTocAidfyIPoUNErmzjGqadUXXapuOEPRoaX5+ym94Bu + gDc53fOKLq64myBjuTbi1IqhyzNOOSF96R7226GJxi2fwmW6cNhWv0G91plfSUEmOcRzmzEnHIvL + Q42jEivx6eIwljuk0NKaECvjWQWMoFkd3Pw0xB6gVvM8FATp7DYS2fCvHrvZNyQj3cVEnsE72sY2 + uQBXF4RdT7C0NSgfJeAmTIj741PXsS/Bjy/e+joH67kvfdhI1ozPELnRagb2+sf30rWPcvKqfCR1 + 2XjDV01yI+YIuDcg3N5D++ZydpbFEyd4v/XDdPhCp9/4owy45a5jS7+8nJn1tilLqV2TX34hkD3E + 8MGEA6Is7ej60yPrdDhh5ZXP2jw0jA207kGmtRqsfPM/dnBqR2PKtNu75u/3KYbIq1jsI7Wh5NNY + 08+Pwijp79HSqw8k7fmHPL3rAtL51ochlOu3ilWQmH0HzKSR8nEXTIt+b52xuZ1t6SD7Jdb99doz + 23kEcXp9EP3Kzv2icMMKAzocsJKJr2jcs04J+XNbbfgzaV2zsCn8+UN69n31f/HbKW+A5cBSa+rV + ex/cNdcjccMqGgNmokNfrzp8C1I1Wrir6wKmaRTEnnNBW+qdsULY559p87N6wt2ejXSOsxqbZXoE + /FQtnbTlN3JJ86Gn9/s7lvx2MogZnCe6Xr4rBK39MrB25MPoz0+z7beBFfrpo3WLF6BqJwPtvOjg + bH6MD8Q88gkS0zOg+RGG4PMyRuT78VjPa7dw0gBXByvKtcu7Ms4YwE9UJbp766JFM8MGbP4o0Rym + 71vbj0Uo7ssBK2Yf0rV8+IbUNOr20EMqOe18CDOpeZr8dKiaY84T+9PC17O3pzW9vSM62IIBPCaN + sDsxvsNVt7sNaeFZxLX80hklbdChe1rP2Asf756im2xJXlQ62Fu/13pRn3MqoaRPp3bHWBp9sh9B + 5JxdR/TxuuaLxE0zaPRcwxjvd9pYHwUfar7uE6Uuk5oOmtHCQ8wQcg3wsV8f8FVCeASIqA/l0q9k + pk8g9VDc/B7TWQGWVUmf4m0YrW9o/A9/zPgMJ5msCqCvKNuJ2un1wUpmzPlKZvCEnBd80KqgiP79 + /E8/u+8XcgaOnzooqtaEXVXge3pVtRX+zqeJ8KINbuxlcMNnorXzNjTs8TZEU5lUYmrTO+IXTajg + dTZlclzGRz+kegeBqjkGItl+6ulwvg8wrrD55xfPun1B4hYPiCvYl7auV4R+/BaxhpHm06p8kz89 + bqvfpV9/fIj9bFOCxOIbLYl26sDGL4m14VHrMHtVfPL3A1aNy/YWO9OoUG6EPRIibyvxX48ufLpG + gJY5r+r5UlkzxPX7ObFCfK1p8VIbqFl+hxXH2INlDXr3UGblHRt9gvv2sVJfOhxkB+fJB9Mf3sLP + 8f7EmnBo+yUE1ftPH235k86MDAr4eiQeMX236+dVUkWQ3Scby1+F1svOf8TS85D50252s55L0XnT + /+prEkwk1ywYuwJEUSQR3UJWvna6kIKrf9um3rBuT9SFy8DKTQSbl9By2ITTE6iIao04mySU+enJ + zQ+e6Ny969ky0+bPb9j0eb4WZG7h59vuyIkcCe37WXqCzc9FB4Cafg4PQQafh9QnRZRsz9Uw2hsE + JboTBXBjtLqSJ0IjvA3EdYlGp+SyTVVC64rV4GL1iz8bLTxeDH2iHCTa4zZ+C/jze8peSnM6N09b + Eo1hj9XLd3EI0rwW/Pz/EN5djRKqDlJyrcxp43vR4qmVCzrQv4gluTvn67KdCLbOUaJS89WPqbFa + f/6bxxI+H6ErMDCMv8rUbPyWqkP3hkMD3yTe8sd8TaAMNr1JFPWJ6qVs4gFqvuH/fj/607ubXkfd + 7/zJ17GDP76Fd8NLoxYPdRhHvD/lz2BH/9arVp+UoNJXN77arDBozAmfyEEHS1eHjPRlsT6tPmqi + mTFwCOu63CZoQqxRyC4xPEuWT0zR+faUda4VvO22qYIBfvV056w7Mb9m8sTus4tGYnS3IbA+mHhx + KWs/PgQ2PxlBnje19WTuZIgh0YlmisJfPoBacPXwcaQTXQV35aBVTAzBAunBuOojBNW9htg+ZrLD + bX4CTFeqTLu0TSk1FFkQiZUEWN3yx199KRfyhXjZbNXTHr4L8NorMr67pa5xj6RVxY2/Izo2LV0H + jxmkr2Nficq8DlFbYqaUSFAyRJb3I11+fnrrcRlRsvxek1e35w5bvE6b3qPLVt+Dl6/pYPVea3SZ + +IMBi+HjIUbbGw7fz2wFtnw50bIRIvpwDjv48asCY6neWraZrwrltLa2ettLW3Glz8DCskxOXZCB + NbvbIoS3ieKfP7N0dcaIX6FISVbsFMqrw/MNf3yOT04aXY/hW4f30zbVqxrafI2VKv7tF9a/931N + 4zboJJ5rWpzYmVlzynEJYZkVdySEdRUNbednUqpbx83fftD5eTmX0s8/u+fxDWyfV4bsZ0H4+E4f + W/3rmcCg7fdEI2oRTfkg23DzB5AEqxcdkkejS7djAojhXh7OMjDWG9ov5U28Ne4iyjpBJWUtMxLP + dN+ACu9JgEtatnjDN40XX84bMl8rxJFavHKy1Qtha38Mot4Fqq0/PNzOD9HNjGoTUO31z09zWOep + LSZ5ubDGQbnVh3aUvl6DDDBITZJ3+3dPU7K20o6TRmwuVtjPhtbq8OcHam5bAaKzbxH6u1eMZUZp + HOrNsILb72P/GEvaQsuqkKSQS4ksOyn95QNpJwg6ViLG7Ld6mA9zMbGmw5bPqAwcGx6UV47T57Os + +4s/xD9/Y3qVtMznM45kCdfNk/iM0mi/erS04QtxkcdHqxQKTxHuWkAytjcpnz0yA06f7IRP8PLV + KGyhDnu++xB7Eg/5VL5rQXo+mh5nEej6pfKrBN7b4b3pBajNi9M/4V6cY3IfSZ6P5+DpSvI5YtAs + Rm5P8iP04eGgOti7fpp8MgN7/vk5U8RZmbaQIvJh0DUJsW5C5Uyx0ibgfjJz9Go7u2edQJ5/fAU7 + +/VK13x3daF0f2nEs8Nmq5cOCdxP2Y0YuHbokkmvGIZRouPN/6///C5g+iGxpF6j1I9ABussSaf5 + TWzABvYJga97S7B6BVdAiy7JoP398Kjd8JXes6yCH916kWS4M87gyYEM/2kp+Nd//df/2BoE/v1u + b+VrawwYy2X8z/9pFfgP/5/hnb1ev8aCf09DVpX//u9/WhD+/e3b93f8n2PblJ9h6zWQRIH9azf4 + 99iO2ev/+qd/bf/h//rX/wYAAP//AwArVeQJugUCAA== headers: Access-Control-Allow-Origin: - "*" Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983de31feb1a9444-SJC + - 984e9aaa08019459-SJC Connection: - keep-alive Content-Encoding: @@ -3031,13 +3031,13 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:40:28 GMT + - Fri, 26 Sep 2025 00:21:57 GMT Server: - cloudflare Transfer-Encoding: - chunked Via: - - envoy-router-6864cb8b99-m78df + - envoy-router-867c855bff-4vd4w X-Content-Type-Options: - nosniff alt-svc: @@ -3049,7 +3049,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "393" + - "218" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -3057,7 +3057,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "545" + - "257" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -3067,13 +3067,13 @@ interactions: x-ratelimit-remaining-requests: - "199999" x-ratelimit-remaining-tokens: - - "199979816" + - "199979820" x-ratelimit-reset-requests: - 0s x-ratelimit-reset-tokens: - 6ms x-request-id: - - req_7e6897b5627b428e9656d01c63113fcc + - req_178a3245796d46979adf007f9d81c6cf status: code: 200 message: OK @@ -3123,122 +3123,122 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA1SaWQ+qTLumz79fsfKe2jsyKFV8Z8wylwKidjodQURQZKyCqp393zu4Oj2cmIgE - 4alnuO+L+s9//fnzT5vVRT798+8//3yqcfrnv63HHvfp/s+///z3f/358+fPf/4+/78ziyYrHo/q - W/5O//1YfR/F8s+//3D/58j/Penff/5xlehBXJl7scWNrbf8ntRHCOVeqeec5rlEa6ojbSs0bM5p - UsDhs9xIZMyHWlBkW5J3R1EiTjpWoAfHIIf65uIgdAicWDiBiYPNLmREj4cj40eFjfKiUYOkZ/cN - GIbPQipFGuJNHCae+MS0kvWavsizcB4D6XaXEqKKDci4ZsdM7HbPEpaqi8L51toDPypghPuw+RKU - mXI9TYMVQvzwMUnO1PJ4GquWXHOvAgXPrxuLl/GC5WXIR5JuGiMTXOuzgcCBDYoF2MSztOFcSHpx - SxzUaoALkWvAa55CohnnE5itV2XL3yPIkXZ1ARvyuFVkHGQX4sSuBoTs27Yw6rUL8mLlNQhVOmH4 - MkKRGBtG2HLT2U72nmxCNtsH8VgZ3Q6euf035DaMgGXaZy388K5HfCcYMv5jhglgNkjC7dh1+ii+ - kxCM5vVAjtE3YpRu7bvsAd4gBa4YIG/2UeC1UGJy207+wPVUpfLp/FSRLdviQDxF8f/GE11vTszH - WybJ4stWSLJhCHSMhC78yk6GT5d7HrP359lAgsMJ0ykFA2PvewIty1nQ7auJHv1sMwP077sdVqAA - MS1gMILL5S2T5CkfPQFcpkKyyfGB8tLZDtQ82pL8oLeKmMOCstnsNFtG3lYjxjwcde4gEx84nPYg - a/zqpS9UF87xeYuKR8p57BjbLvy0O4/ERJNYZ4a5Bd/V0Ue38jZ5zGVPAfLaF+Ll3eQxtqnCyUVR - 7ML9ba7AMqSdK1mX9okcpRdrdqX3t6zSrUeCUOHY8Lv+21J8FO8/x4GcDNsFUfNQsBC+DTYut4aT - 985lj0EHeTDtWWhBdzfn6Nm5cSzu4+cdatnAkDXd3/VSoEyAxnVySAi/3bAIjarB7T6s0SNpODAv - XwfD1955kmf36fTllGYQDnv7QC7v8u3hzpt6cFb7lDhRconHIuNyiAfXxEx7njzO6OAI7h8OoOja - Zqzf6cpVXusT3aBd1bPDJz38Rg0jbnLVYt69cZqoqQcvZAOYayrcyitUcMYhBW3sYfFuaiG7nopJ - Ud4TXVyfHyafe4qc2znw8FRMDeTntEd2haaBymGZyhv7FpBHR9xM2E+RJM9caxDD4u71EmpdDo9I - 7dFFcGu2XG+vFNySPg5pCJaBZndzhl+iZ+v9VTH1xY8ENW2uUNKbR0+Mbxcq7TbsiKwZvuuZPl+j - 3E2zTQ5phmMKUyrJ1ZUGa/7MHlOyz1XmL62K/Eh+1svViyVZd+4v4gtNWc/+p7fgmQNfZKItqdln - iAo5LuCWaGEJAIWPMoWVXwXI+8beMDtQM2T6knS8sT+ux718R4KfT8Khxyhw9VgJyRVuXgcBGSOW - sr/Xr/ezT07t5svW6+eShpCLRTsOa74r2AisCtkkmEZFF6VbFMGK1wJy2TGsL/s9K+UYzymK6fY4 - 8Kc03si5xUnE46+vbPnqLx8s+/dIHn3gZn/re3P13+gwvGsm9uK4gd2TW5B7MdL1/8AI6SYZiLL2 - S+HwnjaQC0SI/MvZ00U9ao9wXe8QVDsekH0pHSF7fWSimzaIl/KgRvLan4kZWzfwvvDOBkTtWQl3 - HdZjvqqtFEqkaQiSUuZN597K5fJxDcn1pAdszaccdmBno+MQtTFhqbGDxv1eYvlw59iCGquCt2qO - 0fMQOJmAIlOCyyMZSTpaN108F60Bsfe6YHZprXrBfdzK0gRQuBmUmIkXZroSE3qNqPqBZostqjnk - hDMM9/1rZEJGlF4O9gedhLbLZctox1jyrF2ONJR+49krYAvdvs3x+Cj5mO6naCcLDexQgU5FJgi3 - 9i4rmsdjAVTvGMupncLpPRKUXaPUW+JDvJH2d+6LOTeVBsy/lCuMNaKETR6+AQmTzxHeD+CNDg/J - 8MTbO7ChcrjW5LGLSm9ZTOzDIHNGoqH0EFNpLFMQ5KKO9Ld4ZOI8XdZ6t01y69+it9hzroATPHXk - 8jZxhvegTGRx2J+I1Wk3j4XJJ5LFU9KhkxPBgbUJzSHvVCq6HlJ9mECODaiYxEfmvTIzccOkcH8J - tISE1IiBWHPPNxQl9fRbr0w0yEWC4XK9k7OTfgZ6CVgEJmu5YnoQTzVV21CDmSpFSNtmi76QxTGk - TtEzog32wePWeQVRNt9QXqUKWPzTK5el/rJDBqN3bzY6boTh66Ojp7mXAeV9swS3rRYRS+pwPQYI - 9nBO8RTSagYD2999DuYvX0Kxfm0YM/n7DIk0pEjVK9vjGMAzdJIbCafn18148A4NcHKUK1rzEXCn - RdPktT7I7bkRPSZWl6usnKs6VFShZbg+M1eem9IgWcN7tXAXyhbUd68IucUygdCIwII26gjxzcHL - 1n5/hUVpH8kx7GWdknebwzX+ocTGFxO6KLMgKQ2MDtE+zLizQCzJ1oMDMd/9Z82v8ipzmqQhj5PU - jC8PzvHXP9GZ36OY9w2rkdzvCWMQuqm36IXVy4CYIrrDjZDRbX7ZwPbmU7wIwwJIcL5wEKWvgTxO - RgL4lnu5sicTg3jXyQMkaRQLXJv9B3nysmXMxJ9EjqPqgoxDJNW40Jgvo7upoQd37uMFjQzKnX51 - kGlF5sDumfSW1vpCyqo/xPU75GtJRear+WRs1VcQBf0NOcO9Gtq6xBtYiM5rnfckowktR8ifZxUV - 6zzE53ccASE8KugavAKw6G9owdQYN+gWUjEm28szgRqIXsibFB7MQVoZcgoSmaRzYQy8LTo5rIN9 - gdknaga8Xe4C2JXDiTj8YQTsKD5nKMfFh3igOdetFDg9rOpUIEEzuHG/0+27XAqGSKxPefNETrnk - f/Uqasc4XjLQHeEvn11CRq+lLubgEfdXFKaTA8S4NEN4uE8HzO+Fj76cxS6BmT5HeBLF3mP7u8FJ - +ubsIOU7t/HSXcMIkhc1cWVHh3qWv683BJG4Q8b0/rDl4lsFPB0ualh9vVMmbA5KKj+CfB/W7xzo - /Z6jEjgqk0ZOoxnpvJl3FexIa5OIu5wyqjXl7hffdf05QEmaKTC5RCnyh+CZkevjieH6vHg+4YdO - kwFEMLcEiXhKmcZzJhEFHvqyIGfMk4yZUAnB8y0hoiiVHM+aklNYjO8dCdf+yAxPOe7VN+8Rv+BK - NvMjppC1pUaebI51huElhwWOEDLz+Qboayjf8gPZR3J+IzLMzyTPoR5v3ZCKEGSj8uhD+HE3HDnc - r2+PdVsDyoN4PBBdeM316BWwh2XXhugS07dOlI5yUGiFjhxK+1pTLgsq+Msn/bu5sxHMGMMHZ+zD - nQUCIGJ4KWBeSSfibcuXvrivXIHclPfoTpI0Fk08pZI8XgSia0YWsyZ9NgAkLxSy3SiB5ala972g - uCqWeCnN8DpPAX/pVSyv6z0iRbPg19Zcoo+pVYvJM+qh77UZcqb24jHuHCXyN7VddLrw1FtQ0VQ/ - vUHM9IMGdg+fWFKkgQv3plbr7LKX3jDr3xJyvOMl6y1VkaD5PNskl+yypnz8qeAy2TqxDibSydmZ - fJB4WoqsSgzBMiLVhmJ+kEKpPabDSK8Ohvkpq9Ehb661KN3uR2h8HPrrP/FiBa9S/unXX77OkpX7 - kMddRJ6+LDMaS/YIf/pOMZ6xt3Cw02Cx118o5GtnWPDCWjkWhzb8UPrRmWFE3P493/1wEtXNQNZ8 - kZW4r5EpX00dp7mC5dx0ahIORQym/AME2O3qO3HhRohnY+5doLoPj9j6bQIsCz6uzFNNxXXmWrUw - jUwD6zxF0Wl7qmkjMkPedplPFMzZmfjSny084vZKXC0VGPN3rQ3k1/uDsjrlGXMPZQgvfJmgYigY - W6gBWkiPtzNm1JIYnliZQ3YdB+Ra8TiM+4Dz5fnaTMgXGmUQs2Cyf/mO7NrWY5qXSi8f8msRtk9v - GpatDArwGsET7396PFRgCw4sm4lDFW0Qf/XhlANBHqi9bG7ccANPZtcT9GlZPM2BFcL+atukiOZE - n4n8GqHKtRVxTE3X+YxjAqyfdx+z+Ah0HMjtDM+74xlLm0gFbas6AkxqvMXkKLGBjfdnJbn8DSPt - +jkN9EDZXX6ejV04cAbPlkeRcdAVTZMoXvPQJ33oKuCdlRyLQLrqi73pir/1HMZdB5iD6Cwl52ZL - VGei2SJcsQ2TSm2RCY39wFx2EcAQGDNSKYY6A/rIgdU/E827nQYWT60Ft8GZJwUaOX1CI9jAEDoD - QcJNjtnLDSx59aMhWIRXTLc7JYKychBDse53MbGPn3Tf6EcPPa52wgTpaebQCO0SPazX05t5SW1l - 1X166LD6qekWqSn0zlqODibCA12stgBbXuRxdvMGMLmtU/zVK8dukzOu6FVJPp1Aj5DGy4D9+ANP - FfXHC7JxiULhN/9Rtgiv7G994O9yIbZV7la/nofgNtVvZCn5R1/S9pVCrFALWYpKslnvv0d5l2Qn - 5AGbr+mO/xR7xysf6BdPvN22R2g/HxbyDu/UmzlHxbLBTAczK28Y0TbPHTBPSkmcGvhM4DKzhPox - Y0j103yYr40KYQGvCIXaw9W5R04U2KeRTcJfvJOtk8o85gH68Rjan8pSNvKoDDfao/dGaWdhyAMT - IAP5jU4P+5L7+S+kLI9ooJuDncCuv92RSenHIz+92plHJ1z0qvWoqEsbuL8L37WfgnjuKJfAaYYE - w4IrAZ2KzxtOaUPQz88x7dUeYcLKlDjDXRtEovtQ6iR/QTelv9Siepc46N48jJlQNDFVS6zAibbW - uj4PMG+8cIQP5B4x9PbbmnQmLaBzmR8IHVWZzd3+NcPgeM3CzwJvNUOxNIJuNBZ0Nm8ILDyvKvKj - q47Ees7GQLm2vUKrCmykpfdvRl+FOcJsLCQsK7is2W1pld+8R+jTxhmfj10Enm6FiFKzqOZWvwoj - 7qOES3X9MnZ2PiE8319fdLvNFaOx2lJwk1OAzEeH6qWBYASJp6TIJDGJyUu/9FA/ty90SQXD4wKV - +HBg+1vIydJd72XpuZFWPYfBzfNYB/rVP5b9hagn39bFHaERrDvIEzXoW30ZEMBSv4EzulemH7P4 - 9qTwXYAHCaHPwHxzvgbU6/lF0lP7BotwCu0fb0LRIc/YnPJcCWffNdBxV7TZ2D9CCVpUeaJncGX1 - og+vCrKPlyAz/ZCazrbZSCWXlciW6ymb4QtjUAs+j/L3y9Mp7YPy5/9Dfp+RGEsfKoFRH2dkbRoj - 5p7VayfnaXvCgqcZTCgZs2EthDyWjkKVUfJQCpnGmxFvN3HLiPe+cLAB1EUOhtowT/6LQvN5sfHi - p7Be/Uchd/rdIcaJn+MF9vYGxqreIVdgvte+fHUnZ6JeY+E6vgF7+LYmu6zGxH+UfDYz3eLgoZEP - yMenbTaXG7yBorFTUAy7Y02a9PKGrXPLiP6JrGF+9FwOvdPTRE6/Hdly7jIJilPThq1cTzHx9ne8 - /+nvAx6wzrLts5f+6u1VT7KjeJmhmhIPuVWp6byicTYcsnAmrhX79fp8sywBoQllySyGRbw4Gvjx - HvvZ6JlgPwK4M4ePjX7zghMezQwPd3JA7uvrxyt/zaU13kSLHktN3azkYGxcL8jklf0w1/yLg7xT - qiSMOwfM2xN04aq/Q6qGhxr7pi1AUfc7ZP/0+/PABPi0uR1RX1Ue40iLE+hYMSErbxlmd+JaOHTp - HDK+vYN+1MoKUlMY8WefoXjeurkLvdjNMX0oh4zTd64LzQ4sxDjCe82dDU0B70l/hOs8HZZRskKZ - P1OV2Ey5DGwzRr6sn/sXCvJSiVtv0gx4Wsrrr5/Gy7kPc9iA2UUmeu/ZOJlcAl+D+iSGPksDyX36 - BrjYmSRASZkxwbqnAPKvkFyTQwCmxc9amMT7Fu/BnALm70obku3OIPmaD6QQ7pWk+m4V7s8s0NlP - bz/j24sYWPsw+riWvZzc3BRp8z0bZsUmKfjN31+/Zds3DeWKuUF4+2oXnQ+5GEIu4CHSHso3o8nA - IiAT/EZuJmmewL2kDUStciPpoXyDcZ+8esgRWyXHu2UP2LRbCe6Mr0Qc25liwbiUEjzC+UqM7nv0 - WFBRDEp0DMMSc3Y84d3LgMkm/pIg+Gz13/wEv/7rv1+eJ/z6+cNr9nhbveOY8i/7Dp3P7kEOiMfZ - LFmJD/1GyUh0ht+YzZy/kyynfJLD4xnGlL9HG/Dae0/kPbkzaLGpUjjG1QGplhdlk6JBGxKYTnih - ONdXPSKAPLYkYl+Nup6yBl9hupES5L8tPlvmpAnB9vbl136DVp53z/dH43hDh5uM46l9Nke4qZYA - eXV6BizoWhuu64ssq7/FWBrL5K9edDN1zCh8tAlceWtIdQkwFla2DVe+s/rFPps5LY/g+NwQnEzO - UV9WngejYL6QxOKkmgYCSODqPzEByGYjMF8t1Cb7RbyoUgcccSYH74EbYapLGaPzuc1hSCYNqfcC - xrPwwDPcbZYjOUx0l5GLem/BqzyG5Kptdh6RuZHCZd+MyMCaCcSVxwPoXURijdZen8odmH/8Dvmv - x+B9tmZWAVnvQhJ8KFeTH8+/bZUI6Y9r5i2gByVUzMkPZWmTxNPKf2Hz4BhxxVAFi0SzClSNFBD/ - tjnHdJymt8SWLFn1bh2PM+5GQGM4rvxRB9PHAxQQqUtJXJyO4Kf/4WyzlBjz8R4vnte85WPBq5iC - /aL3g2uXQHBBhHShsGLue3QESHQBE3/H8Tpd/cH+fE834fw90xqHr2AHW9F11nkT18u5i3eQHO4m - 3o4hy9Z+OsImd3JkJPs560Kg3vc//2B9AGZUTu0EHi7OTJDiOAPNb1kIcJZi5NPOBczUy6Osw4GG - 88orJ7trGijvPgIyOl+KR0S/NuTkSMXbldfTUiobGLUXJfw+VJwtkdKU0JSjJ1rjPSzuDWpwv4j7 - cL83qoEodXAFOVgq5Dr8OExypkDZlq8P8vAu7sAbb6cEWd7VJJDMTT3lT+v69/79y6yAmV65Izz3 - 9hklKz9bdOZU0PCfTrj3jmK2KNDqgYz1ACk0bWN6tbIINKGeY67OTdAEckuBqNYRMry+0ZedZrly - rUbByjeNmIPC6y0LW17Cgvsl3sIE7MJzaG1CovEyW0LgXCETWo08p0PnjYH6DeHnq3jkvolejN4J - 8H/vL1BSq8e/vHK/vt9BKBGdmPTds4SK1HE/XsXmJbIE8NMfrraMw/jjB9txU6PAOCo1//HYLG/3 - fr3ymb2Hd/xUgIMLZmQV0s1jp/YyA0nGDVHULNbp8VlSCLtTSJSwl72/fH6dZyTI+mTgrtevBbfi - y//pefa+TK+NjAT7hqzsuvdafmxm+H0fXVzlh6VmFzXqZYdTHiiGoQTGfCAaTA28CXm0RfXKu0ZQ - MTtYncjExuWrYjgW8TXMV/15+eZR8eO/GMZs0H/9Cax6IhREd8cY5C8JPHa3HsvRtYxn7aD5sikf - n+QUIBrPQ54kcH2/h9T1fZzw82urHkLpRbj9+vcIMadfiHO+XuKVd1F4HpVz2N3Ogc6m8n6HflBl - WJLO/hqvJwULd9mE9SdqatrDTwPSpDoTb/U/3S/eqz4K8fdVeLxDunx39woQNlV+81jc0B6+Meaw - XGpKJv6dj3vrE0rZc8zIj8/yidXjjxWZNe28qYUfv/dWv//xxn0AQ7DqA+Q/zG09h8i1ILx8RFSQ - rKsxuEw5nCqBrPz46zE+oInc08oOd6ufokd3kiBkvEjcj+PHQuTYFDqHrUXWeo8nVVPfoP0mlJye - yYHRCgUYAJo3SDPOC1sCV83laGdfUPFYHLDy1TdYeffKszbx3/tZ+QMG8rIFJPpOPsS34RIuVtPq - 2HDiAo7YIkj9SAcgxo3Uw++Go8j3ifd7X3KUP1/NQ8jcP/7q57/zpFFy02OHJqIwPNt3dGbHj06y - TFHgqb5fUdC3pT6uelUOvtmI7ENa1/RLygry5StG2rSc4rHbdzNo+YISo37OOhM2UgSv4e2DrNBB - nvDjFRQOCdLGHRiW17YLpVKwRHII4W5gtSqV0JZ0QrzhqGb0s5ta+M9vV8B//evPn//x22HQtI/i - s24MmIpl+o//s1XgP8T/GJv75/N3GwIe72Xxz7//9w6Ef7qhbbrpf07tu/iO//z7D9j93Wvwz9RO - 98//e/xf61/917/+FwAAAP//AwBe8oQ14CAAAA== + H4sIAAAAAAAAAwAAAP//VJpZD6pMu6bPv1+x8p7aOzIoVXxnzDKXAqJ2Oh1BRFBkrIKqnf3fO7g6 + PZyYiAThqWe474v6z3/9+fNPm9VFPv3z7z//fKpx+ue/rcce9+n+z7///Pd//fnz589//j7/vzOL + Jisej+pb/k7//Vh9H8Xyz7//cP/nyP896d9//nGV6EFcmXuxxY2tt/ye1EcI5V6p55zmuURrqiNt + KzRszmlSwOGz3EhkzIdaUGRbkndHUSJOOlagB8cgh/rm4iB0CJxYOIGJg80uZESPhyPjR4WN8qJR + g6Rn9w0Yhs9CKkUa4k0cJp74xLSS9Zq+yLNwHgPpdpcSoooNyLhmx0zsds8SlqqLwvnW2gM/KmCE + +7D5EpSZcj1NgxVC/PAxSc7U8ngaq5Zcc68CBc+vG4uX8YLlZchHkm4aIxNc67OBwIENigXYxLO0 + 4VxIenFLHNRqgAuRa8BrnkKiGecTmK1XZcvfI8iRdnUBG/K4VWQcZBfixK4GhOzbtjDqtQvyYuU1 + CFU6YfgyQpEYG0bYctPZTvaebEI22wfxWBndDp65/TfkNoyAZdpnLfzwrkd8Jxgy/mOGCWA2SMLt + 2HX6KL6TEIzm9UCO0TdilG7tu+wB3iAFrhggb/ZR4LVQYnLbTv7A9VSl8un8VJEt2+JAPEXx/8YT + XW9OzMdbJsniy1ZIsmEIdIyELvzKToZPl3ses/fn2UCCwwnTKQUDY+97Ai3LWdDtq4ke/WwzA/Tv + ux1WoAAxLWAwgsvlLZPkKR89AVymQrLJ8YHy0tkO1Dzakvygt4qYw4Ky2ew0W0beViPGPBx17iAT + Hzic9iBr/OqlL1QXzvF5i4pHynnsGNsu/LQ7j8REk1hnhrkF39XRR7fyNnnMZU8B8toX4uXd5DG2 + qcLJRVHswv1trsAypJ0rWZf2iRylF2t2pfe3rNKtR4JQ4djwu/7bUnwU7z/HgZwM2wVR81CwEL4N + Ni63hpP3zmWPQQd5MO1ZaEF3N+fo2blxLO7j5x1q2cCQNd3f9VKgTIDGdXJICL/dsAiNqsHtPqzR + I2k4MC9fB8PX3nmSZ/fp9OWUZhAOe/tALu/y7eHOm3pwVvuUOFFyicci43KIB9fETHuePM7o4Aju + Hw6g6NpmrN/pylVe6xPdoF3Vs8MnPfxGDSNuctVi3r1xmqipBy9kA5hrKtzKK1RwxiEFbexh8W5q + IbueiklR3hNdXJ8fJp97ipzbOfDwVEwN5Oe0R3aFpoHKYZnKG/sWkEdH3EzYT5Ekz1xrEMPi7vUS + al0Oj0jt0UVwa7Zcb68U3JI+DmkIloFmd3OGX6Jn6/1VMfXFjwQ1ba5Q0ptHT4xvFyrtNuyIrBm+ + 65k+X6PcTbNNDmmGYwpTKsnVlQZr/sweU7LPVeYvrYr8SH7Wy9WLJVl37i/iC01Zz/6nt+CZA19k + oi2p2WeICjku4JZoYQkAhY8yhZVfBcj7xt4wO1AzZPqSdLyxP67HvXxHgp9PwqHHKHD1WAnJFW5e + BwEZI5ayv9ev97NPTu3my9br55KGkItFOw5rvivYCKwK2SSYRkUXpVsUwYrXAnLZMawv+z0r5RjP + KYrp9jjwpzTeyLnFScTjr69s+eovHyz790gefeBmf+t7c/Xf6DC8ayb24riB3ZNbkHsx0vX/wAjp + JhmIsvZL4fCeNpALRIj8y9nTRT1qj3Bd7xBUOx6QfSkdIXt9ZKKbNoiX8qBG8tqfiRlbN/C+8M4G + RO1ZCXcd1mO+qq0USqRpCJJS5k3n3srl8nENyfWkB2zNpxx2YGej4xC1MWGpsYPG/V5i+XDn2IIa + q4K3ao7R8xA4mYAiU4LLIxlJOlo3XTwXrQGx97pgdmmtesF93MrSBFC4GZSYiRdmuhITeo2o+oFm + iy2qOeSEMwz3/WtkQkaUXg72B52Etstly2jHWPKsXY40lH7j2StgC92+zfH4KPmY7qdoJwsN7FCB + TkUmCLf2Liuax2MBVO8Yy6mdwuk9EpRdo9Rb4kO8kfZ37os5N5UGzL+UK4w1ooRNHr4BCZPPEd4P + 4I0OD8nwxNs7sKFyuNbksYtKb1lM7MMgc0aiofQQU2ksUxDkoo70t3hk4jxd1nq3TXLr36K32HOu + gBM8deTyNnGG96BMZHHYn4jVaTePhcknksVT0qGTE8GBtQnNIe9UKroeUn2YQI4NqJjER+a9MjNx + w6Rwfwm0hITUiIFYc883FCX19FuvTDTIRYLhcr2Ts5N+BnoJWAQma7liehBPNVXbUIOZKkVI22aL + vpDFMaRO0TOiDfbB49Z5BVE231BepQpY/NMrl6X+skMGo3dvNjpuhOHro6OnuZcB5X2zBLetFhFL + 6nA9Bgj2cE7xFNJqBgPb330O5i9fQrF+bRgz+fsMiTSkSNUr2+MYwDN0khsJp+fXzXjwDg1wcpQr + WvMRcKdF0+S1PsjtuRE9JlaXq6ycqzpUVKFluD4zV56b0iBZw3u1cBfKFtR3rwi5xTKB0IjAgjbq + CPHNwcvWfn+FRWkfyTHsZZ2Sd5vDNf6hxMYXE7oosyApDYwO0T7MuLNALMnWgwMx3/1nza/yKnOa + pCGPk9SMLw/O8dc/0Znfo5j3DauR3O8JYxC6qbfohdXLgJgiusONkNFtftnA9uZTvAjDAkhwvnAQ + pa+BPE5GAviWe7myJxODeNfJAyRpFAtcm/0HefKyZczEn0SOo+qCjEMk1bjQmC+ju6mhB3fu4wWN + DMqdfnWQaUXmwO6Z9JbW+kLKqj/E9Tvka0lF5qv5ZGzVVxAF/Q05w70a2rrEG1iIzmud9ySjCS1H + yJ9nFRXrPMTndxwBITwq6Bq8ArDob2jB1Bg36BZSMSbbyzOBGoheyJsUHsxBWhlyChKZpHNhDLwt + Ojmsg32B2SdqBrxd7gLYlcOJOPxhBOwoPmcox8WHeKA5160UOD2s6lQgQTO4cb/T7btcCoZIrE95 + 80ROueR/9SpqxzheMtAd4S+fXUJGr6Uu5uAR91cUppMDxLg0Q3i4TwfM74WPvpzFLoGZPkd4EsXe + Y/u7wUn65uwg5Tu38dJdwwiSFzVxZUeHepa/rzcEkbhDxvT+sOXiWwU8HS5qWH29UyZsDkoqP4J8 + H9bvHOj9nqMSOCqTRk6jGem8mXcV7Ehrk4i7nDKqNeXuF991/TlASZopMLlEKfKH4JmR6+OJ4fq8 + eD7hh06TAUQwtwSJeEqZxnMmEQUe+rIgZ8yTjJlQCcHzLSGiKJUcz5qSU1iM7x0J1/7IDE857tU3 + 7xG/4Eo28yOmkLWlRp5sjnWG4SWHBY4QMvP5BuhrKN/yA9lHcn4jMszPJM+hHm/dkIoQZKPy6EP4 + cTccOdyvb491WwPKg3g8EF14zfXoFbCHZdeG6BLTt06UjnJQaIWOHEr7WlMuCyr4yyf9u7mzEcwY + wwdn7MOdBQIgYngpYF5JJ+Jty5e+uK9cgdyU9+hOkjQWTTylkjxeBKJrRhazJn02ACQvFLLdKIHl + qVr3vaC4KpZ4Kc3wOk8Bf+lVLK/rPSJFs+DX1lyij6lVi8kz6qHvtRlypvbiMe4cJfI3tV10uvDU + W1DRVD+9Qcz0gwZ2D59YUqSBC/emVuvsspfeMOvfEnK84yXrLVWRoPk82ySX7LKmfPyp4DLZOrEO + JtLJ2Zl8kHhaiqxKDMEyItWGYn6QQqk9psNIrw6G+Smr0SFvrrUo3e5HaHwc+us/8WIFr1L+6ddf + vs6SlfuQx11Enr4sMxpL9gh/+k4xnrG3cLDTYLHXXyjka2dY8MJaORaHNvxQ+tGZYUTc/j3f/XAS + 1c1A1nyRlbivkSlfTR2nuYLl3HRqEg5FDKb8AwTY7eo7ceFGiGdj7l2gug+P2PptAiwLPq7MU03F + deZatTCNTAPrPEXRaXuqaSMyQ952mU8UzNmZ+NKfLTzi9kpcLRUY83etDeTX+4OyOuUZcw9lCC98 + maBiKBhbqAFaSI+3M2bUkhieWJlDdh0H5FrxOIz7gPPl+dpMyBcaZRCzYLJ/+Y7s2tZjmpdKLx/y + axG2T28alq0MCvAawRPvf3o8VGALDiybiUMVbRB/9eGUA0EeqL1sbtxwA09m1xP0aVk8zYEVwv5q + 26SI5kSfifwaocq1FXFMTdf5jGMCrJ93H7P4CHQcyO0Mz7vjGUubSAVtqzoCTGq8xeQosYGN92cl + ufwNI+36OQ30QNldfp6NXThwBs+WR5Fx0BVNkyhe89Anfegq4J2VHItAuuqLvemKv/Ucxl0HmIPo + LCXnZktUZ6LZIlyxDZNKbZEJjf3AXHYRwBAYM1IphjoD+siB1T8TzbudBhZPrQW3wZknBRo5fUIj + 2MAQOgNBwk2O2csNLHn1oyFYhFdMtzslgrJyEEOx7ncxsY+fdN/oRw89rnbCBOlp5tAI7RI9rNfT + m3lJbWXVfXrosPqp6RapKfTOWo4OJsIDXay2AFte5HF28wYwua1T/NUrx26TM67oVUk+nUCPkMbL + gP34A08V9ccLsnGJQuE3/1G2CK/sb33g73IhtlXuVr+eh+A21W9kKflHX9L2lUKsUAtZikqyWe+/ + R3mXZCfkAZuv6Y7/FHvHKx/oF0+83bZHaD8fFvIO79SbOUfFssFMBzMrbxjRNs8dME9KSZwa+Ezg + MrOE+jFjSPXTfJivjQphAa8IhdrD1blHThTYp5FNwl+8k62TyjzmAfrxGNqfylI28qgMN9qj90Zp + Z2HIAxMgA/mNTg/7kvv5L6Qsj2igm4OdwK6/3ZFJ6ccjP73amUcnXPSq9aioSxu4vwvftZ+CeO4o + l8BphgTDgisBnYrPG05pQ9DPzzHt1R5hwsqUOMNdG0Si+1DqJH9BN6W/1KJ6lzjo3jyMmVA0MVVL + rMCJtta6Pg8wb7xwhA/kHjH09tuadCYtoHOZHwgdVZnN3f41w+B4zcLPAm81Q7E0gm40FnQ2bwgs + PK8q8qOrjsR6zsZAuba9QqsKbKSl929GX4U5wmwsJCwruKzZbWmV37xH6NPGGZ+PXQSeboWIUrOo + 5la/CiPuo4RLdf0ydnY+ITzfX190u80Vo7HaUnCTU4DMR4fqpYFgBImnpMgkMYnJS7/0UD+3L3RJ + BcPjApX4cGD7W8jJ0l3vZem5kVY9h8HN81gH+tU/lv2FqCff1sUdoRGsO8gTNehbfRkQwFK/gTO6 + V6Yfs/j2pPBdgAcJoc/AfHO+BtTr+UXSU/sGi3AK7R9vQtEhz9ic8lwJZ9810HFXtNnYP0IJWlR5 + omdwZfWiD68Kso+XIDP9kJrOttlIJZeVyJbrKZvhC2NQCz6P8vfL0yntg/Ln/0N+n5EYSx8qgVEf + Z2RtGiPmntVrJ+dpe8KCpxlMKBmzYS2EPJaOQpVR8lAKmcabEW83ccuI975wsAHURQ6G2jBP/otC + 83mx8eKnsF79RyF3+t0hxomf4wX29gbGqt4hV2C+1758dSdnol5j4Tq+AXv4tia7rMbEf5R8NjPd + 4uChkQ/Ix6dtNpcbvIGisVNQDLtjTZr08oatc8uI/omsYX70XA6909NETr8d2XLuMgmKU9OGrVxP + MfH2d7z/6e8DHrDOsu2zl/7q7VVPsqN4maGaEg+5VanpvKJxNhyycCauFfv1+nyzLAGhCWXJLIZF + vDga+PEe+9nomWA/Argzh4+NfvOCEx7NDA93ckDu6+vHK3/NpTXeRIseS03drORgbFwvyOSV/TDX + /IuDvFOqJIw7B8zbE3Thqr9DqoaHGvumLUBR9ztk//T788AE+LS5HVFfVR7jSIsT6FgxIStvGWZ3 + 4lo4dOkcMr69g37UygpSUxjxZ5+heN66uQu92M0xfSiHjNN3rgvNDizEOMJ7zZ0NTQHvSX+E6zwd + llGyQpk/U5XYTLkMbDNGvqyf+xcK8lKJW2/SDHhayuuvn8bLuQ9z2IDZRSZ679k4mVwCX4P6JIY+ + SwPJffoGuNiZJEBJmTHBuqcA8q+QXJNDAKbFz1qYxPsW78GcAubvShuS7c4g+ZoPpBDulaT6bhXu + zyzQ2U9vP+PbixhY+zD6uJa9nNzcFGnzPRtmxSYp+M3fX79l2zcN5Yq5QXj7ahedD7kYQi7gIdIe + yjejycAiIBP8Rm4maZ7AvaQNRK1yI+mhfINxn7x6yBFbJce7ZQ/YtFsJ7oyvRBzbmWLBuJQSPML5 + Sozue/RYUFEMSnQMwxJzdjzh3cuAySb+kiD4bPXf/AS//uu/X54n/Pr5w2v2eFu945jyL/sOnc/u + QQ6Ix9ksWYkP/UbJSHSG35jNnL+TLKd8ksPjGcaUv0cb8Np7T+Q9uTNosalSOMbVAamWF2WTokEb + EphOeKE411c9IoA8tiRiX426nrIGX2G6kRLkvy0+W+akCcH29uXXfoNWnnfP90fjeEOHm4zjqX02 + R7iplgB5dXoGLOhaG67riyyrv8VYGsvkr150M3XMKHy0CVx5a0h1CTAWVrYNV76z+sU+mzktj+D4 + 3BCcTM5RX1aeB6NgvpDE4qSaBgJI4Oo/MQHIZiMwXy3UJvtFvKhSBxxxJgfvgRthqksZo/O5zWFI + Jg2p9wLGs/DAM9xtliM5THSXkYt6b8GrPIbkqm12HpG5kcJl34zIwJoJxJXHA+hdRGKN1l6fyh2Y + f/wO+a/H4H22ZlYBWe9CEnwoV5Mfz79tlQjpj2vmLaAHJVTMyQ9laZPE08p/YfPgGHHFUAWLRLMK + VI0UEP+2Ocd0nKa3xJYsWfVuHY8z7kZAYziu/FEH08cDFBCpS0lcnI7gp//hbLOUGPPxHi+e17zl + Y8GrmIL9oveDa5dAcEGEdKGwYu57dARIdAETf8fxOl39wf58Tzfh/D3TGoevYAdb0XXWeRPXy7mL + d5Ac7ibejiHL1n46wiZ3cmQk+znrQqDe9z//YH0AZlRO7QQeLs5MkOI4A81vWQhwlmLk084FzNTL + o6zDgYbzyisnu2saKO8+AjI6X4pHRL825ORIxduV19NSKhsYtRcl/D5UnC2R0pTQlKMnWuM9LO4N + anC/iPtwvzeqgSh1cAU5WCrkOvw4THKmQNmWrw/y8C7uwBtvpwRZ3tUkkMxNPeVP6/r3/v3LrICZ + XrkjPPf2GSUrP1t05lTQ8J9OuPeOYrYo0OqBjPUAKTRtY3q1sgg0oZ5jrs5N0ARyS4Go1hEyvL7R + l51muXKtRsHKN42Yg8LrLQtbXsKC+yXewgTswnNobUKi8TJbQuBcIRNajTynQ+eNgfoN4eereOS+ + iV6M3gnwf+8vUFKrx7+8cr++30EoEZ2Y9N2zhIrUcT9exeYlsgTw0x+utozD+OMH23FTo8A4KjX/ + 8dgsb/d+vfKZvYd3/FSAgwtmZBXSzWOn9jIDScYNUdQs1unxWVIIu1NIlLCXvb98fp1nJMj6ZOCu + 168Ft+LL/+l59r5Mr42MBPuGrOy691p+bGb4fR9dXOWHpWYXNeplh1MeKIahBMZ8IBpMDbwJebRF + 9cq7RlAxO1idyMTG5atiOBbxNcxX/Xn55lHx478YxmzQf/0JrHoiFER3xxjkLwk8drcey9G1jGft + oPmyKR+f5BQgGs9DniRwfb+H1PV9nPDza6seQulFuP369wgxp1+Ic75e4pV3UXgelXPY3c6Bzqby + fod+UGVYks7+Gq8nBQt32YT1J2pq2sNPA9KkOhNv9T/dL96rPgrx91V4vEO6fHf3ChA2VX7zWNzQ + Hr4x5rBcakom/p2Pe+sTStlzzMiPz/KJ1eOPFZk17byphR+/91a///HGfQBDsOoD5D/MbT2HyLUg + vHxEVJCsqzG4TDmcKoGs/PjrMT6gidzTyg53q5+iR3eSIGS8SNyP48dC5NgUOoetRdZ6jydVU9+g + /SaUnJ7JgdEKBRgAmjdIM84LWwJXzeVoZ19Q8VgcsPLVN1h598qzNvHf+1n5AwbysgUk+k4+xLfh + Ei5W0+rYcOICjtgiSP1IByDGjdTD74ajyPeJ93tfcpQ/X81DyNw//urnv/OkUXLTY4cmojA823d0 + ZsePTrJMUeCpvl9R0LelPq56VQ6+2YjsQ1rX9EvKCvLlK0batJzisdt3M2j5ghKjfs46EzZSBK/h + 7YOs0EGe8OMVFA4J0sYdGJbXtgulUrBEcgjhbmC1KpXQlnRCvOGoZvSzm1r4z29XwH/968+f//Hb + YdC0j+KzbgyYimX6j/+zVeA/xP8Ym/vn83cbAh7vZfHPv//3DoR/uqFtuul/Tu27+I7//PsP2P3d + a/DP1E73z/97/F/rX/3Xv/4XAAAA//8DAF7yhDXgIAAA headers: Access-Control-Allow-Origin: - "*" Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983de323efdf9444-SJC + - 984e9aad0b7c9459-SJC Connection: - keep-alive Content-Encoding: @@ -3246,13 +3246,13 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:40:28 GMT + - Fri, 26 Sep 2025 00:21:58 GMT Server: - cloudflare Transfer-Encoding: - chunked Via: - - envoy-router-d6c9f7dc6-gbbmw + - envoy-router-5ddb44fcc-9cl2p X-Content-Type-Options: - nosniff alt-svc: @@ -3264,7 +3264,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "60" + - "73" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -3272,7 +3272,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "94" + - "110" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -3280,15 +3280,15 @@ interactions: x-ratelimit-limit-tokens: - "200000000" x-ratelimit-remaining-requests: - - "199998" + - "199999" x-ratelimit-remaining-tokens: - - "199999930" + - "199999933" x-ratelimit-reset-requests: - 0s x-ratelimit-reset-tokens: - 0s x-request-id: - - req_8aa4f854f0c34caca90b7dac2e327711 + - req_4067d5cedc2b429bbca59a801843500b status: code: 200 message: OK @@ -3334,122 +3334,122 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA1SaWROyOrumz79fsWqd2rtkkiTrjElEpiAgYldXFyAioCJTAtm1/3uXvl/t7j6x - CkjJkGe47jv5z3/99dffXd6UxfT3P3/9/azH6e//8T13y6bs73/++p//+uuvv/76z9/v/zeyfOXl - 7Va/q9/w38X6fSuXv//5i/vvM/930D9//e2q+m0WGxrmH4R2Bbw/H5Y/vs0FDMfcCeGzvzgzUxuO - Td4kB9Cmzkrwzrrpy+5z0BCJnyq5WPw5X4+sMVEw7wzs5fQMKINlAk7blRC3cB7OSFPkw+tZAjg5 - lz7gRTmj0DN9Ax+zZwjEu3/bwJDd3Xm+KI9oFX2UQTkzfWxfIMkXXucMyAN6xAowe8BePe7kZLdI - Ph2307BOOzVAWlNdyU17K5FwODEKwTy0c/0Ad505p16DJtGA3x7eH7BKKq0hX7YyMczYjcS6UTI0 - J0aOc0aGfBwWmqKD69okpN3E6PcYDlan4vzFtdGiuJIBakxqgo+GnQubeC/Dtb5JOJ18bZjf92MG - HGo386qmfkMPqtqh8pRiEr4eNF/07jWiOQ9OJFT2J31554cYnoV9QXJRCAexGh8d2uqdTA4f2g2M - ZoMA78Mxx9G5t3Lhemcl4oYY4FJVtg61ZleD1SyK+JDAcBD5wyeBXn1+krw+ZxH30E0ThuErJIf1 - 9tApk9sKfd8fH/l504ynTd9B21BO+MqxBiz5pPgILEqPi8JRdWG4OhRmr+RIjoW51ec2YiHIHnY0 - 105qDNxTV20EVHVHisTQB/54PXBQ5YuApPlkO+JYPUp0R6ZO9mdXjQRCKg3djd4nx1yikTAuCYXd - WG/I/ri+cspgkqBuN3vYx69XTkV4zRBv1TY5aPxdF1qUaUAJB4Q1QVuHhc9uIeiFAJIrUsOI5ghV - 8MRtXiTV9v2w3sFkwSQKBnwpYMfWaHEtEO2MgFycWhxW+Dz1CFfZndjiMEYrejslsPJnj70UKzpV - wywG2MpN4k6m5XAOBingKoSJmz9xM7PNlcJ+KFZyPBsm4It9HsB+2ZvEBmvUrLSoS4Rwg7FuEDVi - 3KKY6HmVZnJ56IG+HLVXj44PnxBb53O2NnczBolDyIxunxaI0B96kBGvn6X20TtsbvcmlEH+nLlK - jyJuyd4aLO/3F8Gdlzis488rujhzRfAaR/nIZ70hm6274kvKq42wm1cJLU3F42sTDpEI6EUCYaMQ - fKhvMVuOd6sCH2PDYc+yxmYdjDhFxS1oicq1MxuFlTfhx7Z6fP9UbKDik7rofjYHf4qhm/PetIbo - 1XglDobykQuZZBZoJwYj3i+dPbCznPfA7psSG36dgdEzugQc3jsfp850A4zbCitg5yjD++Rl6lwy - VDZ6aXGLg/kaRmQpbj30x1kj2jefBL+qWijt3AafoyjMeUGqNmiwenVGNj8D6hcsgctNeszvhx44 - g64hF7bLLvHRPDDnmQx5AsdtW+Cy1q6DuAkPgWzZI8Vqau0H5n54BWrKLGJFlMt8PGM/hMJl1+Pr - vjGGZXuvBLQ4aEfCB9g6dJPqFjqK0Z04SLAA7YKjCQ9hCIh/4xyHr61lA4IltLGazUozJkNnwaWp - eWwahTKIoaZbIPLJ+ifflkTRKBrURzNDwvqcneWoA1eB8fO8fwX5dG0GGenGNcK6ZL4BpYYnwIXL - CfZKqEXc4bxowHs3OVFO6OMsYwF9+Lq9bWJBwXWECfcVRPtjQ6wqqxkbtNsK37OW+lsq+83cj2oM - p6l/YmXHvHyN9qwFghwSnM6PSucSTc1+44k3iJ9oveWkg+C56j4YgcrYlSsVWD64EcePJGCcFMq9 - 5N5Wf+bls+7Qb31C8LLPSN6Qu04rtQihTaYYB0Z/z+fPzvcBFm6YmGH/dKZM3puoCZ4+ie5hPlC0 - pQYS3EHHTqD4g9DczQQuG5Zjz02ATotCDdBeeJrE+9hvp9fAvYRN8PaxfVCtnG9rYYUiXx0wbraH - XIBAFqB13l6IumkNJl7vcwcc+lQwLsYI8EVmd1B+xjw+T48mooe+ymBVxboPJgEOpGllH/oi/JB8 - LESwfE4vE4rh+CRp+7AdjlycVP7FS1ZRnK/sIUoos+YbVhf6dNY8yXw4lPPiPxa61+lV6gz4QdkH - 7+nZc9hU5wE88OaN5CN4AL43Hi5y+hpj72MfdOKzawzHm3fB55lT2OpdjABtF6Ljfao4+nB+tuFO - My821ldzaWjXSiXUT22NtYkzHD5cUgijx+M889cMA1F2FA0a2PfmjoEW8GP50mA6KR2+0OHaUM+o - YiS9xBLvz+4jmpYqk2RAW48YClNylsfRC3lbM8EGG4rhz/fLwKYgRmSNehdAyqGDHETkeOwdJoym - 78JHq92xkdVvZ/YG1sEo36n+bW4Htl7vrEDaXpqIp1lJtJzesIdDGcQk91wDcETpXXhFUoRPIE1z - 0WenGK2q9SD3gxHrgu8sLppHx/GXdbgDBp+uAD84qfxXJX0Y240wBIfb3iDKaytG9HmhNezLU0NM - HSX/7k9ZuXjknLxe+nL1tBmdY7rHAXyLf+IXqN1U+rt2pDn71leoTfIeRyHaM2bwUog+Ik38nXuZ - I3rGfgDQtlJw4PfniFUBXkFf9R9iCQLP1rLJbLCFBiHRzdDz9V0BF6aX7IytydcaUdd4H8l9PZAv - L0XMU5IAbl9FQa7TtWN0xRFEQhhdCD4YsbMelyVEIG05kmnyw6H147SiRrEXotQS1Rl/+MSIv+YG - 8dm5idZqrkLwaJU7vgy66VDrGvfQO5UDti6vGtC0MF20FeQdUent3ZDPRjah3G8tYi3nD6DiSREQ - yXCMD9Kea/pyx2IUbJcNwbLcDssuC2L01C4MH/eN0bBMwMKOSQbE7vEyOMNBkwIohoFFrM3xOPCp - /kqRfB8fOCwypjPYRAr0jGn35UOb/Z4HBHpfzsumNQAHXaTAzumMmb9G1iBKg13+8p3cQqse6I2L - A1i43GEWrB4741W+SrBozmeyB50y8BJ0X2C4miVWnuMOkMArXdCdwtSnZCRgPr9rCcK5O2O3vF6j - uRhZBjbn10Ls2uYc+uliEwYWF+PzTnsONDhVIfryCjY38wUsW92H0G53Di6ycHXoBzklfDuuQLQ6 - UgFjMLfh6lQePprlPaJcSkN022XCPHbvjTMeCRJ++U6OQ7Vj6yQDU975gkA0ffMZXuRDEnDq7WJG - jR2A6XOaDXhQhRLbjkWaeYajBIvZKbGqelZEYwG4P37B3l0/NuJaHv7wJtGf4cLovKHxj//9bbTN - dWH0pBFa+dGb69g1BlocrjJ8HarMl9NaAQzzjgXD5ISImzg9m8sdiOFJHd/4uMocm7/xCKdOC33+ - uJr5CLjPRi6zEyVGa2fNshyXEW3bhiP7kosHdjorMxSbo0bc8rrL5+3hqMFuI+nYfiZKQ+8uScC3 - /uCy4VR9Mcy1hEkqbcjdc5ZhvRyqAn2M+jLz5n1tFpnuavjy7Ilgom6HRe/mEfzqmVF+/IjX91YP - 7/28mb0UV/rInsgGm5oqJJs3EeCM8W7JO3E6/on/Tj5eU0ijw9vngvwDyGl4SCiPs5AYo8h0mn98 - W77fJY7gu6ToLBIkDTjP5ErM2OidBdpCBts8tfCNG4658OyLAp7a6vjjk4YN0xzDY97mxLt9DMDL - dFeBk1tT4ru71qFfPoWUB0e/zeqDPiYJpWgoxwUXPKuG8amrFjpcioXgT8UaeiEOhehSd8TZ7076 - Kvp8CgNLiAkOn0JOz3IigMtu/cyLZe1y9tBtGcx5eMLOIeLZSJTaRRc14bCd0avOGIxsRJ5q6cd2 - HjX0LJcc1KU9IZrhpvmHTpcVKvT0IWp/O0VUWJEJUTGWJIkN21m7elJgtDMDfPBnQ2fWrAhIS9ib - WJeXBoSvPpRD6aPhaKtKw1gLqo2WBoVkX036IKaFrqCc+Pm8efovfTVBVkFQegefrxXV4TRUy+im - VC1WyEjY9NUP0K+ThDjhFIBxo342cHSTG3HD7SYaD+edBpJU3mDzXrZg3VqyAE+HWCZ+mFGHNn7s - osjRDv6TF67O93tx8IPSD4nqJ87Hh+4b8NbEJjkfdpfoTz/91ueZ49thWKVn8gLErwPsZTcpmjfb - pISXEzt99U3Y0HT/1OBXb/pP7A76rOu2AuTK3mJlr9X6GPFqCrvCeOBA2DbDir1Ggfe7zPmiba2M - XvExhuLm2hFFaSSd3ew1QeBzn/1aLMScfbpAhjy5c9huNze2BrgQJBsWJlHa8KyvD5qZf/rJRfdU - Nn7rA+gD38X29ZYPK6fyJeKqLZ63W3UAy/Gu1AihZ4oLB5kOHaxrDw8HLSaKg0IgdK7DQQMFyQys - SQbsSa0Y/vSHt49rRoCQvpBhZMa3nl3ZfAdP6xef2AoiEtHJ4QP447HTC9eMlYImo3sWPOZNmpn5 - ou+t7lePiFfd5oGiwZrhO/IxOd63YjPEtdKhzUZ7YXu1lZxvY8uAG+bfsFL2j0aQVFqhKl0OPvfl - F2F+8xUaO/2BlW28+/LtuwfTfvCI8uXTxR2tAv30qNu9N/pkKZwAf/rhdvsYTFRFosHn0zkTZX88 - 5oJB3RRaysX48larf+A7CABsg49fBU0bsZ9+t/J3/6W3Kl9dZTDgQ3UR+f6/w07JWkOcrc68+Zy9 - aG1A58JH1Gq4UBHV5y+/yrmmez7YXUq29hOwAXQEhrEZKI3YBhoHA91VccCFai7m29GG+3SbzRyG - 22Gh5cOEXz8FX81LqvOUBSXa6+cDVrhr1zB5ng24gYcNwfslaXiaCC94S94x1tWGA+8LXTO0e/RX - /zcf1Ba75A//2GwP9MmpRwuOah1jD+eVMxWZ1sFdoezxOZjEiFqzoQFJSU4+ep8kh3CLZUAwf1qc - D1oI1qtQdPAcr/t5Iwdcvu70OoacXaikvPsELEwJSrBERoqzHDf6Cm7EgrTvalJeFDWiF6LTn37y - t7JsDLxv7mN4fTj1zAnix6H3+MqBm5NMM9v30FndXhXQ7CPoi4H10ccvj4MaLcOvXzTTZpxmUCbt - Hgdz6Og8UW7ZH79J2hw/DVMfnvCLP4xbcwaLvld6OCmKTAzu5Ov0upIMfP2jWWLAAELK9QJ8K6Lt - L/uYDETh9FTuUC6RPdNwRPcPw4CydXzhn3+y7JCQQn/wRGJo3l7nT2+uh8JHCLFqz3FENnrQ/vwW - fNPeVU7nXtmgS/HMcPztr6zjbyuc9h/vyztVw96sgfBb73yookBnWIAQUCKkMwf24jBIg13Aa24u - 3/wHDXOjSICctRX8HmOBsXcJX6CeLr7PSHgArKvmTLKzvYqvo+nkzGzbCuUHrBP1VtsR2yWRAYP2 - kWKNHNRhTctjB/Pbic2dver6j593gL7+zT9M1m81RNK1xk5w4AF12pr+/BRsWfsKEPg0OPTVu1j7 - +CFbL+p7hf67cv3V3MnDe6c2MzLLV0nsVBcAvWI1hrTv6zmbWuLQXVKG8ORWFBfS247Gn3/mryvD - x/Bi5EInxhl0tErEp28//PbrFH55Hruu4Q0/3kCGITxm0PqfiMZO38GaXbfYipSlmXR68oH32Fl4 - f4xgNEtAXOVeCKGPhnSb/+J7F+VFi8+p4ji8ccs7WGL9SPbYdRwm3LkYvRpc4v2msPNF8ILsz/w6 - p4zltAPXDglTg/BB47dOd+OKECC8HbHWTK9mkdcmhtTThG+9Kh1mYmTB92YX+mKMg2ixXRvCVuc9 - 4p6eu4G1J66HzmGefP6r78QLlVP46viF7NW9x9izu3EAuaHqC+N11GlUZQqI11zxx3BbRsw+ijWk - hEtJcSm7aOmNh4++vO7z3s4b2Cp/Etgl0oBds3nkK4uOLuR9++Zz5WeOGAu5FDlk3hPTMBD7fa/d - tz/hVE8tfURbaqKbaYm4iJeXszoegeBzzk94P3RcvkIgcz//mCjl0gHmAGuFP7/vKJhqtKhBNCLr - 4W2IynRtoMfcLODzKs9Y0QM5oueG73/6mag6a3JqaaCEUreav+No5RSnAz+edUPpoi+hqWSwYMtK - tAU40evjoR44sycT/VtPvjwow1+/2volcVjjXxUYCIWCw69fzEnh2qNnO0rkG+85dSFawZcHSYaT - 0lnP714C9yx8zLIHr9G6HFsZJpZm/PTTIL5ZswH++d3+/A6d33KB//NvsUHtF2OT18hQR6cnNp6w - dhaeuN2PV4nq1Ru988zQhgOQFGLO27fOPtGjBt94Ju7gXR2qBl0FMz+hREWnd0RvN2DCqeaKLz9R - QBLoFfBFNphoYXRuVjM4bmAxEdWnOzblnx/Pw0Zwsbek/DCt0lP68fe8u4bnaMTlZEHxZpyw66CX - vuI6y+DXL8eX7an6t1761VOFH02dcYtlQtm7FDMzyCOfNuNzBL/nv+PFHfi0UgJ4UWOOJLRiEQka - MYUVaD84S+sK/InPb78hzsH1G3GX5AYE6Ysjx+y5MnrJigxoTX31xcH28vXrZ/7RK8wgaj7u7e98 - fP3PVBn2YPz68cA++gcfuobX8Du0yWALI+3XX/TFlbfWb778je0+ml++wI/kMmyNJB3Y7WhV8BQe - DeI0ZKsPl/1D2PEf8UHceDGdVRWZAFUaZPj8OnQ5I+mqQcXTP9isQ7/5wzOaebb93VJRh4aaGcON - lEa4mExLZ/plfO1mNh984es3CnfwtOHYqQ/icW3t/PgPbl63Ae+35MDWpSwCaBMSz1z7MQaS9xwF - nIUEctzEBExyoVlAP9l7fNC9B1jLJrTRm9sfZ4605/x7vxaEjp4QX1XuDn0Z6wbuVlPA1todciqv - 1EbXIOhmpgSXaDleDwJMbc/Ezqeb9bUBlfvzT7GrB94wHfnP/OMNovDjS2dxgaGcX1/W15/v9OXr - vwP7Hoozmk5ztOytNoSqc1j9Ndm92L/jLVxU4iZGM7C851awyT3jx7MNEx0D/tYPZuUkqGAVHjKE - VfQ8+Us2Vw1d6msNNud2Ib7hOsOffrGxY/vrf6k5OeZ6+Ht/fImTS/P6YFLCsybeiDWco4YqtymF - Xz8Kn5vsCVbfWXxkphsHG/PpAhgxtA6ii+HggIyYLQVtBGQY3OMPfw2q+NbAz79THs91mEJTSSXn - ttxIwpvGIER70MLIn1bsn5QhH+XjKUXne+sT3Q68iEsL0wfffvOHJ0bpXSsosRSDhN96xXtGXsul - gZVZ+j6vCHfcN+EaEStz6Dj069+CH9/b54SLyFriQg4v1PKlq/IG0/PSzGC9eKe5XemDfbb3ioM4 - +kxkv3T90G+tVQBtfOq//F1Fc1qqPVIPXEvcrhLYgj62KVeD5RL3OXo6FblZBkTMmnkVtLWhgHts - 4BPOwSycAiXimsZ5QZG977/1vFz88hLM4usDm9HzzkZvQ17gKJ7uGPeylLMbdzLQ5ZO4/vZ+FfSZ - GwoffusROYjiHojCMbIQnPsz3rv3DqxZczcBuNGelGJhD2tXPzUUCKXy9ZdaNhaUduh0YZdZDKyj - /sf/+a4PEPOI3Gaq+tkFF65lJDEKpeGd3T7epcXLIaqhhg5PlHMKpZ3fEJcwO1/r1ZGkp8w6bG9e - t5y+rnUMT53Hka8+AgxIWoa+POHvXiavU3byVrgXrA/23qfUIU9qJTK9ATrfpDVo1qA1fLg6mx4r - GxUwMlafEjZ2ffN3/FwOq5yjGPorZfjoLZHO5NSQ4GZvx741Cne2QHuTwjVZuVl6TErOGdyxg34d - J/gebYGzNjypYLjb32dupSr76U8knbBDlEc5RAtmh/nH08TYqzNbosPqglGFC9YGcHaYPubwj570 - 3CR3pr01huBiVr0Pv/nMC1IHgeNKDdaSDDL6Xc+CunQgP77RF8zwDMvRT32qNKkjfBS6IvEi50Tb - nc2c/+mN73wTuxfHZq7mLpQTZfeaBa2XwKKFXgW+/if2i8fULHHluXBJ5wG7hxI6NEnoip6LfMD4 - xRbnp39hkhYP7Gn41tDoKAkw7PznjAaqOT+/FH71Aj5K8uDQvd3Lf+rp0QoOOg2gxMF3spOx6zox - +ONP9wDgP/7T6njvDbxb552PQOo0nDFebKgQ0cGGM58cGteOIAsqJ+OL0Fr5sjhNjeZXLWGfBpt8 - lek4/uk3m6zbNOt2vb4gtsRmhsayA1//N0B//3YF/Ne//vrrf/12GLy6W/n8bgyYymX6j//eKvAf - 4n+Mr+z5/LMNYR6zqvz7n3/vQPj7M3Svz/S/p64t3+Pf//y1+7PV4O+pm7Ln/3P6X98b/de//g8A - AAD//wMA5SCRFN4gAAA= + H4sIAAAAAAAAAwAAAP//VJpZD7pKu+Xv30+xs2/pNyIgVbXvmETmYhY7nQ4gDigyF1An57t39H9y + uvvGRMSINaxnrd9T//Gvv/76uy3qqpz+/uevv9/Pcfr7f3yvXfMp//ufv/7nv/7666+//uP3+v/d + WTVFdb0+P/ff7b8Pn59rtf79z1/sf1/5vzf989ffXjSU8/40+kXPy+YdVg/T8J6mtYDWNIsQ5lJt + z/v7aa+OjNfHEEx0JceGlHQd5rOC8mgvk1hUkmINdNVC3PtyxJampvbSelUKdl1OyGmUHsVkesiD + UyoAfJ1tD+yvnLhAwZg1fFT4EOzZfGKgDoE1Nx55RJuWoxy23tPDiuCSYfPTlwZDRbKwUm89WD/A + 14BrTgfvMMbTsD1h4KNMiy/k5iVStOckdYFv9lPP9fCs6GrvLgwkxDt4E9h3gF4j/wlT/S4Sg9Gd + iNtNfo5g7RfYPyU9GKnql0gpDIvEQTLRTQ6WEnbJKOMMVK9oc5XWAKVCa6JrF6vgXupRhFv54PFV + sdRiKnZdDs6rUs+M73v1SrSgResSY3Ll4qVYhZs+ogvUAhJJaaAunXqO4eMTlCQ+DeGwPy9yiw6y + JJKjrLXDOlWAg58xKXD6TIyCC2paIavMAK64DwPo/lAq8KLyAtbvRgj4xTqkUHqsb1LKJI/Ya88p + sJ7EgNjd/FA3k3/d/3wfMyujzm/atxByrwBH07UGVOAlD4XlvcO3upQoG1yLBWYn3SRGWe7UWZci + D+htFczz8NIGvtBlC0XeKpBwC9SB38CHheHz5ZMgulk2W77kCvWipRIPneWIf22+gmxT98jxNC4R + Dz7cAvG1YYhWs01B+61JEWv0Llbsc1MsrHDJkXAILaLv7JvKZa6oAOKfEdZOwzYsFr16QHyXkMTd + EkaUUa4veOD7hkRHvh+2eZ0MqIfZgBPot3R5hqMDDhfWJ9kG+IHWudyjttgqYuf1GG1BDSrwcvY9 + PsmbpK7UEDOw3M86sVFs2Jy6gAzs6AETyeo8Ol3lAwszz9+I/A51wC7+4EP3vdeJQT5RTbngWSH1 + Tnz8+/+rxEo6ajtpJrFz96OtPTU92vMNIeZUFHTJi9QH246fZmRFL8B26zADzpHbGdyyDmw35q1D + veFf8+7DRyrvBycFCvH5Q06kScDyEJMNqQZzJ1q5RcXEZ7khrinccDxVcs0bQyggfBf2uBgeQ7Tf + ax8INoudsTS4MV1CV3gB4V6x+DceVJHjDOG6fROvOxN1OvCJDp1z2eOkYGixaQ/fQac0/HgjYB2b + q9cwRLoeVLg4dY+CN5FeooXLRqweeWugqjds4HIBFba9sRhG9GpTAE+mh8uPcQVbctQ50LFDjo/m + QVf3+CNZSKidFz7rbhjNn3DqoXViFGLK+VLw8Sa9YABgjf1FCQc+ZX0G1X6vzCCZZ7C6XJ3C8yrV + c+udg6EzPeTAEyOn3jI/BNAURzuH7tyWOBGel4E/5J9MTDt2wXjHH4uND/caZDHHYbNtqoLQiAmh + 37k9LveOVlD/eefQgZMPJLSCnU2PBTVQ095uxDOoaW8e3+nQDypAHLexbe6gBiJg5tTEphvI6sTN + mQG3IWexZD6lYZ9/IgmUvkqJOjwZumJ1W5DHus+Z/Rh9sWKBjsDy+f3cg80fyPIZRORUXYQ9wH2G + FQHEQdE8E4yHtxLtP0uggzgjBbHwsbO/69+DfkUsYsPWsdmjJt5h90hexJnUJ6VHYZoh/9Qzj494 + NxrR5RHDyM8bLCl3t1hufsT+9B0X3HhX+R1aU6gt84VorN7VSxmSFlaLcvSYIpTr5dozEowWOOL4 + 8fHp/j0bs7CfdDzTLFWLLZAaHSEjyEnBHm/RYjGlBy+TG2O/k27FJD3nEOSPY0BsHb2L+bv+kc0c + XVISVBS/eoCIDVRsA+oVe5w0Kfz+XyzjVaTL3Dx8pLKyTkyGNnYHa1JBeLI9bDCbUXz1Z4Md55+w + /XJPA3/f9Rx80duZuFakUf4qMyN4PpwdxpCJAP/CVgtHLt7jOHrWEWWMJYeTUioeHc9wmE5E9OD+ + LHUk3rs82IQTp8Pjyr7JFexNwPFXqIn3KTmQ+FLhguafs4CCIr9i6YHe9jaGvQeXSOe8oVOO6nIZ + BQ0+1bzD0uvt2tSaBh+yiXglSds/ABtIDwcNIMRYRUSnZIcOMayYyxkHO1Giy054+ch4DSp2GhnX + Xa8l+sF57CxseOe13j4Xo4K8tzywNAPN5hFoIdQv73hGDxcDHup3BV6N0JlfxfAC+1JPFXh0YYtj + lF4ianr3GMG4qLAC9Ic6i0LOikshOETVNKlY6httkFqGKT5pUglYK+1b2PBpSbzLcVT78CQJ6Fwv + EVFC1qZ7S2UceAzCG9YE8LGnLFdbmErX2CvkcqDrUNYlSo7ZTOT5mdZbcx17mBRlTLLkogFWgKIB + g3mMcHkbsoKzWzlGSGUfJMZsrP4ZL+Z2c7xVOd3AQoSSg5ekensj7DpKjz60wO0ta+TEEz6ix530 + hOEd1cQ5fNKBqkOaopY+PHJ+po26XMznjLaoPeKcC3iV2s8xBDC+VN7hq09UiU4QjlVzxFfhoavL + vLYh+gAn84S7NUf0dWccoDClhC8bTKL1XBEOZEHTEanCe0qji+gB0/YJOQ+2OlAxtR24+WKCzSRX + avZ5enuoPnMDOcY9qSmNOB9ek3tJ8tVq6bY6KkS/9Wy9d7G9JtMaos58sSQE+sNeMA02lKfNSrzy + sqjLObzECDO2RmRwrKNtFf0UYFW74bLwdXu9YK2HXSn2WJKm2qavO+eg0m4OxM3fHzqqSm/BEROD + GDbphq0vfA518SnG2guwtHO5OkZ16jLklLuvgZJkiRGpB4qVd6TVW3iSRNE9GBD/9Kq9Ma0D81t2 + IpKYmcO+MpoMWWH5xBd+3ShtgkiCO3AUsHRKLLqdw9QBZ7+6fuunBrjuhiSoKYI672XNGHhs5RVM + n+2JVF78HJZsjX2o3iR9XqzOA/ODmAL07UtMHEylgcv6sQF2mlZYzohoz6SZDdCkW+rBnbHYsyiE + LMRplmBz8y/RuH9GOeBLZSWG+WTttShjBQoJjHFVNe9hi2I/RNe7BLFXy2dA23cFIX9ENk5tebO3 + ewqe8BTdeaJ/OBms94NtwftecrH91cc/35erip/Hj4HA/FJdEQqn45kc0+uB0qcMQrGvFI6osjLZ + 76/eAT2xinlBUjDMwonRoKD0FcZKRerZPkAB1japsP5MjGiD4uDA87nT8ZGEZs2S5PTHbxK7kVZK + z/I9Q/wlkL1DHBcRu2uEEaZs4s/E7bSC3q1OhAmUco9lSmmgQ20bUHnJiLgz31MiO0UG6fb64JOc + sXQ0bkEIry0XerRt9YKA+dKIMfdYyXF45RHdXHlESMEsMS/7GGwv8z7DB0oUchSeh2Fm7qYCXXZU + sTtpUr0EBKdA3b0c7FedrP78F4SmwJDSOK7D4kIpQ+hsnedduGz1Kry7JyysaiJKne2G1eDmBfzG + 41tPIi5J2x4+yg3Obn+91TN6TR4w6F0il55GgD9O8yiGH9kk2Edt1F8KM4Ps59N44svpvutJFtB0 + mwPi+B5VqV96iqhjjSXOKkgRhXqrgOHDXIipgw6sXMmlsHIMA0eCaBZcmMESPlrBxAHDXuqFl6sM + jjAriLVyGuBHcLmDDlULOR31l01/43tFke3dL8apHj/hfUF8Ka04uYq3ghS6bCAUaCuxHIHWC/8a + FghKvSXY+gTqIofHGN7cMCbmg+GKTVU+CmiNqp0XozwU9FsfwTdPYHl339ejADcDJW+GxXr1uajL + YaUWEuLk4yUFE0UrszAsvC/dQjRrlw4d2fgN4nhtidulQbQMLdLhi0hXEnuyCVYVuRI8XDgf26Kk + qUu1+hyyW/VDDJoogDskbiV6l0nB52YVCqKtq4Ue4jskLkrVgaV3VUIq5Mp58XeNuj70/AXt6+Pk + gW6WbRbKIYOY1q8xPvSEkq1CITSDNCVWMAX2bOYHBp665krk1WLqaad1OtgyncHWyr3ANhxzDna9 + IZLjtC42jVXWQYbvWV4LtIu9LM+UhaUXd+T2qnExDYdKgvsl00lShOfoTz2t81cx74N0GH7+HzjT + 08cWkwv1ON/1CuaPU4CtCxfWaxEkCoz2xdsjDzxEk727QPDNS9iUoqc6t55cwqmED3we7Hr4o4ed + 2bDe1uQb/ek5jORHR9Qz5OlyPoUpmm948WZT5ItN8HwRfv0kVlB8pasfWJZAQKwTK5ETdcNjr/+p + J9fIUCLylIEPxp1lY1Uxi2Id9XeFtvfZm1kSDGDpn9IT7Zk1w+FU6vZqILOB88uKyekWh4ATp4KF + dB+f521SRLBZ1IghlmKCzflRq0Q8ZA2SxUYj1r3K6+lRHw0Yv7gWW6Qj6mLRxIELXnY4o8mTLr/5 + bNTyPv/0Y51x1sK3vrpENe152Jx9NkNvz2HiQihEQ/2WWuQWaYOtpJAK7p0KGnTnvsQ2s3/UnK8t + d+TIF83b3x9SwZ/B8Y6q4vTApws9RGvo8DMIqO2Srx4XdP9pS6S8VITlUmXU6eS8ONihcsFfP0JZ + 3SY6rG9qTPTkbBac+oYZVMhHxcrVqtWBMZYM1MB4eB8YvqIV7s0Qvhy+n3nI3Au61woNvs07IrbJ + M/YaRuETXoqnPe9Okasuv/r49Z/4bCuEzhcFKKJ1GWxvb9CKLj0DdGCcc4qVx06q2VsRsjBVNBnn + xlUu2Og2WjB3aT7zcbgD255Zdagt4wXHkZGpe4XzK8Rejzq2z7iNlvHKaJDreIbgUEtrnuHTJ/zV + d/vQCOBdsM8cnUzl7DF00u21HoQUZiJzxFqdA5WMmWPAt5LG33x9t2d02lr4HJcjviQSH1FppzLg + q5ceU8s8IPSdabAegxdOvryIsqPTQrCvjjM6tGxBLeHpQ3iIZVKqkADasPccyCrMcJSldbSZ8c2A + Irg/SZjIck0PBmXBoKqcx3z5xV6a3j78zu8sfv0GVV7dApJjPs+CY0F7qZqAQ3RBosdWu5ZOH5Bp + wGLN4Tv/u2gs2qkHYF8ecdWotsp3aEqh+K6gx1zFrv6Tx7JPj7GVP+dhnbHf/+FPckg9lT70WwUK + OMGZLQYN7PVnz0F6wZa31AsppvtBNcTmWRyIdqlw9PUTEtSqxxubsFm+9SDN4M048ER6oKPKs6PW + /+op/vo9lYy6/0Kz2ng4Vv17QX/52B9Qjm9Jltc0GqYNJuTgfv3OvV7YRJN+PMYTdM9Xt68/AAxo + LvNvPoYK5SW0yLxi+S6A+psHOVh3NevNZMfR9YKdHnzzlSe8hxPYmBU2wtcv4LDeLEDnPL7/8gjB + m2tFS89QDR7fU4a9IpSHDYaHFnbzm87TC6vqyruRcTirnos1qbvVC6zcJzwqlyf++mNAu/u2IADb + GWtMeR9GY9VY9F3PP75IaZJ8Nii6o+PxDyiCV87UPcKqfiN2lnJg+eXbI9skc9WdiU0dZw7/7N+z + +rYicsO6DvfqTLHcn7SCK0QthSxmOZxWn4O9DWc9gxfDSbCERnfYOlWpkH9+Pua1vHYR/eVFzbju + 8BHvVzrHZhCCOZNPWB3PsJ6uy5kRPwEHPVbqdgM9ILgcWhi/cAyxbbO2PbTwfvxYRBEO9rB8XnGM + ksm+Yid/WfYvfyJ+n3vYDEZabG+maxGcAcLHhkDQOycnBQILJqzqdVMvHxLFf3iG8+UtVD8iA07s + FHjsj0ctZwvCWXi7RC2Ph2Frrq8ebhY3e6JxfUT7gu0z2ObmSkwdu5SuwSSAL2/xmG+eoyzONfDN + D95QMVW9wvpTwXWSMpIxWxstwmn1kL0PeI+mpjvQjOtSOJntgI3BeRQ0fB0cyJzmq7dbH3O0YF/L + 0Dc/EQXFiM65+WkOh8nQfzw0mllzsdArgzz2/V1j0/xzEwDf1AE+fa5ssX3zKMxOmklwr7WAyqTd + 4G/+fzxu8+JoRHA+IPLNU8OafNISAtjPWOJ6MaLeZd//Wa/fPFRsnWDnsLk8daKTXR3RNLBfAL2y + D3a9+ayu9vmeQwNeti+vOEaNZF97kLeBSOTDDtpfPyjCbx6daRUSe12DToJhEks4Mm2v5l9Y6dHK + 3wVipeytWIMnmkGcxwa5fPnT13+xoAz6+4wIc1GplcQi/NZLfMpdbeDanlVAPUYvckqyj8qHZPHg + kM/mn/lfE6sWobskDZaC4WlT9wVbWIHhQ7TqjeqhBIoOSb5IxJz2H3URLbkBuZk+iONNl2LjHOMO + 045biHusPtGqRLb+x4/qjLYAYhjuHZZx7hMjGJJ6+/kpC+5kbw3pbA/2cR2RpHAOPu69/UDaJYG/ + 8Z65IkrU+dRfDTjdxgA7hd+oVD7nOawnIcBXa3cHW5EyEIKnhbGpfo70y0d0qOtRNS/88hjGg/de + wMF5SeTqAwdwYnH3oRLGLCm//ns6decMGv3Y4firF8tZ4p8wvaU+wbj0ag4/Bg1+/SyRXLTR1RvG + FDw46+ItX/61grkpIbc+Q4/NzrJNjCEXwM7gOu+SzfpA8OYo4CV7xrc/4db7Ccw5DPWbOsPh2alL + vRIDPoxU9bZEftSLU4sSHAKBYnVSs4Feo+wOO32vEb3XmHp4Olt4iA/Rg3x5qL0YUOVgsWo5Dqai + LVZ7FzBQzYfuW1+8+o+fEbfJ+er3Yq87Rncg2zkRTj6mof7080BAqnto0qSBn9yjBavi+CB2tjzt + dYogB7/1DWsEnej2KkofOtUQzQeu14bptb0EEIgJR5TUIGCydwEE7YM7YnmDD7BVt6eFjtnVmGm5 + JgNFbvkCjGOn3/7BzabM+8nAZg05rNPoVKzc7Fso74TPDKbr+cs/PhxEzEHHyqLN6vabv/qtA4zL + 3AWz219meJlwTJSpbFQK9bsE4jw1iJesrbpNp8EBv3z80w9ac6wH9y3ZvGXnftQxuxwF+Dp2MlG2 + oB428Iw5oDuJhh2CimjbZA3CuHbBfGx7GdBzlUOYZWv4zbP3euNl8wnuRbsQGU12sX75JHQcaOHT + KMnFuPh1iMyja+Lw1J3Vj7nhCgZLcf2vfkDQXbPf/sexN73BWmHZQ/gw29gwuMzefn4IH0Ybh6mB + 6SZOEYd+/v6rX7T/5bFvvwyb/LqBUbiMC+fYyZVcx0wbWMDad1j6MsWy8hjsyXEeGZI/vkds9+1G + bOulKXAPFiTeKcTR6NSbhOZG0Mjtge2Ijz3giSl/kmbh+7w8sDUP3gzA41M82t/nE3vw8/cOU7Lq + GBAci+ginLw1jj+AuIT2wFSul/kd1Q918J93Fr6DYCL2t38x3HdPDqDk0WO5ofdoYvigRzfr/iLG + 7sDV9F3mivit119+4aqLdGBEcOX05yzIl62maRcw0M/DYF7IR1LZ+gYa+OPtLi85BacuNIM8XR/Y + /vJpgtVdD5r2esOnb17cPP6hIZPtHY+uAqeSmoMe/L4n+mAdwT7QVQOVLJNi2U7bYXu0RAddKfQk + 2yMLbEr2VhA9PeWZOd7e6rjQpf3xtVnIJoMSa6rDX/+IGO3OpnNzrHzAvO+UZKwl1V99lg7f/EQU + PgsAyztJBg3LqomZKdZA0ydvCLuJb7G1LNdhfSdbDP3kwBLLb55g/fnrndxLHlyrvbocvGmDHlla + rEVGZs963TbiI9o18wU2fr2lbez94XWGY0F16reu+uVbD1RMNazefYr/6M+RUSN1/e5v+NV77xSH + N/qHN8Crx87iNy/tz4vZQjOIU1y5Hii27bq7Q7OWbzMUZfkPj0O//oK+fYbo57/APOsT0Ut2plvM + hA6YemfFbtsnxdb2UAKczzi//VeM8tVJwbf/6B3ufKuytWpKgOXKGtuCCOnPX/zpb/z8N5263Qw/ + wMs84bt/OArvM7q0W0HUbx5kDw00fvz6uz7GaIoFIRTBemznfV0IYElTdAf+a1vxKeKnaFnFyYGT + 2Q/Y/lBoL5/wvqHDZOlYE+e1mH987Ld/tep9rTc1NjgIMfOa0d5V7B+fg8RPENYgHuzt+bJE+Osn + eg05qZvgZQL88v8vD40Bn3GPGB0YHhO3v+6GxX/wzE9/PPic7Joz47MFv3kOq7tnYK8BcHRR2QQR + +45lDMsoq0+08k8Ba3RkbDpYcIHehSgzqBim3lK762HqknpmjscDWOFe9tHfv1MB//mvv/76X78T + Bk17rd7fgwFTtU7//u+jAv/m/z02+fv95xjCPOb36u9//usEwt/d0Dbd9L+n9lV9xr//+evw56jB + 31M75e//5/K/vj/0n//6PwAAAP//AwCh+t4M3iAAAA== headers: Access-Control-Allow-Origin: - "*" Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983de3255b261726-SJC + - 984e9aaeaa6ffab2-SJC Connection: - keep-alive Content-Encoding: @@ -3457,19 +3457,19 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:40:28 GMT + - Fri, 26 Sep 2025 00:21:58 GMT Server: - cloudflare Set-Cookie: - - __cf_bm=VFfAW2RmMPtfuLrTzUNpVtkGCTgbI.cIhPUNjg6uYbM-1758670828-1.0.1.1-8yYXMH4tfM0vLNUlTivR5vucY7dS1BE9QQPMKVlbX5OFT57OEEcFDWJoxckJK.emPquS0xDqnRfOa5Jo0eK2Cn2JVInU8J4sWIA8aNKb6uM; - path=/; expires=Wed, 24-Sep-25 00:10:28 GMT; domain=.api.openai.com; HttpOnly; + - __cf_bm=vh5fhSMPN0_o0c9UUhYHW7sGQ4diDYhi9mUewk5.UnQ-1758846118-1.0.1.1-NZ5AaNpA28p9xrolLLr60TLsYLtSTzVv7WuC117a4H8RsjtoJ0b5hxf7_BswxFzZrGow26YmMhp9Ew69aczmNlePRk2OiDPWnWDWSK5LoLw; + path=/; expires=Fri, 26-Sep-25 00:51:58 GMT; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - - _cfuvid=iELPZl9jWlHfLB79zsrh9F_h8.ePCNRGDwViPQ1yFzc-1758670828712-0.0.1.1-604800000; + - _cfuvid=yzIcYwNnVMgdKYAYHCwbt2UdM8PKmLylBotJ0muz6rw-1758846118303-0.0.1.1-604800000; path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None Transfer-Encoding: - chunked Via: - - envoy-router-6864cb8b99-rnnhz + - envoy-router-5b55659bc-dls7k X-Content-Type-Options: - nosniff alt-svc: @@ -3481,7 +3481,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "229" + - "51" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -3489,7 +3489,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "296" + - "83" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -3505,7 +3505,7 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_81f6ede1ac214c97a7f774dad2a77e2d + - req_46ec3b8ad9e3444ea4ae68babb682bf0 status: code: 200 message: OK @@ -3515,12 +3515,14 @@ interactions: the relevant information that could help answer the question based on the excerpt. Your summary, combined with many others, will be given to the model to generate an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n \\\"used_images\\\"\\n}\\n\\nwhere + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10,\\n \\\"used_images\\\"\\n}\\n\\nwhere `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 1-10 for the relevance of `summary` to the question. `used_images` + is an integer 0-10 for the relevance of `summary` to the question. `used_images` is a boolean flag indicating if any images present in a multimodal message were - used, and if no images were present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt - from Wellawatte2023 pages 1-3: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\n + used, and if no images were present it should be false.\\n\\nThe excerpt may + or may not contain relevant information. If not, leave `summary` empty, and + make `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from + Wellawatte2023 pages 1-3: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\n A Perspective on Explanations of Molecular\\n\\n Prediction Models\\n\\n\\nGeemi P. Wellawatte,\u2020 Heta A. Gandhi,\u2021 Aditi Seshadri,\u2021 and Andrew\\n\\n \ D. White\u2217,\u2021\\n\\n\\n \u2020Department @@ -3596,7 +3598,7 @@ interactions: connection: - keep-alive content-length: - - "6093" + - "6215" content-type: - application/json host: @@ -3628,26 +3630,26 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//dFTbbts4EH33Vwz4UhuwA9ubxlm/BWl3N9tiUWCxQIG6MEbkyJqGIlUO - mUQI8u8LSrKt3l4EiGcuZ85cnicAio3agtIVRl03dnH791X698/27dc//vmwNJv/4oe/Nrfmdn1/ - 9w5v1Tx7+OIL6Xj0utC+bixF9q6HdSCMlKOuNq+vrzbL6/V1B9TekM1uhyYuLv1ivVxfLlarxXo5 - OFaeNYnawqcJAMBz980UnaEntYXl/PhSkwgeSG1PRgAqeJtfFIqwRHRRzc+g9i6S61g/7xzATkmq - awztTm1hp94+NRbZYWEJbkLkkjWjhTsXyVo+kNME0483dzNgAYSSyRoovU5CBryDJvgHNuwOwC5S - aAJFzJIIoDNAObobHkofwBA1YAmDyy7TN+9n0KkDTSDDujOcAxoTSCSbxIrgVWFR3y8K//QKHMYU - CHyZEaHeWy7g480dINcC0QO5CjPvGJLEjkcSLNhybKFowZclhZ6x8KGKkql7eKxawIFNjfckIA3p - LMiY3AW8oxa0d5qazrPLzE7bZGikwZBumvkbOgTqOFepRgfJGQq5UeZo5stj6tkcviTp+jDINv2a - 0EXOsj4Q1BQDa4FYYYQHtGwwDir09T76ECt2JDKb/9iDqSHRgZv+T1sMXLZHnQOh+K4xBVXszLju - WS8xCzQYIutkMdgWAll6QBezELqimiWGdg6PFQUa1Zljvnk/jgcaHRwSG4KqbXzXzGFmnOQO940F - 48H5mPO0edykSYF9EtA+BLJ9VRc7Ne9He6CjaS/aB+pHfLU84Xlq91zjgSRjJVqhnXsZ70ugMgnm - dXXJ2hGAzvlhtvOmfh6Ql9NuWn9ogi/kO1dVsmOp9r26eQ8l+kZ16MsE4HN3A9I3a62a4Osm7qO/ - py7dar0cjoA6n50RfHk9oNFHtCPgtxPyTci9oYhsZXRIlEZdkRn5rl6vT0VgMuzP2HIyqv1HSj8L - f5quUZRfhj8DOi8amf15dn5mFiif5l+ZnbTuCCuh8MCa9pEp5H4YKjHZ/moqaSVSvS/ZHfIqc386 - y2a/Wf1emKJEc6UmL5P/AQAA//8DANVGKhFDBgAA + H4sIAAAAAAAAAwAAAP//dFRNb9s4EL37Vwx4aQvYhu3ESda3oBug2fa4WLRdF8KIHFnTUCTLoZIY + Qf57QcqJlTa96MA38/TmzcfDBECxURtQusWku2Bn7//58R9fibF7d3IWVvRlH9oPf6Wr9+HDv1/V + NGf4+jvp9JQ1174LlhJ7N8A6EibKrMvz9cXF6dlyeVGAzhuyOW0X0uzUz1aL1elsuZytFofE1rMm + URv4fwIA8FC+WaIzdK82sJg+vXQkgjtSm+cgABW9zS8KRVgSuqSmR1B7l8gV1Q9bB7BV0ncdxv1W + bWCrru6DRXZYW4LLmLhhzWjh2iWylnfkNMHbz5fX74AFEBoma6Dxuhcy4B2E6G/ZsNsBu0QxREqY + LRHwDRiiAJYwuhzw9u9P76B4ASGSYV3ipoDGRBLJIakleFNb1Dez2t+/AYepj5SpUktCQ7bM4fPl + NSB3AskDuRazyhR7SYDOQC9Ys+W0h3oPvmkoZm7KlbqDuMbHlyLuWtYtaHTQkg3QC0WB3hmK2VFT + lMWSjJagppaHx24OH2kPiWIngCJecx4CuOPUFpnstO0NjewZtE3hey/Fb3zywZlBZG5HiZmXPoyz + IFKTlSVfFBnaRSr+tH2HbiT4Kd43gINtpUZLv/wWMBL86NElzo27JegoRdYCqcUE0ofgYyo/Kwbf + +ZhadiSlwSML53D1QjugznR2D9pi5IZJCkvxwaEFQ5qFvZt1eJP7E6LXJDIdjVSZ3fuhqRp7od8a + N9+q6TDVkSzd5kGoRPtIebqXiwOWh7XiDnck+b1BK7R1j+M1idT0gnlLXW/tCEDn/GGk84J+OyCP + zytp/S5EX8svqaphx9JWkVC8y+snyQdV0McJwLey+v2LbVYh+i6kKvkbKr9brk5OBkJ1vDYj+HR9 + QJNPaEfAyfnF9BXKylBCtjK6H0qjbsmMcpfr1XMR2Bv2R2wxGdX+u6TX6If62e1GLH+kPwJaU0hk + qmOvXwuLlC/yn8KevS6ClVC8ZU1VYoq5H4Ya7O1wLJXsJVFXNex2eeF4uJhNqNZny3q1Pj83tZo8 + Tn4CAAD//wMAxPegtToGAAA= headers: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983de327d9ed3c35-SJC + - 984e9aafcb82b976-SJC Connection: - keep-alive Content-Encoding: @@ -3655,14 +3657,14 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:40:31 GMT + - Fri, 26 Sep 2025 00:21:59 GMT Server: - cloudflare Set-Cookie: - - __cf_bm=gUtFsLdsSc6a3kJSF.MR4BPuiJCzdabOvGWDIUxxjSk-1758670831-1.0.1.1-JcGtRbYZ6g1zG03hF4XYiZ_gJCBmiiVO6scG3O7pxchxeWi1G4rpaqZZP3tJ60jQIy.KfzcD_70K._aVlFL1A3lEXMSv9yJD0Hzs2E0y3o0; - path=/; expires=Wed, 24-Sep-25 00:10:31 GMT; domain=.api.openai.com; HttpOnly; + - __cf_bm=waOgHSy8BZbDlrCkQjCHyUlGFcdX6YdTE2ybkug96zU-1758846119-1.0.1.1-ZR2Xh1r4aHLgx414Ei4Xsl9CijXpwQrd40nIGnZqYFY3f9pMeRwFhvtPdjRJAj3tblcWApeHdpfA4B7RUkDOA2srZ6x.a5Sc8kQlKb2NdNU; + path=/; expires=Fri, 26-Sep-25 00:51:59 GMT; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - - _cfuvid=iPl_WP8lrdyN8ppfswhn2ZBP4CLIiZUBXJszzrKqJNw-1758670831251-0.0.1.1-604800000; + - _cfuvid=mkbU4bg69L.iHO1oNYdTZ83xIYK2oCQz2xPlsC5UNRo-1758846119887-0.0.1.1-604800000; path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None Strict-Transport-Security: - max-age=31536000; includeSubDomains; preload @@ -3677,13 +3679,13 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "2366" + - "1423" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" x-envoy-upstream-service-time: - - "2400" + - "1435" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -3693,13 +3695,13 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29998544" + - "29998514" x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - 2ms x-request-id: - - req_62bd6d57dd56449fa16edd27e13217ab + - req_754d199b95aa42539907d44ab193ca20 status: code: 200 message: OK @@ -3709,12 +3711,14 @@ interactions: the relevant information that could help answer the question based on the excerpt. Your summary, combined with many others, will be given to the model to generate an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n \\\"used_images\\\"\\n}\\n\\nwhere + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10,\\n \\\"used_images\\\"\\n}\\n\\nwhere `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 1-10 for the relevance of `summary` to the question. `used_images` + is an integer 0-10 for the relevance of `summary` to the question. `used_images` is a boolean flag indicating if any images present in a multimodal message were - used, and if no images were present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt - from Wellawatte2023 pages 20-22: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\nnal + used, and if no images were present it should be false.\\n\\nThe excerpt may + or may not contain relevant information. If not, leave `summary` empty, and + make `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from + Wellawatte2023 pages 20-22: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\nnal molecule. The counterfactual indicates\\nstructural changes to ethyl benzoate that would result in the model predicting the molecule\\nto not contain the \u2018fruity\u2019 scent. The Tanimoto96 similarity between the counterfactual @@ -3788,7 +3792,7 @@ interactions: connection: - keep-alive content-length: - - "6087" + - "6209" content-type: - application/json host: @@ -3820,26 +3824,25 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA3xUTY/bRgy9+1cQc+lFNmxns7vxbRukiIsCBdIi3bYOjNEMJbEezahDjuvNYv97 - MZI/lGQ3Fx34ho+PjyIfJwCKrFqBMo0W03Zu+vbn6/Tb/N2Pfx3+xLJ6/+ubD/eff/r4x/rjh1/q - oIqcEcp/0Mgpa2ZC2zkUCn6ATUQtmFkXN69vr2/mt8vbHmiDRZfT6k6mV2G6nC+vpovFdDk/JjaB - DLJawd8TAIDH/psleosHtYJ5cYq0yKxrVKvzIwAVg8sRpZmJRXtRxQU0wQv6XvXjxgNsFKe21fFh - o1awUfd36wJChHeHzmnyunQId1GoIkPawdoLOkc1eoMFRKwwMkiAFqUJlkF7C4Km8fRvQobEaHtY - 7xCkQegiWjLZI4ZQwd0aejMYyAvGLqL0FTNN8hZjlm/7kARoUqs9z2Dte66+k4NknjY4NMnpCF0M - HUZ5GFUq4D7XOSp0tMPRexNSrlxpI0k7wNy214PArMIim0idhPgVFvHcHQ5eQem02U3LcDg2NYO3 - 32Envw9uj9CSp1Y7MI32NfZu6pNA/IGBJSYjKfYWaCcYgYRP/aE9tUzIBfzXkMMXRSdG4BRjqLXg - yfnMKhKpTPLlfCQAd2jy6EeGVaizGJ7B7w0ynn1F32hvECQmFiCfZztmy2Z2MezJIug+1o+VPFPd - CEMVItjQZh/xkPvhAjiZBjSDabAlzpHyARz5Hfl6JOnsUK/5YscwazboZbZRxfC3R3S4z0q3bELE - 4a9fzM94HuqWWl0jZ6zSjnHjn8YrFLFKrPMG++TcCNDeBxm8zsv76Yg8ndfVhbqLoeSvUlVFnrjZ - RtQcfF5NltCpHn2aAHzqz0L6YtNVF0PbyVbCDvtyi+X1ciBUl0s0gq8WR1SCaDcG5q+KZyi3FkWT - 49FtUUabBu0od/F6eW5CJ0vhgs0no96/lfQc/dA/+XrE8iL9BTAGO0G7vfxuzz2LmK/1S8/OXveC - FWPck8GtEMY8D4uVTm44pIofWLDdVuTrfLNouKZVt71ZvCltWWl7rSZPk/8BAAD//wMAnTlNVlYG - AAA= + H4sIAAAAAAAAAwAAAP//fFTBbuNGDL37K4g520acTTZZ35JFW6RAb8U2Qb0wqBElsR7NaIccb4wg + /16MJNvKdtOLAM0bPr5HDvkyAzBcmjUY26DatnOLz79/+8JP4Uv6a4dPv97/1n5/vG8Ofnd/F/94 + MvMcEYp/yOoxamlD2zlSDn6AbSRUyqyrm+vb26uPq9VtD7ShJJfD6k4XV2FxeXF5tVitFpcXY2AT + 2JKYNfw9AwB46b9Zoi/p2azhYn48aUkEazLr0yUAE4PLJwZFWBS9mvkZtMEr+V71y8YDbIyktsV4 + 2Jg1bMzj3cMcQoRfnjuH7LFwBHdRuWLL6ODBKznHNXlLc4hUURTQAC1pE0oB9CUo2cbzt0QCSajs + YdwRaEPQRSrZ5hoJhAruHqAvhgB7pdhF0j5jpkm+pJjll/2RBmhSi16W8OB7rt7Js2aeNjiyyWGE + LoaOoh4mmebwmPOMCh3vaHLfhpQzV2g1oQPKtj0OArOKksRG7jTEH7BIJ3c01AoKh3a3KMLzaGoJ + n/+Hnf0+uD1By55bdCAak9UU0YFt0Nc0FHZQOvygbZj2g/OIouzro2EmmcP3hh29KzkJgaQYQ41K + x7pryAx7Lgk8Dtkd+jphPXTBNtSyRTdhXRSYjbMXrhuVJfzZkNCpwOQb9JZAYxKdA1pLIlywYz3M + h85q/zM+APZQhhbZj73pM4rGAxSHUVv2iX0vT69jCFlEcrRHr2+cLjdmPjztEba0FRsi5Sf+aYRy + 87bcYk2Sjyt0Qhv/Oh2VSFUSzJPqk3MTAL0POuTKQ/p1RF5PY+lC3cVQyA+hpmLP0mwjoQSfR1A0 + dKZHX2cAX/vxT28m2nQxtJ1uNeyoT7e6/HQ9EJrzxpnAH46oBkU3Aa4+jHvjLeW2JEV2MtkhxqJt + qJzmvD3vHEwlhzN2MZt4/6+kn9EP/tnXE5Z36c+AtdQpldvzaP/sWqS8ld+7dqp1L9gIxT1b2ipT + zP0oqcLkhoVp5CBK7bZiX+fdxMPWrLrt9cdVcXl9c1MWZvY6+xcAAP//AwAkk+ixPgYAAA== headers: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983de327eda9909c-SJC + - 984e9aafce01eb31-SJC Connection: - keep-alive Content-Encoding: @@ -3847,14 +3850,14 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:40:31 GMT + - Fri, 26 Sep 2025 00:22:00 GMT Server: - cloudflare Set-Cookie: - - __cf_bm=Bq5t6IcnMlqPLLJ3h_X0ECXg8.PBcxp8AsYWtT7D9NY-1758670831-1.0.1.1-DtO23oW9ftUb0PuVqZkVcXCYeNzFrlWPuQybuTvPTYEj6vZbe2xOLgrIbMbb.GrIcUnVvoo1.5OfVNTdz1CcLB4gEAkfCsl2IheW2IMw6ls; - path=/; expires=Wed, 24-Sep-25 00:10:31 GMT; domain=.api.openai.com; HttpOnly; + - __cf_bm=agq7G9BIZM4iv5.z7Lokyoa5SslUq6TRzrlwqPvV0JM-1758846120-1.0.1.1-k41oB64hSK57GYQTtNzCGp4dlM716r852DAhuxtcuJG.A_MqptaQYD7X9QggcIbXWMdm5QbnasD8VxtwwuHmVH.XIZNUEGlGcA59LsHM474; + path=/; expires=Fri, 26-Sep-25 00:52:00 GMT; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - - _cfuvid=2c3LkuvfFRxPtokhKTJKKF8wjRPMmP_oEHjxy.aEmEg-1758670831734-0.0.1.1-604800000; + - _cfuvid=msbLxKnyg76M6DG6r2.0bX4o5QNJvsOFHjTrpLtHB2I-1758846120034-0.0.1.1-604800000; path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None Strict-Transport-Security: - max-age=31536000; includeSubDomains; preload @@ -3869,13 +3872,13 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "2875" + - "1585" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" x-envoy-upstream-service-time: - - "2894" + - "1604" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -3885,13 +3888,13 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29998543" + - "29998513" x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - 2ms x-request-id: - - req_837d3e0c65bf4d8cb14e3ac7266fc033 + - req_e67ff8a5088649a28596fe86b78ac8cd status: code: 200 message: OK @@ -3901,79 +3904,79 @@ interactions: the relevant information that could help answer the question based on the excerpt. Your summary, combined with many others, will be given to the model to generate an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n \\\"used_images\\\"\\n}\\n\\nwhere + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10,\\n \\\"used_images\\\"\\n}\\n\\nwhere `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 1-10 for the relevance of `summary` to the question. `used_images` + is an integer 0-10 for the relevance of `summary` to the question. `used_images` is a boolean flag indicating if any images present in a multimodal message were - used, and if no images were present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt - from Wellawatte2023 pages 25-28: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\n2021, - 25, 1315\u20131360.\\n\\n\\n (9) Wellawatte, G. P.; Seshadri, A.; White, A. - D. Model agnostic generation of counter-\\n\\n factual explanations for - molecules. Chemical Science 2022, 13, 3697\u20133705.\\n\\n\\n(10) Gandhi, H. - A.; White, A. D. Explaining structure-activity relationships using locally\\n\\n - \ faithful surrogate models. chemrxiv 2022,\\n\\n\\n(11) Gormley, A. J.; - Webb, M. A. Machine learning in combinatorial polymer chemistry.\\n\\n Nature - Reviews Materials 2021,\\n\\n\\n(12) Gomes, C. P.; Fink, D.; Dover, R. B. V.; - Gregoire, J. M. Computational sustainability\\n\\n meets materials science. - Nature Reviews Materials 2021,\\n\\n\\n(13) On scientific understanding with - artificial intelligence. Nature Reviews Physics 2022\\n\\n 4:12 2022, 4, - 761\u2013769.\\n\\n\\n(14) Arrieta, A. B.; D\xB4\u0131az-Rodr\xB4\u0131guez, - N.; Ser, J. D.; Bennetot, A.; Tabik, S.; Barbado, A.;\\n\\n Garcia, S.; - Gil-Lopez, S.; Molina, D.; Benjamins, R.; Chatila, R.; Herrera, F. Explain-\\n\\n - \ able Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities - and Chal-\\n\\n lenges toward Responsible AI. Information Fusion 2019, 58, - 82\u2013115.\\n\\n\\n(15) Murdoch, W. J.; Singh, C.; Kumbier, K.; Abbasi-Asl, - R.; Yu, B. Interpretable machine\\n\\n learning: definitions, methods, and - applications. ArXiv 2019, abs/1901.04592.\\n\\n\\n 25(16) - Boobier, S.; Osbourn, A.; Mitchell, J. B. Can human experts predict solubility - better\\n\\n than computers? Journal of cheminformatics 2017, 9, 1\u201314.\\n\\n\\n(17) - Lee, J. D.; See, K. A. Trust in automation: Designing for appropriate reliance. - Human\\n\\n Factors 2004, 46, 50\u201380.\\n\\n\\n(18) Bolukbasi, T.; Chang, - K.-W.; Zou, J. Y.; Saligrama, V.; Kalai, A. T. Man is to com-\\n\\n puter - programmer as woman is to homemaker? debiasing word embeddings. Advances\\n\\n - \ in neural information processing systems 2016, 29.\\n\\n\\n(19) Buolamwini, - J.; Gebru, T. Gender Shades: Intersectional Accuracy Disparities in\\n\\n Commercial - Gender Classification. Proceedings of the 1st Conference on Fairness,\\n\\n - \ Accountability and Transparency. 2018; pp 77\u201391.\\n\\n\\n(20) Lapuschkin, - S.; W\xA8aldchen, S.; Binder, A.; Montavon, G.; Samek, W.; M\xA8uller, K.-R.\\n\\n - \ Unmasking Clever Hans predictors and assessing what machines really learn. - Nature\\n\\n communications 2019, 10, 1\u20138.\\n\\n\\n(21) DeGrave, A. - J.; Janizek, J. D.; Lee, S.-I. AI for radiographic COVID-19 detection\\n\\n - \ selects shortcuts over signal. Nature Machine Intelligence 2021, 3, 610\u2013619.\\n\\n\\n(22) - Goodman, B.; Flaxman, S. European Union regulations on algorithmic decision-\\n\\n - \ making and a \u201Cright to explanation\u201D. AI Magazine 2017, 38, 50\u201357.\\n\\n\\n(23) - ACT, A. I. European Commission. On Artificial Intelligence: A European Approach\\n\\n - \ to Excellence and Trust. 2021, COM/2021/206.\\n\\n\\n(24) Blueprint for - an AI Bill of Rights, The White House. 2022; https://www.whitehouse.\\n\\n gov/ostp/ai-bill-of-rights/.\\n\\n\\n(25) - Miller, T. Explanation in artificial intelligence: Insights from the social - sciences. Ar-\\n\\n tificial intelligence 2019, 267, 1\u201338.\\n\\n\\n\\n - \ 26(26) Murdoch, W. J.; Singh, C.; Kumbier, - K.; Abbasi-Asl, R.; Yu, B. Definitions, meth-\\n\\n ods, and applications - in interpretable machine learning. Proceedings of the National\\n\\n Academy - of Sciences of the United States of America 2019, 116, 22071\u201322080.\\n\\n\\n(27) - Gunning, D.; Aha, D. DARPA\u2019s Explainable Artificial Intelligence (XAI) - Program.\\n\\n AI Magazine 2019, 40, 44\u201358.\\n\\n\\n(28) Biran, O.; - Cotton, C. Explanation and justification in machine learning: A survey.\\n\\n - \ IJCAI-17 workshop on explainable AI (XAI). 2017; pp 8\u201313.\\n\\n\\n(29) - Palacio, S.; Lucieri, A.; Munir, M.; Ahmed, S.; Hees, J.; Dengel, A. Xai handbook:\\n\\n - \ Towards a unified framework for explainable ai. Proceedings of the IEEE/CVF - Inter-\\n\\n national Conference on Computer Vision. 2021; pp 3766\u20133775.\\n\\n\\n(30) - Kuhn, D. R.; Kacker, R. N.; Lei, Y.; Simos, D. E. Combinatorial Methods for - Ex-\\n\\n plainable AI. 2020 IEEE International Conference on Software Testing, - Verification\\n\\n and Validation Workshops (ICSTW) 2020, 167\u2013170.\\n\\n\\n(31) - Seshadri, A.; Gandhi, H. A.; Wellawatte, G. P.; White, A. D. Why does that molecule\\n\\n - \ smell? ChemRxiv 2022,\\n\\n\\n(32) Das, A.; Rad, P. Opportunities and challenges - in explainable artificial intelligence\\n\\n (xai): A survey. arXiv preprint - arXiv:2006.11371 2020,\\n\\n\\n(33) Machlev, R.; Heistrene, L.; Perl, M.; Levy, - K. Y.; Belikov, J.; Mannor, S.; Levron, Y.\\n\\n Explainable Artificial - Intelligence (XAI) techniques for energy and power systems:\\n\\n Review, - challenges and opportunities. Energy and AI 2022, 9, 100169.\\n\\n\\n(34) Koh, - P. W.; Liang, P. Understanding black-box predictions via influence functions.\\n\\n - \ International Conference on Machine Learning. 2017; pp 1885\u20131894.\\n\\n\\n(35) - Ribeiro, M. T.; Singh, S.; Guestrin, C. \u201D Why should i trust you?\u201D - Explaining the\\n\\n predictions of any classifier. Proceedings of the 22nd - ACM SIGKDD international\\n\\n\\n 27 conference - on knowledge discovery and data \\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + used, and if no images were present it should be false.\\n\\nThe excerpt may + or may not contain relevant information. If not, leave `summary` empty, and + make `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from + Wellawatte2023 pages 3-5: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\n + a passive characteristic of a model, whereas explainability\\n\\nis an active + characteristic which is used to clarify the internal decision-making process.\\n\\nNamely, + an explanation is extra information that gives the context and a cause for one + or\\n\\nmore predictions.29 We adopt the same nomenclature in this perspective.\\n\\n + \ Accuracy and interpretability are two attractive characteristics of DL models. + However,\\n\\nDL models are often highly accurate and less interpretable.28,30 + XAI provides a way to avoid\\n\\nthat trade-off in chemical property prediction. + XAI can be viewed as a two-step process.\\n\\nFirst, we develop an accurate + but uninterpretable DL model. Next, we add explanations to\\n\\npredictions. + Ideally, if the DL model has correctly learned the input-output relations, then\\n\\nthe + explanations should give insight into the underlying mechanism.\\n\\n In the + remainder of this article, we review recent approaches for XAI of chemical property\\n\\nprediction + while drawing specific examples from our recent XAI work.9,10,31 We show how\\n\\nin + various systems these methods yield explanations that are consistent with known + and\\n\\nmechanisms in structure-property relationships.\\n\\n\\n\\n\\n\\n 3Theory\\n\\n\\nIn + this work, we aim to assemble a common taxonomy for the landscape of XAI while\\n\\nproviding + our perspectives. We utilized the vocabulary proposed by Das and Rad 32 to classify\\n\\nXAI. + According to their classification, interpretations can be categorized as global + or local\\n\\ninterpretations on the basis of \u201Cwhat is being explained?\u201D. + For example, counterfactuals are\\n\\nlocal interpretations, as these can explain + only a given instance. The second classification is\\n\\nbased on the relation + between the model and the interpretation \u2013 is interpretability post-hoc\\n\\n(extrinsic) + or intrinsic to the model?.32,33 An intrinsic XAI method is part of the model\\n\\nand + is self-explanatory32 These are also referred to as white-box models to contrast + them\\n\\nwith non-interpretable black box models.28 An extrinsic method is + one that can be applied\\n\\npost-training to any model.33 Post-hoc methods + found in the literature focus on interpreting\\n\\nmodels through 1) training + data34 and feature attribution,35 2) surrogate models10 and, 3)\\n\\ncounterfactual9 + or contrastive explanations.36\\n\\n Often, what is a \u201Cgood\u201D explanation + and what are the required components of an ex-\\n\\nplanation are debated.32,37,38 + Palacio et al. 29 state that the lack of a standard framework\\n\\nhas caused + the inability to evaluate the interpretability of a model. In physical sciences,\\n\\nwe + may instead consider if the explanations somehow reflect and expand our understanding\\n\\nof + physical phenomena. For example, Oviedo et al. 39 propose that a model explanation\\n\\ncan + be evaluated by considering its agreement with physical observations, which + they term\\n\\n\u201Ccorrectness.\u201D For example, if an explanation suggests + that polarity affects solubility of a\\n\\nmolecule, and the experimental evidence + strengthen the hypothesis, then the explanation\\n\\nis assumed \u201Ccorrect\u201D. + In instances where such mechanistic knowledge is sparse, expert bi-\\n\\nases + and subjectivity can be used to measure the correctness.40 Other similar metrics + of\\n\\ncorrectness such as \u201Cexplanation satisfaction scale\u201D can be + found in the literature.41,42 In a\\n\\nrecent study, Humer et al. 43 introduced + CIME an interactive web-based tool that allows the\\n\\nusers to inspect model + explanations. The aim of this study is to bridge the gap between\\n\\nanalysis + of XAI methods. Based on the above discussion, we identify that an agreed upon\\n\\n\\n + \ 4evaluation metric is necessary in XAI. + We suggest the following attributes can be used to\\n\\nevaluate explanations. + However, the relative importance of each attribute may depend on\\n\\nthe application + - actionability may not be as important as faithfulness when evaluating the\\n\\ninterpretability + of a static physics based model. Therefore, one can select relative importance\\n\\nof + each attribute based on the application.\\n\\n\\n \u2022 Actionable. Is it + clear how we could change the input features to modify the output?\\n\\n\\n + \ \u2022 Complete. Does the explanation completely account for the prediction? + Did features\\n\\n not included in the explanation really contribute zero + effect to the prediction?44\\n\\n\\n \u2022 Correct. Does the explanation + agree with hypothesized or known underlying physical\\n\\n mechanism?39\\n\\n\\n + \ \u2022 Domain Applicable. Does the explanation use language and concepts + of domain ex-\\n\\n perts?\\n\\n\\n \u2022 Fidelity/Faithful. Does the + explanation agree with the black box model?\\n\\n\\n \u2022 Robust. Does the + explanation change significantly with small changes to the model or\\n\\n instance + being explained?\\n\\n\\n \u2022 Sparse/Succinct. Is the explanation succinct?\\n\\n\\n + \ We present an example evaluation of the SHAP explanation method based on the + above\\n\\nattributes.44 Shapley values were proposed as a local explanation + method based on feature\\n\\nattribution, as they offer a complete explanation + - each feature i\\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" headers: accept: - application/json @@ -3982,7 +3985,7 @@ interactions: connection: - keep-alive content-length: - - "6109" + - "6190" content-type: - application/json host: @@ -4014,26 +4017,27 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//dFRNbxs3EL3rVwx4cQusBMmxZVk3tU1QNbe2RgJUgTAiZ3en5seaQ9pW - Df/3grvWR9rkIgH7+B7fG87MywhAsVFLULrFpF1nxz//Ns9/iNs/PCA/8d3VA3+8/6VezD99ePfh - TlWFEXZ/k04H1kQH11lKHPwA60iYqKjObq4X85vp4nLRAy4YsoXWdGl8FcaX08ur8Ww2vpy+EdvA - mkQt4a8RAMBL/1ssekPPagnT6vDFkQg2pJbHQwAqBlu+KBRhSeiTqk6gDj6R712/bDzARkl2DuN+ - o5awUX+2BPSsKXYJuhge2ZBApJoieU0CKcAjRg5Z4CnEewHDorMI+wbeP3cW2ePOEqxi4po1o4W1 - T2QtN0UAfvi8Wv84gc+rNbAAQs1kDdRBZyEDwYPD+6K1WoPsJZETcCESsE8Uu0ipV0dvIHtDscQz - /acUoM0OvUxgnYC9trlY18Fr6pJUkPA5+OCYpOr5jlIbjEAdIkSSLnjh3vm6AhR4ImvLP3adZY3l - WQXYA0ZCAcv3BC5Y0tliBNFc0lVAnmKzP1gfLkLbhMipdazBkGbh4MdDzAl8pP1bITUnMgfjICkb - JikV0SGX8DXqlNEClSr7wVAFkmMMDabixpB9uzK1BLpFa8k3RaSGHZcs3kCNHD1Jn2W1nsDKGC5a - aO2+Ak7gyA9hIzXZYgpxD3VER4PNPnnRf393IXARuWlTKf6ZrYujh08tJ4JfQxa6kPKmP7G1xc7v - hSYVkOtaFP6nPHkhsOtCTFg6JdSQInrpsLTeftCMWdLg/FDjyUZVQx9HsvRYqFvRIdLQz7dHuDTY - lh02JAWq0Qpt/Ov5bESqs2AZTZ+tPQPQ+5CGkpep/PKGvB7n0Iami2En/6Gqmj1Luy09E3yZOUmh - Uz36OgL40s97/mqEVReD69I2hXvqr5vNr68HQXVaMWfw1e0bmkJCewYsplfVNyS3hhKylbOloTTq - lswZ9/rd/BgCs+Fwwqajs+z/t/Qt+SE/++ZM5bvyJ0CX0SWz7SIZ1l/HPh2LVNbw944da90bVkLx - kTVtE1Ms72GoxmyHDamGltrW7JuybHhYk3W3vZnd7syuRjNXo9fRvwAAAP//AwA9lFVSLwYAAA== + H4sIAAAAAAAAAwAAAP//dFRNbyM3DL37VxA6JYAd2N581begDZoUvRRdLFLUC4OWOB5uNJIictx4 + g/z3QjO2M2mzF8PDx0fykSJfRgCGnVmAsTWqbZKf/Pzb0xe+++n+ry+zP2/vvk3/8L/ecCOf59+r + hzszLoy4/kZWD6wzG5vkSTmGHraZUKlEnV1dXF+fX85m1x3QREe+0DZJJ+dxMp/Ozyez2WQ+3RPr + yJbELODvEQDAS/dbSgyOns0CpuODpSER3JBZHJ0ATI6+WAyKsCgGNeM30MagFLqqX5YBYGmkbRrM + u6VZwNLcPiePHHDtCW6ycsWW0cN9UPKeNxQswcnDzf0pZKooC2iEhrSOTgCDAyVbB35qSUBrVGjw + kUBrAkeWhWOYNPjIYQMpR0siJBAruLmHrikyhoRZ2bYes9+BI0rgCXMolJNffj89+nFQyimTdqWW + 1G1wlIteV0xn8HBzDxy20W9JAEH/iRNRSofMC6g4i47B0ZZ8TCUDBkBr24xKsG4V2vA+TZd83Aut + KQA6V2hUmhawjL5rCKtAyuTYdqYzuB06pBy37Ai6STxrF81iW1pRxTwkjiFWFeWSgoPwplYpumPX + 0E6u3xWwIVtjYGmkV30YiMUAayqUXPgWToR8NTmUG/Nu385TiBno+eiWouikjva9MkzJMznASimD + ZuQyltMzuN2ib1FLKe+brpp53SoJeH4kwE4Wrtmz7sawXxgKJFK+ciar/YeLDXLoM9ojoWJH/b8c + 163sfUv/pLWWQ88+g881CQ2z1+QTYHlt0vXuqcUSp3822kUvz/CdWg6wxcyxlUMZ/TCXZtzvTSZP + WwyWVmJjprI/s+kea4XcihvckBR7hV5oGV6Hi5ipagXLHQit9wMAQ4jaJysn4OseeT0uvY+blONa + /kM1FQeWepUJJYay4KIxmQ59HQF87Y5L++5emJRjk3Sl8ZG6dLP57LIPaN7u2QC+vNqjGhX9APh0 + /Wn8QciVI0X2MrhQxqKtyQ24s4v5UQS2juMbNh0NtP+/pI/C9/o5bAZRfhj+DbCWkpJbve3fR26Z + ys3/kdux113BRihv2dJKmXKZh6MKW9+fYyM7UWpWFYdNuTDc3+QqrS4uZ+v5xdWVW5vR6+hfAAAA + //8DAKTglcGcBgAA headers: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983de327ea1e7ad6-SJC + - 984e9aafc9c516a6-SJC Connection: - keep-alive Content-Encoding: @@ -4041,14 +4045,14 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:40:32 GMT + - Fri, 26 Sep 2025 00:22:00 GMT Server: - cloudflare Set-Cookie: - - __cf_bm=2wA4yhfVvoxftDnjMkfDwZ9oZU3Z6OsHoWFwR9GbKkU-1758670832-1.0.1.1-TYVRY5MzyEpJjKDBIAVHr7zQtYgg0k85an0tt1Ep6gfLWpuf2vlt6FF.zpXqtNdylGAMJDRwU9QSv_BxMLIfRSAcX6.hJb0iesc6WSoAm10; - path=/; expires=Wed, 24-Sep-25 00:10:32 GMT; domain=.api.openai.com; HttpOnly; + - __cf_bm=ee_HqOMzhzdpz3ho6In_9.WXe3479y6WgO9ZKBbiHK8-1758846120-1.0.1.1-0fjLOki5bmP2tYdgnApIpZemFs0jtI1CeZ0plQ74o7emwaz8aC.lSlsaw4bqvy3512vRFiIqOOEWTzRRhY8uJjWntyx.BIZefm9w0OrpBs8; + path=/; expires=Fri, 26-Sep-25 00:52:00 GMT; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - - _cfuvid=FJFTk_sR9HO1n9grTcGIk2RPqVy8qxeuTlAEtaSyrsE-1758670832710-0.0.1.1-604800000; + - _cfuvid=0N4wivU7Jsk4XfoySwrSZh10x6u2E7JwADXMgLJ_9xc-1758846120100-0.0.1.1-604800000; path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None Strict-Transport-Security: - max-age=31536000; includeSubDomains; preload @@ -4063,13 +4067,13 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "3826" + - "1656" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" x-envoy-upstream-service-time: - - "3846" + - "1671" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -4079,13 +4083,13 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29998547" + - "29998521" x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - 2ms x-request-id: - - req_e569025522274b42bb2e9814c666aaee + - req_c2323e8cc4f64289b2822489167c30f8 status: code: 200 message: OK @@ -4095,77 +4099,81 @@ interactions: the relevant information that could help answer the question based on the excerpt. Your summary, combined with many others, will be given to the model to generate an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n \\\"used_images\\\"\\n}\\n\\nwhere + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10,\\n \\\"used_images\\\"\\n}\\n\\nwhere `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 1-10 for the relevance of `summary` to the question. `used_images` + is an integer 0-10 for the relevance of `summary` to the question. `used_images` is a boolean flag indicating if any images present in a multimodal message were - used, and if no images were present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt - from Wellawatte2023 pages 3-5: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\n - a passive characteristic of a model, whereas explainability\\n\\nis an active - characteristic which is used to clarify the internal decision-making process.\\n\\nNamely, - an explanation is extra information that gives the context and a cause for one - or\\n\\nmore predictions.29 We adopt the same nomenclature in this perspective.\\n\\n - \ Accuracy and interpretability are two attractive characteristics of DL models. - However,\\n\\nDL models are often highly accurate and less interpretable.28,30 - XAI provides a way to avoid\\n\\nthat trade-off in chemical property prediction. - XAI can be viewed as a two-step process.\\n\\nFirst, we develop an accurate - but uninterpretable DL model. Next, we add explanations to\\n\\npredictions. - Ideally, if the DL model has correctly learned the input-output relations, then\\n\\nthe - explanations should give insight into the underlying mechanism.\\n\\n In the - remainder of this article, we review recent approaches for XAI of chemical property\\n\\nprediction - while drawing specific examples from our recent XAI work.9,10,31 We show how\\n\\nin - various systems these methods yield explanations that are consistent with known - and\\n\\nmechanisms in structure-property relationships.\\n\\n\\n\\n\\n\\n 3Theory\\n\\n\\nIn - this work, we aim to assemble a common taxonomy for the landscape of XAI while\\n\\nproviding - our perspectives. We utilized the vocabulary proposed by Das and Rad 32 to classify\\n\\nXAI. - According to their classification, interpretations can be categorized as global - or local\\n\\ninterpretations on the basis of \u201Cwhat is being explained?\u201D. - For example, counterfactuals are\\n\\nlocal interpretations, as these can explain - only a given instance. The second classification is\\n\\nbased on the relation - between the model and the interpretation \u2013 is interpretability post-hoc\\n\\n(extrinsic) - or intrinsic to the model?.32,33 An intrinsic XAI method is part of the model\\n\\nand - is self-explanatory32 These are also referred to as white-box models to contrast - them\\n\\nwith non-interpretable black box models.28 An extrinsic method is - one that can be applied\\n\\npost-training to any model.33 Post-hoc methods - found in the literature focus on interpreting\\n\\nmodels through 1) training - data34 and feature attribution,35 2) surrogate models10 and, 3)\\n\\ncounterfactual9 - or contrastive explanations.36\\n\\n Often, what is a \u201Cgood\u201D explanation - and what are the required components of an ex-\\n\\nplanation are debated.32,37,38 - Palacio et al. 29 state that the lack of a standard framework\\n\\nhas caused - the inability to evaluate the interpretability of a model. In physical sciences,\\n\\nwe - may instead consider if the explanations somehow reflect and expand our understanding\\n\\nof - physical phenomena. For example, Oviedo et al. 39 propose that a model explanation\\n\\ncan - be evaluated by considering its agreement with physical observations, which - they term\\n\\n\u201Ccorrectness.\u201D For example, if an explanation suggests - that polarity affects solubility of a\\n\\nmolecule, and the experimental evidence - strengthen the hypothesis, then the explanation\\n\\nis assumed \u201Ccorrect\u201D. - In instances where such mechanistic knowledge is sparse, expert bi-\\n\\nases - and subjectivity can be used to measure the correctness.40 Other similar metrics - of\\n\\ncorrectness such as \u201Cexplanation satisfaction scale\u201D can be - found in the literature.41,42 In a\\n\\nrecent study, Humer et al. 43 introduced - CIME an interactive web-based tool that allows the\\n\\nusers to inspect model - explanations. The aim of this study is to bridge the gap between\\n\\nanalysis - of XAI methods. Based on the above discussion, we identify that an agreed upon\\n\\n\\n - \ 4evaluation metric is necessary in XAI. - We suggest the following attributes can be used to\\n\\nevaluate explanations. - However, the relative importance of each attribute may depend on\\n\\nthe application - - actionability may not be as important as faithfulness when evaluating the\\n\\ninterpretability - of a static physics based model. Therefore, one can select relative importance\\n\\nof - each attribute based on the application.\\n\\n\\n \u2022 Actionable. Is it - clear how we could change the input features to modify the output?\\n\\n\\n - \ \u2022 Complete. Does the explanation completely account for the prediction? - Did features\\n\\n not included in the explanation really contribute zero - effect to the prediction?44\\n\\n\\n \u2022 Correct. Does the explanation - agree with hypothesized or known underlying physical\\n\\n mechanism?39\\n\\n\\n - \ \u2022 Domain Applicable. Does the explanation use language and concepts - of domain ex-\\n\\n perts?\\n\\n\\n \u2022 Fidelity/Faithful. Does the - explanation agree with the black box model?\\n\\n\\n \u2022 Robust. Does the - explanation change significantly with small changes to the model or\\n\\n instance - being explained?\\n\\n\\n \u2022 Sparse/Succinct. Is the explanation succinct?\\n\\n\\n - \ We present an example evaluation of the SHAP explanation method based on the - above\\n\\nattributes.44 Shapley values were proposed as a local explanation - method based on feature\\n\\nattribution, as they offer a complete explanation - - each feature i\\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + used, and if no images were present it should be false.\\n\\nThe excerpt may + or may not contain relevant information. If not, leave `summary` empty, and + make `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from + Wellawatte2023 pages 25-28: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\n2021, + 25, 1315\u20131360.\\n\\n\\n (9) Wellawatte, G. P.; Seshadri, A.; White, A. + D. Model agnostic generation of counter-\\n\\n factual explanations for + molecules. Chemical Science 2022, 13, 3697\u20133705.\\n\\n\\n(10) Gandhi, H. + A.; White, A. D. Explaining structure-activity relationships using locally\\n\\n + \ faithful surrogate models. chemrxiv 2022,\\n\\n\\n(11) Gormley, A. J.; + Webb, M. A. Machine learning in combinatorial polymer chemistry.\\n\\n Nature + Reviews Materials 2021,\\n\\n\\n(12) Gomes, C. P.; Fink, D.; Dover, R. B. V.; + Gregoire, J. M. Computational sustainability\\n\\n meets materials science. + Nature Reviews Materials 2021,\\n\\n\\n(13) On scientific understanding with + artificial intelligence. Nature Reviews Physics 2022\\n\\n 4:12 2022, 4, + 761\u2013769.\\n\\n\\n(14) Arrieta, A. B.; D\xB4\u0131az-Rodr\xB4\u0131guez, + N.; Ser, J. D.; Bennetot, A.; Tabik, S.; Barbado, A.;\\n\\n Garcia, S.; + Gil-Lopez, S.; Molina, D.; Benjamins, R.; Chatila, R.; Herrera, F. Explain-\\n\\n + \ able Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities + and Chal-\\n\\n lenges toward Responsible AI. Information Fusion 2019, 58, + 82\u2013115.\\n\\n\\n(15) Murdoch, W. J.; Singh, C.; Kumbier, K.; Abbasi-Asl, + R.; Yu, B. Interpretable machine\\n\\n learning: definitions, methods, and + applications. ArXiv 2019, abs/1901.04592.\\n\\n\\n 25(16) + Boobier, S.; Osbourn, A.; Mitchell, J. B. Can human experts predict solubility + better\\n\\n than computers? Journal of cheminformatics 2017, 9, 1\u201314.\\n\\n\\n(17) + Lee, J. D.; See, K. A. Trust in automation: Designing for appropriate reliance. + Human\\n\\n Factors 2004, 46, 50\u201380.\\n\\n\\n(18) Bolukbasi, T.; Chang, + K.-W.; Zou, J. Y.; Saligrama, V.; Kalai, A. T. Man is to com-\\n\\n puter + programmer as woman is to homemaker? debiasing word embeddings. Advances\\n\\n + \ in neural information processing systems 2016, 29.\\n\\n\\n(19) Buolamwini, + J.; Gebru, T. Gender Shades: Intersectional Accuracy Disparities in\\n\\n Commercial + Gender Classification. Proceedings of the 1st Conference on Fairness,\\n\\n + \ Accountability and Transparency. 2018; pp 77\u201391.\\n\\n\\n(20) Lapuschkin, + S.; W\xA8aldchen, S.; Binder, A.; Montavon, G.; Samek, W.; M\xA8uller, K.-R.\\n\\n + \ Unmasking Clever Hans predictors and assessing what machines really learn. + Nature\\n\\n communications 2019, 10, 1\u20138.\\n\\n\\n(21) DeGrave, A. + J.; Janizek, J. D.; Lee, S.-I. AI for radiographic COVID-19 detection\\n\\n + \ selects shortcuts over signal. Nature Machine Intelligence 2021, 3, 610\u2013619.\\n\\n\\n(22) + Goodman, B.; Flaxman, S. European Union regulations on algorithmic decision-\\n\\n + \ making and a \u201Cright to explanation\u201D. AI Magazine 2017, 38, 50\u201357.\\n\\n\\n(23) + ACT, A. I. European Commission. On Artificial Intelligence: A European Approach\\n\\n + \ to Excellence and Trust. 2021, COM/2021/206.\\n\\n\\n(24) Blueprint for + an AI Bill of Rights, The White House. 2022; https://www.whitehouse.\\n\\n gov/ostp/ai-bill-of-rights/.\\n\\n\\n(25) + Miller, T. Explanation in artificial intelligence: Insights from the social + sciences. Ar-\\n\\n tificial intelligence 2019, 267, 1\u201338.\\n\\n\\n\\n + \ 26(26) Murdoch, W. J.; Singh, C.; Kumbier, + K.; Abbasi-Asl, R.; Yu, B. Definitions, meth-\\n\\n ods, and applications + in interpretable machine learning. Proceedings of the National\\n\\n Academy + of Sciences of the United States of America 2019, 116, 22071\u201322080.\\n\\n\\n(27) + Gunning, D.; Aha, D. DARPA\u2019s Explainable Artificial Intelligence (XAI) + Program.\\n\\n AI Magazine 2019, 40, 44\u201358.\\n\\n\\n(28) Biran, O.; + Cotton, C. Explanation and justification in machine learning: A survey.\\n\\n + \ IJCAI-17 workshop on explainable AI (XAI). 2017; pp 8\u201313.\\n\\n\\n(29) + Palacio, S.; Lucieri, A.; Munir, M.; Ahmed, S.; Hees, J.; Dengel, A. Xai handbook:\\n\\n + \ Towards a unified framework for explainable ai. Proceedings of the IEEE/CVF + Inter-\\n\\n national Conference on Computer Vision. 2021; pp 3766\u20133775.\\n\\n\\n(30) + Kuhn, D. R.; Kacker, R. N.; Lei, Y.; Simos, D. E. Combinatorial Methods for + Ex-\\n\\n plainable AI. 2020 IEEE International Conference on Software Testing, + Verification\\n\\n and Validation Workshops (ICSTW) 2020, 167\u2013170.\\n\\n\\n(31) + Seshadri, A.; Gandhi, H. A.; Wellawatte, G. P.; White, A. D. Why does that molecule\\n\\n + \ smell? ChemRxiv 2022,\\n\\n\\n(32) Das, A.; Rad, P. Opportunities and challenges + in explainable artificial intelligence\\n\\n (xai): A survey. arXiv preprint + arXiv:2006.11371 2020,\\n\\n\\n(33) Machlev, R.; Heistrene, L.; Perl, M.; Levy, + K. Y.; Belikov, J.; Mannor, S.; Levron, Y.\\n\\n Explainable Artificial + Intelligence (XAI) techniques for energy and power systems:\\n\\n Review, + challenges and opportunities. Energy and AI 2022, 9, 100169.\\n\\n\\n(34) Koh, + P. W.; Liang, P. Understanding black-box predictions via influence functions.\\n\\n + \ International Conference on Machine Learning. 2017; pp 1885\u20131894.\\n\\n\\n(35) + Ribeiro, M. T.; Singh, S.; Guestrin, C. \u201D Why should i trust you?\u201D + Explaining the\\n\\n predictions of any classifier. Proceedings of the 22nd + ACM SIGKDD international\\n\\n\\n 27 conference + on knowledge discovery and data \\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" headers: accept: - application/json @@ -4174,7 +4182,7 @@ interactions: connection: - keep-alive content-length: - - "6068" + - "6231" content-type: - application/json host: @@ -4206,27 +4214,26 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA3RUTW8jNwy9+1cQOiWAHdjZfK1vQbsLZLGXIg0QtF4YHInjYa2RBiLHiRvkvxfS - OI7dzV4GIz1+vEeKfBkBGHZmDsY2qLbt/OS3b1f9ffW0/qu9f/j6/X7z4GeP9R9f/7y8+Pfhmxln - j1j9Q1bfvM5sbDtPyjEMsE2ESjnq7Pry5up6enN+U4A2OvLZbdXp5CJOzqfnF5PZbHI+3Tk2kS2J - mcPfIwCAl/LNFIOjZzOH6fjtpiURXJGZ740ATIo+3xgUYVEMasbvoI1BKRTWL4sAsDDSty2m7cLM - YWG+PHceOWDlCW6Tcs2W0cNdUPKeVxQswcnj7d0pJKopCWiElrSJTgCDgy5FSyIkoA0qtLgm0IbA - kWXhGCYtrjmsINZwewelEjKGDpOy7T0mvwVH1IEnTCEbnvz+/XRvx0EpdYm08Mv5+uAoZZEuX53B - 4+0dcNhEvyHJZDbschR0jnNn0AOHOqYW8ymTtx4T19tCstTmWUtgi31WUVHDRRY5ttlHzuBOgQVi - rRQAQZ/iRJS6N+lzqDmJjsHRhnzsSvoAaG2fUAmqXiHEMDnWUhSOS2ZtclxXeFNuRyhkS6lZ5ZhL - 1vtWf4sBKspFShyELZxUPXvNF7HoK0lOISag571NF0UnTbSnZ/Blg75HzYmP6oiqiateScDzmgBL - dqzYs27HsHv4FEgkn1Iiq8PBxRY5AHadZ7t3qNnR8Jdi1cvONmuX3loOg/eumXL8Onqhus9dhJrJ - ux0j21DLFn1uQkdJtwdVynVDz6twXM0n1gbWIT4F6JqtFO+WbIOBpZWzhRkP45HI0waDpaXYmGgY - k9l0j/dCbsktrkgyVqMXWoTXw5lLVPeCeeRD7/0BgCFEHfjkaf+xQ1738+3jqkuxkv+5mpoDS7NM - hBJDnmXR2JmCvo4AfpQ90h+tBtOl2Ha61Limkm42u/k0BDTvq+sAvrrcoRoV/QHw6eJm/EHIpSNF - 9nKwjIxF25A7zHl5vheBveP4jk1HB9p/pvRR+EE/h9VBlF+GfwespU7JLd/fyEdmifJ6/5XZvtaF - sBFKG7a0VKaU++Goxt4Pm9fIVpTaZc1hlUeeh/Vbd8vr2efKVTW6KzN6Hf0HAAD//wMAypD7D4cG - AAA= + H4sIAAAAAAAAAwAAAP//dFRNbyM3DL37VxC6pAUcw06dxM3NbffgFgX6sVssUC8MWuLMMNFIsyKV + xAjy3wvNeO1J270Yxjzy8T2K5MsEwLAzd2Bsg2rbzl/++PPnv3ixfO42Tz9Y/XDP6/m8+v0p/+o6 + 96eZloy4vyerX7JmNradJ+UYBtgmQqXCuri9Xq2WN4vFqgfa6MiXtLrTy2W8vJpfLS8Xi8ur+TGx + iWxJzB38PQEAeOl/i8Tg6NncwXz65UtLIliTuTsFAZgUffliUIRFMaiZnkEbg1LoVb9sA8DWSG5b + TIetuYOted8Q0LOl1Cl4FhV4xMQxCySqKFGwVP764gw0wrvnziMH3HuCdVKu2DJ62AQl77ku8fDN + x/Xm2ylwsD47DjVUMQeHpVPo4SmmB5mC5PRIB5kCBgfYdZ5tHyHAARxXfXEFF1vkIDP4uN5AFW0W + EogBWnwozOsNyEGUWoE2JgIOSqlLpL3AQq0Jg3RYyKaAziUSKZm2Qe8p1CTg+YFgzyhT0JRFj5qs + jTko7tmzHmbwCx3GPRnc0WCnKOqjKVVoNaMHKo0Kg6XebYo1KkE/DEfbiersUWM6QJWwpYGrl6MN + wbsPFwIXietGS+tHjLML2CiglwgthaFtP63/+G19IX2juhTrhG1f5NjoIrFASrYJ/Dn3FqBi8u5Y + kgKl+nDqZ8lt0TYcCDxhChzqGbxvSGjch4brxg8SGwJuu5gUyxTECnJwlMpE9lNQCO+zKFeH49M5 + siy9+GIvSE6FWroYhM/vl0WfYtLmMHrt2dZMh2lO5OmxFNyJjYnKVH9/hLKQ23GLNUn5XKEX2obX + 8XYkqrJgWc6QvR8BGELU4fXKXn46Iq+nTfSx7lLcy79STcWBpdklQomhbJ1o7EyPvk4APvUbn98s + selSbDvdaXygvtziZrUaCM35yIzg5dUR1ajoR8Dqu+OpeEu5c6TIXkZnw1i0DblxzZvlyQRmx/GM + zScj7/+V9H/0g38O9Yjlq/RnwFrqlNyuS+TYvrV9DktUDvHXwk697gUbofTIlnbKlMp7OKow++FG + mmGcdhWHutwNHg5l1e2ubxb7q+vbW7c3k9fJPwAAAP//AwDvYN/MMQYAAA== headers: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983de327de147af1-SJC + - 984e9aafcaf417d2-SJC Connection: - keep-alive Content-Encoding: @@ -4234,14 +4241,14 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:40:32 GMT + - Fri, 26 Sep 2025 00:22:00 GMT Server: - cloudflare Set-Cookie: - - __cf_bm=NL5ZB_yhdHFXJfM0DUnzPUH_debj5NMQtTIJuXj8gYc-1758670832-1.0.1.1-908TuwWzj2b6_n94N7eRbEFk0GMiMr9q9xDuc4YYolc72_xsW5TMevcGxga2Wh7tuGnWElukv_EG96xjw0_cNgnkEAAqbY3Gr6JoFHev8qc; - path=/; expires=Wed, 24-Sep-25 00:10:32 GMT; domain=.api.openai.com; HttpOnly; + - __cf_bm=daP72L4VaURDeUfw_pkYuSfZ3mpHDuhWnTGz6FaLkn4-1758846120-1.0.1.1-9tQFjQ7x9p2Z_yE67SorHQJ9Zjnj0tFYiEkml7t.Pkx4Ep4B3F0ruM28NtjXQo0TJ0YHDrYIh8d7nKxf4ZPJ.LU68t1xYxiVx.HSru1Wi5I; + path=/; expires=Fri, 26-Sep-25 00:52:00 GMT; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - - _cfuvid=hcgceY2Ro44pLUxbOpwAdL_m_ECQtrziBvasUWEMg_c-1758670832973-0.0.1.1-604800000; + - _cfuvid=FFJsjqG1I9TEtZ6iQnHsBjEMaZ7p_qSX_7VqjRGlKnA-1758846120228-0.0.1.1-604800000; path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None Strict-Transport-Security: - max-age=31536000; includeSubDomains; preload @@ -4256,13 +4263,13 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "4066" + - "1746" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" x-envoy-upstream-service-time: - - "4092" + - "1762" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -4272,13 +4279,13 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29998551" + - "29998517" x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - 2ms x-request-id: - - req_cd76ebfbbfee439eb1b2c9a28c2cfc74 + - req_daab631b2f784a3bb549055fa04d627f status: code: 200 message: OK @@ -4288,79 +4295,81 @@ interactions: the relevant information that could help answer the question based on the excerpt. Your summary, combined with many others, will be given to the model to generate an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n \\\"used_images\\\"\\n}\\n\\nwhere + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10,\\n \\\"used_images\\\"\\n}\\n\\nwhere `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 1-10 for the relevance of `summary` to the question. `used_images` + is an integer 0-10 for the relevance of `summary` to the question. `used_images` is a boolean flag indicating if any images present in a multimodal message were - used, and if no images were present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt - from Wellawatte2023 pages 22-25: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\nut - to models informs the XAI method.\\n\\n\\nConclusion and outlook\\n\\n\\nWe - should seek to explain molecular property prediction models because users are - more\\n\\nlikely to trust explained predictions, and explanations can help assess - if the model is learning\\n\\nthe correct underlying chemical principles. We - also showed that black-box modeling first,\\n\\nfollowed by XAI, is a path to - structure-property relationships without needing to trade\\n\\nbetween accuracy - and interpretability. However, XAI in chemistry has some major open\\n\\nquestions, - that are also related to the black-box nature of the deep learning. Some are\\n\\n\\n\\n - \ 22highlighted below:\\n\\n\\n \u2022 - Explanation representation: How is an explanation presented \u2013 text, a molecule, - attri-\\n\\n butions, a concept, etc?\\n\\n\\n \u2022 Molecular distance: - \ in XAI approaches such as counterfactual generation, the \u201Cdis-\\n\\n - \ tance\u201D between two molecules is minimized. Molecular distance is subjective. - Possibil-\\n\\n ities are distance based on molecular properties, synthesis - routes, and direct structure\\n\\n comparisons.\\n\\n\\n \u2022 Regulations: - As black-box models move from research to industry, healthcare, and\\n\\n environmental - settings, we expect XAI to become more important to explain decisions\\n\\n - \ to chemists or non-experts and possibly be legally required. Explanations - may need\\n\\n to be tuned for be for doctors instead of chemists or to - satisfy a legal requirement.\\n\\n\\n \u2022 Chemical space: Chemical space - is the set of molecules that are realizable; \u201Crealiz-\\n\\n able\u201D - can be defined from purchasable to synthesizable to satisfied valences. What - is\\n\\n most useful? Can an explanation consider nearby impossible molecules? - How can we\\n\\n generate local chemical spaces centered around a specific - molecule for finding counter-\\n\\n factuals or other instance explanations? - \ Similarly, can \u201Cactivity cliffs\u201D be connected\\n\\n to explanations - and the local chemical space.149\\n\\n\\n \u2022 Evaluating XAI : there is - a lack of a systematic framework (quantitative or qualitative)\\n\\n to - evaluate correctness and applicability of an explanation. Can there be a universal\\n\\n - \ framework, or should explanations be chosen and evaluated based on the - audience and\\n\\n domain? For example, work by Rasmussen et al. 58 attempts - to focus on comparing\\n\\n feature attribution XAI methods via Crippen\u2019s - logP scores.\\n\\n\\n\\n\\n\\n 23Acknowledgements\\n\\n\\nResearch - reported in this work was supported by the National Institute of General Medical\\n\\nSciences - of the National Institutes of Health under award number R35GM137966. This work\\n\\nwas - supported by the NSF under awards 1751471 and 1764415. We thank the Center for\\n\\nIntegrated - Research Computing at the University of Rochester for providing computational\\n\\nresources.\\n\\n\\nReferences\\n\\n\\n - \ (1) Choudhary, K.; DeCost, B.; Chen, C.; Jain, A.; Tavazza, F.; Cohn, R.; - Park, C. W.;\\n\\n Choudhary, A.; Agrawal, A.; Billinge, S. J.; Holm, E.; - Ong, S. P.; Wolverton, C.\\n\\n Recent advances and applications of deep - learning methods in materials science. npj\\n\\n Computational Materials - 2022, 8.\\n\\n\\n (2) Keith, J. A.; Vassilev-Galindo, V.; Cheng, B.; Chmiela, - S.; Gastegger, M.; M\xA8uller, K.-\\n\\n R.; Tkatchenko, A. Combining Machine - Learning and Computational Chemistry for\\n\\n Predictive Insights Into - Chemical Systems. Chemical Reviews 2021, 121, 9816\u20139872,\\n\\n PMID: - 34232033.\\n\\n\\n (3) Goh, G. B.; Hodas, N. O.; Vishnu, A. Deep learning for - computational chemistry.\\n\\n Journal of Computational Chemistry 2017, - 38, 1291\u20131307.\\n\\n\\n (4) Deringer, V. L.; Caro, M. A.; Cs\xB4anyi, - G. Machine Learning Interatomic Potentials as\\n\\n Emerging Tools for Materials - Science. Advanced Materials 2019, 31, 1902765.\\n\\n\\n (5) Faber, F. A.; Hutchison, - L.; Huang, B.; Gilmer, J.; Schoenholz, S. S.; Dahl, G. E.;\\n\\n Vinyals, - O.; Kearnes, S.; Riley, P. F.; von Lilienfeld, O. A. Prediction Errors of Molec-\\n\\n - \ ular Machine Learning Models Lower than Hybrid DFT Error. Journal of Chemical\\n\\n - \ Theory and Computation 2017, 13, 5255\u20135264, PMID: 28926232.\\n\\n\\n\\n - \ 24 (6) Duch, W.; Swaminathan, K.; Meller, - J. Artificial Intelligence Approaches for Rational\\n\\n Drug Design and - Discovery. Current Pharmaceutical Design 2007, 13, 1497\u20131508.\\n\\n\\n - (7) Dara, S.; Dhamercherla, S.; Jadav, S. S.; Babu, C. M.; Ahsan, M. J.; darasuresh, - S. D.;\\n\\n Dara, S. Machine Learning in Drug Discovery: A Review. Artificial - Intelligence Review\\n\\n 123, 55, 1947\u20131999.\\n\\n\\n (8) Gupta, R.; - Srivastava, D.; Sahu, M.; Tiwari, S.; Ambasta, R. K.; Kumar, P. Artifi-\\n\\n - \ cial intelligence to deep learning: machine intelligence approach for - drug discovery.\\n\\n Molecular diversity 2021, 25, 1315\u20131360.\\n\\n\\n - (9) Wellawatte, G. P.; Seshadri, A.; White, A. D. Model agnostic generation - of counter-\\n\\n factual explanations for molecules. Chemical Science 2022, - 13, 3697\u20133705.\\n\\n\\n(10) Gandhi, H. A.; White, A. D. Explaining structure-ac\\n\\n------------\\n\\nQuestion: - What is XAI?\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + used, and if no images were present it should be false.\\n\\nThe excerpt may + or may not contain relevant information. If not, leave `summary` empty, and + make `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from + Wellawatte2023 pages 8-9: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\nrepresented + with equation 2.\\n\\n \u2206\u02C6f(\u20D7x) + \u2248\u2202\u02C6f(\u20D7x) (2)\\n \u2206xi + \ \u2202xi\\n\\n\\n\\n 7 \u2206\u02C6f(\u20D7x) + \ where \u02C6f(x) is the black-box model and are used as our attributions. + The left- \u2206xi\\n\\nhand + side of equation 2 says that we attribute each input feature xi by how much + one unit\\n\\nchange in it would affect the output of \u02C6f(x). If \u02C6f(x) + is a linear surrogate model, then this\\n\\nmethod reconciles with LIME.35 In + DL models, \u2207xf(x), suffers from the shattered gradients\\n\\nproblem.62 + This means directly computing the quantity leads to numeric problems. The\\n\\ndifferent + gradient based approaches are mostly distinguishable based on how the gradient + is\\n\\napproximated.\\n\\n Gradient based explanations have been widely used + to interpret chemistry predictions.60,66\u201370\\n\\nMcCloskey et al. 60 used + graph convolutional networks (GCNs) to predict protein-ligand\\n\\nbinding and + explained the binding logic for these predictions using integrated gradients.\\n\\nPope + et al. 66 and Jim\xB4enez-Luna et al. 67 show application of gradCAM and integrated + gradi-\\n\\nents to explain molecular property predictions from trained graph + neural networks (GNNs).\\n\\nSanchez-Lengeling et al. 68 present comprehensive, + open-source XAI benchmarks to explain\\n\\nGNNs and other graph based models. + They compare the performance of class activation\\n\\nmaps (CAM),63 gradCAM,64 + smoothGrad,,65 integrated gradients62 and attention mecha-\\n\\nnisms for explaining + outcomes of classification as well as regression tasks. They concluded\\n\\nthat + CAM and integrated gradients perform well for graph based models. Another attempt\\n\\nat + creating XAI benchmarks for graph models was made by Rao et al. 70. They compared\\n\\nthese + gradient based methods to find subgraph importance when predicting activity + cliffs\\n\\nand concluded that gradCAM and integrated gradients provided the + most interpretability\\n\\nfor GNNs. The GNNExplainer69 is an approach for + generating explanations (local and\\n\\nglobal) for graph based models. This + method focuses on identifying which sub-graphs con-\\n\\ntribute most to the + prediction by maximizing mutual information between the prediction\\n\\nand + distribution of all possible sub-graphs. Ying et al. 69 show that GNNExplainer + can be\\n\\nused to obtain model-agnostic explanations. SubgraphX is a similar + method that explains\\n\\nGNN predictions by identifying important subgraphs.71\\n\\n + \ Another set of approaches like DeepLIFT72 and Layerwise Relevance backPropagation73\\n\\n\\n\\n + \ 8(LRP) are based on backpropagation of + the prediction scores through each layer of the neu-\\n\\nral network. The specific + backpropagation logic across various activation functions differs\\n\\nin these + approaches, which means each layer must have its own implementation. Baldas-\\n\\nsarre + and Azizpour 74 showed application of LRP to explain aqueous solubility prediction + for\\n\\nmolecules.\\n\\n SHAP is a model-agnostic feature attribution method + that is inspired from the game\\n\\ntheory concept of Shapley values.44,46 SHAP + has been popularly used in explaining molecular\\n\\nprediction models.75\u201378 + It\u2019s an additive feature contribution approach, which assumes that\\n\\nan + explanation model is a linear combination of binary variables z. If the Shapley + value\\nfor the ith feature is \u03D5i, then the explanation is \u02C6f(\u20D7x) + = Pi \u03D5i(\u20D7x)zi(\u20D7x). Shapley values for\\n\\nfeatures are computed + using Equation 3.79,80\\n\\n\\n\\n M\\n 1\\n + \ \u03D5i(\u20D7x) = X \u02C6f (\u20D7z+i) + \u2212\u02C6f (\u20D7z\u2212i) (3)\\n M\\n\\n + \ Here \u20D7z is a fabricated example created from the original \u20D7x and + a random perturbation \u20D7x\u2032.\\n\\n\u20D7z+i has the feature i from \u20D7x + and \u20D7z\u2212i has the ith feature from \u20D7x\u2032. Some care should + be taken\\n\\nin constructing \u20D7z when working with molecular descriptors + to ensure that an impossible \u20D7z is\\n\\nnot sampled (e.g., high count of + acid groups but no hydrogen bond donors). M is the sample\\n\\nsize of perturbations + around \u20D7x. Shapley value computation is expensive, hence M is chosen\\n\\naccordingly. + Equation 3 is an approximation and gives contributions with an expectation\\nterm + as \u03D50 + Pi=1 \u03D5i(\u20D7x) = \u02C6f(\u20D7x).\\n\\n Visualization + based feature attribution has also been used for molecular data. In com-\\n\\nputer + science, saliency maps are a way to measure spatial feature contribution.81 + Simply put,\\n\\nsaliency maps draw a connection between the model\u2019s neural + fingerprint components (trained\\n\\nweights) and input features. Weber et al. + 82 used saliency maps to build an explainable GCN\\n\\narchitecture that gives + subgraph importance for small molecule activity prediction. On the\\n\\nother + hand, similarity maps compare model predictions for two or more molecules based + on\\n\\ntheir chemical fingerprints.83 Similarity maps provide atomic weights + or predicte\\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" headers: accept: - application/json @@ -4369,7 +4378,7 @@ interactions: connection: - keep-alive content-length: - - "6096" + - "6230" content-type: - application/json host: @@ -4401,26 +4410,26 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//dFRNi+NGEL37VxR9SkA2tjNfO7chBDILgSSHMCReTKm7JFWm1d10lcyY - Yf57aMljK7uzF4P1ql6/evXxugAw7Mw9GNuh2j755c+fb4a//jxsQ/g00Lo7fH6q89Xvf/z9+Ft4 - +tVUJSPW/5LV96yVjX3ypBzDBNtMqFRYN7fXdze367ufNiPQR0e+pLVJl1dxuV1vr5abzXK7PiV2 - kS2JuYd/FgAAr+NvkRgcvZh7WFfvX3oSwZbM/TkIwOToyxeDIiyKQU11AW0MSmFU/boLADsjQ99j - Pu7MPezM08NjBTHDLy/JIwesPcFDVm7YMnp4DErec0vBUgUsgNCTdtHBIORAI9CUCCmTY1vcEOjR - EdRH6KMnO3jMkHJMlPU4C4PRFlnBowJyL4WMQzFRCDQPosABtCOhU2ihTDke2HFop4cDTi9qhwod - +VR0ZYEhOMrFCwfcFJKJolTgCXMoBDbmTFbBdtSzRQ8pc7CcPMkKnh4eT5UKWAxFmR8cwQEzx0Gg - ibkXiM1cBmRKmYSCjn8rkMF2gAJKL1rN3EDVzPUwSh/dtzFYSnoyw0sEdC6TCAnYDr2n0JKA52cC - Rw2P+i98bmx76RA6TPqNO00sMU1DmYICDo5LPwV+oFW7qiYDRKUCF63GLD9WUJyjA/oBR7ri4Mmv - QCIjjCl5tlizZz1+ZcXJQRZImJVHmf4I3KeYy4QWV2qP9nlZx5f39mKm9wng0PrjNGMcwGbWsUMN - k3cnHzpCr50tSaPYcOAcQ1/c9yB2LHG1M9U09Jk8HYpHe7Ex0zT8m/UZL0/tuceWpGANeqFdeJtv - UqZmECyLHAbvZwCGEKeWjzv85YS8nbfWxzblWMtXqaY0Urp9KTiGsqGiMZkRfVsAfBmvw/C/hTcp - xz7pXuMzjc9trrbbidBcDtIcvj6hGhX9DLi+ua0+oNw7UmQvsxNjLNqO3Jx0fXcuooxTvGDrxaz2 - byV9RD/Vz6GdsXyX/gLYsjLk9peT8lFYpnK0vxd29noUbITygS3tlSmXfjhqcPDTPTVyFKV+33Bo - KZdbMR7VJu1vN59qVzfobszibfEfAAAA//8DAIamJ3RdBgAA + H4sIAAAAAAAAA4xU224jNwx991cQemoB20ic6+YtGxRtCmywRYJF0Hph0BJnho1G0oqc1G6Qfy8k + O7GzTYG+GGMdXg4PL08jAMPOXICxHartk59c/frty4P+bmdnv328v/K3d/cHpzeXB6ef8ePZrRkX + j7j8k6y+eE1t7JMn5Rg2sM2ESiXq4dnJ+fnx6eHsoAJ9dOSLW5t0chwns4PZ8eTwcDI72Dp2kS2J + uYA/RgAAT/W3UAyOVuYCapj60pMItmQuXo0ATI6+vBgUYVEMasY70MagFCrrp3kAmBsZ+h7zem4u + YG7uOgJaWcpJwbHYQYQEfloljxxw6Qkus3LDltHDdVDynlsKluCH+8vrH6En7aKTMSTMynbwmP0a + OIB2BDX3SiE2wEEpp0zKoYWUybEtygk0OfbQo+04EHjCHIpFlUzGwMH6wZUXR5R2OAYHbcbUTZYo + 5Lb2U7hW6LjtPLedSrFwTEG3RphSjmg7EvD8QJVTm0vPXi1lXD+vLj+Na46fb262WlAew18d2w4w + EwwlnkagDfimouUa2FFQbtaFKvcp5tIVaAh1yCQQM8iwrPxlCp8K9wm2IYqyfVF0Q/H2l8vPRQVJ + nMmV0LcdJk9reEQ/0Fa+Fnsqgse8Hld66CWCI7GZl+SgifklOaBq5uVQqE7hC8uAnv/G8heUbBf4 + WwkrQylUQNAzBbuuYgj37DGzrqHHJDVTXwqNYZtkCI5yGUG3aaKnOhHgUHFfoyncdST0WityX9Ts + 8aEMTVmr1bal0MdMu+mpE7lc76r4bpo0giSyZWCBQxreil5Cx1DaPJ2b8WYbMnl6xGBpITZmKlvx + YQuVJi+4x5akPDfohebheX+7MjWDYFnuMHi/B2AIUausda+/bpHn1032sU05LuU7V9NwYOkWmVBi + KFsrGpOp6PMI4Gu9GMObI2BSjn3ShcYHqukOj45ONgHN7kjtwSezLapR0e8Bx+dn43dCLhwpspe9 + s2NsWSS3893dKBwcxz1gtFf4v/m8F3tTPIf2/4TfAdZSUnKL3UC8Z5apXPH/MnsVuhI2QvmRLS2U + KZdmOGpw8JsDa2QtSv2i4dCW6eTNlW3Swn1o6PTk7IiWZvQ8+gcAAP//AwDC9QDVbgYAAA== headers: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983de3378cb33c35-SJC + - 984e9abb9d3417d2-SJC Connection: - keep-alive Content-Encoding: @@ -4428,7 +4437,7 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:40:33 GMT + - Fri, 26 Sep 2025 00:22:02 GMT Server: - cloudflare Strict-Transport-Security: @@ -4444,13 +4453,13 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "2284" + - "2167" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" x-envoy-upstream-service-time: - - "2301" + - "2179" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -4460,13 +4469,13 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29998549" + - "29998507" x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - 2ms x-request-id: - - req_317cce3ed66947389ab5af1c7abc65b2 + - req_9564f94c05ae45fb879a00abbd734d03 status: code: 200 message: OK @@ -4476,77 +4485,81 @@ interactions: the relevant information that could help answer the question based on the excerpt. Your summary, combined with many others, will be given to the model to generate an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n \\\"used_images\\\"\\n}\\n\\nwhere + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10,\\n \\\"used_images\\\"\\n}\\n\\nwhere `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 1-10 for the relevance of `summary` to the question. `used_images` + is an integer 0-10 for the relevance of `summary` to the question. `used_images` is a boolean flag indicating if any images present in a multimodal message were - used, and if no images were present it should be false.\"},{\"role\":\"user\",\"content\":[{\"type\":\"image_url\",\"image_url\":{\"url\":\"\"}},{\"type\":\"text\",\"text\":\"Excerpt - from Wellawatte2023 pages 14-16: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\nsame - optimization problem.100 Grabocka\\n\\net al. 111 have developed a method named - Adversarial Training on EXplanations (ATEX)\\n\\nwhich improves model robustness - via exposure to adversarial examples. While there are\\n\\nconceptual disparities, - we note that the counterfactual and adversarial explanations are\\n\\nequivalent - mathematical objects.\\n\\n Matched molecular pairs (MMPs) are pairs of molecules - that differ structurally at only\\n\\none site by a known transformation.112,113 - MMPs are widely used in drug discovery and\\n\\nmedicinal chemistry as these - facilitate fast and easy understanding of structure-activity re-\\n\\nlationships.114\u2013116 - Counterfactuals and MMP examples intersect if the structural change is\\n\\nassociated - with a significant change in the properties. In the case the associated changes - in\\n\\nthe properties are non-significant, the two molecules are known as bioisosteres.117,118 - The con-\\n\\nnection between MMPs and adversarial training examples has been - explored by van Tilborg\\n\\net al. 119. MMPs which belong to the counterfactual - category are commonly used in outlier\\n\\nand activity cliff detection.113 - This approach is analogous to counterfactual explanations,\\n\\nas the common - objective is to uncover learned knowledge pertaining to structure-property\\n\\nrelationships.70\\n\\n\\nApplications\\n\\n\\nModel - interpretation is certainly not new and a common step in ML in chemistry, but - XAI for\\n\\nDL models is becoming more important60,66\u201369,73,88,104,105 - Here we illustrate some practical\\n\\nexamples drawn from our published work - on how model-agnostic XAI can be utilized to\\n\\n\\n\\n 14interpret - black-box models and connect the explanations to structure-property relationships.\\n\\nThe - methods are \u201CMolecular Model Agnostic Counterfactual Explanations\u201D - (MMACE)9\\n\\nand \u201CExplaining molecular properties with natural language\u201D.10 - Then we demonstrate how\\n\\ncounterfactuals and descriptor explanations can - propose structure-property relationships in\\n\\nthe domain of molecular scent.31\\n\\n\\nBlood-brain - barrier permeation prediction\\n\\n\\nThe passive diffusion of drugs from the - blood stream to the brain is a critical aspect in drug\\n\\ndevelopment and - discovery.120 Small molecule blood-brain barrier (BBB) permeation is a\\n\\nclassification - problem routinely assessed with DL models.121,122 To explain why DL models\\n\\nwork, - we trained two models a random forest (RF) model123 and a Gated Recurrent Unit\\n\\nRecurrent - Neural Network (GRU-RNN). Then we explained the RF model with generated\\n\\ncounterfactuals - explanations using the MMACE9 and the GRU-RNN with descriptor expla-\\n\\nnations.10 - Both the models were trained on the dataset developed by Martins et al. 124. - The\\n\\nRF model was implemented in Scikit-learn125 using Mordred molecular - descriptors126 as the\\n\\ninput features. The GRU-RNN model was implemented - in Keras.127 See Wellawatte et al. 9\\n\\nand Gandhi and White 10 for more details.\\n\\n - \ According to the counterfactuals of the instance molecule in figure 1, we - observe that the\\n\\nmodifications to the carboxylic acid group enable the - negative example molecule to permeate\\n\\nthe BBB. Experimental findings by - Fischer et al. 120 show that the BBB permeation of\\n\\nmolecules are governed - by hydrophobic interactions and surface area. The carboxylic group is\\n\\na - hydrophilic functional group which hinders hydrophobic interactions and addition - of atoms\\n\\nenhances the surface area. This proves the advantage of using - counterfactual explanations,\\n\\nas they suggest actionable modification to - the molecule to make it cross the BBB.\\n\\n In Figure 2 we show descriptor - explanations generated for Alprozolam, a molecule that\\n\\npermeates the BBB, - using the method described by Gandhi and White 10. We see that\\n\\npredicted - permeability is positively correlated with the aromaticity of the molecule, - while\\n\\n\\n 15negatively correlated - with the number of hydrogen bonds donors and acceptors. A similar\\n\\nstructure-property - relationship for BBB permeability is proposed in more mechanistic stud-\\n\\nies.128\u2013130 - The substructure attributions indicates a reduction in hydrogen bond donors - and\\n\\nacceptors. These descriptor explanations are quantitative and interpretable - by chemists.\\n\\nFinally, we can use a natural language model to summarize - the findings into a written\\n\\nexplanation, as shown in the printed text in - Figure 2.\\n\\n\\n\\n\\n\\nFigure 1: Counterfactuals of a molecule which cannot - permeate the blood-brain barrier.\\nSimilarity is the Tanimoto similarity of - ECFP4 fingerprints.131 Red indicates deletions and\\ngreen indicates substitutions - and addition of atoms. Republished from Ref.9 with permission\\nfrom the Royal - Society of Chemistry.\\n\\n\\n\\nSolubility prediction\\n\\n\\nSmall molecule - solubility prediction is a classic cheminformatics regression challenge and - is\\n\\nimportant for chemical process design, drug design and crystallization.133\u2013136 - In our previous\\n\\nworks,9,10 we implemented and trained an RNN model in Keras - to predict solubilities (log\\n\\nmolarity) of small molecules.127 The AqS\\n\\n------------\\n\\nQuestion: - What is XAI?\\n\\n\"}]}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + used, and if no images were present it should be false.\\n\\nThe excerpt may + or may not contain relevant information. If not, leave `summary` empty, and + make `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from + Wellawatte2023 pages 22-25: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\nut + to models informs the XAI method.\\n\\n\\nConclusion and outlook\\n\\n\\nWe + should seek to explain molecular property prediction models because users are + more\\n\\nlikely to trust explained predictions, and explanations can help assess + if the model is learning\\n\\nthe correct underlying chemical principles. We + also showed that black-box modeling first,\\n\\nfollowed by XAI, is a path to + structure-property relationships without needing to trade\\n\\nbetween accuracy + and interpretability. However, XAI in chemistry has some major open\\n\\nquestions, + that are also related to the black-box nature of the deep learning. Some are\\n\\n\\n\\n + \ 22highlighted below:\\n\\n\\n \u2022 + Explanation representation: How is an explanation presented \u2013 text, a molecule, + attri-\\n\\n butions, a concept, etc?\\n\\n\\n \u2022 Molecular distance: + \ in XAI approaches such as counterfactual generation, the \u201Cdis-\\n\\n + \ tance\u201D between two molecules is minimized. Molecular distance is subjective. + Possibil-\\n\\n ities are distance based on molecular properties, synthesis + routes, and direct structure\\n\\n comparisons.\\n\\n\\n \u2022 Regulations: + As black-box models move from research to industry, healthcare, and\\n\\n environmental + settings, we expect XAI to become more important to explain decisions\\n\\n + \ to chemists or non-experts and possibly be legally required. Explanations + may need\\n\\n to be tuned for be for doctors instead of chemists or to + satisfy a legal requirement.\\n\\n\\n \u2022 Chemical space: Chemical space + is the set of molecules that are realizable; \u201Crealiz-\\n\\n able\u201D + can be defined from purchasable to synthesizable to satisfied valences. What + is\\n\\n most useful? Can an explanation consider nearby impossible molecules? + How can we\\n\\n generate local chemical spaces centered around a specific + molecule for finding counter-\\n\\n factuals or other instance explanations? + \ Similarly, can \u201Cactivity cliffs\u201D be connected\\n\\n to explanations + and the local chemical space.149\\n\\n\\n \u2022 Evaluating XAI : there is + a lack of a systematic framework (quantitative or qualitative)\\n\\n to + evaluate correctness and applicability of an explanation. Can there be a universal\\n\\n + \ framework, or should explanations be chosen and evaluated based on the + audience and\\n\\n domain? For example, work by Rasmussen et al. 58 attempts + to focus on comparing\\n\\n feature attribution XAI methods via Crippen\u2019s + logP scores.\\n\\n\\n\\n\\n\\n 23Acknowledgements\\n\\n\\nResearch + reported in this work was supported by the National Institute of General Medical\\n\\nSciences + of the National Institutes of Health under award number R35GM137966. This work\\n\\nwas + supported by the NSF under awards 1751471 and 1764415. We thank the Center for\\n\\nIntegrated + Research Computing at the University of Rochester for providing computational\\n\\nresources.\\n\\n\\nReferences\\n\\n\\n + \ (1) Choudhary, K.; DeCost, B.; Chen, C.; Jain, A.; Tavazza, F.; Cohn, R.; + Park, C. W.;\\n\\n Choudhary, A.; Agrawal, A.; Billinge, S. J.; Holm, E.; + Ong, S. P.; Wolverton, C.\\n\\n Recent advances and applications of deep + learning methods in materials science. npj\\n\\n Computational Materials + 2022, 8.\\n\\n\\n (2) Keith, J. A.; Vassilev-Galindo, V.; Cheng, B.; Chmiela, + S.; Gastegger, M.; M\xA8uller, K.-\\n\\n R.; Tkatchenko, A. Combining Machine + Learning and Computational Chemistry for\\n\\n Predictive Insights Into + Chemical Systems. Chemical Reviews 2021, 121, 9816\u20139872,\\n\\n PMID: + 34232033.\\n\\n\\n (3) Goh, G. B.; Hodas, N. O.; Vishnu, A. Deep learning for + computational chemistry.\\n\\n Journal of Computational Chemistry 2017, + 38, 1291\u20131307.\\n\\n\\n (4) Deringer, V. L.; Caro, M. A.; Cs\xB4anyi, + G. Machine Learning Interatomic Potentials as\\n\\n Emerging Tools for Materials + Science. Advanced Materials 2019, 31, 1902765.\\n\\n\\n (5) Faber, F. A.; Hutchison, + L.; Huang, B.; Gilmer, J.; Schoenholz, S. S.; Dahl, G. E.;\\n\\n Vinyals, + O.; Kearnes, S.; Riley, P. F.; von Lilienfeld, O. A. Prediction Errors of Molec-\\n\\n + \ ular Machine Learning Models Lower than Hybrid DFT Error. Journal of Chemical\\n\\n + \ Theory and Computation 2017, 13, 5255\u20135264, PMID: 28926232.\\n\\n\\n\\n + \ 24 (6) Duch, W.; Swaminathan, K.; Meller, + J. Artificial Intelligence Approaches for Rational\\n\\n Drug Design and + Discovery. Current Pharmaceutical Design 2007, 13, 1497\u20131508.\\n\\n\\n + (7) Dara, S.; Dhamercherla, S.; Jadav, S. S.; Babu, C. M.; Ahsan, M. J.; darasuresh, + S. D.;\\n\\n Dara, S. Machine Learning in Drug Discovery: A Review. Artificial + Intelligence Review\\n\\n 123, 55, 1947\u20131999.\\n\\n\\n (8) Gupta, R.; + Srivastava, D.; Sahu, M.; Tiwari, S.; Ambasta, R. K.; Kumar, P. Artifi-\\n\\n + \ cial intelligence to deep learning: machine intelligence approach for + drug discovery.\\n\\n Molecular diversity 2021, 25, 1315\u20131360.\\n\\n\\n + (9) Wellawatte, G. P.; Seshadri, A.; White, A. D. Model agnostic generation + of counter-\\n\\n factual explanations for molecules. Chemical Science 2022, + 13, 3697\u20133705.\\n\\n\\n(10) Gandhi, H. A.; White, A. D. Explaining structure-ac\\n\\n------------\\n\\nQuestion: + What is XAI?\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" headers: accept: - application/json @@ -4555,7 +4568,7 @@ interactions: connection: - keep-alive content-length: - - "50812" + - "6218" content-type: - application/json host: @@ -4587,26 +4600,26 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA3RUTW8bNxC961cMeF4ZkmNJrm9KkBQKkBa9FCmqQOKSo11aXM6WMxQkGP7vASlZ - 3ibOhYd5nDdvPp9GAMpZ9QDKtFpM1/vxh8/z9Dfdv+f6r0f6c/XP+/v0x2e3jMffqSFVZQ+qH9HI - i9eNoa73KI7CGTYRtWBmnS5m9/PF5P7dtAAdWfTZrellfEfj28nt3Xg6Hd9OLo4tOYOsHuDfEQDA - U3mzxGDxqB5gUr1YOmTWDaqH6ycAFclni9LMjkUHUdUraCgIhqJ6u90+MoV1eFoHgLXi1HU6ntbq - Adbq63JVAUX4eOy9dkHXHmEZxe2ccdrDKgh67xoMBiuIuMPIIAQdSkuWQQcLgqYN7r+EDNJqgU7v - EaRFsGgcOwrjTu9daKCPZJAZGWgHyxWUAjG4IBj7iFKCZ8YULMacki0mIWhTpwPfwCoU5pLdUTKP - abFzLPFUPG1MDVjHhg4YTxV8Xa7AMSRGm2muoaD22uzHNR0vKipIoTgBS0xGUsRxH6nHKCeI6HVu - OLeu56oEyhgxgjYZKDI7srls55+lSOTRJI98A58oAh51npwKDKWsY6eNJO0Bc+nDxc3oAJyaBlnA - tDo0OKTSA3nFrk3r8JBLzS7iWRZGccgVcDItaIbaE9lxHbULUOsYHUboMXZYQt6UGr3007s9wpcv - yw8fz+VENtH1UtQPVLbo+9yEgEYG2naor8r6iNYZ+UFTH+ngbB4GF9g1rZT2U2lq6bo/ZbDDnLvj - 7mVULmw5+M1aVedBjujxoIPBDRuKmAd6OrlgueMb1+kGOdslJlyH53XYbrfDNYm4S6zzlobk/QDQ - IZCcs80L+u2CPF9X0lPTR6r5B1e1c8Fxu4momUJePxbqVUGfRwDfyuqn/22z6iN1vWyE9ljCTeez - uzOher02A/ju9oIKifYDYPHbvHqDcmNRtPM8uB/KaNOiHfjO3s2vSehkHb1ik9Eg958lvUV/zt+F - ZsDyS/pXwBjsBe3mtd9vfYuYL/Kvvl1rXQQrxnhwBjfiMOZ+WNzp5M/HUvGJBbvNzoUmHwZ3vpi7 - fjObT+vb2WJhazV6Hn0HAAD//wMAnj2aKDoGAAA= + H4sIAAAAAAAAAwAAAP//jFRNbxs3EL3rVwx4lgRLtWJHN6MNULuXHoIgQBUII3J2dyouSQ9nZQuG + /3tBrmwpTQr0ssDy8T3OvPl4mQAYdmYNxnaotk9+9uvD45f9gZ/C6jddDQ/S//7pefXlz89Xjw94 + a6aFEXd/k9U31tzGPnlSjmGErRAqFdXFzer29vrDYnlVgT468oXWJp1dx9nyank9Wyxmy6sTsYts + KZs1/DUBAHip3xJicPRs1lBl6klPOWNLZv1+CcBI9OXEYM6cFYOa6Rm0MSiFGvXLJgBsTB76HuW4 + MWvYmK9391OIAp+ek0cOuPMEd6LcsGX0cB+UvOeWgqUpcAaEnrSLDoZMDjQCjURIQo5tcSNDj45g + d4Q+erKDR4EkMZHo8eIaVFvyHO4VkPtcxDgUEzMVdQGVIStgcEAhD0KgHeqJBigEnlAChxZsFCGr + YDvq2aKHJBwsJ095Dl/v7sFigI58gp2wa4sSQYsJdqRPRAF2Hu1+tovP7/LBAQclSUJaXeGQue00 + wxNrFweFUn+JPecSAVo7CNrjHP6gI9gOvafQUgYONQAO1g+OQCgJZQqK1YPYjAaG+pun4KjhmtLZ + O1eLWvxHh0kLeMmBJpY7TUNCQQEHx6VauVTVU4sehB4HFuopaJ5WbpTq2ptbOWGVDw4cHcjHVOB8 + zEo9KltoBHt6irIfX6MD+gF/iGQOnzvKBJgTWR1LZGWojYS52tDHQ/VEIyRBq/V5TMmzPWXDATi4 + IaswZfC8J+gIvXa2yI3NcGCJoaRTYrc13fnGTMf2FvJ0KH5ts41Cpc0XVyesNO2We2wpl/MGfaZN + eL2cF6FmyFjGNQzeXwAYQhyrVif12wl5fZ9NH9skcZf/RTWloLnblsaOocxh1phMRV8nAN/qDhi+ + G2tTGivpVuOe6nOL69VqFDTntXMB//KGalT0F8Dq42l5fC+5daTIPl8sEmPRduTO3PPWKT0VL4DJ + ReI/xvMz7TF5Du3/kT8D1lJSctvz1vjZNaGyl//r2rvRNWCTSQ5saatMUorhqMHBjyvTjC2/bTi0 + ZfJ53JtN2q4+LHbL1c2N25nJ6+QfAAAA//8DABQB9a9ABgAA headers: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983de33a88b1909c-SJC + - 984e9ab9afc4b976-SJC Connection: - keep-alive Content-Encoding: @@ -4614,7 +4627,7 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:40:35 GMT + - Fri, 26 Sep 2025 00:22:02 GMT Server: - cloudflare Strict-Transport-Security: @@ -4630,35 +4643,29 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "3566" + - "2672" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" x-envoy-upstream-service-time: - - "3590" + - "2693" x-openai-proxy-wasm: - v0.1 - x-ratelimit-limit-input-images: - - "250000" x-ratelimit-limit-requests: - "10000" x-ratelimit-limit-tokens: - "30000000" - x-ratelimit-remaining-input-images: - - "249999" x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29997791" - x-ratelimit-reset-input-images: - - 0s + - "29998519" x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - - 4ms + - 2ms x-request-id: - - req_af00be23e2ff4705922d42695c517ad3 + - req_73ca3fed71514b159b52dc39f7812c18 status: code: 200 message: OK @@ -4668,79 +4675,77 @@ interactions: the relevant information that could help answer the question based on the excerpt. Your summary, combined with many others, will be given to the model to generate an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n \\\"used_images\\\"\\n}\\n\\nwhere + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10,\\n \\\"used_images\\\"\\n}\\n\\nwhere `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 1-10 for the relevance of `summary` to the question. `used_images` + is an integer 0-10 for the relevance of `summary` to the question. `used_images` is a boolean flag indicating if any images present in a multimodal message were - used, and if no images were present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt - from Wellawatte2023 pages 28-30: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\n - M. T.; Singh, S.; Guestrin, C. \u201D Why should i trust you?\u201D Explaining - the\\n\\n predictions of any classifier. Proceedings of the 22nd ACM SIGKDD - international\\n\\n\\n 27 conference - on knowledge discovery and data mining. San Diego, CA, USA, 2016; pp\\n\\n 1135\u20131144.\\n\\n\\n(36) - Dhurandhar, A.; Chen, P.-Y.; Luss, R.; Tu, C.-C.; Ting, P.; Shanmugam, K.; Das, - P.\\n\\n Explanations based on the missing: Towards contrastive explanations - with pertinent\\n\\n negatives. Advances in neural information processing - systems 2018, 31.\\n\\n\\n(37) Jin, W.; Li, X.; Hamarneh, G. Evaluating Explainable - AI on a Multi-Modal Medical\\n\\n Imaging Task: Can Existing Algorithms - Fulfill Clinical Requirements? Proceedings of\\n\\n the AAAI Conference - on Artificial Intelligence 2022, 36, 11945\u201311953.\\n\\n\\n(38) Zhang, Y.; - Xu, F.; Zou, J.; Petrosian, O. L.; Krinkin, K. V. XAI Evaluation: Evalu-\\n\\n - \ ating Black-Box Model Explanations for Prediction. 2021 II International - Conference\\n\\n on Neural Networks and Neurotechnologies (NeuroNT). 2021; - pp 13\u201316.\\n\\n\\n(39) Oviedo, F.; Ferres, J. L.; Buonassisi, T.; Butler, - K. T. Interpretable and Explain-\\n\\n able Machine Learning for Materials - Science and Chemistry. Accounts of Materials\\n\\n Research 2022, 3, 597\u2013607.\\n\\n\\n(40) - Yalcin, O.; Fan, X.; Liu, S. Evaluating the correctness of explainable AI algorithms\\n\\n - \ for classification. arXiv preprint arXiv:2105.09740 2021,\\n\\n\\n(41) - Hoffman, R. R.; Mueller, S. T.; Klein, G.; Litman, J. Metrics for Explainable - AI:\\n\\n Challenges and Prospects. 2018,\\n\\n\\n(42) Mohseni, S.; Zarei, - N.; Ragan, E. D. A Multidisciplinary Survey and Framework for\\n\\n Design - and Evaluation of Explainable AI Systems. ACM Transactions on Interactive\\n\\n - \ Intelligent Systems 2018, 11, 46.\\n\\n\\n(43) Humer, C.; Heberle, H.; - Montanari, F.; Wolf, T.; Huber, F.; Henderson, R.; Hein-\\n\\n rich, J.; - Streit, M. ChemInformatics Model Explorer (CIME): exploratory analysis of\\n\\n - \ chemical model explanations. Journal of Cheminformatics 2022, 14, 1\u201314.\\n\\n\\n - \ 28(44) Lundberg, S. M.; Lee, S.-I. In - Advances in Neural Information Processing Systems\\n\\n 30; Guyon, I., Luxburg, - U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S.,\\n\\n Garnett, - R., Eds.; Curran Associates, Inc., 2017; pp 4765\u20134774.\\n\\n(45) \u02C7Strumbelj, - E.; Kononenko, I. Explaining prediction models and individual predictions\\n\\n - \ with feature contributions. Knowledge and information systems 2014, 41, - 647\u2013665.\\n\\n\\n(46) Shapley, L. S. A Value for N-Person Games; RAND Corporation: - Santa Monica, CA,\\n\\n 1952.\\n\\n\\n(47) Molnar, C.; Casalicchio, G.; - Bischl, B. Interpretable machine learning\u2013a brief history,\\n\\n state-of-the-art - and challenges. Joint European Conference on Machine Learning and\\n\\n Knowledge - Discovery in Databases. 2020; pp 417\u2013431.\\n\\n\\n(48) Lou, Y.; Caruana, - R.; Gehrke, J. Intelligible models for classification and regression.\\n\\n - \ Proceedings of the 18th ACM SIGKDD international conference on Knowledge - dis-\\n\\n covery and data mining. 2012; pp 150\u2013158.\\n\\n\\n(49) Bastani, - O.; Kim, C.; Bastani, H. Interpreting blackbox models via model extraction.\\n\\n - \ arXiv preprint arXiv:1705.08504 2017,\\n\\n\\n(50) Gajewicz, A.; Puzyn, - T.; Odziomek, K.; Urbaszek, P.; Haase, A.; Riebeling, C.;\\n\\n Luch, A.; - Irfan, M. A.; Landsiedel, R.; van der Zande, M.; Bouwmeester, H. Deci-\\n\\n - \ sion tree models to classify nanomaterials according to the DF4nanoGrouping - scheme.\\n\\n Nanotoxicology 2018, 12, 1\u201317.\\n\\n\\n(51) Han, L.; - Wang, Y.; Bryant, S. H. Developing and validating predictive decision tree\\n\\n - \ models from mining chemical structural fingerprints and high\u2013throughput - screening\\n\\n data in PubChem. BMC Bioinformatics 2008, 9, 401.\\n\\n(52) - Plumb, G.; Al-Shedivat, M.; Cabrera, \xB4A. A.; Perer, A.; Xing, E.; Talwalkar, - A. Regu-\\n\\n\\n\\n\\n 29 larizing - black-box models for improved interpretability. Advances in Neural Informa-\\n\\n - \ tion Processing Systems 2020, 33, 10526\u201310536.\\n\\n\\n(53) Shao, - X.; Skryagin, A.; Stammer, W.; Schramowski, P.; Kersting, K. Right for bet-\\n\\n - \ ter reasons: Training differentiable models by constraining their influence - functions.\\n\\n Proceedings of the AAAI Conference on Artificial Intelligence. - 2021; pp 9533\u20139540.\\n\\n\\n(54) Ouyang, R.; Curtarolo, S.; Ahmetcik, E.; - Scheffler, M.; Ghiringhelli, L. M. SISSO: A\\n\\n compressed-sensing method - for identifying the best low-dimensional descriptor in an\\n\\n immensity - of offered candidates. Physical Review Materials 2018, 2, 083802.\\n\\n\\n(55) - Lipton, Z. C. The mythos of model interpretability: In machine learning, the - concept\\n\\n of interpretability is both important and slippery. Queue - 2018, 16, 31\u201357.\\n\\n\\n(56) Harren, T.; Matter, H.; Hessler, G.; Rarey, - M.; Grebner, C. Interpretation of structure\u2013\\n\\n activity relationships - in real-world drug design data sets using explainable artificial\\n\\n intelligence. - Journal of Chemical Information and Modeling 2022, 62,\\n\\n------------\\n\\nQuestion: + used, and if no images were present it should be false.\\n\\nThe excerpt may + or may not contain relevant information. If not, leave `summary` empty, and + make `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from + Wellawatte2023 pages 12-14: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\nnterfactual + approach, contrastive approach employ a dual\\n\\noptimization method, which + works by generating a similar and a dissimilar (counterfactuals)\\n\\nexample. + Contrastive explanations can interpret the model by identifying contribution + of\\n\\npresence and absence of subsets of features towards a certain prediction.36,99\\n\\n + \ A counterfactual x\u2032 of an instance x is one with a dissimilar prediction + \u02C6f(x) in classi-\\n\\nfication tasks. As shown in equation 5, counterfactual + generation can be thought of as a\\n\\nconstrained optimization problem which + minimizes the vector distance d(x, x\u2032) between the\\n\\nfeatures.9,100\\n\\n\\n + \ minimize d(x, x\u2032)\\n (5)\\n + \ such that \u02C6f(x) \u0338= \u02C6f(x\u2032)\\n\\n + \ For regression tasks, equation 6 adapted from equation 5 can be used. Here, + a counter-\\n\\nfactual is one with a defined increase or decrease in the prediction.\\n\\n\\n + \ minimize d(x, x\u2032)\\n (6)\\n + \ such that \u02C6f(x) \u2212\u02C6f(x\u2032) \u2265\u2206\\n\\n + \ Counterfactuals explanations have become a useful tool for XAI in chemistry, + as they\\n\\nprovide intuitive understanding of predictions and are able to + uncover spurious relationships\\n\\nin training data.101 Counterfactuals create + local (instance-level), actionable explanations.\\n\\nActionability of an explanation + suggest which features can be altered to change the outcome.\\n\\nFor example, + changing a hydrophobic functional group in a molecule to a hydrophilic group\\n\\nto + increase solubility.\\n\\n Counterfactual generation is a demanding task as + it requires gradient optimization over\\n\\ndiscrete features that represents + a molecule. Recent work by Fu et al. 102 and Shen et al. 103\\n\\npresent two + techniques which allow continuous gradient-based optimization. Although, these\\n\\nmethodologies + are shown to circumvent the issue of discrete molecular optimization, counter-\\n\\nfactual + explanation based model interpretation still remains unexplored compared to + other\\n\\n\\n\\n 12post-hoc methods.\\n\\n + \ CF-GNNExplainer104 is a counterfactual explanation generating method based + on GN-\\n\\nNExplainer69 for graph data. This method generate counterfactuals + by perturbing the input\\n\\ndata (removing edges in the graph), and keeping + account of perturbations which lead to\\n\\nchanges in the output. However, + this method is only applicable to graph-based models\\n\\nand can generate infeasible + molecular structures. Another related work by Numeroso and\\n\\nBacciu 105 focus + on generating counterfactual explanations for deep graph networks. Their\\n\\nmethod + MEG (Molecular counterfactual Explanation Generator) uses a reinforcement learn-\\n\\ning + based generator to create molecular counterfactuals (molecular graphs). While + this\\n\\nmethod is able to generate counterfactuals through a multi-objective + reinforcement learner,\\n\\nthis is not a universal approach and requires training + the generator for each task.\\n\\n Work by Wellawatte et al. 9 present a model + agnostic counterfactual generator MMACE\\n\\n(Molecular Model Agnostic Counterfactual + Explanations) which does not require training\\n\\nor computing gradients. This + method firstly populates a local chemical space through ran-\\n\\ndom string + mutations of SELFIES106 molecular representations using the STONED algo-\\n\\nrithm.107 + Next, the labels (predictions) of the molecules in the local space are generated\\n\\nusing + the model that needs to be explained. Finally, the counterfactuals are identified + and\\n\\nsorted by their similarities \u2013 Tanimoto distance96 between ECFP4 + fingerprints.97 Unlike the\\n\\nCF-GNNExplainer104 and MEG105 methods, the MMACE + algorithm ensures that generated\\n\\nmolecules are valid, owing to the surjective + property of SELFIES. Additionally, the MMACE\\n\\nmethod can be applied to both + regression and classification models. However, like most XAI\\n\\nmethods for + molecular prediction, MMACE does not account for the chemical stability of\\n\\npredicted + counterfactuals. To circumvent this drawback, Wellawatte et al. 9 propose an-\\n\\nother + approach, which identift counterfactuals through a similarity search on the + PubChem\\n\\ndatabase.108\\n\\n\\n\\n\\n\\n 13Similarity + to adjacent fields\\n\\n\\nTangential examples to counterfactual explanations + are adversarial training and matched\\n\\nmolecular pairs. Adversarial perturbations + are used during training to deceive the model\\n\\nto expose the vulnerabilities + of a model109,110 whereas counterfactuals are applied post-hoc.\\n\\nTherefore, + the main difference between adversarial and counterfactual examples are in the\\n\\napplication, + although both are derived from the same optimization problem.100 Grabocka\\n\\net + al. 111 have developed a method named Adversarial Training on EXplanations (ATEX)\\n\\nwhich + improves model robustness via exposure to adversarial examples. While there + are\\n\\nconceptual disparities, we note that\\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" headers: accept: @@ -4750,7 +4755,7 @@ interactions: connection: - keep-alive content-length: - - "6085" + - "6175" content-type: - application/json host: @@ -4782,154 +4787,155 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//jFRNbyM3DL37VxA6bQE7sJOtk/gWFC3qAkUvQWG0Xhi0xJnhWiNNSI3X - 2SD/vZDGsb0fBfYywuiRT+Tjx8sIwLAzCzC2wWTbzk9++WPer+jP3z6upnO+u/v79373z+NfT/3T - nvlgxtkjbj+STW9eVza2nafEMQywFcJEmXV2+/Pd/HZ6d3NTgDY68tmt7tLkfZxcT6/fT2azyfX0 - 6NhEtqRmAf+OAABeyjeHGBwdzAKm47ebllSxJrM4GQEYiT7fGFRlTRiSGZ9BG0OiUKJ+WQeAtdG+ - bVGe12YBa/PYENDBknQJOol7dqSA4FkTxAqEKhIKlhSEfE4PUoRfD51HDrj1BA+SuGLL6GEZEnnP - dbaHd6uH5U9jaLhuPNdN4lDDHoVjr6Cpd5zfCQ5aSk100cc631RRgAb27JANOCSSTqgwtGgbDgSe - UIpF0Vav4LEhJeBgfe8IEtkm8FP/LaP1WaWKSaATcmxz/XQMWSZBTbynwTzgEaE9+r78ZEFWD0vg - AG12RQ/cYs2hHuc0hO3w3OphOS6hV4ItfYqyG+4dKdenvN54Q11I9VkTtXoFywToNUJLoUQAqSFo - WFOU8qSjPfnYZbjw2Aa9p1CT5vhOapXifC3XGFDhE3mfT+3I5tIdS6DgeUfgyLLmZJMQHeUdDyfQ - IQkWxYb8hOreo/DnQZ6cI7e5i8hdBsKe03Mp0WU/2eg92Sy4fwZquwaVP1PJltsuSsLcRrGCFndZ - pLNGkASDdihvEvTBkeTOdyXrFKFXEr1am/HQ8kKe9plvozYKDa1/f4J7JbfJpSTNUIVeaR1eL8dI - qOoV8xSH3vsLAEOIaeiVPMAfjsjraWR9rDuJW/3K1VQcWJuNEGoMeTw1xc4U9HUE8KGshv6LaTed - xLZLmxR3VJ6bza9nA6E5b6ML+Ob+iKaY0F8At/PjTvmScuMoIXu92C/Gom3InX3Pywh7x/ECGF0k - /m083+MekudQ/wj9GbCWukRuc57g75kJ5XX9f2YnoUvARkn2bGmTmCQXw1GFvR82qRn6blNxqHNP - 87BOq25zO7vfum2Fbm5Gr6P/AAAA//8DAEFJog1XBgAA + H4sIAAAAAAAAAwAAAP//dFRNcxs3DL3rV2B46WXlsRR/RTeP66ROxpkeOmk6VUZDkdglKi65IUA5 + qsf/vcNdWdrUzmUPfMDDe1gAjxMARVYtQBmnxbSdn958+PZ5w3/tfv2gze1FrNvf3cfZn7+9ceuH + dx9VVTLi+h808px1YmLbeRSKYYBNQi1YWGeX51dXZxez+WkPtNGiL2lNJ9OzOJ2fzs+ms9l0frpP + dJEMslrA3xMAgMf+WyQGi9/VAnqa/qVFZt2gWhyCAFSKvrwozUwsOoiqjqCJQTD0qh+XAWCpOLet + TrulWsBSfbm+qyAmuP3eeU1Brz3CdRKqyZD2cBcEvacGg8EKEtaYGCRCi+KiZdDBgqBxgb5lZBCn + BVq9QRCH0CW0ZEqDGGIN13fQd4KBgmDqEkpfrnDkYDEV7bZ/kggutzrwCdzEXKJrbSRrD1h0Bj2Q + 6oSgYYM7kBg9UIDeTpfiliyFBnRfvVBWQKHwG5x63GIJZmqcMKx3QBaDUL0rKcbp0GDRCBS6LFCj + lpyezT3E7C1oL5h6j72jX3jk9QT+cMj4UmmDAVOZEBCXYm4cxE6opX/7mFEbK+BsHGiGlkIJKLr2 + MsDSYAMeHHkEDJxTb3WvvAgfi7kL0EaPJnudwDhsiSXtKjA/9JXBoe8gBxO3mIC7nChmhoR+cOCo + G/4256ZBlmK8DMneXxmJQxWWlM2+ZxG0cYRbBItMCS3ELCa2yCfwWQ9F9sNUgacNwv399c1tBTfv + pu8/fdqPJaaqL35/+74Cp7cIa8QAtvzJ2JWOxkN7XzirYwJLdY0Jg4DsOuzHcT+LhdZq0SdLVQ37 + kdDjtrR4xSYmLHvydg9lRruiVjfI5bnWnnEZnsb7lrDOrMu6h+z9CNAhRBnaVTb96x55Ouy2j02X + 4pr/l6pqCsRulVBzDGWPWWKnevRpAvC1vyH5h7OguhTbTlYSN9iXm83ns4FQHc/WCL54RiWK9iPg + zdW8eoVyZVE0eR4dImW0cWhHubPz+cGEzpbiETudjLy/lPQa/eCfQjNi+Sn9ETAGO0G7Ou7Ea2EJ + y2n/Wdih171gxZi2ZHAlhKn8D4u1zn64uop3LNiuagpNuXE0nN66W51fzNbz88tLu1aTp8l/AAAA + //8DAEhH6F6DBgAA headers: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983de3466a803c35-SJC + - 984e9abadcd916a6-SJC Connection: - keep-alive - Content-Encoding: - - gzip - Content-Type: - - application/json - Date: - - Tue, 23 Sep 2025 23:40:36 GMT - Server: - - cloudflare - Strict-Transport-Security: - - max-age=31536000; includeSubDomains; preload - Transfer-Encoding: - - chunked - X-Content-Type-Options: - - nosniff - alt-svc: - - h3=":443"; ma=86400 - cf-cache-status: - - DYNAMIC - openai-organization: - - future-house-xr4tdh - openai-processing-ms: - - "3040" - openai-project: - - proj_RpeV6PrPclPHBb5GlExPXSBj - openai-version: - - "2020-10-01" - x-envoy-upstream-service-time: - - "3056" - x-openai-proxy-wasm: - - v0.1 - x-ratelimit-limit-requests: - - "10000" - x-ratelimit-limit-tokens: - - "30000000" - x-ratelimit-remaining-requests: - - "9999" - x-ratelimit-remaining-tokens: - - "29998550" - x-ratelimit-reset-requests: - - 6ms - x-ratelimit-reset-tokens: - - 2ms - x-request-id: - - req_b062592a27794afea64c5022f186484a - status: - code: 200 - message: OK - - request: - body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n \\\"used_images\\\"\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 1-10 for the relevance of `summary` to the question. `used_images` - is a boolean flag indicating if any images present in a multimodal message were - used, and if no images were present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt - from Wellawatte2023 pages 8-9: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\nrepresented - with equation 2.\\n\\n \u2206\u02C6f(\u20D7x) - \u2248\u2202\u02C6f(\u20D7x) (2)\\n \u2206xi - \ \u2202xi\\n\\n\\n\\n 7 \u2206\u02C6f(\u20D7x) - \ where \u02C6f(x) is the black-box model and are used as our attributions. - The left- \u2206xi\\n\\nhand - side of equation 2 says that we attribute each input feature xi by how much - one unit\\n\\nchange in it would affect the output of \u02C6f(x). If \u02C6f(x) - is a linear surrogate model, then this\\n\\nmethod reconciles with LIME.35 In - DL models, \u2207xf(x), suffers from the shattered gradients\\n\\nproblem.62 - This means directly computing the quantity leads to numeric problems. The\\n\\ndifferent - gradient based approaches are mostly distinguishable based on how the gradient - is\\n\\napproximated.\\n\\n Gradient based explanations have been widely used - to interpret chemistry predictions.60,66\u201370\\n\\nMcCloskey et al. 60 used - graph convolutional networks (GCNs) to predict protein-ligand\\n\\nbinding and - explained the binding logic for these predictions using integrated gradients.\\n\\nPope - et al. 66 and Jim\xB4enez-Luna et al. 67 show application of gradCAM and integrated - gradi-\\n\\nents to explain molecular property predictions from trained graph - neural networks (GNNs).\\n\\nSanchez-Lengeling et al. 68 present comprehensive, - open-source XAI benchmarks to explain\\n\\nGNNs and other graph based models. - They compare the performance of class activation\\n\\nmaps (CAM),63 gradCAM,64 - smoothGrad,,65 integrated gradients62 and attention mecha-\\n\\nnisms for explaining - outcomes of classification as well as regression tasks. They concluded\\n\\nthat - CAM and integrated gradients perform well for graph based models. Another attempt\\n\\nat - creating XAI benchmarks for graph models was made by Rao et al. 70. They compared\\n\\nthese - gradient based methods to find subgraph importance when predicting activity - cliffs\\n\\nand concluded that gradCAM and integrated gradients provided the - most interpretability\\n\\nfor GNNs. The GNNExplainer69 is an approach for - generating explanations (local and\\n\\nglobal) for graph based models. This - method focuses on identifying which sub-graphs con-\\n\\ntribute most to the - prediction by maximizing mutual information between the prediction\\n\\nand - distribution of all possible sub-graphs. Ying et al. 69 show that GNNExplainer - can be\\n\\nused to obtain model-agnostic explanations. SubgraphX is a similar - method that explains\\n\\nGNN predictions by identifying important subgraphs.71\\n\\n - \ Another set of approaches like DeepLIFT72 and Layerwise Relevance backPropagation73\\n\\n\\n\\n - \ 8(LRP) are based on backpropagation of - the prediction scores through each layer of the neu-\\n\\nral network. The specific - backpropagation logic across various activation functions differs\\n\\nin these - approaches, which means each layer must have its own implementation. Baldas-\\n\\nsarre - and Azizpour 74 showed application of LRP to explain aqueous solubility prediction - for\\n\\nmolecules.\\n\\n SHAP is a model-agnostic feature attribution method - that is inspired from the game\\n\\ntheory concept of Shapley values.44,46 SHAP - has been popularly used in explaining molecular\\n\\nprediction models.75\u201378 - It\u2019s an additive feature contribution approach, which assumes that\\n\\nan - explanation model is a linear combination of binary variables z. If the Shapley - value\\nfor the ith feature is \u03D5i, then the explanation is \u02C6f(\u20D7x) - = Pi \u03D5i(\u20D7x)zi(\u20D7x). Shapley values for\\n\\nfeatures are computed - using Equation 3.79,80\\n\\n\\n\\n M\\n 1\\n - \ \u03D5i(\u20D7x) = X \u02C6f (\u20D7z+i) - \u2212\u02C6f (\u20D7z\u2212i) (3)\\n M\\n\\n - \ Here \u20D7z is a fabricated example created from the original \u20D7x and - a random perturbation \u20D7x\u2032.\\n\\n\u20D7z+i has the feature i from \u20D7x - and \u20D7z\u2212i has the ith feature from \u20D7x\u2032. Some care should - be taken\\n\\nin constructing \u20D7z when working with molecular descriptors - to ensure that an impossible \u20D7z is\\n\\nnot sampled (e.g., high count of - acid groups but no hydrogen bond donors). M is the sample\\n\\nsize of perturbations - around \u20D7x. Shapley value computation is expensive, hence M is chosen\\n\\naccordingly. - Equation 3 is an approximation and gives contributions with an expectation\\nterm - as \u03D50 + Pi=1 \u03D5i(\u20D7x) = \u02C6f(\u20D7x).\\n\\n Visualization - based feature attribution has also been used for molecular data. In com-\\n\\nputer - science, saliency maps are a way to measure spatial feature contribution.81 - Simply put,\\n\\nsaliency maps draw a connection between the model\u2019s neural - fingerprint components (trained\\n\\nweights) and input features. Weber et al. - 82 used saliency maps to build an explainable GCN\\n\\narchitecture that gives - subgraph importance for small molecule activity prediction. On the\\n\\nother - hand, similarity maps compare model predictions for two or more molecules based - on\\n\\ntheir chemical fingerprints.83 Similarity maps provide atomic weights - or predicte\\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + Content-Encoding: + - gzip + Content-Type: + - application/json + Date: + - Fri, 26 Sep 2025 00:22:02 GMT + Server: + - cloudflare + Strict-Transport-Security: + - max-age=31536000; includeSubDomains; preload + Transfer-Encoding: + - chunked + X-Content-Type-Options: + - nosniff + alt-svc: + - h3=":443"; ma=86400 + cf-cache-status: + - DYNAMIC + openai-organization: + - future-house-xr4tdh + openai-processing-ms: + - "2483" + openai-project: + - proj_RpeV6PrPclPHBb5GlExPXSBj + openai-version: + - "2020-10-01" + x-envoy-upstream-service-time: + - "2553" + x-openai-proxy-wasm: + - v0.1 + x-ratelimit-limit-requests: + - "10000" + x-ratelimit-limit-tokens: + - "30000000" + x-ratelimit-remaining-requests: + - "9999" + x-ratelimit-remaining-tokens: + - "29998523" + x-ratelimit-reset-requests: + - 6ms + x-ratelimit-reset-tokens: + - 2ms + x-request-id: + - req_6e69c433a3af4791a7383694588a7cdf + status: + code: 200 + message: OK + - request: + body: + "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of + the relevant information that could help answer the question based on the excerpt. + Your summary, combined with many others, will be given to the model to generate + an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10,\\n \\\"used_images\\\"\\n}\\n\\nwhere + `summary` is relevant information from the text - about 100 words words. `relevance_score` + is an integer 0-10 for the relevance of `summary` to the question. `used_images` + is a boolean flag indicating if any images present in a multimodal message were + used, and if no images were present it should be false.\\n\\nThe excerpt may + or may not contain relevant information. If not, leave `summary` empty, and + make `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":[{\"type\":\"image_url\",\"image_url\":{\"url\":\"\"}},{\"type\":\"text\",\"text\":\"Excerpt + from Wellawatte2023 pages 14-16: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\nsame + optimization problem.100 Grabocka\\n\\net al. 111 have developed a method named + Adversarial Training on EXplanations (ATEX)\\n\\nwhich improves model robustness + via exposure to adversarial examples. While there are\\n\\nconceptual disparities, + we note that the counterfactual and adversarial explanations are\\n\\nequivalent + mathematical objects.\\n\\n Matched molecular pairs (MMPs) are pairs of molecules + that differ structurally at only\\n\\none site by a known transformation.112,113 + MMPs are widely used in drug discovery and\\n\\nmedicinal chemistry as these + facilitate fast and easy understanding of structure-activity re-\\n\\nlationships.114\u2013116 + Counterfactuals and MMP examples intersect if the structural change is\\n\\nassociated + with a significant change in the properties. In the case the associated changes + in\\n\\nthe properties are non-significant, the two molecules are known as bioisosteres.117,118 + The con-\\n\\nnection between MMPs and adversarial training examples has been + explored by van Tilborg\\n\\net al. 119. MMPs which belong to the counterfactual + category are commonly used in outlier\\n\\nand activity cliff detection.113 + This approach is analogous to counterfactual explanations,\\n\\nas the common + objective is to uncover learned knowledge pertaining to structure-property\\n\\nrelationships.70\\n\\n\\nApplications\\n\\n\\nModel + interpretation is certainly not new and a common step in ML in chemistry, but + XAI for\\n\\nDL models is becoming more important60,66\u201369,73,88,104,105 + Here we illustrate some practical\\n\\nexamples drawn from our published work + on how model-agnostic XAI can be utilized to\\n\\n\\n\\n 14interpret + black-box models and connect the explanations to structure-property relationships.\\n\\nThe + methods are \u201CMolecular Model Agnostic Counterfactual Explanations\u201D + (MMACE)9\\n\\nand \u201CExplaining molecular properties with natural language\u201D.10 + Then we demonstrate how\\n\\ncounterfactuals and descriptor explanations can + propose structure-property relationships in\\n\\nthe domain of molecular scent.31\\n\\n\\nBlood-brain + barrier permeation prediction\\n\\n\\nThe passive diffusion of drugs from the + blood stream to the brain is a critical aspect in drug\\n\\ndevelopment and + discovery.120 Small molecule blood-brain barrier (BBB) permeation is a\\n\\nclassification + problem routinely assessed with DL models.121,122 To explain why DL models\\n\\nwork, + we trained two models a random forest (RF) model123 and a Gated Recurrent Unit\\n\\nRecurrent + Neural Network (GRU-RNN). Then we explained the RF model with generated\\n\\ncounterfactuals + explanations using the MMACE9 and the GRU-RNN with descriptor expla-\\n\\nnations.10 + Both the models were trained on the dataset developed by Martins et al. 124. + The\\n\\nRF model was implemented in Scikit-learn125 using Mordred molecular + descriptors126 as the\\n\\ninput features. The GRU-RNN model was implemented + in Keras.127 See Wellawatte et al. 9\\n\\nand Gandhi and White 10 for more details.\\n\\n + \ According to the counterfactuals of the instance molecule in figure 1, we + observe that the\\n\\nmodifications to the carboxylic acid group enable the + negative example molecule to permeate\\n\\nthe BBB. Experimental findings by + Fischer et al. 120 show that the BBB permeation of\\n\\nmolecules are governed + by hydrophobic interactions and surface area. The carboxylic group is\\n\\na + hydrophilic functional group which hinders hydrophobic interactions and addition + of atoms\\n\\nenhances the surface area. This proves the advantage of using + counterfactual explanations,\\n\\nas they suggest actionable modification to + the molecule to make it cross the BBB.\\n\\n In Figure 2 we show descriptor + explanations generated for Alprozolam, a molecule that\\n\\npermeates the BBB, + using the method described by Gandhi and White 10. We see that\\n\\npredicted + permeability is positively correlated with the aromaticity of the molecule, + while\\n\\n\\n 15negatively correlated + with the number of hydrogen bonds donors and acceptors. A similar\\n\\nstructure-property + relationship for BBB permeability is proposed in more mechanistic stud-\\n\\nies.128\u2013130 + The substructure attributions indicates a reduction in hydrogen bond donors + and\\n\\nacceptors. These descriptor explanations are quantitative and interpretable + by chemists.\\n\\nFinally, we can use a natural language model to summarize + the findings into a written\\n\\nexplanation, as shown in the printed text in + Figure 2.\\n\\n\\n\\n\\n\\nFigure 1: Counterfactuals of a molecule which cannot + permeate the blood-brain barrier.\\nSimilarity is the Tanimoto similarity of + ECFP4 fingerprints.131 Red indicates deletions and\\ngreen indicates substitutions + and addition of atoms. Republished from Ref.9 with permission\\nfrom the Royal + Society of Chemistry.\\n\\n\\n\\nSolubility prediction\\n\\n\\nSmall molecule + solubility prediction is a classic cheminformatics regression challenge and + is\\n\\nimportant for chemical process design, drug design and crystallization.133\u2013136 + In our previous\\n\\nworks,9,10 we implemented and trained an RNN model in Keras + to predict solubilities (log\\n\\nmolarity) of small molecules.127 The AqS\\n\\n------------\\n\\nQuestion: + What is XAI?\\n\\n\"}]}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" headers: accept: - application/json @@ -4938,7 +4944,7 @@ interactions: connection: - keep-alive content-length: - - "6108" + - "50934" content-type: - application/json host: @@ -4970,27 +4976,26 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//jFTbbhs3EH3XVwz4ZAErQbJd2/GbkBStjDZN4AAxWgXCiDu7OzWXpDmk - Y9XwvxfkWpe0KdCXxYJnrmdmzvMIQHGtrkHpDqPuvZm8vblId78vP77TD7df5Tf9ufv05mZxwx+u - HuJnVWUPt/mTdNx5TbXrvaHIzg6wDoSRctT55Q9XF5ezq7OzAvSuJpPdWh8n525yOjs9n8znk9PZ - q2PnWJOoa/hjBADwXL65RFvTk7qGWbV76UkEW1LXeyMAFZzJLwpFWCLaqKoDqJ2NZEvVzysLsFKS - +h7DdqWuYaV+fPIG2eLGECxC5IY1o4GljWQMt2Q1wcndYjmGQA0Fgeigp9i5WgBtDZF0Z/khkUAS - qguM9wSxI6hJs7Czkx7v2bbgg9MkQgKugcUSCi9SgccQWSeDwWxhYPUJnCUBw/c5DHkwhMHmICfv - fhmXzG1A34GlFNCApfjVhXuBk5/ev5dxBWwjBR8ols6yfbI1hUxPXZ6igy71aGUKd4sloPfBoe5I - gK02qaacoGaycbLB3Nmu6xOattMhQRvywPeGUpXft4tfx9XQ3ARb6ySy3nuXjm5/XnyAkyGss3Db - oTe0hUc0mccmuB5a7AuJLmzHVan/kSWh4b8wb9wx75J0ByggaJis3hZr4Z4NBo5b6NHLFD51JHQY - HfeZAYwx8CZFGsoFH6hmnROUQbP1KUJDGFMgqYBrspGbLXDvXcibBpI2ZRCZNsjcV+AC0LBV0DtD - ZbB59p5C3B6nGJhnAR1S2bomu1pJIQ86BrTiMeSWKoghSRyISIIbNrkztjCMzrAutEgFJJ5yMFPg - hsnsWNcd9SwxDAQdSiuts22nK1UNFxLI0CNaTWvRLtBwKfPZHs+bvuYeW5KMNWiEVvbl+OwCNUkw - X71NxhwBaK2LQ7H54L+8Ii/7Ezeu9cFt5B+uqmHL0q0DoTibz1mi86qgLyOAL0VK0jfqoHxwvY/r - 6O6ppJufzU6HgOqgXkfw5avSqOgimiPg/HLn903IdU0R2ciRHimdr6g++B7EC1PN7ggYHTX+73q+ - F3tonm37f8IfAK3JR6rXh937nlmgLO//ZbYnuhSshMIja1pHppCHUVODyQzKq2Qrkfp1w7bNIsSD - /DZ+fTl/s6k3DdYXavQy+hsAAP//AwAgRVubhwYAAA== + H4sIAAAAAAAAA3RUy27rNhDd+ysGXLWAbcSJ84B3QXDRpoXRLIL2FvWFTZFjaRKKZIbD1EaQfy8o + ObZ6HxsteGZG55x5vI0AFFm1AGUaLaaNbnL328ufz3//+suMHpZPjw9m9+Qu/n356495zg+/q3HJ + CNUTGvnImprQRodCwfewYdSCpers+vLmZn41Oz/rgDZYdCWtjjKZh8n52fl8MptNzs8OiU0gg0kt + 4J8RAMBb9y0UvcWdWkBXpntpMSVdo1ocgwAUB1delE6JkmgvanwCTfCCvmO92WyeUvAr/7byACuV + cttq3q/UAlbq8+39GALDp110mryuHMItC23JkHZw7wWdoxq9wTEwbpETSIAWpQk2gfYWBE3j6SVj + gpzQFpi8IEdG6QKyt8iFoQVpECwaShR8glZbhGoPrTYNeQSHmj35Gjrr0hiiZiGTnWa3B4sYvw6Z + wr3vinZ6dwJhC6bBlpLwfgyfb++BEugYHfXMsjfhFRmScDaSGSeRQ0SWPTA6XdqaGoppDCmbBnSC + yGjJSPln5UKwk4o1eag0MyFDRG6xyys2puByRY5kX5i0waHJDtMUHk8mOXpGWPaQZlgWIXBb+5CE + DNyFXMzbaiNZu74vvucFPy2Xt3effu5MtZgMU5TAgMMYzXhsQ+TwShZBm4J1vSWfqG5koC/lusYk + vacfpNpgywgcapaOtqUYwsEt+tDRy/+QPDRgCo8NJvyW3at2ueOyDXyalN5fbZ4nVdgdutsJrTPZ + AuIuIlOLXrQr6qn205Ua9zPN6PBVe4PrZAJjme3Z2QErbqyp1TWm8i6cceXfV36z2Qw3hnGbky4L + 67NzA0B7H6TnX3b1ywF5P26nC3XkUKWvUtWWPKVmzahT8GUTk4SoOvR9BPCluwL5f4utIoc2ylrC + M3a/m13dXPcF1enwDOD51QGVINoNgJuLi/F3Sq4tiiaXBqdEGW0atIPcy4urowidLYUTdjYaaP+W + 0vfK9/rJ14MqPyx/AozBKGjXH/s3lH0KYyzH+UdhR687wiohv5LBtRBy6YfFrc6uv5sq7ZNgu96S + r8tEUn88t3F9eTWrzi+vr22lRu+j/wAAAP//AwCjjuu6RQYAAA== headers: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983de3424fcc7af1-SJC + - 984e9aba6d16eb31-SJC Connection: - keep-alive Content-Encoding: @@ -4998,7 +5003,7 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:40:37 GMT + - Fri, 26 Sep 2025 00:22:04 GMT Server: - cloudflare Strict-Transport-Security: @@ -5014,29 +5019,35 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "4031" + - "4082" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" x-envoy-upstream-service-time: - - "4047" + - "4129" x-openai-proxy-wasm: - v0.1 + x-ratelimit-limit-input-images: + - "250000" x-ratelimit-limit-requests: - "10000" x-ratelimit-limit-tokens: - "30000000" + x-ratelimit-remaining-input-images: + - "249999" x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29998537" + - "29997760" + x-ratelimit-reset-input-images: + - 0s x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - - 2ms + - 4ms x-request-id: - - req_9864762e1a384b1e861b52fbf720555a + - req_fae36727d7b34f088bf5c97d00996f3c status: code: 200 message: OK @@ -5046,75 +5057,81 @@ interactions: the relevant information that could help answer the question based on the excerpt. Your summary, combined with many others, will be given to the model to generate an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n \\\"used_images\\\"\\n}\\n\\nwhere + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10,\\n \\\"used_images\\\"\\n}\\n\\nwhere `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 1-10 for the relevance of `summary` to the question. `used_images` + is an integer 0-10 for the relevance of `summary` to the question. `used_images` is a boolean flag indicating if any images present in a multimodal message were - used, and if no images were present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt - from Wellawatte2023 pages 12-14: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\nnterfactual - approach, contrastive approach employ a dual\\n\\noptimization method, which - works by generating a similar and a dissimilar (counterfactuals)\\n\\nexample. - Contrastive explanations can interpret the model by identifying contribution - of\\n\\npresence and absence of subsets of features towards a certain prediction.36,99\\n\\n - \ A counterfactual x\u2032 of an instance x is one with a dissimilar prediction - \u02C6f(x) in classi-\\n\\nfication tasks. As shown in equation 5, counterfactual - generation can be thought of as a\\n\\nconstrained optimization problem which - minimizes the vector distance d(x, x\u2032) between the\\n\\nfeatures.9,100\\n\\n\\n - \ minimize d(x, x\u2032)\\n (5)\\n - \ such that \u02C6f(x) \u0338= \u02C6f(x\u2032)\\n\\n - \ For regression tasks, equation 6 adapted from equation 5 can be used. Here, - a counter-\\n\\nfactual is one with a defined increase or decrease in the prediction.\\n\\n\\n - \ minimize d(x, x\u2032)\\n (6)\\n - \ such that \u02C6f(x) \u2212\u02C6f(x\u2032) \u2265\u2206\\n\\n - \ Counterfactuals explanations have become a useful tool for XAI in chemistry, - as they\\n\\nprovide intuitive understanding of predictions and are able to - uncover spurious relationships\\n\\nin training data.101 Counterfactuals create - local (instance-level), actionable explanations.\\n\\nActionability of an explanation - suggest which features can be altered to change the outcome.\\n\\nFor example, - changing a hydrophobic functional group in a molecule to a hydrophilic group\\n\\nto - increase solubility.\\n\\n Counterfactual generation is a demanding task as - it requires gradient optimization over\\n\\ndiscrete features that represents - a molecule. Recent work by Fu et al. 102 and Shen et al. 103\\n\\npresent two - techniques which allow continuous gradient-based optimization. Although, these\\n\\nmethodologies - are shown to circumvent the issue of discrete molecular optimization, counter-\\n\\nfactual - explanation based model interpretation still remains unexplored compared to - other\\n\\n\\n\\n 12post-hoc methods.\\n\\n - \ CF-GNNExplainer104 is a counterfactual explanation generating method based - on GN-\\n\\nNExplainer69 for graph data. This method generate counterfactuals - by perturbing the input\\n\\ndata (removing edges in the graph), and keeping - account of perturbations which lead to\\n\\nchanges in the output. However, - this method is only applicable to graph-based models\\n\\nand can generate infeasible - molecular structures. Another related work by Numeroso and\\n\\nBacciu 105 focus - on generating counterfactual explanations for deep graph networks. Their\\n\\nmethod - MEG (Molecular counterfactual Explanation Generator) uses a reinforcement learn-\\n\\ning - based generator to create molecular counterfactuals (molecular graphs). While - this\\n\\nmethod is able to generate counterfactuals through a multi-objective - reinforcement learner,\\n\\nthis is not a universal approach and requires training - the generator for each task.\\n\\n Work by Wellawatte et al. 9 present a model - agnostic counterfactual generator MMACE\\n\\n(Molecular Model Agnostic Counterfactual - Explanations) which does not require training\\n\\nor computing gradients. This - method firstly populates a local chemical space through ran-\\n\\ndom string - mutations of SELFIES106 molecular representations using the STONED algo-\\n\\nrithm.107 - Next, the labels (predictions) of the molecules in the local space are generated\\n\\nusing - the model that needs to be explained. Finally, the counterfactuals are identified - and\\n\\nsorted by their similarities \u2013 Tanimoto distance96 between ECFP4 - fingerprints.97 Unlike the\\n\\nCF-GNNExplainer104 and MEG105 methods, the MMACE - algorithm ensures that generated\\n\\nmolecules are valid, owing to the surjective - property of SELFIES. Additionally, the MMACE\\n\\nmethod can be applied to both - regression and classification models. However, like most XAI\\n\\nmethods for - molecular prediction, MMACE does not account for the chemical stability of\\n\\npredicted - counterfactuals. To circumvent this drawback, Wellawatte et al. 9 propose an-\\n\\nother - approach, which identift counterfactuals through a similarity search on the - PubChem\\n\\ndatabase.108\\n\\n\\n\\n\\n\\n 13Similarity - to adjacent fields\\n\\n\\nTangential examples to counterfactual explanations - are adversarial training and matched\\n\\nmolecular pairs. Adversarial perturbations - are used during training to deceive the model\\n\\nto expose the vulnerabilities - of a model109,110 whereas counterfactuals are applied post-hoc.\\n\\nTherefore, - the main difference between adversarial and counterfactual examples are in the\\n\\napplication, - although both are derived from the same optimization problem.100 Grabocka\\n\\net - al. 111 have developed a method named Adversarial Training on EXplanations (ATEX)\\n\\nwhich - improves model robustness via exposure to adversarial examples. While there - are\\n\\nconceptual disparities, we note that\\n\\n------------\\n\\nQuestion: + used, and if no images were present it should be false.\\n\\nThe excerpt may + or may not contain relevant information. If not, leave `summary` empty, and + make `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from + Wellawatte2023 pages 28-30: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\n + M. T.; Singh, S.; Guestrin, C. \u201D Why should i trust you?\u201D Explaining + the\\n\\n predictions of any classifier. Proceedings of the 22nd ACM SIGKDD + international\\n\\n\\n 27 conference + on knowledge discovery and data mining. San Diego, CA, USA, 2016; pp\\n\\n 1135\u20131144.\\n\\n\\n(36) + Dhurandhar, A.; Chen, P.-Y.; Luss, R.; Tu, C.-C.; Ting, P.; Shanmugam, K.; Das, + P.\\n\\n Explanations based on the missing: Towards contrastive explanations + with pertinent\\n\\n negatives. Advances in neural information processing + systems 2018, 31.\\n\\n\\n(37) Jin, W.; Li, X.; Hamarneh, G. Evaluating Explainable + AI on a Multi-Modal Medical\\n\\n Imaging Task: Can Existing Algorithms + Fulfill Clinical Requirements? Proceedings of\\n\\n the AAAI Conference + on Artificial Intelligence 2022, 36, 11945\u201311953.\\n\\n\\n(38) Zhang, Y.; + Xu, F.; Zou, J.; Petrosian, O. L.; Krinkin, K. V. XAI Evaluation: Evalu-\\n\\n + \ ating Black-Box Model Explanations for Prediction. 2021 II International + Conference\\n\\n on Neural Networks and Neurotechnologies (NeuroNT). 2021; + pp 13\u201316.\\n\\n\\n(39) Oviedo, F.; Ferres, J. L.; Buonassisi, T.; Butler, + K. T. Interpretable and Explain-\\n\\n able Machine Learning for Materials + Science and Chemistry. Accounts of Materials\\n\\n Research 2022, 3, 597\u2013607.\\n\\n\\n(40) + Yalcin, O.; Fan, X.; Liu, S. Evaluating the correctness of explainable AI algorithms\\n\\n + \ for classification. arXiv preprint arXiv:2105.09740 2021,\\n\\n\\n(41) + Hoffman, R. R.; Mueller, S. T.; Klein, G.; Litman, J. Metrics for Explainable + AI:\\n\\n Challenges and Prospects. 2018,\\n\\n\\n(42) Mohseni, S.; Zarei, + N.; Ragan, E. D. A Multidisciplinary Survey and Framework for\\n\\n Design + and Evaluation of Explainable AI Systems. ACM Transactions on Interactive\\n\\n + \ Intelligent Systems 2018, 11, 46.\\n\\n\\n(43) Humer, C.; Heberle, H.; + Montanari, F.; Wolf, T.; Huber, F.; Henderson, R.; Hein-\\n\\n rich, J.; + Streit, M. ChemInformatics Model Explorer (CIME): exploratory analysis of\\n\\n + \ chemical model explanations. Journal of Cheminformatics 2022, 14, 1\u201314.\\n\\n\\n + \ 28(44) Lundberg, S. M.; Lee, S.-I. In + Advances in Neural Information Processing Systems\\n\\n 30; Guyon, I., Luxburg, + U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S.,\\n\\n Garnett, + R., Eds.; Curran Associates, Inc., 2017; pp 4765\u20134774.\\n\\n(45) \u02C7Strumbelj, + E.; Kononenko, I. Explaining prediction models and individual predictions\\n\\n + \ with feature contributions. Knowledge and information systems 2014, 41, + 647\u2013665.\\n\\n\\n(46) Shapley, L. S. A Value for N-Person Games; RAND Corporation: + Santa Monica, CA,\\n\\n 1952.\\n\\n\\n(47) Molnar, C.; Casalicchio, G.; + Bischl, B. Interpretable machine learning\u2013a brief history,\\n\\n state-of-the-art + and challenges. Joint European Conference on Machine Learning and\\n\\n Knowledge + Discovery in Databases. 2020; pp 417\u2013431.\\n\\n\\n(48) Lou, Y.; Caruana, + R.; Gehrke, J. Intelligible models for classification and regression.\\n\\n + \ Proceedings of the 18th ACM SIGKDD international conference on Knowledge + dis-\\n\\n covery and data mining. 2012; pp 150\u2013158.\\n\\n\\n(49) Bastani, + O.; Kim, C.; Bastani, H. Interpreting blackbox models via model extraction.\\n\\n + \ arXiv preprint arXiv:1705.08504 2017,\\n\\n\\n(50) Gajewicz, A.; Puzyn, + T.; Odziomek, K.; Urbaszek, P.; Haase, A.; Riebeling, C.;\\n\\n Luch, A.; + Irfan, M. A.; Landsiedel, R.; van der Zande, M.; Bouwmeester, H. Deci-\\n\\n + \ sion tree models to classify nanomaterials according to the DF4nanoGrouping + scheme.\\n\\n Nanotoxicology 2018, 12, 1\u201317.\\n\\n\\n(51) Han, L.; + Wang, Y.; Bryant, S. H. Developing and validating predictive decision tree\\n\\n + \ models from mining chemical structural fingerprints and high\u2013throughput + screening\\n\\n data in PubChem. BMC Bioinformatics 2008, 9, 401.\\n\\n(52) + Plumb, G.; Al-Shedivat, M.; Cabrera, \xB4A. A.; Perer, A.; Xing, E.; Talwalkar, + A. Regu-\\n\\n\\n\\n\\n 29 larizing + black-box models for improved interpretability. Advances in Neural Informa-\\n\\n + \ tion Processing Systems 2020, 33, 10526\u201310536.\\n\\n\\n(53) Shao, + X.; Skryagin, A.; Stammer, W.; Schramowski, P.; Kersting, K. Right for bet-\\n\\n + \ ter reasons: Training differentiable models by constraining their influence + functions.\\n\\n Proceedings of the AAAI Conference on Artificial Intelligence. + 2021; pp 9533\u20139540.\\n\\n\\n(54) Ouyang, R.; Curtarolo, S.; Ahmetcik, E.; + Scheffler, M.; Ghiringhelli, L. M. SISSO: A\\n\\n compressed-sensing method + for identifying the best low-dimensional descriptor in an\\n\\n immensity + of offered candidates. Physical Review Materials 2018, 2, 083802.\\n\\n\\n(55) + Lipton, Z. C. The mythos of model interpretability: In machine learning, the + concept\\n\\n of interpretability is both important and slippery. Queue + 2018, 16, 31\u201357.\\n\\n\\n(56) Harren, T.; Matter, H.; Hessler, G.; Rarey, + M.; Grebner, C. Interpretation of structure\u2013\\n\\n activity relationships + in real-world drug design data sets using explainable artificial\\n\\n intelligence. + Journal of Chemical Information and Modeling 2022, 62,\\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" headers: accept: @@ -5124,7 +5141,7 @@ interactions: connection: - keep-alive content-length: - - "6053" + - "6207" content-type: - application/json host: @@ -5156,27 +5173,26 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//jFRNbxtHDL3rVxBzSQtIhuQ4sqObYSSpUzg5JAUMVIFAzXB3Gc3ObIcc - 2YLh/17M6jOpA/SywM4jH/n49TQAMOzMDIxtUG3b+dHNx2nGP6Rpm7++j92Hz/d3X9dfPlL48ucq - js2weMTld7K69zqzse08KcewhW0iVCqsk8s3V9PL8dXraQ+00ZEvbnWno4s4Oh+fX4wmk9H5jtc2 - kS2JmcHfAwCAp/5bUgyOHs0MxsP9S0siWJOZHYwATIq+vBgUYVEMaoZH0MagFPqsn+YBYG4kty2m - zdzMYG7ePXYeOeDSE1wn5Yoto4fboOQ91xQswW/317e/Q6KKkoBGaEmb6AQwOFCyTeB/Mglogwot - rgi0IegSObalOltDR5al/4sVXN9CXxQBDkqpS6R9BsUwB0epyHD9k0ZocotBzuAm5mJdodWMHqik - HnAXIhEgrGgD2HUpom2AA9xf3w6hS3HNjkMN2OdTaIfAocSwNPK0Jl9+uW5UYLkBdhSUq01xsQ2G - mkqewKHLChWh5rSX+xCzd4BeKfWqe1Wv5ET9GbyPCegRy7CUsNBGTzZ7TGAbalk0bYZgf9AmYDGA - 5Lom0UJa+rJTWhpwYBBN2e7yiYC2YVoTOBJO5IryjpIyyRl8PTbK84rg7u765l1f8Jv3ow+fPu0G - gVJfyizkCmNNgRIq/ZzfEB5Ymx3JkkqleukjrEMUZdszY9d5tvs2LqM2kKhOJGUQegvry9DuxYGi - rOSstA3QS4QyvAlFZRsO3ZqSYCoTqgk5cKiH8NCwbaCKNgsJxFAGI8ohJVhnX0Qs2XNfirkZbhch - kad1mYGF2JhouxBvD3CpwYJbrEkKVKEXmofn0+VKVGXBstshe38CYAhRtw0ra/1thzwfFtnHuktx - KT+5mooDS7NIhBJDWVrR2JkefR4AfOsPRv7hBpguxbbThcYV9eEmk6urLaE53qgT+M0e1ajoT4DX - F9PhC5QLR4rs5eTqGIu2IXf0PZ4ozI7jCTA4Ef7ffF7i3ornUP8f+iNgLXVKbnHcvZfMEpUj/iuz - Q6H7hI1QWrOlhTKl0gxHFWa/va9GNqLULioOdTlhvD2yVbe4nLxdumWFbmoGz4N/AQAA//8DAHSJ - TA1tBgAA + H4sIAAAAAAAAAwAAAP//jFRNbxs3EL3rVwx4SoGVYAnyR3Uzgh6USx00CNxUgUSRb3cn4pJrDlex + Y/i/F9yVLCVNgF600Lz5eo8z8zwiUmzVgpSpdTJN68Zv3z18bO7469y8vZOH3fvd3cf9+7//fPf0 + 6ZtbqiJHhO0XmHSMmpjQtA6Jgx9gE6ETctbp9eXNzfxqOpv1QBMsXA6r2jSeh/HsYjYfT6fj2cUh + sA5sIGpB/4yIiJ7739yit3hUC7oojpYGIrqCWrw6EakYXLYoLcKStE+qOIEm+ATfd73ZbL5I8Cv/ + vPJEKyVd0+j4tFILWqkPNQiPBrFN1MawZwuhiBIR3kAoBdrryKET+hriTkh7S5I6y72fy9Sz0x+P + rdPs9daBbmPikg1rR0uf4BxXORm9ub9d/jahDzUExN64zoIapDpYoTJEwpCEfUVthGWTVRYKJRmX + WZaMKAVlblFL4j2GEK97x4Kw167r/+Sg+9slsacmZ9KOuNEV+6rIJSOboeT97bLoOZVRNxgoZruF + cNV3ksFjXl/1SeVJEhqZ0DKRdhKogR9aTTWoZkkh9iUt9nChzXBBptbOwVeQ4qCiThiHcpxqjHVM + uVf2CbGNSL2QjTY1e5CDjrmXCf3VwmRtKcHUnh86CDnegSwMS+adIkD96EkxfAmPKepey6FwRNU5 + HfnboFSme1aXHacn0hEDNctiOhHY48OdDYcJzsHkd3BPVHNVO67q1ItQBtMJBU+N3mXZTqpREyJ+ + IJq76rxFzHNse1MK1AmiTFaqGOY2wmGvvcFaTIjI83tzgDqBXef3hWRzqZ1g5V9WfrPZnG9FRNmJ + zkvpO+fOAO19SMMU5X38fEBeXjfQhaqNYSs/hKqSPUu9jtASfN42SaFVPfoyIvrcb3r33fKqNoam + TesUdujLTa8u50NCdTouZ/D8cAhUCkm7M+D692PcdynXFkmzk7NzoYw2Newp9nRbdGc5nAGjM+L/ + 7ednuQfy7Kv/k/4EGIM2wa5Pq/4zt4h8fX/l9ip037ASxD0brBMj5sewKHXnhsOohvlbl+yrPHo8 + XMeyXV9eTbezy+tru1Wjl9G/AAAA//8DAFw91hUmBgAA headers: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983de340abcb7ad6-SJC + - 984e9aca0bce17d2-SJC Connection: - keep-alive Content-Encoding: @@ -5184,7 +5200,7 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:40:38 GMT + - Fri, 26 Sep 2025 00:22:04 GMT Server: - cloudflare Strict-Transport-Security: @@ -5200,13 +5216,13 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "3959" + - "2273" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" x-envoy-upstream-service-time: - - "6113" + - "2293" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -5216,13 +5232,13 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29998553" + - "29998520" x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - 2ms x-request-id: - - req_d8d9c0e4b33e4c03ad05c74ec9ea3859 + - req_75c177bf633d46e4857e04bf6e1d95cf status: code: 200 message: OK @@ -5232,11 +5248,13 @@ interactions: the relevant information that could help answer the question based on the excerpt. Your summary, combined with many others, will be given to the model to generate an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n \\\"used_images\\\"\\n}\\n\\nwhere + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10,\\n \\\"used_images\\\"\\n}\\n\\nwhere `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 1-10 for the relevance of `summary` to the question. `used_images` + is an integer 0-10 for the relevance of `summary` to the question. `used_images` is a boolean flag indicating if any images present in a multimodal message were - used, and if no images were present it should be false.\"},{\"role\":\"user\",\"content\":[{\"type\":\"image_url\",\"image_url\":{\"url\":\"\"}},{\"type\":\"image_url\",\"image_url\":{\"url\":\"\"}},{\"type\":\"text\",\"text\":\"Excerpt + used, and if no images were present it should be false.\\n\\nThe excerpt may + or may not contain relevant information. If not, leave `summary` empty, and + make `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":[{\"type\":\"image_url\",\"image_url\":{\"url\":\"\"}},{\"type\":\"image_url\",\"image_url\":{\"url\":\"\"}},{\"type\":\"text\",\"text\":\"Excerpt from Wellawatte2023 pages 16-20: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\nssion challenge and is\\n\\nimportant for chemical process design, drug design and crystallization.133\u2013136 In our previous\\n\\nworks,9,10 we implemented @@ -5312,7 +5330,7 @@ interactions: connection: - keep-alive content-length: - - "188340" + - "188462" content-type: - application/json host: @@ -5344,26 +5362,27 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA4xUwW4jNwy9+ysInVpgbNhuHKe+GdkN4AKLFltssWi9MGSJM8ONRtKKlJM0yL8X - Gjv2tE2BXga2nt4jqUfyeQSgyKoVKNNqMV1049ufrvPvT+9+dNOvv338YKeb+O7T9NPPuLn79nGt - qsII+69o5JU1MaGLDoWCP8ImoRYsqrPl4uZ6Ob35YdEDXbDoCq2JMr4K4/l0fjWezcbz6YnYBjLI - agV/jAAAnvtvSdFbfFQrmFavJx0y6wbV6nwJQKXgyonSzMSivajqAprgBX2f9fPWA2wV567T6Wmr - VrBVn9ebCkKC94/RafJ67xDWSagmQ9rBxgs6Rw16gxUkrDExSIAOpQ2WQXsLgqb19C0jg7RaoNP3 - CNIiWDTEFPy40/fkG4gpGGRGhlDDegP9uzBI0p6jTuil1yMvmGJCKclMYON7sb6ORynU8jemcCCL - JfqjVPB5vQFi0DE6KocBTIsdGe16yS44NNnpBDGhJVNM4wo4mxY0AweX9+RInvrbbNDLmCVlIzkh - JHS6Z7QUeQIbgVyKkBAcg6P7klwuSdfaSNaOq0FAi2wSRQmJ4TucNJMK3t/e/dIH+rC+vf31+6r/ - fSDO2tGfx0ilAjxaAm14AI5oiicDYc77c4oM5GuXi0vDCidwFxLgoy6NWoG2ttigDVky0KSQIxfv - WxRMQUvoik5p41Le5VEqeGjJ4Ss/lc8gtMVXCsmkd6JFF8t5ogMCeaamlVNzaEeNhweSttSHiTr0 - cnLpbBl5yVQqqODUOuvNsC7oQkLI3mIq/W77ri0Kusf7vtmq6tjuCR0etDe4YxMSlrafTU9YZrQ7 - 6nSDXM4lZdz6l+H4JKwz6zK9Pjs3ALT3QY5mlcH9ckJezqPqQhNT2PM/qKomT9zuypMFX8aSJUTV - oy8jgC/9Ssh/m3IVU+ii7CTcYx9uPptdHwXVZQtd4Nni5oRKEO0GvPnyqnpDcmdRNDke7BVltGnR - XriXJaSzpTAARoPC/53PW9rH4sk3/0f+AhiDUdDuLq3w1rWEZU3/17XzQ/cJK8Z0IIM7IUzFDIu1 - zu64QRU/sWC3q8k3ZSPRcY3Wcbe4nu3ni+XS7tXoZfQXAAAA//8DAKN2il1PBgAA + H4sIAAAAAAAAA3RU224bNxB911cM+NQCkuBVfIn1ZhgOILcFCiQxAlSBRJGzuxNxSYYzK9sx/O8F + Kdlat8nLAsszc+bM9WkEoMiqOSjTajFddJPr2+93/sefi0/V5vPtdudubu8+3v24vElN/COqcfYI + m29o5MVrakIXHQoFv4dNQi2YWauLs/fvT8+r2bsCdMGiy25NlMlpmMxOZqeTqprMTg6ObSCDrObw + zwgA4Kl8s0Rv8UHN4WT88tIhs25QzV+NAFQKLr8ozUws2osaH0ETvKAvqtfr9TcOfumflh5gqbjv + Op0el2oOS/XlajGGkODmITpNXm8cwlUSqsmQdrDwgs5Rg97gGBLWmBgkQIfSBsugvQVB03r63iOD + tFqg01sEaREsGmIKftLpLfkGYgoGmZEh1HC1gFIgBknac9QJvRQ+8oIpJpQsZgoLX8hKQg+SXfNv + TGFHFnP0BxnDl6sFEIOO0VF+DGBa7MhoVyi74ND0TieICS2Z3D0eA/emBc3AwfUbciSPxZoNepmw + pN5InxASOl08Woo8hYVAn5OQEByDo20W12fRtTbSa8djsMgmUZSQAHNlvT6EfKumJt/kXMkLw284 + baZjuLn+8Hcx++vq+vrj7zkXsuiF6kdowz1wRJPbM6DhfvOqloF87frcsGGyU/hQtOg8vPt6Ge0h + 4Q61K7za2twkbciSgSaFPmauPN4520GNQioOBpNo8lD3vsTQ7sWrFAyz8lexpaY8hU8tMgJ5pqYV + Bu2o8XBP0sLWh3t/bFsuiqHocD9kh36D1aInNtEO/ZvKQh3SfqDeZL1U4/3QJ3S4097gik1ImIe/ + OjlgPaNdUacb5Pwuqcelf1769Xo9XKmEdc86b7TvnRsA2vsgexl5mb8ekOfX9XWhiSls+D+uqiZP + 3K5yhYPPq8oSoiro8wjgazkT/ZvNVzGFLspKwhZLuFl1erknVMfLdISr8+qAShDtBn7vqsN9eUu5 + siiaHA9ujTLatGgHpJez423SvaVwxE5Gg9z/L+ln9Pv8yTcDll/SHwFjMAra1bHfPzNLmK/3r8xe + a10EK8a0I4MrIUy5HxZr3bv9YVX8yILdarCz2aSOq7PzajM7u7iwGzV6Hv0LAAD//wMA97hbFWYG + AAA= headers: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983de351ae4d909c-SJC + - 984e9acb2d80b976-SJC Connection: - keep-alive Content-Encoding: @@ -5371,7 +5390,7 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:40:41 GMT + - Fri, 26 Sep 2025 00:22:07 GMT Server: - cloudflare Strict-Transport-Security: @@ -5387,13 +5406,13 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "5948" + - "4794" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" x-envoy-upstream-service-time: - - "5989" + - "4822" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-input-images: @@ -5407,15 +5426,15 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29997016" + - "29996986" x-ratelimit-reset-input-images: - 0s x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - - 5ms + - 6ms x-request-id: - - req_d4d76dd89ff04ba39f998b34768ae2f3 + - req_c4fadef57872437282e9a76c788c9fb2 status: code: 200 message: OK @@ -5424,56 +5443,57 @@ interactions: '{"model": "deepseek-reasoner", "messages": [{"role": "system", "content": "Answer in a direct and concise tone. Your audience is an expert, so be highly specific. If there are ambiguous terms or acronyms, first define them."}, {"role": - "user", "content": "Answer the question below with the context.\n\nContext:\n\npqac-0779e397: + "user", "content": "Answer the question below with the context.\n\nContext:\n\npqac-910fccbc: Explainable Artificial Intelligence (XAI) is a field focused on providing interpretations - and explanations for deep learning (DL) model predictions, addressing the ''black-box'' - nature of these models. XAI aims to enhance trust and usability by offering - insights into why a model makes specific predictions. Key concepts in XAI include - interpretability (the degree of human understandability of a model), justifications - (quantitative metrics that validate model trustworthiness), and explanations - (descriptions clarifying the reasoning behind predictions). XAI is particularly - relevant in chemistry, where understanding DL predictions can guide hypotheses - and ensure models do not rely on spurious correlations.\nFrom Wellawatte et - al, XAI Review, 2023\n\npqac-d73a7782: XAI, or Explainable Artificial Intelligence, - refers to methods and techniques that make the decision-making processes of - AI models interpretable and understandable to humans. In the context of chemistry - and drug discovery, XAI is used to interpret black-box models, uncover structure-property - relationships, and propose actionable modifications to molecules. For example, - counterfactual explanations can suggest changes to molecular structures to achieve - desired properties, such as blood-brain barrier permeation. XAI methods like - MMACE and descriptor explanations help connect molecular features to predicted - properties, providing insights into the underlying mechanisms of AI predictions.\nFrom - Wellawatte et al, XAI Review, 2023\n\npqac-ff54ad97: XAI, or Explainable Artificial + of deep learning (DL) model predictions, addressing the ''black-box'' nature + of these models. XAI aims to enhance trust and usability by offering explanations + for predictions, which can help users understand the rationale behind them. + Key terms associated with XAI include interpretability, justifications, and + explainability. Interpretability refers to the degree of human understandability + of a model, while justifications are quantitative metrics that support the trustworthiness + of predictions. Explainability actively clarifies the internal decision-making + process, providing context and causes for predictions.\nFrom Wellawatte et al, + XAI Review, 2023\n\npqac-23138741: XAI, or Explainable Artificial Intelligence, + refers to methods and techniques used to interpret and understand the decisions + made by machine learning models, particularly deep learning models. In the context + of chemistry, XAI is applied to uncover structure-property relationships, such + as predicting blood-brain barrier permeation or solubility of molecules. Techniques + like Molecular Model Agnostic Counterfactual Explanations (MMACE) and descriptor + explanations are used to provide actionable insights, such as suggesting molecular + modifications to improve properties like permeability or solubility. These explanations + are valuable for interpreting black-box models and guiding experimental design.\nFrom + Wellawatte et al, XAI Review, 2023\n\npqac-becaf49a: XAI, or Explainable Artificial Intelligence, refers to methods and techniques that make the decision-making processes of AI models transparent and interpretable. In the context of the provided text, XAI is applied to chemical and molecular predictions, such as solubility and scent-structure relationships. It uses tools like counterfactuals, - molecular descriptors (e.g., ECFP and MACCS), and visualizations to explain - how specific molecular substructures influence predictions. For example, adding - acidic groups or heteroatoms increases solubility, while adding ring structures - decreases it. XAI helps derive insights that align with experimental and chemical - intuition, making AI predictions more understandable and actionable.\nFrom Wellawatte - et al, XAI Review, 2023\n\npqac-28e90128: XAI, or Explainable Artificial Intelligence, - refers to methods and techniques used to make the predictions of AI models interpretable - and understandable to humans. In the context of molecular property prediction, - XAI methods like molecular counterfactual explanations and descriptor explanations - are used to explain black-box models. Counterfactual explanations involve minimal - changes to a molecule''s structure to alter its predicted properties, while - descriptor explanations use surrogate models to attribute predictions to specific - molecular features. These methods enhance trust in AI predictions and provide - actionable insights for domain experts, such as chemists, by linking molecular - structures to properties like scent.\nFrom Wellawatte et al, XAI Review, 2023\n\npqac-c7cfb85f: - XAI, or Explainable Artificial Intelligence, is a method used to explain predictions - made by molecular property prediction models. It aims to increase trust in these - models by providing explanations that help users understand if the model is - learning correct chemical principles. XAI methods can include various forms - of explanation representation, such as text, molecular attributions, or concepts. - It also addresses challenges like defining molecular distance, adapting explanations - for different audiences (e.g., chemists, doctors), and evaluating the correctness - and applicability of explanations. XAI is particularly important as black-box - models are increasingly used in critical fields like healthcare and environmental - science.\nFrom Wellawatte et al, XAI Review, 2023\n\nValid Keys: pqac-0779e397, - pqac-d73a7782, pqac-ff54ad97, pqac-28e90128, pqac-c7cfb85f\n\n------------\n\nQuestion: + descriptor explanations, and molecular fingerprints (e.g., ECFP and MACCS) to + identify how specific molecular substructures influence predictions. For example, + XAI can reveal how adding acidic groups increases solubility or how certain + functional groups relate to specific scents. These insights align with known + chemical principles and provide data-driven explanations for model predictions.\nFrom + Wellawatte et al, XAI Review, 2023\n\npqac-18a877c4: XAI, or Explainable Artificial + Intelligence, is a method used to explain predictions made by molecular property + prediction models. It aims to increase user trust and ensure that models are + learning correct chemical principles. XAI can help bridge the gap between black-box + models and interpretable insights without compromising accuracy. Key challenges + in XAI include representation of explanations, defining molecular distance, + adapting explanations for different audiences or legal requirements, exploring + chemical space, and developing systematic frameworks for evaluating explanations. + These aspects are crucial as XAI moves into practical applications in industries + like healthcare and environmental science.\nFrom Wellawatte et al, XAI Review, + 2023\n\npqac-3dab76be: Explainable Artificial Intelligence (XAI) refers to methods + and techniques that make the decision-making processes of AI models, particularly + deep learning (DL) models, interpretable and understandable. XAI involves a + two-step process: first, developing an accurate but uninterpretable model, and + then adding explanations to its predictions. Explanations provide context and + causes for predictions, offering insights into the underlying mechanisms. XAI + methods can be intrinsic (self-explanatory models) or extrinsic (post-hoc explanations + applied after training). Evaluating XAI involves attributes like actionability, + completeness, correctness, domain applicability, fidelity, robustness, and succinctness. + These attributes help assess the quality and utility of explanations in various + applications.\nFrom Wellawatte et al, XAI Review, 2023\n\nValid Keys: pqac-910fccbc, + pqac-23138741, pqac-becaf49a, pqac-18a877c4, pqac-3dab76be\n\n------------\n\nQuestion: What is XAI?\n\nWrite an answer based on the context. If the context provides insufficient information reply \"I cannot answer.\" For each part of your answer, indicate which sources most support it via citation keys at the end of sentences, @@ -5495,7 +5515,7 @@ interactions: connection: - keep-alive content-length: - - "5353" + - "5417" content-type: - application/json host: @@ -5507,50 +5527,60 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//tFhtb9s4Ev4rA33ZBFC8jtPWjr8cctkWZxQFFtseusD5ENDkyJo1Raoc - yom3yH8/DCn5Lb3eLnD7zZbI4bw+z0N9LcgU8+KNmc1ux5NXVzc309XVq8nqzdWsuq6uquvxm9Vq - OsWZxqIs/Oo31LGYF7pWcaR901qM5F1RFjqgimiK+fX09ezNdDx7dV0WjTdoi3lhEFtG3FwFVOwd - BtlQe9LIxfxfXwtyBp+K+bgsGmRWayzmX4vgLRbzQjETR+Wi7PEuohMH3j61VpFTK4twFyJVpElZ - WLiI1tIanUa4+PVucQkBKwwM0UODsfaGQTkDEXXt6EuHDLFWERq1QYg1gkFNTN5dNWpDbg1t8BqZ - kcFXcLeAFBKX0KoQSXdWBbsDiQ8squBky7CEXMTQBozJSzm1cwaDBGPSo+ih7hrlGFY7OWhLRvaj - xOaUJJah8kH8ogBtQEM6P71ovyh9NZ5Ob/HmdlpC+mumN2o6nU36v1X1+pUy+7eTGd6Oryez/q+e - 6mo1e11djuDXuwUoY0IOU5KwLFZW6c3Vyj8tC3AqdgEl/lgjYx+feI+uVpLpGDqOJXSsVmQp7soU - 7VZZMikMiHXw3bqGDe5Ae6exjQzc6RoUH+cp7YaLlJWTbKUXlyX81nEqdp+diy+dcpGiirRFKXAg - 3edMXHr0IdbkkPkyu3SS2ovcjZLyFdbkzHGKL89yfDmChQPjG0WOwdIGQdfYEMewS6ZN6NZgiLXf - YtiVKavEoNrWEhrJVufSO+AYOi0pvWqDbzHEHQS02amaWpZEilPRezsc5TtJUqV07JQ9DSN64G69 - Ro7QkKNGWWi8xdSboGvl1phTYpApoESZTiXknBSDrAO10YdTwyvFaMA7qDB1wKFib+/f/Qw+wIe7 - +/uP4oCKMdCqi3jSpeJZi1rqBdyt9nEP/fvHGvZyBJ9qYsA07QwqWU8DRI5pXUcu95413lC1y1M4 - 5ODo3OiBGpk0BPa26/vNB2gxNJjiLuGxJouAjrtwGGdQltYOHinWufBaWencjlKDSx7V1pMBbrtA - vmPQPuzL2gd8FuH5DFr2EJXeSJS6VtZiql3qAIMVudO4TMJFjRnRlFFt/CZ8GNpiYATVGRJg5BJ0 - oJgikPepRYeJIgc1KhtrrUIGLXRbCt416KKywJoyuJ5FUJTFfpweDjj9joIgg4BKxxhA8YahSdCn - HD9iAjcQHE5pXBafBY2JJSF/WxaHHpRlGSLRQLL/FEewgKbjKKbBO7tLq/qXsKYt5sJoihnc2XdB - 8tXPV40ZowSWeASL6mQ/STK4q4Ra0MUSFsC176yBgK3dwbJYgFbO+diHMloW8PcuQhV8c2wphR/w - B4bWopN+q4Bc5UOTwVGtfBcl4NHSLd2nIxe0d0J+iXsqQTh80hhaaXhUus7dqCS+bGmDuzn836hh - BHfWgrRBimhZfEZr1aOKEQEjKJtB7hfcEj6WMBlPbpZFimEBDjPmPQbJPeX6cdzZxCMqt1FCckhE - anGeiIEYgVG6J/epl8y5KHSr1kG1NQsa4NA8fUFW2CdxMh7Dow+GS1h1Ucoj76x3awyjQwHzpOJT - DMqhzOpJOVwyaCigjimc97iD1pOL/KK2h+LNZeVVykjirDx7f0CnjPLGRYTK6y4pDXekBg7smAf0 - BY1laH8hQI6RuBz4fWj7H/b8/kNP770Xd9S8ZPasXQZyF7HiqwpD9i4jsLjp4bHeDXCZBNUe/Y98 - 6Q96f6QE5i8kwDnRlych9yZ+QYtb5aK0156LyxdEfADMPd0e3OlNfeilITltO/Ndvi3/G1+WsCXu - lKXfT7z8dGDxDx/u7t8eO3SwxHAhpFpmSr3s9/4DbZsg+SCFJOn/W0D0gqBvhkMehyrv1d6foJny - QDGZVaQHZDb3vHI2+7xzIhjpdwFf6ltEHWa6R034GFWIA5ZlBzIRxxodoFUrH1QUhE/6UUlXxV67 - JGhXreQhkIpod8mJj0OGUrfng9KAXouMi8GbLpX/x5/2xwkuDRg8GcHPXWg9ZwakpvUh5SC9vRmd - dG9a0t8t0vtXI7g7otQSMM2BsnZ30qpp8esR3B9qIGxsTPJH2R5z0rK3okYwo75cPYSduGvFLzQy - kQMH8Aj+yTnsY1pgEUf9OKIRrG0a9SO3SkvNLTUkdlolhakxaQMGFZMddEaSs4fl5NBnH0wek7mA - RhYSwXfOHEB4BPeyIBlJD8SJBZigqgysP8kvUA58Fy057DH0Y38SXM8hFQhTZeDiXqrddDZSaw9s - Tom3d6Csze2DQBGYGkq3s9HlmdXJfIBloMjQ5koP5sOAKkkU9HvvnAH20OPFfY16IzJR1zm3fSX6 - R1If7kM5IeMhmqRuypPL0Oho+UDWZ8vPZdoR5A0322/cFU4sD7z/HctlvnYc7xrkwdmu7x16dq84 - MTfIi3MnqBHC389C2iICJGXY7NuglEIsoBHayeO/b4heZhwgZN+zuWUHLXIiP6J3OIdE/7YUZhAN - kg9PKqESBXvVYmDBiADK7SD/UxZ8S26PqxnHUneTW2cwPMKag4ZJvbH8E98w5B4JFaE1vUYwf4VG - SCp1tTvTChS+oRZeXo7TBeYvFw8vzl0WvWZ2SSIoZ47hsqcajXMpWa1a0VYoVYyP/lhTniIaCHU2 - KuIc3kvSKA7aNC18R1L6lwoUVtbrTfpOIsowXxX3sFw8l4X16zb4FRdz11lbFtKnXD/ki1MxLzj6 - tnj+d1l0w0ewNvimjQ/Rb9BxMb++Ht/KZ7Dhw9vhxXjypiyij8run02ub16XpxYeDEZFlsW0VrpG - s189fv6G4eP1h+vdsGU6mTzvD0jmHmo6ODs+e9cQ80kkz2XBO47YPFQkCr0NlC6NVftQTV7fVPr6 - 1lw/tMGb8Wwyfqja2cNmm2wVz/8BAAD//wMAhKMVIrkUAAA= + H4sIAAAAAAAAAwAAAP//4gIAAAD//7RZbW/jNhL+KwN92Swgq3ZeNlnfh0O6TYGgzd3htsAWuBwC + ihxZU1OklqSSdYv974ch9WYnadLi+i2OJZLDeeZ5nhn/lpHK1tnp+TGeLOXFopTvcXEqj88W5fL0 + 3aI6UdXyRC3L8nSV5Zktf0EZsnUmaxEKaZtWYyBrsjyTDkVAla1X52cXF6fvVsfnedZYhTpbZwqx + 9YjbhUPhrUHHL9SWJPps/Z/fMjIKv2TrZZ416L3YYLb+LXNWY7bOhPfkgzCB37EmoOEDXH1ptSAj + So1w6QJVJElouDYBtaYNGolw9PPl9VsgDwIqQq1AoSLJp4RggUxA1zoMZDYgjAKphaNqxx9DjdA6 + fpqj82ArENMmNN8khuhzaPkB2Wnh9A44XtAonOHV/M4HbHzOuwqlHHrPO5ADMjU6NAFus1ILuV2U + 9sttBrIWTsiAjnwg6eGo/Szk4v1qWUlZyhzixxMlyvN3Jb4t4OfLa0BTCyPRQ3CdDzGgzouSNIUd + lDtonb0nxcdBvjojUmShFgEc3qPQMWoX/y80Qok1GZXiA4WSPL+Q81MOyx00YjtcVbxKI6bHFv2X + rbMSvY+nEsa3IgYbz2YUOk6riil8MsLVhbg4P5enbwv4AXcgrZHYBg9kpO4UThnsw8zhoSZZg8MK + nefb5sMp3DhETmHdNcIAo9ZhjYYPGjObYszjuXDA1d6KQga6R70D1J0kJQLGDIIUHQcX0cPQ/BKg + sm4POvuRvS1uza25NiDaVhOOr3nwHe/jQdbYkA9ul8e0BpS1oc8deuiMtPfowAfXydA5XLTOtujC + DhzqlM+aWp/HM+AXwdWZA5nxPGYDjdUYUQr9y4QeNG0RvNVdDxfroNTWqkXpBBkohXOEDlp0DcZ9 + +qiOT1YnF+enqz5fJUpRnb4Xbwu4wVBb1a98M+55E8F0uTGWgQ0fbMcprIQMndBwNQfm0c3N5Yer + t/FuFXrpqA0xrNkzCdMY02MTF5DxtKmDZ8iTQhP6iiZT6Y4/Cj27A9+V4236HISmTazYBwo1bI19 + MCkfUmhoHRlJrUb/YvScONG2zgpZowcpDJQRro6PJzkn91bfR25AXS2GoKzbjXwSYx1fYLjEOFrr + w6K2cv8iRBXQcY1RPP7RIUFc3QvdpczZipHrcX8BaY0nrkgQITgqO0b4AMnhevuSqEhh+otz42zZ + +WAip1lA4zvH3Mnv8K11IUHq0ZE+1EJrNBuc6hmrCodCc9g69JywA8bKQSjRhp56moh1RffoPILo + FDEp+7yHzT1q204ULBh0lRMNPli39fFdwfTkG+alowPWyfIs6RWZzd0kPd+T8yHyIHBdxlslv4bb + 7BOTKXnO/99vM7gGg0lrhPEP6KAUHhUXGkdoTS8zEcMjExRwXSVu6QlFWfTmTYBa3COgsd2mZjRb + 18QLyeEafG07rcCLHdxm14w3Y0O/aXGbwbddgMrZZr5uT+QgHELT6cDIBm87FzWEA1FYkUEOJgdv + p21KhFhqY1yR036aHTmiyYeomxXxsb9IdG3wOaCQdSovAZJCwuQWd2t4SgGeKbEDfTgQxAKuoWEN + lBSwB/sWdz6VZOtIBL5/MtDs5hHcDJ9mgVJKkg87jUkrvKTIKiSjJZAa11GZyCMwXnv8Sdsreyuc + 2DjR1r6A67B3h7YLcLxcwoN1yudQdmGgCm3NBl0xQ1CJoMihDIPY8IY5VyefbwB+NDuG6wVdiEF9 + HOgtPRfjW/MXC/gYhAtDLmKyaWCIny+vi/TQDQfLAA8e2s61lsvMKL5QEL5FGXz/5HVfxVHZZM8r + 1s0VjCpWKrwXJuR9MVgzAj8tc5UYJOKEPRWH5Lu2tY59W7kbUZP2/f4A1n1se2Baw3cRyj4RM9e9 + 7PrNJ1s0uYnR8333Y29/ZoKeDxZuMD9vRuf2Bozgq052JaBr/PoJk/JL5yN+Bj7btxzFLIAB/ut4 + 8HElDzc/PvZlg6MgM3mIyHAv+YX5jkOFreEjNaSFyxNAgrW6V3O5J9o+f06d58sOlZoC6QP2j83I + 7uCmqfHJqnN34TF525z98aF2jHrRkyKOijc/x0AR6RyN2KIH/iNq7jxVyTixSMc9eh3+ZlRkaJLB + mW80k87k8sbi9TvDNES/chVSXNAy/w0c0ZMQfCSu4QNheaQrM8aPQB6URFqH8zrmMg01Rjrgv71m + Z5SUpy/lfIqDpXBWuTGCf3ZBk8FYU6uCmytnVRezM9RUvMjSWaF0gu5xAf9Ki6/hU70DCm88UMP1 + K1hj+xSOvUkOGGSRfPHJvtFfx3Zuv3gO/Tm/zK+eFnA5O/4arpicSOjE9DNXLTwb2T3WORsN6xq+ + dYSV3kHTE99EX/HRd3vOhSE/5n/Nyu1bIRGE1vYhvfADt4IUBsou4JKSaRHOdkZNAhCf/mSdShW2 + npE/Y6ERAQv4Efk6ucgm0jMD0zNbKicqNkc9D0bxtg5e0S7n8045GoDemvhH1Dg2SoN95Hie6Jkb + IWvGyNgJv6JZHh551CvbVnzucKTYo49JFJKxOXQwOWCxKXL43ca5160w8kzfQz/XQs863mca3Xmb + W7zQ1KbdR6V4sasl/2Q7O2+kabLlL/SxadZBQ25N7G/6Xv3w4MM9mX1pT2Kw362Shyiswf6BbrVL + UjrZhLEV3m8P9zuevbZwkcxET2bFCw3aWBrDC486tMPuKzEpzat9kodZxxTvZK9diu8OHVNx2Aal + k3x4Sc4424+in9ogC4qqqpeSoQUqDtsZ3usf9iEferTRR8UWQFrH7lJHy9CIEFCxr20a8U2iNI6g + IfZgCd41xgZvrLSjF0vtOwuxLVEq3q0waDs/b2UK+BhIbhkyFI/ST3DmVP3JsalnRn/CYMddmAAP + ze4fosFpfDTAI+Z/wmckx7FM5+X2ZwaHOAnVs0zYUKCNSN0MuYNpYWLEF4eEP8WjUSPcDjZW6N7n + R155kfommzwOCBPr/wXjwT84C+y98e+Tp0Jjh6HdM7z5ylHgVPb7XDrOjZ+YCfaj1FeMBSMWuLdU + tokW+ZmxIPnR73PyhqnkK2eDZDhwxvqfmAymKWA5H+s8Pwn7aaoabFptd7FBSbn6q8aCQ6Ysc+L/ + aTb4qpHfgZrwLw0b6+hXVJzB2fjvIU5e+q6D2fdwCng4/pvmhc/M/xRPkNIUMFXky7PABNfDQeBT + qvbMHLD/+Qd59pfv6dxsEpgI63VTwP53DF5XJNv3gg7mfbuzh15FCdz9mUaZfGRYH00N+dI1boQG + h587csg9gH80FhyFVNYot9G8J6vCHEs+WXCu0NbZUpR6N1j91dlyMdl9iIM6EIrnAXHRf6eOis/W + dwt8tfGrq6c02xpeO4kdGsW3M5tAcfCjLU7zr6jzk6R7ZO0MqNIkhZii9ydgrNdx7igMM7rbKh6J + 99gUwOT2tzjPmAnuXKYD2C4U2dc803bD1+Gztem0zjNOm6/v0nw1W2c+2Db7+t8864af/1pnmzbc + BbtF47P1arU65x8Ah58cpy/OVhd5FmwQevzf8buTs3x/hTuFQZD2vLTkubwan15+fWLh+fPTFHg6 + zXt+q98hrndX03Ta5cF3DXm/F8rXPEsz6buKeNbHvy7wcLlq76rjs5NKrt6r1V3rrFpeHC/vqvbi + bnsf18q+/g8AAP//AwCynW15tR0AAA== headers: Access-Control-Allow-Credentials: - "true" CF-RAY: - - 983de378e80bee17-SJC + - 984e9aeafcf0cf13-SJC Connection: - keep-alive Content-Encoding: @@ -5558,12 +5588,12 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:40:41 GMT + - Fri, 26 Sep 2025 00:22:08 GMT Server: - cloudflare Set-Cookie: - - __cf_bm=3cmHuqvWDSZTY6pMfpU7FedYhVyymcGp8RIQCpdZw_4-1758670841-1.0.1.1-XWxoSRo3mVZI.eDDEeaOJNYXk7pn2DbchqGDxS6oS1jjdZzI8C62pznNyGfaQAhlqZW0Xlczy7BTnf2kXe82BZ38KeO7E7kToRcff3so4Lg; - path=/; expires=Wed, 24-Sep-25 00:10:41 GMT; domain=.deepseek.com; HttpOnly; + - __cf_bm=dfhIPEmVPHtHpMS5uxZUEkYhpS74WoylF9AgeEPk83Q-1758846128-1.0.1.1-JoQuVCs0PT0P045O.5catH7poML6jLXug3Ud61uY.qbfjU.Jhc6ezJt5A4okhK2vZJdpN4WfvxgeFsKNxUg1ec9TU2_PnJus6kHsqFDtf1s; + path=/; expires=Fri, 26-Sep-25 00:52:08 GMT; domain=.deepseek.com; HttpOnly; Secure; SameSite=None Strict-Transport-Security: - max-age=31536000; includeSubDomains; preload @@ -5576,7 +5606,7 @@ interactions: cf-cache-status: - DYNAMIC x-ds-trace-id: - - ae6e6401dab1a43831759dd21a0b1d41 + - e817396126f2f7b39c255215367a884a status: code: 200 message: OK diff --git a/tests/cassettes/test_get_reasoning[openrouter-deepseek].yaml b/tests/cassettes/test_get_reasoning[openrouter-deepseek].yaml index af3a78de2..5b899a157 100644 --- a/tests/cassettes/test_get_reasoning[openrouter-deepseek].yaml +++ b/tests/cassettes/test_get_reasoning[openrouter-deepseek].yaml @@ -45,20 +45,20 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//jFJNb9swDL37Vwg8J0PsOkmXW9FLV2wY0EO7oQ5sRaJtdbIkSHS7Ich/ - H2Sncbp1wC468H2Ij+Q+YQyUhA0D0XISndPz69vVjcB7uvn88fvia3Z1fY9015r84UvtBMyiwu6e - UNCr6oOwndNIypoRFh45YXRN18vL1eoyzxYD0FmJOsoaR/PczrNFls/TdJ4tjsLWKoEBNuwxYYyx - /fDGFo3En7Bhg81Q6TAE3iBsTiTGwFsdK8BDUIG4IZhNoLCG0AxdV1X1FKwpzL4wjBVAijQWsGEF - fLv6xO7wWeFLAbMR5T211oeIPxbwgFrzF06EDIlxXcD2yJNWRY7ptS7MoTBVVZ3/77HuA9dHxhnA - jbHE4/iG5Nsjcjhl1bZx3u7CH1KolVGhLT3yYE3MFcg6GNBDwth2mGn/ZkzgvO0clWR/4PDdOhvt - YFriBF68gmSJ66meLvLZO3alROJKh7OlgOCiRTlJpw3yXip7BiRnof/u5j3vMbgyzf/YT4AQ6Ahl - 6TxKJd4mnmge443/i3Ya8tAwBPTPSmBJCn1chMSa93o8Pwi/AmFX1so06J1X4w3Wrlyu0l22XK/l - DpJD8hsAAP//AwDM01cUjAMAAA== + H4sIAAAAAAAAAwAAAP//jJLBbtswDIbvfgqB52SI06RpfBuGHLLbhg0tVge2ItGJMllSJbpZG+Td + B9lJnG4dsIsO/PhT/EkeEsZAScgYiC0nUTs9/PT56WH2ut99W6QuXbz+eLpfiu/L+Ze5xcULDKLC + rnco6Kz6IGztNJKypsPCIyeMVdPZ9O5ucjseTVtQW4k6yjaOhhM7HI/Gk2GaDsejk3BrlcAAGXtM + GGPs0L6xRSPxF2RsNDhHagyBbxCySxJj4K2OEeAhqEDcEAx6KKwhNG3XZVnugjW5OeSGsRxIkcYc + MpbDw8cl+4rPCvc5DDrKG9paHyJ/zOEeteZ7ToQMiXGdw+qUJ62KOabROjfH3JRlef2/x6oJXJ8y + rgA3xhKP42udr07kePGq7cZ5uw5/SKFSRoVt4ZEHa6KvQNZBS48JY6t2ps2bMYHztnZUkP2J7Xez + cVcO+iX28OYMyRLXfTwdTQbvlCskElc6XC0FBBdblL203yBvpLJXILky/Xc379XujCuz+Z/yPRAC + HaEsnEepxFvHfZrHeOP/SrsMuW0YAvpnJbAghT4uQmLFG92dH4SXQFgXlTIb9M6r7gYrV8h5hbfT + 2Q2uITkmvwEAAP//AwCgJZxKjAMAAA== headers: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983da85ab83867f5-SJC + - 984e9cd0ea5717d2-SJC Connection: - keep-alive Content-Encoding: @@ -66,15 +66,9 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:00:20 GMT + - Fri, 26 Sep 2025 00:23:26 GMT Server: - cloudflare - Set-Cookie: - - __cf_bm=nqimPZua3_KliFh.JfoICBZgXZHkBM_nesc1sdC0_rY-1758668420-1.0.1.1-8F27bITntZK9wGqpVc_0zEhBiqxRxntOxWaMvD9XNKKewQmDq.sNPr8RXZJvUlY5u7429wszOUTzqi9tTP_Sv4uDkwtbJ_JZ9dEhGS75BYM; - path=/; expires=Tue, 23-Sep-25 23:30:20 GMT; domain=.api.openai.com; HttpOnly; - Secure; SameSite=None - - _cfuvid=IaY8v3rpuntzFZ7S_XDlhZ6RkD3JvcApzBQOHR775ok-1758668420925-0.0.1.1-604800000; - path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None Strict-Transport-Security: - max-age=31536000; includeSubDomains; preload Transfer-Encoding: @@ -88,13 +82,13 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "560" + - "485" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" x-envoy-upstream-service-time: - - "590" + - "499" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -110,7 +104,7 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_db3ae85e4f0444d591f3b3b5a6196ab7 + - req_ffe2e26f958745499c79f3b013c9f795 status: code: 200 message: OK @@ -149,7 +143,7 @@ interactions: Review and Dataset for System Health Indicator Construction},\n year = {2024}\n}\n"}, "authors": [{"authorId": "2167438752", "name": "D. Nguyen"}, {"authorId": "2184162840", "name": "Khanh T. P. Nguyen"}, {"authorId": "2267984723", "name": - "Kamal Medjaher"}], "matchScore": 58.483295}]} + "Kamal Medjaher"}], "matchScore": 58.360786}]} ' headers: @@ -162,27 +156,27 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:00:21 GMT + - Fri, 26 Sep 2025 00:23:26 GMT Via: - - 1.1 6b6864bce40e8c6517571357636f0dbe.cloudfront.net (CloudFront) + - 1.1 cb0f9f6369baeebf7c66aebe4cb453ac.cloudfront.net (CloudFront) X-Amz-Cf-Id: - - KJIgTNg_R5aQEJJoq-L7_b6O1i5WZckzRbQn55mitTjQ76BSo6l-Lg== + - aojqjkExtCFGtihvACdIRLteoL3LimJF9c_duT-rR6prJrqcGHVcIA== X-Amz-Cf-Pop: - SFO53-P7 X-Cache: - Miss from cloudfront x-amz-apigw-id: - - RYL02GdMvHcEBKw= + - Re93yF8TvHcElXA= x-amzn-Remapped-Connection: - keep-alive x-amzn-Remapped-Content-Length: - "1440" x-amzn-Remapped-Date: - - Tue, 23 Sep 2025 23:00:21 GMT + - Fri, 26 Sep 2025 00:23:26 GMT x-amzn-Remapped-Server: - gunicorn x-amzn-RequestId: - - 484e5c8f-1b3c-449a-b0d0-d9069d9f95bf + - a9d7d7c9-4b5d-44da-b3df-7309419a6f6b status: code: 200 message: OK @@ -204,21 +198,21 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAA/7VVTXPbIBT8KxrOwkZIsizfOkk7k0w/PEl6qe0DkZBNikAF5Nbj8X/vA6mx20k6 - vfQm8fHYfbsLR2Qdc71FC6S/ohi13Fq25dgdOg5j37X5iqWw7mJqz40VWsFsMiETcp5BiyNqWMUd - VDueYuS0YxIbbnvph2iaZ1mMhOMt/K2OSKia/+C131Yzx3HHjF+3WlFCs3geF5tNPMw40Xo0fhyT - OSbFA5ktsmKRlF/geD8LLNoOLZKCpiRJaVrO8gIgGN5ww1XFcaV75dCCxKjrH4HRjhuo+GCYstZx - KZmJbnVvFJPR0i+omAOSNmKqju645cxUu+gKRoAMU9UhWhqxB2zRe9ECpRpwCGt7DzOF70orx5XD - tW6ZUIHi+LUCUpXR1rYMegvdcUZULjS0YdJyQG132jjsS8AOboC+k1B4hW5uPyzf3l2jzZlFjTsj - PLMXmkg2G6h2/enGa0UmNKNZsZ6Kp7bjpn7qlV9SJh7uKPfT0AEMNUQFR3qknLlXNCKgEX1JJOJF - oiASWaTpCyLl5Tybz9OyJIQAwC54B5V5keMyn1NYbQFI5QevfKdAxdBe/CxnjR8PF5I+N+gNaLUX - /Hu0ZMAx0ip6p3Ud3fOqN8IdQuOgiPhx0REovdeyD+ATb2fWOxAgWHQr9tw7/Q3o3oJVWAv+4C5i - chLDyoa1Qh5en7f8W+/hwopGmJAi1jRCCjYIvgJ9jkixcPbD7fLu6vdNrK6FX8nkCzs3PnjtY/Bx - QtJsNtruT8+AEUHUocyzx3UTfeDVjikwugwmXxpd98GI0Vu1hRocfLU9e9+vueZ7LnXXgrN9KyVT - 234QD7oENuCdtuJ/28VW2sBOmk3KPKe08Cn/5ZcjyCsgWAf/+fnuPRywc65brKfrqXvqTDXRZrue - juHpvEnsekrxrMD+mJzQoqQYMjEm7fbzxzEkk65u0Ok0pvwVhiFvzya1Fw79lazxjjj+dln8a5ah - OJOjmnuORR0sD+LgJC0K4iU5c7aBdK3FQPnv+b+5v//oi1GalXg2L0MtgKjGhwCiMF4RA0KIDJMB - /3nH6fJWep3DZnwCMIDAQ/STGIHlB9FAdLj7wtMQGje4DwNr/2qoXsrT6fQTZtoAXrYGAAA= + H4sIAAAAAAAA/6VVS3ObMBD+K4zOyJYAG5tbmnQ6SdM2ddJLbR82IBwlAlFJuPF4/N+7AidxXp3O + 9Ca00mq/xy5bYh241pKM6DsSkkpYCytB3aYRuPdbmzuqpHUHobUwVuoao3zABuwpQrItKSEXDrNt + dyFx2oGiRthW+a0oHrM4JNKJCr/mWyLrQtyLwl8rwAnagPHn5vOIRUk4CdPlMuwjTla+Gr9P2YSy + 9IqNs2SUcfYTn/dRRFE1JONpFDMec87G4zGWYEQpjKhzQXPd1o5kLCRNe42IboTBjFcGamudUApM + cKZbU4MKLvyBHByCtAHURTATVoDJb4Jj3EEwUOeb4MLINdYWnMsKIRVYh7S29WWOcZ3r2ona0UJX + IOsO4n41R1C50dZWgNwiO87I3HWElqCswKrtjTaO+hR4QxiE7xQmnpPTs6PLGVk+YShoY6TH9ZpC + jvRhrpNvp14pNoiSKEkXQ3kL1hQi9weixLPXK33bg6eYQOb4mi9SgHtbHp6GnIfT1/rwlHJO2fSK + 8YxPsjh6qc+IMz5lMY8YY1hd09mG8DSmfOKtZLGM3G8de4pQvo5X+qhjQa83B1o+MvNBr5Gq4AtY + 3JI2DD4pfY1afm9RQDCbYLFYkCNUci3Fb7/uWMS08v6AHnxsrVXbgfEf0DqUojPrSq6F9/xnqEAV + QjSBcAGoQYjHSqik2rwTtOJX6yvHcClN10lQllJJ6EWfo0pbUkP36NXZxez4+SUoCulPgnrj5tI3 + X3XdeZmzOHmw3kvfoBlR3T7No891GRyt0Hzo6Nbg92Uu/ZvPLO9pUlCv2l4opAAlF4228n+sESVZ + Mn3bGuPJtLeGzbXBm1EymI75lCe+mR/csUXpJPbPxi9/zM7xgRvnmmwxXAzdbWPygTarxXDfJQ00 + OLIWw4iOGPXPRGwSc0YxdddQJx+P+24YNEVJdrt9J78Dr+uqRz/aAzM+tNB+DmyfDYR/7VhMDmqv + 1lpQWXj9jlAJOo3SkZfjCa/tABda9nD/0uSnl5dffaIoQgoYG6U+EZZX7wc9Gnw/B/rqsA9AdbU/ + 3dgdzp3361/uRzxF0mnf3zwkaOdeLVQbZ1s3+jvSeptRROz/CnWr1G63+wMwlnzylgYAAA== headers: Access-Control-Allow-Headers: - X-Requested-With, Accept, Accept-Encoding, Accept-Charset, Accept-Language, @@ -232,11 +226,11 @@ interactions: Content-Encoding: - gzip Content-Length: - - "851" + - "850" Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:00:21 GMT + - Fri, 26 Sep 2025 00:23:26 GMT Server: - Jetty(9.4.40.v20210413) Vary: @@ -1341,1696 +1335,1695 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA6R7SbOCTJfmvn7FG9/WjpBJ8mTtmGdJBFTsFSgqoKIMCWRF//cOvdXd0RG16t7c - CIWrSZ7hGU76H//2zz//aou6PA//+vd//vWo+uFf/+373iUf8n/9+z///d/++eeff/7j9/f/urN8 - FuXlUr1uv9t/F6vXpZz/9e//cP/7nf9z07//8y+urZWQpdYDsW29s9B4EO5EW7lOIvCHbQXtut/R - 3DS3Cdus/RyO4bAhW8+J9FnCboVxkpb0uEuXYkmKKgYQsUqNvbnXF2uRG2iFeUW2x5evc4k+Z1C+ - 1YIYBvfUP9s+6MFuiuO4uiZqJ7IrGOCu7P3IpEPNaOSoMXrsSo7osZH6y31aydApvfdbTzELpJsA - CW8pnJ7e2+9tPijBeH/OhASrYzdF/hhCflcQterHRp/RTCyo3kDI3m9ZNyfiJOMeLfuxUbCgT8Nr - kbE/EINYzaXyFw1DgJLhHNPsXXb+8LwmFSjh6hEiiRu7RVVVC9sn0R6flqYVfGNGCwrsOSXHvb32 - p2biFlyT90itaLdmEx9+BFB0zaUKoEDnzKGTIdowg9gWt0pmnr+t8H6tejSmgl0P5clR8CavJqq4 - x7Sj0qJpwGPrSvy7ICVzw2sVVldGSk/pceuPnBt48i3zPeJEldUJYSvK2O8LkVoGdyimUyxX6Pua - WFWr1yKRiQKgqXuyNZKZzRN7B7Bday4Jjlnpc+2DeXhXTynZK2uCJlUabpApXET8kMY+6063BuSk - Z2OX1Mea9fz6AKesNen1+CoKkc+LCBpTKWiWBXUhos3niTMeKAke3QoxTdMUfJ3bku7K6ul3O+4Z - ALtu8Lj4JyGZLmL1wSWXSaSQhZvP366vBcbRyYmxcqV6btLRQddnolKjI4+Oc8x4xLwfHGguYCEZ - ZKNyQLrsPJrvD1AsZV87+NTJBQ2ErVHM6/06gt9+X/HG9wdYuxF4KEVEQ8nOXzZFbGBx2xT02O1I - N6rRoZRvqfmirkJCvZdv0oK5vqnJVR3vifj4+Aqsju+JGjpc9LnbmQbuxX6hRnMauyW7VBp+24pP - ouvd9MXOjXPsT9eC2s+L53Mb/R5iHGjNCGYcoXnG+2UzEyemik7dZGjMbELWC1b0MjRO95ev70sl - Uj0bJH0+WbKFpkvk0ly/VPrSbpcYr5bzlmZkVFB/dLYO+u43sTzBRpMt7SIca5lNdhuLZ1Ng5yVU - D/NKdW3Ka1GLswCxK8LEPvlasZzjW4aX6yckwbo96yzb3Z94l+UitZZNXAtyd4uw8DEl6vhihDir - cEe8p8IxnPhS6zjc7lK88PuReGe97oRy01egh01ElbeiJNw7yQDM55sn1yrVummixRmMMlqTwydW - CnG/kRe80QNxFBmYujjUFw8wiWUSaretvyTddMbf+h+F5qL5HBcJAva21Z6o4N4KwY68EM3DZBJ/ - i/p66Tghh6k/A1G2oVFzVy2y8JPsTiS9Pe+M5dKjh4DI+TifPpeCJ9XBQfR1uBBDwQedG479CH5/ - EomSSmrB+O1OhsslIzQx2cOfHG0rg1OVHg0cp9Wn4PAScDHRD91u0Rk1d0fkoN60q/Fl86I+Z+/P - GcGQzcQr1RktvSZ9cBpYJokTnfnz2TcFeHiePErSYy7EFzflGPZJFwrXJUi4Ml1ifByOPXHy1VHv - U6V/oiOpLRJtDPCnnDxGyKWUI+cps3wBK1qMUQQn6okr4gsdt8pQF7RPesTFLRkSOzxAJK3FcEX8 - qluu1gCwvihnkpAi8tk6NJ4wNY1O8snX6rnhvRv69k8aKKVf9MupP8u38S1QK0k9f/FeE+DAVz/U - 7naknodiKX/4QdJffRhSkmO4dQ61X6XGeLL0B5Rzux012PBCi1ZGH/ztv1TtFCeZpvX9gw2QFnqA - bMsW/hSnKE38hehf/OjHfTaCLXZD+Ny7bc2wfgygsq59iM/xDU1M4DSsydVAvUc31swpjQqsqDOJ - qg9XxPvDcYHPvPNoyt239SRPlgNoe+W/+at3y0neNLCUvEr20iHVBd3jPwjCZTVO90PdzYNzLSFS - FI14+kXTxfNTr3Bky4hawqR1lNWKJO/qJaX6yq/0/jG8ACIfSnJcUFDMdoY5xGPjOjY6XPyp5twG - 2q2CiPb0NgUln/kjb5N2oHFk9P40mlqFm9elGeXpG683ihR8aUaXhndH0YW6IBJ0z+IdwpWMPtuS - lQU9mvbULrCgL68ojJC3zkvq8quXzwZ908BMvJhuQap88SycRqifeUtsXCiFOEYygLNZ9BA73p1N - gn9QcDrPD7INVnbBf9KdjPPw2ISzcJkR/eIN0rK2Iaf3zUCTxD8B9FuZU3KOZ525KDUwpykpPTaF - VM9zNAmYO6XbkCOXN1roGyawrrxIjpC/au5+shT8w0PNqK/FEqXqCI/JeNGdnN5ZP0PK4fPZtMil - qw6I45qTAPcOnWlGLcGfdqc2w0519khp7P1O1OIoRD19dDTdxU7CG2ll/dWr83oHnXhMcIO2UX6k - v3rnP/Ur/uvvly8fWljJPHyLoh09IfZIps8tPmDPLAgJ2vGdtE58NuB5h4lcQVoK9jy2wo8vkbMZ - T2jaNpWCTScmxEnu23q+X4pJ3o4zhJ+LctJZeq5DrAxNRvwLefrMtC4LEuTUpCFSc38xH5sABm6V - 0XTtzcnU4beMp2X9pu5Fq2r2vqoZljyFo8FZZ2waJNXAURJnNBBX12ROjucKjhq7jLM+XNl0XVwO - vv1onLJSZt1u730gRkcIuf0mrz+PBx/j8iL5pJjckz89xnaB46Y6EEdamrp7X91so4tTQoMAtjU/ - togD3+oz4qBGKqZ1XKX427+pN/lVza54ifAJmWF4B1dJhn2lSrDZODX1Ns+8YKZAbjDy55Ro/kko - FjHZ3OBg3kWiDZyg97V+VdC0Fd3xYTI+me2z9oGbLNzG6eWrjJ+VTwuKrrjEuXNj8eOH6LG/HekR - H7HPuMmLQA+fEQl9e530xq26YbQdNbpdstDnMnN2MAlHiWpvZeqmjX4PwF4vjLjF1vAH9/DmgHCf - B3Gaj9nNcX5PkYoTmzqG0RTs03sTNApIpMTinMxVHq5g/BjiCFtsFeLNHmUw7vcDCR9gdkKxo0+0 - 6rxk5NTViNhUtAd4LWVPw8/U6YxTsgp9+/O4viQuo3l7vG34O9WpJde0GIR4akD42BINHScr5nuU - 56DEAVBfFhRdVBs5h52ofUYuTu7+9AiNHC5m4oabG0+LISJstXmD86G7tfNK5tgrPJhn7UyMb/yn - a/kU5Ns5HOi2jIjO2JUzIPPxlZZTdii4mF970o/PwVjbNbOnsYep2Qv0y3eLj5jMNzxIwThyl1os - 6Kg0E8SnXqG/evjIbXGGI7lb48pOl5rtHpEAzmbSqauc1YKdn34FjQx2yLsfs5jFyfHgV28GFUTU - n2plBOF6b8khST/+3K8+3E/fUGddtMlSwnzAhrapSSZgS++//BFdUMDT3QqlPnM7UwLJE9SRz2Hw - P6d8H0BxgBfxwkFK5rFlHJSP0KSBlby7DiePHNLjdk+NJiiSmcRkhXpXCsj+cVZ9fr9kBuDyOoSi - /HD14VHdUhBX3ZGa1ynu5k9zs4Dn8Il6xs5mopuve9jRfgo5NrzYIndtjKjyaIgfVys2ajLNkGUm - LfXbKxQ//o1+8Vbb1QFNantM4b0/zcSbfK2bC/UUgcXSghzPM0JfPtDDjz9we5PX535MWxh0g9Br - yr9q5m8cCyZVHqgxSG7N67VYQrvV0MgLd76b3eek4XKwVuFiLYYv/OL1xWdCUv7VTZb97NG52G1C - vPgyaiWTDzb9Ld989wcVU2xtc3igrRBuzuobtdxchID58EXTZ6H4QjwGZ3SQtttRSlI5oRstijGn - aWkoH7MBTSRkijyE25JcJSNA/FePQrmfzfE92qLfVlbN4Q/ePmnwkutuFq8bgGqOXRL4NtXnm37S - 4McfSmPf1fNGbEe8FpueWq/zW2fZvPUgLWKJauKtSRafkw+gs3EKuXO16ugXP+UbvejERc/4h489 - ODp3pITgspu67eTJkS5m1Nn2pGDWoV4hfkICNUedJews7HrgRFBIMr/P9bA+TAYsq0gleThIxXQ/ - WRrUhZBRq41Ctky6+ASZGoQe0fPOBt2+9YDOEk+coBN+fLlEYsBCotT2qhs9w55gTBr/P/tr8c5S - OOb2gWrh+ca++XGAaie6v/0tZv6RL/DVCyQYD1zSkJBpSGy9LoS7FOvLlx/CSTXXROvFWzene6VC - LFnfR+p4i97nZBjRsQov1FlcpWO/eJ0onWlgp1Ux7Aa9+vFVat1fH8Ts6dmDbnaY6u5zh/r7psrg - gkKeBK57Q+wSnSv8HFBAVRIGNa/QWYL5UAZE1aZPMSKzs+Rv/yTH6BaweeskOf7GI5yMmvpso2UR - KO8bT0ptuCXzYX0qYfOQt9Q2NK+b3GU6y/JqpxFjb/I+w0ak4V/8HDLe0FL7yw30Jpn+1t+uUiGF - rz4jrh7u9Zmvtivoaj8JGZXuxdxuygiZRtDT3DC4mrrobCB3lCuibfYaYuhkhXIy9W8SpdK9WOTM - jPDRbrej+IkExhJq5jhSNI0GW/xM2MDqAyz5XNLQ895okg5+Bl89Ss53KfbncaNpcNe8nNjy4+0v - q+Gm4OkUPok92k8237fbJ9SF7lMbPe9opjwOQFLRSK0CQTK/7ajCd09PiDOhtBPXeHVA7Ob4VDFq - os+uHgrQJasb8bNCqcUv3sAc529ijPxan5bD9QNXvleJMnAPtpSb/gadfA2o+7zIyTT14QcxecyJ - IVwL9tXLE1Rls1AVyyhZyLOW8FKZGXFyb66XTRiNEL7wmurHzZKwJkBn9PMb0l9/atKng8iQdiSh - 0j1Z9vxDA143I6quIUBcgf0z9K4c0J9eFZ9PIURV3B7I7oUx+9OHEpIxdc/qm03OLLbwtLMbCSrT - LNhPv//4pPrCGM1meWhhtvWA6MuH//knN1Q7jTb2ronrCXx1AnzM1bGrJRd9/RQNNsNsUV1fPbu+ - vKNW1tddEK58e118OtP4/PlhJjV6nZknaUFmxV3DbHZebHxNnxZ+/kg4n6g/E01u0J1tD8QW6Y5N - 13IUoFvdKLG+emeOpixFH/3cfP2bHZtorEsYJ4dyfC2oT6b2gRwI0bmipW9fE6Zfdw3Ow31DXHh1 - Ov1AtMJaZw8kxOIu+fKNBn3zI5THg+EvvsoWkJXzhfif8e5/9V2FrkcjJKrdUDTKmRnDoxciEvei - 0s0wIgOEY0tHWtk0WaTLaEB9tUZCuJ3i96LEJgCPFsTUlLabxeAAeCyHfBQ3TZQsw00JQFrDjRS1 - YRTT/Z0GUFSpQc0kjpJlN+8i9N3vUDZjpRY2RWzJSLya1J09teOK7a5Hn5JTxp6gtFv4960Cx7YG - oo+iUwvHKQhBPi6H8LFLK31pMib/+tOwErZcPa+tt4QvWX0l2txZPn2lqQajXdxJIHOHbjkqeQmf - 8sVG8VVWSHjW9xi2a8UlO/qSO1beqhH6W7YJEa/e2WRMU4+BG7tv/9XqpUghQ13Bn8JpGzb18hD0 - 80/vUSMDU1+i+mih6iH3xEnSvGj3q+iGv3qM+N/8mo5ZcYDz2bao+dbyepEGLsLOJE5/17nKnT7Y - eLdnqu03n2I4y+sGUrwKibWLpXoeN54GeIYdOX/5GP9pWgP2aYnG5jJ96nlzDNJfPYzilx9QItsK - TAt+0xQHuj991wPZvAmod9U+9fTzB7urBORo80d92EpbB06mX43T3Y0SwTmtFjiWYNFr/fU/5vMm - RvG6uIayJ3fd41HdDlhrFJUU8gKMapqngXm8atQKb0033y/JhL/3U81aDJ0djlqGX0G1HlEtvRkV - jSbGifSqQvn1PqP+ds4FJDUvg4auu/PnD8NnqGsnJvp7vUbzMYiln/7708/LVTiOgN+iR93BKouZ - VKWDnJjgn3/nL2i/ieDrf4Xwkut61ut1CRscWtTp06pYdhFIv/r++jnARjHqe/jiJTE6Lf7zL2Gf - VWW4WvIX++XXJrHoKeSsJU16kFGFntL1TPRz0/rLw9r1cFtoTrWP6ibiaRVW8Li9X3/+bX/MkhT0 - IdTJVitZMcdyIAEe5IGaUy8mvWWPIxjECqhaVpbPq/1goJfRWsS347YWr6FSwX2bvL96tq/Hh+Cf - Zbco1r/+3ona7pjDzw86HQ+c3hu3TwXH0dmQmL25ZLwK1x7w4clRaxdnHd/dkxg1wSalzieOusVo - zQAK+/6iWmT0+jTOrxKZTkTodS2eklGdZAFNLnuS8Jrcu6/+5WC9MxSyK/oQLaCV0UbswzD8vAZF - 5xpVV0DhpJgaS0/15cB2Cnz4w0BV9xQWTOQOCpzW3jyiaK5Z99VH8i/fXds0df4FnYW+9RxyIcFo - /ukhb52V9KvviqG7FxF89cv45XfF9Na9BWkULuOP7/z0PoxBtCMu3es+tz227Z+fXT7gUX/xrwXR - vUnUEbDls4//zOC8QT0Nl9xm0wML3u//qd0UWT1hGwC+/D2cI21Jpm1aCPAuU4Oc9tmDLXVXWvJw - ODzG0b6bSJT7ewjf/KCKZD+7AXfPGDJFiELY4mfBjgl+gpvcLWIx2f/6250DPzwoPe/NlhXgXPq6 - 9tSP5hrRKk5jcLhNQvKvvvjrj8nBO4Wctra75euPAg6UhuivbcfG1Vb/YEFJBXrVOgF17c4OwCyq - BzEtbvR7u/UN+f7iN198UPW+6HEEDy1WSbjRO8S8rBthsWvn+/xS957qQvvFn9ruZ99VX78Gu8Yh - Ifa33/SasLvBMZdqqnxmlPRqez2A2Dod2Z7jG5te2WZBJexm8uNng263PbynIKSHb33MsWxIsD83 - KiHna5NMm9pYoFFWEt0OjfPnJ/3Ng5Tiw+vDz987XD6Y/OK/RDq74V6dLarV2SMZXe+doe9+jGP/ - eHfzLqAe+vEzqyM8+s0T4Mvnw1Epi27xjtWE2i3nkCM/6/Wi6HsLf+dVRNXn2u/RpV7Bzw/Rm9BA - /H7Heiz1F0w0Kry6yZikERJrOP3xuYlX32eUxJJOLF9Uat7OsACCEFXkEO1r/2++9bgU0XcektWM - XKYYnbKPScOdovoc+O6CNnaUU/PoKgV7hyhAXabopKytMfnxF/nIl2xcSVqizyRRJvzlG3/8d1YU - xYHv89ALdCGbwHcnuG7uR6okeoWm4CkoqG2zLJx/enlbnwxZF5eEeJ7s1+OXzyHwhmKUv/7NJ1g9 - JbAv5mV8f/0/Po/GD7qAolFTWVM0hpvQQL3KrFDWo5HNh/XujC7nl/bNj4LNcjql8NuvQNI0Nvs7 - V0Hz7nEm+u3Isf5QtA76zUvMo4n9SUD2BD99sr7uJH/O3tUZbw7X7Yi+/j9LSjEERRpacsCnZz0F - BypAX78JsZbN0tHVbpfDV78SV40s1OvJ24N7P75HbuVK3axtxhLkTumpNRhcMvVencIPD/zH0Cbd - b55ZnoQ2hHZ0i+WnjwUhrr73p0n/9U9gt7gyDd5U87lHGGTQnrcj0blrgqjweZ/hi0ckEFWXiYs5 - H6DcMzN8oqbVaay1JXz93lCKbxybl1HJsbqyUuqO9tFvP7f8AKVWUeL++ks1VhJeniuH2FdFqbmv - HscvpalHpEZHfTl96gyHqKyI5baItSZeDLjyo0p+fII1/VVDbFVPYeFYYzK4VtHC5M5PkoA71eyo - 0wz2zBqpU7UJW+xblGH52pFvfAlqv/4ZxGgP4eerR4dv/kMRmyIhfMjXTD4nipx12ZUoGBr09V9k - cK/Xiho2G3RhPI1PWF0XYVyb91Gfi9lXgEijQz3t7Cast7YN+s5DyW6TvP1hKOQzerTLQJ34lqLZ - Pdw5bO8gJMeTXyXUZqyCtTtZxN7ba/1tzpsPaGraUS0kQzfUdjNhCUaP6H6rF5OzbyW45puGmJfF - SGaLqDEA25TUcNuu7pWu8eB/rd9A/LFbnVG4rkyi1ZlZCK9bWkIrsFV4jdmetQXWz/irz0kip4u/ - 3HfJAaN149Nr4979mSTOBDs3NP7mbfPmaKSg3jddiOQF0Lx9rVbw9auIJUxVN6qqa8lZsjuRIH16 - hajNbMLWzTCp896JbNid8QFdsvuVugz2xZKL/QT/+p0K+B//7f/hRAH/X58o+Di9RpRK0hnPaBDD - XliXxLlsDF1cZFqia/C6UE/6AJquq2WCaMlXYxNuKjYj/T1iccxSmreOUojmRXnie3dJqXdB21p8 - wcIB2bzYWBWRqnNUPAmoe2gh1ZlpFPMrTQEPKhqoeVyOSDj1YwSmMMZh4hosoYv8OoPPvSNSxPPY - LXa50zbC8d5Twyw6tMh7OQK2TXmqT8vszwcOCah1SqDkXZz9cec0LbSSsaGxbYWIucUtx+Psv4gt - yypiyacVQCqVHc2VTaf30svLYatkLtmn4qugnjzFaJfk3si7vd6NbOsv0LLwTZVJsQu2U9cxXIfm - TcvtxfC5dj9kyF0uLdlz+9jnp+OzgpUWUhpeU42Jt8LKYbw1KY35dZSIBT60MJKXTWxUrfVlTB0Z - +D7o6SlW3t28kl4TjobvxGvddx1V440MQxo55Pw8lIzFsmnh6u1RqimfJ6K7Z2/BR47ulPj+vuC8 - 2yzjZBFTqlwFjk2w0QOIxF1IAhvriehSNYOQtlood/qEunATGTgPRUp8rurRPLXLAQedvSZahrds - mfOYw1obluGS4QGx53vHQbcNSChcdow94zSpcKxrNg0K7VmI12wO8Pv9zmj8XR9nV7mFd604hK8B - sWIOAnyGZ5VF4WZ3V3VOeeRnWJc3mdiXOKvZThVjHJwvIYnvB76bjLPjgfVMSchm8ZYwVX0acAo/ - V2qkQtVxbRKFeFKXidrXR4d++QXPKo9oto3eBduqWgSFGInUk0u7HgR168AuyTyaf19PUXrkwA/D - G9GO9N3NQalGeD7GLg3f+bEY5/jWb5JO39NtIr2KhbOfAuYjeyb2OzgyodvfDby9Q0sLKdjoI9Hi - HpdpEFC1XWO/L61+BYfd4JPjLjsV4i8fy1W9pt6TXRB/Mc8VvOFh0Uu2o8WShsIT5K1YEi+Ctb6E - 49yCwNqWHt1x8OnxCALcc0ml++do6VzVhwuo2mB+66tJ2rpJP9hT7hbd992DLd3bM+BFrJIqpdsW - b/7OB7io8hdxY+Vds+EsLnC+OAk9ilLMeN+7RbA14xPRRq7vWHInDgjyNSdmKtqJ6N+XA355852a - l4joXGygBsZH2VBLTW+dqK4zAfeyOdItcX0kOqtHC8V0Nkn0UrNOsDe9g16XgRCimqouKl9F121D - Qk6a9Sm+9a5AeO5TsovXbsHdHiDgt+UcSSq8lJo3t+0HXPw4EmPLJZ2I7HgBb7EfRF9Fji9YT93D - 2+WOxuX1bpEgfdAZ7PubULd6N8nUDb4H56fEEc8xRsaidaVhVKcSsQZ5rKdu0B1I3gYjWn8/FWIm - Br28Ma5qCIlY1Zz1MUIsxVI1grTFaDluyxx+8S63TwmxqKIH+bCjPvV76VZP92AlwwDdaSz0ra7P - 810J4GDDZyQ0K+olvWn5JlbePbUET+2YmB1DrCnZjRxPbs3mxfHi3/1ESS6DLyTBOwdX4zuiz6KS - cOtG03C5uq9HKS22PmMnMYdCLQoSZchIBLe/WMCvvZyEVrH3J5PePXwx74+wuYwxEoNcCfA2997U - VktZp5MSlLCuTz61Mp2wQUxHByTXU0cQBAMN5U7P0Y1/SSQMspS1W1/qIQ95Sv2oRMnrg/IPjGr9 - GadiUHzu5a5u8LhyDbGPe4ktylEccWxLx/CFqqs/HQUjxo9B0uiFT3aM00AKYHe1A7qFvYKW250t - uCPeTNWZTDobb1yFf+u73mfCxnuutpDatCHb8KMX8/nQpuANJA1FDlfJMrtEgVe3DKNwSyo0i+nT - g2rU1tSvNzs087lvIcttFRIbaeJzoZUsUK9ahybMNBLuLecBrKPLhZhnzdeXba1N+N3MDjl2V1/n - H1YmgeV+lHF9bC7+XKjXBWjsMBJ4J79eNNF+YuTfNvSI+bjjN70ugXKO9tT2i1M3DNUtw7KzDolz - GJWCFx4bgKm4R3S7e6Q+dambyT98spLPC01apmc42mwnek2Ktlji8/aDhuvaI9YxTf3F5GkGGKcl - 3cvx3A3X8xLh7aRYJH0FbzR9TpWDpiu3JTtusrvp/Q4zZPlNRc3HTfN5wwjhD2+Ubtd1/HriP1iy - 2JN6QsjVwxafPNQW+Ye4D7Ov2bg4KW4Nd02sV5gUvK3snliO2DZ85rzfLe5OXcF6fbN+++ULRStJ - IFrPw4gCjuiiQzY3rNd1SQ1fZGz2VvMBPgURiRFFCM2HQe3xs3Abkp/Duy6+yysAG1OVJM9HWUxi - kVToG3/qrI2iWAwWB9hOlPKX/4UgHvMSLBRe6amlGeuHK2fg7GIpJLFa3/8e/1tQsbK/joug16Ji - +xoY8vpE/UP89Gfu2ipglbeInt6c48920Yx4XG8Nun8666S7mlGIrZwk1L0ddv6k13IMfGTOI8QL - Sx43HVI46EZO4qpo0LRZNjGczEtM9mt16//h70xKj/pPpLBFU94pNA9LIsHOfDKmbZj8i+8o5Vnf - Le3nE6M4u35G1McntKxD7IBpW3ta2jcjETTlfcDOEmU0+eFlfXoGWJxTnZ5Wz2M9K/oJYNuynIbH - OitY/rqVWEfHczgmeV1P09NS8Hq/H4i9b4OEBQ2p0ArfR6LsplvdS9r+icuGXYnmTYX/iy/iOaWj - poFbf/ruJ7i5caAWfRW6uFeOBlA2xET/TgsmPdpFWLSaA80+ccdmcRMDtgKXJ4FhSQVrxb0MtitG - dKtNjT/vtxsOutU0hg/p8fCn/JQBuHdpT4z+c9eZVt4mcPZPNzw5+kef/QfL4RKOCzG4dJuw2M8A - Hjtmj+t1LKOF48wFbwPTp5fQgI6xzg8RoXxMFAL7jh4jrcfTVdhSQomFxNW27yHYt2fqV90WLY91 - fUaPZuRDFjw8NInJO4Or90Hhft64bJlYNAH7qAY1mo1Q9/1rDOAbX6LsvBOal6KO//iC090I4vP8 - MsJ8CjoS8uzq0+esA5gzp1Hz9KzQ/GmUJ97E1TWUxJzqQ6aJK0B+tQlnFNBurKjIgVjHj3FjqoW+ - hJ7BQWZGGk2stvOpQ+YKBiv4hOOtsnXx85o/cB1dCG/tKiumPXqHwJ/i1diz/bZgIn+SZBudKE0O - 1Sdhu0S3sLtc25G/0GO9bIRPioqhOoTP0wTJD6/kOLt8aHS0N8WC3kUE+y7+zv7eXfF+PW4TyJp3 - HmdTtPT3rX078OPLerZaOvoujwDxphRGsLFeLJpIGvTl5yMsUalPfPt5Ip7TOkpohup2c41iXOTP - lpjz5o16K9xYAAxUcpgOB0TNi/MEfu3kZDcyG4nrU/EEuZCAutpjYYww5EHuKJhc58Cql0PMDrBt - 55zGUpF1rESrMySit6Pmoq269+5oOBBvzgLZjk6oC08/zjATHOUvfyduOvebFUBB7OvDZ0My3iUI - 8/2G/Pj70pjOGUyDyiM6rpe6yck6Qla+TajS8PU3//QQNqSZ/vipeHg7Lbi20xJ/IZui/5w+Dlri - l0uCLPrUI1Y2FkTJsqX+fntA/Uu4lJu3KuZUK+VtwdhpnYF+fwKxOhyipUr7HspCW5Gg9VzETZ4s - yX28m6g6Mpt9+YCDTe4o0qD13ozdnzgGLl1mav74ZXP+VMjbpNGXX/uIPwzqiFrJ2lBVb5ZugpeY - AbxEk6g+Z3YTelQhJJn5+usvff96hjBJ5PqLXzclHX7+8DTkstuIWJTzIUjW/KTp+johdnk6EeiK - 9p1Qd0m3IIAYYjru6ZevduwI7xae4Ezk+NB1X3yn0QffxWcUcmh1SvpUbM74zEFM957f67Nqvhz0 - rNY1CSTW1EuCLhWY51qi9pY03cLM0wdn4on7q5+vPilBLeSYKsa86IPerDV4jmZM1KSc0fLllwiM - 1CC79Vnr+P095uB+nXZUVd6VP8mrmwOGaeOxsq2Rtc7oALTx9hJKu3XDZnndSPDWGRDlV38aO1Ty - V0/8XX/v77EA8vqEx3U3kmR5PocKgo1/oVal0GQ4KtUE5SQXRFmn124uxCiH00ufw2WXqB3/7pb+ - 13/D1Zfvje+HmaIv/tPDtNV04TCGJdh48YjSXwlifSyVgB/VjVhrbccm+cQOoPdjRwyRb+ohrpiC - w8qXws0ziTp2uD5X0NzClmq75N5N7y2K0WmTBVQ9X5RuRrK9gnfxkql5X3v1fOruFd7mzpsm7ckt - 5kVYZXCka4l6Z6Esvv15hdiNF4m9fEbEENuMWMfJavxsIr3mW0MaoYezS674MRbs259Rom+P5CoJ - MRo7Yx9jvN4p4bKUElr4nXLD8qO7EPciO2h8NNEBH3dHh5KPWqFZb9YKelveMZRfp6Zj5dZL0fCm - HfVWr3OxvHfNQf7q4XB4SIU/U1U6yOB7AnHX3ZOxhyRY0B5u+cjdJhUxrGIOVWBcaC75XDEt/XWF - sGAz4udFziZ1Vg8g8UL0x6cmI36e8f6Z+394KmYrQcDBknYheqIbY8Pe/Pz4IVFt0/OnrT/18Dkl - e6I/8F0fH+PxA8u8lYnjcffvieF1BF+9Hq5t7dZN+LaNYY3djurrMtBp1LsKCON0pBmbKvbDO9jc - /YgoeTuhrz6R0I9fqtds1j+Dk2s/vRFO3ZTqU0rlFMlsRER7ebdkem9ZjM0tsokvBSd9KrvTgsIj - Z1CvlrY6t/THFQy+IZOg7Jd6vMqbHoTt7P/quZ7Uyy3Fw1Y9h693ILLp5a4qJG/5km5rVCRT4x96 - KA/eSMwOPvp8LvMzxB/BJEFGmc7Yqg/h3l1Tat0Wv+AfvKkg/hN5NKjlQzevNbVCSRPWpHTITV/u - uduiXh0v4aw3Sz1/+bVcp1cactabsNku+h5eG84ne3pRO3FSgjMY4c4j2+vy7P70aNr2E1GO9iZZ - FjWVgLf2ESVJ4RRCz0krYDdRJL/86crN+8v/7HnEeVN1i5dcPcQeDkd27n0pxkevlXjVGj7VL6FZ - zyeWtHDibULcolS6CWeJB97k6z/+980vXsBdtolD+ckubMCnq4zW9/JNzN2BsLnbCBPmP7FHwseu - qidx5G7Aye2W7qXHQ1/6yHBw0Oy24QgHs57cbSb/xZ/EWyPh5pmTkR6DP7LVCdCgforVBuNDSVRu - enUTd2Yj4OgTheVhnxbz6H7OKH7eHVI4Jqu/+Q5Aj7o+cko/JV+8btCQxk4oZDpBjN/YMfr6TeR6 - uQOa2ucmwIO6GagR2S//zee6AY9B1ohiCvdkaOQ3oKGSNz+8YfScnzJEY48R7+rONXWpmsMpK5Tx - pFleIU7NHIODM/v7PE0xYWPxgPO1iDi3fZBw90P0hMxz4nCllHzXbu5DCZd3eaXOc+aS4eCkEj4c - NIf4pqch/joV8c9/+faTDC11ux1hORVoXN9ngsQ+nkqcLtcd0c4v2Z/lxAQ4mq1JnDOXshfJWgWO - 9vMV9tXW839+ElyyS0I9s33WU9gpDbYNrBDjIxx8psazhJRjbn77VcvmTVZJmBV5EvbqZ/JnNDkf - 8MPgRpPBaRjdS42EZenhk2wzVN3C2lIGFsXNuHrnYjJ654nDHJFvNBzdmDFOWCxAxy0QB1yPCWfY - SSBIN4mEfCrUIx4iBb78Lqy+zzNE5SqCcNoeaNobckFnKY/gGjwu4Ro/xq+etrVfvyXZewv18nbl - ALix3o1yp0eMa85VhSWhqKkaRgPrbw+OQ6eXOo8425Fk2exwBTfncCCGsrXZuDzdEbKLodDjfP4g - Nuy37d/+t1/8Z7pZcXg5yBYNL7fMnzwulwEsfkO0Z7Pp6I+vHrI7DtctJN38HHIJhe70JAZ7zB17 - Gg8NjE9m/dbbjY91VwI26pQaUVQgRs13Bg92fNIfHjNP+5xlt1w9ib46AZunVj7A7RI+qREm4C+v - Jc2RcneelKwltea3t/KMjtUh/fFRNjUi/4H1/fymhvC61aySyxiY4CmjTo7PbjgWvAz+U7sS5Wa1 - /ryS6IRI40Q0CWMxmZpUykEgdKBWJPX+51hWIeRvzQ0307pDc1whBb5+Bf3tf69Hu//sN59173cc - XCbjr5/pnlvV/Kl735Bj3zpqlHBgM/EvMXp6zY6ks2T64nL8hHKuOwNNq8uYjKVXan/+VxbJfN03 - qZSBj7kLzX+f3z7nAIRj3YdHJTr49FRaE3zxbHyql30yD6ewB61Gd+qy2e5en8MgoOdox0Q9X24d - e2WWAq9Y2xIjFbR6uTiKAMpTE0buq5eW3L1rSPKtOqTHBuvzzN0DQNtLQe1oM6FBDECBe9NW33qk - rC+crYd2eQCE8Hv0/YXeIYRv/ZDAlXV/Eke4IRWXM9V3qZW02hV/f1eyJ6Ow1naIDWrz+a03BFfW - dc5RKwUK9VSQrx+BWImEM+Lmi0LL/vxMWOu8J/jyyT892RVvvkV8fA5IiKZV/dPnoNqaRgLTt2vW - 4RcH1v6oE2sunnovr24ePg/Dk2iHu1mL1teCcPfsFB77gRTc5n18wmR1CjXX6uCPjb1v4cNnO3Ih - boeGozQ9sTgfdOIlZCkGR4YGpQl3I/HHnPWJrn1At0vwpIZxOHezy7QSgt3+SqI59BMmH0QNmoch - hejqHZJ2MNoVfP2PEPrNoxhKXgrh51+qF/PCmP9uzogd7QMJXsXod/Sk5ejnx5hKGHTs58eMl8+D - 2AebQ6yz1SeGu5LQUy6d0Pzls6jRbyd6OVas6z0wNXzIpYycv3qPWS9bQraxVqhzSXDCRiAfqCYY - iSJJx3q5O1hAB4Wuw3k3mwU7u2YDE9zOX3+uKRav+QC8J8mgX/ysebx7LDCXBqKn8BrrNEzr6E+/ - EzPk2WDVpSD3RYmJefPXqFPXEYfvl0IIhVuifecrWwPdVydtZLOoFHymiQB429+pfXJr1H/7258f - KqipUs8tKgGddk1IrkL+qcfn81HheW3YJOZinS3vXixBZj0aJd4ukDC+3hLYj1VAfvO1WavuAnxq - Xfj5uQVfeJsSvn5sKL/5gC0avZQwkodNCtOr0GJ2rQVvNbb//PhF1nYxHFfqYeS4dCiYOm4VdBWP - HrXR6VNM3N5tQMe7Ffn1K5G/gAelSLdf/5Zj0+aaRfCdz4yiLN/Rcn0Pspihfqal+HLRBBs/QIri - 5t8TRD6abg9OkJdb+yLuczn5A5LJCnVvqSTeMlx8FtnnEBXg2yHr5FvXu3tdkX/9UvvOc9htjUKI - dx8pfEmvsR733RxjVJ5f4fecWPLVDwDtLUbhcundhHpaVcIhnM/fz1O6Jb15OdIGawy//kIy+6rV - QDa9NGp3K9bNXz4Iy9gbRN1ca38KRgxwe67tccpQU0yStm/k/eT0JI0ixNim9QS0D5uABIVmFeJP - X554kxCbw1Uxe6vNAfLN4zxKLp3Rt34UkG2t/80TikqyrBamVxvQcv58ku+8TkJk82Aj1yGz6KNN - 0EI8Je9xI0OXDFEpxEAd/KBh2Dm++JtnxSF1RxTPYd2LRXLDH+/TfOs7ToSVHsZoLRw2oZR1N39s - TVwCT6oL8ZXilbC3bgiwU1U6avLYoXGO2+8vwDiPJCkR9bm+0Ah9vz9kgsLr8/CJbz//eDymeZtM - shWnuO0wHrkv3s9iwCkw3p5piOQVh5bcX4WIj8tg3EX9QafDeT39ff71VvtouoRXA6prHtKvnmQU - 70sOKEhXug8cHw3O9V7KPz1tJ0Gjv4m/j6X3VRbJ9kGfCZNURwD9M7nEL1S1m+bDewG1kGLqvrlW - F4fNUoK53dih3E6XepbmloObuUbUkpPDV4+gCAJlCkieDe9uiFeh9+c/7q91VUzWoQ5w6dgRCZ8r - qreK8vhsdi0/jJv0PLOPwfIQ6m7MqdZrEXp86x0fDopDjtIrrMfv/GTDrEon3nAwEu47P0KuJnbU - 6UdO74rwU/38SbL9+onzamxLFOAyJ9b+ZXfiVByfcLoFaxJe04pNW7nn/uYhpyN2fTHqVUXKD1ZB - t8cq6ZZFPUswRcWduBGSkyUK1Sfkg3Qaxa/fsVSPqYKXDpSm2rruZnw6yuhJznei3Q/7Tiw39whn - LdPDwRlq1DM3HuHr143gv0g9ba+n/v/nRIHwX58oWI3u63sm7JXMbG8EULdPGm72slTPTh2UMGX+ - QLXn+eX3t7BZweGRhtTJq72+0IF8QGlTe1z3lwUtHaEl7OWkoaSpwppvUbYgdN4XlGgo0sUdF1iQ - sNuaOtvXoE92uTQYC3NDXGvtICF33wKsYk8O0amYu9691B9UnYItue6ENVre6+qDlHQd0a2wyF1/ - Wd08UJ1uGiWaCMVw4XwB+CgXQpyrH384uEYORXjP6Y5kd9Rz0cqDDf9ghOCEormZjhrediil/rFw - GVf17gESeqOhcBRdNKgWCtGT6A8aTopSC6Wtr+TzBUH4NgwRTQ/3/sTX2tBpWBGv47qj0UIiBhWJ - YdsXC9TBCBfoLGoku0qf1ARrkJx9iVrjgNlEWWygWzXvyNmXAsa48z6ARgeT5gJtiklX8wxLK0Kp - 2z5fxVt5zhEWivJMiI3Y9/5LCMGZL6kbySmay5hpOGjrG1X96oj4cL0f8Xi3T+OG3V/1/PkoEuQx - dyYe3YxsCgoXIHZmm9qjIhS/63jgs5wajaZ3/KdLPvikT08Ss9jQBxTOEm7d80y32l7sltk9HZBW - DDxRTibUUywWIfSHNYQLOxKfG4yPAryTHelhdbr7nDOiCour252cfPnesXiZU8wH+fN7wqBLHoeN - nwHqep24cDSYAPd5hdebbUi08q4hcR7eEfTh+kJ19JHr/j6cDaRM6ZMeTPVRCElZHfBuY7NQuz53 - 3eBfIwUXXnClu43sJGOwRAay9ZVKt3go/CVetRkgp5OoX+90XawczoHGSRSiTx9aMB2mM/ZdR6WH - Tc0KunHqDyQsTMaVW6cFB5vMwro2RSS+3q1aJIdXD81rvaNqnuzqxU9ugGORU6gaX6SCZbfyAMab - a8hhaRfEs4fpYUNzFno4im8kzJvogLXOutCduPY79nhRCz4oVsjhsewZ7yqtjDzL2NCit2/FqPlb - C8ZpGujBtKJk0thKRnstdkk4mySZepNbQIk+exq6NZdMw57vsbP0DvXTm8Tm7TXh8O1qD8TVjEmf - H3gpcfpsbJo12UEX5NqR4H64zH/5sLDTwYCje8zD2Xqt9QVPNw+rZ+VFLyRa18snjCTsu55KyZz5 - nUC9W4xXD+4SouONQ+y3P+YjFIl6SKqC273FCf1PFq6k7TUYCv+gLqqoJEutoWpIFB3sUFVUzUF+ - /X30u0sbDyfnvFOCcZf1cfB0je1EbwygOSeEhPBesk632hygaOEJjoIqHg39PKIWuDJ5OF9H4XTZ - SmEaHB2CgWwBoRA3EK79S57Pw66bOm3aoPM4LPQYVqbFXcuphO+Gq4kDBuZPTjOZqGVfC7PX3mGL - VcIWRsqLG/lU2PljXLsQ5Vre4jdTPTAX7tWE0z27YsQtvsKdn10rnQK/pZbRvroZTDiHwt2KqXyR - j/HM/DkBRe0pRO8WFPdBZQVglsqI4o0sxP06/zBQ3nDc6EUNmH3LdBie0vO4OzcHsLOJJ0ESdTHB - o4nBcNsrEZo34Druluut496J/ABq9IIYLYPs8/UEU/A0NtUI72NlUVTOOlqvyaXCOzYlr3nFu7Ie - USV8rUHRtzJ4N3yNkexqFg+ZU4PlWO5pHGQPNq34i6IFH0aEBqDM2aEzJM9I4zGQxFqZeq45QlDe - JXJ0dgBMUxFs4IBoSU82yS2Kr6EJ08fVoGbgJOsOTcDB7DgFNJWLQzzv30GOOJEqeHvia9bg0TxC - Wr4cLLy0qhDm4e3C59Tc6HnFr3V+dWRn+EZTIFuMZ2GqQwvyb0p+/OAS8Qa7wk/IaTMb8fK62yI0 - r4tDtSOz/YaMDgcKuzqQ84o/M/0WR3QPjyPFelGzToh1D46H2BgLb/MBwjJ8dJRoIKVOvxRg7h97 - GRbQ9UgsHtWC60+nDPFxkpDHoa/ZfG2OCbSur3jcY2mwhmcumhIfM4NovCV3fUImHX31sKH3wKzi - 2cVkAhWvy9TJYFswxZ4TdN7oETW+/smaVa134eg8RIKt9NCNSViVklcaTyzgcNsxcqM9JGPT0vCw - /VhT3h9uSCAmJEfOMxSWn94P9PqqHn3F/cVfSj9wERrTENeVX8TL6yqZ8JxGZxL3Jznmj5amoqJ2 - FerUcA9YMLcPqMviHlewSMHut17bPcE4u8nVyt9SCbM8/RCS5xVjxT0PkEECnzwafwQCqOQj6sf7 - cUSWpcXCNgAQrvhLQi6Rf/xSowhzNjmFpqlwGQpt9NhONxqbn57Rl/Xk4YKrhpLLHIBl2ScGBNvR - I8F8vBXCy7pyaMm/PFH70xOw6nMokRFfDzSa97duHu+t+ptX4o/tqdtdQONBFGs5jZqN56/9EqDK - Um4/PIhZ2vkiet8sjWInbXwuTVsVJoNXUqu1lU5QNycZWhM/U+sVh9YuUc9HNNGMUXeeF8D6QyTB - 6xtG9GqPYsz8HNpgQEOJ+edSFYtar2eOl94gCSsRmL61O6LvUR2JP7XUZyFVs981tZTW9vnty3VR - nNojUXYfw5pYBjyY8Sm34s22mwdxkZAelAkxZ67regEZPSw0R6Sv8lkU06Y2MEp2vkLx1yz8Tia+ - gcaLmlDfNrZstg7bFGw+/BNveLm2aAKLBWEJmdRWkFFQmcTGbz1I0K4naPKyN+Cq17BYPJFFG+10 - QyCQL8QNtaRjpR6lEMfenlrDRbKo9PUWaF0NSi2tDRRW7Y4ZElp+Q/WH4IDdIGQGgl14odrntS/Y - /uSKP3761SOer435Vy8aOlITL1yterA7faNx6mdqTZf75QbarUeoZWaHVS/sIXTfjxM9cbwFFv3r - ZVCJlhFzuX1hS1ZmAUgmaNBr8ZrBctkCE9XO3NNX9M07/nLQNtDZutaqD4A1giDNoLt/fOh95rN4 - CQY3g796am6Zxwt/gw8A/eGFhYDM8eR0pgS+l+lIAk6UO/apght4+TQeUQpzsJhKLcPS/oJfv1vL - iTdGRJYrJofE38dsxmgDX1bkYvhsckDtL5sgwosx7vNp1639XcFUGAfMRfaxY8++auHtiip6Ht6Z - Mska5qDia3tqOyJXLM+TbP7V4/ytFH++neYWjk4k0lNi7oolilAm7abTiRzU57tj3RxKINOXgtoG - AoDtYjOBH+Fwom7H35TJse8VLOqS0sPKh8vUtgYA4uH568eCde8HhLcmeNJke7WtGWROCUFwvIw7 - b3yx/p0YD0nvXUzlll9ilvQ5h8zr5IzpXku7ATn5BmzmnUWVs7P1OxRMBtq5qjlOYs/84fVuMGzZ - x6JnU3357ekUpEipWIL3eCtaM3ndW8md6UQI4R8W/emtlPUpSS7s3O1aSG8gRyTE81aijL1rCcOn - Aas/fTXhWJuAmOKFOrH+YOMj2vd7dm5dekhxVdD22HDwctW/RGujxWdTClT4HVKFOrDu42GfHSbU - 2uQ0LmFlKj99DcjYtVho5KWbyKN2/9ZHX/XfLB68Gjzr7a/eMVgOjRjBKd659PhJFH8X77wJ5pf3 - g1r+ZwvaSepU+MMDQ+/tYlj9FTw85AeNO/sUC3wjtnDV6yu/vmNaF1INL45qkCO4b/xh0VMZetPZ - Imp8ucRc7F1LWJ/TmZ46oBSCIXklfIqBRS8Zxj4TzkuF9hO0aZhP14JDoSfD8rVZRm5ECuBem2ID - T+4lphppmnjZVftMGgftPC7ari9mamx7Cfv+g54i8mBLFO1yuNENm7rgq8Z8XD82IEvnA9FpfVp3 - 1HkJGuTm07O7fYGFnZ8GzEUxpU9P18CU4reJVn07bhZzY83R1RWRa157ctXYHfAFN+jw+FUxPTj5 - tpjTEvdQtuFMg6c9KlNwO0ZQPT5TcggfIlv69NlCnXMH6p+MvhidY6ij9CEnxLC+mj9N5beXXF2e - qafsVMA2N32EKz+vfrUGkx0fNrDiVZlED+PSjR7hTAi6URl3gktjqnV1Be/a3SJWemvjpSyuNjSE - K6XH1U/9+ges/u43//7kP76S9E21mByDSo+Xuyku8LwJdWpnDfbZ9dA94F0ct1jKlB2ji9PZgH/N - d4K3QO24yTt4UB04Rtb+iTk7CXpwf94bYkhnC/z0GBgvekKPzuQyTnriFGrnbIf3fFIr83OXViBO - 8UhPpbZnzFM1FZDxtiHGqm+6Uiht5PgSj7cQH6xdZ0wqNCuNx7P5bKwZpZsWarPzoYfQH8Dwmzf2 - uXnUCQ96TNPIwH/9GfJvXxmEOWwBe7av9aPsJmZfRZygf88u5JYJT2tuQVIhq+a9n372p0+EPKjw - hkou2bmIOw28M/AhwZ1o17KyBr2QW1RMbk7P09vq/vzb5ap+iWdO2s/fSmiTmi01soe+5gltCxd9 - z2F4YU3HnlZ0hA87yqmJWhXwieFJKLrxHbF/+DFEpIJ69jGJVd3CYq5eJxPuD9UX75OuUHrROfdA - E6WInnD4KubnMutwDMNq5TPiT5dmu4BGO08jd47djhc+eYkuB/VBfv6NX+cDfb5Hc+Vzqxi89ZsX - cSd+iHr8xMqUEFGHkngj6/zO/uKnbQB4ZhIqK+YhnqWNKIIVX4nibHJrvCVGC+/NoRvXPIPNblcH - 4Jp+c+p4+ocNXLFEv/clWK3jbq7WP6cJKe8STRa3Sv9QigqakWZgVMHFosM7WOCj1xmxVfFdNB4U - eJTl7EJWvmBT8Uw3f3iqddFNWf3YBtpqFhBbvGZseXONB7afoqNOfgj9nQ8+KvKFAo/cgDLlh98w - kgQBF1/6tRjWXAxWPiTOwTUYF3vPEha2OJDDolJlfi2chB6c5lGigjsQLtqLB+eRLqOY5BCMz/tZ - /+VRRMONVvBnXcsB3OrcuG+6mzJwDNyAcD/HeB7PkpUlr1lGBLcDMfy86VgaGTZsMhwRc0ezjq55 - BRT1QsZDBs1CSLtYhJw4KCMKDnnHhLNUQbm+nfA+nPJuytAF//AaT3e5AbPx3veQ8PcnsS7xMZ7X - fArVIn/D+29V+EOsVxl8sbj/4XVMn/3YQvemjERFrO6WHb+k6NIvITmX3eKPtOMkqRTWHZxT+rKm - dd6RaYYcOYfTseCeB6eHktgCqmWvHZtCVj0Q9OmLqukFMhbb9Qb89KOV3kx/N57eBtzJNMfzoHYx - O7WXGh4yWcDOqt+5yQ+OKLRPE/7cG7H4yxeUKD1iGLCd0p9HIYB18xrHmdvSYtiizwT7NmDU1o9x - XL+2/CjYcq4RogIBzD4YVBi+0i/FOHWs6XJyHzBxSp+c5NBgTKahDfWgSgjuTf4/fwab8kPJbX50 - S5uGPLxwi0jMdnOzdmv+BU8gUElUKShmEZJG2D7Ijug3obImflvZIBellGjq2FiNeh0wHDylwLyu - c9YgLOUDsV0DiLWcvuAvz/r5Vdkyp25BCq6l03bbURnlb0tYxi0PWwYE7LCFWsPvfgXnzXhzCy/x - NO6EEvLF/CXOR1BizgEWB2hpvOnfPKz5CVz5hZjY+XRMbGAqHWn8IKdUy9loCC8XhsqyBrJa2tHa - 34+wfMGFxs5HjKl9W/8xsIcicXOArYm9shza5zOgx8XL/LlyWPKXL4VXSezqRrymUHyLN/LLa/78 - 7HJ0HXIVrDLu/VNiS2dzrH7zCuh9e64huTU2vbyxZ7UF825A2TwxPVweTTFBs+DR6veJKhw3ylQ/ - 4hLOvhOQozslPm/czPb3fDQ6ez0Y8eKLkgc4QsyXkYCJPDLvT/+elLAEQ55FHkz2vree8PuAxazI - A8Yf6U2IO88We0mm+uefiMH3YEbovYHxUzxS82Lo1hzq+fjLf8d92XnxIlzfNTzeHxI9bHbvfwAA - AP//pF1Ll3PAFv1BBvGuMhQE8SpBRGYhIogQVKF+/V36u8M7u8NenU5Tdc4+e+9TDxfP+eIo8jlO - 0e5fNr0PXB4a2qskDvLPOV2efQqYCx8QK3G6GI9MjqGSW/Vf/jX0Fl4zOSZcTtQPH4ysM08d/L3k - H37G5rlZ9/iBu55AqpqAeEF3qoEDK8bktIZfSnhgpApjOh7mSf+Nx7cTyHBQqzMq8UmneJWyFGaT - QUkWTDldbeo/YKZmGzH3z9ND/A6gkLs/dMZdAGj6nkOYhYZJysFxXcz2XiidGeNBrvWjcf/qN3z/ - 3GSPvybmYjlKwZ++c+PPC6yCNj/kUT4ESHt0M9gOK4/h4d0UxE1zU+ffJ0778/f//EpK7Pwb/dMb - x+qs51vEVBlUeNoGGxeNYLw/RRbufhRm5lOl07FuJihdI4eYu3+w+dFDFQaV5ZC5822aaMyu56co - oOCDxmm42TxcdHYLlg4oMeWm0oGb+bGRlaA1Xt/vWQW7P0vUw5eO2LJJIEfLU0D6H38TeD4E/O7d - 6i9pppg/VRjY+e2I/Hn7Nnu8QJjoDdzrhUCHv/r9ej1e5KSYbx07eq8Bh6MOsb/Zpq9VxPPAvTgV - BoI1jrTtshouLhuT9FASuhbGUVUAewzIac+fXS/uK+4rhFQyqTr34OcaEmgfAvGVaWDXY7ai6CcD - uSfy0rdzu/DK7aL7e304U0Gyx98/fmG9nMvIb85XBn963jdDb1z+6vGuT5DzZhp99+80+HKzEK/8 - 4Qu290lRYVKKCbrFiRiPhcJXf/0U4lvhEg8Hv1sg1xp3lHVxE6/Sei0ge7oiXLkIjNhLhBrgaXvi - gxh7+nKqzjUca2b5p7cWk1l+kJsMAaVr07pT5UcefFmPI+bSgQXrBbxDhXjrA7lRteqEy50SCiUb - kudev9e9PwOUX+kQ3zdrd5tHyYRckp92/to2EwBKC3f+8Y+fbMLn18Fn0Z9RiuCp2f1LFR7tYcFc - 3vrNMnFgAScoD1jc/azVpqdMmfjbO8Bt8ozXRzd1kA6KRK6/6zfud74LVJup0cnDYjzIqouBsVY3 - LBBV1vstfrHQ6Sx+59dXuv3xh9UKugAqDwasMrOIkJ4h3PslaTydFqeA9YlLg3U5VPG/+tVaMPnj - m/EoWaGseNDXSWD0oJm7F3L+PY8Wj34uxCwSwaK6CDs8MXK+V5US3hvbRekdFuPSDyQCunt6IJMp - PX28qUUJhfjsIV213zlNNsX544MBfA+bvjJzy4K9/uDdn3a3k91k8PteDiR5Wo07TRaqwLTdomCN - Mj9mEUA/+Z4XGfrDJ7rsKzz/+meU/bT5QhfWk3e/mGQHox2347BkoLjuZ0zt/YxZOqYlVKdR2/H5 - 4i7Po49lzC4Q+fKMmo15K4tsgdRApyVs9VmMcConnUwD4Yo4d3tmOQ9kMUHIejv3nD58gAHj2Dk+ - mPxH30Q2W+DuR2Mez0865XVaw9dt/mFmUdWRJXpsQK9/V8iTHzTe+Sf8x9+P96AGi1OEIiCVEyEH - RWy+GeIvg6vcPYj+Zp1muzuwg+Ismuj6x2dMRuxlPbYkZElrO67aqS+gph5ZpN06LRfGd8bA3T8K - FvFr5xtxqlA5vYM+kHY9s2Du0EKvqDeiL0SOe38QbQitacVA0KpxXqwJQi1+jER1EWiWQJJM6BPQ - kKOXnQDnhAML9vwhnicudLXf66T8+SeIi6tm7WFTQe1gTuSvn4An/8jALMmPSEWnT0NVtWXg9NMs - 5HYX3EybKj2AmvQtSlOh0+cIHlg4FBWPnJYJGn4eV0OZg+uBmM7x7NJj1bGw0i2VWHGS5ess9DZs - Qc+i02W4uNsYFBgKDn9Ex0t2bv78L1jJlCCd+1F3vIXPDF7YwiPWXz7tfEvZOGYmJteX+XbYV6wo - uLgTO5gAWL3DRQRn2XADSXzLFOtZVStvhReQ0Vi/ccXWYINcao2/flLDh681Uv76p3s/Wl907WND - r20uJHgkZr55iVDBB7JFdPvzG/760RUur0R/S9dmgk7DKlctPKO02jZ32v0MeRHeEfJjNxlx9QEm - fBCXw/PuB08qBbt/LBz//Bx3ZjnTgJFHUzyHbtb89X9hev55xLLKg46ffbL89beCAxdX46Jrsw12 - vw83HYvz1UMPGUa9MwUHB7ziLXpbLFwf4hmdA9l32aX9Yrj3d8gez/l6lUsbLrkQIjVTfco9DY+F - RLQXYhwrb/fziwjaetKQGH5oQxjT3/49b52PxUglsf4BU/z0xJqA1ZCDXkVKSaaAhDXf6JuURBP4 - P1YUCP97RYF2/56Dw3qS9XX1ugJK1rYGLPf40Q2ygQm/mT4Stfst7kTit6nY4yvGHM9pdAHBVisO - VEKiNQMB9PdoTdhWfUoKv+/0hfEaDW5JugZQ6c6N0G/qBnuXIAzUUxBv/NFQFS5NZ0wnOwSsYYQR - zKwOI+s6R4DKa2RAzYh5ZNeHCdC4z35Ql94hccKhy+n1/mDhsTsUxD97PqWSazkwq+kD2bdfl/dd - qtrQxW+TPN/FHK/3C+so7BcWgXA4Dy69PutImaZPTo65YseCpk4ynE9mgmz8Wd314586YHTCjwTe - CeqruZBI3v+eGNJojwuHNBOurTyQo1NRQPG6ekpAni5yM+Gcs4N736BWLJgkqak1bKxEDuwwMxMr - jz8xnRPfBjyRBpRIsMtXCdgYHjQkE3NSGYCXs1wo2zZr5GkJGVjuSxIqRyXt8LQSq+EOWOMVMFcO - idablnOnd/+Dl+nMEhvGzchfjXeq3FTyCVbE9c1oG9MGkyMI0JHCn77cj5GhDBPx0SnyTkCw4YmF - m+brSNUaPC7yaj4UJ2Ec5G0X3RVwRQslf7ImsZaTOnLJN5MBmGsHC3PO0xXkJwc+5sQiUc2nI//1 - LpUSD7JF1PHQAqH4nTXFzi4Y2U/Aga3Dn0wR0wAQJ3dpvIXVh4WZyzrBgRPjmLt8QkYxvIlD2X4G - 8PqB1gLW3gzI8a08XGwUSi3fh1+D2dP8cTnwBSWcrr2HwfOnjXzw9RYYpvzewQxkfZJXM4MbOj6J - xYhuPF3fWIVl3nVEfVCsr911KiWnJyw6yoRz1+dwDmFHPYdcvF7Tt1JzIqCG7YlcDnWQc8+1d5RA - DwbkhLKhCxVALXSnPCPOM343tPisrUL0bEK2+j3kQ3WFGnwdtjO65ZwKROF30KCxFhdS5vAJhPdT - d5TCjwJyzTB1lxcEGnykUEEFY590torsCEqCJ5G7Pb11ygjvUsHlGBJVP/10ejsytlwlnxHpwiEa - qRfHGmzL+kuCwU7oGjw2W3mfb2ZQxeSzdxiuiSIOWYWyVJj1jVmZDlpL2JM7EEadl4u+hXa1fZF7 - kOlIRyKFEK6URa76PVP+GKVYYTvxQ7KlODZsWx4yKDOmRpCqH8atdAYHCm5rIZsb7oBew72j2M1i - sJ7cl8tDFRagOW4msXFC42UUjQIKovhG0RSP+fYgXv3v/2lyKzezOn0fCr8dM3S2+jPlH2DjlfZZ - Lsi8LQeX5gllleSeIBS+DWWkWQRkONcZxsJbu+f8DDwbwFI9BwubaQ0rqN6+543LkDPn73hji8WB - L1DPWPqdM7qqE8lgjZyM+O/ZdRf07BzoK9IV6WK4NIuhqjwk02s/qYUr8u0dLrWiNheRWPPEjgvQ - DA9m9u+DdOlzyn+ZI06QZ89mQK2AA/jnaKrCP9QL2fOBEoE8HCi8bmvAnI40/8M74OwrgLLSow3W - T6GmRLZ8JgH2XMDPemNCM0zegeBYQcOWTfoAgZkFWJBYNqZt4KewfNQEJc/JpMv3E2zwwxQYnSda - N8Mf3iz4+CKmnWeA4yKFB+c6fRL3pop06nmjVrjj8YH0Ql3duap/CWCuhxs6H6uc0jKlG6RC+USq - kjxdIXv9AmjopkrU3HABdddXAdriIflbVZzjDRmLCI/9MSZBY+suNVHsKH/Pdyr5o0vHb/RQtJn9 - IC1JhobV62KSE/o0djzTmz521FqxyUT2+HR17niEPyg9YEpuf+Pd80YFr2LwQkbeiuNUPg4V3OsL - Ci5j0CzjmDpyD/0AGXpyd9deewXwD5/cel8HwCb3CMZxrezz9cnZIV5+CnzwLUF+xerY+BQZlArV - R9ffrOtcgdpeMcaTie6ifdaX691yIGG+N6K//NtI2zMngvu34tDloG50TUpZgxftqJJnjbqmd8Cw - gRNh3yS6bT7Yjg+lhWs4+sFQNuz4+53kTr7/8CPA3DuKKQMWEb4CL0bmY+zG9YxfCzxLl4lcnHUd - V8i+N4VBqoVixlIpDeyphwnXbcRysinevmEFFT/hM/w5Xiaw8b6cwpdvF+geB4HLIjyK0IpgMEv+ - TQGr+G4N5dNKB6K/hXfOn+R3pzTp50tOakmb0SzOpfwW1wDFY3d1V/dTVcq7qEZ0T6JPzpoTrRVD - hVGQ7POxPluJheGlOSKPnJ5gqa2LqPhqC5G+Ho465xyuldKaR0LOv0fafNFz5RVITJWgSCPjeodY - hGaYvlEisJkufBabVTzpLKMdD90tLUwWOv7bJlFVDDnVH8dKqT/HFd2MkMmXmKWRKC7XhaSTWoIl - lrRJGbvAQI6xGTlrKVIIr7yxd6CmjvISf23hfDIScnu3CeCPD66FlnLSyOl2Z9ytdN6O0lT2jdxF - e3A3bQQp/L7bnKR+sLn0pE083Mc7EE9jGq/JNxQVY6tsdFFX1RWOhJjwS4oJhef03tAa26KiGRee - HFNT1JeUp56yMc8PsYxNouPVa2s4BcjBLPdwwKY8LqYy/L6v/RQuR1/uitPCx5xa5OIg3u1+khEo - O34Sp6skih80hspLLnlifRW1YS0z9KDXRDUJ9vr4K80LVorvXceM/BliWn9+qrJwxRvl31/yx39C - 2f1dfvitF6P7DYxroPz2PXJ6ORbucqaODPH5qhDnxXjjFqhDCTtUfYhFj0O8bs/Jg2/uO2Bpulgu - 5+izCiMhfKCgNjyXpr+wVaoqPKO77XzGZbsOKrQfeYG7o+SOgvKjNnQ5xg6k/fcTlr0M7vj/h7fN - Fl+FAv7VM+chX5uVeRcVzGVjwMyTBvHCxZcaPq7AJC7dYrAyT9/8+38kubRfl7vNfQi7WebJqeTf - Ls3yaFFIUjTkybxMl2vXrAVtvRgkpLo/0g2GKkxU7oYsejznyweOBdDySUDhq/vmpAJWByvsPJBR - mGxO0+5sw+TmvdGVW10wRQ1XK3u+ocu38UZW7kkNeZOf0FnyVJc7Bj8IbaM2iNmpvsuh7faDTfr9 - 4rIopeb3XL0SVim5YymJPvEWmQurYFmiRFt71Z3O9y4CXpvckcpYfE4WVRBBg7We2Or3FW+XVokA - Pt+U/76vpk4iIAsxicoOas47xcyA+7hc9vGxdKqUHg8no70SBMoPWLmbH4IJxUdyPLkHfUu63T9R - pCspPqnj8q78UKFpcT0uWXx36UNAE9jxjez57nLi3fcgLoeQuBeqjsspTmX4F++IfHW6GEBK4K14 - aFiqRo0uH1VmIDw1F7zZ3gA+1XgMlMsp+ATCdd7AlhYBD78noKAjToVxOv8mDQ79c0XXY+2M7P28 - MPCRqSz+hUMX08cBd1Dd9/hF662Od34TgT89sb+PSxP7acJQ/jCBVJ2tnGh+7sFSYgR0tkwcb3/1 - 3DkYDHnFptks1zuyoQr5Lzmmfdys3W/twQepHQnw8zyy3gIyyDAlwpJ478AyGjIrW73QYUXKkbt0 - lwXDA12XoHmRfcXiHYcwHWWduENogu2PLw2cZ2L+trz0xT+uAax+kCNhZ7Pj+qa9CYXmGxAjvVX5 - Ymnqokj8WUPqSzjp0853pOMYiOjoVDFY/vjvqVEt5BSVHfP+5dCB0ozjHR+qcSWt7ihpdEvIuWSj - mC1kYEBTystAufJnl4OK3YPa13441Jpg3NBZTZRaqYdgfz+6Wb6AQZjgjqBSsZu1qusUnMP9zDYS - aoBNeRDAl+8USEsxT7e34ewrpKUbiWfvCxbxeikUw18mkrfPeaTv96OD5tMBO3/YHfPXuihrtAAU - 7vyDs7+Lpkj6+4rhrj83nC2hIpyLO0n610opLYoCcresDRh8+OhLcXBqaAqXhVzqhca4jcRSIeiM - CGonOE4pcH7/8KtollvcO4aKIVR9Jpge0TtfmkT1QMeGRxQyMhkJ6kIMrxaugmXnn3Pt+j94yLdh - 1yuyuwVj4Un3cbsQt/UQmHptE6HNaTpSffGqr1BcPUj843vvCOb5gt5cB/InbxIjXH26xKfVgINa - jOhIH7ghB2SpsH1PPtLspzXy74M8idutThE6Wvz493wwOz1VZBjySIlaVYXsZi4klsQmMT3cZhma - TW2iYxaYMbkojCflwKmI362azpo5t4E/PnHxbm0+td80VD5KJuz58M0Xxo5baARsg1CZz+6yqjEP - 30U9Ym6ZWTA5dmaDuYpVooubp2MjRAGsA+NNrj9GBVvr3FsgZXxPvLUcANWvsgEUv7igXP6UYLre - kaMMWnvfn9+l/LDMKRhf7H7rYmjQ9Vk8GLkAv/2UctNoeKsxZEWW+I6oWhQCgRGGApZ526GHoATx - PExrp/zLRxLWYD3wA4amJfSBdA/2HQvLJwWCKL99mozOyDPDDcNvmXEE3fra3W5roUE/hSbKaSjG - a9P+oj88xcrheBy3x34H1xptgOjCU9B3vMPyC4UOyjnLpotjh7b8rX9RwB5G2V3UNaqUTHJa5Nkt - 0tkQRIFioaVHWvS8u5NlZh54TFGIpZ2vT3e2weDCbzna47P5N78nvPz+8f9/45ezNA02cKN0tY6z - CQN2e83ihfIuEaFaQndbGhKJzpwTd70VcqA5G7LQfHSFv/pw/Wiyr0jTRMlFO2GoeNkDOX1v6xRI - C4TFRZeCVV1Vfbvay6Y8NPJGSPBtfQkPww8efbnEjd04lD++ThocGB7s+rjVN3rwVPlQ8BU5fhuv - 4Y75JVQGlNGdn+PmT5+Anf9hxkltV/iL7021rugs/oyG6+5AhLKiuiiW9IEStbho//SA87BgvkRL - w8MvKSdiBtHgbtD/beD8cgRkakrdbKQhBdj9K2J2FweQc3l+QFV4J8SMU1XfBhYuME46FqkaO+X0 - Jr08eMBMgJXt1sUkf/9s+GJwhHRrX6F9ZGwWgviQB6Oaeu52WccOuqRVdr+ocCmNuQ6e5okGzP7z - polDD72utIIimTAdDof9DJ1rxP/T6z8lPe+/LyxU7vVix6/oz09DyGQ6sIQbTZX9+zGbt9lIV9Fu - 4Zs+AXKzbhyH7U17JbxuT0zMedC3+/2QwPrrvsh5r5/cQc8Mxb+KiPg2CHVqVqGs2NPbwaP6HSg9 - X3IDir/ihkf0SEY6ipkt/0gqI/PY+4DjGtopzmLz6Hiog1jwbr8SNKMoozL8Cs1+DUsGA45Ndz0f - x1PNbBC6HLSRfTrLgOzxo3xzFKIdX1zuQSpP0cXXnfjYtEeiVn0BPs7q/MufdcZSBff4ChhZ9+lP - nPkJHlXVJx5zrynBFShh+eI1pL87feQ9S83grk+Q05vTuDjgvSm3u/dEsfWiI5ldHErHpfbQuXp8 - XPy1HROCSGr/9FQzn3m+V3wolMgwsiXHwdfYwM63A27XSxTLoQk7fdP2eCtyfujNEmbvuUHq9t7c - 4aViHr76q41pdcH75zMDdv2nQUd1rdz1fjqxgBkcSNQ7EfTFbIsfEJpPQOzmbedbqzQBbLbwhP70 - FZXbcfk3f6fo2Yw4IYn5Vy+xzC4W2HgIK5h27YJe5eSApS2Fx5+/QlTr+2mWQqaGcr+4I0FZfHB/ - O36BGtkZyi4qpHR5FBVU5G1E2gUoDYn7rAfHgLkis6NmzhbWu1D2eCAXaDj6b3h9O3DgpJL4wabG - 7PsdyJA3JgY9u8qIF3JbKuUtkFuwfISUcklzLmEB+tefPtKHWyVBAHM5D2TtnuX4ql5kRS3LNJCA - 4LqbBiUTTsoYEe8eODnZ/VGYCxDs/s9jJFgODWUEx08gh4OZc47nyvDuZyo6oth3MYQtA+6f3ArY - fiHj7teF8NyWLn4wgQJ+YTXzcK4fGLktdvPNs+wH5E12Inl2ncH26D4/kAsMIPbi6nS97XuQHRVj - dLbzJt70U6bC4VjV5KZ/jjlvExD8fR9x9CeKNzbrJ8jPFAS8eIcxVeoiAr/ifCXe9IgoRfffA+aS - tu23ui4x3vFGJhvLohv01Zwj008DO38lZ3s66vw3WR7Kn97Qk8dEp9UYI8hTCyF/bmd9Xpa1gKzz - 03a9mLl0HN880K3Dg/zpB5Z59gtcDFj/e37+UaceTJOnhqVJHfLpdbozUP58HBSymTbyu38FKZcS - oonOHFM1lh2oiL2CEuQCfYbssEHpwaTBKza7cSHxYPz5vchAMz9+RtWaYB87F8yy37VZRtEroAyY - hOi/mnFnLlJY0elnFjkoucQUXsoK7vwMOY9BAKsf5RF8ah+Cn2J/pexe/8GOd8h1vnm8cYvpQS3N - W2IEw2tcK5L1IJPslpy+G2jmXZ+C6ONMSPMOujtmEZXB7bgWyLP3Pd65qiUgHkSL3F/fsdmUsq9k - 80Rk4tA8otSYX51AR3rY8UWj7NIJNtj5GDFyTXG3Soh5yNbjmRh6IumLQJ8i3P3xfc95meOfZHgQ - 4PaI1eJeURq9pA3icDkgp1g7l+74A+uzcAoOPkpj/BePxyki/+onBxX1p9jz50jM7e6MwpL6pnx4 - TBsxP+VlXMUPqKHyRjAACIbusl0unfKt6hbTijo51QyY/OlDZF2Lq07PXR+C+S5xO98klGhqK0L0 - Ccv9Vmixwe7H40HUaAwmv+MlJp/mUcM0uiZ7/Bb7mYThXt/nN7Exj8HUfsvwb/yRH76TeIklZ4Kj - CISAGUDg/quXe/8mWHJjpNvQByWk+iKR/Hvn49lJfgucn6dH8EPJmk/b5d7BDEQROrWJkM+/9agB - prdOO1+c9PXM878/PwMd4fVLMTO8MNj9+kDyJSn/vUOxguez0BLTCtRc2P1vKGbJQKyrK8SLaOQY - wgfbkuKI+mYR7dEGf/0EVE4/SvKE8pAwnxtSd/20LadGVf70yOke4mavfw702vQe8JpzzrdAfRd/ - 9YFY5w91SYp7FcbM3BODRrDZblxT/vExFKU4pXSt6UMBsZIH7BCNOv5FlaxczLAgJ+/KjbseSuDv - cfxiEcb6uOvhAHKxayPbu6ruzk+nPz6MO1d66kvUewwcO89A2V5P//SfAlLrjDmuwvoaZnUvWypf - keDyCAHVxBP8x7f//K85jtwJ8AQMgcwGXswfm6SEID2dkT6Bn74mY5Uoqpf0f+Pv0kDALIh9dyNa - y7QAE/bjQeFc3on1WAdAc69gQPtqS+Rylg12/WnIkZheAm5homYVn8kPunqSB7KFZ3ch5rZA45DW - /+rl+qglGfQ+rwTs7seSNjilUP5OIgnIu2qW+1mEcLtVKf43/heOqnC9zAZuzmnr0s+i8hB1yRXX - Gf/R936JCvVL5ZDyFK3ucv1wJdjnDwV7fG6d4IUw6ryGuJkR6vSi+RgwP4/++ZXxMp2dCObn7of+ - 8HSqrbsMmPmRBfJrDsC6X38HtfTe4hr0l6b5wy8QUj5Ye/HdrC8RiTA5GZRc0tsVNPWwFv/qnyH7 - rUv/+md7f41c2rTTl3rzfrB8sRpJTu4wrrXJeEB7qy457r8nAzzAv/4pQrHZNSTK6xR4kivjHxM8 - wVq4V0/OXN5BltSkDf3rHyy2bSG72Uz9z48EvkyWf/g6XXGRQGtNX8gmg61zw7S2Sgy/MjGDpgNb - 1ZUGPOdK9I8fbbc1UeHHFY7I2uvTpBanFAgSkyHEn1edvpYsg2AqYhRP96BZU+uZwEOlmcSzW+L2 - oaAtCgmsjJzcunDpfiCvstdb5Oz8ZVlJqsIalhvSXyUXL4X+0KD5tHe9YP3ASvI2BD9uOv0bX+FP - rxJff5PzK50pzZ+PCbp6mhN1fQIds8ViQ3uTr8hnXqa+7ScfKvR9iklwu7z1wX1fDMVQPBYVfF2B - NU5zB+bvz4oM9pS6i1oVG9QIE+NxeLfjzHgogbsfi1CzvAEtcz2AnHa6IHcIOzCllqTCXT/tfg8d - u0gbMtilTw7zwdHNNyrDDrT1ZpBTy0dgsTR7g4+HUyOtKoaYZDc3gQWcUtxt9gQW+FoiBdWGRFLx - DvN/eqH21R86RU+94YLmrsJTJd6Jqzfb2JurxigJdhdyWpit2ST5o4FEO5wCzhMu7mp/FxWeX7ZA - /vj3VEVqpJyleMIKszR0/a1n9f85o0D83ysK1EaoiSm4ZkPD+NPBxuS6YGElSceq6wRwSZkjsdcu - zn+ieOEVoD8mdDpnBzBZGs8rrwWZxGxM1WWrmxfCj+9OJOBmTBeTO7HQeZ3UgFOUW8OF3+ohi01w - wVMaHmgb4TVUbtQwiLopBmDNZl2gUzchlj/XIF7XgStgL90qdA7PL3fV30oHLVu1SNLBR44jS2Th - 5Q2uAX8ArTv7CZ+CW3hQkQZneVzoaqagWPaO1PqadWqkN005p6cS2essjQPWkgDEfpEQ9VfL+voV - cQQZ2A7EB30OaGILPKRWxxF9yoOGHp/7vd0Hu0EmMKp4PoFZhvLEdMF6TBqwXrh7ArrDztAaUrt8 - ZC089GD8IarmVM1qitqmGAx2gq9zH+K15hoDJqzHIru+OPHaGzOGUHCvxG3eVky/z4+nIHkqSHy2 - Tzk3PmQR2iZ6Bu9hesZCK3AlLFu03xpBmHGuqVRDiym8YB2mZy5YP/mnPPgJ48/yhCOdS4aVo1vR - o2cSeA2vs08VwjAS8EG56+5SdXgBr8M2IS/0P6MwMXag/I7iD4Xk/gRbdzAT5VWNLxTw28tdnXEs - oUR+GqZZ2usbw9sJ2BekkLsKipxvkjOE60Efifmq7y5nX4CjHE9MFwCQHXPWV+cEtvq8EnR5auN8 - fk0GTNW+Cw5RHVGB154mZGU1RplsGzkff7wQ8pPsYGDSc7Pd622BZbiWJPdiA3AkiDsF+rGKTi1V - AXcP3hsYyPoh1+tk5PTHNRBUj4YS/6gOdD2QKlSet1tNVGXgGyyeZwilRjFQTlk5X6vZZKG61Tdy - VtnU5RI/dGDyTK8EffIaLC5/K5XjCXYonmqW0vzQq5Cu2koMevvoa/itMuUk2iaJeY2A1Y+9Dfps - lqIb8OaR+5q3CCZ0ycnzoT9y9lttjtJl00QKsRTBelBhJrvGL0GOUFYN7TQ9heM7jUgqak6zkQqo - gLqvJwbCzOrr8cp48OWgO3JG/Uopv221gv2fQc7M2c3b7SVH8rVUZLxe7798Wu5Wqwi/ACPPmZ2Y - 3fNF0UT2SU5a+W44o6hERdCTMBDv/KFZ8uRoKN9rJxBbpURfh6PWKRP3TsjL31cxDF+qKtYqF1i4 - fz1XuH/fITj13SsY6Ni5Cyf9WljANkfW1vA55ZpMg6fhdSHOnu8C+eYGBB/mjELtYu6LGgoIgTLf - 0UNXiUsqrYkU+5SO6Hj46jr/dj9YeZ1XlSDd1Mf1/d1s5Rmrb4Q+uQbY1ktrhRnsB1JtJRuFefpu - 8C//QHv56Bsoj53yeZEzlg4WF0++4jjwrhA3mMrx11CvjBPl2Wk34i/QyQV8WzqFoHjAh/XENNQ4 - ORBwflEjL0xcwErjHcOw3Vcg1NNlXJhSzsDdIq+APv2R0sOQPmDvOg45Vbqeb4o0FvDGM9O/eJ6I - GDJQWJUDOsdGMLL81aiV7RlZKMluyCVCGGiQZ32NeCa7jEJ2X1IlwLOOgsmPKYcvPIYoiW7oJB6b - cT6QPoKHl2Oiy/Xu5FvztTpo5TJBp89ByFc5ZFh5x0+kXl7ncX+/VtECaJP8IS4ulj+Ih69qeAXw - xHfj+v30PXx2xYJ08jRi+khuEbxH8IROH/HictwzdWCa3fng8GKPOfUeYgAJugzEheiTr6qchP/y - u+ViKV8yfE+VpNo+yNBrB2BqSAGEyVck5lajWHhRG0MpVII9n046UV95ANH4CUhy1kydv9fyAjr6 - oiQ4HWRKDkP5kOOwdNFJIa5OrTyzobKv3pc/1psSW77aSivue87Avc9/irDKSq9eGeJYi9cIuuTW - 0hdKGBl5Nbqs/rTMf/jqajKiW7LqPTwYNxmd7VcTLxpKbQX3dxedJ6Ggm2eHG/yK7UxORca7W3MF - Ney76w+9gkHSF1/9pEpdHC5EE/xDTt3wtx/eXV2IbfYF/Sas2sn1xjB40HmXruNjE8F1/hFi2kk6 - rn/4P348GWn3x5ovDC5E2E02IPdlCPPttq+Jfte/Fpllqo2s/kQGbHr4wyurw3jzv9dFMbtbgQ+p - r7p87gseyAUgB9z+vLiaqh+ci/tG9GNb5vxDDUK4KA8TQ7HMAF/IUg3fdeCSwOGZcbtZmQhF412g - B518nWXKLVOuuRUhbb2M+arap0gh7KMlTudF7mKFZAFi413Q7fFJ9X4m7KQEv0xDhnEPKKdpYqsY - xdfEko9UOqFUrqGoBjlm9/jgU3AplGPPFCjjso6y1tEPoUrvZ3Tf8YX4EucpkaydiLnlg7uEVxUq - pX8NUPzr1JFlQWJDM751//jDPG9S/4fPKB22FVBazAk4SJJPnFdVxTyPDQ3I8+NAUIdfI3tNBu2v - 3hF1r+/Un4xIkWg1kmzHR/z1hBR+8swm5ftd68vlraZKEp0WtPMLl3aXDwveLy9BhZdHruBWniwR - 7pKiVGGYcTn8pEWRTcMm2URIM/3NH0h5gIVBB3Fbv6oa/K6phM7LEMbUPgsYnuabhMFV7lzivvlC - 4Rq5J/GON99jLprKRiefvFgh0pc3e5uUVyYHxNvxbbktmqhMbn8g7saH+Xad+wqEwdf4l49LUdmF - stdnDKtvCZaiaVqgifwzkDXJBtObvWGlO3/KYO8Dj3ToziXMDjBA6jXT8zWXOgd++E9P/PNw1Dl+ - eFbwao068kEPwFpYLxv+jsWFmMKd6luFHx6UqBGhK+5xM59J0MIx2Njd0TYAC0zaQ5c5HANWFNR8 - /TyNDIrdryLn83OO14K9FzD0p4iclmfRbLVYaXD5PUKic8aJclnkyQBf71fi8XXb9EC4m4oZX7t/ - 9ZdXHKGF+msCmEZ9FW8J2y3K6zn2RM39i8t97kMI/vDM+VxxPt89MZCtEK1IJdFt/J2XC4T4KmBk - J4ccDEVXVQqj2xhp6k0F89/zXtPlgm6n+tPMlNUjRW24XWGbR5eXrnMKCcsrwRrW3Uivx7UDKZPX - 5EQvH0A3pYqUf/yDXUa6GcsqynGyeujE2gOlDxMn8I/vmltSg02O9t2Dn/cBg9SOxvVo5pOMtfxF - PJS+m23HP+i83nd0lm8CWLUoNmHt5z98YIXIXenplQF3E37EZccy3qTrJ4Wv90n8V78xNesNni/b - EzMjGppF96cOyOVlJa/c0MHyOYUhMHYnXJNXMxbCeG7hJ+ffuKLuJWfVzg2h3pxdDJq3lWNENhU8 - UXfBiz+n7hKAsFXc8x3/fT5ep06OYF0ol0AeHehOanvHcHRED3+ToXY3OMo1fOpSjI6ldhynx20K - gHyvbugmxDFgp4ZLwLQGMT6o0SOen6e5gzv/R0XdGvH2hq4NafmKiS6BYfyIXCIDzlfPxHLL+7jU - r76C3wBnSI9I12B0DGzIO+lMzs9B1pe/9+nRyyWBqpt02fmE7PWZQk7aFLj8slwroLt8TPQMvcF2 - Xu4Q7vWI7PxuXPB0aSFvlidiv+Mq5koEMsiOtxIrD12OSV3ELbwz5xYTcfiMtEMwgtm9PhPzlUdg - zWKmBHc9K0n2jtWc52qv/+OX6IY0taFSVkeAS+hjr392ziXl5IEGwAq5O//gv94hFX8ZtYnxWRq6 - P0+n8G/f+2/+nEnQyTsfJAb5rON6D+NUvpSgRIHfvAFmrKKAOz6gIDt+3c3BfQbo0mXE5ttnvCzm - kQF7PSLJWzVzlteXUsnYeUDnbEvjhZJig5kbz+RkFe44L45YgmzJepJ/Ui7/aOFQw51fEiO/G3T7 - bV8VKsGRonvx1EdhWXsZ2n36xtOe37TSxhCuSfgh985o6R6vC5xWL0bxPn8r5zkmVJ7fB9H/8r1a - 3E0xKGBwoudtsyngqkEHewHJmEOvL4dBDQB5ZxiDhxi6vVI/KwCb2QxYLr7nqyrWEwxFXcWTCXhA - U39hoBkBH0tBsrpzFvMlWL9hjrtBylx65uwSqr7AIWstO50W/l0FxKkQ0SVWz/nldSxAK81PPIfX - iK7GDBkIj+6AhWSo9al+9TW8+dWC9FN6ARsisgYsLH6Qft/vZfTyNPvTC/gXBSv9ixfwuybSnh/v - Zs4l7MB3YyjB92t93bX7RoGc3WGNoTuy+fSxwQME9XdCiGXEmODB6BUEHC5Q3t93/qcHoernRSB1 - 0ZqvqVhUwHxpLVHdQ5DjSmGxLKTba/8Z5xMBrKkIaWKSu9GdG+KR7wNMj8UnWbaieGkghfBd9+1+ - qm7vDtbufayn74JcofMp6wdpCMEvdpC2Oid9c/1PCddvlAfKGGiNYA9HU6nHn0mMQA1dPoeNASl3 - 3VBxNYZ4C+qzCXd+EUjFsxmX5yxlID4mCkJRPo1EReIk7fhN/EzQAfeWDxv48N8+WIfPzaXxIC/Q - eOqvQOADveHHOUqhdP6lmKpdks9Tt4VwsAtMHjlHdSp3sQej8RYiqz2t+TgexwdAmXNAuz8C6Ivd - QgXyYYO0zSb6wixBCe3TahBr/37u558ZAG5xQvSxdUZBYFYRmpx6QTnbZvpW38secKG8IYd+TLr8 - 81POvU3MSCt1Ij1yHu56mKhpOsdbzhQ95JoCkbQF2B3HTeWVwZYs5O3zTS+vCYIkspZAHphTMwsf - +QEHozXRq9rcsU/sdw/VwrigXd80G8OrqTIGaY7c4ViP057P8ODZIZatwYy5Vy5vQF9ZFankrtCd - HxTQykVC9IiYDTdJBxGaUckGsjV08Z8eg17PpcT+2oG+qUUZwoN861AQvF3KA/LsYfQTBZT8vt+G - 8upYw8i+PYjp+UtOm2wpFKCQOzF99xHT8MKqcDZ+NbJ6DtNlLvsevhz/TrQtBQ0x9MsDmtItCoQD - HN0x9ReowBf7RNobavk/vvK7ozc6deZz3GCRaTJzxW4w158xXvT8WcE9flGhHjTAvhv3B9TCvJAg - fl1BX3XdBiE/QaT7Yg1Iwsk2JNEsIUPPjYZvvqgDF1ZykfpSgmYVviOEU92U6Pz2j+6qsBDCPd/Q - 0XStZr17S6A8u3IJvlcuGynbTxM8To8Rs0sw6MM9eC8Kbg2H6EC903W8n5P/6qkq4umu10Ll1uaI - +MPlqU8xE28KyF2IxVj/NivK36qy8wHy5+9QxrlnsnIP7+jxWDSwNbfZhHFYuP/42NY2Uwl0zJ/R - 88n5dM1/bg8C73vANGmTZoM/lYHndokxRcY93/mYCv/qTfHNbZdfGbNQdr+RIOxWOYmKIwvD1s5Q - tF7ceJnpi4Xel2mR+rBVSmtvNZRNewJiOfdzPrtS8YA4MJ7EcevK5bna+Mnd9EnQHv/uJt1KGcp3 - ZkHncxs3/cv1RHnnMxgc4YfS6BFGyiM573pkKuJt35OnjOJ4Rn7G/Nxtku4Y7O9LnN1/oA/d9YBf - PgYsa1s9clGKGLmyrHavX3xO/+nV/VYH57HUdM0lbP/xJXx4L9y4ZpEnysUCnkhlpbs+qcIrBegb - +cgvqUDpeBwzoG7Mgkw8cM3i3B4F3OeH6B++cafl/DHhMy5lguKqAMvLei/K33imV3Ydd7/pAR98 - eCU5yN7xCtzaViT/cMOwbvdbHm8cA8tC1VHUHKOG7Q8HG/bqjUHqUzvo8ys48pBZpDGgGTqCbWiM - Cv7p07SKUvDPHz7UXYq5P32tvo1NiYF/QfGxLWP6vIeZkrmXGRm8o+jbBNwIvlXLIujFHmMiFqdM - +n3lFKG4gmDMD5Wm5AV+ICThK53//DCl+l6Ivbx1l0sKuYf7fBLXnJp4vU5PGyI51IPt2itgPT+3 - Winmpx9wlTOMv53vg9+EbsR9rGfAffIHC/FwUYLuqzRgua2w/Hs/pObJLaeiV8uQKo5NLCfSXdrt - p9D/QPIhR55xab/rezjbhwb558WKF5AhDPZ8I+gFvuMs6ScZngZNJMfN6t3xOZUa+HufQHrV8Yry - Qfvn1/J2wjf0+ZtKGPBHgJfL69zQPJonEAvJgG6Dnueb1l97WVC8loS2IjZr4mc2WH77HvRdvxN0 - Yn9wZFMbndiUjzEXLq28MJFIUCGtlKS+yEA9dK/kD28Wp8cV1P5WHLN5Q/mhZQxAXcATw3breL5O - TwcsOcnRv/G+cPcU4ISBu74vR8w2fADbT1b841drqYYyXHToEmsrQpdm9yWBWhqryBrkl7tmMV/I - Q6ZekRZ/9Hj95BEra9EjCybUYpfY5wOGa+/6yDuRKu+yOAuFy9zFKChWY6R9Dnrgf2Kb2BPP0X98 - Aqm8jYy0PurU0aQCrCqbkvSVb2CbbTaEAa8DzPDbwZ1kJ93g1W1GpIrj1GxWlntwTE8T8pRr0RT5 - Ve6B/4QhCcVxGskNkwru+gQXJ94cZ35Ehnw7ChtRDTOh3DgFEPTStcL77fBgs7I4gL7kLsT/Ntd4 - iY4MhPZ5nMiRF07j0hBXhc3jwpEdv3VueTImvFhOQM43sOVTl07JHx6iCFFCSaWuWJleVoC8ZmCb - 1YGHGp6D1A8EpKkjNxv+Bv3PxQ6u1vWUb8nq9iBzhGTXh+aIpRjst2peKmJ0UI5J2csinEfji8qg - j3R6/w7hP31wStekobu/BANM9EDS+X1BWmuzsqZ8hUBWTpq+3d/nAIIuq7Gcqqd4GVPj8U9veleX - jD1K5UpewadAx/5ejf3pMyawJjVG3u4PbKA8txB84Bl/jDfU8a4nYJATnzjSI6H0lg+yvNcHYrd+ - OdL56Yfizk//4ed8fsoViIxy2+NXoyyDCxnynxOLTDed9hW/WSZ9xW5G+tn+5JM89PZf/4Vo1oUB - OHkPNqwkr0cOhqTZ/fAAom/ok9enHvQlcWIP6vGnRSdfn/X55x8hPF27Iaj5QwSW7bWFyt4PwySu - Crr8+bl8tVH8PQ4joHfBXf4+T4I3CcZdf05AGJYrMtFBb5aHfZxgz5Uicgbm0+z8+6GMQZKTk/4T - dfJ+MfivHuPDLzJH7iTBBOLWdJCTQynf+WIAFyYU0ZObvuC9+wuA05ASkCl47Kfyext8f3MGOZ23 - udPVXMx/eKVeXkODc18I4KV8noKDpVi5UJcnG6LDiyeBvN9Kx+tiAX2nPqKzMRO67t//54dhOIEm - 3u7vo6cIcHOxXFAlX87noYLlJtYkGptmXFn0CYB3rF/EYK0aLPZ+kheIYEyO2j1xxxPKNni64GMg - 7PV5Mdd6gmnXR3/9rZyW33PyVz+QN2vDuJ6fcg39irHIEX78GHdKsYBFZ1xMD8KzWVLu1v7TO4vP - FvmfHwVvlREg76HR+N94rcnEBBx+2/kvshYWKlOEiJonQr70S9GDvR+GSpsaOUvXIIHy434mx7R8 - NCu+MBg+1FlD5XnF8e4nPeD4GWNkmz0EOGeSH7wr4YYs8cK4VHz+h7Qr6VaWZ7Y/iIF0kmRIL31Q - EHEGqAio9AHy6+/iPO/wm93hWWe5xFDN3rsqVQwDoGJ3WMFbC1bp+Vvgnn9mYceXxD8iDwYn9kOy - S3CmFPls+Rcfg7Imqjtek0uDOus5E/dmFvXqnYwMiVHfE6V7hoCKXi+C3V9mtp8n+seH0Hjabn/6 - fM1aYKlgkVgJ3vVlbXr/JAsGt9Tb9VommqX3OMNqg8yuT6oascThC/Z6Kg5+DcxnPMsF1Mt9JFx6 - WLVFFm4xkhYBkz+9bs9PBeSd1ZyBKhGwdFJfgCWP1EBcX77L7XgSJDr6Yce66+7GlZEOB7GzsSEe - poG0aVgiyeEq4sFwjEa3PrPIP9oLeYT1K6cjLmKw6z0YG/bTnck5LeG9J1esKleHrsdDNUp//mUF - Ue9un9KOwcY63xnFp+9eD5BnxMBvRzRm8yOa4L4E9RJV82ARBMihS1Jofo4a3vO5toW+UcFnURQk - Xaf7MP3x8/U3svh2Lz/gt9c3wWkVC3LKRphPFyXc/ukz9lL1WvuO3hYS5poEh9sljFZq3FLI7Ovh - l70eunpGxP/lV2JBPa2n5GcVf+9nphFA7nZl4Bcsm/sOpGPGgr0elMGDdP0Gwq5/b+WiLX98DIew - MaP123MJ0qpx2/lxNyztPOiwmyWKXS8btIV5yCzc61+zNHN2Pi63pwoFbeuIliaWO3qrs0EHH7ag - 6MLEFX6PyYORkHR7fb50l8YZGdBRnyPqhrl8fLm6+P/pKDj+746CSBBVkn3lszYBhGPInSEf8PGR - uJRNXhW08KfDrvn4RcsY3RLodb2Kjd/6i7aryfJIfArOzImTAviRBzwQ3rVFTudqq1dhfGSwou2V - 6OHlFPG3ulehT9EZ+6Gga6uk+TI8p/KR4Gv/2+848CUIa33C4S/U6aRpSQrZwPdwWkfDsPbl2UGV - zovE9OWi3tRhhag+jwZ++uVvWJntVYIY6m/8QNIDUP8VZDD9Xo4kKA0QkaPJVShqExF73wOJxvFo - MVLNXzOinEKeLrrcPKGmjn7APqbPsFaoW6ROj/Jd4VG0pabfDeFZ8uctqwHt7jfQw7AIQhKcpsvA - cdeJhZ/00+H0MLDuuj2ePIgESZ0FFHf1+pbLHukNLALu0q10Vc1HALzQb7ExKFK0vPTiAv2EMYgr - EzlihySxkHnyBmK/IHG36LLoKGafaSCg2K75LN0CCZ0ye6bmdQNzxZQJ4llmI8pUVq7Qw+aLliiy - iFaKX7r4ZQwh/WlH7DasrLH8Ghcosug8x9/hMExup5eoloc3xrTJc+70TAME04jD6tq/63FDQoua - RzXNhSrhgfVOmwovY4WJbxgHbbUWVMLEChQSrSAY+Jd5TqHR7RWvxM5yQWa7fa/a5mKrfplg1Wsn - BUcpQMQ2nrbbjtEthsubzsQf3kbEqtbjCbvuEO/2d8rZXpZkSPmfRvRa47UtXx8WXDb9Qy7RS9fG - wjMuCHbxHfuZzw50+5wbsL8P8mDMozsr/beCI0EeCS+xUy+/3kmhRqaUPLpf7ZLD+mChvUkP7GIq - gE06qSkyodiQsGU8lz0ByYPT1JjEr9sNLJJhXNCsIhsHxsGtedL5+55k4UGcrs3qTX/xIwRN5hP3 - ETXaNuEnD9lnqeFXdexdttMWHn7N4U7k8XsdhDQfHYg5GZFLLpcuG39fOoxx5WKlNDS6TLzqIObY - p+Smn+J8q8Vq78HUzeAwq7henNVJwU27IKzYuZpTSRYk5IWHK3GudjPQ3ynepybJeweFZEbEHZQW - tYwzYOU3+RqvzsuGvPvNJd4jvVL+cOZHiF7qBWuedQLL9VeVSEz2vZXr+VYvYd5vgJ3UjujWOkTb - QShjVOrVEdsOex/YRjiqR/PEpNjJBHeg52slI5OXLWw13G1gE81LIJEbjeiSEWgcs91KYEH7gFOn - 9gaBu1UQAZ/5BnxyGIfpayUOovxH+4tHeZuY+0yHVDgF27Pthq2+aTF8MalNcIMzsO3vG4Xx94Tl - 9zkGQtHdLuAybBXxvHcXLb+f+4Wew36wQ3GsLfwaP6FHHhI53XPDZd9vpUCPa/4gqqkbgNVapYDj - JYgDfo8/PMvYKXTaJiGq+12HJb/aM6zPszF33W2qt8UVTZgxvhLwVTxFmzqLC/SUSZ0BBK+BmtLQ - QubYpsR22GNNqoR5QtuHIdFk+nOpJB8k2NvlEyfKkFMSmz8Gqt5UEHfTapcfDssFCYVjBIt2kyM2 - vzgSfHzmeJ+xYbjLHEwOtOvewUVtFmDwX2YGz0Kj4evCknw9HVcGHr4wx/rm5YOA0FlH3dH/kTu/ - DZTcTEuFZ8V5YOUUJoCEcdLAM6932DKfDO2StjNhU3eP+aAWEdiGPDNhF7GfmfZqoS3NSjO0DJ5F - ZO+rDSuTyzKKry3ADrOErpCHMEH9wbsFM6dcB0qm/Y41mXNyOgQu5YWAZugaTkLQT1Mb0WJMTFg1 - qUrCYFQ0DokPBwwRN5GQPZ2Hlc3rAknn7Ix9o6qjrRl/BeRn/Uqi79a50/0Yyagbihn7Uu+AleGe - CazLYAii8V7RLff2teRmb+7v+wO4nllHONBUIDJ/7/NNWC4baK6OgFVRimsBHk0WCQvNsXt4KhHn - jm4CN/95C47GxQfLr1cz+FyUGoeXuB/GrX4nqOUUi5jtSc35WzkEABk/kaiDMNb0zeQFLFceBvCR - cnS1rtEGBfHeEEP66S7nqxtEo+Ius8Q0MWAXe4Mok8UDidm6yulQhD1a0dHfe0ZVwEM19SBrnDp8 - umOb0pzEIrr7T49oFaPnQnh7ZKC2qY6Nk3Wl24eK+5R3XBAdMeUgqKdAhPccGzN36c6AQyBi0J5f - iVpUnstetiyG9xxuOKE3TqPWLRQR5/ImfkLJcjmjdL8QnseQXMT5mG9MjEr4EXIT+94315br1FrI - O2g6PkWsG3HbI2HRqDJKgJ7mz52T120DTOkz2Brn3t0c56XD/sDoOOGqshbQcynR4lspfs0qqckU - xR5a3J6ZFydP3U1/MTMY7/qCtUMyguloq61gnoKBpFbX52NiuhaqRtkNoHcNXEFwyQyMd7URw47e - kfC+oxBmnOBivNs3/xh7BlovhwYgGvt8mW771qPrVJBb1C7aqsmvL5TQQPY7Dzja7fGJFumZzyJa - z2BJC2mEol1YwQELF5fqJXeR/E8x4HtavrUpOh9LFJ2fxSxdtgelTlAUoCZPRBSt2LT2/XR6aWRe - G1Y2/jJsf3jL9+s+OHbuPuXzvHnoxasReem5rlE5Uh2kJGee3H/cu17GrE2RvYkP8mqwRMcwrSFy - bMXDjl/40VIdxxSOzGPDSofv7hoy1ogc7lfN4ih9ot+0TzWz88kmO37KR61Vnujhr1FwFK1i2IJX - HoLuiH8zVd+BtubTbQPXwzsiSaOy9ZZm0xc8lQPF+Hxn3LV7GSPav48407Gut4K8F0R/yhG/cu9C - N6/xC8iVryLgCj3M16sqPCWouuZMo1QalrdaiugkEp8EGfhQephvMmyG8xfbnbtF63TtYph75Ef2 - 86pZjmIekGTe9t11yfBnH+h2v48kUYSbyy+niYU7Hvr7/Rq9sGqDPCEF5LrbvxDvFV+1px42hWL3 - r/tvBr/cIthjg60eXe23QB5fROy7Ona3jM0htHufBOzrd6ILlm0ZWC+pxEF9PIAZZdRBIBa0HW+B - fBHmRw+/CRNi70CCfLxsWQJvfREG1x1fs1DOzb/vJ+r5/q03K8liqWeKHgc46+hWi/0IJsjeAz66 - 1Vo3X6oK7vmUGIaaRtSQuxheu7Qh+mBplDO53wh75+Ji+cYn+Rq88wpugx/O9OYd8skUvyVwR80i - dldblC6N6ewdbQYxtHLMx4BBlWBHt2jm6pKJ/tkrMXNAXLOrhu0vP+aJpZKLNh205epZC/SLFWHf - 25J8o4oc/stvDjkoGvm1lAdcK1xmpjgn9RocoA6Xir0Q54YrbclTuYJ8Yl+xvdszycR7AhmNeRGt - jTn3z7+BJ2QgKD/OL5+bkTzBjhexY7ftsJYl20BsFT+i3W8OoPF4/8I/vhAb9ptun2WdoRunh//8 - F6BTAqywD4jmZOWen9QvvHgHAwdV8QbfYmu/0jTWFZHHTIpWmXwa2DR3h2TA+tbE9d46VH5xRvD9 - Eg6rbxw3yI4X+OdP+ejgQYaX/DX84d18jWgoQXyaJeJx8F5zVFbmf/FXKvty2AJtLaE2Y2ame/xe - DrHLSw/68md6SDywXD15g4rSvknWmPsdyeFgQXKyW3za8SIJdNGEJv6+sezgAnCpiBtgPm4ZsVnR - rrm28irwh59eAtdE23gtnrDMhjYY9Tah61tu2/3OBDuLr0F1uQPfLTBo7QX/Pf/yHNYQntzcwfaq - N4DeZDWFL0U/EcXXBrodEouBUGAP5KSu+50ch1ehIAzCfL9Mo0YKn6uQnR0K4vU/EawdmkP4kuOM - PN7zUi9vtZXgT79E++frYUaHc4y+k37AN/M+uZSPx394h8hOnmrL07mLkNOKkBQ5b4P9vFjoqQXB - 0ZW8o6Wvzhn64ycRCkm0PMxTj9zq+MGKjU/uVmzlF1q3qid6jddosc7PDPrPJiAn/eXQZY/HEI3a - M+D4ea0nBd/bP74ZAAgOwxoCW4LPNr8H7FeQaCtzog7rkklnZuers2+KCewVp8XB8N33XIbYAnu8 - CsQkrCnJ7uIGz9b2nXlSh9F6tNUe0renkLNSYToxXJIAoZMYHEyrOnD3Y67C3xF6c7mtJdg0PWZA - oFU5NjzgUOF8rVRwvVQWCTjlWq/rN7rAPf+R++UdUiqHbgKO2noj8q8o3RXq4ROKn+mHg9vprS0n - jm2Q77/7P3ysbTNnFXsjTYido9ppHVTOPQqyTCC4pN6wrb87D29td9j/Huvea4wnutTpSKI25rT1 - 6NkFZJaKm4FeGxpRfL2E/QHq+Mymz6E0Xr6KRGvMsZpKVc2PPGXhH1+xT8132M+7BxwhcyC0KYko - ei4VggJ/IFjgmnzhpFQCjLZPCVbAGi3fxVIhc55SYnwEw+WNxoKQWS9VAD9nK6cDElV4VV4NUVNJ - HThNe2Zw8+4U+0bSugto1vAvXs5vZR60Zec3f/iOyNclpdRaiQcHf0YkUG+qthC8fOGtHQ7YjG6a - O/6sQYUiv7g4q9LfQP/w41++U2H1dKdWqxm4UeuMZUAkugHGFyU9qDhyKofU3e7S/Su9UF9gn4U1 - naIpv4C7tOGAkQgcKH1FEAnaIw0Ox3qol8/MfqEQqRU5NYtBKWakDLxwM5ILee0dWwwqwf4+sSky - M1g2dGj5x6w7eNcbNGLdUgm+bxUXMFWh0GWKqw2c7SrCf/F/DqqLiV7c5YuVylUiYRS2DD1M2wmS - 9C3WW8geMjhxQYhlUB/qtTw8HMB/C28uX7ct2ligNuh98hlyMu+TNsFqVdEz2nSCTf0RdQfaQ8C1 - 3AUnfko1+i5Y/R+f+8P3C5MpTzQq4EFOnle5lH2UDbobekLCv/dxFuxMcjdXDJagNKjgjEj+wxP7 - lqWg7o++rMLNy+l8Des4IhyvlWiC+jh/fU+gXREpBZKr0w1bnVkO67uSZaADXgzGi3Z15/PRbqEQ - LRhb54MEqHDZt5Ts+Ehv+UGbFmctge09+QAtAu+OzQpSUFZNF3w1FA+V/uJn4ILmgs+u3UUjL1xM - cMuAiQP53AybVqEStFaxYVxNM9225yODY9Y4ODk6vbtconWB4o2ZiZf38zBJ76mBGHbmvGwfo+b+ - 9DPZG+N/egofe1uBLvpv35LhfrSZS5oMGfZnxbt9aUu9/CA8Ldcbkff8uYR5tcBb/wyDBlDOpUy6 - SajQCgMH3/A70KDADUTj6v7T6zZxiiBMxlMXaDfvEFHNymLpT58J3K3M6a3Zt8BU7AkrJNNzbtWp - iJ6LVhPrTA/1uLR5JTnokGLvDk/DkjIXHVnwOGJ9fLLDTxyi8d/zOywC+ejX+QYxG4XEbdsGsK49 - ZX/4Gl+1cdcDuSSBoD9su/4w1M/f+9CD8vgy/vh6vRZrpaK7YSbYrGI/3/FFifZ8gx+ZHw8E7Dc4 - dn1jRt1Pczl0Zxuw64MkunmvnGvNfgO/8r3t/Kxxt/OtusA9fwSfB3OpJ5lMzR8fn8EtpmBRRtoD - 3bhfiMbdCrpO13cC/vi5uR2YeioiuwCypN6Ie94sbdW0Z/pPP93xWbREYzGDlatvBN9NLl/CdIAQ - MlO+871q36c4ZhDL5rrrY4k7anYrokVfqvlwW/R657MzfN0CHvvK4/qffvHHn5Je0Qdqb1sLUT20 - OCgeZ0ofU1fCiz9uJN3z/YKkx3/+/Gffs5l7FcwcucJn5hYMpLlqOrp4yCB6bI7a9nsL/T99J0mn - CGyBLM3AELp3kO/62tRwy4Z2/BGwdT7Wk9t5Jbwqj4bY4S8Y1iJUW7TH2+Bt52rEP79TDKdh5f7p - rUR17w4se2/DNrwbw3z8JQnE1vNHVMHzc24ZUxFeGfoN+F7R65Xn7jwkXImx1/9SurWdNUPD/q3E - Tq5cPTHbq4L3/pGSdEmiYeGv2wi2q/me2e/wqunf9w2RMBFFmQd3f74ekukXEO3mvaLRCvatYD+W - xY9PxUWLN6YB+Pw4SPD3HdXrdZ+x+J7zM7G1CNWT6DAqwLNVYm8W32D6nLOvVKhzSuQc6JpwmG8q - 1FxTwydP/oI2Cw8FsG5lj80yc10SFKfmj+/85buIInQ3Af6WN/IwjJe7yRetgdxaytjIqiZiC88I - QfG7TcSNxj6iWnccAW31B07f9y5fk2p4Qvu4HeeVbe5g19cZSEPgYFevP+5w/eYMqKRqDcB3VvN1 - vvQVXC2k/PENd9dvvqAuvQHL10WkM74/enB9bzkxfe9G57eUmGAz2ACn+ZfN5wGuBfzpYbTfCBnq - Pz4HDng9kXDHb5sQH/c+ps8pYA6yMWzW/W7Bw+ehkPvwcN0NqqEHp/FdEX9b05ysbZghkUnjQHwN - lUZFfGRAcW/YAIw6dceazgsMF+FLVHvE0RzI2yh1rivMTRco9brrSZBn4UZ2/FGzDSt5UFvUEO/P - DzbRZb+gVvJg35vtaMtvsr2//E7UqxJq8+lqivC2xhO2FGuOVk2+feFWCRkx4lbV2O3bWhJsvyMO - njWOtv6GeRibaTsvjKnU3EgOPQDg0gVH3y1zTnp/vpCNr5AYlSbn85+ePju/C1agcaVtfQ+f6E+v - 3vEHmEsta6BCxhC/jrcwWnydehI/m1dyKl8FXX5uxwPb+GbBockTbVlsCcJfVH0Dcddj/+oT//Sv - QDa6fEbHaEbvlzgQVZte2prRRwq1s0ex/6mu+a4vWqBhRwWrZ3/IV6lpUli4ZoB1tq4iuvw8BnoK - UYlTPo18Ve1YhnnTtiTc+eZy4IYAfs3ujvWT1rir7OIMRved75XPTzQzfCHB0AV3rFzuMJorpk3A - Hz66r7pOn27wTmACbpDIvE+06U//e8Td8lcviNjWaAJoBQL8x3+3gnQL6PpJwU76udApLN4xhOmZ - w/7T/Glf/xPuW5+DcD6Mlh+xxdT0UIg2HFBQtS7dqssG93pIMCnnLN/WPm1hm6CUKCTo3MEZORkW - 4euMT8v5TbeOaXjEueY9WDsN0Xb9FDO8ZBNDvHHT9xuXXgnSn/oNxPenGWgPxy8sftcJ7/kl2rDE - qfBffHg9o4j2hyGDpeeqeK9HuWsdnhwkdO555yM9nRk+luDJGR4BB9/mwH78qwdW+eeSAGc2Xde6 - KEBE8J8+/NF2fSQBVOmF/+ppw1FqITm57by6V73+fIJ8AX/69P39BO5S5RoL19/yxBp3g4A+ljaG - R0+SZnB8naPh45n93/sMBHp0tXE6DxBoTpIQvQve9ZotSSP94X2h9WJ3vqlOD4+e6wdHtqTaWPFT - A46Sh2Zmr9fNu34LFL6ZyB9+nMsnjME9ZzasoRBHGyy+FdyCQA+Enf+tLyNj4VaMPTm9bM9lX3oc - QnUBEJ+Azbhra1YLOtxmi2i6lrnj6VaocIg/GY4f06dekmYY/+wlEP/qd0lVF/AiRRZ2XEnJhYml - DSyc5B2wzuAPwhQ+MlAZ30/wrazN3Q5CG8PXlRREPTGWO//Z29BI5+Cy+o+c+vKHRS23ceREj4O2 - VKmvwoux10CcXHT/8v9fPt71Brle20ov0XFrWIznoKfL0w9HsNcj5wOFKyB5BCyYhfYlEL1zRFf+ - vpjISsMb1nZ9bFut4wX4E//e6xusNkWBNMI1tK5Yj01P4+tYL9HuP7PkSu+cXlingbYf1ORPH9+0 - vYtuVI4PrCwwzHkZe9txrxcH9W5/S35RRWQmBYPtOI/yRf3yMgq1ug6edn4Eo3V+pnB24wMJ3+d4 - r18QCBof80GVy6X2Dy/+4ds9vrgjMMMZCtWFI6ru1APZ+QS86B+M7TUsNa48XB2YWbVFlMkaalpF - QgvIMwHEqRqVroMITSB3U4kNPgHa/Ic/ZgFciR20TN7+3I6VOvElYb3OvWHWTvkGW1mHAeCGcejy - 6bUBQXulwfGUDhGliC1Rg9UT9n9hEc3tVxHhxfPTmWBh+8fXpFKjHsFqS7RdTxwlTnuG2Hgwl2E5 - xBoLf7lDAukZHcFiBa8vbHyfx876ntw6Hu8N2Os5OO6hVc8fulQoOhcFuZ9SN//T0+HdYDX84Pmv - Rtf3KQbfZ7PPHDWVeuHZ6IJoyzsEy0kSLYeb2iNurWTid/kPcJ8RJqAcZm/Xn5ZhVb2MlXJv2mdo - 8vKwZvSa/n86CqT/3VFw9fWOaMqzq+mpW0rEylqGnd6vB3oqAQ+e8ZkjntUftGUUlgsCVu0EU9ev - 9fwAvwDhs3wkBXP5gmESuRII0DuRwg7OlPVelwUyWzFhi7BBzaX4PCKm9CusZggP28DABbLCrq0e - tDcYSTCNUF59OdjiwY8W9zA5YFOuJxxvLutuv5c6w9eR5+djKdag7T9SCo1rgnEwZpq7/m7PDS5V - B7E8Vr+BjoOdwBVJGvH7oImoWnQOMiJDx9HDDnLOPB2fUIvTNUD7/+fqNajw5xbL/nxkWEO35mFO - RHeW0vcvX0gwzdAjioBdHLlg8Rp/g/1r1omVWGXOLrY0QkiXDGsr4wLe/b4u8J2WCrlLzUUjJ6EM - UBSkCTnj7hgtPKh6ZK4LxomZAG393C4XtKgtS17fNgbU+Tgyet4hIC/6KPMtmfPkeJXmMwnk9Vxz - vzJ6Ivsyc8SvWJjPaWAxQIleUbCJ2tfl9S8wUT1KFdFb7wFWS3MYyM1jg3UvmLRtOd09KAFkBO/H - sR0W+9C2cMxggYs5zlz2cTKe6O7N2T5FZN9bLJ1Z9HTtAXvfX6xtC3fbYH9bKTkNyauenyVmwYFH - ETnH69nd0kCGf/ZElNIdXH4KpRndvTHD2nYWwDLAOkRVNfPECuY0WrLwC2HMRPe5PM+0XpDufuFY - 2B7OzHPq8jdbuMBHKobEGHuPLlzgZ2B6z0EgyoXuCpYRP1G7ytIMx28/UJ1mKuRfy4lkp7EbVuHK - sRAbQ0P8tLI0VvTLBjU/E5MzTvx8btZSRGGTEOx54AO2dRmXf5/PTZfNaXwoFxiYrB5Iva8NS36y - GNSN9wQ/8qHT2PC6hqg+1wHR2Qc/EK+MShQa5Y1Y9+ZVE+ejqoiVlQw/5/w5CChfZniyBp9Y9F0N - /N955rZbEYwIC6jQyzOSDb4m+rlbhpF8LiZkiuVJku/nMkxsNibQOE2EBG+50yY/vMRQRqs+/zaP - pXOZvHlkzEVKwtwWtI3puR7kbjbNb0445aNgJyKauhXiTMl+Ef0weoKmtNFJnhUvjf0irUHRrSyJ - l0mz1mqyIqM7x43EksmizRLmv6hWCUO0I4MofdXWAvLhzs2oxIHLqeeMgYnyCXHBOSRahedWovDZ - lsTRDtdBEIQlQyRiC3I3dUyF2ysT4VGSMhxzYuvSYuxDKH1DAWdEZyPiBNceJfAwBseuaGva37Un - mi4SEwjHowRos4QWGhU+Cv7iCZUhrRAaRoBPv8QfhO7BFEACh70iIizRerpOPbydHy62EN17vVbr - K9G4R3j352i5XR8FjClTEod9pS7bfLMZ3GdmCmbx1Gl0FdMZcObqEuwZJyCM4qoiyzANrJGxy9dX - 8flCtwzSeVEeLV0MWw0QKbM3UcekdGmYSDIsBIGbxWuzM+WDLsE82VR8YhxlWLsu7tFjUyr8/Ah3 - QE+R58BvlvuzxEndwGqyrcK0L04YG9WzXj/yR0JDUBVYfuTHejwlTAbu9uWFi5/7BdvZKE3ENpWI - VfpSXKqIVgWiW1USeaxOgxAf2gW2Fe6J2chN3v7Fp/oWxPjUrmtOcT7JUpp6EKuXuwNW8azyUN2s - J85sZtToITAq6ZddZGLEVh6tsnVewKwx7xmaaTGQq/+Q//wJW5d8zNeqE58oYo0JYygmbq8O3Re+ - k5AnF9UqNe72UDL0I0wQMOZyotu7eaoSTUSLnHONRut58TK4nAudhCIt82X48CJkvd8TG/EYuOMX - uV94cFKTaJXwoCvnsS1qf+JCPNNYhu21KQHqX6NOFHOzaq7LGyjdnQfGoeamOdeVLwaEv60nsheF - 2vq7JQuY7y3BBS8ylH443MLxzeU4VaJ9KjdrSvA6AGUOTXHMV2cpPYi614Jl6wu11mmUC7KlNiBn - 5Wa4nLxOsdR6dU5sU8eADGa5IfV2OGLjwRo197ptDbzdrPPM2Nck35y01uGFu/jkxKm9+y9fN/uS - V4vDWz5dUxogI+SO2JRbd+D0LLaQIXyreeWEUyQMcVog6+kF+EpLBbA2XzNgfpg9dvxBduk+Ix/8 - nYfJNrnLynZfQrd/n4mDtAJwRXpLwWBxyc5wZCBsEWyhcBo7HH2blW70OEEI1VnAtrb5Odf73AVl - oXre8YRWr/LhIR+7F3fGd9tftXWw1RDRuvCJnV2lmmbXNUWHfmfsEy6j9fDLMwiMEw6o5h3dOeoN - B05Xx8avZ1tRHmNTR0YoHLHhHVptHJ1bCackORKlUwEYI+kZQ/uhzDjKnRvgIiypsFQPMrmemiYf - Y6aVkckFDva9M875lz85kJTpmxT56lH2et33wodpSfLEVlxhHJQEqsV+x+/yiwDbYqVCBm5lUtx8 - SRurx7kCP2PtidWeJDqxWZOg0+/xwY59mvLtLCwJNEddxiGASs5HAuRh/MtyHO35cAtob6H37GGS - bgjTVdRyC9qnaxkcnvuUNoMmFdywAbC9yVO+nKZ+g9XxwwbL7r9bDvoRrnb6ITmOBtC7ppUhubov - 5IbTGcyW+fEQPfsqeaVJWa/o9GER4J1t5kG2aONVu33BtwseWLsWVrT52G4Q30pnol6x7G4L91pA - 9plfwRYyx2g5brYD4x0hm6dnOdDN9Bh4Dd8Tse21pj1gXw7Uf+OPqEvHaOtidRAeH5E0l55QgdZr - jAWik/+YRTuK6TS+gAXnajtiVePJMBt3N4V8ZijY2O2V4zQBwmPan2ZxviOXaMFawNG4BMFScko9 - DnAIwYULfRx/JBAt4cFjoZUjjbi2Ytf8uowb5Dc5J1kZTDnllOSJmNDLyO6f7uaJaQupZYpYN2kX - zX2diiiavJlE/dkArCEbJfQv8Xc+utshX5JTF0qd/kDYzZtmWK8p9WCjNiuWRSpHU58cIXy81gDr - 8vvkLvj8a+CXEQd83/1jgc2VAebjsmDHZkZ3Na6dI71u3zpAbCnuK31YBx4vSCFe5FsuL2HmC6PY - /BBrviNt6144gCPyCHG305nO33XKjuUziYly6n45qa7Xr6RuzpPg3X6Wjlbm3/mQx/cdRuxz+Krw - ogc9cbPi5a598+4lv/Ob+SAqn5yqDtkkkXlUxMIfQaOaomzoarcz9kRZr6dELDdotPRCgsR5Uwpv - PxVcu44nz7JI8iX0YANEoP3+5YPF5muI7HdlzLQSEFhCj20gc9LDmfsOSU651GGl6LhQguNurLfm - fNinSouvuZ+Shs7xJ3Mgz3xfwQGKvDsWx3sA2FVHxJR4lE+JmVZQI4uBQ/nruLwQf0x4fsMbjn6W - Piz2ujDonVYK0etWBPPn8DDhcD6U2Kl7KaKeTRzIgUu3V9OSgd55bYGH0rwGDb4FLm1PRiMZJ0IC - 3vaWiEb8qIP3hQckmA9rtHKawEDx922I9R1vGv3E4gLkFctYOQMAtsXTA6hmWJ+vBOfupqlZCdxz - bhFj6zSXZ8RPDOYadcTeBE9jmRcpYH+jdF4f1yudLWXz4N/5AdG0ohFnYwjVTo2J/4NvuuffEhjc - 7UaU2N+3vEhJDFRmrLATITXa8a0E21WVsHVtppo2S+rAScgKbFxrj1K78GP4F391TumijavSC+yu - ZUqyz85rRH2QoHNwWKyt2dGlgiBmkKWJReT1LuZrHdx12JcABeUjvw8bYG8WMHXnN6MsvA3Ev9Q8 - wIS1glB5tGARSvcC6RmrAXONNI0echTAyJpCkj8ubD7DVNhE3XjGxOMcHC3rnF/gLVBP84JMJvoU - RFtg3Xc3/OLc0BU00VDh5TZMwY7/a2IJzYhev9+w42t1mISnVEkRe5qwD/0nXaYiFcFuHyTyFJ3+ - nQeSW53HO14Ay2SMFbyUVCDuc/rQ5bC2PEi6sgvE5/jRyFYcY0Anas7CL5mG7WpvC1S/q01Oj5uQ - T09RZ+D6QRvxyutK55c/WUBzL7/gKtADmE7PPoZOTctZbIepplS5MyDNWwH7pPuBjavCC2S6uCYX - 09rvnB3kQnKFU0LkFbkaEXp5hK47H4OjvdZglbifBJ4yv83U+Soum6rSAoMteP/xQW0RJ+EJ5b0D - wJ2ZpV5gMl/+8F6wba2ak53vw6avHOIRVwRzmost7LkswpgjFf38Pa82VRLWnrLvrkX6SqFMCxef - bOTmi2/NmWR+M4mY3vVcj7dn5sAQPcX9zZ/rtQ7OJvp0t57IJacMtAl/Otz5L8n3+DnOAlz+/PsP - H0bzA5AAiYqYECOvNI091KsFpIqHGEeBRddb7M0gXsoPjnb9YsF1ySBbO36CxXYCwP9GKYUru6o4 - i0ytZvf8jH7ucwkGWmm5sPsnJCPzwbIZ34dlocEFXMWHObM27Ic1d+rgL14FLPtIBgq7NgUnR0qx - OTa2Jux8CRY0ULH5s42crKZcwK5FObmlpVlTcx5KeDMNHsstF9Xj6QX0fWsixafx+clX505ZNIij - /Q8vrMP24GFpC8yer7p6nkJpBC4d8j0+H9xF1GsRvsW3jVOZhNoStBEDL3dJnI+bPEXjYJQyOpsf - FTucZNdjHi/9Hx8i/o25ulvHLCGSdLUhqnJWovUBhd0+Dxs2AaMCQXBeLfwWfTovAL4j2oTEhOzM - rVh72HM+F6WWwPFXvQPuwX7q7RLFF5Tcouc/PrZE3JBIzTu3Z7S/78393kKwHaM2gLv9r7dYH6Fr - hQwJcDzWKy/dxX96gjJFar16111ddcYLec6Hc76Nkr2A4NMW+IVITAWUiyN8Jxce28Jc0DX7ql+4 - ac2F3E0wD//4+pukh1lKsE7by1N6AvC7VljN2SDiDuohhn94+bReeY3wRmuB9n4q57X+pVpnSvYI - 7cRaCFawPHCksWPwES1pjxcM/R2LRyW9LBrNa+8oEdf64vLPn0JcnN1/+PGzvVii1D9RIyspVCnM - vQ/Wx4c+0GNveLD9SQtW2WTTtsrie/jjBR/v+gxdqOF58PwiLraii+tuZ0GMYXrPR3wiWjTQ92gz - cGB9io3n0OTbx/dYsJ//LLXb5rboTEPEbW5LnDKYopXzYA/2eEYKXnzS5RGqFrpzwhhIucnVW5Ox - u4LJZcE7/5na3++FIvOqyJ4PQPtULwVk82zGGL9jsGT3ukcSp5+wKXIK4I04zaRqrUycbBex/h6/ - PZQOL+WINfnX0/U0XmT0lz/++OTSKXceCs/f7y/f5ttyOnvo5apPYkr1Gk2Hez1CjR90bFfHQ06S - xhfhrpfhC+eHdPk4IAatGlRE/z5njSpf7EC1vgbkZdNPvp8PlJyu+OIncx/yNRiY4F982vFpvZLG - TiD/qP66Zfh6Xaw3g15BcceGQF+UWvA2oj97ewbLHax//JPR+is21jca1qJPN/iCpjKX77HMucOS - miBU9QI/TpMT/eEhxL+2E/ZLKtP1VUwNjA3LIkFaNPkob4wOeng+Y628kHoTqniB3pfZO3R/rDb9 - 6QVyXq1/8Z9SgucCgv8DAAD//6Rdy5aqsLb9IBoiIEmavETeQUDEHiiiICJgAuTrz8Dad9zO6Z1m - jb2lSkjma4W19ntM0MvkwN/1Y4uGwSP3+Joev08JnftXgs8r/m61u9ajphhX/NVeQ5fkOkRvYetj - J+FZvIz1LQe4ZF+8x00aCzTceJDtnAL7732tT+/H6MHXcuP/8mCqq/aazyJAL+Prw1gsNCYsx8Ak - 0AN7thXko4xqcojw3rPsmJZcZSG9NzZkOGhM//kBkMP3jepeErJlzYsACLwQm52SxmTVZ+gsuhds - 2NCp6Xr/wU9PaDe8uEuvUx5GsxCRuaOUzbdgXvs96V7A9ZYyMAveCSRzY2OHdW991A2ogSA/Hqhh - MrvYCvW3gt5kxmSK7b3LROfeAwwzH9v5zi86p/Ba6J0AoYqjfoepQoP855/2XPr502dwR9ITETpx - 646a/daAt5dbah/uj2I8pEIO+JL/0NN4VhgZDnMFJ63nsfkijC2FnZfwHJMUHzZqFTPFqSNYHOCC - tcuTc5trgiyYq1jFtie/3Nl+DxU4nTSd6nRzink8Zx1wx+VK9zkXxvP1cTV/eQY+5IHgzgUEV/jL - Q5y3ocXscxOukL+4NZmPoAAsrx8G2pkZJGjVh9vlWFvweMoielz/nVrB0dnt44OBrYp7D7O/+8rw - +2FwzROigvYX9wqsxyfCp21wHOjkgCvQPkpCvam9DvPXKCbwLgHDh++pcecLk0NoJ1AJdsl70Dut - 6HKwfVoVjSX+4Y7H8elAbqPN2NBR4v7tb19S+NW/W+5YJWEKlc4UCADriQydHBp4zHifJAttwQCY - mUGfb3d/efIUWnYjr3oluGwsAywWfsjQJ3KPsWnOMTull1HmNsqMg+K1LyaVuAZY/VCwKyZPX/J1 - CiPit3vCbPqMCaCjA7rmug22a74saLedBOrd9U2D+RgD0TyLDlwOik+v91L58U8Dz4FyoOFrU8bL - up9k+Xx7UzchuBb5l/yEWxB+qE8/B8YmpBO4cRsBuwDb8cRtsgr4p+mBg+xqxKJKdQEwt2L0p6cE - PXQCGAd5+rvf9XLMDhGoHiwL+BhUgEIxNNFj2BjBcnqO6xsXIIPp0jOsLKGoL8r7LMHzyK9TU/Kh - XvPiBBQ75YRD1M/uV95SGWjXEgfDqrfnDmxSEJZ9RdXntIvZ4SM90fQcIPVRt07p4KQQXsl3wOrK - lzSZdwZUTRBg5Z1jQEzKh5BpxUL4gBUxi+8iga0JHXpKrKL404u7x3KkQUnMYViuuxSueS55bzXH - XTJy58Hqd6jPVxKjxqtPYV6pF4xVXNXT8qkiQI+vI/7L8/YcHGG7pGuFzHsO7Jhy1W8/4HuyvzAm - 7cceijA4UH3mBjZ5X+cK1ryOANye2dec9xpczvoJB2sev3zuBw957BlQ+7m7x8u8+1x/+h07c5qC - 7/MzXeG7zpw1z98M8+YyEPkhTwn17mUFphbpLUzwTcW/z0/2pupRUF+O2CoE/OP34I+vfv5phrtd - A+eDnRMuun3Bku29CC5L1uPynHA1GU9fArUz2tGgJVk9P6/KAt87I8OF5/RggdlmgdfT+0kVmQds - eY9LDvtOCLAK7QLMztQFYM1bqFF0JiDAXHv+nY0AHw+fd7zEwSP86SXqvd2WTSeuqZAoPFTsf/rj - sF5/AmGTUJrx0CymgjM8wHuvkuJFI2DaKicCPQVXZJtdNJfNGe2kWsRXsgSjALqZxCFQo7Amwrzx - ht/fB2wa7v7yVrriN1jzv5Vfb/Wap/bAfHIb6nTBJmbJpltksRLYz18XVHx46xulIPzlicPyTgNN - Lm+ZEGzWPIv5BrRAX+0Q2R6UeZij4ZhB3+vP2AzkO1iIritIvllfwi3jK16OBPRg5Io79k+Xlk3q - K8hA+nl+gmafncFaf4jgu84d7Hw+IRvbjD5hYdvPYFPJ+4L/+ad0LnXyERpF/+H1D89oUdqx/svH - gddnBgGV9RnoTBMFrfVKaujm9o//4ClaJKrxssH+6lPG/prgw3xKXVqdLgYsqOz+9GPNr3r25w8C - +bH33MWjBYRlfdgH3eqXJsLUBe3vg0WaQVPAUMhHDl6bbMHe6d7Xf/j8w99Vz9Qz8ybrL98ztqod - T7W6WKivbcsHiBfBohxUBUiPXYk1XG8HhpvPuE7tOf3qHezbGdCAivd94CRgIF5KgfdQkU4aPfHn - 5bd/E9h4oCfbVV8RKFU8mvrWX/Xjgy1Rr/RQBfmINTSfarb0HwWEGcqpnbxdd60PRj//Seb29o15 - E0QlUlrZpPrnG+sCQAUPn7s3T0C1seJZtEzrp7fw8aF92CdMqid0fc6guJJfcZe7DKLz2TlizRkN - MBWJ1ENocFqwKTsNLJ1MWih+c5H+8JNIWDZg4N7EP/1fzs+tAcpZPmF9x90A+eXdp7D+0sNY7mOh - 2YQNHKBj/PKxQQx8iQeq1ybB5ZfXTudn/sOPYFtssb5oCfLAmmcEnFK+6nEzVwKqBWWkt44tbGxN - JYFqFNV4v0DqkndqKrCFn+q33gcGSZyj6l2W9Jc3rvm6BrmX1GF9Y+qFMD+RARUt66ib2g/3mbwi - Czxvypt69cyBz5rH/y8nCsB/P1HAn94GmWD9BjST2wl9ZhGur0rciuUk6C1Y4OuD95LXsdkzLgFs - 8EYmvfA91Uu0OT6RZ3oiTZe8Zh9ZOrfQykSZ7q0tX89GYHdw2BR8wCunPp5fpW4hT/DngO8iG8yj - dhvlJA4NrKAvXwylZyeAF0Ub+5fzQRdnqVGgHuod9uIJuqwt9w00XY9R7dWuZ6TeHwvW940SMOWi - FvwXMwdZ/qUMkFAaAzM/eQcUQ3xSvPNRPSpXSmBQk2sgYJ1zp8NrX8HNV+6xm5wf+rx5EQEK3jkO - TkxXXebPU4mE7UXDintThi3faibyuivEZ77zhznuagLFiTkBm+9dIfKtV4FX20N82E2PgRGpy+HR - m7mAN7WmZsZZWdByIgt11+mo03egAuzNk4cP1f4Yz6+JRNCMlBs9bXRar5/PkCLAPQ2XeDMsa0cf - GOqDRhjwBZ1dvFpAXmvVWLWt69B+nlYAP4ZdYH/0Gld8JlKOvjj2KEbTUPTHIySwz/lrUH0oF09Z - HproFvUNPajHSzGFtsnDWgu8YGOMVyD0z5OJVMW0sMoALdhZXxOSU3LA5/RSALq0twWEVsxTTxwt - d+Zp3KGXrX5ovq1tfRqfaoZOshZT79m8BkGGFw3lkSwHqDB3YP5OOIPSPsxpRoSunuRMT+CnvVTY - Q7mgsyANe+jl4wGfDP7hChp5O/B0XgLCnqZUf7W9ncLjVvwSadioA8/w64mAizB1xs0B8PpLlWFo - HXl6gG+rnh0Q8vDm8jLN/daueeVKRziafklPTH+4097mIBjVZsQ5O1rFliN1hd64S2l00cAwcyIy - IFeQHUHyXdKnvS1wKFu4BB8888C2j9PVgKfrRaEWKFDxvU5SCDmtFfH+gs4urdzJ/Hve93eVDAJB - UQY7IWtpUkkndzskNQdtqzPovahalzlGIyM4XUx6yM96sY1TpYGf+1ug1oWY+mhc9x68fzfH4OY8 - 9rpwqqsr3MJoT+3jkOhMPUcawnpvUW8z1PpCH0sD88NjxNg4pMMcp1aDlvFZ4GuWoHo++laEtrp3 - psfjeGNiXnY8KsR0Cp5PB9fEah48qtymobo4W2xasmeAevPsUSVsrZiPvooAy4FV1LtGe1dow2sJ - pVjFOL/HUbxUYznBy2XrYm93eQ7iQ2M5/Oa0oxqft/GUWyUBVH60OA3dKCYSfIbo4pkpLj7VWV/o - YDjoGy83MgfblLHbtBCEr5NDAztWB7HQVQUFx/qFcVGZrjjdbiW8eEZKi9PDH7bBne/BbkdC6p/3 - bUxr7enAeHxBrFGhYfPhnPJQFm8bXKQmYxSs70SjRE6pl8SOK3jNq4Sn3t5SS1u7SkssG+E8fnQa - ZLY+CBxMevTxA0zgjusAy/W3tYMRY2RTQhYv4ff6hLivNtRm8muYl5s6IfXjOdTNP49hqcZ0gWns - pAQ9q2CYcKQ/0f2tmQGPp6iYH+9NAA8z0skuDR5AuF0kDZxeDx1b9ZUxFvnnFq37G5+di18sTlS0 - 0JubDT7qGx78/f7LuVrwPuTxMFqi9oSu9Uyxkbd8MVVjkqCON3x6uUNaT0X9ipDjoDPV1LexzqXt - O6m9kx7vv2kL5kKmHNhNwxXv415j0/axySD1xD01WuWjz0Vn8OCN+7VL4q7WZ39xJEg8wcVWLi3D - /NptBFgNw4L341wNSz+QHnK71KPZbH1iISicHsof6gRvsVQYX4d1BM+eZ1D3CrSYfw9Vi7R2s6Nu - uQ/AyDLRhEX1OOCsjXMw32W/hMft9ksD/NL02VqyCllHmZLd5vRln+RONXgdQEC2w8eLeYHBDFSg - CnEeuBgId+6rwR/+mZdkB0bhcYngw32V+Phk3voO9fcKTTofcXYvqpiszwMpWm0TdGV8sTi2pkFu - ec/4UFc9o+c1gdFtzNGA4wIg7gPDhOI1GKi+fBIwMylMwfr3Ys27mYxXX7EDlvzcUPto+mxaHmCC - l/KOaPA5tu5EH5OFNtoV0wvxh4J8huOCrO/ZwXZTHV0+EVQLSVdDxzjbj/U04Y+EbPzGWH0DBWyd - 6uzA13Ak2FheN/C9l9kC7Vk8BUKhVIP4mDIPDvXmQhhdfLA93RUZcqUe4QO4J4XI1CYDG63EOOua - Tp/qcAjhmVxtrCRvAOa+lQMIt7pE5PPuVrNnsp6kP3EBDmH9Zl0XWhO8ib4WtOltYTNQXQPSY5LS - wJbebLwe7xqEe43DzjkRC3KqqxIV3BHgLC5vTDhatYW0i29g3a+vcecJlYJ808A0Eb8zoN0NJkBz - rxjflOPNFSh6R8iylpFmSRu58375TMirBYc6YGsP2353S+Hk5AYtKnhiNJp7Hnhqu6eK9fYLwbf3 - HTxV8pEqQXIYBPpYWlS7t4kmVUwYUz5VhJY4uxBWnV9saS+tBtPYSunx+wnAUtX7AE7qOcT2GzjD - kubDArLzJ8cns45Bp4tfBT18IP7pg+W+La5QCNbmizD81N+NvTjot5722lMptlOSpnB/e1fY/6bT - wMxKNcGPb09XfGbs+S6eaMbqRM3QXYrJFIsJYucV08x2bcYjZnXI2jxVcn9XfD2FjVXJpXLa4/20 - 8PoczVX22y8YW31TzIF/rOAtTFzsbISbvpR1WULnOKs4wK+nO51zzgMPNKo0cToupuo51yA6BJTa - OQ/q6b49Ksjg8/Cn53QWds/qt98Jx5pcJ+/DeQFzpxzx6b4f3CmKsAWWo6HgdF2P46O+d/K6nml0 - aknxEek53CmVdQ12Lmrd6ROe+p32JQk+DA8untbv9+OjgFlIq7di3Lc//UKTs3NwP2ZVPFEgV3uK - udNx4N2mVpD1PTk42IaqPi4469C6PulZPr3B9B66Bib1KaJuwYg7nr7eFYLntMPYG85gNqpxAis+ - kKq4Uf0zvLEBd1UbkDnlZ0ZcZZ/AGxB57AHrVEwMaSks7A7ji5gubMw2aQqDu++SRSD3Ym53FwJ3 - UPkE0lUxAa+J69SlU3ujvp95usAFogCvDacT5oynYuWPCSb1OcLmXk7rZQc3jvwx3IKqA+SL6dzg - Ca54TG/ZojDxPTktNL+lRPfu8AaLTmwFUvUmkd1+3LkdDLonWPmA7PxeqflkExEk760RO3cpqxez - ASa4HQKL+gZuBrq0pwWI78+B5ka5HYj3FTWgKQeN7pvlNVB6UxpULm+HXNbrTwSNPIwyrSEGdkd3 - Fp3jqg8lmR4iRAYmOM2IYj0bA+4kPtkoZdcW1k15xK5zkMDSP28G2DL/SH04S4BFcy/Azj2Mf/zP - R0KUgfjVz9jfndyBFbqtwUflopUPnvq4fj/oOgLFPz4Rx535/OlreujPRzY2B9ICVcseQZPscn2G - sWUCvV10bG/kRO8M+2kA5XndUr39mPHScM4TkEfW0/3+8o7p3CoS/K3faxfFg+jdQQnvu+Ib7KIw - L9hdN3p5xQO6H2dl4H0lqABUMg+vfMCEm4UlsPJJAKktFzSdyRVq4GbjA/III214vcJPsz9Q5UYx - +PKtZkCDyhuqvcXPj+8rmeRvBaspdoflVtstXJ8XtvhGqKcZcxPYPeU39gpnYstpXBRkYBQHn/mT - 1WxKXBn+9OBpPssxzU7dE7478R3wpHGKSXgcQ1k4jA+s//zXzDsKVARuT32xm935Mr87GIlcSPV8 - /3JXvLgCtLvy+JD0ttsbhbzA+9ntAiCBTTwtWR9AZNdWYGK9dOc4VVoA3A2mahnedXrTbzIsXNhR - U/pKLt0HngGUZg5wnPduIbyflxIe69IMyHc9p15stxB9pOZMDe+Use9zx3s/fYJdtRZrdjAeEXSl - UqPRp2ni0RVNBw04k7H5bh5g0V63Fian5kad06sZlhbN0d/zwePnGo+rv4GHTf/BbgcmMOdybEL/ - Hhyxp7UPl1kfO4M/fsDkpOvEVfwUXKpuS2alAcWX3mINPr7bmtr38yeeVvyBt2FpsYKswOWvY0Yg - dzYPVGuuYcze7azAJ8if1LlL0vB6TzcFsrdcr/x4LuYobcc/PRtk5AM+vPTyoDOTLwHDbOhdPd45 - cLoWCnZWf8bbxZPAy9barxVDV5+3akiQ17MTdR7KCL5LGydwiqsDvl/4TcHKUyTBle+DZjo2YD7P - 0YTi65MEW2ubDF+VeZG8e2GFyJujAL40sctfXkAPT9DUE9gjEzYg5GlGCwLGT3jrYH1HCk0fUqGv - +n+Eqz7Cdvg41Cufa1yYWdHP77Mpqx/9n/4wbrciZgEoZfh5LATr+X6vC9y+jcA2VxTqRS0dZqje - IRCmKcQFKteph59ahiSL3tibtmrx0z9g2x8C8j1dNsMUf08ERHL4CaQbvQxsdnEAz2LjYSVUNXc+ - y00Cjqqn4nv18dlSHcInUoqPi93pXOpsup2ucPOVenpe34D5wuulg1fO2GP7+khdysX3DNyHTsLH - ra4PWxe8RjSXckAtYVvX7O1uUjikXkMze5p0kmyUCHnxZqR7O88Be00FD9600XAY7Hzw0+c/fREI - 5HotPmLcN+DyRAFWHb6O//A0OcsCQfyC2HerhiOiEvYDDlqgHuNcbmEiWwCbw9rVvSjRCGw/FOjJ - z57xch/XHhuBNgSLYO/cedAsHtp+JFAl2PlsNgzJRLCBPRGkr7T2nPKucl2kAcan4FWzcOZNeDwe - MXZ47slGYnJXqGr5IyDcpaspvVnNL3/ATm8nxVdQXy20jhKl5yUdwfI4vDLoPug7EJd0ZFORxyNs - zbbDmq999SU47kxwC+yYJj88eg9Vg/jeSKj9Tpt49WcE3hIOYXf1c8tgdhl4RBeLnvacP8yv0rWg - oq29no9XXWe11ltQfhkZ9iqJA/M3yUfpTEobmw0J6jnwL0+gh2pHmFr7TBzcqyArCIT40MPM5fM6 - y+Hqj6it51L8hddjjww3faw9bc71tOo7mFXshoPR8nWmfpADP7RMsFpnsc5YcqigINICH/wwKabt - Q8zl7Vi88cFEirutTw4PxGl2sCulO3fhMeVAg5FMYCWVjLlL2UBzhja9oXSjk00f5H94oc57qM/C - a+LRnV8A4R7RoP/yBRg+whP1GsGMhTJkyc+PUTNWX/Wy6c0/fAsA1+2Gxfquc6GBDILFmbyCpXNb - Qt3vFXzbvEf3o0AF/vklLXIeOhUku4L9/RZQ1zT3hXCxjAiaePvCua/qBe9F1wl6XQmprW0XfZL3 - lYcMPgux2vtqPWPgevA1xATj+2M3fEBMPJiL94xauRTVX6e6O/L5TQk1HF3Sl/fhvsiPVspwMnzr - YpnwmID72e6wcXYOOtufbz2MAvlBg3azj5dfHrbbjSHVwjIvZkoFCz0E1GIzdKOC/vjPxbdHgMbZ - KRb+kZlwe00u2By/9rDN5cIE400/YBeVvt4sOOvh6/bcYf8LBDaXu6mBh8QLqGOUp4FF/r0BD5Mb - ye9646leZHm42ZQGZdG4/a22G/Ba9hm2ipvEljIECQzy9kKdkng625AXB1NZ99eeIeLQ88ibII6/ - Kb5c9hbYPncwgIF1eVJ/xbMvc1iF3DR26Z51h1gwXl4CfnrdJsuxFoLm6sFv35g4NdyazWnqebDP - njr9+cPRs3UPlmS/o7cugDWjbe4AT232VG2qd0xlRwvQhaQFNg1XZ4yoi4KayFqo3mS7mGl7fYJ+ - lyQ0mY4NY0t7mwAjW4JXPnSXO/fSkDULBVaW+F5PwXdIwaoH6Y//6dHXRhTPB58gdzjWPOxPHpyd - jMN6a1Tu5AmdBjklKgPOuRH9uw/KCuTkfMIqMs7u1jyrEEovz6Qu113qr51OBC56DcgwzI0+1uEQ - QRDEHTVyNXB5KUtaiN4xCtin8outwQ4S5OvTjryOlxP75ZXgl297kfopJq7XOXiSlZhemuqoP26z - b8HuFtVY+X73bHldjg4q7B5j60JafVFeFoE3u3qs96tmcz6rFfzpiXA/tcVUHKYG7TfTGVu0CBhf - HB0L8nE0UJ/3xbpvOO0JJ2+8UbO8+oC/5U4JYSG8sf4cONB5UTKBd6RyZDLlCHxzjwvhRlS+NFBo - FQvz45HAMR8JzTwtBBPKTA4gomXkdcVn8F39ijQR+KSWfJzAZ9ROI6CS7+MjAzTugyYJ4D7tT0GL - 9VIn2Yh6WKMmXvNgANbvN8KCiwGB/JHU35fbaaA2BY4e0Hxy5/dtln/6MJDyeCyYes4VoA/Z9qc/ - 3CloLovMGSD89eStp+SIJHiPKoHwB292qf0pQwhOmkH9ce4LxhL8lF3pqmGvVM+AXA9AAQ16+3if - Pj5s2plmArRKI3/1BiaptgxP+9cZ64ew05ftfgpR+IhOhEVm775+9Y1quV8DauO+XvVyA52bE9BD - /EwAfwsnGcovM6PavpPi2f1oDZhLKaDJ2sCYQVvigH77BmRyb0otTNlWhnOf9oR1qQK68Wnn8D70 - UiBWvVgvr7XnwklfT9gRrorZY/eZAM2ODyIsG8flg0IJ0NMtBbovq4b9/Pg6Ze4QhEq3xLMOvRZ+ - 6DWhez/TCn5EnCG7x+5C/75fhyoNwsszoI5Jn/Us0nME1voH9tf6CL/mR7K+ePdgnqoTWDjmGkAG - kkqj7+vM2KmzNOQe+wtd50rGz8v2Y8AKCR984LtvTbonScD5dTnhoLEjd3EFMILkNQwBHL5fnd5P - 7wVOHrmR6SnWYBH6MEOr/6UGFC4DE+PM+ctT912wgGWLVQFkC0z+3c/wHkIY7jdFsBXuQczO8kWC - fureyLThHvHn6n01ea1fUb011imeuR1CzocGLjoQslkiOwfyAcuJCO58PKfe0sFV3+GDNwT6ZNlf - AiMRhjhy5QwQZqoVilQP/OWX1IBYASMOI2zhW18s2tVTQHCVFvLD3yWudyPgGh5S9fshYJrMLIW/ - vNTSEo1t1erhIOVgA3w4Ms395THQVnef4LvnxGKKjw8F/fYDeN3rYZl7WYah/tHwRfDaeEFBz0H1 - oMfUq+2BfcXWJ4DTGnHV4/dimU3aw/TMLPrTNxN9SA6wNpVKdWc8xWMbEgncLm9KHW0G7l8+0Aid - hq8wtOstkRYeJmdJoE7gUsZ8/+UhOi4z1QRyj8mI6h6er8eIxruyXk/onOU//MDGQRj+7qcqwA3G - 1efLJjs6WnCo0YWao1XHi6JsS+j33Zcq6JsUrN6FT/m2exTBhsifmFSH7AkT2QHBrIWavuWuSv7L - b6kVJXM8HaI+g7DhemoRwRoWMXMs6Al4xj++nvRCSiE+ZigQTpJX8x++ksHpLV4JD9Yp6a+dKMB3 - E2wx7roOLKdR/ldPNJYXYvMv77yL+wTnrVWxWWz3I4zyFJFNsy/c6blNesRVnoP1x2OJR4CDHp5y - 440PC4hdsSi361SM3YL3a34sDpobgSGWXHraXw7xtDODFKz+Bv/w9H2fHle01teoLXhtMfOtY4Ky - EU5Ue6lCvYxo6GBcigci1deYfcOuMtDDXd+QO3JXXeRpasLferJW/BwBu0iwoUJGD7egjxlHjiZq - gWsSEO2rYjwUgIPSKzBXfc3HC7dvQzid+AobYVytzwddIUqklP7wnW6uGo/S60XG6/p3Zwv0xi9v - XvNgZdiOO8+AAZt7qm51vf5epylEq9/C8ZstbJH3fQfNSLvRADwf9RIUWvfLa4Ot5FmAeelDgrrt - cxRf+M2/9V2AzRPbafBg7L4D69RwpaV+439copAohLYK1ilTc6HzkxmmqElZQ3goXGrxPFsJ/Oq7 - DeEIp8Q/PIebZ33DeK2vkTVvkEzKjhTffKWm711ioY8sT1h/swXMlgHIr/5HRFkO3OV6YBoEr31E - g0N7cMesfnQ/PRxI0e48/OWnz0k/BdNajx2bYcdDu3EJtVPW6dPBznggnO5pAEtVBMuaN4OIA0Uw - fRzJndb6JPR9NccGPMbxdDzKIdzvVBhIa/1gWOvN8HLyLrSw0BjXQZp1cO9XET7a1rVe6ENuICxt - BR9mT4lnicwOulT9dvU7RrHsHk4JVz8SbI8cdFncEQuIr4RQHfN2zPKyEiC/fU5UH89JMbfakPwv - Jwrgfz9RUDoJhy3d/cYMQaGEz1MiU/zefPSlbF0T3uNRoefni9bsvWlbWLy8OzY6TmBTtP2UKFIt - Ru8P/zCI5/FNIDpKEz3eoBQvr14NoQn3NTYn9GRLwqlPaF4qFVs12Q2zr8UTqqe118VjNAthMSZZ - JpoyYL35mjqT4qMEfSp/8IEmg8ueYbWgg5yW1KSpD5anQHg4Z2MTlE/mD/w+n2VId/tT8H6+8MCw - eA0A1Mo31SPjqZPsaciIEOLiAC3pMCHrNAKpsTzqhptvPd9UYMI2FopgE1oHfR6fUwSlbVVRDWRe - TRcATXiidz9oeS1zR3GvyxCC+5UIZu66gkE3FfzkpwCfua1VCAfn4kCGRD0Q1c3MFh1tBQi3GFO8 - O6N44nyOA1LjeNRvJZXx2vPZIplpJc3OGh4m1f5MyJKymN52/K6YkTxq8GM7Cjbm89pF3ataROpm - T4vNnQ2kyrxJGqXhE0CsP4stCiQNfYDU0WyqTDbLB0GDsGQg4H0I40WTkgYVoV1RlztuY4ogd4XS - 65xjbyGnQlT7J4eGTolwHL9iQJ9ItVCzC13sb7LrsODsewWHqBKpqUdGQfXtq4SKZwX0PEnBwKvb - 2wTzFDU03wuZK97nPELKRxSxcXFad1KuVwhTbpdStzWIPjmjpkCs0AORusMUz9HYEBTmpoUxq8xC - 4OscgvfnNGBTFgedXZZtAuVH71A1Kr2Bx2msIXB/SlRbNoK7OFp1hc2xbGixW+eFWYXaIJWzdzR8 - 3bN4aLfZFe42uw+9GD0cWEM1HmymWcNBcVIBL2yeDXqTrKcnKd+AtYtlDnc8q6ly4Qp3jIFDkHPx - JmxuHK6e974SIntwAPUOUq8TC7QZumaOT7Ut/ykW0nAa/O23+OR1YBtdfAdqQbWnl6cVD/xJDXP0 - /pwH6khLW7CDes1hRUJMJF5wWVed5ERGnYVo0e0eMfM2cwQ5m5zJS5Gc+ve84FuVQ6pVtAOL1mw1 - hK9KTDOEnzHJu6iCN9PTqCd1N7asP6Pp9JrwWfdDXcjAniC8+0Kqwc2j3nbpTYEw5gHG9adxR73T - eQS165u6wFN0UWx9E25vZUSdT3CuecZXBgoDqFJ9WAqXT961g2IUXYNxf/UH4RPMCjK++Rlbxf7h - 8lPyjWAfjyFWXncpZtB9eNBCkYdPeRy67CS3CtxlRwvfzr3kzo4jCYgrzIHc/fQVz7O0jVCKiBVs - 5Z0P+BKPI5SXbYa1SxMO/OUVEySiegnIfWgBb97bBb6c+4Xat62iT74bPlEkcTk2NaPVWRfLLXjs - vwM+jM9P/eWzyUJFe/nS4MvtwTZefE42ZemEHSVKmMhr9iTTcVKwxlWsmNy9I0PibYa1B4O6zn5t - IPxIGBHWBiKb7uHRROv+pMr9yRUrvoRoYxweAavtZz0Jm76FkWx3ZLM734q5Hg0NrfiEC9Emw9RE - whNeGl0IdurrXWznqhLQFyy3QP4ebX1rSHyEmg5sgk13CoqZXFoBfgMg4CyWOzDfiy6CAhfRYOZe - 72Hqj3GJDJNxQV31ycBHT1VCy1GuqDPqPaCDp8qIGUJA5P7+Lr5lDiTIjdcNDrLdvpiTss3lbdZc - 8FndHMEkZvUVmkHAU11UDEBbv+FAzM4NWWr3VXy3+6yBYeiG+HASEv3riJcA/fhBU8+fYiZqnkPm - gBPFfhwzMUqfBL5VKaRhP3X6BE60h8NVcmlwH1o2D9u6RPfJK2h2/TQDJXrDg+E47bG6X1v2Ja7J - Q8o5CQ0e2Im321mC0PF3NXanBAxsZ9AANpxj0D22REYtc9vJhIcXnHpJPAhva8hhupcfFONFZYt5 - k0b5INsZvrOqjWft8uLRExsjTnctiCdndDTo27cU48PIge8u7QgUc+ZgdcNejIDR1JBsuiJ1vg0c - Fh6DHC43paXRS7sW7DzSEUpT98YJ9kd3sPJTAOudoFFVxs9hyjeKhKjprgmjVhcLffUZjNOtTbOt - vSkWJ7U0uPVj7+/5iLrtG3AvsgdBOjsx1j4kCZm6SbC9rp+pfjwCuJzRG7tfL2FkC4sF8NV7pKYh - HMC2f9wreNrSgqqf22kQj0e1RJskegfL7a25wpVUFlSi7IrLcXrX06W1DDScRQ/7t+PXXTxLJQhH - +4JaxyJnJGiHBbzQ5YDvQtS5y7VQGnR+DBvyXkyPCeo9ntAxwAY1DC3RlyRNNfgcXgesXS81WOKX - MiJH42p8fiR3tuKnBU+lscNJFY1gcm1xQj/+SS6O6S4Z8Ee4HtDBLuIeQORJ78CD7Ga0CJy8WA7P - V4MeaMzw5U2tQoxpXUHtLl1oGrBHze/NFydr+Tane0M5FiK9vjooJmt/7lDeFawmaYlWfKLXq1Xr - bFnnRLdDLBBoBTiehkHpUWfqHnnkou4Kre5Yv+eNj4Tsiy2n7BPZDpUtTrvGi4nEhBE9g11LJvGu - 19v96zpChllAhKSX6umukhyevPGFLWvRCvGpcgYQmPXB9vEiufMxriUk4kGndyGy9OVZ5jn6Wjyl - 5/OhBrN+PxjouE61cYbvq16+rBthP3kDjUY/qckjmx2oJ2qKtS1vF9NBog2s5FcTLBtyrEfFUJ4A - +sWbbDQL1MTRuhLVcUYDYoaPYnFyKAEbi4TqL2DEy7sSBXjYxndqxbLFxG8/wB+f4eMzusW0EliF - VBbsqLu5s5ol1ylB8yvYYHWMOrBg5aJA3to4VFejk7vioQI3r/uWgBIeimWxXxPU5fKDjaab2bTP - 95VcJy8UbKvQ0fnLOmuxLL4RdUt4iIVT/4DQlOUTXfmmIJ9n1qI95Ct6EbRDIe5xPsLHu3TJ2cms - mKmcViHKtICaE9LAVqafCmrLHZJvuZRgfvgPCMOhvGI3OyTFHCVhCNvhKBDJt94F3RZaA398bl6U - Wz06o6PAn75NRdrEn+z8NJFwFq/Y2Mc6EI9rnG0oRMTKG/CAGKlAYHjyMLWJSN1JFTQHgtmMqbGP - azZTk/V/fGmfrvYwS5CVoBBaRq1j6RXLPaoruUThSF5vbRhYCvJcfjhTTy8Sb+v844B7cImGZ4A8 - bxyIZDlE/u0Xu0EmmN7lNwdBJGTUknOsb92OPCErjCKAZu8y9rIkE1xVSSHInyhb6Ou5dgnfVjQ9 - X2WX6UbmgY9tKdRd9criPZwKOok9B2jlc3rbZA1Mb2e46tFrMWfXkgO1FXYBw5Hyj2/a3uio8do9 - Bso+igzuwrXDmqPHBeV6PYLsvb7zY1LF5e9qm8Pr5/nAfnN9Fd/ENQU4T5WHT8TXgYBHXwFUPRKq - jIlbz9mg9gg2iorDdLdnkz3cOhBEfEZTQ3iDrhRDD2r3b0xOb22oH27XPkHnmi7Wzd2HTZ/1Heu3 - 22t0r0h9/f1MWvCnf30pPtQLD945fOX9Ha9Fy2Jq5F6TT/zTp/7WrcCUNe8Ezlp5pl74fgGWqZUJ - 35641nU9rxZuvJohqxgX7I+LEy/LNEo/P4MdbdYYAw4vgNuT3Ki5a4v4b72sfEvtV5gX8zsE059f - O6ibI2MzwCOIwxZip06ou/odA87TySRsvj7qtSKYQfU43KlLbk09u1Auf/uLBk7Nszm67B246n96 - uOz2Az/oNwfevsMt4F87dRDvArbAdsd9g+kNEjAn5pGD1PVauuIvY2p61mC/NdcTzKteOOwKDgpF - dSC8/enA8uNb75TktFj5eZ5YokD2SD40ozhlS1RTDm40KSYwvryLSSq9Ec7g5uHczUExmXeywL0I - 38EucXdsGJiqoPO83dOTs0RgQeVhhAf/Lga7Sj7FsyFhGX7BdKOh3EhsbL+Z+ec37EWuauZIYgSD - JhipXnDOyvdfAejbdsLmUUoBm56BLAdqaQSnxwzA4j20Subs8UzEH96iYFLkg38TKUa3Kv5+u+MT - vowsomqbKcU83WEJzkMrBox/pIwI5HSFOk2eWMHku/qrVwlf6YYnmzJL4gmgwoFL53yJCFM5XspX - OspwOqfB8n44BRvunxKC/LbD+rAAl4UQXQF7t0KwO5pNvXBuUkE7kQmBoiHHM95xnWwpzUidAJNh - FpxZgG2VCkFjPp7ud/LWLqpe9MGuLo/smx6TKwpPASa3HX8p5kJYB+W05mH16607lXgkUH2DkR6O - FdXp91g7sF2n1PmJJNSfu6UQtE8vPr18PxMY3+Urg759T6l6+Rhs9aMtiM5rhUuP1hNsB6Qh07a3 - 1JfCVBfCuQ3h6oex822uwzegVQXal0fx+VhhnbXbsESIXR2qUVkBojwDCGUDfvB91W/l9fDRoFq0 - 599+KaY6UHuQPlsteJ4eG3dK82MA7kLZUXfz3LviM+wmeLroMt3bx4f7d/8azjL+rvfDT3i/sENA - XN4Y5mRZEgDlKKDW6reYNLQpONQ7F5s3s6rnh+ykMKkCF5vna+5OOI0V9ELFIWCu98sDBA5BgtRg - e5Qv9cTZjgnRVxHI7mD3ax7wmGAglzt8gKlckIOwewLEXRwcsKftzrbQ8IifluXnr/Uv2/yfHwmk - IC4mZN1GqN1pTJ0oqnQ2MHutc5R3fChysWD+HLRgEtMw2NiKUvT5F+fgUIP1YEUjxUu430tAa503 - 9i9BUTNx1/RoOwWADJvnXl/CuY3g1VdMbNxVyFb+1uA2ay/Y2aJYn8egSeDLuV2oUcB3PTmTICEj - OrgBWNinXnrFTOGFzzR6e7unmH05t4LnduRwXJ0f+pJ/DxncfZMDTomF63nt9PfHj2nA1EE8v2Ue - 2nOD6QU5xKXTLdKgn2/7dZjnTp9+/sZ1UUYx9KZ6GvSTBYt5lEnDmRaYnImT/vKRSW4ksDzLKIOn - 5nz4209Uir4VcLt+F8hHdYrnc7odoWTxGzJ7sl0InmUTuBe5Nw2O5OtSGKYmlC7anhqU2YAFDi7B - 5csRrIPUZpMd2wF85h7DgRk+4rmoMwhr6/DE3i1Vi6kiwSKv+w1r+29QsM05NJH7rRZsuhwppvYb - mnDKe4r9lX+nipgTWvGAeqppDZMqOBYQOu1J9+EI4oUe0yta+SrYieGrnkuTcr/8atXrvr7F1iMH - smJOZNs7UUHSa93Jhrkx8J+fVelZgCZdgr/fT8YLe4Ka52ycbxHTl7XVHuyFeAmacMb1rCReuyOf - wSNEeHPFxNmaCX/+Wqdbb9geprOHjLPlUDtxL+xPr695Dd6PMHEHlXMq6JfVKeCo1+jzsvt0u9/n - vVv6iFkoKS00X9uUOrfJBcIFHwlc+RArL68BM/DPobz6zdVfa3XVIyAAoztn1NOSFpBVH0ODvF5Y - n9wZfNf1ia6HzQHbJ4pcZuW3AN7ebRp0Tsy7o2KhbHeMI4P+8F+4JGYLV/+JL77O3ImCMZftIVUD - yW10Nq0dq2BwJsdVj43FIvG1CZXb8xmg5LX6hS6pYPIyDPzzF6O6PU2wOnwEbNbSU2dveR5RuFdt - GiyJAyZIEwGOS/ukxuYt198rPE7oCPcMJ7tJB+J7Q1qojtxAfS1q9O9P73/umf/nJ8RfPldiT8QX - o7/WfOeu01PKM8WaCbyaeu10hc/qrgb8V+2KRTverjAT7AO9T8QAa8U33aHrdiKg4Kt63U8yWv0D - vj3ekc7GkJvgmmcQ9r4faoFIpxZql86jWec82DjnwRPEj02IrU+muJPnNA4SH2qGbesbuOxziQUo - t5VO45NnAWHn1xB1SGDU1NcK5zsOPGheniqRT+dTsShmzkGvHQm298CLaRq3Mhg+uCILGZ/DNE4f - CQY3rsTe7NfDFD1uT2BcNR07Z0GPv+rXz6Giatb/66UFWCj0aB6zGTCWQAguvAd/64MxcTf2f3ld - 0efMna94zuGO1Cdqu3daL2gPIrDqbexqn5tOWiI4sBykjCzRRYoXmLUlBK/ZpKpjvet5xNm4K0/3 - PT5AvQWTH/oZqGrLphmBeszfP0cZLuY7pvabWjG7og0PylPnYudprmczhjCBp+23oNqlmWp6G7we - bnfwG9AaisPUtKUB2dGtA355DbUwRY6w42C3pzfzdR7GCYYLTAwqYTdvtWLrQvkKAq91qPvzx3YH - AjnRqx5nx3KM6Ypf8jtzbmS2GqMQN3R8gnspmDgIqwCwyV6u8Jv7OhFW/8yquoDglw9ib38ahl/9 - wGXQxGF3zN1FpDYP1nxn1fMsprvNEkLRqBBVolph4mTLa9dxtyOSvd+yiTEwwpi791TzpHZgrewn - sLcuOtb74ycmx70cySljIXYrxsXL9fBQdkKnPLGNt8kwQY2/ws0dv6n7IB93rjzUwMe3joJ63+Xu - bPZbDvZbo/nTe3xIY/6HZwRpkeGKQlXzv/9PlZ3+1ieTySNc9WKQJt/epdrkeXB78PZrXqEzvv+8 - ZViXJ0qVKyMx4ZiiwOj28Vc9Pq/6HQrQFLQrPqx+U8wrx4EdhsaqF5RB9NqplB9LE618eRjY+HJG - EMjXHcbq1tL/9O6uuwbY29xCsFxJZ0G0q4/rzxNbvvdkgocOOmue8wbzmr+BVf9iP5HSej5JcQv1 - xrviYNaByyonduBuJzzJik8uKxpRQ61FEurCSa+nEvoGfN+UFF8fnwT89AN8Vjc1mI3HsuZd1Qgz - EJgB1+XPevGjuwCdJhWplm+r4iuUlwzwxuFI/U0GB3K2DRPxmqzjVd+5S+k7EVDD8kiNhH/803Or - X8V4hrW+liRCmAT9hLHziPQxaI4peLudRq/5I3CXdHI9+MmfCQ7QXdcFf5dyQHU8nSZ0kuJZWnt6 - dKodr/muXU/b9rH8+UWF/2r6GMlpgk6f3CSwKoRhFLOhBO/MulE7SJ6AvfjGBGs+QU1Prdz53J9C - sHOnL9maVx/QPre83e16xdgh2zGelkOcotVPB1x4Q/Hwq485kxgF821jg79853jgROwGjlwwdHRK - eLcyhtPFfejEZVsC1/pQsDPOH31OX1WONJjxOOE9ZfXzUY5Wf0td/uz/w5usWRgZbP4/pF1Js7Kw - Ev1BLGSSJEvmGYKiiDtAVEBEpgD59a+431u+3Vvfqlsx6Zw+53To5nIKn/Yibcda+avneYuwNhGE - B9vCUd0p8V++APt9xWb3zujm5e8IXS4S83deMXGsSoUnspT/9m/khqQDibtl82ps1bCNmwWhFlA7 - 5D/Fp+4rvuXh+A7DMD0fSm3KeN+W3oXLhL+LdwTb5fS2oRasNrYct/c2u74z8MDxCtY2FOfEj1MJ - SpuQzuJ5dGvhnr1EGCqFjpUHTOMVvxALRLXdsJPLI51yXnyBcpBSHG6Xnq5e177EKD8lRPN8lC9n - x9GhXG/LHj+at8CbnKKTBQVsaucm7q6Tn8Gb69f7fr7q5SKPKvzzd122UHLu9PUKqWi6Dtum/Bo2 - PBoqiJlHj50l34Z/8coX5Br+evZR7/y5kULijcQPuH3KNX2NUh3Yb6LGKB+6Gz3LaI35Yea4q1vv - eqpEu76cgR3Xw1I8ahkeOFaZuRPyvLWNrBTp5sr81TNqNoiCDIzi74cV8HjR7VuoDJjCI48N+FIp - 926rDf7VKwJ+PA+jvHQS1JqwwE7Povof/2/voMJKe53psusvdFsFg1jH08ebvG5+/Vcf9ywaRq/U - Rvj8wQDrWbr3mIqIKTFP2IRotXFOSz14QWH0SuzsftIyY11Gf3691XaKR7dI1tFQTAY5n7xM27KL - BP/VV5cv08aLMZ9KWBqnA7a99zmfAk22weZ1Z2JGN8OjpX6UYCdCaeZF41dztRypyHjXl7nBga8t - o82ncPgFr7DlIj4mBTrw4I9Pnfb8RKef0MLXbDi7Hgi9LRrXFGHjI+Py18l0U57xBi4gOYXDe3Y0 - ovN39vjH11Sf47QZGqEIYzGr/+3vAlVYgNcxTfDJl5x4reVIhsA5D//8scVpXxto7XeIXSkWd3x4 - nKUWFBA7NLh4bP8jEtTSI8bmbJN6zpQ8heGDplix5Begsaa5//xSeQWvfP3lfAQtK11weJAvdGmn - VIesIB+w3egMnUczZ+Djdo+IepjXevzzB3Y/BzugdQf2EA4XWCiSTJR+oHRUv88SdJjRSTAnwbA5 - Ch7/nxcF6H+/KGAuaUY0x6rqhQvKEd7bCM2ifvzVpIgNFZIJjERl84j+HuJUwqeVFCH9Tq22vjyn - R7bGn4h63qcAjLcfBMRlCfF0eaab/JRt6BhaHG4aq9T8Eh1LOG6XAtv1c/LGx/4Nx7DFzbQ6sudx - ouyPQFcmb346NzmfH6/+BV/KQLF/dEi+IBy1qJQVj/hotgbeXeIGtXL5I64jv72xu9IWLvIHhkgr - 1HjjrlML3/ycY7d9qJogqcmGbo/lh2XB44e/9cNPIs4hl8ItpsBVGBiSLztzsv4bNucCJVBdg5Cc - NF+vqdv/zqASbGVmwfPkLd7lHsLtcRrmjZk1wDlGysIqgCwuvpe9H5apqchj8zPRmWQe+jY+veCl - ghzRhiPSxpW/i3ByfCvkjK2JV686ZxAhVyanbzvX/Tx9X6jWrjF5QiDmW59UC1RkZZi/rnGmfHC1 - M+TSw0g0N9kZZSaGEiW9jj2yVIBDoliixZw9Eo5yTyfHiHgUnBmE3YWXKfdUQAPz0VKw7oqVR7Wv - /4KP5BHh28Y4A8t3XAabkTGwU95xvq3n4gKVjnWwMcosoJNYMQgJykqwGF3+4meGKqfv/c+Y9yCA - B1dA4auvJGnZIefsn2SiryxiXJa95vGet12gcoIlKTkJ1ssnX1KUCotLfNFMYx5g9ozSe2/gJL2+ - c1ZIcQ8D3zrNr/D8pOtcdA3Mjqo+C7xSenwEUhUeja4g55Pr5ESL7zLk4FyRW3y8e+up9CCUr+OF - PB8LzMl2FXVk53pPcl0OwZgcugL6P7pgH83fYT3mQwqzyr6T5IsmsPyMgIVy8liIS+wPJbfKz1B6 - 7wx888JrzPPknSKgXnxyv7M3bZkyMsJse1szeh2wt8QzCcGyRCZO3vLH49psnuGRrdHetVYAlB8h - D+VDFBIjuBjDqs52BbxkALMwdM94gz9RBz/Vdkj0sth8v18u2tcbrk+Fz+czXRK08soZWzA0wALu - vIq6JtuI8dMGQAjpUsCJtYmNlQXaukAiQmZ7PXGsfJRYuLFXFRGXJ0QRz6+ap859gWexaXH01ZE3 - ha4PoXBMz7Nww3X8s6pQgpmuXojp3Nx4TSDY4d8QiBE+bE/4njEP67fZ7+v5gM0+ljZ8HJ0n1q+P - GxC8UXdR0wo80dwCanOonztIJjfC5U9TAMemZxsEPU4whiDNl+ZcJSghfTMj85lQGuzf3OnpocF+ - FInD6pp0RPNB9oicDuWwNuxNRWJ3ouHy4YjHD5tSgGt6i8Ojnera4pAxg7qSPMKTJ3TxKp1fPAJr - MOFHOzl0k9d0gU3L8cThVdfjyu9hlOx27/JV3u8xJ0RSCavwWmF9dpyBfVqTBOvr2SSJLqJhSUsf - gkN4Vff9lGtBFD4bkhZ5CFH8s+JlmTQWym5UEmXHF0EUpg1O31nCjvPdNDI66YZocKnxpfp2MenS - 1IV35HbEFm+JxzITUqFl32riZ7VXc+umlkjnZ4A1Bh3qrbhdSnhbhC9Okq+Z0+JwKpGe+jbOrwmf - 04x9VejX8CmRW+Y0CIrrQmiha0zKUe7BlktnHn2qS4PtkOY5bbGqw+1wkLDjYSXejlpXwqQJCbae - kuVt1IUd/JcPcHUHo8m9fXg8PWTinoYG0Lk9XxAnvk3iimmljRd7MGEtMFfsx4qbc0tSb8jbe04U - kRtorNf5M7z6rkKcTrwP5OcEZ/jq2cO8nFe/5uNoZdCLkyySQDLkRFPsFB5oQrHaXG7xonKPETDB - aw7vxrut6UgKESYxqxBNkAZvu2+kh7emvxLnAAGlTfLb/vAdP27kDITEcHk4DLk4s/Fvn8Nb8i4Q - C/2N008c/8WXjHgbsH/xV69DY0fHk+jJxDRfI1im7DtC3L5SrPqfkzb3Hc1QYfSQ2KXEglWXLgnA - 9qqQ59UQh1kztxGex0XFRaz08cIFyfjv94fv797lKnj4sFKrQ8iTJ9bWD5p0aLwifsezIqfi5+oi - lXso85IOzLAanTbC7MkL2Eqbh7auqdmhkrv/sPG9LmC7P+5nmPBVhI3g8qk7GscVLGcHE0V+M/mS - XdUUYp95zMCZnUGQJjlB+fgkWI8JBMtHYRvoP5oSX8QupkvtXCL0KJggZBzmlG/hpjCoA4OHrXdX - ef2wOQXktSbEV1l36mnp2BQRDz9mYDhrvPUdTRH8FAq5VF87n81DxsBD1DdhnD16bznVfASLk7nh - 6GVdYoHRDRvN2Spg97RG+TJgZoHxMZOIG7JWzhmXyEcs/PX4uSXVIHCnxIYCc3NJPL3HYWFXAaK/ - +2wW+4vfoLUS+KhilgRPr6uXTrVNiALLnjmhcHP+eIshDH5sR/DHNAeBZS8V+qmVQEIlqLw5wl4L - +cm1QwaPvrbVMsrgFm8/bJvqqP3au8YitVo2fEsb5C1a82XgI3lGWJbsw7B0v6+OmvZpzwd3PNJV - VaAOg9VSZ0ivNiXf0euhMmUxVmB5G2Z3iVv4t371Yp3zjRVrCA0wDyQKfTYe8a0v0V98exlj1Nz9 - /RrRYMGA2J170rYnGnU4bklB/LBC9Tw+RR4eWQdje9pe8VZFcgSj+/dKzN9g01+R1yL0b9Ybm4fW - rjcDLSY6noQZ47q8eWv1a00Qxmk9syjY59jteLjnwxnu+MRrI8PCRne+OFjNbth0+9rA2mEjcsbF - HFOXKRZ4EusZh+ts1FQqsgZqcuVgC9Np+Pf3Z2qIxIDBkc4Awwj+8QlHOKUaHfNfKl19W8HueLJr - 7uRGJTxQ8p4BSEm95Z0bgqBUdaI9XuVAybVp0ZD1BZHzIsoFIRt9CEqX4GDnj8Lzq8voyRVvkgZN - kHPxVUnRh+0Mol6sLd+qvYuokPcgXAUa1/Tbdws4XU0Nu8OW1xOOY/mPj4SmHVq0kyCbgsfpleI/ - Psk544EHZij7+Cw5w7AatwcDLS0dsPMDy7AoplcBgtPjDMxVHgQgrGewSB7/L19sxBoy8Ogyjcja - 5Go7nlzAnr/IIwDj3ut9YGEHft6On8edz9QpCP2XEB6snxFz6+aWUDhSmViZ+drzc+JC+WS7OPw5 - Qb4eXa7/4/vEbFkvZpd7lKCaZh7WnmoVL/HwLuAciRaxvcWk/P1xiiC0jZQk6VXJ+a9ab3DHQ+xa - 6VrPd+1RQK7FH2LwsQVWcz0tqGy6AFv7UxCCndN5r2CvM2VRlW+HU99BXw54jKOjUm9XhZhwYpoP - 9mu7BmueKTLk0YsPF21yvS2K2hL0EBhYN9xvTiPB3nvERSGOppMOhOJUuQB81JzgOvXqbV8POJ+S - AN/UvSv7Q1AbGPjPA7GUSz2sy1WWIIeMCDvMV82JNMkXWA2jFx73/LwqF308/vFBK22QNqDLJkJe - Y+BM6/Aek9OXm+FB52Uclss8rODijfBxqlJs1x+xnlfmtcAH63/Jg0n0QZhK4krvoA5nmj1cjdWQ - LAIJlC+MnYcHqPr59UB/eDKxb+VTW8G1baDvnRHRsofrbbu+AvnXdcjffdkwHVk4vTHCbsh+45HG - 8QuY5drh69Q13vbYqA2XiWnC7Ure9b/4cY3iSLKQtWKWHIoS9J9+JNr9YtVs+4jP0vdAybyRXsm5 - h+C20GG+AQ4CTvE4bQ0jWIerjZ0P9/Ho8RAx8CweLiGTeUlOl9fjBRocziFwkTBsd/KWEB70ihjl - Ig6jSOcEmgLDkfue75cjOL0gExwL8pdfKdEZHp5ow2N7YoR8FSKpgAn/ivBfvAlBtECgJK99LNF7 - zju21AtUnPSN3IRaoWsS/EZYXyMzFB7ajy7Fuwyhk7+iXR8ctdV6Ku6fXsLeNUniwYWrhD7HFhHj - e40oleY6BDCuQxyu7OqtR+e8/ek1rMUKm29j0PnQqbY+PNSpN/DaXUukPr55Ox86gvG2XFsYCcm4 - z3muanr5myJ3TkYcLp9aW1xPc2Fg2XeMJ4EDVDCXGU6heyB/+LEISbPBnd8Rt7ZudJGY51matkUN - mWPUgjXuWAl+i3nb8a8btj99tZ//XBtrGi9P7uqDd4p04rUjolRWnxtIhc0lRtlP3oobeYPbIx5C - CZZBvXWlWgCh0H7Yv5BPvIqZ/EJjbqrYF00xX7sabtLf/XWfypgvP62C0IDWnYTffMvX2xi6kNmq - J5EjOaN/+Qot5uiR26U8DUsBzjKgijgTbfOX+NO8hhcovYeMjanTvQ3ZRYtaQ6bhqxJNjftgtEnx - hHRsDUWXb8hcZ1CprwN+7ngmyJOSoPI8ZXj3H8AqtZcLFI6rjC9OwsREPV5dqOAOYiM6hYOwrF4E - OnPIsW7erzueD7YETDEJhf6+5gvnpgw84/xOXP19yX/d59ZBHmcrlsPzgVIYRyrqWy3Dft8b3vZg - Sxl8i4tOCtk5aBsjtBtQ86OJrUvaaptSGRLkk+iBYzcyvC242ilq2PA5d0Wlx7wP/ArawyMlzsmJ - 8+2+fTv4x4f9x4v973meMhmE3CA5XjdRuQOcVic4lJ4sIAGPdHhkPYxxo5H6h483F4rGtwl5q9bA - gtHcQH57EqK8mWe8GldqojOWB3zZ9Rh7qvIUBrwmzbwuopo2+slFu37Z8SqtN23kWXg0NRebz/Ra - r8/ZVuGxI/dwmU463eDIsRAFT35mV7/UyB9/fqcHHcvTLYqnD0YLnDv3Na/WedFI0OIL1NPQxspT - SeK/fAzv6J0Ql4RrPifOOZKUikjY5rJJo8O0yRDaVoqxRSK6sMW7gcUh5Gc6fVNvWfmTiFz5pZC4 - /tfYui4hl8kxvjTXOl7eTB2hb92WRF7sKp77pN8k7MMHtmnbDkupdzY8HvwEh6C75QtGbQM9Q3pi - ++5LHr0fDAbufgRxdn2/yi7TAVgiDbsSX3rCUQb7VBiVYieSF7rkZVTCz7TdQ3p7vb3l/hFd6Jsz - xX/5bzo/Zx7uehVr+/2kj8lmwX0dKfZV9pOvXaREUPLyLnznjELHTy5m0I1Ego3I07QNoro99q2S - heufP9WlqY12/UDS+q4MVOu+KdzjmZwYs6W7v5QiA4wDltNP7JG0JmeoN/IYPp/nl7Y8rUkE83uo - w/VwZcFWpIeL1GR9g/11ug8UPFAB78jusLE83/V2X/1FuuxdZIufeqXr2QMJuDaOgN236FAhY7sX - qK44xErw0fbzGEoA/TOLTetH8qX11A6l6ykgwepftOVPL+KYd/70CSXvlYUwzoc65N1WjKn9FC9A - 8u7dvL6ZQzzRSmjhH99xvi5Tj2ck6cB/tCUOn8eTt2EOzzB36Avrn2aN//GZVspPM/dKbW0+c3kI - 46PsY23nGyQzjz7in+uTuPr3CXY920OCsyN2a0sAdCmlHk5jrM+MdHdyjrsjFYoVDHBy3NScmxRH - Aju+451v1aPX+SNUbxdIdDX+AZLzXgYe0wVgv/zdNBqXwAVgxVOItmsydFujRBC15+s/f266bipE - CxcyWLtfvnuPr2sIbx9Nm5cdf7Z3FYmI094Jdk1HGwR+ODGoekUJ2f0LsFqVKaJIuIzY2P3NpTn3 - Cdj1L466LdUEtvJEiFGq4TvOxXh17v4F7vxyEtRH69H7kBXQPZ0eJBblBMwlhht43og7L9TwNH6w - bhJSi5jFSnz/1RQeCxt+TczN5E+/SM2xhH98+Qk5n85rLIRwjiQrZIfz6JGzdimRkhwTbPJAp5Nz - +5V/v5+40rINdIgZH0qNb5HM3afiDTHvwwxBSKzrl/Uozt8SqoJmr2if9OEv/4KEdA2x6/t72H7f - 6IV2fhdKezzS6jleAEl+cbjuO09X6Z4AZL8Y8rwcAm2trlIL1npaiTceVm/OO9WH5ufckj0+4gUx - 1fbHT4kWBLNHr7/RBMi2I5JYPxyvzauu4Og4GMvelQfDztchn/HfmRneiFLvcOihdR197P4yT1sI - Orbwj0+71rnVuubcX4CSgITIoX+JWSZTKrTrhf/qjQhEKqwdPsLBcfVz4W/9+3nOiKTBMNfzOMO2 - WnZ3Mug8WgXxCOdx7Ik8Z9/4T39Jy+35JaHNzXSwN5uB5S+84d2P9lYgpz5AWmOSuLYDsA6uXv7x - Yaz8Lr96DDauA8HnXBLlHoPhLz+B7CjrxE0Sux6Dp2tDUz0YIZBwoLHb15KPW+PdiPzVkUZ9q5LA - 7gfj21DFYGFkYwTc+zxhcw1cbRmkVwK/ZsDNzM+Z4uXEjir4LT0Medal2ohw1MALQ9Ndf7fDshaJ - DqE19jg4DKW2JY9gAU2unbHN/4C2vh7nM7x8j1N4XMIaLOdDAWElVIToufH9098QnrE6/OnfYeqL - qw6tt60SVWPfNbfvB7TerwWHShwMrEOaFOrm6Uqc81rVGwjvKRDnVCXR/DoDanaSCHa8ImHTcBoN - eGTC7Fk6MwyrR73+1Qd2vw7rvCTS7e+83oLlYOdl9fHyMwwWlD//ttdbFrCY7qGH6af4YUOoOErO - N4uBSjVJ2Nf3HoVys5UoZm7bvO36n97vCotMCyAcOMklFr6j14GXn/gzHNOXR6XJTiBCtowf2M3q - lencGUbw1IQsFfR8+85iCKuAYYnctG9tc9XmjL7FuJHoOnP18OcP9iWVsaYMI90GOl5g7EoW1uP6 - A+Y5vdvQyauIBFX40Oap/22wwfvUwDo8xuTnGBG8np7dzHBSMYzK/aDCXY+HgGt++ej6swrVY/8g - /kCtersw7/Mf/w6bSf56c+bZHTTXp4it3X/+ADny4Xs4f4hVrc2wSoKrS1cpMrHnzE7N7ff5Lx7n - fDwaNc+XtINh38P5ADkfjPdj3f9b/64vh22NBR+Jxqchf37ZdtReBfydjx+iSprsfa/o1sC+XGXi - 3uPTsAT++joKeRSEva9dh2nwSAJsjT3hzHTqYbYFekba3AezZfM6/ecv7/qH6OD+GegKoA8rATxC - xBSLt+ptx0PPFW5Y5lXWI7MU8McdH2cm8/h4ddlahbffAWA7KBXAQrry6KCzMg6eJ1Zbjy7q/vwN - 7L1vei6soS+BO6oT4svOweuvmS3DK9AqbFaYans9gxd2/UQCnq3jpX3k0Z//MjMp7PKlCKr5T1+T - Inu8tHV7HlnIi3DEgW2Z8fxV6wWO9vLGWuF9PNrdgQrzr+38w7ftdu6SP70Tsu1E6ZSP906C1tyH - onxZ88U6Vzxg74c8ZJRA1f7iHez3nxgOA+JtI1fxr75DzJ2Pfn/caUSGYL+xrwwV3f0c/6/eh52W - +dZ0r/eASTQ6svuB8SqOJxudwvAWcmWjDBS4DoT7/mPF1FSNa8KzhBLl9cKJc+vjlXgbD2O2VMPj - rvf//DfwifIVGzC4g4W/OhJkP/kpfOXFkq/x1ckk+srf8/E6D7u/pPqSIbhv4sOPoa3wcVogvfiY - eKDMvekd4vTPjyd//Hn7qsMG+3WfcrZRIZ8xh0ew/555AcsMJhJcR/jnn2pBEGrcLc16uNdzsDEL - Z29hS72E8+nMzcXjxdb/8ObwrfAMdn23qO8qRLmzvrCVX2e6oWzyYU+8GVuhx8TLK6IQiTpvEzvB - qzaHBnr9y19/9a/lhe/6UfMvI9aK0zIszcUIYfXWtnBbyy+YXHaQIShtgq+MKGt80CcLmpyWI97n - gSm1kj6CkUr6ebOfxkAvfv+C5yQ2QuQkbDzyHZfCMZIBjtTGqveeFDxgr3KNHcFQPG78hjL83bOK - mJfDTdvrEwykTYuIY5e43uubBZyu8jBD7/nTNnRXk3/1jpAd5uHFdyiDLtMZpPCeP2+5LY8GSk3D - 4eu+f9vzYELgmyMlenGc6iVTjxtU2G4ivipFdEsvmo92/j1/XmU87PHBgh6+bjjZ/ffpA10fHo2+ - IO56qGPKckIKHb3/zN8//bgWpSk5x+666wtz2OufOoCx+8Iamtdhnvr3ghZv0LAHzrq311cTyIl2 - SjK+/3rb2VRkZGXD/uL0p1A2hN74V28muMhVwPrreUND+5CJ0SA57utDVkJTbW44MJ8JYJnMecF4 - apKQ/FY3nmOeN+FHVrQ/PpDT9p39Xy8KOPZ/PykY3odzWJ3FPJ45etrA5eYEe1O7MObW18GFhklP - xGCWpf6DPBBd/A4b4s+jnIo6F/2qxCN+Hxj53CnMCCwjcrFrMSxdHgOXQpDOGsbwiuL1aX6glFx7 - E/s6WLylKd8vRIpHvQ+ieA/UUTob3k9XjN3qEQ/T+6qz8PxeTvgWItHbjGfnwgo8LJJu3QOsHIIi - FH49JUoaCR41TpEKuPZ63dc3gLFw9RDFkgNmprOvdD67+9gDJOXYl8stXwXJktAyevG8YBbElDc3 - CSlP2SR4OP4GWoljBR6NGpDrz5vqTVH7DDLq54r9yz3Mf99yOaPyYDPzEsca2II1EaENC4Sj31UH - rK4nCcLxpyNBD+d6eQwokxCtPkTV65FumV5HqBvMGRsuXrWNsP0CYP84kcfsa96GP4WM3OajkIvz - sgBrm1sC2y+NsJO7Vr10S8Uj6SdK5KGPjTeFdzUFQNjonElOPnDj5LdQv4o9KQtH9hbIrC583nMH - O1dNpVz/q2z4nr4h9qNup8ym3UHnXmCclEc+37ShVtF4EFzstF6nLScks8h8sg1W07IDi18vJpLq - qMQKt8r550XzFq3L70fMoXkAwU0LER7WK0fCpD4PgqYeXVQ4nhou16wDKx/ZPEjR9CKBEvyNFVgK - ZFtaOh9ppcRsohsb6s5djouDmQz87ZK78PvwOXJWlkQThAfpIHjbNxz2ZThwH6OAYDiLFYmkh6tx - xXJo4GvgZZJPuPPmO8oXaK2JTwIp8wHv+FqEXOtDyHMIbmBz42wGIsLizPuNBQQKbQiljHWJcvit - 2mSXdiYdDlGCA+6EcuoiYKKHs6l4N+FjXunsBu77Qc6PotTo7/pc4JcbnJAOyk+bOm5S4d/9SLn8 - MqySHDGI8aBInifBBqw9phV89N2PZN9W09YXk8pw349wkNp3vNFT18LR+MgkfR0Ubd3Xgw7rjZuF - l4Hq/l5JKtSPVUqM+0TiEXyuPFqZ1p1BlC3DVJ+erHTusgk7zfutrT22U9g7QojlRrQ0vg59G6iZ - LZL0yZ9i9kmePEShecAq/3KG1QvTF3ysJ/Pf/VqxRBvoSSCYIVtdvC0U5wu8+cGRePFcDmw7yRmC - Bxnj4h3/wJK9tRcai6DAml/1g3DYfAbeftgj8lrP9Xq0WxbSi3TDyagAsO7rhda4Blgl0dVjLXbO - 4PsmquH6uJs1y92cCrZXdMeKyEvDdrmbDdKLt4mdjccDp+dNhs6LoGDzLec59/f/br/AI9jw3/Eo - XZcXtKmVYefrPGJ6PI0bXB56jTM5cLw/vILez0hm0U/jnAvvbga0VF6xmtxqKtTuUqK8i3J8Lz4S - nbwwrWD/CnWSPIDiCW59SpB/Omvz4Q//sERbRLmNCb+obcFiTiWUuKqUsXxblJo962kCAr47YBsO - jkay/Jggb2AfOH81cr0YrfWCP9ZVQ6ZVFsCe9ShBtD5Y4b6+mL3fWRM1R0bG5lIe6zk6KzMMsXXG - mcVcKD0KKgO58bBixS0OYLlWRQX5du+7wkWax8WDNiJiLjeSuI8KLKukzSg0CMF6CCQwKhfTR8G3 - wfhsHj8DsR1GBmPVnHH2sjJAvWdzgWWNGhK41s3bCrG7QFkcTkSZuMyjQ/H1kVb7PolQJNP1GO9t - B3e8OuBFA3znUxf92uBFynjJqVAfAPN3n+brJ1MGLpuuLtJw8yAq0v2YBzbXHKOM08mD8q63ON1Q - Sd7AP7AsWmu8Kq8nD7+hbZDotrzrNS2ZCIYKm2EzFjmwLclFhcellecf9zNjrliEFn6224CDb/fK - 2S5RTGinHCb3+0uuB/aMNnBy+gBj+5QPE5XOBXTCiMUPl9qUt9LQFsNPYZNT4mzemkTPFMzZfCX6 - XP+0OflOJTwiXiSBmXgeNe4fEfhXLyVm33b1fj4QsSE+YTMwnvHiMycWbZf4RnTh0QzrK11ZJLdC - FnLZ/e1RN71I8HPxPXKLsysQ7mq5t5kv6/nbihdPIJdwgYUnOnMWD19tubMPFs4/aszrBdpgzcRT - i7LvkIdCd7hra8i8Gum8cAqxisup7vGnUKU9Xoj1tGyPz47thpg20DDGSw1WZoQy2PNrWLNpVffl - +y2jYtyWEBh8AIQxGhP4h492swTaWphi9W//z3q9N1Qk9IXGkKlnNGlx/Q/PXz/9SJ5ss8bb7XhM - IPn2DDE24+dtS1LIUF1/EMehqMVckTxY2MzbB1vBoQJLPN8y8NauOnm4tKOdn9IOFa19wWmgfzyO - j2wW5l7s/LufnMRdCrTnE3xVrteBFxltp+zFmdxondfcNwY8eLTWEHLKlRu27ysoj9UchuFnMxyP - N4hR/vETEkeHLp5E5ZlBYTMsEuijri3ENHv4Mp4etmw+zld7+oxI8Ic3dgILDptVuy10kXLBuUDd - gXKHOoXbo5ewVVzWeh28OAUv2z8T8xzOlGrq6sKdb2HfSQPAcQhKQL/ugyPXVRq+BepfkPdnl9w8 - 39f4nqMbuuZDRdQPV2nrcicjlFJLI6F2sWMKi6QDE5o0YrZOT58vzjWPv+h1wYVqH+OlF7YI+uJq - hnU3LPGcHdsFkj4zsHwX2vp3+FkqnEWOw8m9rPO1SUkEbtEihmuYmp7QLr4JqTNDosmcGC9+cAil - vjHusyiGQ7429TBCLuocUmw58VYVvWz0nj5hWGtCBVbGurJw53NEefN6zuXs2EDf1DusVOy9JtSb - L3A9tUesFBNLZxBvMvyAKcQybLA2loxyRg4dM+xZmqAtSnvWgXidORIs7HOgf/j6YGqG6Co0PO4Y - DxFw6JxhxcF8TReZLf7yAcnY2R6WY/jWEU4SMr/KS5PTmFU65N4u9syR8xaP/bnQ4aVKulCayos3 - o5XxQdPZDonr9TIs6J5BYNV5jw2cyrXgDN8QyuXdxPodgnz+45fex1fCgnRpTDNnx4u4mXcLjXob - WvkQdFD8kPL4JBqttJ8M9/tIwucj9Mgr6xLAkVEkbh4cNHosfj74SqE1C3dZy7ejlPRQO6VXbJqy - oQle/9qQ+eQb7Kjb/rF2kZrwL95fbPLJaXvtE/gs7IiUCPqU9ekjg1o5BNiUhWtNC1S9oLzJ3D9+ - tPBlBFH6NXRyH7W7JzBRvMGX6P2wTI9WvDwvvA6H8FoTbLFoWNbnG6Jrmf1mOtmztx28ewuP82YT - Q3hBb3HJxvzx+zkOXgf6TBjwkvKYPMKjhYdhBMJv/pcfVgY985VeYASaagDhTVAbj5aKocJCgB6O - 93jaeDJu4CnFC7EkunhEuS8lVEP0wBET8tq4KbkPLbXWiLJeqoHG4VDAFPQqDnDU1h3XtiwM7sM0 - 0xN61JT7OB2cTF8md+7X7vEt+PDOMnsJWrdrQWGzEBzZ5xVjGwX5ytWxDU95oRNDincLkirhP7wr - B/eVb0JxLtGqVg7RxTzTFjy/GSkILjq2st7NV0pKGSyzmBH985uG0RsNBhrxUpOicLO4Wy/TC2RB - HhGvFsNhNfVJh4EG3zgy73Y8vz9eAQ8tq+GEBbecHzZzga7vTjOt10tNg9nzwZkoDkmI1sbbKbzM - 4FsL53CPn5h7X33+D5/C49ACbzMkR4IPAVQ4kLGZ8+ujLtCnPgNsobalM0+aDd6FUceaQygYhaxm - wFCcjflwsClYBFn1gXIQJ6JmrDLQpT336BwLhGT0I4K1KooIFineZolp7/F2aTQVmZ/3irVC7sBo - fRQdxZeC4AizIKe4shPofUKF6F2xDxov9jEmjdyTiB6/OS2VQIbmuytCcJTIMN7ZBw93vkXu+nGj - 2+24Jogb0Yqtc/GqFzFhGPhizxciM9KXblnvlHCs2vNMDeYLNhgZMjAUZgxpsX9ecer4Anrru58P - ae4NHO6+M2SkTZk5ZDo1ZbiVgbazPEl+EcKYNjCE8BYe5Pk9cZI2araXwIecPvFffG5tyqjAjCeJ - eA8j1ZbVkEO46y+Sx3NZ7/jTgxeZruExmX7gn57Il5HguG2GfPM5TYQOt4rzc5bnmq7V1P3xdaLY - p3e8bsHIA8j14yzchLj+lYekPB5HRQlFVdPrZTgoM1yZxsXpzkfZ0BcXeIy4Lzaqbw8Wbh3OcOfz - M6vCj9bdw0MP9nxObBfJHru1a4bOkt8Qm7lG3rLHK0DvcSZRW83eGpr8C0SP1guv5Lzl+3mfwWhf - rHB1MD+Qk+y3yD/kFdGPjVOzlRH6gMxxhlW3X4f1EE7Rn77DaahKMTnJeouU+1vEesqYHq82cfOn - n7D+NFywjqKiohQ3Mla1DHlLeh47+KsuHk4uV0pHfJFD+DZ1D1sLDobN760SKmdQEHO+XerlpQwL - LNtxwEGylfV2XgIJRo4SzOL++6jw+HZQDQ8PYtif3hvHK1/98QGsMU8rp294r2CA4hw7Xw57tGaF - 1x8fnsmuR2hgf1SUaDzGcnnRc4ou8vaHH6Ggnpd6/Nv/hK5tKBld4W0WahJoAQ5hz429YTGnBMJn - 0zS4qNBCx/Tc9LDnQES8wqoosZvnIjlvqSY6kKp44cuUgc3SPPD1q9sDl5b8GSizyRNvj89VTRUG - 3DI7x+7LyuhKursrzbdDiN3fZGs0oYIJlSDERH+LSs0NcskA42GbJIcKW1OoQAk6OjiFDHASr79d - Yhe+HfSav59w0taYl21k9OkBY/Xe10vtP3o4nKUqROtrjTdPljNp909wieBI1/Hcs5BOSY/xmHzr - xUj6EE5zH4eiB665wPTcC+16Ywa63wLKPrZQelqfM77jBxcvVeR28AY0lbiKx8TDz9gKWJy+Cba1 - yav7AXk+PMnnPuRj8QrmwjZGuHmchlV5kwHbwmk8ZieIiXN/veqlneQUuve8DY+rbw9cPb9ctOtz - rIMwqtfpvp3h1rFX8pffie3wKvxw5oZtD1xjsvMtSMV97JLFPobx9VUYsOMbwQf2Mwz4pklS73Bh - eOzOgbfqvOnCZ+FG4Ta1s0bCvvTBOWn5mdUkKZ/6o1Wg620LiHyZb9qi2d4F3n+0Ij5bXTRqX7YC - HT07w/p+X8cXT87QPocUm9eDROkBORnc/a75kFzMQeBNSQR/fNRxVTXnFIPRYcM+N+wfTL6mH3rU - wR8eXPZ4Wpf7dwa4ThTsU+s/AAAA//+kXUfbsjzT/kEspEnCkibSJAiIuANEBESkJEB+/Xdw3c/y - 3X17C2VmzjLJpKLUHapFntl75du7n4hDoMWAv1kl0rnPCDbJq1v57//aWRDydmRPAdy0V4UuOSpy - 7KHP9BdfCN2ZeRy9VfShc9hynxfkN13WeB8je+b4He9wQ59HuZJWrbLJzjfyzdikEqapFiPrd3Eo - +3O94S9/iWV9v9Fb/rSdbOmWjizmtujkbuqKzN3DD9rrl77w4obhQXn6SLs8rVxwNn6AUVwS8sff - KYn9DYYv5oHc5H2LpoBbM7gFqUY0BtN8ijq1ks93QyWv6I3AWA2XXorWUvXlhT0088ovChTli4jF - 8JXqC3MJDBCvefqPz7bH0k+h0R4y5L+eWF93vxG+ebXG223cdBwz7SKTjX2gVGoNl3sJSieLlRQQ - q/5ZLjUOhiEzE/fC/KPUI76V1k3e6z/yeVehnKyYKdzW8IfO2OobGv1O/+L/X/6sTxEpELOw+uM3 - +aTlz14ai+BE8nCxo7/6Iydn0u717RvhQREDKKCsJyojH6KlL0sGMvsm6fzyfdDfa1/imV0ege/C - 2cwF+3opIUsHAZ01ps7nNrhmMLsyiCBeclx2AsUEdz+H/MVLI/hODNdpizAMQzvfPoKxyR6vHpBb - nDVAaTJs4KIzb3wMupO7fYpRgU/mzSBFobm76kdqgYl/fZEqR2m0JhzXwd3PJq/sFDbLrY5ryfvh - hFyoI0bY/6kK5CQxIu61qfR1IVUnJ9h8EMNUD/ni3B7+cfC6G7FXz2r++DPY/WN0S6S02d4Z0qTT - kB3wFYgffaFy58D99zGjx320samowT+976zgCmjpqQUI94PmPc4/US4gBweW9vxAfiON9Hc7Dh0o - lRu/829uXE4dqiBjo5U4rwFSYo/Eh55+e5PTe9883ZcJFIo4fvqs62DKBkHkA/mNMXEfsadvc34u - we5/I+84NiMN9GMH1NvQEGX3s1fyLDCEBw2hk1AV7vJ4QAPc7suFpNP76K7Cq3MkLaA3vCH6dqnX - 0QWKt4kjp0OhRWyWIFMq/eBOXgcroltHX8uf34H0xyV05ywEKazPwgP56XBvtuahtKDRQe53WSE2 - f34OHA4hxd+jbetDbP8CeHSdjOhO/hkxcrYA/ukNWzJbfY3vayoBTp2QnmQgIqByB2iPgUnQUSUu - jcHVgK/+ddyX2Efun34CuWSEONz5J19CZ5MON83DEqsllA8dMv3xW/+IHytY+8Bk/+ofhrnX0gWE - bgUDpthI9KdfTD6WwJlUMXKuNz/Hf3pmEIc7hgczabBQZAXw702HlF1vLA6RGHibnw/keW7b0LIb - fWmv73u+Nvn6GagjGa2c4cUg75xu7LECez6hq3IDLh0uqvTPbz+TDY10x3cgmZG3L8l0I/59mH2w - JnmJ+WScxn9+++4noEwVFn2RKZzA/n18kMsJ0DVSYvjHv1X8HgGur6sjS7c7JJpQlmD8jWkP0/H4 - 81duraL9ej34JcqEBXsfUgS50YMeqC++mMAb+BffhmFQcgevN6Ubu1Zwe/YSsYpaz7fY/oUQpJOO - 7q/+1dA/v6CONNbn9WOlb2I6l3C7a6UvG5Ph4koPQyhcvQr9+UOrneUpVHV+Isq8aSM3s4Umnid6 - 8SWJm6MV9QQDGGoM5qQopFv5YyS4ZPeCOJ9gyOekC0Jwgh7vk/qAdVJHfgwNHMv+QS49yk9GhmH3 - tljM7/7IUnm9D3uFb4kqHwaXdrc6gUk78cgUrou7DcGzBd+kfaDg2YcNHpQllGfB/PrLhqq8pzJ2 - jtcUy5h7liCfN+oqkO+YG1JV1QP4KJUDjMhgI5e3m5Guc22I2ZDV6I+/0Z4ZGNjWP7DzbwcIz/iV - wD2f//Gn0Ulj8Z//R4OIH3f+lIIoP7tEu0qmvkyVxACGGROkfThN3/2NEsane+LzG7tFC8sFgbz1 - /M2Hn+U8LgYKNzmi7xfJbtvk0j8/MXk0OWad8qlv9FAMUlmZCBlOKbtbvz0SwNWFgvIdj0nDHiog - 2VqE6a5HMBy6DdDQDohbtdVIbb7pgXcNdHQ6F1JOhCcZoM4pOkF1BKOlXwYWTD8f/+nxZqmHNgO7 - f48uO37+FAa3YGIzGym8MkXb2ap42D8CgXi8OAHqnpz2+BqR4lP3IYEFTnMAe8ku0Xkq1YY/niJH - Pmdygu5xc2o4S6wdeff7kXq21vFPvx7/+Jr2s5d8vcsXDbpPAHxpvBN3sX17++MT+CvRQP93/zuf - Ivq23fR199Nh+Bk7/HtU1bh29579p/eRJc/REnV2DQ+vRt7vTxv5HW/k3d9HWtReXOo0jxiSb8+g - 8PK0Ig6/bQy5e/BBdsr6YNNIqkHwSl7+Ibi86T//5C4vNrk0rjZ2vPT25XpRTHR+9YdmFV7YgqfL - Y0b+I7Ej9tEulSwe4wbz+gVHg2grlvzXv7TCl+iSnT/86VmkAi/Kt6/09eH5iZ/I0d+CS5pP6Mmz - +tNQmNx1+t3fpyz7xoF4p++brlAHKfiLV13kqmhriZwA+9yn6FTJOl12PSfNwbyhc7WifHOz2oFn - gemRf0dtvoqd3P7r17mxCxuq6ocO3tfxRVASd83qnG3jT7+RF56UiFPsxoRPe9HQ7TGjfPlwSQiZ - XO+Jude/f/1W0dy3ADMt1Hu+DBhoPs9Pn5bJu6EfvSyhqEsMZtJBaOhxMit59o+SD1Wn1dfQDis4 - eO0N/fnLFHnnAg5l5uFGQBul7Xv2RE50PaStd8nF4a21oNBod2T+pATwQ3DrgK/yGULv29ldQe1Y - MBDYBD0pP7g0nCT/X/zGBdnclXkfWoiv8bYzfdwsJ6ikchm6Mz6UdZAvUafWMkPajjiqELi0PesF - CD+/zq9ZXhu5z0At+cS1GXGnho/+6dlQeD3JzucjejddDfx/lhRw/3tJQWWAE1GmpWpoe9sGkCWl - Q5SaPelsn/98+MVkbwmdUp2+51yC5/B785mu1SNOypJODuQJk/NQH8cegBMElfXSfGVg9rmAqiuC - n9KN6LLe7jo7fPsAbp/FRooDcY7fvbvAs30qMO8FszudM7WCUuXb+Pg1gI4PqGjhcs5NpDnFPC72 - Xdyg/bI+JNCZZdyMSFrgQAedXDY/yZeHQjSQkLlDnvEmIz2rvwGGheIQr3ZbuvbiW4PWZiwos8Q5 - wsOc7rsg3M0Pnn2nL4eS3WS7H/Y5HgIdt3evb/B7fNgku7gXfXOuYgmTC2D9Y6m+3OXh+BIclD5E - 9iM/7CcZZxpIJvuHrpIVu8JzPpWyIxcqSb9aEy33452H21KoCMliGFHt1xRQMuIQeWdA6CZf5+Ro - BQFDrtnhBZaGyz3Z2nduX9kfl9POXyHoimhCrhSy0Tr0SikvnEmIji8Pt0uR4IHPZ2Z81tYvIw/S - TpO/InKIVqvtuA28WMKy+/yQ+Yk1ysuenEmSEOs+4B6cSwDCMUjU54aUIdVyoVMGByquayLrzRvR - kpADhL1xUvEq4WhcUxX5MJs7g/gP9quvv5uF5WHGZ2JXhwLwB2fqoaRbEbmQJs15lck3mYT63RdT - auVLMcs9rE0/xKw5opxrwtyAHJQB3uKTHXGnYivlVxuFyAxvbi703s+HASmO5Mm/E31TmXyB4nOC - vvyWCiBUt9aHyXzviV3GJd0+mZNCEl0Skp4jMs4/cxFhl86EOCNWR6H0nwbMpuxEird40rfz7zFB - NZ46ZN46C7CK7RmQt7jt0jD+Bub8ynjgKrAZMbpMdwXzYzOyhoMTCl+/LmLT/hDAdeyfJMszSxcG - ZWnlv+vjGveZL3bRY7h0rISCsVVzrqXDABWRJSQtPybgSqmQQG11AbFFIWpIn9gm3P8P2dyRozS7 - dzX0JbUh6cO03PXjhpnc3wcGyz9Xyve9rcPf57Hc0UKnXfSW5OXniST9Am38SX2Xwj0+kBPxA5j7 - ao3lt1X90I1uScPpWRTCgJRHommfoOEPJ4hh1VgSsvnt5vZlxHlQEisNpffvT+8e5VmDNtM+yPNw - 3aLt/jlP0If5GzMfRge8bF1K+H6GH6RuQtJsWuJW8Cr5Ke7xscq5d+lOkmh+NeJbMW5ofdJ7cN9X - uD3bMHfXl86y8MZ9AbJ+s5oLZ7SWspBf78jJz1YkNF3uw+6t/tBFOtF8Nb2rKJfg/sFVFRkuW0by - fgYxefr8JFYu28WZKa3bkvpBMxt5B7nLAD/SS0KOa+KGfsdrJ3/f5wD5SBwbUp2LFB5VacaHWUhH - VnebEIpFLSMkmhHlTqMTgl4DGobF4QPo933E8JA9IxJmz3POG7XTwaEyTSzdtEGnh3ifr8DeK9y1 - uMlpzpoWuFXCYY/3X7QNoM9An7Kyv5F7la/6y/XlN5we6Invj3yxdkmkbBLrb9pnGfnajjI5+GQc - 2vMr4p+x3O1zjTBR38OTrqd3ncEDf3dQ6BSX8fd2XQb6otCiy0KEcbP1foBCKcTE5Uwu3x4lUuAx - Tz8k/4zAXeTi1sm/W/L1Wcvxc/IAPgvVR1kjTROXaPsW7xa8zqhARtl0Lh2fgQe5pTliXpOu7pz+ - 7gV8N/4bb6HiAN46raksdY5BktvRaqbqFzvy+xwPROfWJF8sY9XkcjnV5JZeXpR9HdlJ2iZJx8z3 - WY/bsCm1nBKeJSc25aN1zx9eVDmT3I9DrG8H1dtgKZMG+a/u1Ah1QRNpK3ufKMNY6/k49hoQms/V - nzLpm29GWmO5+hkcSdPKaljGlTVw8L8F0uq4zYXhVNXyZkshubIJ1+DOfvNw3bYUofEl5dh8razM - wX3VsALWZss/pQXro6eT4mPX+0mtoQMP2Svy+aF60816vk15vx+iCssNLN1D0wDDnVtiffua0qQ6 - QJigM/UTZ8U6NRaphY8fUxFD9ZZxOzGDBzErv4lSEBNsrZZNYIkCmRTkrYzCp98yecdDLEhNlAvP - /lbBbn6NmG8tnbKHEi6wfk0OUZ7gs5+DMdXwNLsMlvz73qD6SBZUL92IRznYXPo9vlN4/s3Ir1Hv - jVwF97n+3PpB5miq+VaJUwyFzwGR81GOwO9+JQus9Nn0j/zrlnNutjhyJ73fWDTnRd/6o+3/1V8U - 4Sql+LnePDkNHipCHOYaWhqcJye/dSSRWMQRNX+rJAcgWYjf61ou9Loay8nlyKIHk4QR//pM7T/8 - jM0Ujev9JbTQMaobiZNDD/b3O8kluH3QY8drXj3TCfrC+CF7vc7X+/W7/P0fKvf4ogy9GSBoPZ7c - PnweCXaYDjBMTISh611yjmkNEQz3xSNm5Dsje78daljCpiXmcNF0co5/GWSOXIWFld71fagsA8Nq - O6O4995gOsrlBK1FXJE3nat8+Vq/EnbayqLrPvF90Yaol8/XPMFLQUzKd+ABoZqGjb/4l3Gv/7iG - 10TpcW94yOVdnJowtSMTuTROxvWeox5mtFZISO5KxBW/jyRnHnPFfFMb7m/orQJ+6wgRFV62hjIQ - wuO1MUqCKEzAen8d9l3dygsVTnehy9d6F3LCvhq/ukieuzZhZEAtTBF69ekD9N3zyMCAb1kUdKd6 - 3OBR7iDS3wXyK++Us29hZKASDwe8mDrRaRrcU3hQDjlxfNkdqb63cE/j4UC09qEBNn29UpgkCPts - yX/A4pCqkA/jGGLGN2d3a8VtgdY3FZH20juKdSE34DXReuSCkubkMR0U0AMWI/vzKaLFmvclBS/n - g4wIj9FirPUC8Pc4EnXyRIDdX+/Ib9Ma9/rBuqvOS9LxI56hv7Y9aKjynHbLtVfIjXqCS5WR9WTT - +25YPCsErANQPLlWywRZv7NKtxQeUhC+GROdj0Y8YjO5Qqj57L4kV13BIn/kApzbQ4Tsdwib9Vuo - mTwk3QW5gsS7NKkEBhL+ciZ/8TE1VqTBT9scMGwMw11T9ezD7/1zJ2Gc/vTl7TQLVLhwI5elEAAp - 3wUroly4EeckkZ0lCAG0n0yHY0W5jjs+Y1idrzoqVH5ttl8W8PKOx8iupqe7OEcrgZ2vCkQn0x0s - d+8+wLP3e5C7uMZ0S0VUwse9q5EuNCwlPfOIj52S88TLvueGuupiyA4MNVJEupPzj8fLAH+/f+KE - m457ebXka2OW5DygI1i/xnWSyfp0kVXJJ5d7P/IFqFzyIGazS8ryYLAQj88ev6mTREv3vfJgOVgU - Kb2j6ksxcwM80ZPkcx8+z5fiNfOQP/8ocfJzn9PPK6vhSuEdhQUyXV5log1+PoQh581MKNUqt4On - 9QjQfUAPuvzMYIKaY9xI8Qw/43Jnzgu825eXL/bvOl8avTHk7/wOfZl/8/oC/csidcd7TYzPez9J - VXou4AMFccd7R+dyK0lAcLcVpDPvbVwSIkAYGFQjp+eByefxsFggmW89eY1b5m6fW1ZCvKAPOW+P - pFkejimBZWZYX6u/rb6+LjGGdrF9iV2Zz+bnMEH5j18XV2GMFgBODKh1Piam9l1zIgl8C3f+j7zQ - cfXmHP9SuOMNMmto7EsVTwF8Z+IXi6q/Rtv3/aiANkwWKW06R3t9T8DKaDmxPN3T//gutL/lC/Nf - rgErANiBgQg35D/e55z/vZRF3srBR4jqQjP/TFGC2XXykY+x4q7P+uP/8Snip7c+36ogNqCK4M+n - uErB1surIye88Cax+gry7deIE/ze0INoxp3k00fYMvm0zBD5M6cA+mXXQpYkSUFPIbvlQqttEtSo - ohHFw7O7fC/XVL7e9ykQP1eKPs5ZTOGdrBeky4Dqm5NUmSy9M4tcWZ2jS5GcGHnZVy36v1rVOUdX - Snju3JB4UeK4kybnGXifkwH3aJnc5dC0EzzQg4eU8bovefyaE7xWuMLLrCs5b0TSBlZXG3z2w+rN - mp4ODrzb6EUuwnxzpx8UF0gu1+xPH7ukuD03WD82hGx8S8dNcYwCHpksITo/3JrVEuwEinnCEPN2 - 7Ju15CYGDq50QzsfyrdCvvBQU7Qr+sOnNVtwC1F5iYgV5oO+Mj1kpX3nHTEsx482HbqKhGeuI+Zz - n5PvtoEC67Y8E8PdW8pMNmtgoL2OMt+Yon257QTv+OsjS32v7qLfdAdoVNMwFQs2/zS5BCG5RBlx - nvu5bbah8HLmLiEpra8fTRa4mn96g2QzVVx2QGILlyEVsJRnlruonwbDuqxdor4+r5yqDGDko1jm - 5PL+yvrCBC2EWtT6qBiA6v7Lt13foT/9MRp1vcmhVocYZtI5Zx8CMmCfKRCl8aUH+HTcwr//86Wo - Gd11NHpL6jMNotPzUEZbQzIJ/vKwxoyaBDs+VI78e/slufRi1pDX0auBWcoLMm/RT1+6ODRl5ihU - vrxq973+fFgYkvZMsoGrc1q4sgQyvOlYfLldvtl6NcBeaYw//Z7/09Oi+dH8dh6VhtPnSJPPAboj - LT7Z+VZRNoOL52r+zLMcnWV2LoD9Md7ochCu4Df6igKuvjRj/KvfOikN2RfRm153PIxyLOvP+l8+ - hO/8808vg5epP8nlO+XRP/z50wNOPp8Bm2bf4p8eVqLHQBdrtkMY8lhDl66C+Xgf7jzk5X2XW3we - 9L3+J3AZOx4zZ4tEmy0pE7AXJiWu3KyUqgxlgIKOGvL9aWrGtLlbf/rTr8ar2gjqlS7y4Io3FPEG - r+/vc4NVmcn+e3qlDR2QlcG/74evnxnxzAb3KWPCsuO5G7Ff7teLnS5TDB/YyvnvsKZy1346f/2S - wp0bi/rQLpYvSn5SHW2H2KtgdYWAnIAeu/MD3RV4fC6NL6rvq74+nK8B63N2xdIHNn94GMNeeRvo - 9GnycTGA1kPT+2zEqRZDZxOWiBB17wvmtugO2DYZ+D99RgzlGNC5/YQ8fNdajdcW5PknPQkOsK91 - iyx8rKLVuQYhzF4J8jtNuuq/l9UucPW8H9njy/398U2xlADa+aW7wu45QDucGmSeQhJNQy3GcHEO - Ouajt5Nv2SFpZXVjciwI4Y2uj2fHwu0QqCSolDaiv3lZ5F3v+XfW5aJ//k3dsSdig5Rtthcxyj98 - 9GuHXHL2B5cNiOdVRde3LI/b79aLMA23A7LlJQSbPlNP+suH+HdS9UUxYgsKZ5Ih7/770XXHcyge - auzLeDjqBB4uE3hD/EDa9TyOS8NFnqxMUPSb4y1qlvYqiVBzzBu6MEzYrBVkDZglheMnH7XR6Rmu - A9xe/AX571PbbNkFl9L62jrM18lH7xWJ9Y87HhDjRm2w9p93KCMQ2ejPvxROlyyE3+SRkvNK7+5q - RW9NruGm+JKqLtEfP5XfjfdGipXP+fyITQYiYfaQX20GEGq/qeGJucnEfymmy+WVr4G+TnikFisz - zveW1KAGrYrMzOujpcg4Uf57vuX3qY1LliYTzEbfxJ+/evPLUl7Ket7CZNwkfZGCpIL8KeKQU46n - Zk4YAqHqejNSMtlyyYstOnjlhxxzezzSKmCDf/5NPjoPwJ+WMJOtgeGI9So7d3rCSwHrXjP89T3I - 9J9/uZbtF6WPwzliy+fTgIv1PSFt96+oqo8QaIpyRVrmfMfFZFUIH0nakGcJD+5QA70C5kIbcoa3 - Td/eTcTLarUvSXpOTDMb/tDDXZ/jJW/ODTt8q1BO7vlMNHTzKLXqowfIRHzfC58DWKokzuBhEq7o - j6/+80fv7vdJtMfVynkXB4Z8q7gDQfiZ6vQjaB48bPSCVzbhxrWtaklm3u8v0vqDFvUfqpXgXSs1 - cZ5eBxbDGFq46zn/vFb3fHmAgwakU331f9Uku3j3SyHXowO5DMZj3Ea/8qBt8hP50w90rC0Lfvij - /If/+lbyJwdKR6wSDa8KYAFfKoAHXENO0/uYz8MkppDcvjFSp02MpkPTYnhjH9D/PfJDQ8dn6sNH - UPT+oo8BXd/xyINd3yBntGp3+GROBszysBD3eGCbf/WXcLpFFOfnN6u9KL2IsjFBnuvN+aINeQ9t - Oc1IaBhoXNxz4Mtr2X3364f53A7OArLY9HzmnBOdf5ejCIbKMElqvDCdFIn1jn/1yHgYu1+FNBas - Bz8jzidpmrX8Pp2/540uYseO0505b9KfX6G0R33kO+MoSbu/SZxU+YJFL0cFLrcBYOZO+uavXwCO - qjiTOP/0Edn9DfDnR50PdgiWDxzif3o4+HhNRMCTt0DaY8mfhTPXLI3kOlAAx92/L9tmHsq+hWLL - C8SM2MHd3F9vwffPKgjCy51uLauxUEsTB/l9Uus0vaEEDHVpIOvlmvmud1h4LLqWOCbFYH2iuQCH - 8RcSdR2FcXmiSwAECzzw8XUpdW5Y+xiah0/j/5ZMcJdxVSx4Yu4yceGwNYv84Yq/6ydPPBxdelbf - PbR/7NOXBk6LtmPGb9A22Ql5juLny2H2WrgcHIqsX6Y23B+f25ZS/esfNNS5Kx3ki5zgRrTZcQVz - koAzRZbPvE/tuH4LOwVOwfooHErVZfVy1OBRLPKd32Y5+fRSCi23UZGhRGu0qPdI+qv/fq9lSz43 - FvDhbyreKPbrKaKlPVvwz49Skns/Lj+13/70BnEUvDSreVV5uWu/3c6/nnpndFsFH775Q/bDOgDc - y0cLnl/qHXmZaukfOw2gnHgzh3e+AlaYnni4+0Xk1adHuuaVrxyzKT0R364u42LwGYZb3Doo2vkt - +QiaD0+HNyR6n2fNqveNCY9F2yLFsi4NPbt2Dff4QKg/STrtE9WQv8rrSZSiOLvcM36m4MC5rr+1 - pq4LneNogKnuPXH2fs9y14QNBvpXJ9qXNvosvfwamJPe+eMgZO5q+HX/V692v06lQncKzT8/fz+X - bwIfvQEOUPk6JZYvTIDufBOEhhgg9cixOWHMQgS7f4AuhcVE/dO5JX/+ks+798veX5N60YzmmfhI - dEc8gCqVl46XkGEtF7A5lRVCB5g6OrVy4S4yewokm8YJPo6D1Cy6O4ZQG8UzSgvjBLj09yrhIHgK - 2v0uun7cLBUIj85YCophXHZ+AvbnS4LoMES/vjom4GUIJfqrL2v/+YXQDBuM/vol9HRw0n9+AdcO - Rb581DCB2aCdSbATxs5yfjH8coJH3Bml0foL0gXsfpPP9FAd2YaLfGhe7wR5z/DUjDYnQnBeOGef - 29+7W2bxNdj5NbGrxzOn1cszQagmkS9nyWvcBlBlf/wXM/1PpXw+mCYg8eNGDGSNdPuUUizt/ad/ - /AM3w8CA4R2eEBq9rNk6xWbgwhkEw0F7A/JuoAL/+Llop77Lpi2K4Z9/YFcHSJePqYXyn/5PX6Wp - s+459aFFA4L87to0s6ltGqxr00b+e2zdRTKZAe71EamHmLrUlS0TkrFB/m/3I2lt0+6vH0jKpPk1 - v4FPA/htXj7+Tl/RnWRR9uDhRvb7g2rDpficQSGP7sR8LqeRf0wlC23bH/xF264NroLCgK+nfUc5 - W92ooJuuA/s65pEz5ir4py8217ziNnV7nez9Rlhuz8pfjzW7+z+H8K8fgZzm+tHXUipEKNSPEJnZ - y9IFOeEK+WEnM1GLtWz2/qXyp8dxw985sP7lk+po+J9+X2RR9mEvhis6DSRrZgPUrOwEqYcS17jQ - qf7qqVxr/W3vzwbN6jBp8c+/Wn9vCUwyewnBzsd8ftinuu7+G9j9FrT7Uw39i5ck/K3osut5aj0e - 8Z+/Q5RZVyLuj6/20kCIU6YnKvz5iXv/jdyaFdItv5sxyAbljKK1TJo503EqvQZ0IV4bNPkmvbpJ - Dt6siFL0nCIsW6cSdsqD9ym3JhE9/vAGlyWhxP8wDd3+/OldD/li+THp2n4yFkgPw0c3kND/+rVC - oMZ7f0HTuf15wDtHbOTv+nF7rOYGNlsMkRGobi68ZFiAdAoFfx3mB1jBXMawnzIJmcW1A+t5/pVQ - ubwNEs9MlS/Z4qfgS44BXswE082qr4q8mcmNKHnzHXc9jmEVbJBYoTXkqzpQHvrgUiNFaZd8+cFl - kXe8wMI2JdFffwX+1R/rHttR/ziVjPT/WVLA/+8lBdmrPhKbK0zK4s+5kl5P0UB2qmuUf98tDEWc - 1OSEZk0nbnNxoFOfANEyfIiWMHyHEJ6FDkupf9O3OhhSmJiaicfnl+irfAExNHk5Q+flyevbVBUt - UM+iT+xn4YG1/NJWngMxJqhca3eNQFrB9Ad/xH7zhks+x6sFP980RbmZn0ZOKydfqrzwTk6raeQ8 - x38MWE0BIjnunnRpD04I9etjQJdbmrnDXQoTqCHTJSd8/DXL0V9reSIh4y/RHY1LU19L+fodKFLk - topGOwoY+TMdLKSUMpvTw0f0wfecKeS23//Kx5EFbu7H9N9l47oTqhMGCAcGYchteb6UdQahfbrd - 0BO2r5G3WjeB8UNeyfVNsmblB2wdg0TvsBT4gr6Jix/AmYQYGSZW8+XwcTW4Nd5Aytum5ryg94ss - 2wUlJXVPOSv6mwLZ8j5gvnvV0WqBqJbRIN5I/v7OLqG2k0FtLjpSNIccCNribnB4XTuEvgkYp1T8 - lrC57oOznqmoLxfumEJpGX/+0tzd5hft48kzLzr4q9ToLpsfvA0mR9nGhJPdcQufdSWPrHBAF9ge - RjrYhgQrL7gjN8zVZnvPEZY33dvIy3PCXMg3mYXMsYiQ9iPdKIjaaMqXT3LyidW6I82TiwK97Rxh - 7mQG+Vp/pRbalPRI78+3hsuv704m0uOLslOhAaGf4hpOJGBI1vZOtImLGUBfeZboTMrGZeH45uE3 - ABAL3/LjzkmqiPJVvuTkgbkYkGajLOzzGGAxGaxmG7tNlLX1sZGnyKSUZhsfw4/iRShKgePyXfBO - 5a/hMHg6XVxKFY9zgPqVzH2/AdwHn/WljFHQodseX8LFO/bw6McZyRzOo7yyqoU8KiJE9hml+lYG - TQbftnpCjzffujzLzx1srmxAHuNvb8FsyAFvbgUk/pliTrwDx8DXMGrI5VUlEr6bxEOpjDWSO3kz - 4sbxTEjMokU6H2MdA77p4ONtffE8p6z+a3CQydzXPWHoZl20RD1Y4HiIfIzxivUpOM09lKg4okQ6 - nXT2BK9YvhqPI4nPc6IL8a9nYI2/T7web3m+KK+fJIWYXdAZCm6+dAd1k8+87JC00EO6zd2WQpUP - 3iR5XotxPQzjABvmc0LFZ3tFOH2+Ffnj3ijyvTYfBdcsEqB898GMoWxG/N8S+jq46OhhPBWXhSkS - wbspLii5l7m7Hfi6g8ydZZAeAE/n/fsJy3v98bns9HIX+6G28pk/OAh97INLsa1L8g8yCt5K+w1Y - brN72D6UCzG246OhQ6Jq8lN/PZHS7EcTl43lQLeDDspYf9ZpmKAKVj/94r/qtXLZW9jvR2edUmRx - /KIv4Wm24NnqBFxfCB6pyVedHDyCnjz3/FgfX9mEv9ZKEEpWQ2d9Epnw/LnN6Hy94nGAyynYwar2 - G2GW9HX8iiY0Ik1Af/WQttOtliPMVqj02ryh1oFnwB20yb4L/gbYRewZ+AU3HddxUjXs51Q58iPc - POKf3TWiinlP4EN1CLq1oUDp9HplUIokii7njzSuufEp4LdgenLh0s1dlly04LFMQmI/tdu4XljW - l2NT65DlD8NIe/uSQvFTL3/Xpy9mL4RweEz8Hn++y58UzgNvlReJ67KoIZ63WZLviDM5wfAK5jbj - IOwLJiVGfP6NNelWSZbvnI/s7++cc4YVYJkRWJ5cl+VNuW98t0RwqiziXi8PQD/HhwP5d3si2amo - KW9eRB7G7ichgXtfxw1XsQmSq/tCxkPyqHBt9AF8uIUi+1oEYLvPiQeVarJR2L8ZsNgPu4P99laJ - MUsm5XhhCKHxLMw9/iqXPfiLJres2xETlU93tcvBh1WAGqRYi0wx1d+LvLXsGQWr4+rjpeh4UK9s - Sm77/XLgQlnoNrOFQvn2ixZUlww8HBRKbtnp8Fc/Cmh7TU08sxPAaoG8gjm8vogbZXxEk2KK4YQi - k5z1kujLxz8o8LN4OrHNoImGTp8DSAzhTC49A8E6ZZSR+61RkfJs+3xrHMOA39uWE6fMSUOPr1yE - +QwMf1HbJd/uwZztu34Mn9teQS4o5j6kU8q/6LSdHq5wOb76f/msPYgzcof2xMtJ3mF8uMl0/JxU - KQXip1rQKY9MsKlxYMkOF3PIOhb7UaPSlZfNzG/RWb7WI+kSTQOX7aSjl7la+pYo4iQncfbGkfeO - KSe3ZixDXYx2/AIUu+drLevDJcZrm3gjX98tD3a4u6HifjjQfaSQKEeYr9A5ErWcZ2U3hcIWMcTI - IxFsUavEsqxLOspDdcjZJqfDXz0jeeu/3fXqmoEsNscIPfbTvFiTo5l0m72cBOxypezhoyswPPcj - 0goguVTz4ADlBK3EcxXksrP4ZuCn8t2dz0zgX35ajm+Qs1Cq7vQ4XELQfxYdPSzdpGv+ZVt5r+/o - cjg0YMM8McSofVxRPJ31cWlvt1j+i+9TFFmURXUJ4SH+TERfJZ6uOKMlfPzgA9lVX+TCsi2JbKcd - QoZ3dsdVFqrgL59ItH+eFqjDMv/aj/a9f4xmPbQXFq6X/krcTm2jLXXOBqwrD+CifdB8kcYhAX/3 - m+74KIgpY0Dzmm1IsVwt71+ndw+VlzkilW9O+qqwBww/+X1EyGJqQH/HwJFzLyI+e6mEcbtKOQ+N - to+RDX7vfDbL0YNKowt4wXKQ09+H9+DteHhgsRLUfDmF0wLHQGKRvuFvvrjcKsph/uF9OXflfPmc - KgveeSJg0XouLtakFwth8Lv6Ivs03Mn2LiXAZsEiZ8dfwqSwg2AZHz74ZkG03A+nDTomUxO9BaZO - 5inX5IDhAmLu+MJqr3cKvtwSkfOr/Orb0zm18h/ffUVLCjZHARMcXlFHLvTjj7RC8wQ7e2bwUi13 - MA6JrcCdTyO1a2yd6lFWQqbqf7heSTuO+u9TwMXTDWSo0kbpD43+P7wpubRy14iVMMQkKInfMh4Y - rFZPgOGyvx3PXu6S1DED22/akyJ+CNH2vKtYWswiJq97cmiIa8axbKXdi5jJibgL3vQe1le2Qsq0 - ULAuQrPAMCgSlDes3XCv9zOEUVCY5Fa+knze6y/0inogrn0BYPmNHQ+d6e2Q5/fwo4vFbZJ8OtDC - F85iF802fqVH85puPlceL+O0bLoFLd++k+ReApc+izqGE9QhLqwHyLE9/CyYva07CU37DAS7ICws - +sTwIaTtSBeI/D98JMq4VmDHqxSede28810t2pRVLeFlO+vo8kkTFw96G8L9fv3lyjTj2mYcAzcn - OyCHsMK4pJ5dwlu9esgq9BCwO16Bv+ej+faJLkO+9pBxTQW9LKami/LwDLDHL7GCp+/SxdYzOF/G - B5bttHTX9isZwO7ggDxuA9F2PQeK/FrQSJRLO0XTeItime+XcI8noNO4mP7DA1suDLAJ1aOFLnbu - eMSdDOjzcCyOK8vfyUVwuXwJDmiD2ZFRiUZqm3LbOwjgF+/1IDyuzZy43gZiNj2SiAW1u17ccwjL - pxiT11G2m2WwXhho4ueAwT2L8+3ADy38thaPns9UdOffd+mg94t65JQ5Gim2XfEf3/CwFzfLu35A - 8Fd/y50fbk/9u8G8T2JykbdzxN2NrgDZfIz9vhuMkdcvRxZefcHyeSJOOWUIaiE2S9YXXUOnFSix - B7pvau16rtUx5okp2WmLSPFSfu5y7WEIuAND/MOvSSL6p7+uRn4k4Y+YzRA+hwr+wvpIvKSjgB5t - RZKlU536m32758Rs/B6u/TqgTGD3KTMPGoCMO9XkD/+o9lgWmcTsgdzO0QR63t8qyE0z96dfmkXY - VEfe+SxJxFClC7YSLP+9H1l5jBHJN47/q29E0+EuAF63DNin+w2Z3nRyhSpxK9BxS4PK+8cYN1m2 - JMnJwPxP7/zxP4ApGrDQP0UXS8tlA2FQJsRn1sGdyy9ooR9NKdJGa2vGrFEdIAucSZyPpo5b2gkS - EPVjTnTjndAtVlYfnt65tsfvh26Z9EikVb9oO3/65mtx/ZlQqbDtS/LlAOjLRiKASKXElK9xMzfv - OIBn7L78DpSrTldtNqH0qQK86vDgfn7vbJFmG5vEf6S9Tj1PssCO9+giMikYwrs3wfebXfAhdpZ8 - eeayBfvq2JIzK8w59X9DAfUksIm74y29NMYAwK1WiMbd3Hz70kX704/Epj8957NnVQGPi297vZvA - GuJCkpqjdvOXKYHNZHkXRt7xx6d1HOvc7yt20Bd+DTqZL5jPbvnGUBO/B+R2qhHxMt+Y8gRV6K9d - Y7vsz+cVyB/gC6Xt03IJ1GpTjt/uAZ3SMAf7+2VhdTM1hOq7BVablT2JiT8QKe3CAbLnL3yg99Xn - 8NEesftsK3AMow6hY7NF//BuvvweyI39k7uhc1oBhQ9WkhBximbNunow5zFBXqTM7lTc7gn4wwcv - Ui6u8EONJ181w/VF93eIluGgbPJqlgbmgfEAuzjN4K6n0WVO4x1vBQybD839ls6DTpAZxbA9aidy - us+Vvl1bi4WF/pxxXdoqXUl8c2A5BcQHly/V6Y4P//yVP302zlpnyndtY5Ei3D8jtfjKkL82wcQV - silak/drA/1n033WxGqEu+CXwvh4+O18rwNbTGUNlg+dQ0onbxEuHNMEN43GmIHMfhCOdOXh1HL7 - Jny9oPP1ezDgkYkdgmIniLhNGAO460dkZQGKtqG6mVAXv8Tn0Fy7WykFMfxBqKDkMd4oP+nNAtEx - WFD5+tTN6qeOBBr/eyOK2ga5UE+JIjO/Iifq7s8sTs+EUFkmFSWCOETE+9UM+IbvB+aiqAcTeigm - iDdaYG6Ph/UnzAto7+mCj5beAWo1vgU9r9rwwXDifH0bI4QXfVowG0XSrqfuKZwDKUZah/OcW97p - BrivfSIX0/Mb3M4Zhvv1YWZiBrB+XGWD2e08IIWX/WgbHM2EfXo6oj+8HuiCFnC/+LpPB2znfUyu - HXx+zA2dT9dtpHhbePmnHAtkLsIhJ9fG7aXcSgqfv44CIBn6evLHOwSYPVZjQ93FDsDvFfHEf6ed - vpL1AqEgWE9i4tNP3/E5kYWC3IjqyFZEuVQwwa5viL3yiitMtpHCKxYUhJT2MnLOtTNhLHsjyjZ1 - i1aD5TFgxWVD+e7/8A/pwULE6xhvRtI2a+HqAXSy40ycyqcutp8fBW5Qif/TXz+xhrKGDJck+/3M - WJgCCZ1/OY76M9dsLhUqyAvO7DPDGujzYRh7eCt5hfzzH37iwMCpFYj/luyRUqNBDqApddBJHmWw - zozTQdeEIQofZGjW/f1AJed+yGMfJN/H2XZwiVmCrMhQ6f75Vn68nS/+QmHMJ3p7JDD9MT8s5j+Q - Lw4nZVAjhk5Oj0rf8QaEcHrgBDmDGkfzmZUxQBG2iD85WU55eJng3jUk2pv04+bcTfxPHzhGH0a0 - msoKIEd8EgUuhC5+WAcwXEofabmVNIv56lNIWFbArGxu0VKIuJQeJnkRv2AwmHY+LnPlPUPq+a6O - bOFZJfSKaiDF8/IBE38LYvn902Ti0YNAV5ZRWuhp5wZdwMdr/vGv3W9EzsZpVKimpILoEYhIeTDq - KOz4AaVpepLg03bRfLs2Bgx5jSH6U4L0L17koT9fkZX/8oi6ZhHDFHQmsZjgFPGZ43fw9KIt+fMb - R6q1HWg/1MXfXKxyWk4vDRri94XOl/FM10v59mH5MWqSMfl55EKDQPiJ7XL3V/wRy1EOATgLPCbH - Zsvp2bzt+qdF/qFtm3FVxz6G2/VzIdb4u+erILwXOZUBi2/Sy49og1oMMnNGSLm1TkRts2AlNzs+ - ybVfGkoUT3aAxdhnn1Mre6S3Ay0AbgWEDyQ5NpMF0wke2G+LRTxoI7vzB1hcRIiruTWiLbwbEzTX - dECe/W301cdPCSb9bfI/6UT1BX9QDUfzOaETDFc6O1dsgp0Po9t9rtxFe/0y8BbylNhqEVMhQ18f - kkNgEjWUzbw/PZwOioJ1QRfTw+MWK0dPevITIqny3Fxya5wBlrLokZg9q+NivHoJ+LDSiG+nk84d - M7EAhuRBhITFp3OCIwlOi1ig9IAkdxVWF8I4zlVyeppOtAWK5EMm/sLdDzi661fAITxSEezxu+X/ - /KV13bcYqum+S791WTiMSURU1TnrwjxFCkjW/eCDo2Pr2/3u+oC8Ah8lxnTWh756dtKo1Q9fqIdk - pMNUaADk5oKnl/LTN+1JNHjrbxAvlltHzTzlChi6F0vM9xiBpb/FMWyvvEJUHb70KSOpAaNOwSg9 - FgntP6fe2vfJmqi4XGyAQ2XFsD0qJ/JsPmEzNzhN4RfcdSzqxgeszKpCmOatT7QL8Rv2frjsU2aX - CP8U3QICQ84dYH5lTrwmq6JtquIW7v0ScrtWp3FxwiYAx/Ec+KV/Z0BzOggM7MAtQsp4t0caFDML - 4ZcrkXf9qvpqgKKGkKgjMlVTiXjUqgn441+medRH4XsMBggmfCG6XOXj4oX1BrpzGqBs4zSwkejF - wA1qMVFp/QC/fj1D+Ng2A/mXTY+4+7Xu4Po6HDBvHvVmlYU+FPf4QPevcaGrdE4UeLnFF+Svsjx+ - 0lTJoIutO1H2fJ8CknVw90+JXoH+P7665xtKviKOqDClFaz/j7Rr2VYVRqIfxEBekmSIgMg7KIo4 - 4yUCIgImQL6+F+f2sGc9PGvBEUjVrl27kqp7FgY05Crw2/krjxRgyNTT1bM7g7enwef+UNCzg/po - scphghu+Y+eSReOa3Z1AOQ2eh58H9GhWY7FKeEw+dyKtw9qwq3kWYbOI1j+9kXzYrMJiGGvsbPUm - 9s6rKxp255LiyvEy/nqceljDnRy0GtEjyZ/VFR6uX4/+6eciRHYCfsxXqN6+AjDNmez8vV8gPkYB - MKjVBmq+WhHQR6NE/+JH+TgI1Nr0kN+Xc1uIB+VGfepKGUvzJoYR8gD90xt/QOrXP30eX/fVOM47 - EGsIxf5Cfdg+mzk71gOUJccP2IXQjHh304N+M/VkTckzW9/olEJcmw3WDrd9xrK8FmGen+9U2+Lp - b3qdV4iKB4c3fQhIdpRwkOvwA5s7484Wj5QpGPekxB5a99lQ/yLvL/+jWc64kSQONsHzob+xZRWh - Ln1wQ+BL6VN8ySyxWZZ062K0f45ENodpZHb+EaEFXwMNq1kCEzvsErDpeTQArp5t+eisQI8cA6Ew - h2zhToUGHpfZw/dt/cjW0QeQxDhj2xYdV/x1SgJR538J2uIPvcemBrf86Y9fN+ufXvjyLid6ALXE - 1kUfQrB7qoC6pCsAy/dRDzTHn6jBfoNLTCXmwaP73Qn0HvttiyYx9vt3XdEAch1YnLeqKn/27e5S - J+OJ/M2htSROwHunsVlCckuRxg4Y39/jgQnLNR+U3FdgoN2oN27xNt9n+hNhrM85mHV4CdDcYAcf - 5vkF1jfCCbRKG5PqwR0aPjvW/V99hybm4DVbfh6C9MHZZCfNAWArria06fX09D1bjYiq0ETQfurU - nC8N2PJH+V+90BfWb7QYZ9rCsDYiHE0vjwnW26oheDwjrKdX0V3Gz2zAv3ilaNl9s69hgNb7XpA1 - gx99Fg9cCqtPNmOn763oH1+9L/YJBxufkt52kMC1ZylVlUZwfxGvTH/1SAJVxo9/egBc/OGMvZ36 - cufEO5Tw/AgTHIiLp7Nxyip4kfoMP8xQj9an4xsQFRlH9hG+6isOaQKtpH0SoPZatqSveAZbPW3T - T7Lsl/BLADe+jpNuMJrN/hOAwu+2IPFu/Kf/6EUZ09NcxLpkzO4F5uL0/LNHtlyMD4Sk+B5oNJ+i - Zhmkdwi/rRNj9ev89Hn31rU9v+N2/+xl07N4dC35EF+TVwU2vhD/88dqq38uBTkrSJSsHwG2n7H6 - i8zkTw/AfuYW0aoVHxWGn1H/07ObPvesHMg5PdLDYFPGDlEK/+qvgXh59tHXO7/bv3pbwELguZL2 - kGela10Tq8R+grna6SG8jR0XwIpNI/2rRwX2OaT3uRDd1VEKHqL1EhPpMiibfyo55NbQpGl8SLNN - b3cQw7sntZrvPqN/8en7PItYL5QcLNaZtBB9y5FQlTPA+ghbBX6yu/tXz9D/8pH9/7OlQPrfWwrC - aLen6tnko/n87GvlcLR5UnSpHa0/g9saAQoWtfjgFy2uK1zQLv0IAQNPoZkHuBOhmMgaDfhjmc2J - N/QQ2deFukwwI5HS2ALxy3Bx7gj3hm/tfQK8exlR20TnbHWus4GSDk7YNQc3W80jrGAIYxwIzq5x - t+epoMKjGMc4lt01TX8xTMH1ROPipbnClTdUJAXOgR6jMHR/4TER4dvpQ1xqAgd+FyqvEDTrizxM - dI4WXDANiXsoYqNUZzac4lcA9bJEBHTbrG1hf+DQKzbf5PPUSLa62iWEgUYEek4tpyFPNdVgeMkZ - VmutHskOVCW8y/aLMOIKgD30Ow+v8vGCz74ajbznnQlSrt8jLVhdRb9TZQTwuvQlVpMdZvP9QlWY - rs0Te1z5BVPnOiW06/lDr8mjActFECzEjg+XnkkJwLr8firYv493fKLJrmECZibyYajSq5W1LrEN - NwWXTgzI57bLRomHhoPUq9QQYIq8y6LwHMPYLF1sTbczE3pqt7C4nAt8VF+T+/P94AoKkMTYiE+3 - TKhfOwc63qDjQPpNzdr31YxE0ka4SF8+ED5JWKOPWq0kWWDJfr+lIWj7PjT7NokruMdZRtAw1wAt - r6cr7VugIb0gKUFf45uxU+zNsL0lZ3pwH2YmHGzmQW9KD9ixX2EjBurXgVJgHXB8682Rf52JDPOx - utPQya/REm6zqfYPwtMg/tyAkJUuB7OPCrBPxjij/duxoHdYNRpXFGa/nMiDwnTlSHUQTWw+RLGH - 7uckpwlzlWitb9up0JbWeLPfTFR2DgHNiQGKxS/KyPfhWzA8mSF16lp3xYOepuj0N5tGnp6NcPN3 - Vxjk7ZkmsmY0vCtULdr5kxco3v0RsUdTOTAoj3d8q5JPJnySpIZfYXegupqro1RcshTaci7TixIr - 22AJZ4aXqXpinAYfxrzbRODxenvSeArNaPHyLwfHzj5jG/EFW6ggcvA0KUcclNWSsfh9vqBhRA3x - 7GBomG6cVDie/YbsSPtwGfcKZ2RKvYmv0kGPpOPYruj3tGwaDs8kEsE0KdBI7QW73V52p/fW+Fee - PyBYsXdw52ZvDBD73yO9/WTMGA89C1qo+lBVHrRMqDNlVm4+a7b1nJt1NnEIZ/fgk07eSvx0f+vg - OjaE+oqnRizkogo+p5uN764RjEJO5h7q8jXF1++vGdcPeTtwocYda9L1GzH986ghn3oy9cevwZbf - 0kxIisSIfB7ZIZPCxBSRvUdcMN451+U97zEp45Pk9O955grtOFh9zik+mHHULILti9BbzQgbrbhv - 5l1AKhj24EPtXrcy4cAcEy5dtM1NSE+N4Kw2hKdI+2JNOO2yRXiKCnzWjKNquDXgv5h+CRdeM7Hp - nGAzB59YhXy0GhRX8okRcT5ZsOoqidRlJDLif2cNZRae8fETUDCvSjegYhFcXNzHo7ugtKlAVtgl - 1Wz0HoWd5RNYL7cTDU7yuRG/kbXCdtbOgaDe9EiUPtsgDvtS49hu6uhdl5CDQXHlcaqNH8A8XF2h - hMcTPV6jxuXPdT2hMVVd+oD+DBjoDBNt64W1MfPBbF5ECyb+EeMYOzRaRsPuFLIfLOzwUQLEahZj - kAA5xS7pHEAXP4GwrN2cHvqxcxfp90qQ75HL5u9dxth4L5Ef4CRY24W4q/SxOrjipKeRa1aRqN3t - C1weqUnVU6qBRc3PmoJXq6ZRP58b/rAfZLk6v22aPSVznO3A4WHwqlXsvNtrI6aqYkIr+rrB7nKb - IlbcihY+RWQHXCYu2YqvoYZusCMBV1bniJcWVYPnO1lxsL8+gPDV5ArydG/T6DyrGVFvcvBn3/hW - u4XOju8qQR4ZB3wUFjdaiuNrhWaLS3p8kFPGa62jAPQdNay2k9YsT3MVUdHlPY2Nio6rcXhd4GPM - Lfp0xyn6h1cbvgQCO43RvMVLaD/GHz0C1QTsPKJttpY2Bz/Fq6LvqXBUeC7djuq0U1zWvOsAXX6R - Fkin8J4Jal0k0PlcdMI32Iukdv8wYLAvFKqOhIFZbrsW3NihoVbR/cZ13z/6P/vEWjJ9wXofFQN2 - grxSU7YPQFSgWiO5XBtsTPdmXLuDq8LfLk9xpkh3xnxFDRHkMx3bv4sORF8fY1iaWoyN7njTV56I - W1cYY8DxfiZszuWsR8ZaW2R5NgGTfD2Q4Vr2R1qWU+qu1Q86f/ZMD77KxlX6qC2ifPfAl93Db/h+ - 7T0YSJDHV1vsowWIJxl+Ba+kSdXvXBaTJw/xVIY4itx25BXb8aC933H0xscfdyFakqNclBWcB1/C - vsUj6QGPW5mmb6/RBfC45P/wbk/2IRCLbbipNyUHqvfzMq6pzl/g3Donqqv9N+uvyiRC/StV1JAe - VzYbV3qBv/j+wjia53HeWYMFlYBjgRzPBhCmSlJhK/k9DqXMHKVBNSv0hzcBd5+atU6uFurP7pW6 - T8lsxmHryvJnb2braq44TFCDe5odsRFWfTZnbTsjGMWYpsMuYUv9khzU3tIzxc+iiebCVhN0/Kwn - wvFHLpqfzjlH+t5EQfN5Cewn5jxRyrxw8EWXdowql8KDEldeSCffhnFN4tQA90nLcJANfUPv0Ilh - uswQW/W3yuYSEuUvngXo5fpA9Faug14SiGQB6aDTm7IPYZtJx4BfuHn87Fx5hph9exr0auqy3+HZ - wmICOdbWc9x8pk8bIs1yHGzPljeKx/XYQoELNezUdaPPWdkn0OIih6BJVkfWaE8CFqNMgsZ7GYD0 - Wm6C/n19Yt+AB12KgyqAUfGJqHV72dGseF6K1mt8D64TvbnSGashVMuUBPB9Js3iPVsLXdhPouFe - iwB7N4uBVPniEkF9eS6D4jyjDY+wI1Y1m+i+6BSIbR0f+8JtBlNb4/1l9ZYA7vX3yPDQ9rB6z1d8 - rv3N/oVziZo0V/G9Np6A5XJlIva8fIL9hr/UV9QLDOqwIWJy6calyFMR9t1Ro5fTk0Trr7cmqPHv - Fw2K408n9XpKoLeKIlWxlDRrcE8DMHbumUjWmIE1Um0D8gF/w5e8OuhSchO2wRylTvXq2TZfOTmk - yO2/FvUvfOYyLaoHONE2o7cXG5vV3M0m4gPxhp3KDrP5xS8J2OwjQEiz9UWM5Sss0Yuj99/j4PJy - SzpweMS7QJxCM5vOPTUgoetIXWSbmVDOhwkhqw0oBtPsrtP9qinTlcsJi2gJ5tqtK1iZQRdcZBCP - P10qYgjaxsC6me3cX1JLIaRxs5DEzt8uk9R7+cd/sd31DVj1YXb+8Wtn72hA5D5LC6XsMFA7O+3Z - xCm7Dni//QknGvdjK0t8FYLwvqe+/96NU1b2KXypyTVg17TK/sWPF+UO2P6VXvNzysyA7jcbqVd4 - zpbvlBY8T0NFD/B7ZJLfnVNI49dCdUiWjLx/uaGk2m4h3ZbPsB/ILDhV1x2NokZ056UROvhNu/Lv - +0RiNqYqNDQuJTfIIJvQy4tBWfUxzQv1Nc6lONR//Ixa4kfVmdi8INziL1kRZ2dC7+4MCMm04GSz - 91XQ3hoUnJeNN74GFn5KrrB2ry3e3rfZ8iMVHKMW0lLaC9GSvUwHfkZwJfIu5Jq5l9sOKkEQ4iOn - ydl6Mf0cOD8i4cNz63o0q44M+zBd8HEm8kjls2fB9/21D6Q+DqL5rdwITCfJp4ajLe6SZfb6F78C - 4aGE7vAYVA65qBNpygy0NVasvX94G4GxjOZ9VmlIsyyHwOF6iFZ9hhX0eyH5L34+uiEGvee/qaaP - kvt7Fy4PZeed0Ls87UZ6mhAPH4duwtaStM3y9HYBPBiPMw33wcbPwpZDIqs17IOtS0NM4AUGXNZT - 871ifb7ssxmA8LYnAn1CMM++Uf2tHy7I89fQYXq2yoa3+NifNSA4gufANrb4QKaocr/7BQ4Q/1BM - 9d/u587axzfA9n5BU1+UiGx4AQmwA+po4wkIyUOelHcY15v9nKP1nP1K+JToRHGahs0sn/YO3PwV - Y7Pfj4tkpDVEvfzcJCMuWw5MM5V3pzFqfrsuWs2dbIINv+ipj0m0vqNKhMVi9PR0WV7RIr9OHLh4 - QUAtdFbdpU7mDt6Zz7AhPXgw7MeMhxpK7UApFX5kd82coa6bWYDEWRnXZtJVmHbJgxoKLsb1MR9j - 2LzFhp565920+HUekKlbA82Up5mtD3aq/+If3fB+nHuhTpTPaC34JAxEp6PimOjP/xTD9CIJt1UI - g1el/su/l5LpCkCYvfEJXgNdpFPEocQ/YQLmA85EnYlbF4mJ4nspvpvJ2bqICd/4io3V2Wcsetxl - iLCu4SMfn/Tp3bT9X35G1awds5m4rIScEWn09ImybGnWkVcun27B2sh20RKcbA4KgyHRY5WcsjkU - rAqIaWZRPNafZjLcagLW954HAzMKdzl4KN2j3T3C/l36gTVIrwmi14sVIMH+NauScBrcH1/f4Pt6 - Lzp96E/xL36Q3fM7uXTjB1AYhBSrTs5nZKCiB+p7MeBAK/xsSepdCDEbe6zJ1GejhIoAIqsLqF/t - 3vpSHL8rcCC80twLc3dJ8m2L2IV/4CiwFsAGNaj+8i16/ASYsQKfA3hJ7lfsXihthiVaZhieRBYs - tR8AVv2eBH5fi4hdNSncVYFqBf7uP0ci1P/yT3j38h+Rg7Fq/vHl5+Hn0A2/9cXa73K42RsOPLtk - jFy8yx9+Epm5aUY+KReCKOdnfN2Zp0ZqfVVF17ta4o3f6TM6nU3oke9AMWn37pyDG4+MRxYQ3spa - fe5Bt8IdbRqMu5MezQexmv7yE+oL9m+k15+5wmu5ze5dQT3SP/5avKcj9RL7Pv7D+wbpSiAn7ndr - NCpAGCPE6GnO1mba/h9iy3GHT1fvCASWjQPsqp1BNdxemnWJ9ivYrscB5Rd92lmDA/70p2NfjM3K - HSYFbPwDHwoH6v27qnP4dMMbVldVyxaczjza8B97WHaivq6zDqxzUWCdBf24Lr+3Co/4MdPTFm/n - rxdV6HW7avRQrcM4tR5o4bzoM1XbqW7mBLc82uJVUM2LybZ4waEtX6JYX0PGovhGoMLVL+pf+kvG - L500Q42OK9Z0aQcY/gw5EN+6hbd8Tl/ZTRPhxt9xcr/udEawZkCr8GKsOTaJll44Qvi+N3sCNQjd - ael2Mwi3riL+n35kMWagLl9kqjaFyVj59XLYhLKA/YdpN/MrmCb4mSUda/dvzOan88hh2LsGDezT - L/pRgeOgxNJDUG98aLmvFwUW51r542NgSZ3ChPEJbVt273ozB07fQZ4XZXJ/TUHE1K8zQDmMBnzY - 9D3m0TtEG75jtQzc7PPHv163WNv4rZqJ4FtPML3ggB43/if9QORAnjodtkYzdtfHYHHgbGM5WHdv - MXpfBGT940PGBBBY7jSZYNDoJplHJW+GZ3HKYdd9bxtf/jEWB70H/XN/wKf5A6JfKZoGfLsJoyYR - Dkx6Rm0OHeoj6pPnb1wi8yUjkooIO7EQZnxtVTHS8P1FjY1f9w9Ja1EBrT3VVX7V2bW1AoiT8xFH - tXlueAw8GQ5DXuCz+zAjsRoWCKV+PQRr+35nG/63iC2n3aYP6O7iz+GG/4lNb/33Gs3Zp+PQ6L7O - uDxVqv7HB2BwGhrqvYt7NO/Xs4nencro/ZG9su16CDa9Y+Mrlbv8lpFAPwIDPnmRE1EL1TWU3Tug - WsiCTDxOBw8x95QTftOnWA7qEOhynBL5/bRdyftGHWoEUyUfn5CGctuWHvfUXal1/q3/9YdVdTf9 - zQ1H0nHWCtM7eAarFl7YGh5WD47pTOgZCqQhRQIDCEoTB8JxPjU/xXrP4NBwO/L65EM0y6fFUf78 - zb1QPM62aw3wspQBtV+PPvqmRkjgno95bMNDr69idCbwiPKEsPOs/vE5DVaZcyUKFTXw+VuPP34a - 1FdrZDt3XuGetWdamE2gS9aXDfAhmhbG/dJEs78HIvSj/YCxvs5gurmP9s/+/+JTRFOUpZDtLYMW - z7YaV5Yc1b98hsQ2HXWJ3Mwc0ps2Unx4lPo/PfJPX7/cvyJYbL9L4EFWfkRhRqGTv3i0CC8PaxS/ - XZqD4QJ5anVkju2Pu/zpYX96o9FgL5N2Z2RBs54SqoORi1jdtyk4Fs6Juk5ZNyvfLxOYW3nAKff+ - bPx9dwHrzVSC9ctXbBWjBwF5/aNUk+mPzYndl7Ce2xabxT5qfnue48GGj/TO6wd3Mc0QQj9yT1SV - RVdnS+uo4E8/O8EqZsxHTg6eN/mGnSTkAW33DxPYBt39Pc/I+DqRYb3cT5seGI4z/3RCeDtzlBpO - 8GASuQU5fNTfCusPwRhF74kJyOPuS0SOHZplqnaaEkjemd5cdwSsqSsVamSPCdD5ulmiIoVgEhdG - DZ5/ZCy9B9Mf38X6ea6iNbhfAmTcZQtbAzEaMTyJLTxyu5Ls/c85m19BSyCy4yUQrlIRMZ3TOvCZ - jQrfvG7OFsxPJoxe65MGw1JmS07kHubSWGC/2h11KZd7EwQyvVPL5sVmWhrUwSMqE3yMjE/0p+dD - 7wdOgdwaLVuCCnkKfGgVPb4+NaNZoDroetdKajR6M864zXho1Uq/rfcUzR9LDVGzDeadG0GOftv9 - EN/rmnCPghup4iUivJZYoI6u76O/eAZd1IqE3+obK+bxANrY4TGO4COaD/tagTufeFS/plU0O2Di - YK9cfLJPwdllL+AEYE/6Gj+eXLPFry+Ems9n1B2hA8RvpM7gqhkzDgJH1fkt3sItH6S+eT9Gon04 - eH/6BFmgEIx0jIR0n4HAxKZR4XHRlxCiI4dKbBkHlYkNPQZ/ejRB2/E0dm1VD+6MfUtdcxgzqnih - COn4fAZLLxE21c9zAp7izsbq27jqG79L0UbcCdzi9/Z9A/hXz7EF+hgXfgqv/+wr0IpftuXzBNb3 - 53/9m953Rg2Jkox//KRp8Kcu/9nPP339dTwQNKaaSzXJqpo1Gy8aFHbqG/uH62VcfQoTQKhm0dMF - OS5TOzX/yw/xVc4/bJFfmAPy4JrY3OxZrFecwOUYgOBrJQKYnddC4FP6TbQ0DGVcUDpWULWmglpb - vkx/3O0K8ylUqLPla3/rBfK5NP/lI/S5Xxy4HHdlsPOU3l2/sQPhzWy9YPF4B8ytBzroadWbCNfn - CD5/fDHLU0D9RKnYnDr7GsRSvaNWczgDck6acO/apzRgkds2S1xO6r4TlDU4E3OI/sX3uwZqwmlf - 0SXZtYKQqibCpk1Hd/HyF0RuqVsEnqOACX96x7wcZlwsr53O8uS+QvHNxgCl+132Psu7+E+/wvjy - urmz+oYa5OS1xBpa1VE0jCaHhSv2+OTIb9D8fV+Krw96v3pvxnTOaYFeTCk1t3ole3T1FaHdLSIL - ewWNMN3nEh0auCPiRZVd8rnuZRjsn0qQvj1d/9Pn0VZfxYXvBzrfeqz708/xgb3IOO+FLIR6k07U - O7FO/8sv4MM6VAF7k0qn72Yx0YlkLtY/thHNQ2F5YNMXsfntzEjigKGiv3rq/ShE+nLMZojG55RT - /LV5sOSLwsPT5WLiYL1YGe/vAa+8Mi3CjnG56dPxHUH4EMURq7R2XVpCdkVbvkiUc3cFy8vSZbjl - F9Qpos/4p0+BDV+wPVecPjT06EGrlnt8Lpxc/xXPQgXdmX7wccO39ZikV3j9FRdqK9xNFw9qEsDV - nu40aQ2DiatRWqB22gPV2u0IxHR9iKB24xafqBro//TZc8xhaqCxyb5bfRGFvW3gdKv/THdhX8OF - mnfy+tPjzs+qRsMudTc9PdU3fS5HIo1FsheamW3rr8K/+mipfWN9Hv2pBX/6vFlDM+I7/nyFH/F1 - xf5W71w2/qa8Do6ET6/qOApvxssKyT4V9n0/cBfwSHMYn3ZnbFtt2SzbHhp0ojahNwHxLvnjU3/5 - uTmFXbThvQEruBuJdNtlzdiGWoA2fk6PVwllxHJOK7SCX07N/RwA8WBeW9jO6pnaN7nM1lP+7iAL - GaE6X7TR+jLel/9r8IH8v7cU7Nl9of79PLDFeYcQpXcYYm1Wo2a+FboCxTGkpH5LKpMEwEok/Z47 - rO4Lly0/bKbo972cqH5pXhmNbAOijtN+2D26WiTw50cFX7zfYP+p5rpY36McikFSUgcNViZa0IWg - 8+Uztji1d5e9SmQwO+JK+OHWgKm/FjGIpknED5HQcfFPvwEKryqgJy3+gBWRpwdFH5+otnv9ovWF - 1QB59kKxiubXuIDLTUOGOnj41ARJI539ZEB/99/5IXDpJT3HSNDLDntnW9Crz4/nkMbXMPj7fZ7z - QwuG1xugoYFA83kN/QAp4l7YVOlOnwv7FsD1CE5BZsjTyFS7DyH5pg22+U/rSuFQmtByDiq9aoXp - Mg9YBLqzPQRi54PoK9m9Cna/rZF7yJ3YfCtcBUrcN6ZF4KzZ4rwTiIakLOjDsxWwxJ87BI05/agO - 8IEJU/aO0a7lv7R4eWYmREc9hjO9XEmdc89R6PkmQAtPZ3p8wAsgv89BQ2WT7bf1qSP2sfchdJJ7 - hQ+n4zmT1O5NYCtbEFsvCYyLlq4dvPi3jLpDbAHSOrCC3l4l2EZZB9iZzRzarqd2UkrNon/ABV5Q - IdHSWIKMTy2Wo6vMm7igp8PIa/mzgywtjvjg/SSXted6hh/Otrdig+YulXWG6KMea6yrfacLZ48X - oX5pWxztY3+U7Pwhg0cVNrSkcaPPrdDlEH4iJ+COF5Bt93Mw7y4zkSOriNrW7a9/v0fj2YoB+8zn - Fp5OL5FaNvOb5RjZBmo706L3NL2xnzSmCijWRMVZYt2BNJ/kCU7UH4Pl/tNBR8uTDEMtOhEuF2C2 - gHkwkZT6PHZeUduIu8dPhfRR7WhUvvtoPWBlgvHD5LAFT4zNVe+pQDOLKw4RlwAhEaoQvu73Cz3Z - racvb/6Qo32pLjReD67OzNZNQRrEDrXtV+3+yGopkM8hpnfwhtkctUIKH7eniY806d0fmGsT/Plv - CsIOLK/wF8Dj97YSFDiXaD7jbw6UhBvI2MQZ+92dS4W6xj/jGM0wWq62vKLX/Xahedk0ER9vpwDb - 4vbEdnv5ZD+eeSko72RHOBrrLu/Yc41GcXhRJ3++wPxWMgWkPP+iPmdI7uqlCq90nPrDlx3f6LPy - ZTzqP2AkPfpdMjHgYQAf6/1OHTfW9HUH7grIZN/Cl5AcMsm9VgnUJdBgrP4UnWhALeH+M0gENJbR - iJ2ua0iNBIK9XyUDsmY6j6Qd/wvE/vEeCbnxA7qma7ntko5dYaouK8DvRKS+O4fgV7ixhgjij7ik - rRKxueUc2DQthy8fzovYLfZ7uPeklHofOXJ5/OwCMLTuHQezY+pCd9A8CN9BjL0cGYDfpaEIL+bu - RQN+ZC5ruisH9p9eoq7LFLbhmwJf3kvAuMzf7izk5xR+q3WmdltxzQTBi0NCYY7YX7XQXa30bKKy - rnIcDcpb/7FOn6AzfkbqndQ6EyxFd9Az7AzqLGLSSETUaoQD5RnwnAn1ufgMITyplyd+8o/TKNic - 3MFVsEx8b15BtiYgUODp1IjUvN3PozR/x61LCOCo+rrusvX6a0vUklrEp1bLxuXRZrKySw8ejo+3 - YZwve9pBLHY+tj+7JVvJDQ7wppUePZ0cZ9zsQYZ4pwGyoJ3uCp/PUMFFCXzqKcrHXR4I1LAM3W0W - WCSPa7lJivCq7ehJXB6NZG67iP+e37wNn2zhmZFCzuzf1Ls3cSSS88kDz9SzaRQZQTYJwqJB5Tg9 - g29qxLo4WJcACeVFwzojJ7ZU7m6G4RxTIq6H0V1PfpiiO35fA7kpUp23O4GDlZz4OH29MsAfpard - o9t1pXdg4Gw+PrIKhNc7wCaqjzrLFbeH3PEZYCccL+4n2nbB72+dTriMaa6kHGcLjaesxlo+WxFL - IruDwqsOaGC/F30KvwcT7l/b4IL3rmTrtzBS2O6IH2zfS+fdeO/9/U19tZ7AapBXBdu81ChefZT9 - oqN7BfLWxcb3zpzLZP7AIe14RgFiwMjE72vPw+6ySaIl9HVxIGuFiiMWAsWVsDuL2rLC9PipA6o+ - a8DuM9aUr/azgqr/aK7oPasQjYdDTw21XcDsqbsUqnkXB/I9Y+63OM0e0qfgi+1yeDVT1KIEfqbd - SiYiV67kJkEADSX54fyyjZOf9koCjtXewLn4WaLZU6UEbfgUIHDfseVSDhByTS1S43gsAcszsYP1 - 8NuTxX5ewFo5lxWMquPiR3s5RcJL8isYZsDDPr3JgG7xCHYNPlOvdW1XmN8viCaJu+L083sDydTC - bVCB86J3t6iyP/tBf8+X3p5XsJ78JIVBDSZqetqBiSerhuh8nc9YzXY4Y/XjeoG/q/gO2G05jiJY - Bxm+WGwS3l1vrG8j1oL38eBTvXxb0fyalhL9enPGJk+0TDAdDGH162aMc9Ec2QUawZ6ezTO+aY8z - kO5BbqGPeqqpyWdTw05OMyOK5T11d7/d+Kl3sINY3V0xbsIPmC3ZuYJnw2N8TfodmG6FLiOkfBd6 - UR/GuJZMclCyeoD6t9GLVlnJE7jwvzlgrR+4Mz+VFnwp7yL4Da9YX/qLHAN9l/M4Um9hNHpAndBO - VFUi7FUfkIiTebgdO8NG4EnRkuHXBBLNeOKndnxt/uml0L/vGA5SvxlXftpzMB4uN+qfNhfE2bVT - ftXrSZ2lP2QzmS0TrPWSUOe2DuNsdrkHk0VvsXthJzbtX1WLLMXNCdwfLoBfeNzDtzKY1Nv8hYG4 - 7OEjHgocGAvJGHzua0iM3QH7nm6ytWjCAahZuqNmc5nYX3yDTTvfaN66X/fXx7GDDp8KB4t2DkZx - UvsJtrvJx9rpurKZX/QWZeoro3H+FsDUVJcKXtBTImjVZndut1MA5vlQ0dP52OlLcCVXYApPDQcy - Z4E17IsQ3Dkxwof09M7YhHhV2a/lFR/2D6mZ1ZM+AMcMJxy52yw1ZqUlfK0WxWrnV+NaC1WNpsKR - ArTxJ1EWOg7mkfqmtx2AOjNGKCvXJRRontwf0QLuTg6Nj1XTcuNDDJlnBR4BqeixH8+u9I4TD9pM - e2HD5JjODMfRoBK4PtXcTz8ujVqVKAhFefu+HKCqoYhw81fq9C+LLU0dxegPrw97t8q+JUkqKH+q - jIbnSxJRnqwzopzA0cSdDoCP33cHqlmyC/bBzWCLIC08CuWloAVPTxm/B6q3HSGeqOe+aDYbXiqC - 8ji4VAW6ky2vW9rDJ04nfGwTEI2dWqbQyO9HbL53hjvPx6sBLwOeyHy+yNnmbznUmvv7j2+BudM+ - AVy3w/MntJij6B2yABwNldEj/5Pdbgl0Cy5fVcTPo4rZ8pZoCANELWqIgzpKu72igEdPz8FHbLTs - p8Ff/md/BA28yxbuPgXgBoMfPTbxQWds8K8QVRYmCjRs9sdf9hvfDrr7soKfWKYe7A/ZjcjDWGZM - GqgBtvhOkwbXYH425XYqqPhS7P5MJql2dQE6jhN86vuPTozwWsKe5pAWqBn095ndHBjUKqYXnhej - xexvGnj19Zeqah6M/JWEIZLT3sGx+vowEmkxgd5eIxhzh5/+G8xHAqXs4eJT89pOHfnfHjjDFNA0 - jaRmPrh7c7+PnxU1y9LRBeExrfAjLRjfqWZlYo3YCqpVi7CvZQeXP7iLgV6l0mC87Dr3t2++CRyS - vMDpfwAAAP//pJ1Jz4O80qb351d8OtvoKEzB9rdjChAgNkMGIrVakBASSEKYDLbU/71Fnle9aPWu - 188YXK6676sKe+sp/pxUYQZzWZ9/+W15CyZS4QwjnW7jcayYkgg2cuRVQPMHmfKW5b4AQ92ZqIsP - WcU+fhHDqHXC8fVabXjfgeUUC7J1yKnlNhDadlKgQHWT7tfIzyUlgRY83a/Kzz/xMesMF+38Eyf7 - dStWf/utnARIo6Xeipo2YzRzKcFL/TbHa9Fh2NpbOgJ7LvmUmF4JV926xlM77rvpQz4KeBmrC3Fv - Zgqmpf6BZT/h1/k551NrhW/0+l4p3X3WUU7zecqQHK9ulFTF3ee//XK5GWesaJd7wnbapgBcE7UR - VN+5m0+V6oFTVA10yzdHk922/hvqN2VH9XjzMHm3wW/1QLFGbOmp+DNZQxs212Am7q6UAZt2tx54 - 0sWl22P+4rObPAU4W5/DKB/ficmOqRqDE04edAfNdUUX/aAa2wRRbXCJOU/OdXmepklc6T6asx6d - e/gtp4lskTB1bBT0HpG1BkYUr0R/Ts9JgCrtwKkvsDnngXk1oEzGiGpUr/IhlwzjT487y36SrfgW - qvX06cZaKE7dbN4bA2apOBDX7x+8XfQk+u0nGFNeDfX+64FYCkosoemaT6EHNRXfvyWJt/mq4mKm - vdH2iD1Ma8tb3hc/XmEe9YykwnvD6aJvYOdcniQ9ikLHlvr/xyfMJf/+9B30e0PHm6oH3agGxhs1 - L0mmVtX0FT/ZrgJPwqwQ+zzHXJ7HyEDgtT7jCZw0vzcfew1eB0GnR4vzhE+P8ADSEVLieNuN3wmj - yoAnHA6/+OtGnOgHFJ3kLe5r//t7viMMd1JKt2tw9ZmYD/XP7xG3gINJ/VEzYEh3Zyw7nle1F9dp - VGtizTil5bWazuwuQCbp1XKxTpZMWYRHwGPtjJvHt86/7FGEqvP6LCNL74M/qeMjRv2h35FLXa46 - nm6+CvzF277J2or9/Fmf2ybBLyhwPnx3AtwDsvqrzzOTUxu+72iLV8UYVl9z98bwYqYxjVpEffqJ - rSfsD+OObPuVzds4TUt4bFbPf/yJ6bxStMQbcbjkm717QeEmUfJplNbwnU+CV8XAdGaH3NbIT/7q - 1ycVPHITrnPF4jR9qscGPqk2mbduRv0pRYL7HKi/60nCkX1RobL5kBFkem/OF+OrQSMVDGpvCMmb - aXu1lOqyUsYp8fuqPr3uLhgaa6K2Db7+3+edXi0h2+vX82ft2VtglQ4Xahdr2ZzCflRgv1N7YuzG - Qy7enAkj/XRQqBMlKKH65L6hqe0lYl7XO9BjsTE294vBiH0ubuY0vAesVvY4EPJod/kQQ0VTo5O4 - pQsv89nznF9hdGDRKO4+ks9Oj+0TvPE8ksU/+MN5YgKk8vszsiD3Oz6SNkBHGAz06OwP3bRZjdpG - 7cyCGtv9J+Hn/hvAeiylX/1O+BdlMfzxFMdfDUnbHGYPfu+flOpB4PmS4y56vFvXxNkUE2BL/dzo - 6pSRm+F2eWtceQbTyXPIAd8HczqH/QpujrVJgrBpzFmUNwLMzqsQDwWzwI9nwbjd98RZ+AXL+S39 - 6RGKL+qeDx+KJgCHr0W0bTgn/HF4C9BbyRIxC76upnHSbHgM7Ih6NebmYHvOCiqz98CbwfZMAZ8z - CBPpAEkyHN7dTAodo7V2cci9uL7MGZyNAjXJZC76Squkma4MuPACgqk5JKz+6jX61VPNX96S1fa2 - DUvv9MJw2k8+u8IpBrKSXOl+a24Ap9enAvdn+0QC6RPlrenu8M+f/6P/qG5cUXGPw3GTFnI3HdPT - n76jwfHacqak3xIOPr7T3eJnZO7GV/hVU5HYnb4yRyCHBzSm+4DsObASYcWnK1yvmy0xpMGr2FF9 - uehTP6zlauY4F26fZ4yCHafUWq+nnGfNsUR5vUK4iVXblHcGi8GJKzkplv0qiOKsId20BkKMrZ7I - ktZAuOQn6q18MWc6YT0SgZvQtO1WyaCf9p666P9RaKWQzw2UCiR+FJdcYmkGvHzxAK6d5eKT2is4 - OzkvFd54dKMBEo/VdAHqCPPML/GcOEo+yYQVcOcfOHG0G6+GLslsaK4LAavNwwUikUsB3cPaouku - 1ir2vL971burM5bQ8+Vznb8zdLvB21g1Y24y6eVeoTten5Q82m8+f7ChIP2pMzxX16M51vNBAjgU - lPGTakL1/fkXs/6mNIl81by6FzGGxT0M8WdTTLw/zCsLChq60m2/evPpE3gWWPTikm9Q1X3vewx+ - fsuYNw6YDLVuwPyGBpajrW3Ovtqr0F/ZImbN/VIxvpOvYOEDRDu+sMlt1Gmq5cURsZvLtuJzaK7g - YzNqNNCSLmGmmTC4h/kRo3Pk8XbRBz/ehxkCGMxoK1nwKVYnGvRrH4ydvGXwunkC+tP3LL1cNfht - Djr9xb80fHYaPNeGTL24tpPhlT0kqApdTdz25vjC9QkF+CTamtoLP+NP+XsC6nlOyHZmu4p9xpSB - xT+Obqza/mw3N01dr64j8Ryzz/npAya4xMO4eVimKWeDsYKxaO7ofn6YJjeUXFC9uzL/8eA5lzwD - /PiMW91Usz+zuwSPp5dAF96TzM7gFVCnK4SVlJx8/q1YA89ZNtPg2lKf/uqB2nr6uFr43WDrsIfn - CJokqzH3KVstp5ykRk0ca9rlvc6iDMLrfaD48b2b7H7a9BCVHqGO3507VtUHF6w626H++u4m0mcM - J7TwLqw85Lz79Q8AfhqEmsGuNOnNnwWwZVZOz1Fyy2cmh/byCt4bCzF78h61tze0xnwzitntDvjJ - 1hQItCb9Jx+5uWRBrskanu+7ezJpr7CHy+8f5TRp88ka9+NPP4+CVkecK/CGVe5gleg75nbSuW0y - mF9ik+Jz2SeN7m8s2OeoxCoIbS7qQowBX6kfPOHzF3x9cX0FHYacBP26A8PC29VkvdZHUHsF4DtD - jeF9uB4W3kWTeWbPFln0FY6CFkF/cJNWgAyU2rJ+j4p9X+cGaWvpgSftOlZz9dEm+GAepRY9I/7L - t+DoKSoNJeJUYiN0AUT+2BPz05eAPcWm3MT3cYfhtaXmdC2cDF5u2pmeUqvh0xbgDNrt90X3zg2Y - Q/bdHSDUoU8uVQ8q5kITQkMo4fh474Jc1GnN4LiiT6y2oDUZ362v6myU5Yium7BiNXmsoJ8kF7ro - GTDfvpWl/ngeXm9kn23WuoCW/s3I6ICqyS60Ffz6vkS93W3gk9AoB9WUNxUeQnnXyUCoxk3u2v04 - +6njt1yvMTzSw5XkC6+hL8W0UZqPNSXG9pGwJZ7Ap0eM4uE2gkaRsmmz6AsMjML3Z1LsMNRv6o44 - H6H2h8t9LMC2EAg1pKFd+hW6BRc+RPw033eS9NIKNNpeuvDAW8I0QzWg/Z3cpR7v/ekTGBa8y3ZG - jaV/N682Z0s9jNqXJMLT47O6pzU4weNubA2yq4QARSVyD8KNuEL67Jb1bX/7j25p6voDLWEJ4++J - UMeWBd4X8WTBWzDb1Fx40jx9HQbt0DWJYZSh+fM/f/6pa2URzObuHcCl34IVrT+alB3mDKLNdBjh - zHHFIvG4gsW28SnZapTPK5JCsKwntYA/dKOR7uHPLxMt8YOfH3DVHd+scPrzh857MqD2Dq40yKXe - /MUjOha7LWaV9+148HhYSLLlPX5dv54pHpX+BEWoT+S6dbAp9zY5qTonO8wTCyf81+87x3JJfv3N - MVlNEnoUSkXujTJ08+IvQHIpOhIM8aPrTrar/sNDwKk0J3DUG7hh1wPdNfyQU9kVArTwMerbs8bl - 29CPULU/EL8Wv8B++TnJWgOz9WPIv3Stv6GK0oCE4KSZUlmxDPXTxSTH12oDpvCrW8ipR50S3BwT - eoTD6u/3qah1E25N7QlMGy4TrejfFf/xfeH9PhJsnAMuvp+ihZKsMejJuZ583vZ75cfrsMKZBGbU - KDXEXXv49be6v3hCBZQJPn5Sv1/8L9QSeSS6UVuJBNhTQQzmN7oLdhnn69TV4M6CG8xx6Hd8Ms3w - 9/kWnpMnPbsfr+B7RAk5LTxnvly1BuWSdxjlJV9L68tLQ6r9gvTnD+QmuzM4eQKjMTTUaj5m9xDw - 2DhTIyI4Ee/LLXA/nvrj0VPmgiu4zvaeBhud8Z4ibUJzsb8svFcAo1QmBgzm240YQCuTOd1gG96+ - 3Zkaa6Hy65ppDRrv7Day85d0C09ToNEqEln0dN5vXjgF8uVwpteZjxW7uKSB0S1YY+Z/3I4/It2A - cfj6jEKw7cC0eyMI232nkaV/C7iR2ROE2iQs/NOrZlSbHgp3QkqzlX/MO5GXAVz0Oy5tiXI27r8p - HB9iTAl23JzKn+Vi12+Wj/KSL+ZDbBl/fESsU5BPO+3Y/PGmaYYR4Nc0ZerP/5yCagT99zYF/18j - BZv/90jBo2Axtb6rV8JZfkzRd15PJBi6jk/nUmOQshQSbAJW9VAJS0iL/X18SyfNFB3M3yi1vC31 - 9HJIxnwV4c3l7skjII/YlNZ4XcP4oxxJpKwjLqbBFqKrgixief6jk8Gp0qBzOEPM4D3w50882HAt - JD2e1s6j4rnWFHD1DTfk/vI9X7QuVQPc1Xoz9rL88flHihjo4eTTvORdPtNv+oTAGHUsC9W6m/p5 - zmDASpMYDfASYbcyGVJieKfu87nq+Od7LaH3fclEd05VNxVe2aKXPhjUVVUxZ3nverDfPGWKz97W - n9WErmBUBHdSqOa7mnxYXtFzMC5Y/DxsX0qESoPUvqjE5uEzl6dzr8Ki2SVju/euOVNvTQ3q51Ye - i1JW+UzS7wTbB7bJTosBr3TXvQJ3hTY0p4cjYMrdVFAuWwJNve/QcWOWUmC+1sX41DZ1NVvBO0N+ - UJyovXvHVfdqZQme76uGmGXw7MTifC8gn7IX9Uvu57w5lh6ayWlLXOllm3MjL3eTvCGie1hugeAM - hQEv4V0kPgmegH1IWSB60rcjRZXGxXnPehhfxZzoxzjPGWE3CWL5VeLzKO34pKH2BDrDxTTzFN7x - c1gfoDS5DrGDs+7Lt13N0Ot+EUdp9TJ84U6NCQaxotBDd005cwpNQ+3e+BJz7UemZOJlqpLEBdkm - O5ILwtgeYLvXvvRCPiDh/W3nwXNdqoTconMudWe9gFeIU+rbqORDDg0NxlE+4Nk5VdWIwbNGWIor - uvVHI5Esfu6RNO4pdSzZA0ISrk6QEzkie50MHa/GaUJM6ilxZvjp2BrL9W+96BbiPpm9WvTQ8xgI - JP9Kz0Ted+UI365f0W2yo0l/qeYYXu6uTNzcibrJdcIaLvFFjkfbBeLxJBkwVHWTRkQ9gHnV4GCz - fF56Q9/WZOVruVtrn3zwyvUOgPlpNymVR/cUp00KZn1OIdzBRCGaKe0Sacg2K3W9vx6JoWUF7xVT - a9Eaz/G4+r6Miu0e0xNc3qsbcSy55X3Hrz3UVa0ixdRpidh/zBP65YOzG5+5XI3LXa9LPJM7Nzue - fOFKHVF0Jrq4XftjFVMbntZaSSPvqidsf3YLmLNnRb1OAB0tGmBDsrlN5AbOeiKPCUyhHC1DjM73 - 4gvx5pJB5/wJx7/9/ujcGA7P8EWuRuXmov38rEB5VQ1yZ9WUcHxzXdCqh4Y6+xyaI4qnJ4JrpNDd - 15U6pr2fCgr15ETM/bz1xe9qaqEYKRqNxM3BF0PjPkHhUjmjdHBuCWtlYIPUMxOC75eP2TV7aYSy - 93qTcxi0FRPq0kXe3TtT++DcchFJbwalhIXL83xWdXiKa3TTppZszbuWC9cNk2DUfNf/rOcLdgWs - r0FDzJP2MeW3pWbQPqQmcVR/V81dhi1IcgapP79X1fAMPqn6ED9fPE3AzsV0I0joe36GWJw2fTcK - 56eC8vPtSx05y30ZfUKG6De+0O0+WN7JEp0C6lh/ELdaDjYXvFcLPy9rIMv+AqLZBBiCXKhIppf7 - RLC2ZobS4lPjDezTnJ9XeQAnPDHqHcLMb8Ryx5CSMQuvqvGUs2W9wadXYnLF+3POaPEs0Nd3L+S8 - V3UgR8qxRMNdD2kcYiufNsfLCNhQB2P/uu74/Lz0DSyvikGC0Jt466cdgx9P5+RC4sCXPp/tCT48 - rNOkGq6VDPKVsBmMb0btDzAqqftmJSyLYE20pEwT2YwCBt3LvaT60MY+s/h9hI/O3ZGgG+NEGKtU - Qt5klVRfR2o+449xQLftAZBdaOu5PJabBmzS5Z73YxCb83CTakgPvUtu4ebaCfLXttEc2DNxWCTx - YW+UGB1GZUdudjrzvkDVAQqor0Y1AV7HKq0wYDUqXyxKxgQm+zi7qJJ6QgpffOVt7zYqHFrLozlO - 90CGDbQBxiKjWnSLwF98hyg8L/U2rsTzMevh7iFdqPW0WDcHqtRDxFlJnYlXyWA/KYTaOfBpVMY+ - EN+8GGHQ9jdy9x5eJ2vjXoHn79Yn3trEplicz1d06FqRGO5h7iYyKylQhnw11t/VNpfOMNDg+gkp - Rujr+eJW2azU43Eoqc4/fi6NwSUDWWS6xDrRmPeOmoTwJGNAdH3cVFP++TLQXtKS5hCsch7aKw+K - RdORPGxPlSRsL9LGwdeBnM5sD9jHWWuQ19pIQppcTUaL9gpv6ZtQ99zX1RiucxvuVAiIs9Rzts4F - Ce4+w4cchPtkTrbLVZgw4BJLuIf+8HDyGvo8GahdXa9AiPZbAcFbz8n1mIi+9KquEhwdtqLn9WEP - RLuNUsSeXjGK99gy6dn82GjRD/SmVkHO/SHQYCO9XUIAOHWiZAMPlm/tRXfzOe34+N5f4bYMPrRQ - VCOR4zi0kKt3AK93g1hNcvTFcP9w1wTDI8nnjV4oIJhe/bjBuw+YJZu7KL2FH2J63SdnQt24CB9P - ObWFi82lSLIPyHk2Htnr9RVM+tGJUQcDhZgJSTu5to8jJJv7RLwqbPOpPjIXndZGSe/Rx83n8zEb - 0bBVRrqTDzOYU1t1oeTDluw2UZe8XbFW0Kov98QMGo2Lu30aAvMqAFLMGqnEg0wb+CVju9Tj2Z/P - wsOA5jdgRH/ZJedqe8+A8ZwicnC2FeDfzwbD9pKVxPiwF5ibGWTAumX4T2+NRmocUBOnPcXve81Z - D6o3HBzS4em+gjnTl7vrBWs5RWrRhxOx9BJ9ueJQrWRRx5b898sf9Bp6IWfzRhagLZ584sex1snt - +mTDDqsb+qdv4rE6wFr36dgeFcvs8nh+okXP0kN9yhNONddAvogtsheiCoiffRQiqxh8ah/elcn9 - TIWwEbr5L/9M1AEabLoKUxJBuZtKPVHgC/UmMYs6zefdPoxRybLrb305e0+xrU5yWVLDPUQVm5/Z - Ciz5mjgCDhPmCbs38PKNSW5BvU/EfnPNYEHy11hZI/Y5D6AEdw/hglFvPABXHomtLvmXJr52qsR3 - vpFAI2+2xE32xRIfJITb+VFT424VPntVh+Vg21uO84ebdaK6c08guH8rYobmwCf38m0hlsKK2tJJ - 80V6zUOgrzczNWN1l09L/odPra1GhiOPS6UctSjrLZ2c5U3J+aMwNXjcqJCa5SMCw/OQCmDJH7Qo - 5YyzdLc7wZPeP/Fp0cOzb/kl/KbyntouQx0XN1qKKsUMcLl2Hh2nmmYg1bx3o/DZS4A9TqWGCLZd - YtiGC9jACgl+vu2KOPdH609xf3V/+gODr2Tkc327ecAWDz45uezWTbjmHuLnVsZzpm5zLhsWA8HJ - DehR263N8WBDF0QAJCTYW4k5r51DDbV8ui6n4CSApfjmqZdkuRtvHG0wnz8VUxvbELGyEhqTrzZf - CejGh49PQpcp8ELTIE+RQLCainwGa1CCCoQlwY+T1sme+1WADfYXuhNuUj478FlAeRd/aWD2QSdJ - eZJuFv1A9tbRT0R1px2gF96PeK52n4S7rAnhXoE1vTyGXTe17/MVdoaHx3mH8moqbdrD9UUKRukA - WELR/hRCnik+OVm3MRlX7TFT0xWmxHfzQyWnt0eNrlR4kKuhyBXfHsQYgHptE+sKxoQpsd0A0AQZ - TcIUmfOx4jHads2R6M1jD+bv6VaDVQAMosedmUtHJSlR+NwXWEXqDvRv51LDWfKvo8Cep45FEj4A - ejK3Iwo3sKPJV/jTd9RWO5r3/bzJ4KwOA73A887sl/gDwYGINJDIzeROK0noOFRbQuKprzjd5gJY - BRuDnEjVAf5VvRCKkaoRIn6xL7iFeEVynAfUBvc676GSlvBdtD7Fb21tzqLQGjBJIkS3tq0k01iF - 0q/e4snNVNB/ZucJlH6rj/MxBjmjlRT++SMDRx6QPgchhMyoEuJ88Z0PSekxGJzvO2JnStdNt4se - wKfkwlG13r453a+bEb7QaFK/WFowcZzaMHYTj+INiaphFT5OMMG0o/YuMnOZnXZvCBqcUQvJp+Sn - F8Gix6jbvcSKwcfFhoufJDs1IxVPoK1t5kQ5k6SolZxWBylE4fVA6F26VSbfo3mCe795kbAoXS77 - nwlDbGwdPH0UavKjU2oqtXOVEosY/ow3eQr2h9klfsRV0DS+YYEaeRNeYVD581o0r2h3ix3iGlQF - 7Jv2Exxa28PS6yLlc9nsMRxWTU53akYrvjt7BXTkIKeFwXA+IWpOUNyWO1qcvZfJokl9wpdaULx6 - nMqfPrbREj90p816NcNAWc4Sr4ff863G3/f//MlBndNKfOnyQb3tqyOxl3hgNzG4wsJZ3GzZHAAv - V7ABrV4DEsVdlXOhNz1IqBEu9WoLeLA+2rBpcUTM1flq9pCgAt5RLNMdWxtVF3G9hy0+v8nib6ph - F9c2UlU1/9Mfo3Z5NcC4Jg21BK/kvC3qK7htnmeyM1GfTCmLBFW8rxsSmH3fcVCVIXp6vjoKnfOt - pjyrnwgVsT2W6+sExtYLMIja9wkLmbfm837vSFDTaIVRDS1/BkNbgIA9TdznL1RNblBnQBucy6jo - 0ScZ/MhlwNZdSo30ZifMGk0F2kP5IkHl6T53rU2GfvsnjvozmLZ11KNxKnt6Vv1vxWtdVxGMk+3P - r3TzNQ9T9NxfMNnKa89nlzV8gqZ7YLpb6l0v7qcRWu/nPCq5E1WTIdze6lB9nmOXPZ7/1EshOgwY - JqKezC8s1CgTg5qk/ZiZ9OdfvK7ENGw9GUzJasCQm9abXDk6JOyiNj1cPh+m+s5K5EHvTuovnxf2 - Pk/+/v9Mejzosn5+G3g+hnFoT8TQtrRiUYVCMB/3B+rluptMt+JogHJr3zC6GVHC1+kUoF/9I6jS - gCCxTIBH8dThzSby85k+qAV1q/Soby8H7RvzKlWX+kOwvc9zcfF7wLLBm+7uecnnQF2NUHADD0tG - KfD5eUglJX1ZexI2fZ0MSz6F83iWiGd8o4pVWViiKEM+3Qf1kFNJJMWmIklB9MPu7Atu0KfQNeuY - 6MPRAIJiui1ceBoWN9CsZBkqCjoGNaJL/auGdgptZKerA9Um8E66gWYBIOUZk2CvuCaLikcBpJFQ - Gvz01GXoCvDTi7euygE7dkUIa+RO5AhxkDAn8tif3ktZl+T0VYYYtdlwIxcTBYmwBdIbUGm9x+v6 - fPTnea+O8H7r+nHzhX636EcNSPPdIq51Xkbq90oP3dSr6C+/UChuDvAhxD3mIm85+/kRNm52RH/l - kzn1teABs33QkZW9my/8YwXHZrDHzLy9K/l+Hw8Q70uRhNioOf3U7vjjUQSfunsyd8YDo7X80MZ3 - dYV8unVxDLXqbRADnJyuBc6pRvmwisbZujf+UN+OHtpoYUGskF06YYlHcEgvD2pdxKmbdalnMOL9 - huiZ+kqGtegXUD425VJ/RrOtZzGFPz5kZd9X97d/W/0NiBa5RsX31ToEdzPY00Mt6qYAJmrB0Cpb - cotSI5mlSxAAoa51LB5zxZyrlc0g7PLPuPCsjkq3Z42Oh6wiTpFugTyWc4uW/EbP6TKyd7+/Dyhs - Rps60XHk7PxlEDTeyybmVo6TP57meW+b6PzTJWzZL8AwdzZe7ZONv/CYEKh5ElKspkfA8y2Mwedl - DzgMD0M1sXaWUA+ZT3T90uZtccgEII/coFZwa5PZdOIaLHyUmr7QdY0XHlSoroue6E4Xc1Y8QhvV - tYGJGabIb6ZNnKH66cjjpqy3uUy9TwNfz84bWXp7J7z3FBvshTQhwSiEvlTe7h7k171LAzcs/AGZ - vQWDHTuSffx4dxzfNBftk8Ine/a9VLPxnFKET106NivBNflT/Ciq5K9aag0Xls9IGidQW7lJCFmv - zKHaKiE0QyukelWcKt6bdgM3B4HSS0S2HXvAVwHhFmBqPPRzx+jEnwB1UF14j+MzQDQDWePhRDQY - 2qb8qz/O4QhHjTId8FeSrVRz9/oQPbOnnNEJPKG0jz6Y6Tjhf9//88/B+4X9XpLHFqqGO5LAUOSO - XwyTwV98OpjMZh8c9hlc6vNyih7nc/R426qjjwZ1zPGdyLOplPAyORrdzsOj61OrhcAwfRvTbD12 - vD/ee3goifPHiyfLO2N12Q9Yuoovk7ELxj99i0XbTvOR6d/Tnx/3jO/csZ8eEj8cj4J6/Sbzydy1 - YNGX1F3qUeMLa0N9yvcNMexzarJZqA2o1coaK8m+4Oxw2QbwGdgRnqe8rKZz6U6QVO/nKCqHS8Wv - L6OGphu2RPftNZhZ1AWbIivuxO5OpGsejIdos9F8kp8+hP/qLfxs709iKpumm2NQvv/80ZI/+SRo - 4Apfj9OeOmHQdhNDhgqy++gR7avzal6FjwN6brJwXE1B1kkpPi7+33iNioO1SgRDewVJkiBqudjN - WWspKbiEN5EaDzHoqDFLGWDLxUfOOXZ98SRZJ6irRoUlj5648POTCw8e+dS+q8l10vqPNyz+PGdX - OjXw821WdEe3lHfdhJ5g4bl4A3C9vNITZfC5SUN6TU6gorZgvkFU4DvVgTQkLEB7FdrxradBQE0+ - ns5fFU6YMWJEZ7ebw8lu4PZsWyOXIDUft+F7hT/eU3QozflUPz2k2v16OSVm9ik29w348f8Y3gOT - U2706HQpnXHRe8m8N8oAtKB7URcFK/8biK0KctkWqMGdVzekNnP/+NtepHI+wEARYHz46mO96Ftu - 9O0b9jV808OSP6bLCWpg8ZtUN564mov60EMztMPfzyd/fnfx67j9xZ92GVr401tk1b9M7srQgodE - Dsf8Ga343/OqjCenuAiNRa/WDEa1M5Id3VhgbqtYQF+RWCMLcZ1Mgk1iWFUFwFyCxORQnA/wiNyQ - Oqr/7bjoX0p4W9kN3kTk1fGVz1Zqfsm0UVxnZ5Me8N2DwP0Quj8UmvnTQ2DhyRjKsmOynbPSIIHU - oqajKn/5YLm4e0+2Ax85UwImQfc6CpQotAMDswYIynsFibfNNF9aeAJMGdfHVdqknNu6pqjUPUXE - WPLHX38pV/KZ7rPJrcY1fF/Ba61r5B4Ulik9To2hLvod86FuOOv3Qo++vnehhvDaJE1BhALRqBCo - pq0HPv94erOXMqpn+b2ir3YtbZb9Oi5+j89Lfw+ev45PjHtl8nmUNza89p89Fsy17cvdJJZgyZcj - L2ol4Q9/s4KfsLwSgqqSz2fha0Atrdyl3/YyGSmtCbhE0+iujTLAsrunQngbOfnxmbmtMkH9KteU - ZteVzmWjf77hT8/Jp53J2TZ+W/C+2+bEKPsmZwe9PPzWi1jf+7rihyZqkSzVDTl5mVNJ+naOYZFd - 71iJqzLpmzbMUGq524VvP/j0PB8L9ONn9/xwA8v/q0HxM2OyfaePpf/1PMGo6dbUpMY1GfNe8+DC - BzCC5Yv3p0dtodv2BKgdnB/+3AvuG3ov/U337NAmXPSjEmWNMNC9E7wBV96jAue0aMhS30xZfflv - KHzdmCTG9ZXTpV8IG+9jU+OucJP96uESP9RyMm6OwPDYH0/zRf9pzg59BbAiUbH0h1acv169BghI - HZq363fHU8oatJLQQJzZjbvJNhsL/nigGTQloJb4VmG4eh2IJui1z/fLKYHLz5Nwe0DmzIvyilAs - pVTT/JT/8gFaKYpF9ERwuqUfFsJcPbnjZslnXAO+Bzf6Kyfp81lU3TnsDz++Mb4KXuTTkSQaIlX9 - pKGg1+avH42W+kIDvJcThmLlqcJVA2gmdg6Xs0dmw/GT7cgOnr8mhw20YCe3H+qN6iYfi3eloOej - 7kiWgLaby7A8wXvTvxe/AM1p9rsnXKvTgd4HmufDMXoGSDsmAp7UJOhovoUh3GwMn+wvnzofncib - fjxnTCQ3M2d6TUIYtfWJujel9MeD3pzAfefk+NW0Xif6kTb99Arx1+zCWb66BBDdXybde3G99Ev7 - E1yP2Y3apPL5nKHXAcbJySIL/6/+eBdwwpi6qDM5DxOQwSo7peP0ph4QI2+HwTe4nYhxARfAr+0p - g973I+Nmqa/8nmUl/Fjui576u+D3ey3S4D8jBf/6r//6H8uAwL/fza14LYMBQzEP//k/owL/kf/T - v7PX6zdY8O+xz8ri3//9zwjCv79d8/4O/3No6uLTL7MGSFXEv3GDfw/NkL3+ry/9a/mD/+tf/xsA - AP//AwBmG4DdugUCAA== + H4sIAAAAAAAAA5x6y86CSrTm/DzFzp5yErlX1ZkhIHKTQlDEHgECAipyK6BO+t07+Cfd6aRHPTFR + UaDWWt+t+O//+Oeff9u0zrPx3//6599XNYz//uf22SMZk3//65//8R///PPPP//9e/2/jszfaf54 + VJ/yd/jvy+rzyJd//+sf9n9/8n8O+q9//jWOherNHPsCq6kpPPjKwRMfhtQM+bpGFaQieybF83vS + liwEOYy9UcLe9+xri4ysCiF6yUnOkTVdd4oawFfF7cmep1dtfbzsBlrqCWHDcR1N6It9DGE3pvjY + s2+tPVB3gFxPo4nbkX3PR06mw8+OXqfZADUlcHh6oGxkFrtWe3GWV+Ix0FwzmyS0dMEqvtMBau5D + 9uA8fdOxt4YKVn2UYRwzt34OncmDTnoBxFQnSVuYBRvw0PoYX28t7anDlDLKBjmcGhfx2iqXq4wm + UOjYGB6Vsxw+rg+g6Qek+OR9OqwkzGH7XV+elFRTP3vyWUXb+k1vT1VTjvozD9zPcsHRidk582dm + V0Rf14kcLHNHZ9HreFifA4uome5q7HHsZciamo7NL2JCOkCfQXQeHXK3fIOO5d1UEIuYmVhnLewH + v6lUCL5dgXF/FjWagbVCAiteSWZ8XTBFTmbIJtVsbMaV0XOQ/8jIHVKB7N995NBX1eUA8r2Ija7V + auEzFAosyusVH/F+qWlgWj6MRdvCJ/mZOzyXUxsF2nzB57DBYGlOpwam9XDGKnUCZz0dlAa+L6M9 + vb3dja5zgRN4GfQD8fklTbnxmfqweSkpKdhPnQrfY9KhpdcJtp07A+idPUNUntucpHZeO91OjXzY + JCdmQgbL13MhVB1S1UHEmcqXDlcXnxWyyZDgg22J9XqWPB2gz25PDCN+9ax9CCbE9W5ELls9x08Q + mPCsPhySPCOYruVQm6iI85S4zElPV/W682FU7G0SlrKTEvt5v0D+rkBs5OE5pedTpSNhbFKSPGrc + T+8+MuSnfvgQ44U8jRzv4oo4t6nxbQmfoYCyVIG743cmpnV7aPMJvhSETvFCTima0vkVrSpq7MzB + d3w4OKzUrwly/SIl2BBth1/ss4eCKaqnNXj5YGX39Vu6J0pAlMm2tBEI7QCab8uQu5Oa6Uw+q4zY + dycQHfACXYLStkFfDjbxzbkKf/OIbp/2RB7XneKMcjaa4GC1GTYl8whmSzz7iLD6ET8SyNVzI3UJ + DMm9IPvdJ6n56tKagMUAYVt01H4O72WMxtrA2GGLLFxe9vL+O78hS0HNGc3sI1U7i0TZZT5gzdSa + kKInkSdvv2d37fmCxEWasN1odc+7x+wNtanxibIoSsj2YQyhv1tYfLnkKliOzz6DdsLucHxIlZQ7 + KTKPnpPOTxI+HDT2cEU29D8ywPaGB3P5UjLUyetj4oeH6rCCz/PIHqsrtuKmTIX4Zifg07QGdr/6 + UM/p1ahgZrsI79ubXvORpRjovTvf8cO3n3Sll8MMPel9n1aRPlL+3Uc6MLPqgXUXRZqAVTjB2+Ep + YMcN9/0aiQsPHyjG5MoeXs5csg8e9uVkE61tWo3KzZFHn7vwJfi4T5ymMQUWHo+QmeooEcL1fO9K + 8DL9BesNWcA6qWKHLoNxwNfDlToz937xsOMneVoGe0m5AswJEkTSe3y/uiF/TasAnVg8Yj31o3oQ + mewNbqQ2cEgiAOYXf31DUVZYnImx4XC2FHjISMyY2DsGO3znez6wvPhNYt4q63F/YSKYBUfBE89S + 1VO3P4lwh5QMX7rGd5b9S69gLyoaTkRHrddp7WKw4Sc5RLkNRsuBmby3Dxw5UWI76zNRIFLPUk+O + Pu9rq+6pOdIwfOBIq6Z0Tbs6QeoYHomSairlz1YWgfxjBUTfjR8we7eyQyCI3uTHTysUnx2yv9lK + wjE+1Wv1US/A7rQV24e2ppPsxROE2bH1urxpw3mX3Ew4Fp/ek62g7KlCWBW9zXUk9thP9Wxzeg7d + E9bx8TKWDieehRWadG+Tmx6f6Bw6bxfu7SOHHeBqKX0/rBaK6X2PcyqHVAjsawDshN9Nu8it+9WQ + SQINQ1Sx7TxUjWPOdYXqMoe/+wPEx4wuPaU8JOZZquof3sPp1Ob4HuhuOjvqSQQhwxbT89U90tnf + Sy2kkQmwfgildND5cyXPT3EkIT31YD3fqwrhbF9N0kut+rUHvoJyfbKIsW8UjX+nWIT7lrQe3fWT + Q1+qZ8Affxw/iNdmNHsm8HsmJ3jnf5yN30sIzSAgni5WDrvuvh38Vky7zZOS8otsQ9ic14O3k7Nn + PUtOpKDrc3nh04U5ptyt2suIzJ/G44C49MMuKUxgHtwG58VXBzPg3vA3XxtezHRR1YuJ2Eq5kNuc + ivVPj6Cx1rGHtP0XzAEzzHDDF1xk3Kdm8ZtX0B8fdn6RLkt07qC2sB+S62KlTRefFdGNPA2clfeb + w++NrwyrFGQk8TDvzOG9jdGmJ/C1WZyeRYwSgbF49SRdRjMU3rtVRdlMOmKSr9vzho1a8OKqG8HW + tE959SoEf/13txNcz7tYs9EPz9IIvsKtHyPk73d401Nt2Jb6oENr9mfsm9KarqZm8j+9hC+iMIPZ + byoFAWxgjCk81bOUDq4sZQ/kVbUQ14tb1x66B8MdG4LxAqthow5wSnskbkaS9I+/pwsTk8c6LeFa + 63cGLevu+9dfCx+fY6SFLkuUV0HrtWEWHfk0iIl9H4p62b/cCn7aIpsEmhQ1VR53Fu5u+jyxswvC + 7jt3Hdz4wINedq/7rd8RLBoHp9C6OxRZIg9b7F3xySxfWosKAUr6bQ6Jts0n/4mBCKcLjPFxTsWe + uk51Qa/Olon1UquaPtHqI+vxunvvNVDCSeSfIhz5y4scXSfp1+JMGmg1lxCrtzufzvf2W/7hr9ZV + fDih404Hl+vNnV5nyoVzOKhvGC3Tc9rFe1UTGKlrIDWgiS2IpnSBBmMDs2ZvJOI95NAnkn2Y1tN5 + 66ddOBhlVSIvijRykmPPYQ/h00SjkkjEpeOczudi70KTrBTrSqQBcsVfFjqm8cLm0B16+n7sW3CU + hCPRnqBxVh7aAzwWvoDPg72Ei+zmDKw+vjTBKzJSoT5OMsTy94oNIz70HDfiNwi09TKtPDeB+eiZ + ERyJ2hNvnXttia5mBc7iTpiE9WFrQ1qbg9S3H42Ynx0B00+fjcpOIt7FjNNZ6uUERqhFREsDReO8 + 3E7g9S73E9oLT2ddj3oCV6E2PaFhiDOcHvtc6jKzIz7dfUJqnx0bJo6c4oOkJvV8m6NILqE3Eqvl + cDg7wUX/0w+Rz0Ypa92gLAbSpExLOR4ptedpgD8+cD8x4/SesS/R1LrTBGjP96M5NSyMDV8hV8de + 0i9z7kt4vi/6NEuftabhy+d/fEMsPdun1KKggvXZt7y1jw/pIs6mDa957eFjZQqANOvcQQE/WxwV + l86ZD1oCf/6G7Kmy8UF7jtDufa5xmBkHSrhgnQCAIkcuy+my8feVhb/r/63/1xcPJnT3fovtZBTD + lezq+Yd/xGNf374rdocIJuFyJdpDS0O6030VDl/RxY+9sHeEZx/rkPGK0Vvryawnq/RjiAC+Efsq + BYA+e9+AXmfdiVMnx1qoTniAm172oG+22no+mhH4Xa+TVwwdJnd3Ae5eaInlnWC6aDscAKE7igSP + RtTTRPvEsBG5BeP3Re1XdJV8+F2a9E8PrFDmWrjhmydhj9Nm78620N/HmETL+VNTVzINOD/lkZye + mVXz6SAkcLLeYBKuHddTZSxVRNSV8Wbw1R0uC0EGZ8l7YyutP+li5VELjgUneCgMRNB/37wr/ebH + OF6Bsxa7UwQ/7F3y1qfUpd0gOh6U4u5DMpVXHG7/cktwU6TLhBhHpuTlKwEa0/XqURuNYI1rlZVH + 5pTjeMNnbvOjEE7zn55Ku60+iDeub7LpAbBIhQThYfc28entE22ptLsKD5m4krTT+noBQjuhh3QZ + iKm+vhpNlpMN14wRiQnXpp5VIEcwJd3oiV/EpEOLGFtOV0nH5vwIUiHn7wPUbv6NaPd73s9P1Tdk + cepvv/lIlxvbGGC53HhytFwazoyzn+HsxMpWj5SOQ1PqcFwGFW/81y8eejHwHkx3Ysy+RxduPL7/ + 9GU0PCqNLIw/wK1fsRn3fD+vJM1BIfQeNjb/OZ304wwFTXGJLTpVvXyq9gIfUR8RNchKSgknRPDB + hdYk8Q85XZ+WvMJdkJ2wPXcc/RhDwIBD4w0es98H2npXpwwWpy+DTd4q+8W2yhxQm+ZT2V8WOmR4 + nIBc5g9yrBWlX2bLD1AxhAtx8nflkPytVQgdwp7sd3nXz9bxPUApKxA5OPY5HZNvlUEAZQ6fmqAE + S3TLKjQkhfvj31o4tYsI78/IxafTpeuHwAOqzL5bAV9Wz6X0gLUE3aXTwRPFI3GW2Yp9aEQ6t/mH + MlzG5ZtD+SCfiCM7dr+QQWllpZNUbCYlC+YQFAz88cHph4fne1VC/RLOxDBPjdPe5ugCxSJvsMOV + V20RqxMDl4IEHqyzZzrf5vwClFs7kLNxYOmw8T2wPbnC9nVWwfr4RG9Z8GCL73r2TFcUH3x0f17c + CQkVT+kecglqX7ZKDvvqHf7uB7bPb0HwN/yCNe36GG5+dNMPQTr/8gDpEyRYP9jfdJtHBf3mT3kO + bzq/+McbGt+bQ+yv+ATLwiEXTjGdiPEBMFwVqczRm/+E+PhdLz1/fTAB0F6iTVSe8+jiah4P+YdR + YJUVlJp1VjGHy5p8f/2lzXxUdBAJ8R4rHPuiq3vMGrjxL7H4hxzOhcR0gHh2gn94OK2fdoaPSqEb + PoJwPo61iGhwiDGWX0s9p7Uywd1iKMTFjzWk+5PTgrhkfVysgKXr9cH7YAVNj4OSPGsq2octz+Ew + UR3oAh61aQYXPneJyV7UVPAxb4CDDyNcnDpG+/OHjJij33rSxTE/LeQfeoGdCB7SxWSAAhelKrFS + sowzFxLfwq3/8Em6celyEJIMCMnlMPV7iOq1KJ4zNLhzOzW3hwW4X760MNcDsUj/TqceDYr8GHfY + Q5v/nvSy6f7m5yDogzZ/pnYFu+9seIHAf+rpO3ctxC5L8HHj3xUwdgZi+xBhUyNnOlf5xMMhLwk+ + KM9TvfHBBfzyh21+wnkJNBHlN6aYSBgN4dy9gAkvrVKRu1EX9ebXG0TmV4N/+mGstLP65xdP63QO + uWO9y4CHUuIx50hPZ1mk65/fc6bp+bueHBwX6GEna+ae5Fcugtr09nFGGyWd8yTVYUracZoShoSb + v9Bhvlbkx1egfRk1C4u7luIjG7T9ipm3iBj2nkz8mvrhjNnZhRKBJU5CoKfrfdZdyJSNTmyy+cUS + LhewzYe3/vpxqQJDhrfiQPan974XaPscQJNgZgqH2wXMqqu8IfOQR3ziGrPmdQQ9aDVR6L03/Fw/ + MZWRJzX309KWbL3uja+IQpIWWHMYox84nlUhq+2e+Mj7EVh1z85//m8SSF4B7usuEQz7xsLF+SID + WpbVBDt+kD22fT/p6n/nAanPqCeKOavhEqzDBbDpOfGE77ep15bXMuj3MCfaiR605csIBtj0HTZ3 + ctq3N8Yv0ebH8EnbW2DFhRPBXXcziBbMSb2CkfXRxdoRrCkX2+HvftkhO3Izom58OpbyroGi63lY + ExSxXg99okLmDM844+tjzbq+qUNVncSpec1dvcCbe4H5DRYTpxYAkM9wU+Dwvn/JXbhqDtU4pfnL + yzb8refuRW3U70SIbyF300ZfPJnw2wnPSd7qxT25fIVBFR9JAnettumPAORmXXgrU/T961OVETL9 + Zo/zUYd0lAqJgVueSpSr1/T03mgz8gKhJHYI9JBqzRqjMgr3084QO23SEeshywhLj+e9hzPx0J7A + 5t+JHmVnZxkpyqDxzAJsZOcd2PIyEd5W+sCKI0rp8vP3zF2wiePjPKUXdnKBxvXol985M80k/8/v + gHip6XKsdzl8OJVB9oVUOesrzwZZJ71LDN5D2iT7w/DT01gxpSCctzwSaph5ePOp+dAlNWRdSrPd + zUPZctGGzuzfYOC0DKvXtHXouVtaeB61hKjr3gqFjPEq2I+nN3FoH/VTcw4vUEOehk9eTlNaUFf8 + 9Tc5wEEIhw1voU4Ml6hSbzhCfUM60PnYwA4O2prrj34Fb43TEc1dh5D0HnBlnRF2WDcVpecN+ZPA + zV+SR7aw2nS+dxWMPVPCia+z9XTS8QwZ480S4xHEPbf5UXA9nq5k/xT8ngb21Yfn/P4h1lwM2lqc + P2/w0yvxeX+nQ50lPOhH/MZYzp79Yg0xC3/nd6q7B355h5QC1fa+caOE/CKrEO4vYkB0ZiDalrcr + 8Oc3DgHrOXNzNxSo19M8zeH9rfUv3wzkXz5pbfkgZzJABb/+4JYYgaUuywY6RZwTZ+B2/fjLpzc8 + HOUQNOly/XQTuIplPsFRDDSBGKcGOoxyxtbW//zdb1uoGnNKEo2+wuU3X2sGRWIyyHBofI9i+PiC + gdhwZ2pzi3gbfvFwJpqgxPWiHCGEm373lkxdQwqegIdu1urY3/hzsWPEy+bBa6a3YByAEJj74OfH + iXtF73TspSiAzJk5e3B7T5MQveGuuxpYZQqnXx05NWFXZw0uNn6bT0POi7986HAr6p74pR5Aq5FC + nLjnI6XjvXzDwQnuHqiTY7+w206Kf2lf+ISLQSP7k9ahJZx5cvnWQtr356P72//Ah4CdHAJ3Tixv + +h17n3BfTyg++XB2EgVb2tL3tLLBBK8vwSRbXt/3oQBUwBu3N1FFitLMTPcT2vAYu9IV9FueVcIt + HyK4/oCQHM5FAu15HrAH0rLe8q8OdIf7gg9j9nQIVtoBbnxEbh8UOZR9XcQ/PY2boglnWOsr7E6V + QNTNby3b/gx8daZM9MeB0wYJHFcYoQ5hdVc26WzatESf68n47SfUk2N/Y7Dh81Q65JsuX2ZngCt8 + 74khYA4su4nqUFEA9SY3T3sqCRULHNc0cRovGl3HD6eiGfkWPp60Oh0uksbAyykLiDZ4OuAGXRvQ + RK8MVgX+06+vzJxgyI93bF2nr7PeIisD8S5TsYEFpea2/oB3tqlwcZQqQJm750GtcHx8CoOY0omf + bVAcvAPxrsre4dBTmsBv/2Lz+84sLKkLLGvWsK/6U/jL/+UTjOiEBinUlvfBn9GWP5Cj8no6c5yW + JmxH1iQJ9j26smdphpFyj8lx479f3gfWs5J5NNcvzlwcRVH+GGqI1cF1tjxCmcB2P5NQmTfQe9dI + /M3b9DxAHXBUZbrf/REl50k/QoMxwV3CB2+ph4kufvxsQO5+VGxc25TOiFEu8Ldem5+t1/H1VYCQ + Wyk+/fCqB7ECfvOmY4icWQLH+cff064/i85yEIIM3WJ8mmR1HepZ0T7eT7/hh9G/61kCeIVJf/Cw + LV7WfrhqSwIf6VnC9jQc0wm7XxvqQP1O3NbPS9IzOQx9dyS4bNlw1t/aBVoQu1u/tXX/HAcdfu7B + 1xNK2+rXlncyeGnViti+fqmHKn/z8PR6yeRwv6gO23puDOvdd8IWzUOHiN03gxsf/fifCkX4jGC3 + SxVv1Pk2HLhbnEPLOJeeNH5ZSpmPkiA1Ny4Eu+U17aqPHcFv2k1/+nxOuEpEYliZePNnNfsOXy6a + Jfc9cXC4hVv+HqMB2RVWmlymvfleTVhepz3ee3OXzm+t+Jtf755UU036pW9+/IQTK53rNR128c8f + k31yCunCTkqMNv1LdIvxQJscFhMK3UH0Pk+nCqc+oe1ffqf2Ty5ccaFd5C3vxodt/4S6/UGGNi4q + cqjgqPHrfXpDq2X4aXd6TtryWBwF+vFkEtvOrJBueA0KMl9w/g5aMP32U7SuGom6+15SesVPFr20 + 1sO37fzDNQrfsPuUR+wZoxJOH+M+weCmdMQFt9EZz9fLjKIpt//y/vWriCJMmGuDDRHo4WLifQDV + +ZkT9bT0IRkl3YYK7xfYzG864JKeyQAuqgNWt3yKVwCb/87nPbtrQNsH0jJ0PosOvt4fq7M25zBC + +8F1SNFaT2c5h+YMj4pxwGp8yjTql7oPg9ur89AdwC0/nxi4t0oO/+Zx2E8iIxvJGGONU+2Uax7h + jHBRHohtJgIl/fORgBiggjjh4ZpSI3Nn+O/vqYD/+Z//H08UcP/vJwrwkmnY7CSN8tcEBhAzWo6N + e6FrbH7DFTB8nBNtGCFYFlKx8MaHh+mZFBVdBGR1aM3mC/EvtpIKIy7fSDqfLsQ6oFPNq8nKQnYP + uKnajXuNg8yXB+LSecQx73o/SykLkRscR2ID9gY4C3g+PH3fvBdJPK1Hdfxk8MYuPi5wN/XLfdp7 + 0qe3BnI87XtAn3Lnwl0p8kQf2MWhbx/IoHqskGhBk/bjB1wa+GpdiYRs5QF6q+YETS3+YD0p94DW + RitDrRDP5PLMO0rET5LAr5JZOPOmjzP53JyDScvtae2x5gxHA6zQ7aaWGLV9dNbOLwLYpvBLonuh + O+xMxwsQjX2Lb/EtcIQyNioonuyJKOGqUv76fScwUIYLue9ffsjvqqiFTq4d8Wkddxo9p7EMv8Nl + IEX1+PYLOR5ZZIn5SPa3pE/Jwb3LMD2yJn60XU6XJ+UMZBx4Qo4F++5JH2QGvCXxkxzbw7Xn4nYv + oyrYXYjZEE6j1752oaUhD1ufWgu5nDxjyLYXzZOHfAFf9lia6FQVM/Ye6QDm8RtEyGbIDitqcKLz + 57mySI6nh8ez9QhW77uwMFdm3+Nf80qbd0ortIuqIzGw/k65/n52UZM+Y3Ke/TfgpaozfvX2WqWm + PQXLGMPBin1PWpi9xs9yksGud2Wsh+84XJ7qJ0Dfco9x9Iy5fqmy2Ib30+x5u1NWhlTu3zpMH2pB + nFKoet4MSw89BWMmNnF6sNhHHcJjUPnkqu2+ztyZlQ8VyxSIIryP2tTtRxNOWmaTNNCP9W+9ofVc + n9hL528/87enj0AoW8RyQdSPrn7OpM9rdyWm/Pmk82JGPLop4YJPlnejvIv3OmIqpSV3tRTpmKjr + gGDjuwSfReSM9tFloKm9HPxYknvKrpmS/NaX6Db/AOwoujl8WGeDZPs3SVe0f7//5tFJfYbOEzm3 + 8EPnluR9PjpTXWQ8FBO4J0VADI3Ph2mF2flwIG5oNOFXa9gOYeVrkHBsXnSVqk6H552XEw1rn7Qb + q6uLnLX6YOXlfOvFwsIKd6MbkrxdQo2f7NmHj5txx452Hvolf+5MaHV9gvEgHkPerIII1WeuIodD + gDX+4zoNJHe1IY50LXuW2Yk8Kh7jtNXDAcLSvgZ4bJQDjnot7tmzBU0gxF+MbbHfa8Lt6pnAQRHG + lzTt0uV9WxSYTuUFB/zLSvntftGrKW84shalZsOj2cEEjTe894KwZ8PrukLh0L+w/uJNR9gXtY0E + m4OTGBtfh7PXNIOAPjDZM30TLu93b8Nkz7LYKo2JrntFNZAQZiLePw5TvbzftQk/lU/xaasXf7lA + KO+KVPGQeKkoLy4XD+n5XEx87COwkDWPID7OLrncvyJY68lj5HwRHGJYS1nTLvVk+PyGj+n+KDWN + KrziwuJ96aYNr+r1YF8NyZGknuj+Y9/TBd1sNJZZiS+qWtO5M7sAnsfhi72t/qwo3iP4UVGPtfWi + hJz1qFQUNtfdBP39yVnJWcjhdK5THM9QDzlanAw4B1OK92t+dVZMFhs5+7HzKkUKwDY/LmpT5kus + 7CtrYyXBBHLlwSEWgzElW30g5Nb9ROvnISXWnubg+KIiNq/7c93nB3OAp+oxk5PmCOErUeUJqtmx + mwAJFIe/2XkJ0bl9YWubj7mOPxMSBHjz+ldYpHPLNwFCD6iS4no9U36yRR+mGLvkcNSVft59wxXl + er4S9zrM2tIkTYWS294hqQ4xHXbJs4U7EDZYXQKtn3PfvMDkUEee7B+rcKsHhJ1eTdNWP0BvV8OG + Z3vaEbPWz2BpDsAA9AYVfImj0OHOl3qFgepa5Mz0eij8+KabpAx7nGTTed9VM5p1ycQX8nS0rd9Z + SG+MMiElf6Qrz+IJStxAsTYJTk1vX+GNBNBK5C4JQc8/NE2E5bOMyAk87j25VXOMdMnxsEo+Siok + 8R3CZ/A6k+MJXlLiX++NfBJiCx8l9AF0iMMY6QM3k6R4tCnNsrEDyU1zsCuVl3R56ziD7ZjlJJRP + Cxjuj8BHn1k38PVy6JyFKc4QiEvr4eh7OvarqHgx8Jq5IurJUB3uXuYQ7pjBxJ4W9D1HxGuHAn73 + JsdK5bRpNe42WKS1w8fncaipLMUXZBtPBltHP0z54/H5RndGsLzSH51+Ox8Dl4do/NbL4XezKcJb + L0eTPPNY457+vUT98ZiToyZROoviOYJ+nwrYzQIAlsv7OaAdODc4urEl5bxzAeFzGPY4aqO8X1Y7 + 7MD4ERpyKJg0pU+5ctES6jkOD7GectJNzqEpvQuy4W84+feLjg59rmDf6ByHiyKNAc6edOSYWFrN + 34+9CiNwvBMckLdDT4WoQCZjfZLLZ9NZvpk+oRt/PpD7TdqFXcLMNlINEJKTXJ2dFTV2AG/KeZnm + wVrrJnKyC0S1meBofDVgDvZWBLvyHuD4Njl9Z6yzjl4n3ib7CSl0boa7D1exE7GNmDddBIfyQK6P + 7iQ8j0NPMU4C8Jsv4eDeAWXxw4Tfm30lWWjoIbv9PzrMbUzuT7EMKXIjF0maqZFwV95q2mtfCMsY + JAR3U5wuRqvk6Lk/Zt47zOp62ce8gnLuOWKcH9xw0b3iDTY8x56/lnTguEOF2AYU2Ku/qbNA5smD + ljV7oii71qHKveYhDOYb2b7X+Jcn6PApLwE2ysfJWc/+00eZMUTk/Hz0dMHSClEschw+hWfRWYfs + KkPY9z6xwLdx1vJqsfCZi5PXYdIAGkITQiA3V6y0/lOjWC5niB6M6m39rVFGqxM4nIwV71V4CmeL + MUVIhdqY5lEHznxguRVd4ckhV/kI+9V9AA8Qeg+xJRXXdDRv1YB+ehVXnAHY0ssG6OpKRvTeOoE1 + VLQSLG3AeQwn2WB+n6wYyqPMerdXYdGF7ksWvqJRJ04T83TyW8+FwjNw8HGr13LLtADN3/hDTFBh + wH8SNMHme+mxAbMinRas/fU3UR9uBWbhUb7R1r8eMkMSToD7yPDVepK3LA5JpytzY+EeVs0ETTfV + 1rq4sHAvsio5n269Mz79cwU9kE1eOzRHjc30/QSt6Qq990OJUzpY3wAyWEVTH95O6cydv1CO4gMh + 18rswtl0qYGyC/1MdOufRbrJGfg8jNRrnScMqV7zvEzEV0einSWla/kFPqzWIJu41eud/lcf9e2l + 0y5ejbqtnK8LX+urxV41rf0UF0cIz2zCT2LGa/3KhkULam0+T+jS5NoCxK4C4PbuiaY/QdhlRRmg + OmZa7CrhtycSvasQcvMeR7stx0+b+A2dnk1w4N2PYNMnb/hYISKK7K50ndnUhupXRPg+ekY9P5Mw + gmUsJSRmH3E/6xOTQVlVz0RvdjunNwGrQ8ubeazeiaexVrDGyN6egPj1L62akyn1gphiZxEdOlXc + IkLzgSRs3qa+X6kbZ/AMqDyBlbJhc2N3Log5KySem9T9ovmaB5+CPpNDVR5rzvm2LXS7ocX6SKR+ + CvtEAR8cmtg2dl1IWtMyIAn5E9FF+5aOm/6QvEOREDfRT+lqJSSGvZZAbN7vHqD6dXuC+54w2Gxd + Cwhjngzyj689+Wxqmx4w0f2pCcRs3S9dxHIM4OXdLcSqHeOnz3OgCoP/p+d+/gKE+ioR7fheexq2 + txh2d3LAds0d+hnS1YPZZfmQ0+MS9xNl3jY0xLQg3ncA/azQxxvaKpd5lK0msKbCwYNK/XyTq/Cc + wbJ/tz4cfONB9DYLAXVRFkChWK/Elt7ffvOfLWSTcsaFpWsO97jMHdr0vofA416TM8Nm6ByXAQnW + 06At+VMwwbDrK6wITBOu5+lUwSHrRXLIuKZfzgepQ7524ifuClJtppdHDltjDYj1XRZKrFehQuM5 + hlgVygVQSdU8wBimjsOPpPa8jAL2z08exa5yaOOWLrSZbD9B9jTVnT3FEML1+vAWdd/QP38ShDuI + 96IVp2s+vFf5G5LFk+7mi34LPZCh0o5oklgX13T4nCqIr8KD7BeHhFPwCgZ43KspPtpF0c/lPCfw + 93uUO/uefe3VGVq1H3m7l3ZNJ+90zcDG/+TReKrGyyWTw41vsDI/Mdj6M4ffQ1fiTQ/R1WPqAJZe + 1WM9Mpt6GOpQQZve8xjg+j096m8GXv2oJafcefZzIfUesAfoEiU/Kf0aF0cGjrogE+dG7Jqy/VKh + ne1+Scr7lrNev1MMz9pHIqf8k6erPcUMOJ5ePD6p/gQWFdwnlN4/YKqWQKuF/GBO0MoaC18Wd0pp + j6oG1PX1hlPvE4DJcrgA7Yq74rGb/p7rc1misOwf2PQ0s5+WvoyQQbFJ9klRgWXTN+DtTrFHcdr0 + 8/hNLsCRQE+0qsvSJSSXSs65evReV5A6s9uIkcz3AY91Z3zTP/2oesp94nt536/G68SCusse5J5G + rEOfw44B3ipQ7G54TJ1wSeDceP6fnpo/hyhDWew5+OcPuNvuzaO0HgZPyJ8lXUOP66BQzFfsXu52 + uhRcOcDNf+L9hEo6+VDo4KhzMlZ349OZNzyB2XfHeNxRL/vlzT0CqLLngZyM1tWm+fVVYDaJN+KH + a0Xpte89eDjffHzY5m19nnIR/PIPXRaWsGuiToVbvTyWLy7aOoiyD3BgA2ymThnOJy8MUOWGR6y6 + +K5R4Fn8bx6ICeSTxv/qHx9nGZ/OzBpOpPgOcJAfDnFfSVhTNZovKDk8I+85GcL/AgAA//+kXcmW + qrwWfiAG0kmSIZ30EARFnAmiAiJIEyBPfxfWGf6zO6xVVRYkO1+3kxTd8LYAmFGKn36LZ3tOWvje + TxNWNear0VMo5XC4SQcctAvVZnWXB3DOPifi77GbsTzQWWCzs0ssI0j6+XA5lkDRkwqnvvXU5lt1 + rcH5xd8DajZrRS9Cx0q63pNgN1JMV9rBAeap5+Jkm0/WlGEOJWfvYGXLLxZRU2ToWuyM1STax9RO + ahHGVxQS2VWtTHh/Ugaa/ofHv/ppf/puvV7maT6Qsp+B+wjA8A5ZfN0Laz/ci7VA35D1yNYBi2dk + VQME9IGxWbxkMN9T6kD7/NCwp/cNWAL1zSO3Hk+B+P7eK/LwsAQKxmnx4ZpiSlspmZGcMA52bk5Z + bfX7hE3h+aSYm7e28mFtoe19go/SH6rV9FsJXlgaYv9K9VggPssABVvuJB5rCEjqZcneP90e2Dst + n37BlH5/+iXIN38xb0EuuBqdhX953Zo+MISXwtQmNp3meOPrJ7C8wAjE8YH7X54DNn+H4y1PnMPn + 1UOLhUaiBtcPaG+iJv/0G7ah8qr++O5CGpGYBuPGo6dfc8CEJcVKOS8VWVylgMAw+CncH52My4Ml + gRabWtj84jqjxXV14DlzQuzugKcJO2kuYdHCY7Db27zbGwQVUC/Wx+av2Jhs84n4ULKwt3xUIHyF + PvrxVYA+lxTQpR2nH15PW70ALo3DAjmnyxFvftldrQMH4XATD1i+xBetbrcd4uZl+gRjZjjuXA/H + EP743h6Dpprfa1ijxB9lrF1OyT8/9qtvu6AtXdtIFZFdRUnwZOrZXU9C+oU+rJ/kuPHH1Mg6RFq7 + uPh2c8r+L1/og6Ce0Oa/B+Mesmitihc5PLSI/o1HLVwh/uExi29HEa5iK2LLCPhqXJtZhvHD/QQf + jCV34h9FCM31kJBCeUruYK5O+Mdf7OJN8czbgvrDW5wPKayWp3PzYJ9+4olngpDy2yZ/dGw+FZHV + aKTk651moOsdmVZBxNrK6mMJp5uTYFv+mnRw0v0EJ2TJvzwWzOIZtTBM8DN4bfkOJTt1Rpw4GcSa + bqm7HsBX+tNXan7eAxLxdittfBmIchX3y0K+LGBstsGG+1n6+Xw4q7CQcgMfzyHsyd0HJXRrciKm + kGX9qhp2CidZa4ix6eHV0Zxc2hO1wU6nIG3jhwSG96QhXnOG7noBdQLU09AQWUwUyvlwykEkTyfs + OUlHV6V6f6H21ruND5/VYoMggpH99idVQk0/lsFbgr/1pZjDB8zN/jGDufZCEnN3IV5AJ96gNjxG + 4i5iD7rgoQZwx0xWAMV3D+ahymSYd4NMfuNPbKpEsPAv/dRufpJPC1mHb591sD41ZcVx+bX+82du + nSZ0tV0UAVMajvg+7g8ur8iOIQk1HMmdkaZ4VFJGhd7VozhzMFdN/tlK4QO3dxK1jgu466R48GRe + uiAy6jMgG/5AX7jZ0ztszzF9X6cBms/Pi/z05ydcEQ+MF4mxGRbPnp7YRIbpufG351OrObWe/N96 + pq8LX1E1XFTwjtUyqPgZaZRhFw8Ku3NGjG0TKzlkngwdG5YTG/WEjtgaHYClE8Q/f7DyjySC43WN + 8Za/A/p2YA1Cl1+I2Qmm1mKEckBc/zjtzucjWMSmbuBwebwCMaGaxmXWKsOMOdzwlkeAxYdNDh7a + WSax8Gm01bXtGWZ6Vv/5ye/eOAxgy/+w334Z+uf/FZFX8U/Pz+3NFP/w3OnERiOcMDvofbs2WEnM + QyV8vdOKcrhrg0tOcMYHudnAh3aRif9cxoxMJtdC7uMdcbbVwyT3YYP2mqNh+8cnrpq3QNbgE8df + c9Fot/QQfNy6Id6Q5v3yGcoCbvyKo8J042V3+ai/PHzDw0TrIldk4O/vczN4Z+MbWQHknqZL8Ju5 + 09l+1U+gXeIEO8k4gu7trjcQFUuNg0vqZZvegXBWggY7vM2C9Zf/PI5WTMIIXMGWl63Aoe2VbHzR + DwC+VYQcmOJHbGoZfXimCH7vq3QJitcQ7r7wqz8nrNTapaK/+mlMugvmw+WQzbXN1XCWxJxcNrxf + Xm8Hwn1/0n95YcVenocVKssASXHqo3hszXjzo2FO5J3A0VHkiklSOwn9+i/u9yrOLCoZQdjyXZUu + 2Bot4PidPjEGkTNu/QgijHH9IvJHrHrS5msJxRujTGLmyjG13w/5L08rCP+Np/J6LhEfihYOP6JW + Ler4KeDek+G0KE62+SdbhHHUePjXX5vpvPCwTHoe2y9RzjhPvxYwscouEBfBo/THV26hmDja8gD6 + 6kUDaq+biRUpNrVffwzKHned0FYvdJ1GGYR77BB9y9Pplh/CvEMM9i6FUgm7InfgrjF9rLQZS9f8 + 0YZw689MkqG/AN36eWLosgt5tE/H3fSiB7ridSXqtv4X+jgYkrs+P5s/vfYbf6gwceQCa/x8d5fs + MjgAt4IZ8Pby7Ad+iAZpVryGuA7m+qU1swh2N14Ivvk8xeMkKREqrfod8J3/qWZJT2V4YBMpYPzR + jidHU4tf/hqIr0AGVNalG7gsxhTAtezj2cBNDXfCRyWy+ab9mnBvGboMq2Ns65U7Z68RwuZjmhPr + Heps2alcLT2DZ4+PigPofOa/PMjn1McG1o1M2PgEUp/D2AnNMtvynRtkvfE+0S1P3daPDCfTGYha + 3Rb3xZ+a9i//f6zVNx63+QVp2LETaMpDT9p+aOGWL06g5/p4HI5NBDP4fhM7GC2XLdREhy6P7Ymy + ZUCHJqNPlH7XGpvlLYqFK8cEwHk4+2Al/QOQzrgX0DreCiwLzUebQ43l4VXID5NdF4M7fGJrgnIC + HRw9R0GjbIFD0NxoFwhbfrv61br5o+4+5a3Qxku4W0OkhPvdBFhDyuZ1V0GoW0Yc7DKZBctwnCKw + 9femWAvOMcn7xwwvZ8/Bx9fdBZTkRIcf44aJ9cmxNhXDNMOtP/LHF+S+UxLJQ1P0Wz9VJz7fkSjE + hYh95dzEc2q1PHw6rI1VTVP6eQ7tFf7wwzneWo3TErWEH3y0gl0G7vHa1xYLLd4FxIRuEm/1FMJN + T+NLlnfZ+J0ZB156MSGpOpYZ/STUQ18LhziIZaJ1Ssqr+/NlHCaa6zPtX9I3gOXNuBEcqp7bAO4j + ooXXLRx/H0E8XJ7+uv/h7U8vs9s5SvBRdz3xU2Wl3wd2/vI1fNjyxCWN0wKwY3nDxpavC1v+D2/y + aYfdr1RSOo4e+9cPOWs72+UGlbXErT9Dfv2sucZQ/PEndllDitd0XUooPq3rRBeouSs/yiWk5YmQ + y82u+g0/JdAh9oV//V/BpkqItv5yMB7Gqt/yggkKAnOZUJLgav35sf9jRwH/3zsKbPP6Ie6n+8Rr + 7LEhTAeHBMIRitU8mLCA6HUZiVwFn2xoLJ2BLy4NiF1YZ40qI/nCGIbGxNVgBfOlwAUMpKwmvmcF + Ffu6WivIGD8jWnUNNR6MgwGfT2tHDOM5asv0UGvEN/saa9PbAux7uq4wvUj7gOvuS0/qhH7BaIc+ + vhjzDtD+U5bAQSQkzhxI/XA8hw5s9p9pWi85705B0/Pw/Cz5YC6cDgxOcbpBHHQ3kt7FMptWrXCg + Jtsstv0zActrFlTEvT4n4n1Em/LyeX+DzSddA/gRbUCKuQ+AqH4aou8aORa8PXuTnusFBEONBLB0 + 9tKgPJ1VcjCOTs/xdt1CxD1LfEuDIZuz7zBBA1KD+Pe8jOdb6auQaalIlLuI6Eo1VQdY3R/xRXI9 + OmvJwYNMFB7I/XCvs6VSvikSmAshZpd++raflBAtlpHjoAgoXSN6d6DqoYLYrn/qZ/alqUhr+ycJ + SHUBAjbeK1qcOJ2ELv1U9BI8RWhndY79SpsoRf4Vws/3bRL73vAZbatQRLtzfiNmqmm9wPXVF82U + bfDV9fSYOFgR0cjrC3GKi9DTVbzeAFiuHHZSDCs6H7IIXqseBssc4oxTnl8ZHqznhaTl7eWyO94t + 0bFiSxzvl1c/Y3o8oZnyTdDKcat90n2WwisJNeynqU65e3Zk0GifA6xLpQrY2/UawiOvFUSxFKBN + YBx0MEztmxRs886EpVgTtH0/OMA0cicwhjLS2vpB4svXiomnyjp4RJFC/CPJXDpVVvo3H46vaLFw + v+gWvPO9jE3OJNmiufIT4c5TSC6PNJs0W/tCm/DRxErKKePwvjUQjtgQpzJnUPbzvcwwbs0jkbv9 + sVqleIaoCaFMbOUjZit6MgkkrVXj4/RdAbu83w4qI28ll/r0dbm+nxOUuM6dnA/EBbRusQEnkMg4 + PrBnyn1vIgPSi7gn1xo/XTJGdwMa7jCQax2G8Zo1hQQkh7GxQVmsLVA8TdAB5YnY3JuNKUoOA3r2 + rEnw/SrSNWgqFm3rBxvpZdaozagF0jXPJKHHJxor5K0ILWovxC47rV8irtEhD9xbsBbdTqPRPDuo + 46wPSaVsV63m+Ski3AUKMbib2wuGM0doWMU8WKKeBYv+NgcYfVQBa+WpzITuILDgeamP0yuyDlSA + h+AE1SrEeJvPuLe3MxFlaAhYo12TkdC4TmgCJxkfHehr7N7MCqiYjY8Vt3CB8NhvHdBzfsM3KeH6 + 5WrIDLoK+5VY3cdxuVvwbOElqjscuDGNl6WSHcSE2A0Wdg00upfhBKMO04m5D5xG3PYJUdAYY9BM + QQTW+/VsQAc8TwHlwljjPgm4Sb0MvsSbh0dPbaYoofalGXETXnVpzi4hON8MDbtXGYHBsN0UaN/h + RoK0FfpJXFYLmpq/n1gqtoB6qmzAbf4m4fBVAI9llYHmbpfh4JgF/bA34wIx7u40CR1IepYyswVs + 6QMDRprkmHuzsAH66jTTrswbd1KKo4FsM2lw6PG8RsdIUZF2OnUT5woNICpDZFA2RRvMdXRw+b3m + twDsPJFklZVSuuEv+jaOPC3beqNm3aeSy0zddHP2rbZO416Fn0WTsMIJAKzmmWX+8F/f6a+eUHnv + QG/sLOKkOO+p7J5YqB6tEzl3uZLNrxdboph5qAHvGV3VRdxN3fZkewG/K5uKAx9lu0PkfiKyZH8o + 2cmhg7I5Sn7rgwrLZzLguzRK4rufHVivII3gU8tyrBuq5a7sOxd/9UFcQ/e1/pndZ7CbDRUb8uUF + 1vNEVeTCZiI4PfVat/f5CB6KnT2Vl+wNBOZzMNC+rAridrgCdIxsGY6mFf3hIbs3P0/0w9OCyC2l + vF/mcHeuskncFQOY6lQspWcPLCxPN9kdxlA2kBMfOpLVbpOt73U3gESQZKLLzLda2ZOSo0vL3IiW + ema2qqLnQVnP99j+jIo70FRIpSMH74EoZbv+9/vQZZYviSbx7VKmOCaIRhPCyi436UIUJUUnOkSk + qKJjPK873UPcPcqD18WrspmTvn/1hvPZkjPe0986OuqiRjyP2QP6FqUUmueQBqU7FT0339gSPa/U + D7r7u9n426lh1kk11o26oYuSqif0vbcxTtL9BFi3eapovpjaxEnLIePrrwvhhr/4ARW5599r1aIf + v/ud62isrXchandsQuKdNNDhdEU8rFXnS4L7cHbpTh68H/7iSweSiqcuxyJ2Jfy2vu5g7t+vGk3g + qpCs9pJ+YQtJh7tPfcbp1Js920/2doeSXZHC5SJt/YbWCV16N8G2S2hGlZqK6PAyD0Q/PLtY0C+S + DrWkqElQ+lrP3u88hO9smgmeT9dtvK4qgsqJJWF3WcGK8FeCn0i+kXwniu46m4MHivheB2BnNNXC + kf12oCE08fEuIrAWr+eELnI+4ZztSbyqpH4i2ukTserKq9hPOoe/r//qeXm1bgRbzWCJ9Zv/DR8Q + q9QZVuugzybCpwNs3meRROmjqtb6lQa/9UW8qaxoK2Fq/fCYZIqyoysf4gL4z/UeAKn+gAny2oqi + 4OUQw2uteLrdewuNB/mCz3fP1Va/8CzYIK4OmC6DgJDDJ0HsmT3i8Grm/WIYUgEHw9kTPc0ld2w/ + 6wrldCDE6IaTtmZT+UQibXZE72Yf/PAL9f3rSMzduo/nxpxFFK6zhe97hmSr2N1y2BmeRa6K3mWU + vdURdPaP27TrOuLOwkkJQKUYIbEcpFCOzDaEqZKbxIKyC35/D0qfdQwYyT/S+UBCD2zjT07gsIDZ + k7MAve/7gRynruy5Tnkz8NOmLsHKTQKDWTJP2F7zNymk6ZktvB3WME8FjSjZVLrz5+qdAOLeVbCk + xyX7zT/QzycVR04r9/PnqicgjoVs2jGoBHNYXCDscgKwWZ8cl+5IOiEve/nY5bV9Rm18Z6AhFjhY + tufZ5mOGz543px0ncf0MpWMDi4czBPzkq/0yPpIvFNV3Q3BnPDV6ypgZJvAoEs1I2GqdzdD5G4+t + fqu/38eoFInOPbiKLp9Jl6pzZmKPNq9s3UtXHpRiU5HDbAGwzWcOq/PVJMfITrQF3T7N33x65BCB + VVwkC9hZd9/4b1dRt20h/NrpnZzTr5et7XSvoaU7x0n6Go94OJDUkxqnDoibCGu2uKPKImTU2nSX + XkU2HrOVAY/g4BJ5YnZxezyHFhqz1JqWi0+r6fLaB/BXn4eTfaf9PagLdDAe94DKs5jNlBEdadPL + 2FY+aUbgIUggL8ICX45Xu+exsIvALapuwS7yCKX97ATwdZubP31F9eebBZpsUHLgvGs89JMd7j9J + FBJj46PpEu5Z2HHOB6tXda0oB3sZXkmkEbvjh344XV8zGrOHPe0nydFmsOxF4DL0G6xXde3nRLe2 + JuBhT5RN/61iF+XgvDcronBCBha8WDdotK+QHI53LWbNmzrD09Klf/zWdsDVYXvwCLY73qumCLQr + fPOnlIRVYGYcFK0vvB/qhmRT/Mqm0Pq2cBs/bHJfJp7G0yRDf392cFBFx4xLuXMNDbtZiPOBWsUW + jVr/1X+mlEG83J2oQbM6e+QsredKwGiBv5+fVnrTAM8zlIE/f+e63y6bn5adSp1xtCd2ioaKpnuS + S1dDSMmhOKaUruK7gLn+9MjJbfWMuxoWA8xgr2Arm02XbjkGTB63mAQgemxn3JH1mz9yw+jQz/p5 + cZA3Nua0+3qM+/MzyHfuA4467gK4B+cb8JrJPlG5elfROZkGuLrhQjIqjXSOrfIGt3rFP/1LnQv6 + QicUR/K4rINGZLUz/vhclZ+HasWCEEpXYUvUSkYHdE6aCZo76YZtmreAIv/IQKZOZXzu7sd+GMOT + AweFVydAU+IOnzBt4E0ELlak9JutlXXw4OO7J8STHT1ehTTTweMLCLbJfa/Ror000jaeWImsA6Cy + a60wHs4mOch9EC+J6qbQGiYm4OGBo5NtAQtcDS7Faob0nrX1VwQf7UCxfNxrGddX9QAi9Oiw5+5d + MKqSbYBhlXKiGl1Ieb0vCuh4LR9Im55bXI5pwOPLTz/+p7Ptn2XwfDo7fODcTuujRffQPBZsMCdI + Bnxwn3VYOEgIdnPcucv4KL4/fiDGPRv76dSQG1jyJCJmJxnZeG7TAOqr1ZDjhUTxAKVrA8g3ehB8 + AF224eEAvevpiNPd4+7OZwAbdC+MCPtej6pZON0jyAmijmMOl6APjeMAtvrHh+rUuEP2Db8oseWS + uCzj9vPKhzk6voYPvknn7Qz6EkoonaIvOUjY6JdjffvCTHuzAXOpun6VdUmFiCtLot1DHXBjUkrI + PgQ9Vo+c3bMM/2jg2VJs7BjptaLWeHHgmZc+ASR6WW3+ZAD9J7gRg3KPeI2oYsD2+mo2fsfx/Pk+ + ViCnyzwhLg97IRjWGvmlmOJTPYQxT0/nEt1E3sF+3bnxwLx1B9Z6+MY4PWfxnINU/fED9u+7JV5X + 6XsC29fk8NPTepGygCnkAFsOeoFJytMvhIeun4T65GjU27cn8C7dilhp1GiDStcETl5RYnu6Zv3s + CSAHs/w9YiOVdtpwbKoGfo/IDcT7fu0nwtcrFAaHYlzXr7j3XFNC4PQ5YpfdAboizDCQs+UG+xch + 0dj7nWEglocz1jB4VnS0uwTAQ98TRQLXmMXwoP/05DRPt6c2l+Dz/fnxoEz2H5dWh2cA+r4Isdny + FhWaaKxhWZ9GLE+IaPOZniTkXa8R8Wp0AexvfMsophP7jSEYZ7szfn4E28b3UAnO85wA33C4SSr3 + STxUGkhAeDvngdABvq/GSJERA5kRaxer69fYaz2Ig+aKXfn+7IenpfxbfyM0nEqI9r0IkdHpk1QX + Zb/cnVsD2ZthBqBbyn65olcAFf45BHy13bE1n64DTFlyx7hW1X6x1fqGLFVNAvGeVBV5740ccsZu + wMpMmWz8rSc+6ifs3Nm2n1MhKpCzv10x9q01Hjd/L4WJ+sZq0T3cVcrrAVUIsdjtFrXifHwf4F1c + AQkMzNFZZY0UOZ/LtqMrg3TzMyqQFy/Hxh46sVAOig5r4/EKaPfqM4rOSwvrQYj8ftcesh/e//R2 + 0KWlSJe+qid41CUtmP2UpYRjL+nveScW2qQaTleO/eERkSUndfuSfc5iU/A6NmpDADOGvg7XR/n5 + +TN36fv59POHf/O9Su41hCn7zbFbe3xPjW2H+an33sROyxRQoeh46LaJiM2LnLgcPcQqLO1Wx2cl + QNl6Fm4T1DOBw/b93bhzMfEn4HyiAsvl0PZfNkcBNEKtDqQPomDIqJ6iObtKWJ9vH7BioQ9gsZ9P + BEN1BuugTa20zQ9R79XL5b8vwsP5IqtBKt1INsbYD+DxXszbVqxjtj50s4XyqDT/8BirmQi4zHqR + wEuelCq57MAtT9vq893PY5g70j3X0i3vKumEhV0It3yMuBQULnll9gQ1Wafk6B/EntwTUYfCVxZx + vEsDdz40cwlFbgFEk+JnPO/NOEd8mK8kSiQha5/WuYCWKie4ANF2f497lWHL6v7mZ+tsnG/wKb1u + a4NVp332w69eQTJ65DK/w77XcHQDL+6OieehrlrQkfKoQUKND0Rntjw4q+GrOp+w50q5xhJJamDV + zyK5A3UAYxjHoSTgE8YeN99d+suHzod9gHHJ1GBint/oV2/EPYZvsJ4aksLlwLyw5sIZzFbvWH/+ + 6UDfQ78yncLAmloa8TP+ABbqrxPc8qKJcbnIXT16rCG6iRLZ8Coj23ijzwkn2KuRQL8PkPHw5+8P + DrWzX34ADvnqE7d2m3jYM2CCOnspsfGp2moxn+9aMncoI3oUBz3PjbCBfTCNU3yx7GqBMptD9DqP + G16DeJbSiAdvMY+JTZlPRfb26YasJPKmnx/sr84kwcMkWvhUHbSKePs2gcJgUXLfvTM6B3S8QaeY + l1/+Hv/8DqR9/MVq2QZgsTo/hO5RNEhSPlx3UuUe7s2deCOxI1Tu8s0OMtzyInw43quYz6ayBMuz + c4irKA+wTu/xJl0zM8AyfYxgZjt+hd7BzQkuc0PjrKVmoJWmJr7PKdWmfv0EMDQODdE9R8tmJg9T + GBpmEwjeeXC70yVlYVTv0MSNzFNbzvuqhRufEct7F+DnV7iceCy2lPRM11UrLHgv9ChYDiLupypM + eTikIRsA44DiNbGmAObGaGElPS4xdVskg4UFMvG2O4bHz4M40tvu+F89VERIEg+0l9OXONNnpER2 + 5RXckKtgr4Wfap7dVf7l08TbiaLWfxMhgP3ZeBAnOjzp9FhbA9zLzCGBy60avTqNBOiueExQOvY9 + ZY9iCSPHi0l4eZINPxUZhc8xID7lKjA1J6YEq2RhrNBR1ti34JeQqe9KwG759fIMQgvV1NexVT0f + 2vIeZB5VcewFoHzbVOD6/guvd9/G5qwdAeuSDw+YdhE3f+H1y+tRNXDzJ9iTh0obduZDhRvfT1Qm + rbt2uxz+8W1imXva20zyhB6rSlsevVQdDYwZrm/xirPoVMVruXvn8GqheHpt+d3Eh2YBjhxzn6C7 + d+liPq8lzJdkJr/nnTd9Bb9SLuCHlNXuKPmlB6tPoUzgSFmwemAJEZDPGbY9umjjJfsWUGNgSAoi + W3Rmxp4H08dwiHOsSpeWg23Ae10dtry/pmPn+C28oCAkZrJ707lonAY23mDj5Dgc6BI8FRnOpJun + fXfyKS0ePQtOV+M7CalW9ev0fqfox18vA93jWf94DXwk3Z6EXvzRWrNkSpDYaonlCgtVJ1TuBJ6H + PJno1Oy1vjvsWHgOP0IgbvVJj5erAfdF0ASMnzNgzl4zhExTQ6IXahITm3FyiOUlCQS2fsazW8gn + uIry6S8f7Hh5ltB8OWhEKSGIB+O4c/78H76EfsbP4QMCoN6TKXBmPeOIct+2uLYuzksu75cheEQg + jrkMBx104w7KsIDx1/ewXtuvbF7eowNd/4sD0WFWbV4mnQUjbyzTlk+7S6JqKfQWcUdSlpZgFPtd + Di4oPgaib/gxS9PdTbpn8IIxy33o7/nRWDF8IMhNnW39g0EKRK8l+eVQ98vzMOdAerfrXz9j0vuk + gOC7Uzd8DsHCzX4pRbUIse82uFqZBQ1SaX91rLFjrQ2gmyLpXH6XgN6PnLs4cb+CX96/+e1s2c4a + gBPJs0mY8rdGS7ad4Ukd9hMF1yIeDdMo//Ts7pcfNlqlw2w4PLFl5DTe9CeExoMpic9eSrB6+lEG + cA4ibMoftl+TnZTC3bm4EefAOdUa63nzy0fwddMzKze2T8nU8B67x/X3vmIOy+hIcVASNeMAaRnY + FKweLL5uZSvHyx5yYrUNdhITb/kIqSFRVkoORiTRPppF65eXTOCSPsFoLQOE8zL1ROtKUM3L+2rA + In7U21nhA2C/d1sEt+h1I65czHQ9lsqAtvGbTMN7VvOO156//IcoBkLZlO9eEvw2WPnph2rhFZ35 + 6U+sGLcpHlPOLoGW5DUOP3OjEc/F4s/vYc2Xg+qn91CeKTty4FzbXUTIs7/+F3EtP+3p7/mfbMr9 + m99rACcYMzcFO8bFjmenyFNoXh4E65VBwfceohSyl21HOWdIVXuVjfDXPyHKTItsFsc2/MtHN78A + lip6zcDFsxOIsJLoeHrMJdJ8RsCua337bXx0ELip/usnVezteoxQAmORmMn9o61K8bbgrqNHok6J + kdF0/8nh1r/Y5jP9yzchYcoz+fmRIdc1Fi3P2sZHmV1dMihKK9UDF+GDB09gSJvMgOhu8lO35cGj + yLo6nECmTNI9ssH4638R5pNMxCjSeL1byheyF8bb/N4u3vzRDIWvKgbL4fzsF1W6W+DHhx/3OGVL + rkgSNNxpCJj68ojXoBFEmFStgw+K77v8exUmGJ93CfENmW75PGNBAWchVivHrwTZzVloUX0mSnn1 + 4kWLYQTXY1uRJFloNcyncYXW7aNNU5flYGnnqADr490Sa+rNamyQHKCNL0h0qCuN8gd1Bv/HjgLh + v3cU5GPvBUwJJG2tLkkK5yjgA1b0v3SJNWa7tSfrCWa/xB1nfzFQHFzOE3f4qJT6oVqiqzViolju + 7K6zVgdwubAJOUt2oy2ffcTAjp2WgFFNu+LZncxD6bSLp2Wn+HR5TxpENT+NE4XfEAg3GEbw8khG + rH9p1M+qWVowbjGP9Sse3dXc9ujyzT0k7tw0PbXF2wyrIs6Jp1fbLcGt4EDAaFesRuwn67AfynAJ + 9gZ5FNcxXi63k4N20ekVgH3aZTR5rxG6JNeN7wqr4k4tXOGVUU9YJdXiLszu0ICRCl9iyAug67Fn + eOkcWznReM/q6Xlb0WxVdsQyVQqWUlI8dHl0FtY51s74VthPMJ3YiWRcrFbs+Rqp0GqLkTh3412t + aoJOIEwOHb7GuzeYM5hOUM3AnphXbdeT5iHlyHr4KrmtbNrPvciGKG8kYeor06xY/aTyyNdkl2Sv + TM14dZ820H4vLHFjWGVCuigR2snuJ2DmsK+63/spE/Cxb4nfeDmyq4zCMw2w6mWGy/v7wwzT81vH + +qOdMqq8jRvSQ8PBqtZpLjfeqxQtUmsQjU5yxu3MfQQgbOxpyS1Bo7crp0LpXpskxWzSs4e9kqOB + Dywii+DtCvreVtGtPCzYtjXepU/mkKJd9IXkIMW0Wub+PMOYtlkgPKI4Fi7OzKBXf+JwsXvy2eqU + nxlEioqJZ5yu/dRYaJXkl1ROvNvWgD9/shLWfBpNkpyrPXv18xl+zrcTyY3TvprGOHnCrvRzoke8 + W42f8yRDXmTexLSnka6XgGv2EiNQLC87zl2l6hrC2IAOiYOLEs8E3xLwET2dJOEj6IVQTgP0soIv + VopI17gy3bVQXquUaMHlFa+8+6qRYec99o2b6pL87alwGy+cPVQZgER7qHDHWUdyftHCZQ9S7CAH + NQFJ4ZFmy+nTG7CORYSzr3/Q2PBmRZALPYmkB++lzYe9UiBvFo7EPSnfeE7bQpegNH4x1v2oX5e2 + 5KHqMC1RG/6srVOuWqjohCIYefiOKcXcCb3Y+omTFzPGC6RMA3F5asm5Qr0mZGXbwiDiPxgXBeuu + 3PvqwV7YUayak025rjQmxOTpm+TGqsR8HuATfBwijbjOsuvn17NzYN8MJjYpvmX02Lki7MqXEPBL + /HD5/jBY4JCoB2I+IhovwDvV0ODYF75N395d5BmWMM17FpsDv9fGfvrckHVAKQ6uO5vyabpKSKtV + gq2vs3NXco9ZVJppiLOOoGzJVpeHY6h3086KrhnbizAExvtpBGhy1Ip7JXkE33S8Yp0kL22BZzmA + dGzGSTgYabU2Ds4h5fmUHLyD6658Z0RQblGEnSGZq+UVzxK01b6blgPM3bmO5BKVjwNPbPXL9nOk + sjKs7t8G62fHyHpmSgd4dnwvYIOAzyYzimTUfdmQqMzExeQrfB1Is4wGYnul7vIc2xJkFz3D8VLT + eLiSWUVc59hECUXPZU+BpkKA0ipYpS6oWH0+84B71NrE7wG7zS9KYPSVCL6qT1NbTcJMkEX6hIOX + /Kw69t2u8GVxTyKfbykQZIZRgfLh7wSPnRiPwDs1KFuOF2x+0xlMiXfzQLbEF4yPeq7NpkElyMq3 + AutBfHdZ1fw6MEtWmchvy+1XGz5S0KzSzv8Iq0UXX1VkaMJrtO2A0lzqFJWDGiOYsKK0irtEmXpD + 1b1tMP4YXcxLuyGULsZBIz72dPql6Vwi9JRnUuSpGwtXOnxh5j/P5AZebE+lq55CSJMHVsqXmE2x + +HjCBPMD1ukzqKg/fgJJcq8+dvz7tafP3cOA4YexiNwwRTbNn6sD73KBsHb4vjMebWceua6oCeYT + Nh44FqZQdVof36CuxcKinVpk2IuBi76wKvrcXQwo4iohwc2+ZJTlDy0g6sDhi3uj2orInoH6c5RJ + OHKfqm31fQPOw/AisWX5/crmYw1Pc28Gg6twfYsqx5Eeh6YIhk9zpPNbDFkIQ++EcXFq+vUzP2YY + yN1IboWw9LQ9Hnm04S+OAiJXlFfyASbX20oOUTHES3OcIVpet3yqlcsAFvPhRFDST3ccRfvA5axn + BuFV+T4mM/ky7swGtY5imshEOT9fGS9PSoN84fAhQcnTuH2LKS+pzDXAqZ2dszXZdmCd5tOAjx59 + Z5wKtRKd+egT3FZW7BdF2rNQTKmCbfwq3EWRFhb98E2VHorG7ZVDjaTzcSKeH3ZV/SDKispvIBND + k0m/Zh8GQoGRnvjOrmnMWt+WRU+7k3A4zk+wqEwjwuF2t8gjDjp3AbPyRDO8LviKX4y7tIA5CdP9 + Skiy4Q/VpWhAz9Oq40Ml6hlnf68hPNviQhJuaSjLYW6G0a0+kShiToBl3u8n3A2+Qn7jQxt9cVDA + tZe/v0evaZ/Alsm3HQXF6lK5ghMcS+kaMH2baLPfPkUUfqCFT9lhBxZWfwRwx+UDjnjlGlNya0UU + tz5P9PohanT8xh4KvVdF7Pe419qy0kuYyK41sfXZ6ee8fBloDMkD2w/H0Vb9KbWwwIlJrkdp179f + ySlCG58R033s6cRcTjJaXpNAzOUkU1Z5yjo0OP5FgvcJVB0OXhN6MnA3sRzbbfpAktEPj3O9PcXr + npug5I+v19TQ++DWaHd2kHYrOuynfu6uaSpJcFYamTh318sogPsEtqr+JlZVdvEc9F7405PTbvUM + wD+YHMKvDzNsmmcvW979s0bNGto41IZ3vzLAgvBlCc/pueEJK8NYh7UWmQHsuDcgpZ3nsHxFC7Gm + lY2XfvqkcNN32Gjzc7XGufeE9Wh9JtFOgmrGnNLAMtUMoj0Pp36ZCmQgp5ZtcrG7j8sbR+sEv0XE + E79fXu4sLeWMpFEsyYXIhst7XDr88JUkL8bPaBvKFry9lgQHqmn36+2d1QDjp4CL1+GTTUA1JxjT + b4b97sO6sx3uPRjY4Qufrth3h+eFK9EbnnxclIvXc2m+K+FaGAPWt/qYh7sEIfdoNOIfv77L/z5v + hJY2DeWeo92dGUpYhPF1QhufrxENZ/TTf7qkof6rV4kKCiin2Aw93iVtaFnAnm7txs+PitZn5ABx + 3SFi1P4rm939IIL8ZJrkEI7bfxl6jBMIBv1I0qk16LLywwrbevsvKZn1BtSwfAts/Q/iXcSdNqPd + 3YKutD+T68NxXL5+OjJMcHmczIG/ugsf7kSw+Q2CrVlx2d/PCxw6EnfTQ7Q7GxJsOa4h7ofVqjl1 + 9imElapPayer8VKCmwQFbnecEPZq8C4lJfjDl116WMFCi4CHHTQh9tlVzLY7ew3YpWjB93x2eoFL + nwx0j+dwqs9O80/vZIXt4uyVlfEaXzsHHOYqJ+5gMWAWlbsDj+oiBeLdttzhsN0qWjuJgFWpm6p5 + 71gzZG8hs9WPqS0XftvKAooPUbQipsvDeolgSuSaYImxe+GR9Cns58ifJPxp+rUxB11aJ1JOG3/3 + qymEXxhxhz54iWMcCyeeCSGIS43YgBjZ0kpDC0D81KZFKh7xbIdLANG+5kgsILafjcJyoKMImFjf + 6ulSZgoHRE9nDbubfhzc3Ar27ysvYuw0MVh++veHR4boWDE3nHYrYI/aacOHJ9gOLBrIybITUQs9 + irnTp9fhdyH3YO0OtvvDX+AeL+GU4VPgLp0WntCmdwIWSg2lKRYmYOJbQ7z1Y1XLjNUV2AIzEYMp + VCD88HKdpTv2ixdfrcfg5kCDv1/IlbE+gJajkqL98hy39TZmdM6kBnqSAcjh+qjcdeSWGb1YEeAb + 2uWAd9pZRS/OTyZ2m995+swhimrrRor8vmqr/fRSeGrmJkCV/taW19lpoH5ZZnJKwBoP6CUWaKsP + 4s130I9N7Hyhr50aEpniJe6z8vmF17rAwVsLXtnqYjkF/i6VcdFXJBuP13mCTacWwX7jGxJ97w3c + 8JE4nC+584582X3N3yLiy26QkZiNRNi0k4Z1+j7Hi2QvHpzx+MS6K2X96g5vA2x4RzQq+nTRh6MH + o+Ppi436MtHxx3dFKvrYTlIzE6TLOuzzu5pg9/3l+1WJ5RB2r72CDwLXx6Q7B+IefTJANM8/xTQO + RwaePOmADW4xKJnvXrg/3YMnMVRe1bijcL6BAp9MXKhqCciqNyd0uj9BINxfn2y9veMaHoW5xiob + jtksNvEK/VzqJ77NuX5QnpYOnPq7Iwcp8Oiwb3cOzGerJD//s/CrnYPLYW2J97I6QJF904GiDxFO + TOfuEsbHDuKM0xWrv/t5vs+xAJv/wQZND/ECk6skHZLkiYM01itOuegS8rWkIXLDhoADs/38zR/O + 08yn00+/vGHbEq1uK3dZb9cVtpzQBHN32YHl976evvCT2++djHfKzwpvpsgRtZPLbPkOngrzHWts + +kOMVyZxkl99Tww4qu6GFxZkNAcQS6gFjYLXrIIDqR0c5olFf3pDWu/r8Ze3uDQK1BrFl+iNMfvF + GodgGaD0HHbYR3Xmji7XhiBcymCim58k+5VVwddnMuxhA8brrZw9uOvFJmAfbRAvtdFBYPCPSwBy + kVKqOL6x3fJ9GsG+5MHkYvkG35VekcvDH/qRFgYrveWI/vSXyxafDwtu3+EdRN5zoINvHL6wlJ4Z + DkRkVutrDCEs2x4Gaxns6ORx4YQMx3zhA9Gsil4v1y+c++I5jXPrUPZG3wY83UuA/bmqNcrMUJcq + 3XgR1Xt6lL+fXyFSJ51i5bBO1YJuAQPqGxqn5fy2XPb4MGV4ZIQTdtW7XnEMAiLc8g6cCreuGiNZ + MZCXwJno9Avd+ZlU/F++ouhGl62v6fsFP7z2J6fczuTsPBCSS0xMxnUy8tMn1+h4/vnVihxecIZo + 33BY1pYhoz14eLAeeG+aL/WbEq+TLNgcpBgfsjNHl33VsnB7/6A95Z671Cb4QtzpiDgJzrMl4c4F + LCWWD1j6zd0FB90AH15Cg8s3nWl3vIoTFLgvj02uOru98N7OxDmWiXM/tPtFuMgOFLL5jB3h8nHp + I6luCKCBmVbnmILlu91hkx18iK17MIF2+sYtquOmnPr3s9OW4LlLodabD+L5rkq59WrpyC50nzh6 + E2qU3J4SMngLTu973dFZhpn+0yfTMKcnMEdNC6UuTQAOjpEPeJFqDWqZmcNqswQxz8m3BjzfqYQv + 37tQzdHhkkLXtE4kCJhYG5aMyr88CNsGAdm01Q965i7GdjqoLlcfwhBt+oXg7uGAoe1ED2js2fm3 + fnB2ff70XwDjWte+JuEHKH0sn5hNUMUDZNwCXl68hn2Lar3wkMITrJVriz3VGX78sCLlw97x6UvX + fnzFsyjtL18PB8XwBgTZNwNeCKqwyrpNNYQi36LGjwtsqu2cjdeG5QHnZ3bAbvkjHc0dA5RPqf7N + Lx8emhJWAlfiIGCo24rqxMP9wlkTX18mQKvI0v8+X4fc013NE5eC86hCYqqjoC34CycAv1dMbH1v + 9Uv7qBLYtIOGD01G4zlL+xlCc2uctl7lThqgDOQeUjH99MiWjzzhQXvO+LLV86Z/bzCoFpEobPWm + K9Y0C7mvvidG+4LZtzEHA6jjnOLjMsBq/ry8bUdh0WN8uaOY1GKaAiFbz9gIFCPjFlZJUXLVLyTa + 8p5eNlIVFB1XENmQtxNWZiFBafIQvk1vPabH5vlEWx4bUMVMqFCO9g3ejtaTpPjbaf0P3zc9HCBf + vQASKi8JvTFzCcQ3cMByh7YDa6ePiDwHtkvQe9Shk+l77IAmy4irbh1Z5doGDF8brvAVAQ+zZJax + Y8eeO2x+BFAErIAjFsko4b4e/PndUxAj99sbiIdH9zbhQ4Vcd74l1g3m2jyQXK/Gns7FmQFbvRPL + ZzQ656i8QaCoEz4sl2q7ijSVf+uDnLVAyQSc98Hv+8RbBxz/6cH7rRcDuOHz/ILQAZCiM7FOr4iu + X/1WwDvk12lPzUUbtvGXHt6J4vjByy77PN8cEKALItbBU7StnhP0OIQa2fg1JmubRVBlsgAHfDdQ + grPj8y9v8zSQulte/k+/evJ1+zwpnX98izXxWcU8fiQWdOp2N4nCrevJDXUMdM3FwbctL+We47OE + 094hxH+XYzxvzwMT+ET4Oj0AHZTXdYWSq69BrhcNWDh3b8HpMNhYPp9Xt5GbTwsPeyec0JNb4j+9 + FX+NM7E+C+pHBEtvf1cOFOOuPlbUfQXP/7FwLjurwlAYfSAHgigtQ+53WxDkx5mgICgqCC3t05+g + Z05CSMO397dWAG6OwhljbScBJoXgAJ/GTZyOzuXYbki1RuB7/2Ufamew7yJ45cWdIKGqwLxV8hJU + ldsSR3wB/uU94D34A3b1rV28aW/aoL3GJfaAsDfYQWhK8GioSyrTHfhM9ztTzjssk4WXtjwV7/et + /qjWxFr8hti7fybYMa8lHt0qBROKRIbPzvB/fZzT6wXCPDi7E33/VWAs8zT85u20V7Wa04p4DEpe + rGKrix9gVhkKITMlHUlRmBnES8cNvMWMYgOVriHVdT0ppX/TiLn0+82jGc8yON85cfo8AvQ+FQ18 + XhwZrZMEA/oy507Jg6md6ObpF3zZ3yA9JR32zk3K54i/UqBcRPHLT5b5JlC4IXmF3cN+a4xRvLfB + WuTO9MmcxJj+WN9AvzilCNJL0S59kimvT1wTtNOnYryuVyHUjkOL/WRODb4+yhS+m1ZCYirtwW9e + Ls+Dtmn5MVhkTQ38Y+WO5Euek+/1Gtm/UDd780DS06mDbu4fsJpoUjF2MV2BcE8ssuS3Qe9+10HP + bFysy/cnX7r3Biw8Gq3dw654L+cPu0y6E02W1EJY+DeUpfJF/E8hJZyjoYff/hWPl1fCmhSoIIhV + 8ec/iDMaDA7SO8fagISCWY6hKmqeldiOqqnlC9+Hl419QfIr9gC9uHOp/GXFlbgLn//2afjlYU4U + Q/6dz/Dmhj2O6jpLWDAkZwWddn+I+c6QjKtbLSsYhyXxM18c5seHLf+gjF8TSKBRbLLXiODgrx0c + rl/rgcDW+4DkL3pMw5tcEn4s4ArWKTVxOsYy4EjUfOV7fvSsTwbTSBLJb1eviTXfIkBNehR+eZV5 + 7WogC38HXokntCbb0Fj4ZQ+v3PKwNZe9QfmDpop73T4JJttPwO7K9AGOzRnx9t19IKFthTBO+xMJ + RbUPOHt/VmDJd+x93t6Pb8gfb3NAUr47GEz10x6uXVogtvQD3rg6hdy/NljbpDOg/OnrwDv6K6Qk + xSmY+OaIILi7u2//5LNruhCOzfY0yenJG2iKDBUKzgVNt+vhHvBDSGXYVWU+jTi8c3oKAxOakemT + QzFQwAZb3ICuuuYYPXwU/PjTaNct0UojSjjZ7juwvF84sfpHwoTz8oXB4nPw+M6LMRZkHfgaOiHR + yRFgboZtaKJ9P730rZ1cI2uqv34CSVi5tct+ACGXXE6SiOqgbu25hs9tXZEAfFpAtab97/MOYdEZ + Pz4oqKZBslX7Hhbf6oJYKj1iodOjHe25gnC1bih2z7RrP47VIIDOmE3PrL8GlHwkVd4beoD1EWct + //oDWrgWdohqGzwwQQMSNFBsX7JtMJlNmML6aFcYCw83Ea3D7a7EOpeJlbJnwMH5asK50Q54v4GP + gv6pggktirWfX+mj/uEDFbEMe8v8mo/zK4dxYCZ48WEtU9glhQ1n9tcX/wMAAP//pF1Ll7IwEv1B + LOSdZImAyDsIiLgDRARElEeA/Po59DfL2c2yT2t3IKlbt25VqpzBEsPlH79TGfovP1Ih5g0HrJP8 + DJa0T3Q4xP6263VcQ9VJViEpAhkf69sP0NSLYzDyrulzmv+KhL94leE/u15pz9p2gFkPhXeSkzPF + cjQapWLCMOti7Oi8oa17PI72fA1RcpppwyF+6ejP/i/H/uWsK5cb8NBcNmwjOXHo6QU36HV2Mrfh + 2gLiTcSFez4H++BSO9v9oPn/3o/+Vbth3PkxFEG3/st3tXz6TSHSL8sMwd3Jt3GAJdj1K/Ivn/2X + 35X87IW1dvrSMeDzANpt3P7T47dntYR7wzORxHs8Q//iAUGtBnyWDa1hb+1X+bMHYkiAzX+PZGNQ + Vp/X3X9tzXYy4xnMBOi+wAQXZ7mTRYGtHQvkOETAGYNMCRHSo2Ve+LppqC5Zyv/To0D83xUFBgca + 4qhXg66n9d1BzX73vsgkIp0GN/PhtqgqcdYxyvvD9uIRWPkJ2w+q5MugdzzKFHIiCjMrDtd+RhPa + qzOR0+s2UwrRSYTUex196KS3hmeUypAf5587t9zB0IYzvwZofog6MbWjDrin/BohTKLLzD5Hjy4G + vhbQSbUKHxP16awHceogicczKcmlcEhoiiy0x+Hm03fZOGN+63wAcH3AjjXKw7KCxAbm86SRczuP + dPPss4ru0lrhU7UAp6/89gdWNMbEPL9kjd5GP4TUUkainF6Fs72njwwFPeTJKfr52tqX6w+9QvaN + /bGqNAKRJ8Nf/nv7KAsasKiMFYAAPmyc+3LtCE8zkKGq0Y4o8aNqViCFG+o+ieLPOPlGywk1Jkwq + kcPHD7YjOtSPGQJduxI18g263eyTi3K/Kkiivk45d4h/ENbb5+V/JPqIhM/51EGJj2ZyOl3RQPB0 + 7+Aaxq4vxeojZzua/VBY9MrcKfY+Z7XHozyERY8jM3Ybtj+5EF79nzgLF3nvosGXC1gIM2G9Dd+D + 0B1MHwmD+cURpGW+ooeRIu91fmJ82J7OdlSdGurrrM3cx/hQ2h1MF3wnziOPi1rkwlGxIBQPz4EY + lnh3uNF1bIRIvXd0uR4HTlC9GMrotBDzJx+cr92PCjTXovbhDYWULSukwpsWRDgoCj3npWkMIINC + a17PnKWtt0RdYDlIDxKaqQ448UE7lNeHI9ZZQQFsji88aBevI48B6fn2nFsT8PaBEgzCL12m0xKj + AeQvYtcR18xD+IBQ7SwdFw2Q8/XYJwsUpzIhunRLHDYyFh8qpI6JcYc12FTxXCIRpW+cBR2nbb4l + QHij9kq0JX5HS/uqUsSi3iDFayCARgzc4BkHCb4e0TSw1fYJ4VoHOXkwdpazzWmzkd30E8nStwjo + /TxV8jzx+5zL616jpjc+jGgWkrx/29ES/WQWgEP+mA+nlo02/J5dOBNwxxZUE20ht7pDgjGfiFHR + V5Qz7K+Uv/mdmVlb+Q7EZj4V8mg9Y5M92w3/a7sE/T76k1gd82r28ysi0avOPphO+52v5qijzioF + oo4S0TbZCjvUfB8xeeoF1oQfEykocutyXgzLdQS7vbAgL8vBn+96l9NhtHt4QkqGcZDxw5Y9UhVG + CwiJzxM/4pI+N6HehRa+Hn4G4CkPRTgT6Y5jx5zBGCLNR+doG7GKsaYJQ32dEUFfhRhSojuUZ1QT + sd1Y73eIVMDfCqNGUhvcsf6C6SD0qcDDEfxMX7oHLV1X7dgh9kDcedMlPiJhJtt/9ucPRvxrqH9p + YnTGYULw9Wjnwu2ydKio6TwLKsM0mxs7CnCPcYOVPnOA8BvvM7SJfSPGKl7AqlZ2CvQ+Kv3N+A7N + Nh/4Ekp6YhPtXWoODUdQwP155jW9mxGx2kqG7lli9ukZ/sAHx7hGolef8ZNrAkAwNzHw3/OG5TII + RbYkyO4tFatVHFH2801+8NglN2xKfDOMt9pMoEZKA1/xYOe0RZ8f1PpyxUpiCPnKdbMuG9dDjC13 + sAY2vCstSitokYKmS04OkGywm6Tc5ybU5ev92feQxeyMj/X5pNF0EHwYZ8EJW+n34rBK2hnwfn5Q + X+qY47CVYm9DJr0PxOCf72ERKt2F9Vt/+VO5SM5a9fcEiSh7Y/05emCuxLsBPw8qEdXuccQLljjD + x8lyiSf9Ttp40AcfNqzkk7TODU0g54z9Z89q+ZabEXn+T05uso3tSnO07RyLLqyZszOvVltH00M7 + uUh8MSM2F7MDw1E5Mkg2PEQ0GLqUP8eLL6fKd8XWiR0cXr50zD/8wp99jic+Nu3f+rBnNk20lipv + IunC2fjcGwVdOBh0ewXLRM5OyzvLesvr/c7eDz/KRdLoGJwS9O+8v5pDvslW1oJ2dgPiJNKbfvhR + 4eV9f+au0Ry6ZloTgx4xhDgDk+SL4Nsi/AUmwI7yXoeF6aEIbdpCkp8LDJYMVzKyxLDFpzejDvzl + /TT/1jPLRQubjcm4Bd3L/DZvMVIc7rp8KjChBvjb/cHlU/dUZgioRInjDWUu3EY/gG4anmc5faeA + L+1vDft77RBLKJh8ex9TEVYsKvBzaj1N8C5biia2uWAlmwZnjUouREafNUT/DJeB+vfDCJ6n4IKf + pzaOvpc1HhFzFI/YvHJ+wz9ssUVhSYx58aoD/U2WXEMxVB8zxY69//9XhcjdL3CuXjsqcOzDhcv9 + aOGHW3+cyXheXTSwvEG8PP06NGkViEoH+Ti/rsrApqkew3bBHQnHMM/HG2v1yDJTAz+rwwq2pzJV + AP88/5+/ZoVK90GqnRWiHZnnwB+Uuwo/s62Sc1fWzmKnbYhe53Qgz/nENNPlesvgn/1Ehv6iWx0t + CZrbO8H7+RwoQW8WxLIb4wv1LuDPP0tMJCX4pjLMsGzUWlCrsia5tDdCJ6s86PAob2Ben6uotTkK + SpAJnYiV8Y6b5XK6/WCXHIRZrPPOGaWVL5DE+j2JDwbR2mIwDZTNrUce1TOMNoE/j4j7qpiY7PnX + LK9fKCKlrw7EEEmQ05nrK3C5AR3bYWLny/oyC1Tn0zRLQlHmW/qmBfCa7unv02zzcdRvG3p/Tnef + EuMxLAWyMvg5Bxj/4dsiP3c8mK8dsa6Xo8abBargwj417HwNAGgcEB3u54HgzKQRne5yAHnCXvC9 + vk10PoplBV/bxmIcSTpgLzjq4RR/VH/dRiVfjmwcw+fVr4grGVO0ttq3gu+3EpHj+igaOpiKCl9l + siu244nydeHOYHO8mNhL30Xf93o3kKqt3T//y99zoYDulRVnYfe3a+oaC6rKc0+Ub31xBJa5u2Ag + 6EN07zDlBLxuP1lG5wVbrnYf+udv1xBXZ8InR0+GYeaqCrW3YMR4PjHDl1fjFEJzufw7v+TNRSFS + DOuFlc4+Omx3eySwLm3ob8dXtyuilxI0Ut4QddjegFKmChH36K7Ez9yh2X8O5Li4Ovi8Fd+G/tlr + 8V01omNSD9s7Cn1o2xdpPph5CFYDZJUc2M6DnOT61SymsamwPnsptkJZ2O9gRDbEUfSb2T97Ba9n + D/afiR/xZbP1LZftJUkidp+QH2ZOCXnoc3w+87H3pfQ1uiVwmXUl2XvTnc34KC346nJM1OPLiPik + eLQwoGU1z9/jZRDeXB7A0+/tzNRxzw55NxcIQtjhmfHJdfj7Psre1nd+varL3/kIIX+RUl/sAMjH + ln5nGPusM7/jS+2sVJVrWFnvCJ/j9TiMaeom4NjFN/x49BHg3tK7AJ9ziOdl+2banBSPDj4a5YrL + J9CbJUSOu9eoR+QEtzFv12/Mg9d3sYgNDnew1prY/vl37ATqpyFfdtbhHg8RZfvK2sJXeQAHHrjk + rLtGtPWKvMl1aULiq6vvCK55KoD5qiOiV9ELrCiWFfg6ZwNxLVKBxWZfLayheiK4KquI054ghjvf + nlcl2Wv45aaCl0Ai83By3/kmTWMIvadhkfMljJzt184JAC+xJJELlJwflKKHcblkOCOVQjef1D5w + mmeGMWOZOStUrguSIn1i3Vashs1etS+KuXYmXhY0dKnSS4c6D7nkSNlTw6Z7M6SxcjHxjWUFS/3T + eLkIhSc+9dzLGQtaFNAdtwKfr1IHNjr3FYhuTEq0x/2hbazykoE1sj9S3nUj50x9KRGOLj98evbX + 5h8/vlnCTI577/Fp7M0SHCbzQ276JIC3/LmXMDzNxT8+sKTQgNDj3ix+ZouWc3HSy9Cx62pu6k/b + bLE9xHDR2zcJ528bzUxbj9B8VRG+TqiL1ocr2398mRy3sYqW62/YEOvd5rnw5rZZ7x9OheAIMUme + eq8t60spgXVJ13lro9sw7PwcQOOq+tJu/+skbSP8ejIzf+4XHuz+h4HSRbBngclWh9xGIwS7/c/D + 65w6GwrFcp87z+Oj13QaTVoT/uMDdnzSBiE7XHTwa7/BTMw8pMvlVTDQkm+/WWCdmo7h3ezg2i0L + 9jjtklP/8GXAKTE/2KueW07XwUihf5XdubGKla7AKWygUChhbby+GhIFjA018a74jeN+nAV9NUbe + +ezMmwsFhA+cGuTDYcB2+hbpHBdtj/SIl/21NF/5Fil8Cn23SX0htdaB4mbswaJ3b+IUCnam7Nr+ + 5KTInsRZ2tmZL0Q3/vwtyS3H0sb+e+4AW7seKXjs00WtNQgzqjfYOnKf/Pu5ujP6w1fVe3qUc+Uk + gGpGbHx2NL1ZweNaQk5kSp97M2rDvdeLgeIs3PUII3B4jVAdtvfrhss93t4mQbKhNh4MX9z5MR0y + Kwa7fWJf6kYwxpA1pQ87TMRaWQ3w61FR4e/rvH3p6N1yWp/l5U+P2L+vNfzJCROY2sZ15rpn7JCE + VwN4uIwzuTdPqtFXppmQPp4B1qHPDt/gmWf/9ImjCGZA98+jW+TW2I0Yoq3BdS5hWE4GMf/+/ku0 + VaBMWkwM7WsPbO+vIrTl9oKfXpNqWy6UPUCHcsV4HxRFh+wYI+MQn8l51wdIXwMeBpez+uevok08 + wB5adMGkkIwp/4H3fkfSep3w8bax+bKAyQWOcCC+2FuaNr21rIRy1xr4Mvi+09/YYw8XXgyxW7KX + aHMWJUFrHebYr7fGIb8syCAaFG+GDGdEnL/KPLgsAuMzqsVoq1LdC9iclL1d/s1oeN86QFiGMvX5 + F+ia1XuuNfwsVkqOg+9rq3RkAniG5I09AThUGOrHCNnBFfCdo59mj59K2POHbL/xsThLjoICsaZw + J6dIy6Ll8dJ16B6TBv/To9pL2sOEu96JhWwQzf28ZlD2cOhv3X6D7pUoEH2r4IExidVcQD9UwVtF + aqzt/IZ6HKfK9dUO/Rach2iJfVTBC7d4OLlDFQjTADogivIuCt5uzncm/AwtuEjYjd+NM52/tvnP + f54WVqfswT10//Qi+7hibfMiAOH5eHtgXZGUYeH0SYH3ZeN3f3NuaHqobNSc1MV/TWUKVjYeF/iW + 6n6WXrhvvmayLmgEvUm0z/lOF3iyYriRfarLQeXpNrS3ANnHCJPTTS01oh+aDX3znJlZan6aLRRX + Bam/75386W30MUq9rE7mHd8UTx22aEYqfFu9je2Lf3K2uBh/YMlrC0enh6/t8U4FgKcdZhb6cbM6 + W8DAlyom87qvd1uPigL7Uqnwg0DTYRvfqNDva73JuU6fYA4eFxbW1pjifVx9tCxPIsKxnVtsPiKF + Uu+wKujVcvI/e5iz95hBbu9ho3/syuGw9rblTrpesRoID7CetJmB+/vCx2bJ6W8//7IgDt95ub/f + lOI8CJFjni44K9qioaRJTRRdGwu7If8F6339MsAxFIcckx9x1l2fADu/nqHM1wOnf6sQHN1Dg3Xp + xjsrUsUZbouiYmxpNd3g5JtQNN/izme44W9/5VYXHtgbH3c6Xa7PDHyDxMenXylQOt8HF/yt15AE + rtkqOyugbGBE9E2p87marwYcJV8i9nx5OOvffj+vboXDa7kO6+5P4RgvV/LE8kvb0mgzkRl97vNB + ddtoqao3A5cOajhvDmHDtY+DC9kpQlhdLgdtfhSrDNHl/fWZ7/c4LPwWt394Q8rZSsDy8q8dZIws + maXxZNO1XNgN9c77gsO6LaMFnIIUHZ7ehFXNRtruf5M/vCUezo7NJHZnKP2cOcHGemGc73RdDHRC + aoZdHyca+dMT9viRYHTUHOFPL1KmY0xOl2xXwC+T+cf3/IXvEVgcNtyn6KyWD//w7E6qDOx6MHFD + 3gJ/+gAs34nqk/7ROktBixKO3frDrpPehj3+kWF5l03ixm/NWdu1stHHWVriTBNuvtKRD6BbCjU+ + HX4GpSGHecBk8kDwWHzAyOtXBn7viUiUcP7kv3r2VaBO9h27hlhH21+8uOOHL9KKb1b5MdZwv4Tz + X/2Sjx8jcDjxi9OrnwHq8rouM138Jg9PE5uNUXodPM69O6OLCqPpc9VnWNXMGWuNyWtz/n7E0q7f + EiVmNo0krcnAP39xvsh7j4J4bmEY4WJmlmdD+c4qXbDzDWKYuI4mVfcMIIufHP89P9fuV2f5nod/ + +ODMcDJsSO5ugXNT08CCtkWG+3qIb32C/E8/hVzyUbDzTEuwfayzKe96OlYLqNHltZcrPk/hxf/B + bgLjqD83iPrGwydycoYWfHNV+NM3dcjrw+IYuQg+FbbIUXC5Zmus/eYo+JnYRdNR+4vvQHgxE5Kh + mTo0uMQBLBwgzxxfHPIpdY0NUqMZsbEsY0NtPjchNV4j1oZ5aiqMfyMQRTEgufYYnWmMnxUc4+06 + F2lrgPk9EVEuq5wSWxbihv/Tw//iD+582sB2drQQ7nyE+KtyjXZ8gTDRtJE4kn0almOdK3DtOf5f + vCt82dmARiP7xCSvDezxSAylwxjifJpIM7vqcUYc32DszBxL93jrB8+/OfAZxlMGQXyhDZ5SC/ql + czsNW3F0esBEIPG582gMZD07GzwdThVxQ1+i019+YHXSvTE4DKNtjawYvr6bRayij+nqVkoHlcf5 + 5Mv4OdD16Fu6/A4czpeUSd2nLls+vPjifUY7v96yd5sh7ZBdd/1mHX4ByU2ZdFOBcXzP8p/T5Sl8 + l8aMzbtXDkuUShXExejPr2bZm6CfcQa/k+ARfLvEdB1la5OtiFVIun/+T5+Rdj17t3/eIbu9A/cV + bru+rlJWf0EZ/qQTi/UlmLQxxxdWqn1/wie/eTtEzUUXBr3aEftkHZx5EiQTNkHxw8agkoZOmAlh + das8UnyyfsfXxoUGJzVYk/I5Iv7hBWG4Gm+/xedw+MfHdv4wz5ApKP3Tc2up4+eqzwawSB5gYXb7 + ffcRCEE+ceV9BLt/w5bT6NoCbpcRVkEt4iNl382eL8lQ9SkKovOV0Eyp629/+uGMeGoMXPh0Y/i2 + fjZWKigNq9lTAzZLKuG4io7grX/7ECi8dvDr8p0169lz+T9/gN0b2sC859OQZ5pvopDLT5vah+BD + gKuDL3y6c85e4VuHlvYUyGk/v4uPxBSSyj5iNb0uf/qovxPubqaa10RLbRxdxNa+N0uxivLlB78F + lJ/9i0SC0wzr2dN5wKzbk1hhVg+bmMsKUMU2ImYJb8NwCNIN0u4B/MM5tgYqDfUIg6i6YK0hFqBn + XgrgH/673Pk7rMXTrqHcdQbxb1dPI3BwW7Dr47N8YB7NupBP/5c/m9f1UQz/1r/rWdi0gr3ibtcr + QAYlf3u6fv79yQEL//QtXa2FnFZMwe6XUlx8bc66w0cKk8Ln7NnEx0JGqZv5GzyS6xFfo9+s0deo + l/AW0Ajb8wU586DEP3j96ds/f7VQgA3w5z+OZ+7rrKwtsPAaWf7M7nrbeL+hAP7hd2QVF7omclz8 + 03N+e750lq2w/cu3EMu4Fs0S0HeCHkL9I3/6+ap7PwieM7ZnZNOJbquw37gOt9ufPt+w+r2q4Y5/ + 2F6Uf/kKE97K0SWnljB02uMl+GYURJRLp2rjHs+CFpAAH9cHHCbODdK/+BrjKFw1Sn9CjNzs5u3+ + VRvWRC4KGH/W08z/8ek/vOy358k/TK3n8Ez4TYEgfr/4vMZ6Tm0+MqGaTTY2dXN2iB0GFTq6qCG6 + Zg3adE0uLHp83wvJTtbT2VbB2Z/Ps/E5GJ75mO8VQeeCJtgxYrvZ7DjU5a+VfYmKyl++iF/JBL7P + fOYDjTqNt9VgQzJQf3s840X/1ocun+881QQCophJ/C9/55mNFm1Jce0gkmFBrtWSO9NfvrCwWBan + V24ePqRJbfBnn8aeH53T48IDhLuInLmo1wYtf5lomj6jfzi+g+bvfcGdP/rSmzzAQr6NDC9FfifW + fU0iItzFAmbnMZsFiaJ81Vb4A8SJah/MHPuXD8qgSV+9L75oolH90Cx/8dhekXui66u8Jog8xpXs + 8Wq+mj3QIcOH7J+eri0NXRa45y9mUbHsfLzBUoVNUP7IiaXmME2SPEO9Cyz/FYDE4Yznw4V/50th + 5spZdjwFUJ44ojoLO4z6ixX/n4oC6X9XFAiirpLgFwQNEV2SwrGNOR/qBnEoa+MaohR98XE2PtGy + MkICc2yo+GRZn4ayic4jZ8vdGV37IxAy0eHB9QhMYj5vW7MILMrg/ZxeiT3IZ429PmQVst01wFru + anRxnEmBP6pLxKaHDmwv2agAQ+MJx4l3agjq+RiS+9XFyQ8Ow+r1FxtdxZ9I7O1ZRFsrrxA5Kzzh + 6Pr+DMsEnwUgRfzCj7f1ALSc5wwagJeIZxdAIyq+1qjgZRHjj0W0OWnTn/xKpoyovMzT7be1JUwf + rulv9fc9LOBhjbIDDhnR9PaobXfO2BD2ZncGJZLpzw2dH/xe7QsxCA0Hri49Fjrv1xffNol1NoGU + MxBumzZvKfo2dMTBD13fbuHLg73S5XRGPmDu7w/GCZajbRNGH6J3diJY+ikRl954Ex0oHMjR/5J8 + EdxFR5xiJD5SA6thV6TK8igk9ny4P6gzdWKVoF2CJ57X1A7fLXqHisAxyen76JpVRy2EXHSQsNaK + isb/trZA5oTRHODfYSCvJq6QKZ8r7IQ0z4XH0/RRBjGHTWy8otE5fHrkL/xvjqcRDyybHhnojRsm + jucetM16PCooptmRXDrRH3jxfElhfBsBeSY4y4WB+9ZIbmoHH3nn7NC4+wVAlztElCu2nQHic7Dr + qTPB5/cpEl7WVMIz+cTYvd3POTeYsgLLF9m7Dr95be8zbMKLmr7JLWk0jXTeNUT0YKb4RBx2oM/5 + KIJ9P0jxfItgjMqkhk548sjdkOxoSzY7hUxwvJMIVDWYMx+J0ON/D+weJAEsHQ5T1E1mS55p5zq8 + NMsu5HjWIMZn3sACxbeP6sdqYffYO43QeY8ApmdcEi/rsmZtTt0IhyTziCHjVltlmeGhGwY6vvvM + z+G4ftmgW0R34rvDdeC0xLUhWXREUuFZOfz4OeiQXkMH+8pT1zawqDay7kxK7vUjdrZvu82Qv5kn + //DUcbRxYxaDfuURVgtHzWmvfmT045sr8ZZrOywSZktYkaomum+e6KiPlx7FTDlg3ZY97W89iEiD + Q+xHeaUcg5IRnrwuxAaczsPK83WFpOYWkzN3uzXruGQ8eHjJl3joMkSbtlYxknAnYvu23QeWXSVV + ClI/xccgcAAV21pBsxmcsedqt4Hj9SKBi1VpRPt1viaMp/MCrtLpgONcdweeSTeIrIbvfD7bRmcO + Ld5G7wNSsVq2bzBcfc1Ga/YxfSk3vwO9OE0ArSC1iSWU2UCz0ahRVRgGttEWA2E5f37gvnY1UV/q + N1pykneQ/cZv7FnvWNs8qS3hxN1lYiHt5HBafSzQk6MPYhzHE2Dd9ZJC4ZiE/nI8F40QHqwUdlFw + I2f3vII1Taz57/zP7zmems0TRBW+mhb5EH6niDqRuMCnelTnzYmeOa0A6GEZp3dyLDWpmQZ7LmGc + jQE53aOPs/IlkaGXxCW+5a+cjnD8yPCjHx/EnXDjcL20J0FW5uRzZqg0guTaMvywfoyPGj452/pA + NrSCzMbRtj2Hfku7Egq3RcOXHU/2/VChLwQ51vUmHwSJuehoxyOS+smojeV2Y/acdYF1274BwjV8 + C6VE+WE3+yjahL9fA2ru+pi3Kowdmv0yA2abW83wZxYa7RVaoh1PiT29tGEproqCvlsB9jnpgcNW + 9yJBG1Nl/kfNr8M2fbIWntO5IEa930lbAi1D1f0l+iTz+mhbdMOAByNWSWaTo8bJk2eAVFknkoH4 + km/EpwXa8RgrbtRE27E7VxCW8ZU8wuzrTDZtFOQe2gm7d8EGm60zGQyGH+vfuqluNnZkWPD5Jca+ + 32/ApclxhO27EIjNP345fafqD2B7FrAr5XHDsyPPIqKCHOPL5dhwRZcncHrVN194iN6wPhS1hP7n + 3uCUJz8wndtXguLX2yLK+Nm7aFVDCJznWSDqpxqbBf5AAbNrgnx4UTlKS7mZoSHuXYRlrDucz6si + SnCz7BVcMRBEe58JjguGxBGpnVUagh8KlaOPg+KhApbaqQud9375fCIW3YovK6JH5rtEZzo9Fxob + ZWCcgIYNObnSxbHEFt7PQkE85lgNnCwzLBy9jz4zfngBvAwbBiGzqol6IA7gU5rF0C6VDQf6lYs2 + /xmI/+ztchVMRzjpzg+KRxiQ7AMlZx3bRwV9NjKwHk+5tllcaqL2cNOxQY9OxHYXg0XXY3n04afp + wKSQ8wYU5svgEwFfsJQu1mGk+Cf8XN9Vw73YpfqH9zkVSDOVHusi+wOUWXiYaU7Dj7+B/twv2GXb + aRgDr08FkZsHEnj2LydX3zHR+VC4/n6PzOGPHa4BF9UbOZrgFfFT/gggLwAHW786Anz9lPe50D/W + l/fzsDTdq0NVcipIIGeLtmAVd/Axn8nur3G0n8cSYUG+z0xyuwy0SeQRjkJs+4zhhc6mLKwsr59i + wJH7rehU3qUKiTn/mFc3fNBFecAC9JeaIUr7ZaMh+ci+bNQ5xceHGw5UWPd76/xt9Km7hMOCM9VF + LyOMSBEAXVsueWgjwn95cpffr4aycZqiIjIf5AY4mRI6NxBVkHOx0myeRq0RptCo7xSb4uPuLK+D + OaKNObxmfrPbqPOeKIVC6tnEGyqST1p9LNEorBeftvtUk1kfAnAScTcvuPHolua3GSTFPSJB0bLN + zg9q8Ld+Z6oYZwm494gU/bHt+NA0tFleC/qcHxIOYRdp6/yeClgl58KXRivIVwYls1wsz/MsCaU8 + LEetEtEsaR45c8GbbpflrMBs+36wFnNbtJ7bbwwJOn+IHYKw4fLuwAMNbxuxTzgZdgo/I/a7jiQ9 + vW7OP/6284+/59e2y7xHgNbOKcv5AgQPXFqos46L1TNUAaevnx/I9iahuog3OtPovMAfNSTswCPO + l7ECEB60lfWRTM+UIkVSAIG/CmvbdhimQ6PZKNh7Qut6A4aFEPSDcTYH+5xsPyfjw872rmai/7Tc + I+C6cVDhnfm4RAnXrlkOJ7mSf1L1w9ZN+1Kq5hkL5iOb+DAArfbNma2E19feMyYU04hS+RtA8Gnf + 5OQvGmXfwm2E5mI4WDvrSb4F8VDDQbCimf6tz/L4HoipYBJ1dU1KO9rZ8GieTkQl7zEnZ6n0xQSS + cN4+Hyb6d147Q9hnk3L1QIlopfBffPFkD9pGMnGBtJ4QNh9LklMxWQIo5uzjH35ONG9qcNyicObr + c9LQkLo6PE3ihaiFU0fLV1dqqFyu1/3zr4as0j2BdbU9iV/JLJinT9gCwU+g/3GFjzO5PMnArXlq + 2HTEfqAw11soJ31P/vCfeuDewd7XXziJHq9m5fBxhrw3MsRMJRwtkf4pgRLsiuDnWg0L0usObkNz + +seP387H8uVByRtiFJUcLbF4auGJXW0S+lkXTZffqsDkzWbE087BsDxba5eqOjjzF/6dz9p7UCBM + bwNR6+9p2L43hYHed5OJJ8v3hkXl5QcTtTFmHvBVvt29YwEfn4GZocnrOU24gZH528edIfx6+frH + J1+V+SKF68xgUS4HE/blq8fW9omGKT6JBiRF8sL+6VEAvngcWhDKOCO6+bIa/reNJbhB0SKRo7bR + 8khgCTX+8PN7r0soHXHaQ/Cy2ZmNiOqwylda4GM+Ebzz9XyD1hrAr7NPR3PiFqyqGaYQnXSDeNN5 + oEsOUhlC0B+IKSFt4NT6zcByJtOcf+9jNL+Ta41scCuIos4i2L4HP4Cj0mYkvLNLsxy1XoZ/+Iah + 2YDR314x2v8eLhdvyhe7dW24x0PktH5TbevRnYWrNgakkB0LbIafs5BnC4Kf9+QVrcz1kv2z70sy + E235SkKHcnp549MrNcAKxqqDDQh/xDova0Q1nkmgpLY+8b3cpvSd2j9Ycs7TX8LjGs2Leu+h6DOy + z1T2YaAaZ8lw0Zq7D9QvoN9Q702YGtttZsVD74zkLCbwXfgf7MWmEK0bd9BBXza9L35pq83hS9xg + OYfdDPI+iDY8qT9Y4FEhz53vz4aa1CA7qQw+d5M6sMFxMGCSQ3cm36oCdIlaZp83meO/9bJbsqnA + vqgmOfnCtVnVuQkhnhWHlHMX0OW5ghJ8r++UnIJblS++G5Qwik89xq/8pVHtq7fo85B+RN3oSVue + SFzkvIcB1vXiSwcPXDq08yNihJOb0xN/5//hj57rY/Od3+8SHaJ+JBGtWbrxhlXA48xz82GP9whT + xBWMFPeEw9hQh5qrHio6S0qOlbauGyETNRYae0WohpguJ5YozSBV6OQDeCTRlnVLjbgpOxDNUdt8 + vU6pDOxS3bD7E9doEVzRgLl1Sone3U4O75YmhNlFfvn0mJj5v98rNmiI0tbqIPzt947f2Bib3tlk + 8xXDH2/486/0B22zC0mF0ijV5OwyKV1n+nThn782zpGqLR916WB7+hzwkUzaMPWTzMC3uTj4uRWf + YZVlnkXa8pIwrrbHQBKuYaDhuwF2dn1hja9lIAdOwhH3IN0A3fFOXpFc4P3803m75AlYYxX7XDTD + Ye1CClHF33NfLKuhoY+K/cGwSWpiWOupWR+KXQLvKY4k/cNfSfFakK73Abs7XvzhhxD4sY1t90Gi + eUhT+R/fkbbqSBfuUG8glLYIe7E4DnMlhgYC57DDRxMcI27nu0jSjlf/+nqKzXbISAaNucZ//q6h + nfcIwQsp2jwx5hatNxi26L1X9CqDMNIdL1UUVbVO3LCuot+xzXUw3h4hft4fVFv6MtbRx1bP2E/n + Jlr/+MdH1x5Ez9kXoJdb1aLnO072eD+ly2/4JrK2NJLPCPmJcip8KBAezjmx4xprveQrKpSVgZmv + h2usjUehqRA4B91MxhOvfdE+hcyYDwnW4rkaltBfYjCfws1vaB2D+WJaI2zOFcbYOMlgORnmBmvm + ZBKt0AZtBI/jCIYoE30EX7xDfqqTgp3v+VWzTU5qJrwM0CEIcSlJ34iwtWqDM68ZGH+k9r/78zkr + Gza450zXpUMZfH91Gxeb8XMW5bsucDHqmey/B5P381rYMJMxs7t+xhHPiOEnEq9E/c2niG19tUCc + MeDd37ybEVz0DBXTY8V/eLkmZ1OBMXgk5HTxP/kiKNsCn1f15v+mnsup5Koy6n9Qxzv/GLbdf8Cs + lBz8qJyTRnc+CX1P9/2ysg8NFdufItu6+SZ2zVQ5vdz6DqaoOuNjXuo5jw4ai6QR1MTfPz8yo5PJ + kSykGG/FeVg/RmiiJ7kO2BEpP7wvJR0R1AEmu32AaUiGDV5wjonXBy1gJd5L/vQ7nLD9Z/cfRgib + PN+wAbyCPlBDfuBonk/E7ejabLVUq+j5ThJ8fiMv3/GjQg9Wz3AAxWggoxYlcP2UwyyjQXOEnT/s + UyI8cp3zZ85/mt8Gzs1x/dN3HLo86xB+n1bndwcUauO6ei3UpzDa42PW2dxQ+wH6nkJyiuai2f1l + CP7i8zPvMw3Z9QRgyeGNaMfEjNZLyKTQ/olXYvzcJKL8rdhA/s1vxH25XL6pDoDQyb85Lri4Bgu4 + uBnkKL/uFTMJGI/a3vNM61/z4cnqDT8e1hmOusrjs5pfG+GPn8koTXHMv/RhKSx1hK/q02O3o5dm + MWepgvBYUHLjBdVZowll8MuVAT7hz48SpihqOEOlxvnOd8kNRzqSs5NO7KM8auvOj2GssBq57/xj + 8wZ5Bnb5kPzYtgUw3cmyIScfch+5dKRzvxYVXJlrQ+x29IfleAl7JNWy58+SqkZC63oxFK4eR2yb + D8FsZHcbTi2k//jHrhcnUOaZD1HyycvZHKQiXBB5++L9qzebd/ry/+zV3fFhzVdzhsX0XAmGmGsm + k8U1PM3XlDzuJBrWZdvGP74+y0h9NlRx7zbc/Q3BrDw4O3518GM/faI82ac2NYPQwc5IWXxNIBfR + /CGGYGRXSExNi5rFc5Qavb/NhZhGymjzovsG2ONpbP3y2pkVKPvyrpcRT8z0SLDrswq/Tqjhs759 + 8t+pJyloQPDDWqE5zlw8hPbvvJEdL6J1rL8GSI3lRsolfjrrmkXtH1/AOtO1Ef+5vQswOXgiR/H7 + a6gjWz0wxPSBb2D+On/+H/q2Ic1Ilu8DPdKVgS7VbPxnX1/rDhjw+SSrD66ymi+1K9fQMpDmy2ho + 9veRdf/WZ4oPSRtDHv3AUIU5MY701syJm6jgx+s+flhv1tnjxwKG0hIRj9srpJGyKqAp72dSDmmq + 0YNqMmDHM585VKdha6K7CdP2dCQJMByHqp/AhINyb/7im3wuv0GGLimb+GxEau2Pf4F3p3P+6qnU + mSrNZ+Ehw29i3B1MiV9vxV88PXd5fYxWcUA25KJqI+HnU0b/9N764wf4PIU3sFmC3gH4xj6xfMbW + lnm23D//Tpxhw3S+bp0Ia7kfsVa/5mgrHkIHT752Jwo7qprwrFJT/oryiM2AxQ317QMP8Vr0M3pM + x4ZP8+cMflL98w/Sr8qFx35jMHBWSLxJODrzn54+3p4h9vXuSoctUkpURPYD+45+dyae/1WQOYgB + TqxjEK3lpwlkWCZXcuy7gtIXufOAlvzdX5vfla4+b4vwFqgff+uW235joOoAx/MGcUr+65Bdf0Le + 4o7k/NOf2m7/Key6kWJ76q/5/r5McD0WR+xa05Dv+nIBmw/vY2X81NHKkJGB09wcyZ8e+c8/HGPY + k5jvk5xGLvDhor3u+Ng0rfOPL7gOG/7pb3RqBCjDrKd37F8/MJo6sU+A8OovOFeCNHomx1cCj4cI + Es0OiTbdG1qgBL8WjOXXORKGb+vDwKGQnB9mGm0/5ruAVFtV7L2laM/Av2K46yNYKR41fa9dICLm + IAczs3hexLcz+4P+lHk+ONi9s32aeoPiVaA+2fMZS6OkIxS2U0ps7dXnP/o86dCqhAtWx+uLLtjX + ZTRW8v2PnzWDmI4zHFiL+bPvXHg1RQWm3Hj7/O/UDlu3uB0Et2nCZWU/m8WyrwaMGlhh78FGEe0V + UP7lP/Cej3IW5SLY//DE9/IfnaWaleH0OpS+8DgaA78+OBNE1cEhul5Ye35rLIA/7T2f+vod0eT4 + TUD7LgWitbholsKyR3jftO/MrV9Rq24jGEGQuimJ4wk4q1dE7D89+th3EGza2sfwF27yDIurH/3U + A99BfZoyn94YRyMpD0SQfoyEqGz2avb82SLfvjI7M5Ucg4nlsu5Pz/APl5RGYyx6Lbjrd2VepjfQ + xq8ktH/5QHK+y4eGfD5uDJ7itmHNDrG2/OVzMr/UfU4uJ4c+44yFShz/iD74rsOJpzaAN/kG8I63 + zpKdtwWxe89s3N3vgOzxM+xjlOHEWt/Nwr7BCN8GRr5UP1jnT0+G8etj7fmvYy6cT1ELGcuufCov + 3iDY8SMEcvLr/deUbM4Gmz6G997Jie10pjM7+l0Eux7vX4rikW9FcGLRHu8Q7cYMGg3vDxVGQgaJ + P6SiM//FQ9YdpkSLZ6WhezyEVFLQXa/+0U14LhXo40M200LenKn+OSaUGxT6ByuKmnVhFhVZcnDD + XtbJw7/95X/dC//ph8R4yCMM70WMcdq5mvCX79ufd97Y7DXs+N3Cj1c2//SRhf9oPeCC1wMb1jHI + +bhFtiRPTeVfTHDM6SNSReT0FYNN7EXOlriJgna92b94kuwQjWdiqFvwQIo1iemoyUQEVx9sfi88 + K20ZKwqhhpcNu/3rCSZFCn6Qbh1Hdn6fz8mmZpAzvhgf17jSuHzjbPinR5nde4g24frpwQn4gGig + UunKWIUB3s2p+tPTmn/++IyjK/HiA5N/bS8z5WcKZOy9VdeZTTxssNZE6HPnenD6M8Ib8Apw8ymW + hmhzxLhCFxKeseuxD41o3FGE/uN1/Ytf8vnKtL6M3oL7D39Wy2N6Oe+ZAP/lg7eDErEwmurZP3R3 + CfzThyPvy2NXDvOhOjy/Ldj1Yxyng6VNOlhqNGCYk0t6dQba2oH4L18T1KDT/vIZ4Dikd2z8+as9 + fkdlxtvEY4sk2vnSD+35M6Jdqg9gdz4IkpxxiRM1y7CsyBblv/yOxxyVYfOeXPr/VBTI/7uioArN + gdh99W02Y1EqdLdvd+y5t2ag/HOQwZFylHhLc9AWjywhqlfH82dDXndFT/CRE4wSCRWlA1+jvvZA + 70aTxJJ1oUKabAsUVXPEe5hB+cf5OKJhPtX4GOY4X5TMZSF3onCWrn7tjIvnjfB6hgdfhJ3X0Gs0 + ZeD6Op7xHbmsQy9vdYN9p0ozKzevYVAeWQzN/ofxObhpOSXXee9i80b4mJYfsPGNlcGpTzRymj9t + tOrx10bTNuk4vOt+zjaGtGd8iq8vPZ8Nne6Wo0LCjAs+rQYBW/pseLiarT8fvOvH2R7LNMOEm0Ts + R74D1sXweAhk+0SUk1vl/NH8jdB2iwwb9eYAIdoOIYQDeySB9L5EM/8KfHQ+BTeS257UbEezntH0 + HH1cogRo9LbVIbo9FErul9/VWaerrCBeYAF52qjKqcU5jMRB/0LOhF4irn5qJXLVjCP4/IGABAfL + AFczD/3ldngD9j0CA73nrCbmwX0Miz3+ZBgzRYtPqTVpK/+zAri/D/8rT/2wiad+hJJbFPh2v2YO + zzDXDClzuM/1zEm+HaQji8Js+mIneUV0u9xuMnTC40aOqK+0mZRPFoz9PSJFJgVgg0slooLiOzGI + 9wP7+5nRNqZ3bLecAJbDpAWo9AyenMp+n0uyJSIMhNs6k/OdRqtjgRqeAOfi201PHVZ5fHx4NMSA + nMnoNhvJUAmGKMT+Omga4BJdLxFdenGWIPMbqKhkKjSf+xSGRf+C9fB9L1AioCX4YJ6pML6WFn07 + HpOcBp5DnFgRkRGrM7aM7xts9R0u0IhMkyRDzubL+xvs+6ucfVG1dWdZDZNBXCwluIDaN+JP3itA + sTf4xK9NPp8ci1bo0BQpsfuw0qZyC1XEP793fFGv5cBOuTLDRy54xC3beuBT6yzDiDm/iI1FFuz/ + b0Yq3Rqi3ZvFmSd/s2FfVCW5JSjKpwcHM/iUOUKsOfw2Uz7UAaTpI5lHPWbpZDcrjwqRTUli2EK0 + uGLng+IbDnM/0TOY6bkTEXdaIU7O7UfbtLlN0FlndVLw16fGuyrt0eMoVsRnu4n+ym8F0fG3DsRC + JxJNqZ90qFMjhpzfAqJb6IoL8G4vaeZ+nAeElv6Y/5B2JdvKwkj4gVjIJAlLJpFJgoCoO0BEQETA + BJKn78P9e9m7XnqOlyuQqm+opApOvy9C9+37rHg0tfrTnIb4Jb0AyeC0XIVCWpLykyLGG4oiw8kb + c/Ss9cFnfeZFcP+GEkruI8+IVxxG9VN+cKhc+KFd/9Z/8zTUcAc6BaxnUjvqheBT+JdPluqZ9Cp8 + OApClD9N4kHmStB17YHYzX5p1zA9jTBPvx5yHj/JXD6+bCh6JHIIjVadUI573KCIs5o48/3mSx8l + xwCBmA/x/fY12Xs76R7TvU+MbD5OkiCthirrsY2Mm/qdVsC9G3gSshzL8Dkwio40VP+ut60Hf313 + ngbl94fH++L3K5b9K+XgzaIb4z3pE/v56agyJLzQfZHvYJXO0IPVqXXxqorfSdgvewM+d52DdONS + tWu8O4iqFBkP5IjjnhFHxhmoFfpENyXswarmmq3GtJIRenz1Yl1yuQf63ngSM1KOk/QtHB5GOPkS + Q5gbMJQZHVXuhlPkjPpasFUseaXzSxXpa+FNS61TBZ7MoULJ7MwJpW2WKy7lNHLq9CJZzuVrBvxL + eWGQkUfxi8RZhoFTHpGvP+aCzoNcqXLwmpH+OkbF91Lee/gSoEjOWz7h6XjO/71P+bdV5LziNCp/ + 8fz8yw9/69/VI4vcsVX7zCtFHi7OVG1dLMMCjy7o4UJqm1jsVJnsfe8GNYujhZwuxwUs11EPVVXs + DsS78E4rNDU/KA7TI1Qy9Vbwz1wz4MHdKgrLGCXLJexnUEgdQRUaObZE7+cAf/qjQHnvGIwZky1C + Kig8zo9oLliZaw683Y8LQqBT2Fct1lg9i3xIojo/+PyD+5XKS5RK4jyepwnHwULV07XdzjTlh1bE + zOjgUYQJFtJrNrEdYw683/oT8YV8LP7htcGHIvFWl/rkNbNQtQ+rggzt6E+S4nWOej70bwzz6ZiI + LB9KNTzBEN35i+FL6jlRQH+sRuRiS/NZ9f3xwCygRbR8zoEQMa+G39cpIqjBJRAs/dMBSb9kyCCF + BoRvPA8wSuQvKqKImjSRTxCW0SghB/aniT+/hFi99coZ6QiajF35otxnvBCj5OSs5to84ki937oT + MRJHaRel1G+q8vLDrYthnazfCFTQMHancGGNDIgrCh5ULcVFcfZumPS1M0tNAklG1oMfEixMUgrd + Lt4TNzUA2NZ/Cr+ujtFZ8a9Aek2eAXFXaCQ6JG9/di3ZUiNoe8gDCfKlaPh58Dp3NXlMc8DEbQs+ + 5DSrJvfXV/d5x37F8K1CRIrslQBJLPVGNc6BTp7lA5i/S3nuQXp1v8QPKtDOD8jHKr6ce6RP519B + WV5XUEsXHVVaqk/SfghE+L5kBbqPHwnQasod9e/6l9VGjEqub8FHea5D+rxE5qIcsxGy+wUiTzB+ + BXNZTuGtceVQ6dFxYue3t8DE0N7b75/BVB+cXC11dSHRjuACK8klULnma5CsTLa5xqcDr4qYMky1 + cElw71xzwD7eA5lt7yRrGbqdej54MXF8tJvIgZEF+MewCrmC25uUyq4Hy0KXUCDl9cQSUioQCPeZ + hPKtS4aM7jx4p9ZADr+CM+ly+cowxx8J/0zYFd/FPvDQP7+fWKheSUu+1RTA08OTkaGFSzG/ej+F + RvHWkd5RwxcU4wjh+UdtvN/n6oTJtsMLJuEp5JVW//f3QMmWE3pYCkjW3ocynMSzRTz37rZic4cU + OppWkKT9/Xza7sRcnbwhJ0ftCf3Va5wBsmWUEaK/gRGrucnqa5YxOcenA5Ckw7v7ux+smNOuoFrz + 1ZQh/KnI9+tuWjMjieAtnAk6xS+txebkQrgaKkL2sTv6C56vHdxz3YTyCzgV7M69e0A4vCB/N83+ + svFRpSrHNlRuuQxYuU0R2+6fWBA4hSBeqgaiu/cmYVerJvs6KIbATQkJG/3c4pcwx3s4xynxevSZ + yNfObCWCzYN4yRqZzOwMG4g/+URuxSVKpLwRbfhdspGEaKzAGq3nTKH9mmMRvN4+hQ+SKWbotuTI + 9ZK5eOOKVUcrMbIeP7MlzTcSoWh/YuLyl8ZkNbUpaOEqkix+ZwV913MNHu/rQE6WUiTMFUyoJmNo + Y8leVEDfdVfD/ds6Y3H7PqNUKRXvAgWiVde5pbWy4yFa0yOe+k/X4vfD8+CGZyFNdAHg83ivwHdZ + VBJE21zBx+HWQFmPbFQNlueL19fFgM46X1EMVGuiV2nh1EIddaJFxd4nH1W1Iec9a2QOD6Vd/tZr + lChfYrx+GaCYZwvEeu6Hr70aFuyWXxxly+fh/tIuyXI7QwsUmFMIKtHa0s/8EWHKVR3Rvueruby/ + txlcrXyHXMkF03r3+BAeEnTDj04vihUrXgkQIEeimYbpi/fDu/5v/thNgSk6+rP8xw92ZZYlBE5x + ANdzaGJVObsmJvcggs+MS4k/ry/GWP5OgSe3V2IoK1ewLT+CMgo6FNKjkeDqW3PwAPI9ch7PX8vS + 4eZB6+oV6Bi9A7aSl5pCUU5CEmx8djkROYZ//PV5/EC2BIIvwk1vICQke3/ZHW4VtHrsEHSsZZ/1 + 6d2CbUtI+DO+92LJqOSAR8598L4AGSCuYHLgwTw3PH68AayZUcRQ0oAZLmpkmgsZ1BB2/j4iTyHg + i5/dXEb5HcQJ8fMcmYsMivhf/O/kRU+mg2cu8Pj8XlFybyOfD8Rt6pqzm0Mg5GOCVzWdVX1kE9nu + vyA7BjyFT6YfQq5csY2/QzCY5fUPj012EgdPtX+WgA5hWvnMu5cVrE0gESMo3oz2xY0DzaFuQ0kg + bxPvtzMUG5/EHN//wHLQmxm2jeASaxakCT+TgwGRt1+JyYGVzVzwCMDlat/D25ZPZ7UbUyi//ReW + Yf9rqV/uOSB9awnZwnXwGRnqDKrVrSV5ZsQmjYNlUX7MvxLUxy7D30aboSiJIKSe1wI2qYMNhNRY + /p5PIWx7auGU4OZPDzJ67aT8D7/Q8XFcWqamXAzfx+MnlJWj4c8Hs1Dghofk7/3inXQb4EFpEuQl + 5Yt1AlVSuK13ZD3AyafXbneDJzPwkX+S/WJdZ1Qp8OEpBOnOuZ3Xo+L9w2N7fZ9b1qdnWz0kWxdu + vNMLGoYihJv+Jfkp7sD85wcUl6pGh66bTbLlNzX8aBlxfrNp8sKqOyDWKESOcXYYy8RgBH96ttSF + b0K39a3G+rcJ1VgMgRjoXgmf9d5ASfs02394LUXVEv6myiz4Y3Nb4NgYPfK9031i0Vhl4DicAyx/ + vuO0AmB6qqvHVviXn5YyuUWglMVt6trNNfnwnmZwyyfIz4PDNEtJXcLpoBckFUc7WZunX8L3/iQi + x1rS5FciZVEOTUrRwTy8i6X1El7NvcgleqoobI13JxGW/HFHTk/va/5Oc76A6WAWJLiGO599oClD + TT65KL2uiC3ijTf+4vlPPyTzx1801dH2OnIh57W/+6Ee1UHwEnI4TJeJGgctVXee2BLHSfVkVYwj + B93LhyJ3UgzAq2jXwYMjXrGId69k9RGy//Q98iP3V2CtN3N4nfs6BHnwbim5W7GKA1T902M0A0Wm + hCg5YhhWZ0Yd/VoCGvrvkK+MdXtf1gDVj8wRtENzuzz2d1lVHHVGFtKNlinBJYM4L2Py1J3zRKXj + XQbAkctN/6WM/xXODGu3EZGfkUdCP3o8QmqmMamGbQfVlZQLdLtoj9eNbw5Y93Lwy18NchY/bCVf + RynUj1QkQaEJLQ7UYeuC/Hliaj9j87vT3OUPv0kYEG0Sb6VbglhbILLYiTN7K8WGUo7+GUuhrScC + lIYFOsOA0FliZ1+65Q8P0iURiFaKsomV82wo1FzeyNjwZyGDEMB18hbkb3z5H5/T7PaENn+mZZcz + DKB/9gPkDzu/YPfkdoNysJ25vZFkYks4GtC9vCna+FWx9DFcwCocK8zv3RV8jxWL1D+8NbX+lyxm + DXugHxeRPJb2adL3w3DUv/zI+w+h3fC3UaPDqQn7ZGebwq11U0iyXUO88uBN435qUvjnh+iv8OJT + 62yO6qankAkvOpCOX2dU7qg5oIdt6+24+V+Ky3336PgtRrZWNNbUCaYZsQehK1hYfkW4/b4/vJ3o + aJ8D1c1pRdAuW5MfBmyAoytZyKvorpjf6Q/C37BkKPWziG35PwLepWmIeY2xubXjDeG9UUOSbXyF + sct9UYZ316PkUU7FUpRhCMPd4KEgTWq23lo3g9/t1IT5BGK7ZMcXp6LXkiP7pzwZa5XPrJZHp0Q5 + se/TpkdyNQ2yC3I3vkn9wqFwKG0f111SF6L7/ihg8y/QU+Y8RmSupuprNpyND2stWxK1++cf+VfQ + Tj8kVxawxXeEkHAgLW3u/AKfu94h+u/Lm2QnXRo4H8QVaVX0YfQ04hImvhpjnp04/9/1b+hzCRuu + 5Rm2WSOrRqmnKOYufsGfWDyqLytSiLv5ed/0yaDK5foJaTVhyT8/9euaGB2kKkt47UEC+GB9iZzw + 3ZrMxmUAxa/LE2upvwkBR3eB8PMCJN5ORNHLjbehWXAWpkFxYOKL6oqKOylBemA6jJzE2lFF29nh + evt/NCI/A2QzepAwuUQtI5eeAgEGZ4R0lCVEfF1slW9Rjsyv5CXbHHcetEPlEMN+Up9y+o6HKWec + sbDahFEuXW/q4iA/lIRBKxitEIZb/kTBnn4S8vQKDoTofCTW+e4WorE8arjpT6zGw6FgCtrhP/6L + rO7gFaP2gT3E3PVHEOV/01qeJw52cO7JAeOvz0bdq6HHeRneDatQkCa7xmB49z05LOtrwmmZVeDD + 5JHcCs0wsbF1ud70PzImibHlOik5/Fs/9i6vExa7SQzNt0yRBXlzmj6qasERtBo65sPbp0VfdCDs + e5PYT+2SSPNL7sBzMUpic1rUMsWbvX/+iZa/RX/zR+s//4eEV81IaBnaJbSUT4tlGRRgTWTd+vOP + MT3uX0yUXNOCid7F5Am6HMx8+FL2vnO0kK9nn2l5pz8OsvsVEuPdxz4RQHED+e93RpdbdAb/Pl+F + 4EK2CarFqj6LAcDqyZCr9C1gVZdHcNPj4RdyY/u1JScHf/q54ppXgSGNbTiU3IoO6pBMc9WoEPJN + yv/pzeJXBlEOk87jsWjuhWRtnE8NcQt/uMiD9zQ5cp/C40fc//OTmbHbdwo53oWw8GtrYt26UljH + 29SDUV+TJTt+4T+89ffJYVqA4Vv/9KtweATm6rV7Hir71cB08xN+Ay49sL2fcKfrAeOPnQvB33qw + DkECeDh9bLjpSxKTQmMLnY3uzw8m6eYvrebjaSkf8/UhzmdBifBx8gaSy/AlzuZfrde+xfCNeQHp + FXFb9uBuHdj8BhTez1bCb34luNQdT4wtnkUn80LYH40r0aBVsuV2PY4gzUgWsrCpwe9jLZ5q9tdD + KDZ0AhuMb34lZQglQDI3PbLxqbIm/kmekjm8lynInOWC4lhZ/c2vF//xcaxwfEEd/VmBS+29iL/V + Jxbv6zTq33pAw7i0hAucFG7+L3Jk/mpu9QYLyh0JkQ1IOP0MoQtgfmkXDMi7SBitjhhubU7Iw1KK + gv4UlP7F4+YvGmBqT98MqjfW4V9MPJ+er08Z6ExixJZU2Zw3/IaK87qjkIh1wuqDloNNHyBH4x6M + yiSYoWHYHxLsp2ZauWNYw63+hHK0u7f0L769wDiSE3+czfXWKTWQy8Mdy/P9ZhI1Odjw0YEL0l9l + NS3a4xOo/FqF5A8PqCt/y394qzu3q4/D11JD6dm5xD08dtNCPoGhyOx2IUaUvnza3Mwexl/BRP5d + eyZ0J0WjWo7uGZnyGJkbvodQebnhP/25nsZvB93gcN388h+g5B7E0KHOiCLryLGtHoYhStQ9CSLx + 1q6/VBPh5uej510aAUuviP6rFzh3HrDFceIKnkUx3PRmMdHi5RjAKIFC3MvFBgQcok6lghaivEef + dhVHPYIS7XbkCLWPSTPVqtUvOmgbP4l96r6JDP78j+rZ2D59YL4GyHtU5BSLGCzL6YBhdEAN3p1D + o1jQ7gL3b0IKvNORWHwfvBmATJE7vMUToIFuVOAAbntyLPdHE5+vTwU04hIgTxoeyfJ0diOgj3hH + fPm4S5iU3zKl4ijd9MM6/dIngNA8kQidNv7OkjW0la0+EIpbfqUcnANwDdcdFrNqnZa0Pf/1CLgi + x0fPab27pqZ+jABjdSXvhLVnHwOdFTUyNK1nG/9PAThzXfgdP9e/fBbDfWm4CA1j1P4C9mzgYT4/ + Q6EJDoWE1yqG3+Yg4pc6aKbw5x/9xe+VWklCh3drAzHlbbzH8XfCHUw1datXEiPRBUYwedtQUG2J + 6NVgsTVfBB4+M5iiY8CyggjSXoNunvnIWu5WK1oor2BzL7iQ+6s//j2PP/08HtGcrMO4UnUeigS3 + 1s0E0xI2BhxKuCIjaMZ2+dObo5uvf3ymXetEc9S/euIBfVxzkfeNpQ481k6KiyVAN30JNn8O+SUV + wHIuvzOUWX4hHh3tFnew1CAPzy9UkDdImI3TQE0L2SDVpaft/KcXgVDMWDn5tflDJ01WExaHyHyE + L7a+pKiH4gHP6A/vWPO98QBBNyenV7FNJeKTDBr6mGJq336JRCmt/vwj4rmfxBSU2yRD8evzmFlP + p6VYzhz4TmUH3Y1lbMd5WCqok8YiIVHf5ncSTFnN2+z8j49vft8I00IxQkYUY1qNfdjDbMokYti9 + yH4oVKx/9V7zhATW5IO1gM1fQya/q7apyif45zeQ00oOiZQF9QC73LOQdY6tScqlgQfKNazDROt/ + BS26JofFRTuF7M0hk05EDcDmZ4dcIL6TPz9NFQ/zTGI+Zibe9BrUj1mL9ErExa8/9RZczXvzt96L + VeaTXB3Kptr8ci1Z9/nDhjLjB3QogFlIanKy/j4TgxQ1qBONBkCpo2GrP2k+jsjv/5p6AP73joKh + unpYEoQPIPm959WmavdIP6+PYiVqaoDKFSakrfKQrG7selCnnwTP8Ssz1z23NmoW8BK5+lppDjdF + wnAKJpkEL50318PoDrCFVz5cTfpltLiYjrpeLmLIxbIL2CkfeeVu3ixklE/O/+L7PgIjYwHS3cvR + FD2SWpALwBsFM4XFkpBLCUNYM+ITTvUX//N1IL8jh1CMRN0XkpTZqnhbN8bQWD7tRhAA9EXbGSKb + Y7/HtOuhOWVdKBtnzl9xcZjhZRcOCJmgblf5U2H4MNA7jMJRL6jQ1rl66b8mst5YA7w8x7Z6Ey2I + zkMb+osPGIbqT7JC1qxDIUaPYAZDhCHS9/Q10XhyKvjK9iwUxn2XsHcUieo1HynxA08xaQ+eIuzL + X4Bsnzuzle6xDbUwKkmZjqSlzuV2U6NLdCB58dsV2/N3oLheLSwcPgJj156J6k+CH3SU7Nhsn80Q + ws7a58iIvp0v0dDJVTMqQnI0ujf4ClMwwvl990JC3iqjYVDb6vVhtCSgl3vBIlNcoFxWdijvDg+f + R5Fgq/dPeEQ+S4jPsFKUMEyGI8rC4OH/ku9pBFqAKAkftyNY3Lmt1S5+fcn9qzhslcgrVY88vRCj + ad8Tn2DXUPcztw8FfNsDitZnBO0M5tv3B8Zc2qbwZK4NMneiwFZC6wYqL9lByVOtgYjWawyna+xg + SawFRl7DPYPZvv1gHk/6JN7yQ6N69S8mRmoegfR9xx7Euz1PTt+X29JUiQYoXGSF3KnktvxN2c2w + Sc4lySLx5S9UrHgg/eYZJc3qFFJZmbUavqKMlMcCADbfTg68q8TAdHrL5jrkGadyDU22nhfHVlJV + 6EArvx/IceR3BY4KOYJZIErINI0MzOZYZ1CQLgFKr0k6CXJvRPC68B/yzKUUCJ7QKjAIgwOJ4K0v + lpPeKWry1g/Eq65mwZ+rhYevDDASusA1CcdfLHjOpVf4DOJDIvTlUkLYNjZxFyc16Q3FhnrRPIfY + RtaaS/lqFvi8fnvkev61oF43dKqBlBylxqgma3caYlWfrStJB/3B+HMl8yr+5vuwvU6hSUj54tXv + yeqI/9i5jLpGHKuH2AwImm2n5Y+uRuG3/dTkwMSDL6jr3MCDICB03ktJsnxrvEDf3ttIg1wzicq7 + 7eEK2pEYU90n68jCEGjN/YNyUEbsd/k1qbqz+ww9HihjCxg6T7XeWYl3K74m6z0wqPr3vBBFOuAT + rGuqFn5aZDeeXfAqfsQwEucruY7kNPHb8wSPmx0TV3c7hleqi1A6CjsU2q93QtF6jeDpqe9Qkj+F + FkuvUIZybl9IcMw8n2/gJYT9eRWJd8mbaTlptxJ6KNoRC77NQuhCHqtUz294hf02x/1a88ryIASr + HKItW7RghM+mU4nP7d7TCkJ9Ufv5diB6ujUh+B2OBnztvDOG8zEsGFaSSrWu+BSuixJPa9uiGJ4f + pxgLkdH4PP4OHrgFBwuZP8gnrMk+o7rlD5R13AnQJ5sa2D3KHYr9lQesH8sG8lXE0GF5JcXsHWIR + NjG3OSYHHtDP0qXqzb0F5MblxFxUfInVzDlcyHG3TRXpQn7eD6b9Qydm9dOqLpENf5lUosNtZzAK + diSClfw5kIMUDWwR1rQErxv3wNKvahPaFJMG7Xvmo7DtKViVHxKhhE2G9EWowYrPeIT00wckfqvf + hJ/w2MCzkcBwOp01JqEvM6A/3gyiQc5oxd9Da1Q9kfbEnujFxxV3NeCZ3Y/o8e2Lgl2sXwOvq4uJ + dv0Y5kroUKt8FTO8s8lgTr8DMqB29V3MfUmQSIsWDOB5nyMUtzwC4vuq2nCLH6Q5/R78zHxfQar/ + nugBCt+kSvwroX3/xigt19r8HYOboRo3dsQKJ/ITUyOaQWSaBGmK8DVJ0OmKmnyISqzmHgKp8XkP + or6ZiLE6l2LdO9EIpkb4Ia3l7FZKnKQCuHo2xCuGU7uUN3+GtNzBv3gpqG1rgbq8YUiu+u1XzPHl + TFWomR7S7f5cCG6sO6okDybyb+XMWKXdZXXnJiE6cZ4GhPvpGkKxv//QUX88fWxWDoaViNJw37j1 + JNq2E0D+3p4x4w8nwGtGrcBakmJ07Pq04LOa18Dy5kIU7/PBXL4XEMHjx7GRX1lgYpExZnD4IAnT + 8lmZTHPqGcyVEqLnWyXm1OrOAKsRiiHRNNoyIPsabGJ4IQGNPu0cqZwCi6JRUUCBMOH2GFUqkV4A + Pcn7wfhsTCx193wYyJ+fR/Y9BpGmGpmFSAJLWpDGhw4YH1GEbhueiWD3iVXph2fydNSkWLS9u6i7 + mXrERKk7CY14yqES2hbJpuDGsA6UFBgwNokz16eJx69LDVeXnv/hi1ipRq9+yHshBUuIuVzsJVMn + ec4x3fIZHR59COHqXEi5xTNV4ncFD4KE0IlWXrH+sC+Ccb0XKMJtVowif9JUjrtKJOxzJaGDWwzQ + gaQJxen4MfGRGYYKzsnW5fqk+fzTEzEUvF2LQmovYD0GkQGeapOQrbLd/sW/ujx+hGgHSotlq3pB + VLxTksuD20qaM8zq70UZTsS9YK7yJ5uVMnEtZO8QY7Q9RqU6Dg3+xyeY1OozPC8zQuY9eZgLvnIV + PNF62+HAN/56VHAEhCQwSOXmXEvWSTEgxxkL0U0JtMz66Ja6PT9kv76ALRNu6r/8g7k+zxPiBx8b + zHSOUa6tU0F3FZqBt/9wCJH3A5C0eTpKnMkmSUL8K/7et9LegjFUbnxf0O197MNXnCHzIHLJmiF5 + huhQ1KFyyY1W8v18hGZkHUlVS2rxtq9+ox7O84HY3e08SUA2NfWRrx5Cjqy3cz3JnRoqrkEesv6Z + 6DsbBvhufhfiazvs/9R1ruHxy3PIsMMrWCWl5AGEN4pfbf8zx4p7ajBOmxivubmYpACCAxXzKaAT + P18m2rwNG5Z8hNCTpqz9Id0O4YN7nzDQrSdYx3VPYf8Z2nAv5zYQ4jWK4Xi0S2L2fmAKYSWJ8FQa + GpYyOysWe7B5GO0LhLzP/cKoki82SJUkJyiXeLC8IsLDKVWuJPtFWiv9TKWH5zeVyfFeDMWyg3cN + guT7wntrUIpxBYMCvvvyhLm80xLhD29jH84o+N5u7SqXUwgIzo5Ei623/8vJuwE3sj+S9H0Si1+S + HRtwGJBG7PvpPf2qLOrUS3V84NvzvAeLOcEF7lPrhGPIT4CC89lQ/YelEEM642mNaTer8NaRUH0s + W48sWo5QqMUzOkbtfuNHswxK/p2RIOD2/soligJ5bTcjw3ZtX/hoSQRWWaRIGy5+wT7PrwGd1FeJ + TuK2JXEnj/BgU4z8p28kQgfEBupnXyeW3wQJ+fa4/8ODcKaXe0JF5zqCG+k1FAZumnyLjmrA20cS + 2fhGQpu3ZwPU1xPx5+eH/Rp+gVA6SjvkBU0ySfPkxzC3PySElZxPTGZ9ptSpici2x6gQmYFrUEZl + sOFxygR1iSz4LAsn3K0O8PE4czeYCxcX+S7E7Hc8zSXMvIdNPMO4TCQymvQvXxIDK6PP+CGwFNUz + dWQZb39irfRt/vgzQmYumss9IRrwruIbHd/B0q6zbmiqCN+vkJzTK6NO7Svwj/9WsQpa/Kdnntep + D6m0nWHY8GjfRF2H0DfWfQnoowOLm3gg2gOt/vKgxxtsaxqRsAcdoOaFswDAnYSMCF/AVIkKhTur + nUP2F68P3gvh6h1vYcDND8Be65KD5vuMiA6nnBHHVjk42+mXnIp5P5GNbwMm/EJU1dSfxP7k9jAg + 4zX8nEbNp32YaernNRT//n6uxc6Czut5QPY9lhJ2i18x1DLRII/bqUvwlq/VoqhVFA7bVJs+V0e4 + P88lMdtrN9EjfNlgukYOOuDbnWG/0Gv4rZUBIUlaJvbHT7iQQ8jc9AqbOPcG/+XfsjNNXNe/HGz5 + Au/Qqkw/LqEKdOCvIVpefNv1MbYOFHu7R762C32+nuQe8of8SLQ0jpI1+awBNI/Ni2ipHExfwiCE + vDa+EVrxtaCd0G/8QIXIEssv2EyuFL7VccKKiwNzQhOqQE+BvnUBdk1Jujcj5A+3I/J76LXUrDSs + ouKTbtefp/n4SFL4u8k2Kj9o5688ZywwhA0L8YPr/EUnzax6+1gKObu/+j+3hKOiaFTFnCrt/Z9E + vhksDxIkuhq8E6a5qgfruePJ7W5iMF9PqgxX8aGTPMlyxhisBvjFkooQmh02PofF4CQxiokhQdgu + 7frCf/4Dco58YTI/IDZ8oGZGQXE/mNK373uQ/aBBgnQk06Kw5wDSzIlQLhu/hCYHK4R8Vw0obF+6 + L+qqTYGm7AI86dYObH4ABiS5rSH808NSvtv4n+Ns68Hw//gx2I+RjuL39WSy+xQ1//DCLu2KrSUn + zHC05ok8FAEzou/cDvLfwEN2g27+nJbPFJTfVEbxapqTsH1f3fIZMVazbVdtJBnc4omUnE7Y/Mcn + tvggJw0V/qpM4AY2/ENnxw0nWp0vIbRVJwzpxlcnF3o3oClqgDTNa1smg4VTD1au4n2w49gvQ8us + lhFLQhq+YfKjWOmhwUGATlVBisVefzJoqCaS8+PWbPoxN/7WTyjqgjyxQhlmWB4agfiv+6llgeQY + KuCXGfOnRWqpUga18m7yEKH1+26XQTU52E2HEB1k1puEPLgIynqzhG8LfhhxkNOpldt06I///mZf + aOA41Jhs72vj7+8abv5NqMTTzFb7atbwlo4j8thhTpYGOBRU4indes1500IdrVNFa0iJvYxdwuZM + xhD2IYcCtWAte63yDRi39UjS6HkqNvwK4PW9j0I5E8x2LTpFg+e8zlHo5tzEpMjs5AnYPnIrPmz/ + 8id45y7BQNuFpjh/oKGIhY+QJR2vQJD2Tg6RgQcS8oqczPxpxapyzxoUFFXG6MbvoOe1j+33B8la + 92oIx9VOkUbcuF0fk9TBJklKdPy1F5+a6WvcFlKPfCvVfAGJ+QBgK5yQjte9z8D+WYHP/Q4x5OYH + Ww2zGmDzdVwS4/uu/RV9WEHI0ZZY+RGadG9ovLpsncZVUEwmGx2eg/2opSTkBbsVlsxMoeB8KDlp + y7ul9dVOoYiUNaT75x4sqp5UqhnTXQhe99NEmdE3sG09HZXcZ/YHsa8h3PgACvOuTuZXc6//ni+x + 95+DL3WFlUEBrz16JJH5zy+DN9GGJATm2i74WzvqHx8yzVZPFkD94A8v0bF5KOBL99iCWsduxJth + YpK1JblSP5OZ6G9eTmi3O1Hlc+KvKBH5tljbW7GA0L8PKESVbS7WNlVUNOKWnMbjgbHTccbw9B3Q + xrfzgold5qi4ejRIe/eXidRwUiBzL+9/fiW1DImD1za4IS0v3El0ZeABrz2ayFwz2ewOe7mB/sNW + kB8sYrIOszZAsK9DEiqPS0FFZ8tH5xxjASeOP7s/iVNU8bcS44zq4ntavjVIyscTmUois/WjFRFE + B/tOTi0XJAs6ZgY8P1AcKre97H9Lp+Shkd0ztPltYPOfPNhIhycxDsau+NF3Uqubn0r+9BGvl3MH + rlbJoeOJnBlfi7P1x4fReeND9P0qHdjP+YHo/cUA//K//P4qJN1VMGFqpGTgz28xlfBjYiFqYlXw + xhIFcWklm9+kqX/53RvZftMfbb2dOU7JNdO7lv5SVQb18zyjk5cYExX5g6HejkaBtF56Mvroigz0 + n7Eltr+v/dkRjU6Vl88ZA+1+ZqJsXiL4h8/2L6on2oOrCAVcPUM1eP3Y74K5BfhWe0FOx1996TjT + AP7xezdxbiYplBrD1845YybybTID6oeQZMcvOXqX0JfwwufQuJUacsXzqRBYPmh/+hgPTykzVzEk + Jfjzt0/f19a1+8wUGMVySm4deScf7/kLYCr1DdJi62Cy51331PERRyg4wn7zf28ifNfaA4UXvU02 + /7yGf3wvlYzeX0+K1qndcMs2fhcyUb16Dnzq3kTcrAFsIsl2ou4bvcgpeJ2AFJ+VBn78qkfBhs/D + bbECMD5HHUvZHE9zSzkHMqVcCKovdSIsX72EB3vBpNRPEVgUdh3BC9IazxsfJXiBN/nelG/ia/cV + DPf+7YDm8D2hCzx92YglK4TLk97Dj6DcWwxf6gjH1UpRsiwArAc2zPC+FABLbMbJ74JFCvxF4Ygp + 7i/+WnTUgPsx1kPxas3+ElSeBbb1gozrwy/oXv5iJZTYmejKg7RUt38yXApNwruNX81cxwWwd3pj + 8+NGn3YCxsojL010FJT7RNYmh+BqHE8ojOUvo7pqL8BRjDHkxdIFS3y5U5hN+xvSpe9gstCOInXz + A7HwjJ/TO/nsQ/iBihy+u2U7Q1zcuz8+R4IvlwLeOK/23/2To9/LCZv4JgUb/pIzj7p2nb2vDYSz + e8Pbvv5WOK0CB+GtJ1iIjgmYYH7PIUtjGNJmkJK1s9wAkpeuEd9Ka3PV6B4C9XB+YskDXiE9mzpU + Ae6lf/xp03MWFE7GKbxMHU2W7hI0MN3DhGz6peDHfaUpPyW9Eddqh3bpksWGORZPBJ2FJlmX65WC + fK5KhIbZAtKGx/tlDeZQOHwuYH2MkwOepaWTqDY3/2CQ/8UnMVJn377Ot6/2D391x8XtT63wDWx+ + AkLF4+xvU8tSsDDQheumf/Fu21HQcnmFWZ63YPXH5abiHeCJ8zzfAf1ygw2N15cnR2gyf0ViPIK/ + +8mra5sw0msyjFPpHir1O2zXM3IhVA/JE+9y2pqDo3Gegk10IAErNV+yxXsENz8VJaFzNpeLeg/h + FZEC89KPN2lvNjXM7WhARzaHCbsmKoZ//lCF2isgzuFVq0bhyCSo2MA2fLkBcSivSHfICFaTBBpY + Lxr54zvTxo80cKpmmdhWh4tF2t1C2J7OCXGTr9HysrB6qrffqoc/yZjWqQIjvHKlEH49XypoaOqa + KnKjH64kbie2NjkHN78BbWerWnreFQbcp0VKzP0wsvlxOPWAp5aE7mL29Dd/BEMhaV3ieitrl0Qa + bNC2jk5Qy1/a+U/fBb/Pj3jyDxRsq+/B8Tls/FV1E37Lr/B9LSViizJJ1gMvOKr8zhj5y8e/l2v2 + 0CGHhNxvfdvS9eAY0F2HlZhtKRYL9GgNI7BqyJnrX/t3P/C1e9yIx60NY5oreFAr5In4RZT6FO1f + ivKTzzhkxnVg5LXKOXzU3C5cNn9W2vg0tIlgE2sfrcn6NPMS7kk2EnfDN/qXD8vZXJBrDXmx9K0T + /9VzQlidglbcyy8MdiOpsXRTHoDtrpIC67nn0anuBsDWSdFgF7dfdDjdOHNRf44IsSak6OIfXuby + TC8LbP8DAAD//6Rdy7qyMBJ8IBdykyRL7nKTICDiDhARULkHyNPPx/lnObtZnoUeTNLVVdWh+8ad + 5lN3TAf6qpkefbzGxrhMN3XsynmDU2Q22HynYcYu/U38qwdgJU/dkDn6Qw9KvnTI3Xkb9TKacwCc + RTjgv/gr7+47/9tvcrGmb7bOfuoBRlVi4v0krv7n9/m3nzsLuhTSadf/aLjhAmvpOVfZ7fQ14JFF + B+ww3JgR1XswkPlyD2K8m17d/TUDJe5Zm/lLXzrkwbnKn5+Jzf7OqDTbYg26Vl7jnW+EVGufJdSp + ef/z08IZHAIG5ToLsarcW7B0rzT685u9dWElwIN5gFB/Xrtdr6j1PFyWCOVcK+HnX33DcdIWjnn1 + JMaDvil1nKBF3eUx7PVfCyzm8d1CM7IQuazoSBc3GpS/+hV2Yu9d739L0L4zH2L07x788zPg8dzP + wq73mG8tBehogOe8ReajZvOzmcDB7YT5tLdB2V7tIv3F+/57I2dMVCU57XyJnBMR0bZ3I/efnylH + JXXo7T70UDyyz/l09DxnjRs1gCmxIqJfTuYwF8Z7hBt1Vk8M4d2hl6uzwEw5Jh5AwgGMUdNBuPux + xAj7NqT+rc3Bn38Bip4H//C2wzT3uAoLziaotwCeWT3HuLsHlO567V99mJv8su53/Q2PffIgyb5f + NfNMGtgObYDjd5fRFWr9+JcvsOk7RzpZgWz/yw8Sn+nZ8k7EAgZAvXhMeobOco1nF4iqOZPzcLPo + 8vj4MzyPHiFWOEfZP379f9wogP/7RkH48w9YSbyppsTgKnj2c5FgHXQh/ZbAgD9+lEjgPkm9PF/f + HnI188Ln0uPo0ixWgUidUxK12XngWvKboVflC0k3QwipI78j2N6vNb40VkUpzNcvNE1NxgYTn8BS + avWCvt3Xn48rNTI+hEsqHrplwFbRGuoWDLIA8eb1+LxVg7Ppj3JDrfstiDzAC6DuqWDg7/t5e7H4 + ugysbawi/DbXm1e5TzwsWHYDMOD4S9zXu1Inq2lEZD5mB1s3MwZ0hZ8IvOPEJZplTvUGHMeAMDYy + j/6oQWkh+zEciVYSC5duPWb6aMNbGrreB1/uwyRuVISuUOczv1WOw2zbsYSPcfXwq1fMjJPSzoYn + m6oe0L2VLo/4JsImwJgYUYdC+tW9DXxMzyVqddxHlQ7bF8VqVZAbd8XDenMeC5LuUkhy5XTK1vLn + KpA4sYRdXZnCBefLF/FlpJNbRegw3ppXKWTX7Ocxv1+VcYqfKOhtNy159NSoacR8DjBrBuAdIAtr + OtGoQbP1fhF5tdl6TPNDCdFSp/gSCLeM3z7BAeUNE+Boe+5zIvc5O+F+4cswixxQZ3w2YNUYnjhD + oQ3zmOkF7NLRI8HSeAPrL9MCdZ1tSFSAxOE6sQ9QqoY8lgrjAygHRghv2SkmEn1NdO0TRYJjBM6z + QOii0oXTZpSHnonVrN3nrl4dCeTbOux3XAd1uTi3BN6WwCb6Z3QH9vOqFZSnvUC0fuSc7fFaEmh7 + cU1ugb0MBOZrg5aCPZE8w2m436HNobB8epJlMszo9gkgOE6TjPXwJANmlasWfZ5aT0IyHocVXf0U + tvewJo7HZWA0535G+3nHxsk+0FX0yv1duR4Q/RP06jTp3xyJtXEh+JB02ZI/PAXeH9oBv7hLC5iz + jmwYFYJOom8QDgw7STEaUnUgrnP8OosGxxh+BMGbV+V3Dof63kci+WiIXN/iO9zKYQ1gphvJXMPa + rv/2CyZK7BPvtLRgdX83BZ37NiQ+olVIuqfSwOcGFWKUzJNub2ErkRLfFpwQ6qv8k7vNyPN0SM6s + /q6ZQ3mR4PZ1AbbjoR5I36sMmlfzRy41kVT+dHgacMNzQKQR3ms2Rb6G/r5f/6HM4UJBtVG8fWPv + c1AuAxsosoTudZBg9+y8HcY2pwBGZelje8eLRc5lFxLUuzgtJz/bcGho0P1cTfw4dUJGc93k0I4H + s38Fn3BzLXbvEN9bHrL6C+D1Mh9h0K8JVt++PzABCmf0+VHiNbn/cxi4cBssN/VBLLmQ1HV1lwrV + Vpri8zR/VfpM+hlsz27AanPp6ol3FhM96+dEpMLQAVvwaBPpW7tjg1ZRzZXbQxBxNsrY6QjNlvYo + cnB7DgO5CLqccahoIOzhD83iB+yX1q+rgdbx2JGL8DsMW/yUfLQO95d3yL8VpXyTfmEndL+Zi7pn + tiK2UVBcQhc/oDsDGghxAcnlxXrH6/jLmKYrOfTLxNzjZc5SuasSxei2ZUdPbAsvoxb3nWFwHDgc + JkrnbHRoA2gv/eIJHv4NVAvDAu3P570TJhpYNn8LKAzSkjim04MRHt8c0pPvZeaet98wx3IGoSFN + Enb4Tnc2zft6IvgkD5ya6xWs10eYwCIzGGIDV3dG/9yIYOzoZ6Zq8MnmoRNKGFq8jy9pF4aTJT0C + 9JcfLHLpnOWkpimceHAj9ukZUubObjP0DyMmj5hvVQqSVw8dUDpEGeIvpaRTC8QqeUZuUdgMU/CN + WjCKgoZtcVOGbek5Brb2ISKX7m6HzG/cx5j/uga79AOyVT9hG/JlrBM3ZXk63lMjERcCE3yVinDg + 976acCRGSeRZl+l2Ws1SjN1PgoOX8w03tr4xiPlIE35cVhBut0lUIHxZtz88AKOWJDOMup+NdYH5 + qtN55hTkQJUj1vcMs4WxQQr/4ilyHrmzOW88wgFHX3wXp2HorbPuQfljq8Q63KqB+lIJ0dfgfxh/ + vDpbm4edwEn/WCQR8THbpq+pwGv7crF0BXrG5wRp8Pnm65mtrVjdzDwR0DX8zti74V+2FP3bgwI+ + /bArVlFIsgpwIH7xI3HH8gz+5bPFOmZE6X63gc+dd4Fywfh6PPIVh93jA15XKccB//6FC5oFDe35 + EataOTlUV94z4p+fjOjZltZzpQMO8PbtjO9v1DrLOPgNMsQXnAeBdynrpOGCgnutEYcVQ0qN6XaA + Y3Q6Y7w+arCQWRqRoHs1vl/LF2Wa6GlCyWVOOAnVcaDa4TyiZY48Eq9Xw9m2chphnfczltb2Dbgv + L9ow6GlCsvj3AFsZfxr0t9/BPTUzvmnqBlpwfJC0yt8113/ir4i7LiWmM14d3hlvDZQ/pvovH1N1 + NQq04xMJDkJFF/cQGajL8Gk+9C0Ot/19d7TrqbkLVNVhZd02YfkQvjgwWD3j+NcnEt9QYLAPfIcS + i/uO6Hw/9fOp8NSaXzh3hM/i583MYAj1tv28GML7+MHYFZSMjTlPAubcdFj9FoKzbF4tIAh/Kom7 + 0lQ3+denSHJcQq5VVIMVhncNZQjb5LLMH7oc2GSEYzkO5JXNIZ1qV7bhVdRjjA+JldHCOraQulPt + HQEb0KlUlhQYP9zOh+YFahJCIUWXdZm9Bl/f2V8+B+YpnAk+NVq4eTXPwdmqX0RNFEvli88AoQU0 + jH0Enurcn+sGrWx1Ikbm0nphJylCzPl7xFattMPWTp30Fz/EOPs3Z1WTRoIqT5h549/nbEsiloFU + 7Tvs7Pxqs866Kz78QvLoktgq50AoidV1DYnC710QHVOGEH24Gzm7gZCN45B80R+/K274nHEN6FsI + teI655JnhpvWByXK1MIjXv5VAGdVpxI+DfU4z9r2cujf9z20Pt+7FEfZ+pQkH5bfCzv/4fMY7T1G + GiMbiHKUnvUkvFIJLko54OiI6rA1W8VAkevkWOp4FTCvVebQ95VyWLcp64zibPSQXyEmem8QZ0uW + yoanMA6JE5p1vWCx/kL6Klx89mRrWFyeFoDqASWWenOd1XuqgshH5Xv+WnQY1sSzRPGuMz2J9Yel + 8jueAjlSG4/9jOMwDsqgiP/ihcsNsD1DVAD/1d+JUdVYZfihqOBlLh8eKN8OXcoyMcA2mdIM9ZzQ + Nb5uKbxN75Lc8E90VtFrfdA8huN8HI/vcAvWvoRFZBGPzRLBmayT0MB1wQePhWGeLd/fUQF7fHhc + dJacSboBATZjsldoqndGcl3iQHwzW6xXJBzGIw4DaJUCh52NlRzufI1jyEfVGxsf4zPMS89x8C9/ + hndPBVzpuxDIn24mSn10ws39vHt0WhYZ58JVp0uVXFpQcEJCbtH0czppLd0/fji/DkkXVpeY+4I/ + /SAfi45ujzevQTIqCsHFtQ9Hp9+8/+5XKZxrygZ8CjVgv7CLXlO2yrpti398UPHcEmyQ5SNI38b9 + Lx4BZW3fgHodBvMm3Nyaq+d3glKz2bDlGLa6DdHIAJbZfli2DgrdxIzhAEvtJ3F3PjtRx5ghN9f1 + H94Oq5NmCxT19oVdzrzSdQ7ICHC0QWybd5Jt8uxIcL7d1FmYqne96QgmMCmGYufzTb1AY59zeQ86 + 4to+QxeafWyo/QSH2J6oD7zXTgacEv7pCVMlD2x1Ji4wZnvyxEccgV2/iVAdkg/Z8Zcu3x+vwKt8 + aIhqRYGzWGA4wGRNzHmZhxb8y4cZu6SkaF5g2PmPBIdF6khBuJiuTIIP0Myi20zp4Zdt7RXuc1p0 + F+d7Pl/gctjgw/C/HqSOQAcdyhIamotOgu4SOusc/EaoP86Cd3But3ABAItQs/Mnuf1qoR7RLBho + PRgmtm2jrJdxugfQegUDUXd+vYb0KYJzwRFsJkMMaHA4GuKuJ7zHAwKwHJRAEjWTCWcGDzXY9eoi + au2DI7LVlCFRjmsFb1c3IBpJpGw7prAA7D0+eUu53lXyEfQcTq+lwubwmIZNrG4F/Fn7Ve6LE4Xb + 4QK8v3w2rx0V1T9+LN4yEHvAdGywnN9dAbvscsIqVYGz9A+UgJezcR4bhbvjvWklZG8zmcX+JoYL + PxSleOfKkUjHfs7o3X1zUHvOqze+3pVD4j7ioJweOqx/xrGeKzfa+1NV7ZzZ+SNbGQoD4dj0Z6yd + xQ+gC+fOUGKOI9nPVzjOemhDtj2qRAcvXh1+VjmjnrUu5Cq8V2f8p98yEBNZ7DW6OWo0g4ozDXyd + X022hPZTQTueEhyiG2Wie+xD7+DvXfeNpzMr8dIC9jYS7OPEo4tAlgKVn9EmxviUHd4vMgi5T97h + YlCu9IruJwWKzHwn0iPNhoXy1wKksq147/l3dKh5WG0Q3+z2H3/lolJY4IE7i+Tcim+H5l2UQ8Yr + Nbz3b1Z5Gby+MO5Vw/u6izYsA1Qi0KWzRy7ZoVLX1yFOQdR9bHzOSVkvOSPGEDWeg9ViSp3VvKoS + auvz2QP0jsL15H8PCGTu0eMX+qB0eKQGnGqJn0/3az+sZ01eoORyJ2yymZiRU2oVIEMXGytksTJK + BYZBJq7Wf3yT3GLxAE/vcCTK3/m/TKiFRymMiLOxpUp1aElAfsQvbD8WPluer7kH9rBdvU2xgPNx + DiQFr5dqYz1LBHUN6U0AWm788L5+9ZbazYx+ywbmt3LR6PaHv7uexc7PhXT5jckBGqn4wAaWQ3VT + gOZDbjw9iMOoP7rUH0NA1cI7nmAUXb2sHy74p09vNr3tU+icEv75U5FqlHQhyzmBngPP+BpJuKZo + yQqo/HK88zV5YJw1ZSAjmZjcj+fZGQ9KoEBvePf4lVenf34SevqXB5HoaQnpwOsajOKIm4c7NIfl + SGcBCqEDPfFwFcBWcEoC9/3B+g8BZ0afSwOafarJqfGXcNvKzwiZc3OcYdJYGceDRw/PSPyRP7yf + Ys5Q4CULdGIGne0st+ZVgVfPzVj/BLZKP5eHB83FZbC863mqnBIBPha1xobQysNGp/kgMpKNMbaJ + ly3BQzJQc5A2LKmXOfuXL/Z4xu6ef5eyihekBnxMdGk1h/XQiD4ohKoi1q5PVp83EhSgSvaEVPrU + //DUT+851k7pRWW76zsFfRmQWYxgkBG/CKHosUTDeDzKGVPsU/f49YCxPMAJkCCtCyDdUguH756q + i259Wlidfyfvw11xTX8TjE8ydvS5fZ8OGR0egQHjFztiR+BdwOXNz0WyoTnk4rwflHrkMsKIbg12 + 53sI+rcglrDko8g79Y9GXfzuxJwa4zFg6fN8h/Qs+BXMyTsmkkIdwG6PdYMzqXIs6UsD1gHzjUju + A/ZOiY5pfckGDvzx/7P1+zlT87BTmJbT548/gnn2mQgRjpyxhAByVnBENuQC7+aN852Cvcesdqr0 + QiOu8tr7CX/iL9z1J36pyQao9oCGqH0D2aN3T6WreMpLeCXpdedjo7OopDbgJytKj2vGWl1x3ZSw + e2ga/tMXEzBuDAyOHbfz+yr8i3fUhatFlDtjgz2+Oehfg4rI7EGsialfGfSzLIqvVaQCvlaKHuqo + GAiWz0047/wEibV2mZGkqJS/L2wBDbLwuIBsXv/z50aQEfzP3+zaMoffqyp7UPLabOd/OSTcdCZX + 5aKBJXiYxmnnb/OhvZd0U+tVRJ0n9Nh/oSvd/cwFHrdfOZ/s8VyzGav3cMwYl4TV8U2n8HSoAJeF + GFsISM4iRJqNWHi5YzXnPGfT+XCDegxVkrsPE3AU7z0W7JkSc5XvdNO82YUxieUZxtkto3VhH2DE + JjO2wOaqpDtzIvAeoJxFcasG6pgWhKVwKLB2RHW2wBpVwBQ2FZ+7SK3HPJjSvefReX9HM3UW4oAN + ENS65PV7rWC1mlEAzgZ3vrSudC2nsYc+0nSyn3dnq+d3Cv/i7Tw4pN4WY/BANcARq45TqNND4Gy4 + 88lZ3P2tv3wAT+CpE9PDv3rXR8xpaLCOL/7vC6j+RRE4yeM+dUpVQz7F1wPsPllINC0y66UYiQBO + W+Jg97kt4J+/SYc1I9pjWuqJMLD/08Pe99zzA7UWT/vzKz1e8Yea15VuPl0yXyf30osBuaBlg9xK + BawSW8nYR9SXoLlXNjHZLM2WI84C0fWTHkcTHuuZW16GuMnxcz7KZy3j7mf4Bd/7wcA4Fj2w4XlL + 4NNF2gzS07ume/7de04ERG6ON6f9qx/85fen836Av3gGiRL5WNJkWpP6XkXwCSVINFBLlBtRmsA/ + vXliMUspOw8jzDc6EEM7fofl4jwTmOdXBVsg6erpldqbaEaZj43xePgXP6csHivs2n4EVp5rErjA + 8Ec0/9U5W4Cfew+RY+R99v2nq2rs/BQ2RNUMu2YMgTKQIWSdT/1DczidDxdYHI8B0XL/9+cXjvBG + rN7z7aYDJK6hC0Fg6th1PmrNN/guQn/6LMSIk7keya/U4PxFl3/naefzHMy/RY6lqjRD1ndT+9/n + jTKQBhZk70qs2zwgtmqdBzq+xBHs9RmsMV9TXcqq2GB11jwsQe3q0F4XXNgy5Ipl4b3++ecj/J0i + m+An/wP0LCQl+NtvY1jjejt59At/mZBj6YKBs1w5asBINaqZf1q1s1iPu4Kah73f0OPVmp4OTw2O + zzzG6R+//9Pn+/p7xx3/xt2fgVlVGR6ba1W9DduLg1Ot8ERR5DKbMvuRgI8CrsSDLBxmBzIKEt+F + ir17eQMLJ/UB2PX3H99S//G53X/f/byqJpt/9uHgH1ZslkoQju/pGgMySgp5LLKX7fzYhduS3rAV + qKrKVuefB/7hyU8Swp0v5HDp5HD3d616k97yBmk1v7Fd5XJNRCdO0J6vZzivXDa9yiEFwXssiHIQ + KrCMuAkA36VHYoPoBeh1uLlg9//m48xdsjm4ce7pz8/GcTmGVPbrGO183WOIiOpuDn4zHOP66h0D + wwJ8NcMRrhrHY7u/iRm9h3YBxUSgOPPmtzpv5WeGu970tvrT0o2b/RR1Usni6E8/FJySojRYXKK9 + NVcdXxlnQ2B92Xl2bmy2jhdBEIX0LJOzGHbOev9EPrzh5owjfJVD3qCHL+jpW8V//tw2U9lHbt0f + yNlvSpXwz/UAh0NS/KvnTYsZN+AyV4+ZS97VsN6tH4SV5Fje4RR/w9aIvyJcJPHtxSe7oGOpDYuo + kRh4HzU/DWvtyia8p5OJtZbtnUX/PA4QBV8Z42wOwTReBBGeCvU+89+7XXPMJgkwXRlt97cSlV5X + xIA/fuu4nymcr4XZgm6ME3xhq57+6UHhr56Ebw4aaKg+NPin1/bz8K8ehJhvy2NTPDd1l7ZuCsFP + qvf1LMNVTUYFDvzzgf/8e5aZslbEctli69KVwzoKHxtI2rXHcvnZ/vhVANLny/caIj7rddLnXMQu + Hok5wUal1JMa8dCab3JeL3nW16wiIXA+DDNjzo5KLpVWoIV60yy813r40wNQYnJ5Fl8nx9n9gwR5 + h/XwV8+oef2LYlDfpg4b4/OtLoNSK8CBMrfXVxXKvlJlg6M9TcS5PoKMKKdE/Icv2n7+tltwGaHT + 0gpfKmmm67m9Jajxfzrx3tInI8jzSogiwv3pkWx+qeoI3dG9YLV+NNliPV6K+Kevl6zG2fK67T2A + iqHAugstdfnamoR6J/GJe3ZkZ+enGvrLd9eOpio1cA9h/1RSj/H1b72O0bWCT0M+YgcNVzDPLIbi + P33cyLrz51fByisPM93rMexHXhT0ieps/nmZq27bz4jgXr/0Go7n6tmrjxyo9FzDrz0/7fzvC0HO + WuR2XTxni37XBF2im4RfJSPR1UnDDUzI873fbJr1OK0n9/SHP/bnzYZj/fEEyIRp/VdPqGne5Tko + DDfGedJY4fqRFwkqTj8Qbeqwusi38gua4IKxMsuCs7yvkyLiaO9xttdPGbnAImw1GWNjnkk9KYGT + wKbmH1h6BCVYH5lqwy8LXkQ5FGW266Ed7+D6l7/o6nCmBkcKj9ictQOdTdERoXjRMbH8aKXzzj8g + mq46NgvGHhiLdaK/ejFx5zul45/+AIGtE3N4XIYl+eH2/7lRgP73jYJh3Lu+GktVr2f3MEKbXtUZ + OpcuHB+3mwHphY5EXZRr3X17VECvOGTesR6+6pLbpx7VT8Mn9hK7znbau9SZ2Pxz7Oaa3hLJhEIf + Xj0atTJlBfJI4dF1cyxbj8mZSfZIoMuahwufW47DqANsgdylylzUV8kZNSYtoQZqiiUYkmwNgVQh + SUQ2Ma3pPLBDFzao5dKW6J9f5ZCyVCs4H1nRY9hVCdd0elYwtw4Z1j8/RWUsxdjQHUodlpWIG/6e + H1pfZvZ4Qd/CVfPfB2iXZ24+bOdu2FoCv4BldY/4i6RRWrZdCmZrkWY036/Z1hjdXs9kh/n0O6uA + U14tAztcMvj5C1LAPwOqIPV2DMjFs+esbc1rA7OoZIk5DageI/UB4ZUklrfdx0Zdz8+tgOLFkMgz + PS5hX0/nEv2Op4AEiShkG3NRRnj7ovfc3byAMk7Wpkjx65EY79dST3Mh2CJIvxq27qQC/HkVCuQK + sUPk+NXT8a1LHOo2DmEjlyTKVbesgdk0yBjbcuVswHVLCE6dj7P73RpYJdNTOJ5FfV9/nG19Mkbw + rWgWNt4eA1bNDRX0HG+EqFwU1SufejPs5DYk4Vy/B4Z7fnIoJeNKXts2ZMyHEw3UaibGgRapGX88 + KD6MwrIgN/qA4bpFO+K/W4coiZiEHB9rAdK5QMeREL0zpr2THqYaCOeG7F2JmFvbwC3u1Vn0mMJh + HrJgwLTyc1IkrgXmC/OQoOHFFcnd8ZFRHWYC3G5NRJJpQMNkY1NDZhf1JHp+PYecVyGHHRkI9j7B + b6CnzEngEo4Pkt2NCVC+QwtkN7QQqXt+6PzM3BQFVqPjQpNvNdfBd4I+BXRI8Hre1fXye41QOnfK + zGQqdhYeHQOgFY2OH2XzcRhL8TaYPykkqrkIDi2oy0H2aHpE0y46WLdISEE11uLMhd9XuOmr6YNT + MlokUH3GWedisRHYpYkodNwwd9KSoqd2DbA6BzpYNtdQkM3EG9G13wBm7pD44NK+DOzSHKhUj7AA + ByV/4SKf5ZAp9zvjUVAQcqFZGfLJ2xohXMwvjvAEwdTBXIAoS/xZ9NOGDotxEGG1iTeiHyU7XJ+q + A+FodzwxvrLpMHR8cdCWlR57SvUZVnGYTdha8gtLDrgDZh0YGxFb5YjJeLAm5y5o4N3afOyHVB54 + pgs0IPjnGDv1I8nWd7LFKDzF1bx4RUzpmltfKOl1g+WPJgxrclFHBC+CS6z0UGRrR3kFVdzEeTxL + icPK6jUH3wSHHpu8tXD9EjeF/CwO3hWVbb0pr5JDTvSccKFcLbomq7nA7fFgycXLbId1DgSKivny + sBLcHyGnt30KJf3dYJlD1sA654sI849nkNvIoYH2y7gAN0UKseevFPJ8x24oGtveO+D7ud5+TsjA + +coU5EJsrWZ+/HODNj6IWPleVzpOSrshHPgN/ns+cktMG2ZO2hK3vMUOd56eCsyGuibmKXBqvmyC + Ai3yF2Dnkx7pmq5NAYNL9sXXZTCGRRPeBTKH3MTZ+OIyOsjlFzmnLdm7Tl4HTlBtCA8zG5LrmPaA + wrHikBD6NTYPa5ZRYCoa3M8j1qqHHK4jZ6bQxPaM8cM8Z4t4hy0E9XwlWh0/BnILVxdqh0ki7nGf + q/xOtggd9OlMbJBV4bgujgEt7XvD+JXaGceYdPsX/5HnXVRmTvMZdsGskL//T7CLvH/xxN6Pbs0c + 1vWAjr/iTIqPPACSemYCz82BYucD7yE18mkBpdtWng/ZL93KNheg4ecyuTjC4Cx/eLLdvhGxMxHQ + lTe6GfhQk3EumaHD9prIwfWIT/NqmWu43Ns4BXUuvXHK3cO/8yWhy/HFYK07CfXW/uLxpB2IRLyi + GAEd3N8IP62WYBkPvjp2bZ0iPREhcV3EOotDoxg8bzeZ3PtZGMZWU1pID5GCHyrbh0t8/LYwqDeZ + SLnhZmsbTi60PtvRW2MPq6umIhMeDzlLEsbLh3Xebja6+8txhi96yDbGpAsE55THnq3kdNPu3xZN + 1qXHDh8ugCp8F8D0YWPsXPVv3TuqWsCjJWOi3qLDX7xFMAqrYl73880trzJGuk4I1nY8oGERtTAA + TIFT5R3Wm2EyPqrw1/UWcrlmNBauB1Qj7GBdt+psODy6Eg5q6eHXUbBU4rVRgoKVFv/WlypETVDx + 02SSv00rI88AKFDPlNQLZ7l3Nu7yTWCz9Ru+SXoU8lWna6gFVwGrBvEH6vLeAtcuEAlWL+eMkYzF + Raf83eO7sVQDnxuGCykGNnm4/TiszuEH0V88e8JjBBtszyl8Kg5DnKfY1rRlEgUeUWbMsPjYGftU + VQi5d9IS0/WNgWOnqELxVHDEIdfKIQ85+0LYGqZ3gqUbbgu9xJAGSof14T7VLdYogxISrfjuV8jZ + bgYvQqshPsapfhyWsTtriHuF1ix20oluo5xrcGGAOrOJb9bTawA9zOI+xMblkzhzfKc9fM6vC7ah + GGRLKYQQDtl3IPGFo3Qmd7tAxPBuRKtMvWbo2x8RERuXeMXlqm4vFZp//IhoJwnRMf0mHETXm49V + 1ijr9f32XXiu+BvB+suue88PIXyL4Rt7FTFrmnOLgcghm7Dyet4dqjpGDPrWr2fEOq7DwugpQvPq + X2a2qJyaw2PBwEy+tVg73Nphs8VP+ZdPSDx/5nDJDu4Cy4HM2Eueer1+PLGB0WEzMXbWadhUPl+g + dr0JxHXHUzhLvevDbmC8v/VQlwfqNDFycgnr+3rxh+dSQLxlrxneV1IvxtMOwHk6aASXbTGs51v0 + RUfXy4n0Yv2MzdLchWNnECxnshJyoxxpqKHjm/i3+pJxJLsmKHz7OtF4f3OoqFITTooHPbaQInVl + K1MAXzVWsZ2JGR0PUy1B2VVOlxWVZj08kNaAyzVP8B+fZPIUz6DCjYtvzHMY1iVGB9hRYcQXWVsG + Oj6HAtz0hZ/RrZQGjhPlGJxLwpNz+NHqRU9ADHb+Q1ymtMONjzUf1ECfSPbsRjCaX4eBzvfjECfh + TsM6BWr0930eyFo9ZOWjXcCgIxJRZb8E2wvEe0VcsvElmi7ZeiHsF7p8kBMrvDghX45LjNoitrFz + jauQhoOcQ9ZhDCJ9RYMy3Px2oZ3ICdn5RMa6uN7gVVFlfPHztZ5o+0wg5M4fooLzGayF82aQJUAX + u4YlhtMPrB78bco6H2Knyuh6F1tIbJnD3s5P1o4eFdg8yg9WnaoGFLhXCZ7Thfe4CNjZelK4Avg/ + Xsfmqf5lq4HaLxQO5QU/b1jbb3BuCuiYQ0aUx+TUNFJQDuZAvOAAule6aExQQvLOJfJkp3rYTk7J + QfMi+1heoJLt/CqB1IKOB8ZlU6kCBPf0xwfPiEV0IEQR4J5/Z+iOj3D6KPq2VwiO2Dw280AlIxsh + DY0EG6Ig0PnklAwMifkl6XzTBsbcFXtrn70ZeZmt8kfl6gPpsZVYDqEDlqrrvmBfTyKh7aWu5Zlr + oJdziJzN1XaWe3RKwTDNFvkXL9MHMrC9nhG2z9GXTrJIS+AcuhYH669xloRVXah6h9qjc/2ul+Gi + ucDjpRMJnodzyE4XmIKOiiPxPsG55vb8ILLbcZnXcydnXJzbX6iWjoc9rpMd9r3MPjzNnYnx1/s4 + VCuvCgw55+axPRs7C/eccuBy3uSJnMEPm5JdRWR40T5H2xMGQpMihnLssaR4Do9hYfW1hFX0fBKb + 1EK9TNcDB69cIuz5nc82crdzeLcWH1/BS3bYZi5H4AlaS9w0moe2a6IcHUq4kduxkulqnB4t3Pm3 + d0jcjtLc8Ly/z5PX5X0Kt+FztZHEKg7GIpOqQ82uImozGxH9Pvt0cwdqA6mkGDvPZHW2H662P72G + ZZwyGcWnxITiIeg9Vvs5gHupjC0+rj+HyMX7NMy2+Kmg9xRHIv2cql6vniygfX3/9BpdKxQa0Fa0 + BzbSgQVrM5czND3jSGT/cqZ03W+DzJ0IyB/e0VuNA3G9qQevkfsv2FKrOcCJ+1Iso7Id1igLkj99 + MbdFk4Q0Hj4mKAJW/4f32ywfN8C8e4ecsTo5y69eNvjWQe+dTugSbjCqEtDoYYd1cvqo6+OxlEiS + Z3XHW8Gh/OzO4gjcCzYcdszWe1sJMMyOD3L5MVu2830bdv32Ivjy3uPBrnuU1pFDwvR8HTbjGpiA + CPlMjFYhdeNPQwmyqZMxjjnNWWLT/aJ4yjmP1IOh8nyHNlFr3jre8/OwTIfrBlCQHHESUz1kPWlN + 0VB9Urz7D8MCpSaBxvch4Ti1DuHIGzcP6okAsUVTL2P0BESA4eoMy8J0y+gGs0QUbDP2xPC3Ztvo + mSIcql9KNAtds+EM+eYf/zDLz5Fu58eiIJ4FKcbQ0p3Fg08BgLTRiI+2o7qGdtwDLFkGNuj5Q7fp + /RGhxQtPHL+I9qfvEiSvRTkPgqGF/Fccq3/4Kd9QmFHBPrfwuY02kdgXMyyLU0Vw7gTgITY/g3bP + 52B06Q17PM8684AuGkz4DGN3Gkk9VOXPg/0BVx4MZM2hclU08KTcCbGi7FWvba4aSH/AAd/l7A7Y + 6L5PaRjAaRZ2f2JbNdlGyXxVsE3qpN6UmROg9zna+Hy438LlVbYKrOYh8UQ/1eh2eukMDBuVn49l + W9TzD/cbfFdY2/H/uneKnBZIXvF7PkG81OS0HSNoq7aJz4CJw1Womi9s0SMmcq2uzkSOMhTjBxbx + uT1M6ppXmwbn9fjASnzyKZW9tYGfxeZmsOvDJVKvEP3x+yC4n7KNXesC/joY4gK3dbg1B9VH85Ur + yJn7VuF4mAZFFG9mgbXs8x0W49OasH+ZMT6v1/uwVMhooPqwXzseiM6iHNgD1IqvTozIvKt/fhmY + 2LeGz9axcNheGkQY+F8GKyOz0PV79wt4nePUAyvzduiffvvTJ7omnIepeHkcRJ/G/dO34UZHgQHI + 8red/3wGuuP/v3j84FFR504SUljeFoLVVlIonRAbnM5m9/D47u/tnGtrol0/7P6LPKzH5z2HA8fE + xP+KX/qHB+iV+AO2bl4A5s/tGMDHtrJeUV9LdclOiAFGFFYe4BXW2fOtJPqnQ42dhHsMS1deSpg5 + SYsvrfCuqXscW/HMG1f8eJU3ut2lIQVhI/NYfioWZUNgluCaOReM1UJ11ujuFKD/eQy+nH9kz+9b + i6L+7RKdByHdgv7qw6rbTCwLh1UlrH6TYENejXeMNCFcNCgkYNnWz8yf86M6fav7Fyr+eyQ7f66J + LYoSeN6LFz430zX7wze4uscSe1qwhut6/PSQfO/+zH1lUyW/3+DBnQ/j3f8cRleyXGTV3ZsY4feV + 7T2U+j/+hv/8maX6pD1MtPN53npqZUzJXBQYRc0FR+yqZIyKTxvgzt74L79Pr9+491IQILEeS5+N + f3xNRC7448vqInjAADoBvcc3zgMMVrz//k28YekCj2FnDwpEG7cdsNybv3qtGNaDoKy1GQh3SWXZ + ShKQ/11jbKdIHf7p4bB0Y/JsY9tZr++vgHy9GbGclNs+J94ugPBJZByaS6Ky9RsI0J4iFUe7fl2t + g+vD2jrtHQ/X738AAAD//6Rdy7aqMBL9IAbyTjLkJSIgURDEGSAiKCKPBMjX9+LcHvash3edu+SR + yt67doUqbz4vavGPf3PTj/PteQiw3NuRIE/2TGl/PahIHz0eW2D9NUut+A68r0wgFRkUtha7Ywn3 + 4lbBpi+PkSW6BVD2gn0w296Ykxu8ZqjYTjAfoLxvyA/+MviXr9jX+wpmVHE+/J75A00vpdoshNg+ + xHyFKL7GvLfxp4o6ubKxY+ZWzqY+PYM8fr/pKUSvYfOLK9SKvRfsfOPYzL93UQBaHK8BR9/usNL8 + noHlaXH00lx9tv7krAQHVVmpkSgzGMOs9qHD6pbqM6yj9TWvK9RSslAXecSbJXd0gWcXZ/pcX7iZ + 3a1CS9v4jK3jKAydSF4BvEjll3DmE209HJ89bMXOwydAXPan5+Cfnnb8c9sMOcl8UKiHhAbu+xoJ + baTX6Ivn2798Y9WBZvz5K/ikx34uTe0xAQk2OdKFlxOgCy5WKB6v7ua/dd6fHwYn8zzQfcm+kdhy + BKrlmX6poaikGc4PmYO5X96wlhvIm30rdUB/9m2ajv4JMDnhS2iPtx22hfvPHHleGEEIxJIa+wsY + VqJLMzhM0KJ67xya8Zm6DqQPbAaIdCdTvFJTVk7f/Ea33zf//CQQmOOC7+EQbX6qMINND2G//LjR + orAqgZ57WQjL0imaKznnALyqIOAuBxbRtTpXMBlu6ZZ/t8N6bVsN1reux27Al+afPwtOyzfCZoeA + yXISBjBohDGYi64Ba+CfNBj2K6XHW/n1WN9IEO7v3EDx10M5/R0ECwqJZtAjf3oxsRwdB5qpNWOj + rU+D5BzfBbSiR0JPdVw3s3u7F+A7aNuocy4cGKWuDNjqvamm/3jG6t/JhkVuuIST4kezXMKUh+YV + NNgUTZkxzfBXuK/NI7avoI/Wm7wvwK5NU2p773lYE0pb+A3GbuNbISLcXjbgwX4BrL8PWi5wx7VE + cucxwj/iMF93rc6je5Aj7B3pNRLV7zCCzY/Z8KLylmDvJLAqZw2XNydrFvRyCfRT4f3HH8Os2XIA + sR4I1Bjiii0xeAdoFuBK86bnzV6/uRCWyNSwruCRzVAbU8iu7gHjZmg98rZ/PkR5dqb2FxcmiaXf + Cok2UxrZJ8UcSy++QvF7+xJU0GL7kntn/NUXgt0H/fJx9QMDUqV+UOtiHBgzpFeIZHDTgt+2XvRp + OR20Ljd5y4cG9vnzJxJSf6g2a28w96N6Vf/8dSepj43ExVkLuWQVyeUR7RtJWqMO8mWJyLLlU1Ra + o61ngHvA+jaGbtXtg4/YenxTPZALNguuVvy9H6rVBzZU3e3bwUGLdeqrr8vAuMdcKI+0CoKXJcXD + aM80BAfJuuBMNxpA3pwZoh/9UXKK8aaPvEpEVbzSzY/5DIyvoA9t7vkI+D6fvVXxOhFu+wX/4dsk + LiWn6Nf9jSyrK0Ys4U0Dkp2k4mMW6kB0VF1EarfbBRyX8eZc1NP7z9/AOlqsXIDpKAL9erhR41Vy + Q8/tZe1PD2KvPzFznlRDlDlmbfU7uWnWvgDnP/+FKD7o8nUiIYGb/qbp41uZyyU4yrBw5BFjpbXN + MTeiGS4H7bXp34+3WH5uQHVOj1hziBf9i7fNj9r8Ed4c4/HYqed9OwbSe1ryf3hgHaMs2DVQZ8v9 + vevBaffgqSEcQLTAa7zxU2LS4OaozWf+LiNayVjh49TXbFEj1YcSWyB25++XMau6a8BQpy8N3vPZ + XHjl4qC9ECSByFJ9WKzzD0IqlwQ7fWGYfJuHKtKXosLxTusjlhbr+ne9YNny/QXwvgbaKlqw+9Pu + YM7qowrt+HYJWpDNOXvkqapu+mLzt4Zm2e5PdYXsRXEb7M01ll4z5A8F3uobxUC8bJf++fHUzoaY + zbmRr1CTGKLO5yDlhOi7GRRfJBPuktItS9qP0A2Ah13kBaZwv2Q95CpuxQ4FF7Bu/iPcXUOVROKV + bxb+cnLhJJMLWWQPbe9nDdDn+Kvw3lUIW5+7yYHjziT4mHFcNLc3E6L5ujrUSZvFpHI4Vf/8v+19 + AnbMOl/50w9/ftT8lz/91Zt4gr7DRFWgwUFPZxwbkmZK/jbMcseVAnUUHTMW4/4MlaLpiVSj/bCs + flZB1h/sYPnEfEQa4ZNCF0MV5259aJZb16ugfMMGOzdL9/g2IBbc6j3/9Lao31wOSpMIqeY8cMPT + IS1g9vInolTRL2JOaCRwrx5abO/gF7xY98ig7Pl7eleDn8eet6mDQsgLOE+E0Fv2bxsC8HozarT1 + 1Kx5cl/h/VhN9C+/mMuI+Wg3RB3p8CPyZnw0ZrDxMc7sFUeT+VV9eHfbgnoBa6K5NKQC6ie7I99g + XXI2xqdW3fQ3PoGdPfCpkjkgsNYKa3G4DCN76DNCDjbxfi2srR5QJPAP/6MT//VmfThDdGiAhc2t + fi6aYBih+DgOdNP/QNriFZVI1+hfPvo+L2oJt/wVa0GZALHYHQu47e9g3PxBIouJDdv7xaDGg/vm + c/xVx//nRIHA/+8jBYDcsqA9ClkzKp1eAqo/TsG8n4NI5A7PAErd90KD8TMzdtmnHHCkd4edevQa + 3hlkF3Xb4EX7olrDlLy5Dnjf6ogNfuIZ095xCuW5NjGOIDJXMbILNUvJNmhcmT2mni4Veur3hrqN + 8MqXKydbsCF3jIPncgGUfvkZCsl8wWn4kj1G1c6Fmnc/0CL3HmD2CZTh7eEyerq+RLCo3dkG1Pxd + cXBeRo+WZz5A/KRzZGmamzmymhLY3PscGz1bczZ8DirqpPxKZheCaFVPhopMLd1Te7f/gXWUxh60 + LDvRaDWnZo7ObgZtX4/x6YF9r9s1VYgUdVQIf39a3mopogw9eEa4zD4WEFtLTNA3fX3pIVNIMx9e + KFAzUf1Q36vHZpE+jY+wbVDsrmBmy15VZ4B44ULD22SAWXtDDbXyUafnAhwAP+pGBt1HfsZaAQ6M + Kd9aRI/hrdLH13yDkW9WH+zn/E3u4pAP/BnAFka3tKdpae0APcmXALoDPmL97Zkmn6+rDyeHbYeG + +9qc1aR7w3c/YnxXDHE7NMcM9GoaD+/zsjOXbqh4BO7vFh+wsllW3GyjUzIX2P31CmgCBbToAC4d + dflD6fF/6wPdeKUn2woHsVGONnpMmxVAvQ6sX9sRgXc4vagTfcHASkErUBU+b0QZI70Rj0JMkFim + GS7BJxlEUfMCWHK8QB8HNzGlRqFvmBvVDdvDLRh4kZw08Ousmp57wTXFtKUd5EdOow8efXOilMMM + 7/vSo85J9gFfZuYZXWNE6fko3sD6sLMVeAwrhH3Nw8BPraLB4NMd6anDqzn9spuoSpcuwW47o3wO + POCiv/jeq/4v4l+f7f09rQe9TbvSXPyIjrBVb04grd8fm4rbtLWBhkd8zZfrwHrxrKJ7qsk07gQH + CJPc1ZCK1Y8+T29za1MoWxA27BGMtvKK5tenayHydI2GuaubqxHJGaIviRFRUWHU125vwFQR71S7 + HQgjjP+ICMuqRfjTdR6I/3n6qt7ZEzZy92UynaRX+FMHjO0nbzPBjH0H+LtKpsU3uUS8JD9FaN5u + Gg4M6TisstdV0L79DljP1AEsDxR1sDpHZ6LA53VYdI1LYYgfMj3WWTkIeJkzVG5dtkpD+g3LpzIr + ZMz7B7ZTtR9EvvE5mB49j2pCSKL5m7Y8vHTuDd/FAQxrAZ8zfGbCCR+kc+zxvFNm8ANmM5gnajd8 + JR1L2K+XOz7ekJqzKkze6Nn9bHzKYjyIbm5laA4bHetEy3Ph/Hvy8LtbXKrVtGroFm9w77AMa0Df + 2ngb4wrRVsKPQuyAVQs/MvRiPSNAE6KcV5Q+ASjpVuy9Lg3793z/4jOsVEZkr6vhk9YmjbhA9/hz + tySos0qdwCOPIsY30dbo8msFvx9swfx9Pc+qvq81bO0OeiPOlROAorvusKVEDht/dyVB38l/4PDI + tGa9nqUKAq43AhjvZsBrRy1BQGL7AMy3KJIyYBloMFod6xyvmiR76gRe6CHEl8vvyubma3Aw/w4L + djY8YCevqGHCwSu9vD3Tk0atmZGXyzd6fz7rgYW4WdHtfaAY3+4gn+C+9VEvQoxv+q7Np9AuLXA/ + dOH2/BlY376VwpHGb4odeMvZqZWv//hDnx73rW34zUc7PvVp/va0aLHMIYR5RUQi344m4L+Q2eid + nip62d1yJn3ZaMB03RVkv/70Qaim2EV/++vg7/zob38qF3WyaJzqrreolieqrzNXYu2lL9Fy/j1F + 2OPrnkap+WJsuXFnCPsuw/p8E715t4s4eI9Ci3yXlx2Jy+3bQ9EDA95HoMpFurxsKDZHTJ9iz0Xv + VEYryFz1hPdymXmjO4UVBCfI423/Mmntf5306lOHRlm85uzZ7ArgJmVM8eHURUQ/ohLWayZT/dh4 + +fxe4hmoHUjphqcNQyiE6LvsQnzyzs9mkb2LjJrz90b1irwBOycLjxwbZIF45V/e8lavIrzvC49G + tzwG0oMhDl6fBiNvBK+e5EnBCGNA7kRfu685pzKaYexIFtld30dvRmhpETvmj4CZbsrmA7poavb8 + 6dRfWNx0p+vQqs4KVnpYLccTP6d2Reoam3h/0t/e3L99B+xbpASjuXuzn31bNLR7JjQAKjkBiT79 + BO7vtoFPfn6K2DB1JTREmOEQcQOYNLGp0F4KX4QfP1EjoZ6+ISOFQkNnv0TL6B5L6BB3a5NV/bzV + C3MIFSZAfEvOZsSj+jHDh2B88P4l1GCddKkGaYIsmrt2H/WCwzr0Y+MVp4r08QTh7fDw9LsdaeSO + usdr07tAeTWK+EzLOBec2hThM5JDmrWnvJGa2CuBH0h9wKWSMMzroIUqf0lwMC3V0RPZIGRQfssX + mhRbG7c8wNsRAsGhh+/XZOvl15bwjz8x0SNvPQrxiIL49sKGT+DA3mbfwru2xPgs+y5YuaEp4GNo + VXxQ3aXZ8OINQpCGdK9FhLFddgn++Av7/fkERF0/GcCs1gHj+yx637fZv2FNRZfe4MuPxANsVkRk + s6Z//L58LDpCPRgMqpHQiZaksH1wyBSDOvx4a2pfdlulul+vOCl/SrSEfX2F1flyDipBmE2y2vYM + e5zssYbfX3MYo68B+1wXcLpfm3xuPOqAEw9BoO5+tieIkm/D4V5DahgXOWKCWIoqIHFGFrQf8uVs + gRFe2Hykd3ylHoNMc1CgpijoBlQP7JN8eHjMjjENjoGVb3rmDXN4/eLDs74z6pPyDJEjKtj4Jrw5 + JVKtwXCNA7zXooBN2Lwk6Gj6GTaivWSuu62EVXKiQLX4/hzm4nVPEDmzbWzNaZ/z4Ws4g40/sZVe + xWbxtHcBtap40zgvHY8B62UhfldPZKzdd87W/tUhaTofyGLSNSIGHbe2lEkbLFp4zWkBSQr+9MPj + xl3Bqp5cGXye0g/7H0tjvJt9XShWyMHuVQQeVUs1g/RhcUFoXNJo6VJUwpxUhBpWx7zZeHw4EJTp + h966M42WylE0KL1PJj3O0AfEFbsARN4sU/vz20VLDpQzSDXjSHbINr3lOCY9XPZpgo+/rU14W22D + f033g92on8AyUdmGhUw/wTdkH2+1/D6B+1Nxpnc985nkFyiDz0w6YfvVxGw5PeoOLs1boPaeLuYa + 9jNEZXOy6HP/vHt/8Qdrnfb4eFgO20daogb38/1NDVqggV3HF0ThhesIv0Lircnx3sLtfqlrGTBn + i8UMaHNqT/7iuU6VXFP/9BDC8mbAPo8EFrt3Tdjz9czZ/gl9MJyfchBv+LQY7ceAz8vo4fA21WAx + H7AFvDzM1P6qcz4+8FzCtlLK7WtvIZqkz+BDTnuaNICnemDI9oo/vsUuCT/NYF4TGe6SaCBqOz+i + GSHlDa2o02j6MdtoWfmbD8uXgagjIqeRFpbZIHw3MdZd++TNgcccCHlrT71GCwd2n5fgH95Fo1QN + a5ytJdrn4ZEaa5KZrJrWTH3SysRu8nbzGScnCA5uVdC/9ZpkKhow+vgNTaNv3vSSPr3B+TecqTFN + AWB9hiy46+ELJ8XNYfTveWjimPjSNDdPOBn21gaTDGRH3lc2/8W/FaAj3fg9YmUd24AE+BKoRWpG + wrJCEQLNhYFsnIG32L+7CocfqLHrHOxcct9mgVxRBNg4s7YZX661wuKSWjjgnsyjm54A7E72RFhK + 3lvbKnQAv6smuumfYf7yRv+nN7b4UbxluhZneLa+PJEFfI9WrmYGclZlxRoJu5zQ5WWhODxTfLVa + kM931Qnhqwt06nTVe1jXPtLQv/znijfZ8zxpED+Le7BcNTqQzJxUmPjWbut4sbL5T68Z7W/FhhJX + zbJ/lhycMRfRwL5+2RLdjyX8VG5IFv/xBVt8aSDQ2ilY68kBS3loK1jrU084M/NywY++BMaY6ER6 + nI/RWru1AQknP+l1hYE5P7euuFbWAvK7ITUiagwSOCnFA2tGNHuLTDkD3C9HQPc7kJosOVYB/D7T + Ny1xW0ZL4Osr2O2mOODfz95jl/2Z+/c+ouo45MunYxBGsxiTNMhJMyv+1MGioCe6f4Uvc4lGnwCt + 7geyRl3KurdqB8rgTWawVMRiyxfpBH4QdPFjqY4m/wHpCCMSf7CXP3owy54XQvl8yolA6cf87QTa + g/PNbujJw5onDu9Xhv7iU//czt5cBB8OLEtKaIRl4rGzZRcgXVERFEm9Dsv5NLrAH6EXcJYpgqkI + YItwxhqKf+DY8N4xOINN/+B9816GlSan819+h4tyr0Yk/11rlOaTjAMlsj1p40/oPr837HMvF8wv + cjHQq/N1bOlH5K3y7HewiN4efj5OfDSl1yqESuf4GH/1k7e8iFTDmJcKirf9wUI8zLDC8g9rlvE0 + Fz47qdBv9wFRzycM1rT9drCtQEn3bv/Lpz+89RvlgE96fsj/4dtneOZ4f+lxvv1+hXbZoJBiy++W + 7rw3kETLAB/0whqWdzwTMKq7JBA0cW7o7tLN8J3dvwEK3MLb9HYGv3gPse3YHpifggihurVlPW/6 + lzx3Vg9PQ3Omp75qzDG0caEWu7b+w7dmURSZg6iyHviGFWcQybd1gSyEEt23ZWAyNdE58KfX9OKX + MRbnR1s93nYB9ig5sLnxvi4syxLTTZ83QnkuOXCq/AO9wyffzNwZqhDx0iWYT1HidZu+h8b7MZB6 + cifzH99v+Sx2TK6Ptvjs4edaVwFfDov5lx+rweHV4VgKRzY/LxkP703fY6+8faM5X9UA/hi5Bjvn + Hg/SY9hXaPMziLLlV0w4GqH6XVD4D99Xbde/obreTHrwLpD1cbYWUIxvCdbtX8D6Ans+XPn+F6BP + HA9UXYTuj1+xJ9QaED7LmCpfmcdUTy5Vswb+Od2I6Rtwt8HJJapWLpqudx1bp+u5+bs+zE7WlTob + XlLTEA3IYLhi++zHEdFE1f2Xn/ibnzWair6C/PtbqFakrdf1I9+qP/WHA0EKfcBUtbXhVxZxAPvz + xMhO4M4gDVuRQFqogEy6VKGI60/0wFjC5v3PO8M//Wdm8tVcX1FYoJHXcrzf9usYzM8QoqRft/VV + 2boHxwxu+Q1B39YeeJi6EPzpUfOXGTmvxKUFt+Od2NCJ2MwvctdA3/6++HE/1s2y4R14i4mOPUOr + GGN3bUayMuwDy8wCk37U1QJ/8WYu1QBY6hlvlOxdi/zMEeUtTfZn2L+fFfYhywcaO/EIe5HDGEvC + AIbGcAL4tO17sCvTF1tPRlzCj3WSqXVeCFuH4+mtDtbsULcXDvmSaFkNH15wxcHr4zLp8vJ7aHNy + T/1oz0evIuBbtF7PJj4SY47oYjENfZ/ZGxtbvj0Px1X8y/+w/uCdnJ9B0kNHWSk1t+NHq1+Q9c9v + wU67xibZ8A6S86jT0y1nHo2bpUKdVej09lGuQ3dtTp1a9rYesOdrF9GQzRqUubtCBOeeRoydz9e/ + fBDb4k6LfoFSXuHlFWVb0wUSrSitAriaKCfKI1gaAvc8jwgcUxzaiuVJSXju0bsnmJ7C9QCWH/e2 + 0NGPCyIrVzOSRO0iIr89BNv6aGzzJ69wN7kdPrbPrplVU/Bh8qn7f/tnVReqwTpJK5rtfq1H+2aq + VPHL7+nduh4jlhArQZvfiB0xa9n0OTln+MvCHz2yZffHbxxck8KlkXi8mcPxLvd/eBEclpedC/zl + UcLdpZbwwVJqQC+BnkFNUQOKQeh6wrSNxZCV354631hk2WXvXiEr7YjwN+eYs5peV6THHw4fn09j + YMq3F4GhuC8iK9LeW7kaaPDv74bvZWDe/8wzuMRDh81PnEbMUvc1DC+wo2kqh2wZyadVLTeIqecJ + ikn26xn+80dO3FKZDIC5Rf4lyaj5fO3ytZnTXlHpGlNrgI7J9iA1QAQLG1/7IGXrS+JalT6jPbnC + 0ydaY7F1//HxTqVdxORHamwfKYZY/6gXwB72K92a41+oPXf7LT+gLnRsJdv042QORaUS4KJFxHqj + CRt/7Ko/P+cfnm3+XgD//BMj6mSw3Etgy9v6BdxsUJMfwiYEQ+wSuvEFWz7WlwBOjSJsfKxmmCf6 + K0H0CRpqa43lLdPDJ3CLJ3z645u8Gi1Q3ZwTLVZF8diDCZwar0NMlm/38ljzYDL8eJZA9YQ3IuFj + UaIGmXaj8VJezdX0njyQMpbi/QzCfHq5eQrfrXnHh0t3a9ao1iqw7f/gd8vkZrl/hxpe9QCQnyQe + zT54KFuJqs5oMMBP/ud3w7/8dfMjzNlU9FltDscRB5sfN4kk7+EfHwWzQb010V4O3Lc7hfpfJfLW + IZch2PzB//pLQ94nKhRDn3CWmTDhz7/d9EcA997qLX96efNDiPK7f8yVG4YCvvcdo2GakJzV8j4A + 48JfsYNQMBCq3msoXfqESNI5Nif4UwugPqIW26sqRjNMXe6ffxnI8ztagqsaqK+ixQREauP91SPU + RN7fyKy9X/lyI8objK7v4iT3gbf5Qyoq2aenznTEYGY1HcEFAg9rme5FYvI5hcDV2ZPs4n4cZvPb + qSBWqhCft3x+TYqCB5+n8CPquxzBfFe1M/zT3394SxLt5SJfHsCfXzoM1Ew7uF0vEMVd9effnSF3 + l6dN/+3N5QI9Hx5L0Qtk/hgDNrxlA37NmdG8IvV2BHap4BT6Kt3qD978sY7Bn5+LE0l7suXPL3go + GQs4ElXm8ocPUiQ+AnGLR3L/ru6ffsbXTR8s8QWk8LVPRup/vsbAfyw9UEyPBoEqCFM06xpdAdy3 + HOGfQchWS+FUaMyHB/3zn8fyoBlg87OCNtGISe5+eYXPttgFypbv8oHpEihIjkTUL+jZuvmzULKN + NzVOSu+tvWiEML4WIvatbs6XCE1vEIPxjh9KGzYTx2kB+vMDEIcfoGs86iqhUyMiBQR45A+fNjzA + hzLxwTiDsoccxx3/7UdWCk4hN7lYY89o6mamz56D7fGn/tOzEr/DIdz8CLxP9d78vdUrD0O6VkRc + VTH/t582/4k6H9OOGEIZBzIb3/AJXHW2ImQl8Jh5cTCfT2vzt/7oT0+pG3+uVhyu6FzqJX1a0egt + LQtmqKtDRtAoP6LVoKP954dho9wjbxbCewK4w1XDhbMnDd38PAC7MiIi6IaBbH4YcB/3MzX/8l3h + 8raAUKcmNl+y6pFl+8RryxepU3EwWuKjC0F3MwgNnKFuGLy9E7BkRxdj4wObLuJJ9edvYEu8j9Ga + n7ZPAAYo0kOZjGDxCuesRCduF6ibv7Iex+kM7/K9xId40hueFyIb/aCQ4Aef7Rvhu18D1Jw/N+ye + 52WgeXBIFNWp13/ry6ToYcPDS+IC+blSb/miI/nLB0jHVeeIvYp7DWbirvSYXWOT2TdzhkSQclIf + WTWsQezwcKsXUj9VpmgFq1LDE3dAmx43Bv5FLhpyvoHxX7/gd1euUJYKDl8evBOJf36H/pFbrKte + AP7xx01sy0BYf69m/cObWJePW/2N85rNX0A3921j7+3v2FrTwIGPOabYOa/HSLR/VYW2ehlZudfU + dOA0O2hnjhx2vrI80MB4W9APhB6bihkNixbeQnjtyhIfu0Aaxm4IfXQ17waO2mrPPmeLjejYfDSq + 648XW69jfgVTHkPs36bKnCfvEYCuKu74ZMUmW1c7mNU4vy/4BCvsze+4tuFeKTvs4vc7nze9BHd8 + 5v/prWim/ja2Xmie1IN1y/705z//O9n0ktDeIht6n+2TPHzF3kJPdgCvDetoUDvjsFhmc0aacd7j + cxpB81c5iwF/1HwE/O7wamZcchn8aeKOiKUtNbNc2hU6Wx8+EDZ+YRxfV9By/RhflahjzF6lAhJD + dcgnmFe2PrOqUvZW7uMTW5VhMmPLgd/BSLDr3hPw5xeDoxlk2DoGB2890cyBk3ROcDG5fT7zjRrA + 9adJ9NHh1ZuTfPeG2XBm1EGINAte5hR9M0oIlN1zzpzhUiPZK1qKw/nsLcRgKUB44QNKqZFLXW06 + iGuuKfUKW4wW8JTqv+f9x88s4lwR/D9HCoT/faRAv+/2dH9XqoYpD4OA+yK6VKPW3uRl6xdC04tC + 6tRpajLp7HGwlcxrsPa8GUnK3W7RJZoJtUaqeJ0xtA4wDnIUZI2vM2mZvBnkWO0xPuGbKRR6eoWg + KhxswJLkowy9GWYX9CCwaCZvvH5eFfylmU24FYOIOqfiDe/F096+8pyG+Zt3K0w3S/WSqfOwCk91 + hq9KNKn+9GOweCRQwdWbWnwsUjrM2unew+stdalL8jdjY/iyoYArip+LObGJW5wWfYDlBuSst+b6 + KvgVDUZYYlOb2bAEH7ZCzv8cadRPPpvzuCvhLsJCAOvi6S2yTlR4WK8R9s5gN6zprHDgNU0//DS0 + q8eTQijRkVx1WkiXJmLO97DCtpV1rClLGDGMogL6XXrBxjOmbB1rZCvSx+foQ2gqjz3WwUfGfoa0 + GC0hZ8/dC4JHYY7Yvp/5aBbO20H6QCXUgWLptdbh64NIfqgBrymnQYJOYqDpFLnU28F3vnhqV0Iu + ufyw/9gbTPgdkKgW/WwFCH14QPqYu4KXrjCM9ycjF8tIdaEYm1uJtrGi9eZqGnp5xY6wkxiB+bJJ + 2P3YW9T08decT1VKkJ5xB+qcywKIuQK3IwpySA9XKR3EKz+sqNZ2SQDJw8mZ9nh08PMMIyIcHjjn + y3KwYNXuIeG65BhJc1eXyPnQEPto9HLhkx4DCIxKpVnpJNE6lPkMjw7kgsWOC8An5O3C63zoqMvR + ki1Sk12h8tzH9L7FAzlKmgz1m0Cos3vqgzjWyIL8FO5pUrd7c6lu9xGm6/zF+vnpAEGbRw2efU87 + KXG+ABIcAx/cLkVGdfNgepLwu3PIA8Uex/ytbaT3hZ7h86g9aO7Ojsk76FyhbT0DyUAPb7lSh0C/ + Pas4Xe96Lpq/rIf+Y6T02oo24Nlj5IC2c880KElkEpwdbci72h0fQiKwZQJtDcuD0NA0rp18cfGa + oQAbkAi+vlFyM7ZwV8opmcdjES074aWinfyWadw/d+B9WtoCnvMjh43c7AdaPi5XdF2sHj+1Y8J4 + BFkIgVGr9KRz50Z6Zz6BoJUB1hM7Hn6jtPdh/H0buEzcrvkutmT83R89K8sazeD4nWFTRw1R8VYi + JgUqIS3qD7akMWnYrs4r6DZiSojxq3JB4F1Z9ZLDJvevJFpFwywAPu0fOF2+ubfwxysPs0MEsBWX + ei55e71EwumeYqPWnEh6rEMAx/Xzw/rDZPmstIuMev3wJtPpYXki5R8uHC5REaBtP0lz15fqFg/B + 5RRmQxsdEYGfwlOx7cmkmadqadGh2GGsH+vBpPern8LupRKyvOJ0kA4OC6FzbRG2TStqBGtUA2AZ + QCPL/vwB6xneCcxPS0QvHDnkfPPMWihc+gNZNak319K7EmTKuCQ/HjX5IpxEB2RTp1FH5n/RCr00 + A8MAUbDmnyqf1SEPkJf6d5xVl7vHjPPLh8arZYEUFPMgNXGTIfwMeOzQMo14K0MtpPyBUNvrSnNF + q5HAfOu7f8HDaeiz28BBnQ0ffNoRKV82/IOv4nulXvwQcrbYO+0fvl7TEXizlQktel7aLth90Smf + ZJ3IkGN2jS3fmZvlVi8FqPy8wEaHWm8xbe0MneYLyLzNsN4KrRXcfcuGKGvoAnE5LilismrR2+Vw + NOn5+XaRPPIDNaNdki+2MnPIo8uLFnL3ZGKi7C21gqVOhL1YD8tHmGs0HlaeBpIpRkuhnxP5aSs2 + Lfz1Gi1Z4K9wW38c2GDfiHoRqeouuQbUFR/3oc7yzgbOZwqDEXvffN6NBkGyrgk0rq5OIzTGZIBP + KxXYdO13LqWpVqN3r4b0+QoFk96LlwhZ3KdY13w1n+Bb5xEqB4BPn/PSrJ9tcmGSQ5NmSloP8yeo + DXjMDlGwTMnrH/8gSw5NGvxQ4rGJXwg4Oc2b7kNYsyX77iCMkcmC621PzOVH3Dc0laCi2/seFmtU + fci/PjU9fNyDt+SyyoPPyYH0vvLaIN2mMEN5aBiEf96inF9IXEGK6UgkXzCZKNnjDDe+o/vS+4Bl + N/klPOceR9j5NeZTuvXl39aX9IqzeuxFlhTGg1IGX7H2ByEbeBvd9eWD9/Nez+f9F15h+JIwtcJL + 5HXgSGeYaYITgPgR5/wZVy6CPCrI2uVztHDRPYQ9p1N8IXnKRsx9fFS/TwZ2Kiw0y+/zcRDJ44He + mHQ12Xrb+mqq/Ux9WzE8IdwtZzTtXjyOwzGMJHkt3vBwghd8L1I8zEL7fcPq7sc0lP2ft+mZEcH7 + 8YOLja+lZTK3roe3D93wevjDK9RVyojv5VIPS2N8NODeHZGWK84jkSRODy+kxOQv/gWIBA1YfuFT + J/i4g3DkdiUEb/am7hgaEdHfSgLPH6EiYn5P2PhgkPvb//hWyS9AdzAYoe7wM977rMrZiygZ/J4n + Ht9vBjcsNWd2iLg4IUtX24zH22Tf2q3rgCPPga3mp6zhcfR70l457Eni1bHh+3Wz8dF8JfnsRLiD + wTvTaCT6WiSybq+ijU+ImqU26DvmbBZIgylujmvEvBJ2ykGVH3TTZ976c3bb5Lxzie/odWLz5aoX + 6LPL26A55B5YvhxzIK8XGJ8HKQHD3rpz0Iwhj6MB1wO7HU49RL/4gTf96PHo6XHwm0UagVZFzRW+ + DgUUWy+nziR5w/yaPQfu7WhHHcs1gNh8dim81GwMFGB/wNoxrUBPJoVkMT5Tvj5FY4Y3e5axpglt + Mx54YMFZCDvs5js2kEEOILADmWA/OhXm0v1eIfrjnz1thmhxqhqCS72M1KtGOZ80vnMRdzsP9Lo0 + vMfOe5lT1iODAfM8EK3hvkjhZ600er9PkrfY0dtH6+fLCBMgBeuTq3xkVn2C3cTWm3W7f3DjiY09 + sY2GsUa6DBuxutADxy9g9eJHAa5kF2JvP8KGOeyVIHcIT1jvQjFnvNEZUFTuB2ps+D/J+8b4tz9n + vFrejGTJhfxdv9GUko7NpcZm2FNjoY5pS95UNBVUkgON6UEeaDT21fcMN/wihfu7DHMd3Ah8kKOJ + y520RHM/aSL6wzPvKT+85RnKGWzYXaY2N9zA0j0OBP7k150+0OfKVnyiNVTSvsbHd8+zsUZHWdnX + B5G6qD+wdd6fLfT1QoOGJ+TmUkmoBfbHLMXH/H2N6MZfSPLqkjo6VsCK8DKi6XRxsXEc9p6kO94M + uvN6p3/4uxwEnv/TO6Tdn5Jo8Xf6Cq77M8Ne9tLYzO+EFg4qAsEco3xg4uchQlyeVmrUWpfPx7db + w7xxbvh6eO+BwLlMhJNJOXoQtYSt9Q/U0Gk+AN+f4r1hknge4erLMb0T7TOsefTloXL7VYE0cbXH + brixkKSjMFAvhmiy/vmo1Ef0rKn3mRu2XZ8HDctlAk9X1+RPS1sCGSEN67a0Dtv6arBQmEG1l88N + xDbPPjgOp47m/i/L1/6ulrD/PD9b38+kWXfnRAWlns3B6fR4m4se8gT2bfmlzvuVsR94VvVf/kHD + BQ/RDPlYBOLKXant6ks+aZ39hty887AG0p35lNNfCunQNDjgztYgxKf4DPFavIjobkfwdOVYgPuj + cGiOt8nz7WMMgVCvBT1UiW/+6V3oOsaLcG/r7c3G9hX6SSxWfPqsh1yY+vOMvGcf4CPcyebYb5Mq + 68ccYMfQNW+9u58AehY30eBodfl62F01ODbvIeBGOwUsVS8uqhF40YKXz/nSp/IImx9NqWftKaB/ + /Lat99/6g7VcXgVawKrh+AXiXOqSUIUVLPTtq+7JW66XS4r6tvjSi9ID9nmGcgo78DlhLMTMXJ7h + nCFQlQ69JLbQzLu9wKG//eF8It0UuWIuYXbPQ6q1Z9cj89MLQcIFE2k2vmQovs4waRofB1TXB1GZ + khE6NCzJ7n7Wcv5nZCvI8voXIO1msqX3ny5kjvSkuoQjQNWDzENhWbJ/+np0ESKwgy3G3rSmw+wo + 1xSOYZnQ7e/NMoBjAgOWcTTY9Pd6TnwOSt8kxtpl2Cab8g8RUi874xN3cAem3IM3jKP4SjHuenNN + lJOl9tIbUmfWgmiVl4xXP7t7Sw97uTXpgWoa9KloU6vygn+/D3IxNfGj4MZoacXHCDvwPWH3Li7e + eg0jFzgKpxH5oK7ex6l6CO9HnNGTUbX5yivaik7FHNKbeTo1ZLfTbbT8uh9NhkzzhI8gVzDURpXs + msHx1s5nBC584lFb1p4Dc+HAId9vM3owEDLnB+MhnOouwFc/1b3teXnA3r8EF+5vaX7pN1zRr+Iu + BP3F4+WCLbg971++MozLtU4g34xKwF2jIZ/HIj2rc2hAHKCyjBaBd1V4jPqKyOvxDEgxae6fH0C1 + Xrs3hIR+DT4SWrD++PxMVl8M+y9eg3lGt3yJyj3/52/QG7DqfBWUiQNKk1hkeRZtPr/kqoVUl6wN + D/l8vt4xhCmt1IC2idaI3DUy/vgfny70mK/h/pr9/f/gIx9Ec7LsqQDy+/zCWvO5DD+iYVm1WTiT + 13ZEnC72zpDFx/e84U040Mv7VELLlA36GOnHXIIPmEF22T2o6Xl5NHPfV4Y2/Ylx8jkAfja/BaSG + aNPAO/VsrjMlhJv+xrrSA/CLLUn8y++wGW59pv/iMU9LgSAlos3mR1SA6+sbNbxwYcyFDQc6ppvY + 8O3J7JAsObBtVT1412+94Z2bOaNjbsW4/CHRnH38EOHR4biAom8arZ9Xl0FNP5n48izsSKgWX4bP + nzdjDDWv4ecf9OVOeYhkrTUnFy3xkqJH9KgDMfnkYHTtKIAiHb/4fhnqaCWhX8FQsAA9ZVEERs+4 + WdDux0+wrTdbuPdXgxt+Eth7jbcdDr3CG5ssrG38MuODMUKkPlYavC3LFA/gKUMQ/TBZvOMNCGvd + i9CMOZ46P/PckPpQq1DaqU8iFg9jaB+GFAKvWt/Y0+IqmsfiHP5dL6A2j82u/1kjxHbXU9eOOzBo + wILglPUA62phbHOEph5a0/uFA4UQRn+lfIVl2OzJDneux/x926FUDQoiT3HMlqed8HA9OwbNV/Ft + MreeZ/RNvV+QyLUQrdaBBvDxdPZ071G+WUlobXNZMAoGbJxyPrnOHJh+ex1nwQ0NDN1TGSLe2OHg + 0oVgdfyQV5+/44wLLtDNOXpYFhQWluEj1n6Mbf4fDB2XBpziK+Y03h8y4F3jjoPXfRjYY218FBNN + CN7PWxSt3kOVYSDUMfaBHrLVPfPO3/0FER835iLqOoHsYZ82/nr/5Vuu+lvtdsOPzuwRXojyWWuN + mnl5BHOdLSH6y3/x/EpNoezcEF5EPaVm6908Ft0uBtriO4C8PEfL43ZIUVzIFTbu/pRvvUM4mDQv + Hx/mgwWE1WI1DNY73PDS9vg0Ll1wNlsR2y+eAxMUni24Ml/HG79FM64EGam3cU/jvWgMc9LaI3zt + DZ/076aM5rfrELVf3CP53A9qxKqHWEE+uAlY35/3jPJGpaHdrBF8HI9O/s/fAY8gJ4vS52B5Bvz5 + D09x0nd3wD9gmKG1bQXqC1nrTaWO/vmpgXQ/IjavuzSDz8u7w7f1fIj45/5hwc3/xfqzaKMZPT0I + fhW8YHx8fofl5y0QEnNu6IMibujrH6tAGHxrqo3Dai7flykifbQKfP0CxIj5yzp4s1eZrB5/aPhk + rUL0i6OJGr59Mmfn+fOBnH5RsOELmIvLO4FwzC94f3jQaNG3uRqmKT02/ebkPGo0C+3ty+6f/7x6 + oPb/+JZwt0XI2cb3aOMvfKhknfXTENYg0c81tfVHC2bl6L6hfz02wfE+3bx1kAMObPwafJ5nCMjD + kM4w+e121HwG93wtJs2ByVEc6X5vFdFaTI4D5fSD6DG13WjZ4dj9w0OqB5YGRKcNNCDEqKH+xVIG + OsxpCuWeXrEBoBxRFF9XqEFdCugk7pqF3rsA6nz3DcD8uJgsN3MRbPoCm7FZe/257DOw+NL8bz8u + 3e8XwuHdONTbZUEzXybYSd2TJdjDxpSz0fU66PvvjD4jFecLvVcBEin5Um08wpz6x34GR6P2AiUK + qSlaE4Dgxo82vRBEmmnjK+VhlW9s3uNDLtCLMQO7dnO6/21z1eoEufBh3E5YhzGfjyfOMdS/fBcL + H3MQMv5eq896RNTw+O8wW02uwZJLAJEsvWMroUAETJwnmvfGzyQvkUKwStTFR3kKAZtubgpPhrXg + O4+aaNp3ogVk3RCC/gCFZnbtPIDuXnGpfzTebPoe0g4mYSZRV5x6b5kcx4EHuyqo7h1vbPUeqwyd + 0j3+vU9zlTgc/vEvdn4fO5/PyzxD9ZV9qDVdCGBBOKUgu99D6gWVNCyjdPLBYxelZFmn0hQE2F3h + JTu9gknsJG/d9DpseYD+mz9z0ieF77O/0Bs1FW/h6esNt/0QiLebYbIdtAn8Hp0BW7d94K1/fviy + Bjz25klvxDT4JfDKAh0bzX4XLfX7XEKzyL/kCxE/rMHRDoA0MScAm3/P1P5YAGWQA3zJXd3jrSY3 + oCaNOU3frwyMfOumMOl3Oj68uyVaN/8LPt5fKbic+Dkn02kI4CtxXvg2FWO0ra8Dp942qUHtbvjD + I9BOCU+D9DM3sxhfRGR0ZktPze/dfB/n8A03PYvdQ7YDE9QVH6rm44bdLLXZh53OEE3mxJFaYQL4 + y0dg9I0/9P4UlYZ1J1Qof3i4f7cnwJSHS6DBRhfn8SOOiAfqAMaXE6L6KcyauSwbG5LOeWOjDU8N + e2v3GtpAVDEuStXc/DQLOVxUbPWHgyf9rWd3w37AWatpisbBNUDWN196HOLJXOkgEdg4X5Nqol4z + 6vJBDbZ8KGglknnrDNc38kc6BTzt9c1/WQ2YhfAZwPH6AW0PPRu8Fi6ljtmNYIZZ3YMOvjE+zU9+ + IA0peFC1B4gtIoPmR5xPgm6n7a2v9NTM6+6cKhRPIz24rpeP27+R34Yq/vc+cNOFf+uBzdet8P7y + C3Xz1wmXmiqbTzcQwpDrDjh8SvtBhC9cwuCdavgaso6xsw55adC8A1E+fr/lm5UGh0/l0mjp+2bY + /CYgceCB3d2Fb9i+PoZwe16Mb33J5gfMUqhrYUvE7j+kXcnSskASfCAOskkXR3bZpFEQ8QaoKIjI + 0s3y9BN8/xznNkfDCEPoWjKzqqvmYtMblwDSn3Wgz7j45E0a/GI4OQefaguf6sv8bQfECDcm4GRv + mypcRAHUFBPs+MIhagthbyBcXlysMFHrrXPdJKgIrYr+6Q3TmBYueiqPKACxfaJZDJSHnMAhIXKc + qStb7c0FMfvXhbqXul+XaHIL6bXjFOxO2gkNm/0j8ngY2NltUzd23E+CxGEHsjDCKx9Cb1BgI6/B + nM6Bx+n5LoasNlisCxVst/qXs5wdTgg/BWLp3KYHwfVdU/zHt6l9WTT4WMTB9vSuvflWPTrY4iN2 + zXX9iz8u5G/vErws4VwtvqI3oEblmZ66/hf1uGpD6G16IsRmBURtOvrA3vQrQZv/Cz/2m/19pg5R + zJ5dFob9869g/36d9SG6+wbc3f0VP9HjUrHCDbkgcimPA/GgeVO1Py7IS4MbaS/vNiKvnZmB5Kuv + YD9OnE7u2u4MjOnE2EWvj76OwQAQhM55Ow9b3+qThWxm75Ee1ssjmv70Rs+AkXzPhENz+pBjtNUX + sVO0ijdhZgxguj1mbGhlFm34VpQbWng4VvbHavjVVSr3xIhpuuHf5U9v/NOvtnpuTmxdzhDjf51A + qvwXGju+1VDGTBecXA+natLhpyBt+mx7TfClX9R6H8OncCRq+uvflOedC/6dUOqdRnPd3l8KVGMt + +jhZsr5MIl8g+vUPOOuDpBpqmRrSxlepF9WVtzYKP8hmZYj4yr+Hatjqs7CLjlzAdk0SLW+dLH/1 + FWrk32qd4Gz6ctEtRrDXZ2udflo2oVAyAnxt5nWdQm/Q9vruF/3p0/qmP4jQME8HG7cgRH/xH6G9 + csbOLvU8gSuhRMUrEINJsG5ozSQmhofDSNi4T02/PObfA3zCGZt+W+ZLPATxX72C8H/1qVtzUuRG + 7y70uIjffiq/I4GNv1Jn8/f5T986B5839llx+pfvZOtWh2Tm0qRaf6qqAbLlker3r1/9tnq59P+0 + FPD/u6WgXAOJqkfJWvnVvNrSFxQDe9ePVnHkahO4hEFFAz1RK1rMsgsFuUjU4pZdtJ5ADeD4+H7I + TjjH6yI4bgo81XTytkyqr08GhfBo5wxr4p3X1yQfWvTcDwE1rM7vZ5Gvatk6tBE9YPz2pjdKS7i3 + xo9aJ97wBm3ZVq8IaYqL7Vob+xWGs3RR+ZRqL8vIBcu82BANIaaJ29zXtWWkM0z8vsOuU2X5L5fO + CThy4FHfkX/VHB9Ob9ma3V0wD2eMlvz3esjD/rFi4ymWUXeJQkb+ooONPbXaBll+xADl10yhZ87S + ouXgrzZKp70RdJXn5eO84xk0Xt4hEac679fH2wXguNMFp3797AWuzxNgfvuZXi0/q6a6I/YefXYN + kfKJXyfn9QjhvjsTbKGfmq+7GmlQ6X5H89Oi5ryht5M87IuV5rln5hw+nBVYh2dH1vfzHU0mit6y + 5ooXGumP0RscVcqgcIaGXg+7fFsthxY4/8YGG1mO+iE/XN+griTE9i0V9cWUnRTaBv+C3TF2orZh + vBpRrlSwUT10TwgZWEBJVIv0nOz18+X+LuW4FnZYy3+7fIUrK8FwKVNsB7lazfcxIvJr9Reate45 + Z/fSnYW7F0fY1fym50Wtt+ToYrnB3+8tODkq8BTXbbwOhPkaUbeGO919cTBZl4rjXLWRM+n2xSf7 + pSE+Tow3GHnN0Jx13WhyXkkI0X58bP+38thAnSVgxAjIzkMfb2TDUpSZo5PTa7jGPUVqJW4SA5D9 + 4tvVanNvUR7my0Jv2TVdJ05KYiCrGOG4vbueoDpqKr/VRibfJ+tVC6KmhcRjZlFt5MFb6l/7kB+7 + sMEnZv+rhII6NSSln9PwIvkr58xqId8mEbDRtmk0L7KeAb6pJk5OfO1xH35sIDmxIT3ZB7NnP8ou + QJ45IxoGTzGnR/HCwL54atiWVCXiEinjgZBYo1cmr3pCtcGCMilq7ODduA75d20gYeoPeVfGuvaX + Z5jJjowMsn7FJlpx20/AkQMmm3hXUT8fW0i4qcfR2zR1wQeVyFJ92dOnNyQ6p2ciA5rqPQm84jyf + jdlhpN3en7Bj37x868lZZK7ZuzRi9fM6T82SQqGVL5osftGv3Yw6kCTOxHmEnvpY31+KLGsji3X9 + l+esXPsJevyGhKY0syJ+x/USCsujjpNqt0PLjaMi+p3qI06mW55PlNEauLA2g3Eo+Tof4g+Rmbxq + gh0xnt6ilKda5hrkYmfv7LwVqZUkP3xGIbvMfiEuU/YDKJf4SHEj3qrpEMya7OjPOz7mk7YutLJd + 2Fmii096NKxTfniWEDj6MbhWuPTYgRV91Cq/G3Y+6aSvp3y0gVx5nowyIf0S82UjX65pS1O/3vXz + jx8tMMoiwdYOG7oQUN2CxTyNWFu3dcWUHFLxUGevoF1mSV97aluwLoyA/WR+e0syXN6ywbAljvRf + Hs2Ke7D+va8isy+I73YiA49CNQiNL2UlcGboymLc+BSn1lzNX+uagHNyKc7WRKiW6PnM4DwFKz6s + H6mfjsanABp2P+qc0sXbnt+GaxlE1Phol36yWDaQx+XcYBwdun5ipHsM8TWbsPqI3/p8uglnmI8p + j42ZDzweUdNA+8ASqGGFOBqRrKVS5w8jPUjNCQ2P2QTIBialrnQl6MU1syR3Xy7YOhQPPXu2QyJr + jcLT2+f4WgUd3EHod3Cg7jO59fND2QfQnWqTFgrzXrnoKPIw3G8JTSp27tfPzLpoXHZPrGz+xzaM + 3qA0j1eMx32IlhdYPrBK6+ACSgatp3TfQGab6r/8J9zb7gx+X1s4se+lx56CSZNDw2uoaX7v3lxe + 3QDKx/WN9ZsmV6OkvyZZbssDzlbPibqlbRb0o3Clp+J8QrxtRSzsq5+NL1r4ixbxHTBAqbLS22af + czTbBdzb9U191xbQfF1RCYfh9KTWNeOjJSiGGDIcWdRn3lSf5x0DoEGpUbtR39Hvpo8h2A09UNtm + AE1NtjJyP/UqPhC1zee2jA24XZacWgJLqyk3eoBz8DUD9Ku2rturnMEXNCOYs2eYs67wDYGm1Rcr + jXnzBGzjAdbEf9HgQ9yeV4oPL+u8RsjEnjlUO6qUoj43Nq2Vs9Ck5JMtx4+aw7pcJIh7SideFjK3 + xgZ3evdjF74kBJqq4/wx2/pcKeIgl8mjJreYiVcOFU0sb/F3y19oHbRgfss36x4Tub74PbdebR9u + QXPBITV260SMF8hT2b2wE2VaLmAPFeCQr0zdwySihS3KWJ4jScfXTO1ywaF6A8Hje6cFcy3RHOpN + KH+ifYSTK7Y9dsun0oqVnJ6d/rRyxboq/+KjbaaStxiV38E3wTM9CAr2+CHRNBgfiUvdkhnQGgRf + DYVtYlBtjRQ0StY9Qfa11XFYvqx14VK2lt/OHWGzvtfemgZEEePlddpWc+n9tNZmLBuZaFL/Odkr + 93fe52k/UEdh+HWWo+gBc9nesKG0Rc7vlimRd4GFsWVqXj8fhTL88ycadxy/LgfcEPn84lvq6R+j + WrxFZkHMpxO1z2r9F08McBz4kbuOVm95FV2CtGvb47jr7Ir/powBrzVY8FFxtbxL/LkF8xj02FVu + ZjSrOl0g9K499hXmjRZpH7ry1RBosJNEoZ99KechsOMYHy/yqx+Tq+cDJQeBcB4OvSX58D4k7eFG + 9jtF9RZ0LibIFYnFSkC++b/zfRYjFyxaKOcrZ4Y2qAkVyDrdJ29opCcLxsvBgaQ1Ohq53/hAS1yz + WL+d/GqsyqKBXXy9/dl3tB4YboFz173pIW6tiIxDrsnb+6fK7pF7fP57FSi7TBENBPTVZ+yatfyX + j+OES9GWz1oY3rsvxXEZoCXE4wCGfpeJdJhS1HU7EcCh7z3WGNPRFyvKHrDe04a8xeHjtdVsFvAo + dGMbA7Wsc3L1AujaycW5nJbePOvdAo5XP6hlcT7qjlaUIBZNP4y3/DbvfzUDqhO2NFUXIZqdWX1I + 76aI6Z8/EN2KYzlIyJNqlkm95VjpLeyqtsS+Qlc0y5M+/ctHhZA4FXt+3c9AYTBpNlZJThVcEpD9 + R0fN+YjQGvUJD373c2nc3jt9+hhvRpaU/BGINGuicbPPve3AHAgee+wpnbeWk4d5pcl0Q/niT1oI + vVjtyLPukUc+lWODP9tXesuaAxLc/snC5i+BuMvqfELjMwCruo/UroOXt95UmkK/Yw5kZ1y0atri + AYCm69ge08Qju3N8hk+XPQNZlat+ijKOgVLKdlgpzwKaVuP3gAGrHg6G8owE1hXO6O/9BDY11xl3 + rxaW3lLwaZbe62pS30BmEVHq7NPAm09SlMDt3t8IQq87mn5fyUDBx+jw4b6g7R45BnBL3FNfgiEa + 0HGN5V86nal1UJA+jUfg0UVlU2p9CuMv32yDtM8pKS+9jFZxluw9st9XGlgjly8ss1tAQotKjfbu + 6pz2CkNI94q5jWSaq+H6KhaUvss9vbD3t7ekcAgglMWYnk6lU/35I5JP5rba+xL368PcJH7D5nF6 + S0VvEL9TA8IPt/jwOmI0Wakn/sMb2vEUV8trtwf0F3+zZib6rOrfBQI7ial7Ww7RX3xG4lvNgy7x + jZ7PrRsLu2C1tzGhQ79UFNfgpAkbcK1urff8xoRozg2bbvFOHxOeWlLID5imq/Lzlt25OKPTi58C + lEESLX/86yQe9jS5FNbaLUNWQvp+76klH1e0Wo4iyT/KXINFCq/5OFdB+4/vhez5grjkqvvIuphv + +pf/1tc5nOSHwe7ohudQvw/eJfDhjceB+txVk7aorqwRdqKRu1eribtaRH49zwmRKq+P6L2/8IBG + r6f+xzl6sxN+MuTqzwvWxMH0hFrMCzRUYoWT7XynxbMXiZWEEWOHNP38KO8WIuq1I/OxF9BQH2Ue + GeUjoeaF7zzqUK+GDS9g/R2uUT+YJxfp3seiurtX+yk8Cjyq9X1OA7tM1vmhzAE8K6xRhzSfdQmj + 20Oyny8Vm7vfN58ld2tBVjon4JzjDk1bfESC8Fmps+XXoXjFIbCf6B60/m2Olo82WjBeypAAc1VQ + n7bdJJV7YlHzx7f6mlLXQLlDCMZif/N+9tUfoKxZSiRwp3wau9GGWNnXNPjFYz4rs1vA59g61H9V + XT5XZdz8488BRp43i+uk/fFHan1/es4//alFu0t4ocagD2iZUtmStvwe7LoHRETwZEau22UJmCWK + dVb8ig1Ih0+FzTyDnKqfmfzFF7zpAREHfGXJF1AhkPm34wlp0CjQPuGJo09/QFTT3tY//nrY+PFA + apOF+GNp2FuuNlp9Rg6lMNwD1j887w1i7fPAJvtzsLcaB1FARonEKW+wFahL9C/fTadLhg9boXpS + xbZAE+/P9HEiQ0Wtz+xDWfMUG1k45tS4HBLEqYmEbU85enyLK19OJ98Llvy3i1aemRbZvnY6mXvj + hiYuWx7An+IF23Ia/9cfN74S9O7c6X/xBtK9ZtJDhUt9mYqWBWs4fQnNbHWdWZ9zweprEqDRWfVl + yw//9JUbVxV5V2iNJS9xw+LjM/n0a08VQz79KKGa9hyiFb3wgn56oAVrMag6VR0nhd0P/bCKogb9 + s5/ZjDis3U9LRU5DoqGb9YwJShlr5cFRJdjNJsWefykqck93BmzPS11ww4g/WnkMB/xy8B9fmB/l + xQJiVzSQFfedT4U6pfDwQcHJ73hZ+T3oA/zxz/z6eVfz0EgSQkqeUGW0wpw/DYkiT7cip8E+9vJF + aMkZHMIq+C5euopG3sKgTY8isuP8vGE+lRZC129OmM8z7xdoxwlt8YBM5atBM18FNvz77Fhxvuy4 + XoQN7xJW46R19uVDCuxTi/7xWT6b7AX51d2kiioFKxE/EoHfV0gIp+gdmvdjSMA0Dx3WcjGIFmE4 + a3ASzT1WbiXte/TCEwLXNYKdWLqoP6VzA8ePteDjjSz95Pcl/6dn/NNfaGzmrbTh+394i2j468u/ + sD+RSS77arlMTogQqnjqmWmjT4/5CMCY4Z3a5venr+tFS2RMvheqNU87Wu6pYKFKRxW1OF7xuCis + U/h5BwWbs3bs+c1e4NbHPU7+7P+P74RZu+C/+Mk9pRsLfvAdCTNd6mp1zlEId8EZqfowV4/gxFT+ + 4cHzXDBoQrMGMkcVjybcssuHrzCE0guZE7npHhctR+1bg9U3JGDvfKiTY+W1sPF56nCLl68/MWNg + rfopqKjRr8tqPl3kd72Llb/8GlG3gS0f48eHdNXKM+ICfT7/sJoO1KPMlzTgnGyK8eYvE2XcWs5Q + UpHx/e69MTjuE3Ac5kdW/Yfy9ch1GXhHX6eaU+o9J9zQGTg5S7Dpt3FERXYkaMMrVO9x5s2xPk5/ + /kt1+dT2y/nDk7/zpYaAz/qUzUGBlK2l9/A60nWir3MI5vQIsB7qybpenmkK9Q4EwpXtEq0aw5wl + g6dPqi8d6Yc9o9by63HNsI1YtRd6T3zAKWs7eiPNB41VrcRyeNNk6gsvYV0bqtQgnPUKO8LHr9jw + uGNB9osOa89IW1l6b0oIT6y44XW1F8rrToShGO401dQmGr+uboDaaAw9yntYV+n7tWT9tjv92X+0 + 6FYRg983FnXHxYw40w0amCitqXrshbWfa/aNvksUkC7cbm0ehqcG2/Ng/dMf1pkdTwHUkf+m5/P+ + 0Auc8QTo+OONdD6z3f+ePUC1IPCkv1TbYh3rksibnhxAWlfb4ksxhuf8OVInra/9pk9Ncp+vP5L6 + a1DN0RgTNGkyxtbQutFqtsMkvWG8/+lp1XD8yhbiGfMQoKJ2+sX+VQUyXh4m0jPZV8OXFQfojW9N + uHen9dxfPpbPCiLjrTKitbeNAaRE7HBgOpW+vJ53CTZ7DsppWPU1rnfvPz6H1eI8r1Q8PSy04WF8 + zsfSm+PD7Y0EvU8pdvbxymv4G4B4TC1qtMIh7+1UakB3xSM+bnrT+qKO8Q9PxQ6/eIMUZx3IdPBp + EoRqPl1VUUJ/eqHrpIPObXoDMt8TbPoT1ocTiSR4lGKBb4Ur5Yv+6wE0Nlep+ttaKC6KFMC3/sKm + B+y9KRbIGaShkKhZtks+lfUhAX+vX4L9PiXeOvU5C9ahi+jx7hx0/p3oCtJP3pVq4eDof3wHvWkY + 4HzLD12fyo3k/ZhbADNJ+rktCwtVp4YjI//+6VN/pxosHSdv8cyrShflCpI1ylKf2BFay4sRgxER + hQbq81mRoEwNSGOb4HN9T/VWyUUbbe8Ph+fY9ag8zx2MB9uk6Xd3WoeFpCnwDdLI7vn6oLV9qwB/ + 9YmjTIJKODDyBI7se+QT6zZizUx4oMJLcup8szKaDqe6huguGjSRNbOfX2PkIzZB5+AsGDMqvfnA + AHw/EVaZvdMvSjGy0F65Bw4ujqrPqes38H2qPdZNS4mE4nw6oz/8daSJ3gt/fEx3pSO1t/rCIn4W + gm6HNMTXhtPQfI6eDOwlN6YBI9773/uQKnBcFgOb0jbFMTu9GzCiQaF2z+rV+sz7TjwfRR9HuXFc + Z7TjAIaDfcR/8f5HpDABmTGuGz9uIqLyXQNc2Kl/eNAbxzKvAdIS43t4IdW/es1g4VMwxEyJKLlo + rNzlhkh1Wzjl83nd1KqDc6dpnrXRIn6kAX5UzbHy2Ef93I9ZIDWD4uPnpscudCc+4J7lVyLuPks1 + u8eZ/+N/2Hrxb30Ut6kum16GvZtz0f/pOwk9PahXun7OFoxfg1Rf90G5kG0qCzMtQNiPT//0c55f + 9jFq0byn3ncKEPnTe7d8EsyvnkOrpr0NucTnR9A5lRRt/KkD21E5quwlex22+ghornSh+vcn5Gt3 + 0RO45jGif/GUbPn/T5/HOSf3/ToiS5ND7TVTLf89o3/69XBwj4HcI+rR9pH4MPRGS6Abn/n8/n0f + f/U2rEaPvbeSi8bD3L6uVA+edUQ3vR2a+43BFuFsxF+ilIFoqW74WEqpvlYqydAs8A9sqNq+7yVb + 96F/hzx9/EwmHzZ/Qg/B+2B9uoe6wNk6gUhqM5xeP3y1Vm+tkJkzHQhrbVMtNv4B63Dv6HPDF6O8 + 7GLE1k1NPerp+aCyMEg5acyAH9oun9bDXUP+e/JxMVyWimz1GvSyjRM2L7zrCdozS8E0zY4sVPQj + YiWW9hfvg3njr8u8zLwcw/nwL19NwaPzEXkqiHob/17IZx3QpbkP1HPnzqP2xWKRzMkJmaPHXv/T + t/bRzJdU2fDblH8URdr0fnwMwM0FQbwVQD6lHfzxu0kjl0ze9CN8+xzVld34tTRg3Qv+6pPryhJ/ + b+hPGTvVVKDpxi6B/Iiwi41X/0KzL+MUeO50JONFVite5d81VF/HpM+29NcJjVcfmfuzTSTpGqBV + weUgf9e9TgP7YldCmU6WzAhfnQYprdDiyrb4r16Ij/EvWrvTswb9bET47/cEc0jfEHJrhINHxG/R + RTFgF8x2IJnytVp8X+r++B1hW+Eb/dnDHz7C6t6yoyV6XlMoWO6AjQ1P8ScnSMHN+oxaO4XzxmbM + hj+8tekHbL8kvx9AJXcnjLX3y1vf3vz4V491+dnXl9+Ql7DhbXzZ4s3Gd41/es++m2N93uwFShw+ + yMJZWj4Zr2RC3fnM4D+9beNHARxGP8ch+zLWdauHoOv5pWIcn3Zoq1ekIL6ZK9XEe6Lz2uSdIUiG + Jz1teGKh7wPAnM8qvUEdVavafkLY+DXWEnPUl5O/uHusCgpVdmPnbXoWKx8ebIivx6JE06lvE7gd + sjB4x2dvnf/qEcsxJWS31VPeX65JZZmxrtgqbvdo6u9fBRLvqv+d/9rRnVhsLZYmPSY2XacpkwBE + sfwG8zdq114+XWpYxAoHkpP6Hpd2bSv9tMjarlw90RY/Ykh/hAlQ6Q454RJVk5veDGmq7zi03vs7 + C53gXohcltI6cZlUwPIOLXor3Cyfz3Hoyrzel1S//vY5qeihQQi9eGzbTIGWq0ZqSH2mJf3AGGgO + wlqCGF09+u95jvYp2P8/LQXC/24pOCaCRDVRZKsVznYmpVErkLhenGjB9iMAItwP1IHbGK1TYp5l + Zlq5ADl7rppvy5MHX0t1ar3cO1r0umvBFsMthO6siH+tfIi8HevicC2vFfd6b112Tzei+u4donlJ + JkM+5f6AHWHwvIVZiwJ68g6C/beuvIUaaQHD95PgoutEb0XJmEA6tgea73+axy2UVeR7bqnUe7kY + kbK2eZhuaYgzt9t55La3F3A/SUayy3qKVuNbaXL3GnhsHF9U7ydZPUOz74AAMptoQejFyHkqtWTY + CyRfMrqE8J0bjp5L3a3I7uRqUCXDivXs90bj7JcNCObrTUA/cWhS6wMLR3I6b7tBol64H05E3mWz + SVPClSvxrDiAJPcf2CMlXtdt6QXkMy2xW15//fg8dg+4rumXXlpzCzEzZ8vi++PRvFUQmkrxqCBy + vlyxVb5261TwuiZPpFRoVkDVUyHuEyQOiUfKLsh7VjjWgSz3Xr3t4mG9WSlfZ+AgcLHlM6eVfXe3 + Gn71/o4tp+rRGDdBjLqmTrB7Fy45b9k7F6qJGNh2fkM1q900ycE9jXBiSEfEnqPwLU/ZTEl6lR4R + bdmIyGIsrrS4xanHl7XCyu6qLcHOF54eNxGkydaOT4lk9r98HV2YwDoqIT1kvpWz5FXZsJ0nPl6l + MOJ26c0FuxBVfL/MVs+6FRHhdhSv9CyKcbVcqnaCj/pgqXrmLoj1vZ6B92OSsBKz154YRLLBOZ81 + WrxS8Ig3poEEcWbSYA5HfcF24suBy+b0/PpK0eQ/HQDvkb/wZr857+KOIKx+EXWmr+zR7HK0oVCa + EzWsXvf41pQyObtiipUanhUXnWgMdxSf6FV+GRXbxmErP46iE7BdctMXZZhcML3LFd9o+/V4yRDf + wD17lR64u9JzSeBlcJjiPY32vYRm9ZpNcLmwD6zszt91klIgcOPlJ71mvhUtYuMw8FA/J3zQ+ftm + TwcNfgpjYbdytl0u39dZ5trnntgKdNVUbrcw+ufvTjhTu+Xrrwgn+WLbFs6iRo/4+7de5KceuvQs + NGnEPShI4DG/GVvbtsMxt3gRiIuYgMFEQevbjQlcgptJ84jF1TS9BxvIEH+pJRSax1XjDaTmjWts + V/pUzQaiPqDz6JNPlb56liNcB6TUKdWVRlmnZohqeDovB6ffIehZ+RJO4GVDhkPsV/1yKrgADDxc + sXtVf9E8vH9vuD5CnjrTyYwmGKNBlox3TOpGUXMuznle1tC9Cepk9Tzucr2J0mfvFvQgqFM00/XJ + wPM337CXi1G1PNtx2Vqiztg7yvttsCNTglXuWnqwj3YunKCzwHrkFLtufIi4QrsBHELrh037vsuX + 9WJJoEUrQ93R8Hp+79wfoDiMhXVOg3WB+AN//kTdvDtE9HE92FAGe4fQPBf0IVkVTS5Ouwn7R3/y + loCxOvlYch7OAtnMZ+mj1+iacA9qZtanF2rvTqBXZYv++bMwHVIelv37tMVPXedGwS7Bs903Pi9a + W9W341ED2E0sTgLui5Z7OsVAB+FAgzSvPKFZz4MsDrFH00qf+pk3Y0vWt8GP3uFw7NfTpTFgev4w + zrKCRpPY34hkdoGNdQXSnosbK0GvR5hhv767OVlwC/Bx9Zxa0eODFkLnVBbqLKI+1htvSun1IVv8 + IQ1AeRJvjfO0gzwVW3o+BGXEx7fbGQb+cfjnb+vw3pH9M4Q3DU+3UyWwKQ6F+2O26dXnrXwOx4wF + fdEUfJS6uOK+mqRBVpg4EMLTEE0dudegrGoQcFEz5xO2FU0+b4OLpco5Rdw3CTXwx2XB3vC7Ie75 + sou/86HxZk/E0NLgz75xhqO7Pqe8kspHtOuwq2peNO2S0wLJ6fmg+CYccp42nYREvGpYP0bauoqP + hZfNT9zSS4xp/+efkN8nm14hGir6PHf+v/y3g29frZL8i+Fi7Uaqv0cLzQq9DyA9uzV47+R39SOj + pMAgCA09fFnJW5/ndyAfA10LpKa+5gIzHLdBkZ1KBIj8iv26jg3HhJOoxV5Zb238ZEDvw+VN3f22 + e1utfi3s67OBPf/2Q6sFrgJlUy9UIS8VCSqd3nIgdxVWNn+cfzpSwA+NHJ8U/rrOGqeE8nHNdWzu + cx1xtuid4SyeLzhohnidJmzZUO7tDj+qE1kXB3mtfLFdizAnFKy8pAQAzHZr6myhzFs8qwjgoGUn + 6uXi2s+iUNZysWY3HGb9seLtq+jDRy1YXPysNvqXf7f8Sp++sPOW7kJZsI5aiFNXqHuhkF0bjKBi + 6E1vGjTpcprKZaxIOGalOeqdTKzRX/y92WKl84y1lCBEWAr22AwRv+ED4JxUo4qiz/3EioYL5BXY + 1Hfmzuva1ufhPjxLauhNvG7xLoCj472xrrlTP8u6ZEOon9lA5PcGYr/4a8CSmi1OrcDqBY1LCnka + r19qZ7uhWow8tuWTvsbUf2lG1B0zFIA3423wr6wi9iH4GigKtvDBPrb5bN7iSU7KBNNIgbSa+M/X + le8mc9puVVTR0t7CVB4RfyDCPmCihcvmQt7dEznoNzxHjDx2JV7gXBxa4S4ixf0ewmK4J9Iq0PVz + MNxYFLh8/i/+DsZPyiDkDcDaISjzRVICBgy52wUTdz0ilhpMB8on4cnqm91Kntsgt0RfrUCU6YRq + aScOYDTHL/UbNfPW5LWrIW7oHWv0HUfNY2ZD+Sl2Lj5i3s/Zjlxq2NehgQ2rr/R1v90i8RTqEpFw + CvqLD8hOtVfwlV9GP9Ks0JB+mJ44uBmqzr7W0oIwyCPqmr0TzSn2M7ntfhA8Ju3isQJb+jDWGQ3E + 70CqNY0NW86Mn0CTrxqhFaOXIQeU8cgcD7633PbKJB/e7Qsfh9t7JZV9TySJ7nXssBcn6i9nzd1v + 9hlIafTpF/1ktCAZZfzP/qeQmR8yWScFh1CW3rT9P3n6Wu1mbxMi93RK/uyZyHbe9EsZdjy8LE6j + qamQalpjcQCbnEqqx8uwDim9FrCjEkePtZZWaxe5Z7TiNSTThgenwvkZEMntBT8wUVZ2vl064INF + o6Y9farf2Vcz2VNGlxqrnnsT7ZcO9n6d02w0+mo9SqUl//mzn71Db9LaOUXHVIuC9WHY6zqf2hiI + u2fozXmpHvvaRjsKbq4FzPIwPXodsAHSORjoYYvXfLh/DfJQiZiqqJi8ecD6W+KLR0b+8OLcBVoJ + qWrtguSdXtCYSGMC6BMZ2P0lu3z0m28IJaO4pNa0jzeR6dqgbu8G2MviCs3yNXRBD/QHtgteQ+y7 + O9XwYuetZcLYV0NjPhuUkd8BF8qT6DM7yQo8a7Snf/mctLc0g7IvzgEvmmW+Yvde/+FJrHuFX43C + DRnw6aKebvkuYtma2GCN55IqH2yufJedMnj440StvpsRGc+eKG3+TYY/PpO1vQ3asWRoAT8+nwUw + 39DfsgdVqWzpgtZ0Cjx560yep1LWB08tHiiulIRmC3r1q1Zkb+CQOlPL1xV9wuwLgC+KjLC87eTc + 7r4zwJHbGcd54Wy7Nj8acEfTwcXRD73lnooxoM6usWdou2pNIt1GHzYEmtcfbp3YunGhf+OEiHzD + VDOHjDdMtyzEWhOK+dw2xwLdbpqAPTMU+kl/diI8ED//+54YeWHD5j+BUDBBtITnD4Frvwu2kt/s + rXTZL2A0+Lv5W9D/3kPIyNfHmacn4yQj4t22wbbfUqV3dn1U85af5W5vB4QVEjWaSeiXcN+pKT7z + vdVz6bvLUH80PxTnueANqueJcED3lJ4e8Q6RkRlZgIIZ8HFv1etyeeyCP/xMoyyBagr8mpGfF17D + GDFjNFvVcAY7py1VjAFXywO8Cb2evz3ZXxCgKbvGm30aO3x7jaNOTIbW0oa/sLaTtV4ofoMLJ7tl + g6mGZ9+nDnQwHc0rdV7j6M3KfvT/+HHwNW1Jp6R9n6Hb3Y5UmeGAhNxKB2nDb9RgpVM0na7yA+T0 + O9CgZ8J1xehnwZ/9bni1nxuxe4BybR/YvkpMPr/ThZH22Xml6unU6FNmtxZ6t4tH/eFFonWcpwX0 + rv5SQ0he0Xw+XHl0kZjgz568qfyFDezD14o1EfN9v7JoAttNnICxFRato5AMIKlMEciMKfWzcFsN + KNb0RpXf594vxOYyePOPijp606z12M2dvOV/enZ/Vj4L7fcN03j50mPdJ/16tuZW2vQD7D89otMN + b8ssG543/OZHfDJOITAEQyA/9Xc/2bwuIVWhDbaq5riyEV8xcs+uAWHbI845f+In0FuF4qfOfnRi + 7p0OTsd3jM1zus+XWfmKsOElrBuqtdL8GbdQ7H8pNX2v75d9sT7+8TPvGOf91KmolQ7H94SVLT8u + 4+cnwaSCSPVJP3jT4SwWyDF3DvX04VuRFwljdGaqOKgjUqCZQ/57D2YVb/93RMt0j1OZNo0dcKk4 + Vqt1CTRwb+or+JQwV5R7P7YtH+FE5Js/9DT0khoC1cyx9vDZfNSkxkdHJHebvR7zpWJ3IRRx1eLD + 5m/9rz8GsBOSgAbXpV6nWbkR9LHimJ5sKUfzNT1L8sLDDYdyPqMp05kSHAo3asm/UJ++rur+5Uts + DPwYtaDME4CbscEaO8G/fAvGyRSwebTu+Zx7ZYHKVMzotfJAXz/wCkB1i4YI3L2sloFMqex6F4fi + vtrp68HblTBUEsZB9HxUS2LBGYqSf5Flw3//9IjCGyYcRuGh4hFWFPmPD8fjvNO3fGzBvjJ7irNl + 7y0j82Hl6dljwi9rrU9u1UggIb3COnfR9YVIiog2PvmnZ+Xjxg8hZm8c1V5by+sfft0ZpUVNbrz2 + U5PKNWz8P2Ck99YC1ZkAKD+tf/F8JYFYDrIRvBhssouJhNLJCVT8TqfHUT5XSy45C2rlI4uV022u + hol3XZS0Io/xhu+33ccaUp9NggOehfU3Vu8SGJpe8KF6aPlsKiErP4h7w56weOtvwN4bafbvgfWQ + tGhGOWeAs+5n6mz5doqVtZSXX6hST8w7j3p2XsPGJ/+er5p9I2b/6XfVZu+L2KiMTNZF+W98+ePj + j7x5Ue30POecPl8HwLG3bi3kOzQZPylFZvm08cbn1qUM3zzo9HHAz+08p4f7NmBMhivWuDuppjyw + FJhsLJBFO4M3gPUcEMP9LthKwiMSIrky5HmRRfrHpyecQPEPz5uHhxNNvF4M8McnnCefrPPd/xV/ + +Z+6RzpG469gGGBjTQu+XUyi+aH/BwAA//+kXUnTsjAS/kEeZE9yZJdNgoCIN0BEQUS2APn1U7zf + HOc2R6vQwtDdz9JJEx6gl/sS9l3j/eeXqZCy9gU/a1uLqJ0JLTTCbZkfH9Gvab5JPXTM5w+fNduJ + 9i3OMno2oojtne9/VFYO/+H9KVnlnLsG6gJlqvnEbLDn8uVBc6BsmC0+2/uUvfeYHsDrOYj+ccfr + BjVnD2aqcSTKjmcL16cjvPq5MQtpXdTdRb8V8Mc/rj740InSZ2t5kIiWjPX4BjRSDa0FoZMyxHQz + hXJ0Y1KoRuuBuKfTNKwXZRXQ77ehP78s53a+iLjAfRP/ftxA18lbh5yqkIgpypu2jIzlwHg/0hKU + 5FIzDu8JsPsFD3wb3mbEeE8FQtbOVJ+J0o+73A9BhdLT7UDsxNfc1bouDKSebpOCwlijymAekC2s + +5bogxxtov0oYA24mvx7Xvx0MdHul5ISLC93z0cBGLInEHPnU1vQuvM/PaM7pq0Rr9ha2PUDJCfc + +S4jsi8P7f7BzMSKFq3X20UAudWnM+OYtssepLpF+Cvp87s7zfXI9ele35KYqLq95Wsn1gV6HzXH + p6oTDJMhpxycnH1LbJmF9bJwqgWvnD6TG+jniFRHz/nnn/C7vzYN6xUC9fw+zJNm9xHNoOJIev0j + ZPdvwT7VrIeRw52JrFx+dR/68van77Dps19K73sLe/b02wz39WGHNFPh7n/P7I4/FX1a/j9+qpW6 + BfZ856B1Wi6keLq+xrBqNP/LLyw/6mj7wYGDlaP8sDZ7CyDaIlZwmd8yUdWw0MbzFZTwMxQ6eYRJ + NayTwcoQMv11Lllx0Jgw5QrIb+ZA1HQ/lToy8s7vzgl++gbvrnFrxjAB5TyLy/ehEaefVXhQ2TP2 + t/LjTvb+IjQzG7uZovvXXX6u40B03wysPjMv5zQTWTBNqxvZ+Ue0nAYmA+nUn8hpYd41fZwuI2AV + 2OPr9fEd5po5huDDhNBH9VjVtNnuM8huZ0LMJJjo+nxZJQy6tMH+/RjScfd/we/lJf/0BRW2gIEp + BSfi27xDdzwWwJ8/pyUgqTdqZgXoAHPFdvVk3VmdRAcQdjiS82V6D9ufP/X3fdXagpx+Ue/9/X9i + 9sWdcsApC0gr5YUth9+30B7JDIIrN87H76ZEVBn8g/Qw4IUku3++RI9Khs1vdedt92e2B3AWwH/W + jdiieHeXQ3YY//wa7KWHKtrc++ajmxCc/n6/ZnjCdbD4nqpZWp6XYZNB0/75UT47bI+IHu1NAn+D + /2/pdclpGnsOTI3Dk5zKd/nnn3Xw14AHti8fQ+OfreUDUyYp0dYvR0nCPlp4Yv07xkz9rZc/f1Ux + vqZPrb6he38llggTVuRPz44fW3bQ9cqVRE7fNVj9FDCQvOYOq74+RhtWlwCRE7n5aE2Fmnyukwed + cHvPKDsd8rnwOw7Kw5clmC3FaNv7ATD0ZWZe9t/b/tazNTkGY7a8R398BLZl6BHP7Spt8b3xAH90 + 8+c//2UV58wE3rl64+An1HStbiKEu99ItH51AMvcVh3oj5RgGVayxnzY3vz7PsFlZUScna4eFFhX + m0U19QHxo8YUd38Ru2aJh02UKoiU6FLi86rKlLtuVx964OHMYn+0NZoC2YIN/6iJvr9YbG7EioMZ + vD19MZrn3d9YY8CeTzb29qEzf/GPzr98m9GOLwtqzv6f/03kmb8P65mtYlh8jQrjuZtyWu7z7f75 + O9hdBxKUTAubuRuIPnLn6PM8v0v4x3e9+KrmnO2/ZsS3B3fvH1T1OqShClXW++JzdAnzxVWKApjP + 1iIKozj5+uaq4k8f4utif+ly++ADGCExsYxZpWYu+rOApuUs/rACFqyS8Gph5J1Hkj48aVhH7Fbw + MDIPYurSRGeWsimsdQsQB0fIpcphPIBY3Uy86+th7J8vB34lt/CXY/gF6zuVIOTWxvVFt3fASiX3 + DZUj085bpfVDw1aKD6WzCch5VStKD5GdgTvgjsQiSziQ/th4Ykfq4l+8LokCK3G/f79YaR8tj0ho + IajyZuYVnXPnoakEGFYc2vuLg7vs+Ib25/P3/Cl/iJQMmeWd4Kv1OEaUnvkNivVp+Nff6IfnMYFj + UXLY3/2h5eZ5Kkxyv8TnMJEH5nylxT//X34ie6h8tBSwnK07yaTjp96kNSsAe9Mzothn1V3PbzVG + 7/ERzrverTmiByXKuc8+5c0W8umiiAJkVP7nl66hUjpDOUDOrVNxcWF9jXkntEXVUIZ//GpYLcEN + YDP3A/GUqdW2nj4SuPW/yucU9lmPhf0yER6+Lj6VrB7RIug8sOtt7E3EjHjnoMtoAsyJPKspijbu + I0P0rYUH0RqJAat3kxi4+7P4dK+tnHudiliq8zbCjve6RtOgMzIUvuWAz/DlgCkU6hhF9o+Z0fMQ + 59sP1gw0pCIlchR8h9mnvAV2fwTLjoiiPj2xAczqqsO7HqEk6s86yH70i1VrW3LKRn0ML9oaE/0d + Xv/Vsz88JY99JM6f3wL29SHKTGbtH99uh0ODFWj4Ef32ug9vnxkTC7zfoD9n1EOXTtRxepmWenzG + YgsXc5+afQEzpf/8bbLn05fJtE1YLgXa/bT5oMGlXrLXKMNhgAkOvXMSbS70OvDnz592/sTV5BJD + aLxi7Dj9010dwi5SGvU8dtLIGPitbwJp94exGz/OYH2e+wI6B/eCz9mpjGhlRzNKx8dMcq6hYP7j + UzqB33/Pl5rdKEPw4Id59xPq/g8/xKCmZF/PfHKL2wblh/gg9l7fWNjqDTyp6YUo6Fe6y5/fp3Zg + Jl40NtratUb5f734QPjfWwqOHV6IaQs9XR5Yhgjk8IJVx44imljRATYk6Ob3O5Ipp1baGz0ZS8YJ + H7h0NQYuQ95hPhHZrl7ufFFiiBgSjtiONlVjOfVeQf471fj0sAuNc7cohcW85MSaRcvlMzyMALNW + iD3l1bl00YgMuu+bzMyZ1MM0Co8ELCedw0U5kmEbhUcL4znwiXPmv2ALDBJD/kpPxATPKVp4VQ6R + WykzPp2KV75wzkdFQluesV57ac2zh7RFQw7P5FItfk5+3StBPNt/sTrURdT8Xb/+OMFfGVgDdhxl + D4ruA5D8VKhRJ+4UkpWdGhssOtAltlgfyjez92Nqj8Na34UYVl/1jXFqNS5LjgcTkvYsk9h4mS59 + +MIMf/n961OWBfXv1X4LIE32DZ+K9FQv7jZI8NKLCblVwjZQTrVllGX+g4R+J+Xr3/XdtyIEa/uu + qixiE2SG8Ecu3by/y3SuQzirZTdP1ucJGEalIXow34U4SRvn001XTNRyQMTnCr+j7abbMRye2hOf + 1utl4KTrp4f3PkbY+D0BoKev+oZv9CvIOVAtQIzvWMF3NvbYKeMW7PFyQP1oIaLTH19v4JKHMF+Q + 8G99mVcZFagydBPfGaDslu6zhWJ/NbDjpxygKN4EmBVnm1y7UgFLgS8QBZJSYcxqrcZdrWaGsFxq + XBzb88Be5d8IoqJ6k9Soam19t0kB6TH3/FVPQL6qhSJB4+JMs/SO3vQTwy6AvvYyyRWBBCxmfUkh + OV05YhH7XNMy/OlIy98WCU3nFo3o6joALYWM7wjcAJvI6QhF5/HxRbZYQGvzpwXGONdnMaAwXxa+ + N1Gj3FnslV5T85t2lqHjBkdSHJNOW2NZGuHRCA9YQ5TWC+8UMtjcNcbP9XN3uXGUC6j0ICQ4cDxt + K7BSIBfBleSB42prEeUt8C+lQwzkvPdByIIEJdvDJBxqmP+LPzo/TWwC/AUjbyo9uK7yBZfz2oLF + HCYHpvcfP9MgD+vV6X8p4JTDc26G4VlPcvqu0IY+Ad5/L6LjaM1I6cWQhJlRRwzV9BAqGXpjvSz2 + XaqCl4CXdTjMS5trLn8IqjdSs/lNjK58gSVAowqeelARvUS8u6aey0hznc64uKJa28QzFdBiu9vc + 0Hvost3k+XAKh5T81Yv1y94O4NDcLZyVupKz5jMIIHhqNdbNUKqnUy33EHO+MKNY0Sl3TGsVMduF + YDPjBEBmnjLo+tZ5n9cenx2i4xnFZVISFSxXwPssVcH6YwSiFb/AHVmHU5HU6wbOPzeppvBehnCO + igN+rJ4X0UOBOph50Z3I4TNymYvyKcGZfhNslrGxD5JXLZi27ys2FqgD7ioHB1jqdUVObEPd7aLE + BzBtlUDOD0WiG+vPEvyLF0VLPi612vW9Qx4h7sqieuzH1wFNcj9ila+CnAbsRUWHMC1wkhlNNNkz + XaDcn0binop3zliD5iBe3QzyV99Yn93+PQ//KPtQ255J78H9eeOnGJ4GLobdGyrCYuK86Hx3q3ts + QnvMWSL7wWVg7BlU8MOeEMHeeHTp46aX6A1bDisHN8+3YzrIUn3+ePjSkD5f5ebYQ+4iYWzE7xWs + WuP1sDjMLpGN1RlWuRgEKHcneRaMSnO5KssaeH72Z2K29TdfP5+hhG6lzdj1CmHYpMsYQu/JISLD + 053yM+lMGHzVEntt/x0WwdczSPSgIQ59JRHPONwCnN6ySRpiPEzt62LC7lpp/lc/JxqTWqqPzJek + YZ/KVrQx/lGAx6s/zxsf9IDqeZUhIf3cfQEImcYfq1aFOz7g6++Z/9WrRjhE6UbiFmB3Yc2hA6L7 + BNgCJ6NexTPooNV9z//uv1ALpYdGZZ5m6fxVc+YKKxk9v9Eb67xl1Stmf28IH9uZGBq3an/1GIb5 + CMmVRSXdukkvId/0F5/ZBE3jquTuwU9gYuKm93Ggn9elgarUqkTNTZRPvOMGYHo1GzEhPrjrM3kd + 0J7v/nFh9IEp8B1CuFHoi3F4jrgQqRW650/qS0niA/rKFA4e2Jvvj8B8D+sjPyfSQ5l8v7Er1f3D + P3TQXx3xwHcdtlnGGTQC5+azP8zlfSQsFrrF2w/Ld1Rp5PObYrhIWjdPp7hymXdb+tC2iglH2iGK + aCBmKZibu46LFqzaNsun9A+v/Y1RjjW9WQ6E17fJk/NVLcFW5EkL50umznBwwmGdeZqA9iK5OEzM + U8Qk3tTA9DS42BwiHozG86XCi30MiJpdLcBtQIHocpNinM3rBzBUWkpoJe2LJKVe5TxWeA/dpWDC + 2Y6Pq9unGczxaSBKqiiUyfEbonsXX7Db8HhY8qhJoBkefv7Gy0bOvUsHwrfUOvOxEOK6N79RAPh2 + OhO7m61oG8ZLidhNJdjZ44F1pKMA9WeyYCVWDbBpT+ktXlf1gvP0F7q8VkMLMXJek5MLx4iqlbYg + NR+Fvb4qYJAu4xu+7GOMlQV9wbbnE9itWJyQ7QAIvGoCGi/sRtLzfmxLbr4OOl0XQGwx9+jmbGMK + f/A6+RTV/j5l56BDMb8PfkOyRNtSTUjAzMQMDrISa/0zrBik5Edhnv2Tn88TERio5rOALZLx2pK5 + rwZwCnzi5Px95UuoFCUsNspgNTPqnKYn8QDjox8TlZeNiPC+4Uh35/Eg7k1U8i0SBAcMvnEnVjv0 + w8aaowW9ADT43Mx2NAVsUKHVPqYz4wfhwMrNsYNYC00im++ntonXQwe3rC+xsZ7nfC1DsYVpVyvY + 1R5mtDaPagZwITJRitdIVyoJM0zb6koS4/fLidIkDlLvo+cDNvaHf3ifbMwZm0ey0YU16w591HNO + 7uuDAaM7vytY468wS8eZAOrMdQBZ9fwkuvFqtXUQ5hgswlHFSlVZYGl+qAHU3VtYmH5cas9MIOnn + LMaq6fDRuh5jExzUYsRX1utzqhZOBtsQrth7u9VA7bZ6o3w6sD4z/5SBKfKvCT8v/UOee31fCYCj + xKmQJfeHcqfrIZZSWH3lN7m/ApBvsfw6QD6eX0TzvIvLfx6pB68v84VVEm50hfsW2YdCfKLFzs9d + s1NVoqpThX/1f2xeEgeF20cjcjtY9VJEUYJW5zhjpQjq/PcMuwbiOCjIRTevdDx9wwUliXIkpZEq + gE2Crw9bTVF86ejrdOVNRUBW+nuQa7e/GMjtAwsmIZyIPZ1JTptX34JrZbpET3xnWB+R0/zxOeyy + jFj/irxMYF5qxs6vdXeTi8aC/rXeZhoPgktRsFawkrQG63xHh/Uz8fvpBJ9g2V7MgY9k4ANRClhi + 1jEAX72uLZiaHYsLPg20f3rCPRxPxL+yMuCrLOPA/tlvM0PPx2eJCqg/En0+ZFeXUuEMHbDjNTGi + TdG2yDjH8BPoeF4Dzaas4OudaGiR6LckpIDUD8mDCuDTWRrqMl964aiDv/WLmtt7oNV7bv/0AVEB + Nikfw2oDzdFPsT6LX238wz9D8RAJSpRon+909SF3ETCJvGI/ZfJhDqCss55oceYPbAyrANExdfCl + qjo6YYWbYbP4BDt8MFKCArGCXIRc7IDnHO34VAFtLHyShF8+Wm9B4ot/fEYHN0fjOafYoA2uGD9H + 1ho4cIlCcK7aGHscr7hMBFcZmapa7/j4GcZpsWN4xuMD3+NNyBd4ljN4MsWV6Lte2urHevgXX4al + z3Q1vo2KpuXtkdvPXNxh5gED//Tp+aFkdNM6P4S/LL/M34MmaeR+Oxbwjy+GAJtgX68F7vhCzLJx + czbWoQ5NTRbJRU9ANKaW6iHt8Waw7FzYenmXTgkLXwAkEjVN45vHy0f60Q981JQanSfG9aHcG+PM + CqCi23lzUhh69O1zLfUADe0bBOZbumOfX1KwBso0AljRwG/5as1pqi0t4vVlJcbkhzkJhSVD60kq + yOn3fbqbz24L+sNT4Vs8NarlYga2fNJnppzWYaMHKQGtoU1EP/JXbVMr9w23e2cRrbBef/Wvlx7P + Vtm3YAn5XzxCOhULVjOOB1s7PQrQRuhEfLC/xO8RqQy89CCZj+kv0rZ+7EswrvRNFPl2jMgCIl9y + g9OBuJ6LtU3wPQEeW6zjcxDO0Srd+QXufAO7cbYMC7ooC0oipM3rD7M5fZeah5JaoAQH2TrQ5jMc + oHjKImKVXj2Mryw0UfKWHnuLQR2YyPY9aYW8NE9WnOTrMehUGNztHivrXES9ORQ9OrxjbwaVQOvx + ndkm0Iqq9IXsULhbmQBP0sirwpFeHuqtvi8tipbH4P+KygGc/mWDf/f7+JUiHYucmND/PN74WQjM + X33w4JUxaqy+mz6nsT408I6uR5/d9e9cZWGL2lriicbGY71d5RRC6Xzhd3wIKfunpxGtQ59HquzO + n9+kw77XFXLxYhrt/DIFl9/+oiPZ5ED/Lp0DOFdNjG125PIxYF8Beo+D6X9G1NHVV08zFNPkTvb/ + n28YoQoqNyHAptJP0bjxsglNVsx98YNvUXc+3GRJtLLfzHvjQ9tsHi8wfl1f2FedLFqVZu7Bs/EC + v31HL/BLAuJJwD89iMs2sbsaz1eIOBnaOH+lh4Ee4p8A3xMZiStGfb09bp4PL19Ox/5XY6INnO8C + xKf8gI30YkVUvQkqdA/o5Etv5kKHsuR8OCtFSKITIvusACaDYhfa2A7UEx0WmhZw+aqtz9UxoIva + XFOkK0+ElYY4Eem7IJYukN/mra3bfNuOWgKuoX3CsbG6NW+9BQvqc+DgexCt0Xp4nd7Sl+1q4tO1 + 2I90tCl6vNqZKEGEo/XXiRzk+SGaAXqP2kYlAUJVatS/egI6Ki2FuPPNGez677OvDxDMZiIqVX75 + gi728k/feGXhuJSqUP7HVzxV5bUFPUoBug91wIo4xjkXCYuD9CXgibbH47zyVgu3w4/DapJ4gKzA + 8cWk3gdhfYuHRntmKqVw6Ed8EiN7IPcbX0h/foX2SYthtQY3hTs/nA9DyIJVCE0VrA6a8Sn9rTs+ + bwxkL+ZvPhxLN19znHnII8tEoimJhxXc50XE36gkZ0y/2lpg24O7Psba+Km0RU77EOKP9ybqoK3R + jzm8TFgfnynRTpMNGMFxZXgz+Q/2fLwMy7iEifjuuwxfA60H3ZnTQpi8pBN+ovek0U07q7DOC/nP + L9D29Wdg+c5iv08MI/+XP/rlPmGZF6G7jsIjhsrpUBFL2YJ6SryJAXs9wd6uD+hnake4HQYOn5Aq + a5zdViFsN+5CnK9GI6KNJwnONCn946o72r/7XToZ4hyF7bAR+vLRe/yZOLG7z64/wgzx6mJg/WjK + Ndsz6ACPV2/G3rGd6rUM1wb94ekf/6OxxR7g52V+fFr8Fnd7+EsJFsstyOmgSS4NkbrAg1Im2P75 + Ud59P7YPSy4fsdlvFljepVqg3ynD8/L1+GGNbLOEAAkTUcS8p9RqxeqPvxJbdE/Rrt8r6ECLxefP + E9Gpvi8xeiYXD/vcUY8YeJZT+BMC41++UN43LOQtq459xwpz3p3DECWfI9nXcxmo/mUr1ODc8ptj + YmoMvIQbuHRMhmPiBDWXuxcdSbk14PMyKhF/P3UQnprxSmSSsS71NrVDGdAjctvXf2WdKZTOl16a + 2eYY0GWCSYmCVrZ2/bK5a4ZrD+aeeiemmT0olavPBvOnkhOP7641/Y39DJf76e2DXS9T3lQzaN9T + +s8fmz6v3oTDdBB9tPuNHDzLAjovlU7SyyzXG+u3gnSIss3nu/bj7vmeITlz4ZwOea5teO1SOIyw + JnZ6+eWbUb8FlGNj8BlVvWpk0wwV+GFRzV/twESdN18qUARsSm5Tm2sP1vmEUDpHvB+U01JP7TR7 + 8JWJGTFitaWraEsBQK+GI+quV7uLMpXAv742YgJ8AvRYNB0If53sg6Y1tcXZoASn7S34KN7u0Uo0 + vgK3etawjXo/2vIoZ6RV2EL8p4+W9RhxEC2lTOTyMexbQKL5D6/9g9Gdoq4MxQRK6HTyRdT7OXW4 + Voatvg/OFnMPzJx/leDnbQLi8xWN1j/+YzwtmaTv/KMxxvMn/90PcVFo1mOVvGa4DnyDvcvh5LI3 + r2Dg5S7Ku1775Msez//8SpUqdrT2XceB3Q+b5U003Y0xkSUFN33GevYYXapW7gJx43kz3fkU27yo + Cff4I7Z21bRFLoZOulvFiqOFUYZFtCUV7Poeq85doEQbsQTVx8rs+fD98wsy2FTh0RdUNXE3wr8b + eLfKlSjNkYD5lVgejGCmzgw8SXS6KMUIzZeg4USRNjB7h1sFL6dDg3GR2sO863F4EshE7MflGVH9 + +Vvg1rc+sUqUuiu8xinY6xnBI2vVf3wSvXrW8WFI8oEznukb+O8sIIrkPaNRSS8B0Ms4IwXpH8Py + D59VtfZ5PLzpbAxTD7OjC+bljip3C9hggUGip/jRTZ9ou3r7ER3hqPrr/nuLli/dnz8287HTu5R1 + pg3CM/OYV8u40G3TvE2CZBOxJkbWwItGl0HxlmjkdJp6+rvptg5n/dX43Jk3Kdt+whLEJGz8TenH + fNiFDhC+FcVmeBrz+ftRRimEgzov5vvpLqzahzA+ejHJG57Uq1G/exS6qzev6wzz8ar3zL/6HpTe + q975yoiK4/zyD/5pjha7XRb4SvcXMVPxoC3eFkrg7SwSie3lVDOMCgJoW+WEHSOtAE28ayyOHqf5 + nCHOlLrSN4M92FuGgdrRDT38DMbb5UtUv5Oi+fO6x/BPzxQhATWlKiNDWVTM+dcQL2ctom9w99v8 + ZZZ6bfMOz0r6y3cBfIN6TfTQhJXlpsQHhAH0+1GgxMYuwEa68Tk9xC8BKanUzjQGqP7rb8Ch0v76 + BdO//yu9bBT73x2vmT0/RfLx+5lpc93tHzd9n+oxPvCzOMnuusc/2tefeJf5VS+isXRgse2NeO9h + GIZdj4vWtXV9IEbOQE+17cAb09v4JGqNO+//H/z5/Qbr9dHuB8sQ1d/3zgfPOf9K5BL98UU1Nx/R + tgH7AF83xsIBn57d9fN66/Anhjk5jR9FW0RD6KQM6j986zinXgxyrICKfvH83vObi+BaoRqlBZbP + 5D1QPry9oSW80d5vO4G5zGADcyhhImczU4/mM5Dh07iaBE+G7y6TfJP++C9W0ndAt5WXWyjf7Xbu + M5YFi3TlLLgYpuOLL/lKJ6d/ZTD35Pu8KJtfr550leDO94nBFoRuu98E9udJPGLPAzGGSQA/Mcgx + bjivnqok3cv1xPmXmGbRcoWV+rf+xIjDMfrLN/R4f3SfLaofWFb+oiOWaoZfnyabcuuxSOBrEBec + OrKv8YfqqErbODg+N6h+tJ5qq4eNnD+xufPneSILh/76Udf0NYFN8HXhT/9jz6gatz/VlgRbBeYk + 5fhKW935skA20COC2ebqjonVeGjntwTjXqb8d/JmuADt4L/+9IKS2jKsDNPc58YP+cAcXi1kseXh + uM9kjT3EW4ZC+FNxyK8ioBNZdcQzrUK8bIrqGd5L9c+//8NPSnnTycCziwR8Gtm2ptvRbeCE+ys2 + uoNHuc/vo6PNGlUSht8k35TmIfz1M/xtiDjwFy+wM9oIayhshuW8KQLkPyOPlXRL8hE+vgL8wduE + tdNDjxhvCwU01d+SGCLM6ALsVIa7v+oLie8Oy+dTe/DPj1dEeKdztxr7FL1fhNPS0wYq70dw3/a8 + T6Wd7ZxDd0NG/XwWic16bsTd4icHI6/ZSKk6UrQUOdGB0nEJ+cNT9lgd3mKfORfsG+mLLljcZ5Lc + OI+cKmGrx5suMyjzLnccH3nWnb8/zYQJKz7xGdlVRB1uVmEq1jfiOQEzfE613KHjxylnjl4wWJjD + ykDFghz+6z8TIfQrAEbhRq7reY5WX8Uj1M4f3QerbrtrlQQHqC2P73xko2HYJniG8NffFCxzguqu + 5dMc//wngjFwouWvn/M6CSmJSZ8PXdcsuz491f77zRC6HuNfCsv4ERD/zFtg+tNve37PwiY07vYq + o8Ofnz8vzgu4W2yxI7TEOpqPPzN0NyW1NullCiq5WzoB83la5P9rS4H4v7cUmOUWEvx4fqL1ml9T + hFawYPN6Huh2+wb74HsLYtnqt3qSs6CCZnl+zhO9yBqfnbQWeUtmEI8Tp2jMUy0RdZDx83Z6hRp/ + fZAG8jfmilNmP0WL9StEW7/q2Mu618BKSS3DVq6hLwbQczf2jkw4kefow6x71VsoWhlMXEvEN9F1 + XIaz6wUEj4if+/bxdSlpLxKIisUlwZUMOd2W7g0vRi/7MHgfhzXBrxLOcaxhR5CciD0iuqEOeyU5 + m6/DsLyEooKP+4vHRrcPHhGdoEfz6aISeSvYfAGj5cAL3/PEN0LDpfI+aIjxrSe+cVpbbx0MCkTV + NvMPQ2W6TMjUMmQyQ8LyM3jn7P02ShAoqz2Ts13km3FPO3Dw72iOFl6i9JHeFxgqvoltVevrV2lZ + BchLUSRlgxN3mZ6agJSrx5ASm9OwcTqXguvn9JiHWGjq/XOGfn6YEGtf31+V8xwUiNThs+e+B66/ + 4RJajPMhCrq4+UoesoNGezawIn1MbeO4ow+HQ4rISa4MwBDoq3CschZruH+DVcfVvotqwvMP1TLl + jsV7hL235th8XfKcztuZg8n7XviBytmUXlspAbcq8Mn1U9JhPQVNDAcvNbHs3RSXhVIzI32+cvOy + fVSXvz63BfZvRiBPR0np0peyjFI7/GGvHy8afzydW8i6ZYm9r4VzDsxZDN2z/CNl3oJoUx62A4kZ + S9i4X245d1hfGTz1SUqsRKnovDmbDsU5n3y03euaCOrWIT5OauLzkxrxZ3oaUcNNhJx/sQPYMZgT + 6BH+gs14nYYVzcuCQm4kWD2X32FBR76CKUkM4gXDGNHm+nH+ng++Kek7Ys9UniHsTjXxvhaJpqek + hPDRNgLWz9NlWF5j1UALswp+sIYFWPRpVTjZSCNF9ozBsh0fuvh6mU8S96de269vYSM8O3+9mDGg + hgYqgYP1mXhOmA40XS0If+lTwCYT2TW3OZIpOVtwxTb/KGsSqUuPzsgOZuH6UWu6LdUbQE56YBxw + PZ2gNI5w4bwap8wgR4zyrBP0Vw8KeLlR1kbCAvd43PNDA6tlj5v0peINy+blAMavRkxIZeZFystT + iVYddyX8W19MKRgm7pWbcGF/C77RmxKxjwim8KGYGLtDd3c5R/6VcI5oMItu86rXs2SF8LqkHxxp + ipWzwqlTgVVIKg41tEQbMjsLbMryI9Yhgdpej95IjSaR4N+JG+h32gSUM8cEe4/FcBntsPSwVASZ + pFchdvkzxSNMbsN+Sld9REvIDPsWg2OE8UP7ar/lwPXQkz4tDmnQRwsYZQuxZ/9GTqL6yBn9227Q + d/zLDH/oFX2kx7tBQ939sEwUOece4puDtfU5kmxDMViiaSihQIQOe+fjV+NerJRAH8gqlhPXrunp + ftAhvXOQnK/cIRo79itIiA4/X1wkM+cVseEQ7DPso04Yh5G9vQW08Pcf8XuQu7ybBhs6u86daCXH + 0lVhTyW8IfTC/gCbaImdTw/9yJvwTb7dXb5LoQ8TNNb4MlXniHUjmqFOzj/+wbDTfI0OuQdtuaPE + O3NZPmhPcUOUdXQfTmmSrzlDVOBBIcSPqL3lC1O+S3R2rTt+bKwCGCpcq794I+nd1nN6utozEK5W + PL/61Ka0u8AOvlJdw+r+PIfvE2xQ+iGKw43xXK6TjBDama+Qq9cVlHkXZSA+c/tO/CZVKQ8Fp4JO + Vhyx7ddpxO7xCJ/3vCLO2Q1deqZ4hgqSbazlcxjxp9ri0NlOq/3/7Nsgn2GMrmdGwkrTKDlrE7ED + r9TUyLnYB1EOR66CSTNaOPTEYuCmV2IijXAr1oM7R8mkBj4CJWPj6JCulJznKIZv2DUz4z6cgX5O + swoby+v9dekWsOXXl4XsdsT4In1a96db3T4kRXfIxefOgE0/owri7UWJ8ZEu4F98s2fvhnUKwpo7 + Fv0Ip9d2Jzv+DlsltSOs6q0iGH5qbfbeTwiru+ySHFN34CTqz5BI3QPfVc0ZmMd8FqCpPVys1pqv + 8aV1KlD7TFhs69E6LP3NKsCquoeZPJ57i/wOdRiv8eTzO97y8OiYkngRK2J5ujvw2/uXAXY5WthV + 55DOj60OIDD2fs5rEut/z/tvvYMGHPJlMA8OvB66AV+CPqnZ0RUP4gSrCd/uP9+l/InIMAutGaeH + pNBW/+YU0G5nTFyjbujoH3MTzrYMMK7bY073fIDP2++LswIuGkW1xsGOIRZW2y8GJDu5DaxqPBE3 + zwvALh7LoHwaKQ5/EesyuC446N62A3l+ozPg015JUa4enrNgMHo9frWviepwVkhYP718g2Ghw4fK + WdgAIBl4xhwcqCbyh6hjng4LP00FnA5BS25Kqkbc2Vl0JN9PwN/MH1tvt+ruw37Vj9j+3rFLW3Fm + AHP+jPMq2V9A5WttoeizfDE+z998vTadhYabkxPlBsya71kuRpngOftg1QKsfsyHKOhjAVvATwdW + N68zTJC7YJUGfb7N17eFxPlQkdwarJxmV2dG56swEzXhVkAt37H+4hO71tBF35WNBdSM1Rmfva9M + +d/ZCsDLWwCOHyWu+Uv37KCD5x77ob+6m6RdTKgRZv2bSlAvyUwS0KnjBT9qfT8V/hV9aA5hhR0Z + t+5G5KEEvN36f/UtH+1UjZG1pSOxS6Wh27uiPeRS3PvsE8GcWohf4FYG3N4SeQ1bpa0VQr/iRHCb + X/Jlr3/71CKVBLYZUCqIXwZO19DFRhLKA3PxEwe+HVMi2vtkahtlaQyvR36dvxzQtN8Yrm8UyxUk + 9+WaR1soW+pffcOn4FIDHpyVAD39n0uUZp+rk/wkCCHzXYlWHtV6lZJBhvBx84lhQH5YX4EmwNOz + 0bDDGWlOcVyFKDmWxbyE3y/d4kRtJXMIKqK27qWmZzaTQPV537FTwECjwfH3Bu3AajiGzTniFXks + 4bW+NfN3z49ViwsOTq/l7rNC9QI0Sakv7fWX3OpHUnOu+OPA4T4Z2K6sp7v68X5KVXk05HTSSpey + fcPA7ae4fsBa2cDcbSsBdnOvsR1XE93S+73/w//9zTiyy84c8MAbGis5J7md7/x0g55nvmZhnh3K + EP7SI/gQFBx4t5dGLVmT/4tfB/GSj1dPYEB70QkJXjSjlL+JCUzt4OeX/PTOt97NK+gkxzM5/SY0 + rIJcFejwPXr+uOuBLZRlFf3yYz9LtceBVU8qGWlOYuHzzpcWeSs5qIv9AfvuoXfXAHgWjL5V5Qud + pOZruzxMMF0DF5cu+8g3r6kddMzenI9YZORb1sU9GG/QI8lFP2rT3EEdHFocYS8DkbacjkwFazAW + 5PGk0UAP/tmRZmMf0zOmJliUtN4kmresf8hJp22/730D8VbTuW76clhLLMtQHH8MNsyUpav6yyuw + 3x92PEEemK8nMsBQfxnBsOBy2jJbCctv9iNG7XsD8/tRKDaVKmPreXc13nkGMby9nrEPDv032pTB + CiB3kxsSfbA9bP3tVMCNM72Zu8C8Xtjrc4QfkfNmIYy3aErOSfCHDzgAr1kbt+PVlITZIRjvU77Y + 7vFq0BEvL1x+KV+vJGIzcIuPJj53xRwt59DswDP1MpJaN6Rt/KCFqM+bK/a+zXlY0Tg1IPapim3X + 0nKmW2iFzuKv9Fd3dvKZO9kNJNO3mGGmJQPt2UMM3EQzZoEoMB8/bSMBH6gqwS1Phvmw/jJo9tNE + riS36IxncQO7HiG6GD002ooth3jwNbBR+2O9foycAefqp+Gikkd3c7c++NN/+LTnD2fcjAKNDnCJ + PSXNMB+OXQW9Q+8STZWP2iIzvQo3/IDE4Qwh2qa+4v7w1geHlzTMr/HbgpP60mZxuYJ8XQwugM/G + ZbGTBA7gZI7xYCgPETZq40ln8M02+BcvfskPw7bup6J0sTvM6Hp0tW0qfjM8o1n7V4+XTyeYsO1P + DjFYfKkJf1sT2PnDQPAUaDnbPX4tTCUzI67BJdEWdQcd3GGvE59v2Hod76IJ+bfCY9zyuN7kjtXF + ay3c8N2vhXyEMRcgzgswuZePWlu+3spA9j5+8C1BFuXES+DDJbBPPhdfSbSg47ESlSSXiCVg1V0/ + Xp6Cjpks7Gi9BH5Ot+mg/PSLD4xj7dInjApUVwcLyy8qgSVOxwXGmen4wOC4nJpf5EPEeAVR/IzU + a4f7EjainJN05fx8/RgRA991Z5Pb1/loS7KPod7j0xc+SVVT4BxMBH98QUyXVSL6yjsOfst0wsoE + h3r8u15J7hLO3ktaM7s+k1j0vGLffQ+ArrAooHhyXYx/9a6vzGIEltIAXBpzna8prR0IJjPA5ygy + wNouV/OP32Nr5yOzcTuX8PDweWIIlUKH1/k1wuMharGSJ6CeYRibqBHVHBvvJHAJV3xGcIO4I/Jz + rOr1XjYFUO33DcsAjdH22RRG0i/8D6uBM4L1u1UB+j54aQbP5ldvdci80aHdzPm180cSXkcHBJGZ + +FA5H+mOjxtMqqH26Sro7pa62RvkfKj6k1AhSsWWScDG1vd5YS/fiBztdPtXj/2hMjUqTlSAr2P8 + 2bdcKe6a62KGXq6i4tQYbmCLGmX8h88JE/3qdVUUCaVhZPzplYFKuZwi+/7zsZJrjrucjvANML/6 + xF7KTpuVRp6hPjnLjEhzqdfv7/GWwodbzS/+8R52vsb8l1/uepCOJ71BkLUafPme7jW5h/wbLsO+ + pam0ebDq50cI/Ri2+LnXq4VK3Qhb7pv6Q3fWI/4J81LaON3bh7zl2r/7P2zTa9eHhds5juvD4SUt + 2DRkUm++MsWAd9aYKPk+6D97XU3Q37nCZx7qJdqMKvDQ9ciuxEa1DPhL3zOQf7e9Txvq5pu7PHX4 + ZQqH6NMw0K0bfUva+S7WRZLn7OvmlsCTvi0xTFTRrZLmfXB1bPkwezKU6tZXEg6sfMbRKjTa+DxH + IeTfGv/nD9Tr7q/94x86bKZ8VJrnLMooL/EpsG4uy3tFCqtbEGIPcirgJ5C2MOBY01+VUqs5HwoC + +vNzbkn6oGTlKxMJVycm9iK10U85ZB5YyvyMLQta2rb7JcA5YEIMbQzqP70K/vji9fDNAZ0HP4D6 + ZC34WRNPW+yLs4FX01zwrbpG+bzXD2R17AMHAHkRyzJmCzSBP/vHzL+6f/wTmj2Z5nWC7rBYkyID + 08A61r95Ayg+dyOsxUNNnOQoDROL7jG0tmz0Adp6ujjQk2F8Vmx8HuVFWzi18YHnvuYZ/PHbdLUO + 0Eknc36OaUsZ4TnHcEQFi5MybOpROwg9uKiWj02FPKPlDhQHFfxLnoc8h5TS+B1CcunVnX+f8u5y + Shr0p++R9v4C4jwMB103q8T2st4Hdo9HMKTX175ey7CNXLFBhAUBO634iYihgTecKrnC5+M60d/u + p8I/f8gF5mfYYo/noE9maffn1Jr236MH3DU+k7JhFI37i69Hr/c47SQ12vTRs8DF2FvURiZoG4e4 + DR6WYzcLXdm4c5yoDdKDfWrcOzUAW3eXHil1AcgzyMZhKb9mjAYvM4mc8jNdj+4GgSZ9TGyLXBj9 + 89PW/m1is3kPNU1S4IPk9jv5bMqK7vI4pB6I8ygghplewSZz0AcSrzL+DUZTvR37F4equ+piWeV+ + oBM9iQGSiTXiVUUfUSioFZB96U6cOzMOPxroEvQjf/qnH9f7fTGR06g+dg8GzHteVDM01CduXg3V + yPlLd9unej2dWdzjdzs7ggk2Jo6wGoWBy9T+04FM/bP/8d35T68t4nzFpv9qh93vtBClmbvr03tN + zX6vX19wnX8v24qWsecZqbH8ntgit+U04MoFnNRaw+ePe9DIrofgT5YDoijXhK4sYzbwHjOEhHds + DBS71ze074NPzrsfQplj/QZ//sKZfZ3cnQ+q6A+PHRmbGvOHP8Pi8PMfvm4xdlXpsKAOW29j2b8/ + vGEjPDpf+Jwj+u/6P/187go/n12+7P+Lf5zAD5tOtRkCsSnx+SCu0XTNHxm8/LKFmGigdGnTzybB + h6QQWZvbiJWztIKodI7EzsRXPn2iDP7xPX8flj0sSvMcYR2BEzG8q5uvu58sKefDxT8Y4Uej6ffg + w0v/4XzOZ1J3HGw7+afH5cNvHbY/PvSOeTyjJP9FS8bYLfA8/UWc9vHVend5mlKXuyK2H0Kq0UWL + Tcij+OAv5qWk1PyyHpTIdvEBk1X1tj6FBT7b8jUfYvVOV3N8NzCYmB5bm30E608ZYlEawyf2FyEY + +t2PQH9898oOmP7hLVx+7hvbF6Yb/vmpf/rIvcYqpbbopvCZzx7BldsPW4w1FcjH2cHGp6Q15W9r + jHZ+MDO6lw1MarIOLMp3My/PUa75y9qn4KNhRLQwsdz1jdIYjNWdJbqrePlYfs0E3GOOYD8nlssb + LJP81TsfOnNCuRi7Mrx6hjIfUretN8fvGhiYrYUVdBnydaiW7m99iJa2RBvc5NyCKXlcfIZbmmFd + LKWE+FQF5CaWoCbjVZsB4ztPctrzk/4gkmDn/wbiG7MWjfXtJ0E8bxv2KsEa1uXA7ZOHSn2Ge//m + bbr3Cj7v94pcdDEdtvihOujPvziN5ppPAv/owJ//H2eJp60rVUcUmI01wynldn+2soB/Ah/i/AoE + fkdXOvzVi32s62cgb/NtIWAEAJ+jls8JiC0GVudJm4ed367m2LfwxDEtKfb6saafUQZJUijkfD/5 + NXUafYTvlxRgbSV8tKnGMYAXxjb8d+uuwzZ2jx7ufi0+/fFJiYc6vE+8M/+HqzPpdRSHwui+fkXp + bVEJ8pIHpnZMARIIZsoktVqQEMIUJmODpf7vLeeVetFrFiC4tq/Pd4DoeOTorLpBArSioO/nL9H8 + FS9MyZmg6cmGRLbpIshftmRMUnuoIpKUfAhstZE87s5DfYGrOQZ2d/GxKqNumMfwKwfb0Ws9wZjr + gSioyETGLyc5as4ROvMPE3jiA2JWrxSLgdxLEzbPHn+YrIjxQgUsPTWwPXxtpJndL5CpxwN0Cn+i + 7Ho+wevWC9hITqODhjPavOsNat1GcVZOInJgVWB1EpT2QslVU4iYmlkAbTZ/kGDXEVAAa8Y297Dp + SPvTRdKwqsBLmxn6WjDOnNhD0/LAoWzp7HJC+82TraYW9e6aVZnsBZmA37yAvHl6mHIJdv3iUaLh + RTzRGs1gooG4o5Tle9/9tiMVOqU9vzPBuYSH73zsM02OucT4yfTllZtoZjwQkDW4Qafe5pQUdacB + D0Ab77yx1il3NEZp/8oV7Il+ItEXEkWQoonCN59Z1steEOOmuuCwu6l0lddaA/SjeWdfNdMpfYYn + AwRqnbLx1zqEqnkMeE9r4XZJ+HJ+r5dXs2rhPVxb5foZP0OgHOzcI1jNI2z2SiLzgrGFgSo+6bI9 + bzP57IAesv5KWkT9agDW/8LDsnrSOXLDBJT2i8eeLNxKdKzyPbCaiDLjtaZoagVDnnaahL1KeDo0 + 0jY9QM9Dw3483EeL6QS5LG4IwlvebSQKALcBV7Np2XqU6avLODTg+mWHMGb1hlheCORbamIrP9KI + 4jvcv+sHe9qd6iPr18A1Mj7htnMKncRB7QIrfWYsH+LKmWauIq2d2MJxwzfD4udLK0eNjKBK3HBY + Wv1igPd4NWUhH9C+aUTQe88YWgqonO/8lCDXgvFXJOv0syY3OTWmCz7MwqWkSPNd+QpaAx7CtTVM + 0aD6oCj73cSfC0wJJzl7UA1yAm+sntroMcYgL0k+9eaSpctklYo81JcCJ75S6cv8IIt8E3QPa/vD + OnrnRSLjlTgQdxZdcVfRBMdXsoPa7dzpM+M7wOyKF1ZC8Ssdo6bcyPqzGuDD/+wlct0pp/f+Am9x + CPTFD6UCVCKJ8cWmaYrvQejK+fMheLyfuANyt8D/5o2qpFbpWO56Ijly8JrOTZ3oZBtTHxS5fcb7 + /JCnI1Xbk3RXypuHNt1+WPM7n4B0c7ehZ6BEJ5i7usAtj+wViLBieel4AgWX3Nn+wqGLLB9j0GxE + AzqhvpRzT0cboCgPsbLsdErmNE2AOGmXN5+T1k5w9SRvg07QWolXidZKk4G+pmuvy+2HPu+fYg5s + wa5ZHiY4U6WoCvijFPz4+fMvJgh8NO09q5kYgLIZ/fpPFfi1/jU2SV2/xYKPaUzy7OP3HwXhoxva + pkN/o7bKXiNzDWRxs/rWDT5Qi5L6f4d+sBP+8+NfAAAA//8DAEkU7SC6BQIA headers: Access-Control-Allow-Origin: - "*" Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983da8761f8f9e64-SJC + - 984e9ce45abff99f-SJC Connection: - keep-alive Content-Encoding: @@ -3038,19 +3031,13 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:00:25 GMT + - Fri, 26 Sep 2025 00:23:29 GMT Server: - cloudflare - Set-Cookie: - - __cf_bm=OvcFtz7xwsphUZh5JMMqodWydSyKK.p2VZWIBNrgwSc-1758668425-1.0.1.1-5Ok2hXno_FnR.Co8udDCSbNeXbGzE.wrdqdDXv0UUSFmUjqH08fPx1rI.VvLyNr6hrJCI8kC6sltAv0eHVmvvFc581nxd9P_CHtRgvny.kc; - path=/; expires=Tue, 23-Sep-25 23:30:25 GMT; domain=.api.openai.com; HttpOnly; - Secure; SameSite=None - - _cfuvid=WpaWLmP2ybMtK6uLBHZqHnAD.7o87tY0ppcMudJlyK0-1758668425119-0.0.1.1-604800000; - path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None Transfer-Encoding: - chunked Via: - - envoy-router-84f87775f7-rqsfh + - envoy-router-867c855bff-ckt4l X-Content-Type-Options: - nosniff alt-svc: @@ -3062,7 +3049,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "384" + - "223" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -3070,7 +3057,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "404" + - "323" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -3080,13 +3067,13 @@ interactions: x-ratelimit-remaining-requests: - "199999" x-ratelimit-remaining-tokens: - - "199979816" + - "199979820" x-ratelimit-reset-requests: - 0s x-ratelimit-reset-tokens: - 6ms x-request-id: - - req_89ac19dfd2e5426f8e5178152de76e30 + - req_3ee5cd60b73044459407827fbac5ed4e status: code: 200 message: OK @@ -3251,7 +3238,7 @@ interactions: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983da8796bd69e64-SJC + - 984e9ce7be24f99f-SJC Connection: - keep-alive Content-Encoding: @@ -3259,13 +3246,13 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:00:25 GMT + - Fri, 26 Sep 2025 00:23:29 GMT Server: - cloudflare Transfer-Encoding: - chunked Via: - - envoy-router-55b6d8ff76-m54v7 + - envoy-router-575fcf7dd6-bm7mx X-Content-Type-Options: - nosniff alt-svc: @@ -3277,7 +3264,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "66" + - "38" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -3285,7 +3272,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "89" + - "59" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -3295,13 +3282,13 @@ interactions: x-ratelimit-remaining-requests: - "199999" x-ratelimit-remaining-tokens: - - "199999933" + - "199999930" x-ratelimit-reset-requests: - 0s x-ratelimit-reset-tokens: - 0s x-request-id: - - req_35f2057ba50641dfb4adf470c90d2c11 + - req_e91a667a79fa4d279d5e0df89f0876a1 status: code: 200 message: OK @@ -3462,7 +3449,7 @@ interactions: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983da87adba42343-SJC + - 984e9ce9191e1679-SJC Connection: - keep-alive Content-Encoding: @@ -3470,19 +3457,19 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:00:25 GMT + - Fri, 26 Sep 2025 00:23:29 GMT Server: - cloudflare Set-Cookie: - - __cf_bm=kRKvDNN3NlJJGfGVrXRk_JWupv4.SJrFoXpk0uf6fZs-1758668425-1.0.1.1-phaiyc31nzc7cJD5iO.ZOfjECtUGggk0duu.s5zQpPv2h.qARr3jCS8jlQV838Aa_uwFWobH25k0oUCwLwMry3d9cxJyznCk7ghDAl1HXWo; - path=/; expires=Tue, 23-Sep-25 23:30:25 GMT; domain=.api.openai.com; HttpOnly; + - __cf_bm=LyN1hbKDIbQb2Bq4SQ.TUVN89s_OjxFyVy8.FBcmu0o-1758846209-1.0.1.1-BsEQQd3H7GMqSoHZk7pAr3hR1AGIbqiXJYaKixhCxrXS68yUD_.xclsjM90LFLjwQrlOfI734PgV7G5GYZSwwSy5hqOMpY1UC0iwquDf0ks; + path=/; expires=Fri, 26-Sep-25 00:53:29 GMT; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - - _cfuvid=U4j594PO1AWEm7jvvLVb0l25WXC7a0Beo7nTz3Ah6IQ-1758668425606-0.0.1.1-604800000; + - _cfuvid=y9tWbtLnr79wzxEWm0DQ_pGYpDungTYpTuNnejQUICw-1758846209673-0.0.1.1-604800000; path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None Transfer-Encoding: - chunked Via: - - envoy-router-758d5d8954-j5xkf + - envoy-router-867c855bff-hcbpq X-Content-Type-Options: - nosniff alt-svc: @@ -3494,7 +3481,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "60" + - "99" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -3502,7 +3489,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "100" + - "151" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -3510,7 +3497,7 @@ interactions: x-ratelimit-limit-tokens: - "200000000" x-ratelimit-remaining-requests: - - "199998" + - "199999" x-ratelimit-remaining-tokens: - "199999996" x-ratelimit-reset-requests: @@ -3518,7 +3505,7 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_28c3041a8d134f628f7e72c63341e331 + - req_dd75b078adda44e89220f4216efc1b48 status: code: 200 message: OK @@ -3528,79 +3515,81 @@ interactions: the relevant information that could help answer the question based on the excerpt. Your summary, combined with many others, will be given to the model to generate an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n \\\"used_images\\\"\\n}\\n\\nwhere + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10,\\n \\\"used_images\\\"\\n}\\n\\nwhere `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 1-10 for the relevance of `summary` to the question. `used_images` + is an integer 0-10 for the relevance of `summary` to the question. `used_images` is a boolean flag indicating if any images present in a multimodal message were - used, and if no images were present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt - from Wellawatte2023 pages 1-3: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\n - A Perspective on Explanations of Molecular\\n\\n Prediction Models\\n\\n\\nGeemi - P. Wellawatte,\u2020 Heta A. Gandhi,\u2021 Aditi Seshadri,\u2021 and Andrew\\n\\n - \ D. White\u2217,\u2021\\n\\n\\n \u2020Department - of Chemistry, University of Rochester, Rochester, NY, 14627\\n\\n\u2021Department - of Chemical Engineering, University of Rochester, Rochester, NY, 14627\\n\\n - \ \xB6Vial Health Technology, Inc., San Francisco, CA 94111\\n\\n\\n - \ E-mail: andrew.white@rochester.edu\\n\\n\\n\\n Abstract\\n\\n\\n - \ Chemists can be skeptical in using deep learning (DL) in decision making, - due to\\n\\n the lack of interpretability in \u201Cblack-box\u201D models. - \ Explainable artificial intelligence\\n\\n (XAI) is a branch of AI which - addresses this drawback by providing tools to interpret\\n\\n DL models and - their predictions. We review the principles of XAI in the domain of\\n\\n chemistry - and emerging methods for creating and evaluating explanations. Then we\\n\\n - \ focus on methods developed by our group and their applications in predicting - solubil-\\n\\n ity, blood-brain barrier permeability, and the scent of molecules. - We show that XAI\\n\\n methods like chemical counterfactuals and descriptor - explanations can explain DL pre-\\n\\n dictions while giving insight into - structure-property relationships. Finally, we discuss\\n\\n how a two-step - process of developing a black-box model and explaining predictions can\\n\\n - \ uncover structure-property relationships.\\n\\n\\n\\n\\n\\n 1Introduction\\n\\n\\nDeep - learning (DL) is advancing the boundaries of computational chemistry because - it can\\n\\naccurately model non-linear structure-function relationships.1\u20133 - Applications of DL can be\\n\\nfound in a broad spectrum spanning from quantum - computing4,5 to drug discovery6\u201310 to\\n\\nmaterials design.11,12 According - to Kre 13, DL models can contribute to scientific discovery\\n\\nin three \u201Cdimensions\u201D - - 1) as a \u2018computational microscope\u2019 to gain insight which are not\\n\\nattainable - through experiments 2) as a \u2018resource of inspiration\u2019 to motivate - scientific thinking\\n\\n3) as an \u2018agent of understanding\u2019 to uncover - new observations. However, the rationale of\\n\\na DL prediction is not always - apparent due to the model architecture consisting a large\\n\\nparameter count.14,15 - DL models are thus often termed\u201Cblack box\u201D models. We can only\\n\\nreason - about the input and output of an DL model, not the underlying cause that leads - to\\n\\na specific prediction.\\n\\n It is routine in chemistry now for DL - to exceed human level performance \u2014 humans are\\n\\nnot good at predicting - solubility from structure for example161 \u2014 and so understanding how\\n\\na - model makes predictions can guide hypotheses. This is in contrast to a topic - like finding\\n\\na stop sign in an image, where there is little new to be learned - about visual perception\\n\\nby explaining a DL model. However, the black box - nature of DL has its own limitations.\\n\\nUsers are more likely to trust and - use predictions from a model if they can understand why\\n\\nthe prediction - was made.17 Explaining predictions can help developers of DL models ensure\\n\\nthe - model is not learning spurious correlations.18,19 Two infamous examples are, - 1)neural\\n\\nnetworks that learned to recognize horses by looking for a photographer\u2019s - watermark20 and,\\n\\n2) neural networks that predicted a COVID-19 diagnoses - by looking at the font choice\\n\\non medical images.21 As a result, there is - an emerging regulatory framework for when any\\n\\ncomputer algorithms impact - humans.22\u201324 Although we know of no examples yet in chemistry,\\n\\none - can assume the use of AI in predicting toxicity, carcinogenicity, and environmental\\n\\npersistence - will require rationale for the predictions due to regulatory consequences.\\n\\n - \ 1there does happen to be one human solubility savant, participant 11, who - matched machine performance\\n\\n\\n 2 - \ EXplainable Artificial Intelligence (XAI) is a field of growing importance - that aims to\\n\\nprovide model interpretations of DL predictions Three terms - highly associated with XAI are,\\n\\ninterpretability, justifications and explainability. - Miller 25 defines that interpretability of a\\n\\nmodel refers to the degree - of human understandability intrinsic within the model. Murdoch\\n\\net al. 26 - clarify that interpretability can be perceived as \u201Cknowledge\u201D which - provide insight\\n\\nto a particular problem. Justifications are quantitative - metrics tell the users \u201Cwhy the\\n\\nmodel should be trusted,\u201D like - test error.27 Justifications are evidence which defend why a\\n\\nprediction - is trustworthy.25 An \u201Cexplanation\u201D is a description on why a certain - prediction was\\n\\nmade.9,28 Interpretability and explanation are often used - interchangeably. Arrieta et al. 14\\n\\ndistinguish that interpretability is - a passive characteristic of a model, whereas explainability\\n\\nis an active - characteristic which is used to clarify the internal decision-making process.\\n\\nNamely, - an explanation is extra information that gives the context and a cause for one - or\\n\\nmore \\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + used, and if no images were present it should be false.\\n\\nThe excerpt may + or may not contain relevant information. If not, leave `summary` empty, and + make `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from + Wellawatte2023 pages 25-28: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\n2021, + 25, 1315\u20131360.\\n\\n\\n (9) Wellawatte, G. P.; Seshadri, A.; White, A. + D. Model agnostic generation of counter-\\n\\n factual explanations for + molecules. Chemical Science 2022, 13, 3697\u20133705.\\n\\n\\n(10) Gandhi, H. + A.; White, A. D. Explaining structure-activity relationships using locally\\n\\n + \ faithful surrogate models. chemrxiv 2022,\\n\\n\\n(11) Gormley, A. J.; + Webb, M. A. Machine learning in combinatorial polymer chemistry.\\n\\n Nature + Reviews Materials 2021,\\n\\n\\n(12) Gomes, C. P.; Fink, D.; Dover, R. B. V.; + Gregoire, J. M. Computational sustainability\\n\\n meets materials science. + Nature Reviews Materials 2021,\\n\\n\\n(13) On scientific understanding with + artificial intelligence. Nature Reviews Physics 2022\\n\\n 4:12 2022, 4, + 761\u2013769.\\n\\n\\n(14) Arrieta, A. B.; D\xB4\u0131az-Rodr\xB4\u0131guez, + N.; Ser, J. D.; Bennetot, A.; Tabik, S.; Barbado, A.;\\n\\n Garcia, S.; + Gil-Lopez, S.; Molina, D.; Benjamins, R.; Chatila, R.; Herrera, F. Explain-\\n\\n + \ able Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities + and Chal-\\n\\n lenges toward Responsible AI. Information Fusion 2019, 58, + 82\u2013115.\\n\\n\\n(15) Murdoch, W. J.; Singh, C.; Kumbier, K.; Abbasi-Asl, + R.; Yu, B. Interpretable machine\\n\\n learning: definitions, methods, and + applications. ArXiv 2019, abs/1901.04592.\\n\\n\\n 25(16) + Boobier, S.; Osbourn, A.; Mitchell, J. B. Can human experts predict solubility + better\\n\\n than computers? Journal of cheminformatics 2017, 9, 1\u201314.\\n\\n\\n(17) + Lee, J. D.; See, K. A. Trust in automation: Designing for appropriate reliance. + Human\\n\\n Factors 2004, 46, 50\u201380.\\n\\n\\n(18) Bolukbasi, T.; Chang, + K.-W.; Zou, J. Y.; Saligrama, V.; Kalai, A. T. Man is to com-\\n\\n puter + programmer as woman is to homemaker? debiasing word embeddings. Advances\\n\\n + \ in neural information processing systems 2016, 29.\\n\\n\\n(19) Buolamwini, + J.; Gebru, T. Gender Shades: Intersectional Accuracy Disparities in\\n\\n Commercial + Gender Classification. Proceedings of the 1st Conference on Fairness,\\n\\n + \ Accountability and Transparency. 2018; pp 77\u201391.\\n\\n\\n(20) Lapuschkin, + S.; W\xA8aldchen, S.; Binder, A.; Montavon, G.; Samek, W.; M\xA8uller, K.-R.\\n\\n + \ Unmasking Clever Hans predictors and assessing what machines really learn. + Nature\\n\\n communications 2019, 10, 1\u20138.\\n\\n\\n(21) DeGrave, A. + J.; Janizek, J. D.; Lee, S.-I. AI for radiographic COVID-19 detection\\n\\n + \ selects shortcuts over signal. Nature Machine Intelligence 2021, 3, 610\u2013619.\\n\\n\\n(22) + Goodman, B.; Flaxman, S. European Union regulations on algorithmic decision-\\n\\n + \ making and a \u201Cright to explanation\u201D. AI Magazine 2017, 38, 50\u201357.\\n\\n\\n(23) + ACT, A. I. European Commission. On Artificial Intelligence: A European Approach\\n\\n + \ to Excellence and Trust. 2021, COM/2021/206.\\n\\n\\n(24) Blueprint for + an AI Bill of Rights, The White House. 2022; https://www.whitehouse.\\n\\n gov/ostp/ai-bill-of-rights/.\\n\\n\\n(25) + Miller, T. Explanation in artificial intelligence: Insights from the social + sciences. Ar-\\n\\n tificial intelligence 2019, 267, 1\u201338.\\n\\n\\n\\n + \ 26(26) Murdoch, W. J.; Singh, C.; Kumbier, + K.; Abbasi-Asl, R.; Yu, B. Definitions, meth-\\n\\n ods, and applications + in interpretable machine learning. Proceedings of the National\\n\\n Academy + of Sciences of the United States of America 2019, 116, 22071\u201322080.\\n\\n\\n(27) + Gunning, D.; Aha, D. DARPA\u2019s Explainable Artificial Intelligence (XAI) + Program.\\n\\n AI Magazine 2019, 40, 44\u201358.\\n\\n\\n(28) Biran, O.; + Cotton, C. Explanation and justification in machine learning: A survey.\\n\\n + \ IJCAI-17 workshop on explainable AI (XAI). 2017; pp 8\u201313.\\n\\n\\n(29) + Palacio, S.; Lucieri, A.; Munir, M.; Ahmed, S.; Hees, J.; Dengel, A. Xai handbook:\\n\\n + \ Towards a unified framework for explainable ai. Proceedings of the IEEE/CVF + Inter-\\n\\n national Conference on Computer Vision. 2021; pp 3766\u20133775.\\n\\n\\n(30) + Kuhn, D. R.; Kacker, R. N.; Lei, Y.; Simos, D. E. Combinatorial Methods for + Ex-\\n\\n plainable AI. 2020 IEEE International Conference on Software Testing, + Verification\\n\\n and Validation Workshops (ICSTW) 2020, 167\u2013170.\\n\\n\\n(31) + Seshadri, A.; Gandhi, H. A.; Wellawatte, G. P.; White, A. D. Why does that molecule\\n\\n + \ smell? ChemRxiv 2022,\\n\\n\\n(32) Das, A.; Rad, P. Opportunities and challenges + in explainable artificial intelligence\\n\\n (xai): A survey. arXiv preprint + arXiv:2006.11371 2020,\\n\\n\\n(33) Machlev, R.; Heistrene, L.; Perl, M.; Levy, + K. Y.; Belikov, J.; Mannor, S.; Levron, Y.\\n\\n Explainable Artificial + Intelligence (XAI) techniques for energy and power systems:\\n\\n Review, + challenges and opportunities. Energy and AI 2022, 9, 100169.\\n\\n\\n(34) Koh, + P. W.; Liang, P. Understanding black-box predictions via influence functions.\\n\\n + \ International Conference on Machine Learning. 2017; pp 1885\u20131894.\\n\\n\\n(35) + Ribeiro, M. T.; Singh, S.; Guestrin, C. \u201D Why should i trust you?\u201D + Explaining the\\n\\n predictions of any classifier. Proceedings of the 22nd + ACM SIGKDD international\\n\\n\\n 27 conference + on knowledge discovery and data \\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" headers: accept: - application/json @@ -3609,7 +3598,7 @@ interactions: connection: - keep-alive content-length: - - "6093" + - "6231" content-type: - application/json host: @@ -3641,26 +3630,25 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//jFTbbts4EH33Vwz4UgewA9tNk8ZvRlOg6fYDulgXxogcSdNQpJZDJhGC - /PuCkmwr2y6wLwLEM2d4eObyMgNQbNQWlK4x6qa1y09fr7/U4f3nP9F0t1+6r7ub8tPN3f0OnVir - Fpnhi5+k45F1qX3TWors3QDrQBgpZ13ffPh4ff3xavOhBxpvyGZa1cbllV9uVpur5Xq93KxGYu1Z - k6gt/DUDAHjpv1miM/SstrBaHE8aEsGK1PYUBKCCt/lEoQhLRBfV4gxq7yK5XvXL3gHslaSmwdDt - 1Rb26vNza5EdFpZgFyKXrBkt3LtI1nJFThPMv+/uL4AFEEoma6D0OgkZ8A7a4B/ZsKuAXaTQBoqY - LRFAZ4BydjcelD6AIWrBEgaXKfO7bxfQuwNtIMO6D1wAGhNIJIfEmuBdYVE/LAv//A4cxhQIfJkR - oYEtl/B9dw/IjUD0QK7GrDuGJLHXkQQLthw7KDrwZUlhUCxc1VGydA9PdQc4qmnwgQSkJZ0NmYq7 - hD+oA+2dprZn9jez0zYZmngwXjfP+g1VgXrNdWrQQXKGQi6UOYb58nj1xQJ+JunrMNo2/zuhi5xt - fSRoKAbWArHGCIZKcqb3qH/rkw+xZkciOeNE9cXi13LMDYkO3A5/2mLgsjtaHgjF9zUqqGZn3iQb - 3GaBFkNknSwG20EgS4/oYvZE19SwxNAt4KmmQJMn55x336b5QKODKrEhqLvW93Ud28dJLvZQY8BA - 4Hw8t4+0KbBPAtqHQHZ41+VeLYY+HwVpOoj2gYZ+X69OeG7hAzdYkWSsRCu0d6/T4QlUJsE8uy5Z - OwHQOT82eh7bHyPyehpU66s2+EL+RVUlO5b6MPibh1Kib1WPvs4AfvQLIb2ZcdUG37TxEP0D9det - N6txI6jzDprAV7cjGn1EOwHen5A3KQ+GIrKVyVZRGnVN5sw9ryBMhv0EmE0e/que3+U+Ndf/SX8G - dB45Modz6/wuLFBe0v8VdjK6F6yEwiNrOkSmkIthqMRkh/2ppJNIzaFkV+Wh5mGJlu3hZn1bmKJE - c61mr7N/AAAA//8DANIk6odNBgAA + H4sIAAAAAAAAAwAAAP//dFTBbiM3DL37Kwhd0gLjwDYSx/XNKdLGPXa7aNp6YdASZ4aNRpqInCRu + kH8vNOPETrt78Rh6fI+PFKmXEYBhZ5ZgbI1qm9aPf/zl4e76z9ubn26vd5Pb64dPj/Wen/SPp58/ + PcxNkRlx9zdZfWOd29i0npRjGGCbCJWy6vTqcrG4mM8mP/RAEx35TKtaHV/E8WwyuxhPp+PZ5ECs + I1sSs4S/RgAAL/1vthgcPZslTIq3k4ZEsCKzfA8CMCn6fGJQhEUxqCmOoI1BKfSuXzYBYGOkaxpM + +41Zwsb8VhPQs6XUKngWFXjExLETSFRSomAp//W5MtAIN8+tRw648wSrpFyyZfSwDkrec5Xj4bu7 + 1fr7AjhY3zkOFZSxCw5zp9DDU0z3UoB06ZH2UgAGB9i2nm0fIcABHJd9cgUXG+Qg57BWaCgMETYG + S61KAYrPMcSG6SBka/SeQkW9zN1qXQAKPJH3+Sst2ewYRDvHJBAD0FtB7Fn3mdWgrTkQeMIUOFTZ + q60z38YuKKUSrXboB2oYXPcFpVihEvT3fTDkaMcouQlKtg780JGcw8o5Htrh9wWwfmx21XnUmPZQ + Jmyo7xd4vifQmuDm85nAWeKq1nwfJx7O+oQ55vealeA2dkJnAqs1XLP3EEv4NdOkgKeabQ3UtDUK + /zMIc9PGpJgvMJagCYO0mD3tB93Uieb2rNYge1Fq5HxjimGkEnl6zNSt2Jgoj9biAHVCbssNViT5 + uEQvtAmvpyOaqOwE84aEzvsTAEOIOvQ3L8eXA/L6vg4+Vm2KO/kP1ZQcWOptIpQY8uiLxtb06OsI + 4Eu/dt2HTTJtik2rW4331KebzheLQdAcN/0Enr2hGhX9CbCYzouvSG4dKbKXk901Fm1N7jTn/OK9 + COwcxyM2GZ3U/n9LX5Mf6udQnah8U/4I2Lxc5LZtIsf2Y9nHsET5NfxW2Huve8NGKD2ypa0ypXwf + jkrs/PBQmWGctiWHilKbeHitynZ7OZ/uZpdXV25nRq+jfwEAAP//AwA4T/1ptgUAAA== headers: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983da87c7b3767e5-SJC + - 984e9ceacb38f98b-SJC Connection: - keep-alive Content-Encoding: @@ -3668,14 +3656,14 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:00:29 GMT + - Fri, 26 Sep 2025 00:23:32 GMT Server: - cloudflare Set-Cookie: - - __cf_bm=p6YOxCWlTkI853OG7KFU8KUIho_bLDXP20UzaT5odCk-1758668429-1.0.1.1-MfHLMcMUn2Lia7KloHZgJk63Fq9g5jaYQ7.3SugX7D1S3fW05oMKLkae.hVLMJffq_dheLp7UBzbTWuClWYvKZobvBmOhJtVaPeQX81ZCVE; - path=/; expires=Tue, 23-Sep-25 23:30:29 GMT; domain=.api.openai.com; HttpOnly; + - __cf_bm=4Sbdz1TSSAcQIrtdaVZBCj8wYAbeEdzhkoCkduoNrOo-1758846212-1.0.1.1-B5htphEaL_7wJvkGDn6p7D6JRT4zLvCrHope4ZhwjR0pxqrqwIhD5Rxz9l1MJKos5uLClbyv2xgiQbVpK9U2E6CrmODnBuBuZBAA0D.Sx_A; + path=/; expires=Fri, 26-Sep-25 00:53:32 GMT; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - - _cfuvid=PMZH9FO5K6vMNb97cDTwZLxDCKJf7MU1HZeq61c2i_k-1758668429042-0.0.1.1-604800000; + - _cfuvid=qW7XmWbpUhLvmLr4MeWgeq1p2pWeSpwnW3CwFRThl98-1758846212064-0.0.1.1-604800000; path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None Strict-Transport-Security: - max-age=31536000; includeSubDomains; preload @@ -3690,13 +3678,13 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "3267" + - "2265" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" x-envoy-upstream-service-time: - - "3295" + - "2284" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -3706,13 +3694,13 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29998544" + - "29998517" x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - 2ms x-request-id: - - req_1ad7e11b71814be780ab9a1f1cb4516a + - req_1d53c5dab753458c957f02ae24c23c3c status: code: 200 message: OK @@ -3722,12 +3710,14 @@ interactions: the relevant information that could help answer the question based on the excerpt. Your summary, combined with many others, will be given to the model to generate an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n \\\"used_images\\\"\\n}\\n\\nwhere + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10,\\n \\\"used_images\\\"\\n}\\n\\nwhere `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 1-10 for the relevance of `summary` to the question. `used_images` + is an integer 0-10 for the relevance of `summary` to the question. `used_images` is a boolean flag indicating if any images present in a multimodal message were - used, and if no images were present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt - from Wellawatte2023 pages 20-22: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\nnal + used, and if no images were present it should be false.\\n\\nThe excerpt may + or may not contain relevant information. If not, leave `summary` empty, and + make `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from + Wellawatte2023 pages 20-22: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\nnal molecule. The counterfactual indicates\\nstructural changes to ethyl benzoate that would result in the model predicting the molecule\\nto not contain the \u2018fruity\u2019 scent. The Tanimoto96 similarity between the counterfactual @@ -3801,7 +3791,7 @@ interactions: connection: - keep-alive content-length: - - "6087" + - "6209" content-type: - application/json host: @@ -3833,26 +3823,25 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//fFRNb+NGDL37VxBzlg3bcJzUt3RRtMlhTy2waL2wqRElMRnNqEPKGyPI - fy9G8oeyu+lFgOYNH98jh3ydABguzAaMrVFt07rpp8f1H/Xfn/l3Wz+Fv+7vblePlNvHz3fr468H - k6WIkD+R1XPUzIamdaQc/ADbSKiUWBe3N3fr9d1qedMDTSjIpbCq1ekqTJfz5Wq6WEyX81NgHdiS - mA38MwEAeO2/SaIv6MVsYJ6dTxoSwYrM5nIJwMTg0olBERZFrya7gjZ4Jd+r3u/3TxL81r9uPcDW - SNc0GI9bs4Gt+XL/kEGI8NtL65A95o7gPiqXbBkdPHgl57gibymDSCVFAQ3QkNahEEBfgJKtPf/b - kUAnVPQwPhNoTdBGKtimYgmEEu4foK+KAHul2EbSPmOi6XxBMfko+iMNUHcNepnBg++5eksvmnia - 4Mh2DiO0MbQU9TjKlMGXlOek0PEzje7b0KXMJVrt0AEl2x4HgUlFQWIjtxrid1ikizsaagW5Q/s8 - zcPLydQMPv0PO/tDcAeCijxFVPbVSJZo7Kx2kQS+sdbQsOcGHdgafUUCWqNCJOmcAnsouCwpktez - fybJ4FvNjj500AmBdDGGCpXObdAAqBo575TA1tSwRTciTRekJZvew0huSdiLncGfNQldik2+Rm8J - NHaiGaC1JMI5O9ZjNnRZ+5/TY0hWQoPsT33qFYjGI+Spo+HARaoT9n29vJQhZBrJ0QF9KohwVavM - tiYbnvgJsrQTGyINT30xv+CpkztusCJJWIlOaOvftn6/34+nKFLZCaYh9p1zIwC9DzoUNs3v1xPy - dplYF6o2hly+CzUle5Z6Fwkl+DSdoqE1Pfo2Afjab4bu3bCbNoam1Z2GZ+rTLZbr5UBorstoBK9O - i8NoUHTvgHPcO8pdQYrsZLRejEVbUzGKXdwsLyawKzhcsflk5P1HST+jH/yzr0YsH9JfAWupVSp2 - 12H/2bVIaWF/dO1S616wEYoHtrRTppj6UVCJnRt2qZGjKDW7kn2VthUPC7Vsd7eLX/IiL7FYm8nb - 5D8AAAD//wMAHpnyCFkGAAA= + H4sIAAAAAAAAAwAAAP//fFRNb9s4EL37Vwx4lg3btZvEt7RYYF1ggT30EKAujBE5kthQpMoZunGD + /PeCkj/UbrIXAeIj5703X88TAGWN2oDSDYpuOzf9+On7w4ftP657WPz97+rTfP5ztdLrI7O5N0dV + 5Beh/EZazq9mOrSdI7HBD7COhEI56uJmfXu7er+c3/VAGwy5/KzuZLoK0+V8uZouFtPl/PSwCVYT + qw18mQAAPPffLNEbelIbmBfnk5aYsSa1uVwCUDG4fKKQ2bKgF1VcQR28kO9VP+88wE5xaluMx53a + wE493G8LCBH+euocWo+lI7iPYiurLTrYeiHnbE1eUwGRKooMEqAlaYJhQG9ASDfefk/EkJhMD+Mj + gTQEXSRjdc4RQ6igdKgfp2V4gj4nDNYLxS6S9MQ5WvKGYnZh8tEMtr4P1Nt4khykDY50chihi6Gj + KMcRTQEP99uLPGcfaXRfh5T5KtSS0AFlzx4HdZnbEOtoOwnxDyzSxRoNiYIm/Dib6N2OnWIZkoBu + qLUa3VmmJZ7Bx/+RYP0huANBa71t0QFLTFpSRAe6QV/TkPrBzvCDTiiOuQv40VhHb1pJTMApxlCj + 0NmAhKzxYA2Bx4HQoa8T1kNNLk6uUacl5oRYz7ZuhGfwuSGmS+LJN+g1gcTEUgBqTcy2tM7KsRjq + LP1PLmgu2LkdwIQWrT+VridmiUcojyeJ1teAvddLy/zeRGO7s50qhqaP5OiQJe1Zh0i5+e9OUK7s + 3rZYE+fjCh3Tzr+MhyhSlRjzDPvk3AhA74MMXHl8v56Ql8vAulB3MZT8x1NVWW+52UdCDj4PJ0vo + VI++TAC+9osh/Tbrqouh7WQv4ZF6usXybj0EVNddNILf3ZxQCYJuBKzeLYtXQu4NCVrHo+2iNOqG + zJjz9rqNMBkbrth8MvL+X0mvhR/8W1+PorwZ/gpoTZ2Q2V8b/7VrkfK+fuvaJde9YMUUD1bTXizF + XA9DFSY3rFLFRxZq95X1de40O+zTqtuv3y/K5frmxpRq8jL5BQAA//8DAFVxNU1YBgAA headers: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983da87c6acf7542-SJC + - 984e9ceacc1c251d-SJC Connection: - keep-alive Content-Encoding: @@ -3860,14 +3849,14 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:00:29 GMT + - Fri, 26 Sep 2025 00:23:32 GMT Server: - cloudflare Set-Cookie: - - __cf_bm=g59MhRzWmtV1_dQuH2dhgSARVCIPu_22YRuR81CFd0c-1758668429-1.0.1.1-3bLq8ZsTRpGVUDsZ5YKvzYtNq4UQI8EKMjpV4.YQV7qARZ2GpvzUw6QrUPCdGsdp6YbLQFGvAO8nxrsWGPbma0KAbav4u1QXyXfD3Xoohu0; - path=/; expires=Tue, 23-Sep-25 23:30:29 GMT; domain=.api.openai.com; HttpOnly; + - __cf_bm=btjcecByNsb3gfe5DWKv_0vVKQGwdNppOhiu2Izqb1Q-1758846212-1.0.1.1-nEzohRMl7plTDUZHa0_G5rgYvf.oT76CxB2o4AItWhu9wmTjlPUaSeEfOyLBwyFqqu9RK29clif39lhUrWoHN2tiFwm1vLey_sJ1zQsGKTw; + path=/; expires=Fri, 26-Sep-25 00:53:32 GMT; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - - _cfuvid=70rILdItV0BKtSEGjqwyDblCH5EAd.t54jktVw_0aok-1758668429725-0.0.1.1-604800000; + - _cfuvid=.Jf9vANf3h7JP1UI6d.RzTLji3qwKXvDajnR4c_21cc-1758846212339-0.0.1.1-604800000; path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None Strict-Transport-Security: - max-age=31536000; includeSubDomains; preload @@ -3882,13 +3871,13 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "3960" + - "2522" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" x-envoy-upstream-service-time: - - "3988" + - "2544" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -3898,13 +3887,13 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29998543" + - "29998512" x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - 2ms x-request-id: - - req_875ae8c7474146df938263e6c644703c + - req_8492315ecdf54559b5f6845f3f1aa86a status: code: 200 message: OK @@ -3914,79 +3903,79 @@ interactions: the relevant information that could help answer the question based on the excerpt. Your summary, combined with many others, will be given to the model to generate an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n \\\"used_images\\\"\\n}\\n\\nwhere + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10,\\n \\\"used_images\\\"\\n}\\n\\nwhere `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 1-10 for the relevance of `summary` to the question. `used_images` + is an integer 0-10 for the relevance of `summary` to the question. `used_images` is a boolean flag indicating if any images present in a multimodal message were - used, and if no images were present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt - from Wellawatte2023 pages 25-28: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\n2021, - 25, 1315\u20131360.\\n\\n\\n (9) Wellawatte, G. P.; Seshadri, A.; White, A. - D. Model agnostic generation of counter-\\n\\n factual explanations for - molecules. Chemical Science 2022, 13, 3697\u20133705.\\n\\n\\n(10) Gandhi, H. - A.; White, A. D. Explaining structure-activity relationships using locally\\n\\n - \ faithful surrogate models. chemrxiv 2022,\\n\\n\\n(11) Gormley, A. J.; - Webb, M. A. Machine learning in combinatorial polymer chemistry.\\n\\n Nature - Reviews Materials 2021,\\n\\n\\n(12) Gomes, C. P.; Fink, D.; Dover, R. B. V.; - Gregoire, J. M. Computational sustainability\\n\\n meets materials science. - Nature Reviews Materials 2021,\\n\\n\\n(13) On scientific understanding with - artificial intelligence. Nature Reviews Physics 2022\\n\\n 4:12 2022, 4, - 761\u2013769.\\n\\n\\n(14) Arrieta, A. B.; D\xB4\u0131az-Rodr\xB4\u0131guez, - N.; Ser, J. D.; Bennetot, A.; Tabik, S.; Barbado, A.;\\n\\n Garcia, S.; - Gil-Lopez, S.; Molina, D.; Benjamins, R.; Chatila, R.; Herrera, F. Explain-\\n\\n - \ able Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities - and Chal-\\n\\n lenges toward Responsible AI. Information Fusion 2019, 58, - 82\u2013115.\\n\\n\\n(15) Murdoch, W. J.; Singh, C.; Kumbier, K.; Abbasi-Asl, - R.; Yu, B. Interpretable machine\\n\\n learning: definitions, methods, and - applications. ArXiv 2019, abs/1901.04592.\\n\\n\\n 25(16) - Boobier, S.; Osbourn, A.; Mitchell, J. B. Can human experts predict solubility - better\\n\\n than computers? Journal of cheminformatics 2017, 9, 1\u201314.\\n\\n\\n(17) - Lee, J. D.; See, K. A. Trust in automation: Designing for appropriate reliance. - Human\\n\\n Factors 2004, 46, 50\u201380.\\n\\n\\n(18) Bolukbasi, T.; Chang, - K.-W.; Zou, J. Y.; Saligrama, V.; Kalai, A. T. Man is to com-\\n\\n puter - programmer as woman is to homemaker? debiasing word embeddings. Advances\\n\\n - \ in neural information processing systems 2016, 29.\\n\\n\\n(19) Buolamwini, - J.; Gebru, T. Gender Shades: Intersectional Accuracy Disparities in\\n\\n Commercial - Gender Classification. Proceedings of the 1st Conference on Fairness,\\n\\n - \ Accountability and Transparency. 2018; pp 77\u201391.\\n\\n\\n(20) Lapuschkin, - S.; W\xA8aldchen, S.; Binder, A.; Montavon, G.; Samek, W.; M\xA8uller, K.-R.\\n\\n - \ Unmasking Clever Hans predictors and assessing what machines really learn. - Nature\\n\\n communications 2019, 10, 1\u20138.\\n\\n\\n(21) DeGrave, A. - J.; Janizek, J. D.; Lee, S.-I. AI for radiographic COVID-19 detection\\n\\n - \ selects shortcuts over signal. Nature Machine Intelligence 2021, 3, 610\u2013619.\\n\\n\\n(22) - Goodman, B.; Flaxman, S. European Union regulations on algorithmic decision-\\n\\n - \ making and a \u201Cright to explanation\u201D. AI Magazine 2017, 38, 50\u201357.\\n\\n\\n(23) - ACT, A. I. European Commission. On Artificial Intelligence: A European Approach\\n\\n - \ to Excellence and Trust. 2021, COM/2021/206.\\n\\n\\n(24) Blueprint for - an AI Bill of Rights, The White House. 2022; https://www.whitehouse.\\n\\n gov/ostp/ai-bill-of-rights/.\\n\\n\\n(25) - Miller, T. Explanation in artificial intelligence: Insights from the social - sciences. Ar-\\n\\n tificial intelligence 2019, 267, 1\u201338.\\n\\n\\n\\n - \ 26(26) Murdoch, W. J.; Singh, C.; Kumbier, - K.; Abbasi-Asl, R.; Yu, B. Definitions, meth-\\n\\n ods, and applications - in interpretable machine learning. Proceedings of the National\\n\\n Academy - of Sciences of the United States of America 2019, 116, 22071\u201322080.\\n\\n\\n(27) - Gunning, D.; Aha, D. DARPA\u2019s Explainable Artificial Intelligence (XAI) - Program.\\n\\n AI Magazine 2019, 40, 44\u201358.\\n\\n\\n(28) Biran, O.; - Cotton, C. Explanation and justification in machine learning: A survey.\\n\\n - \ IJCAI-17 workshop on explainable AI (XAI). 2017; pp 8\u201313.\\n\\n\\n(29) - Palacio, S.; Lucieri, A.; Munir, M.; Ahmed, S.; Hees, J.; Dengel, A. Xai handbook:\\n\\n - \ Towards a unified framework for explainable ai. Proceedings of the IEEE/CVF - Inter-\\n\\n national Conference on Computer Vision. 2021; pp 3766\u20133775.\\n\\n\\n(30) - Kuhn, D. R.; Kacker, R. N.; Lei, Y.; Simos, D. E. Combinatorial Methods for - Ex-\\n\\n plainable AI. 2020 IEEE International Conference on Software Testing, - Verification\\n\\n and Validation Workshops (ICSTW) 2020, 167\u2013170.\\n\\n\\n(31) - Seshadri, A.; Gandhi, H. A.; Wellawatte, G. P.; White, A. D. Why does that molecule\\n\\n - \ smell? ChemRxiv 2022,\\n\\n\\n(32) Das, A.; Rad, P. Opportunities and challenges - in explainable artificial intelligence\\n\\n (xai): A survey. arXiv preprint - arXiv:2006.11371 2020,\\n\\n\\n(33) Machlev, R.; Heistrene, L.; Perl, M.; Levy, - K. Y.; Belikov, J.; Mannor, S.; Levron, Y.\\n\\n Explainable Artificial - Intelligence (XAI) techniques for energy and power systems:\\n\\n Review, - challenges and opportunities. Energy and AI 2022, 9, 100169.\\n\\n\\n(34) Koh, - P. W.; Liang, P. Understanding black-box predictions via influence functions.\\n\\n - \ International Conference on Machine Learning. 2017; pp 1885\u20131894.\\n\\n\\n(35) - Ribeiro, M. T.; Singh, S.; Guestrin, C. \u201D Why should i trust you?\u201D - Explaining the\\n\\n predictions of any classifier. Proceedings of the 22nd - ACM SIGKDD international\\n\\n\\n 27 conference - on knowledge discovery and data \\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + used, and if no images were present it should be false.\\n\\nThe excerpt may + or may not contain relevant information. If not, leave `summary` empty, and + make `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from + Wellawatte2023 pages 3-5: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\n + a passive characteristic of a model, whereas explainability\\n\\nis an active + characteristic which is used to clarify the internal decision-making process.\\n\\nNamely, + an explanation is extra information that gives the context and a cause for one + or\\n\\nmore predictions.29 We adopt the same nomenclature in this perspective.\\n\\n + \ Accuracy and interpretability are two attractive characteristics of DL models. + However,\\n\\nDL models are often highly accurate and less interpretable.28,30 + XAI provides a way to avoid\\n\\nthat trade-off in chemical property prediction. + XAI can be viewed as a two-step process.\\n\\nFirst, we develop an accurate + but uninterpretable DL model. Next, we add explanations to\\n\\npredictions. + Ideally, if the DL model has correctly learned the input-output relations, then\\n\\nthe + explanations should give insight into the underlying mechanism.\\n\\n In the + remainder of this article, we review recent approaches for XAI of chemical property\\n\\nprediction + while drawing specific examples from our recent XAI work.9,10,31 We show how\\n\\nin + various systems these methods yield explanations that are consistent with known + and\\n\\nmechanisms in structure-property relationships.\\n\\n\\n\\n\\n\\n 3Theory\\n\\n\\nIn + this work, we aim to assemble a common taxonomy for the landscape of XAI while\\n\\nproviding + our perspectives. We utilized the vocabulary proposed by Das and Rad 32 to classify\\n\\nXAI. + According to their classification, interpretations can be categorized as global + or local\\n\\ninterpretations on the basis of \u201Cwhat is being explained?\u201D. + For example, counterfactuals are\\n\\nlocal interpretations, as these can explain + only a given instance. The second classification is\\n\\nbased on the relation + between the model and the interpretation \u2013 is interpretability post-hoc\\n\\n(extrinsic) + or intrinsic to the model?.32,33 An intrinsic XAI method is part of the model\\n\\nand + is self-explanatory32 These are also referred to as white-box models to contrast + them\\n\\nwith non-interpretable black box models.28 An extrinsic method is + one that can be applied\\n\\npost-training to any model.33 Post-hoc methods + found in the literature focus on interpreting\\n\\nmodels through 1) training + data34 and feature attribution,35 2) surrogate models10 and, 3)\\n\\ncounterfactual9 + or contrastive explanations.36\\n\\n Often, what is a \u201Cgood\u201D explanation + and what are the required components of an ex-\\n\\nplanation are debated.32,37,38 + Palacio et al. 29 state that the lack of a standard framework\\n\\nhas caused + the inability to evaluate the interpretability of a model. In physical sciences,\\n\\nwe + may instead consider if the explanations somehow reflect and expand our understanding\\n\\nof + physical phenomena. For example, Oviedo et al. 39 propose that a model explanation\\n\\ncan + be evaluated by considering its agreement with physical observations, which + they term\\n\\n\u201Ccorrectness.\u201D For example, if an explanation suggests + that polarity affects solubility of a\\n\\nmolecule, and the experimental evidence + strengthen the hypothesis, then the explanation\\n\\nis assumed \u201Ccorrect\u201D. + In instances where such mechanistic knowledge is sparse, expert bi-\\n\\nases + and subjectivity can be used to measure the correctness.40 Other similar metrics + of\\n\\ncorrectness such as \u201Cexplanation satisfaction scale\u201D can be + found in the literature.41,42 In a\\n\\nrecent study, Humer et al. 43 introduced + CIME an interactive web-based tool that allows the\\n\\nusers to inspect model + explanations. The aim of this study is to bridge the gap between\\n\\nanalysis + of XAI methods. Based on the above discussion, we identify that an agreed upon\\n\\n\\n + \ 4evaluation metric is necessary in XAI. + We suggest the following attributes can be used to\\n\\nevaluate explanations. + However, the relative importance of each attribute may depend on\\n\\nthe application + - actionability may not be as important as faithfulness when evaluating the\\n\\ninterpretability + of a static physics based model. Therefore, one can select relative importance\\n\\nof + each attribute based on the application.\\n\\n\\n \u2022 Actionable. Is it + clear how we could change the input features to modify the output?\\n\\n\\n + \ \u2022 Complete. Does the explanation completely account for the prediction? + Did features\\n\\n not included in the explanation really contribute zero + effect to the prediction?44\\n\\n\\n \u2022 Correct. Does the explanation + agree with hypothesized or known underlying physical\\n\\n mechanism?39\\n\\n\\n + \ \u2022 Domain Applicable. Does the explanation use language and concepts + of domain ex-\\n\\n perts?\\n\\n\\n \u2022 Fidelity/Faithful. Does the + explanation agree with the black box model?\\n\\n\\n \u2022 Robust. Does the + explanation change significantly with small changes to the model or\\n\\n instance + being explained?\\n\\n\\n \u2022 Sparse/Succinct. Is the explanation succinct?\\n\\n\\n + \ We present an example evaluation of the SHAP explanation method based on the + above\\n\\nattributes.44 Shapley values were proposed as a local explanation + method based on feature\\n\\nattribution, as they offer a complete explanation + - each feature i\\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" headers: accept: - application/json @@ -3995,7 +3984,7 @@ interactions: connection: - keep-alive content-length: - - "6109" + - "6190" content-type: - application/json host: @@ -4027,26 +4016,27 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//dFTbbhtHDH3XVxDz1AKSYTmWfHkzmgJV8tw2RRVIo1nuLu1ZcjLk+gLD - /17MriyrifOyC8whDw+vzxMAR5W7Bhdab6FLcfbbp+Ufbf747eJq+XF5u/iHzv7+LFch/hk/yV9u - Wjxkd4vBXr1OgnQpopHwCIeM3rCwzi8Wl8vl5fnZYgA6qTAWtybZ7FxmZ6dn57P5fHZ2undshQKq - u4Z/JwAAz8O3SOQKH901nE5fXzpU9Q2664MRgMsSy4vzqqTm2dz0DQzChjyo3m63tyq85uc1A6yd - 9l3n89PaXcPa/f6Yoif2u4hwk41qCuQjrNgwRmqQA8IvX25Wv0LGGrOCCXRorVQKniswDC3Ttx4V - iOFmBdZ6g87fIViLUGEgJeFZ5++IG0hZAqqigtTQ+dASI0T0mQs6VEzBsmdNPiPbEIPYMKeMNqg0 - gbbvPOsJrAw8dYOmlOWeKgRipaa1oqYYysPA8NA+FW36pIadjvI0YSjpQspYUSgNVZB8kKxTQNY+ - F2GWe7Up+BCkZ/M7imRP04G69pQZVU/gy80KSKEiDb0qFt1w7zNJrzC049F0CsQh9lUhJVPwKUUK - 3sZ4ofUxIjeoI7ekJNl6JqPhSeEBYyz/4lv6X2Jk1CSsNLRwBRXeY5TUIdsJfMansXGlkboPjvAg - +U5BeKz4zDcsahQAyzTwqxztc5bGG+4bs084+w5Hglry6FIGaKjJfgj2hT5Zu+k4cxkj3nsOuNEg - GcfZm58e8F6x2lDnG9SC1T4qrvllzdvt9nisM9a9+rJV3Md4BHhmsVF4Waive+TlsEJRmpRlp9+5 - upqYtN1k9Cpc1kVNkhvQlwnA12FV+/9tn0tZumQbkzscws2Xi8VI6N6uwxH84XyPmpiPR8DF5dX0 - HcpNheYp6tG+u+BDi9WR7+LD8pCE7yuSN+x0cpT7j5Leox/zJ26OWH5K/waEgMmw2rzt0HtmGcsF - /ZnZodaDYKeY7yngxghz6UeFte/jeNzcOFibmrgpJ4HGC1enzcX8alftal8t3eRl8h8AAAD//wMA - US2bI+oFAAA= + H4sIAAAAAAAAA3RUTW8bOQy9+1cQOiWAHdhuPn1L2wCbxQK95BBgXRgciePhRiMpIseJEeS/LzRj + O85uezE8fHwkHynybQRg2JkFGNug2jb5ybc/nx+/Vt0L3ny9fqDnm7uH8x/f72Yv3+o/fjybcWHE + 6h+yumed2dgmT8oxDLDNhEol6uzq4vr6/HI+vemBNjryhbZOOjmPk/l0fj6ZzSbz6Y7YRLYkZgF/ + jwAA3vrfUmJw9GoWMB3vLS2J4JrM4uAEYHL0xWJQhEUxqBl/gDYGpdBX/bYMAEsjXdti3i7NApbm + 7jV55ICVJ7jNyjVbRg/3Qcl7XlOwBCePt/enkKmmLKARWtImOgEMDpRsE/i5IwFtUKHFJwJtCBxZ + Fo5h0uIThzWkHC2JkECs4fYe+qbIGBJmZdt5zH4LjiiBJ8yhUE6+/3V68OOglFMm7UstqbvgKBe9 + rpjO4PH2Hjhsot+QAIK+xIkopX3mBdScRcfgaEM+ppIBA6C1XUYlqDqFLnxO0ycfD0IbCoDOFRqV + pgUso+8bwiqQMjm2vekM7o4dUo4bdgT9JF61j2axK62oYz4mjiHWNeWSgoPwulEpumPf0F6u3xaw + JdtgYGllUL0fiMUAFRVKLnwLJ0K+nuzLjXm7a+cpxAz0enBLUXTSRPtZGabkmRxgrZRBM3IZy+kZ + 3G3Qd6illM9NV81cdUoCnp8IsJeFFXvW7Rh2C0OBRMpXzmR1+HCxRQ5DRnsg1Oxo+Jdj1cnOt/RP + Oms5DOwzeGhI6Dh7Qz4Bltcmfe+eOyxxhmejffTyDD+p5QAbzBw72ZcxDHNpxsPeZPK0wWBpJTZm + Kvszm+6wTsituMU1SbHX6IWW4f14ETPVnWC5A6Hz/gjAEKIOycoJ+LlD3g9L7+M65VjJf6im5sDS + rDKhxFAWXDQm06PvI4Cf/XHpPt0Lk3Jsk640PlGfbjafXQ4Bzcc9O4Ivr3aoRkV/BHy5/jL+RciV + I0X2cnShjEXbkDvizi7mBxHYOY4f2HR0pP3/Jf0q/KCfw/ooym/DfwDWUlJyq4/9+5VbpnLzf+d2 + 6HVfsBHKG7a0UqZc5uGoxs4P59jIVpTaVc1hXS4MDze5TquLy1k1v7i6cpUZvY/+BQAA//8DAISs + Uu+cBgAA headers: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983da87c7e43face-SJC + - 984e9ceacc327af2-SJC Connection: - keep-alive Content-Encoding: @@ -4054,14 +4044,14 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:00:30 GMT + - Fri, 26 Sep 2025 00:23:32 GMT Server: - cloudflare Set-Cookie: - - __cf_bm=x5YSqGUwoU7.RaAIPipY8ybnHoFueabbWjAsdj0KiTs-1758668430-1.0.1.1-XmR3ufK_.Me59oJK2zRHJQObXkE6pxPO.0.PevhX3PujFWig3PLM9SrjRb7hvKQW3dVAFtm7xAAWAyUgCmq6PH_644EdFRdGNrBUq_CTM.o; - path=/; expires=Tue, 23-Sep-25 23:30:30 GMT; domain=.api.openai.com; HttpOnly; + - __cf_bm=YZtGK7Pe3.jz4c9_seUkqK.L1X_UdPWXmH2XCaHADEE-1758846212-1.0.1.1-pc9sDfCvHOxIqYZtRg5pkUq8rr18K4CSQ5x4uwUpZmh4Bt6bXjFgOy87H7htV1V8s7JR8VeQ6KTv3A9MtPeXUCwG9.7FvxZDEYkio4P7xcU; + path=/; expires=Fri, 26-Sep-25 00:53:32 GMT; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - - _cfuvid=si3PxGmxR.4qnh6MJHhLe9Wbv.3tob5vhdVLxL9OJeE-1758668430934-0.0.1.1-604800000; + - _cfuvid=t_sRF7DXsEoNalRMornpbifaKwgAuAXGbaoBUHG0rYw-1758846212471-0.0.1.1-604800000; path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None Strict-Transport-Security: - max-age=31536000; includeSubDomains; preload @@ -4076,13 +4066,13 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "5103" + - "2627" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" x-envoy-upstream-service-time: - - "5130" + - "2645" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -4092,13 +4082,13 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29998547" + - "29998521" x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - 2ms x-request-id: - - req_6b5a8b1a033e471e8ff83e08e2db29e1 + - req_40aeacf4812e4475aec0803ffe532db2 status: code: 200 message: OK @@ -4108,77 +4098,81 @@ interactions: the relevant information that could help answer the question based on the excerpt. Your summary, combined with many others, will be given to the model to generate an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n \\\"used_images\\\"\\n}\\n\\nwhere + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10,\\n \\\"used_images\\\"\\n}\\n\\nwhere `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 1-10 for the relevance of `summary` to the question. `used_images` + is an integer 0-10 for the relevance of `summary` to the question. `used_images` is a boolean flag indicating if any images present in a multimodal message were - used, and if no images were present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt - from Wellawatte2023 pages 3-5: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\n + used, and if no images were present it should be false.\\n\\nThe excerpt may + or may not contain relevant information. If not, leave `summary` empty, and + make `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from + Wellawatte2023 pages 1-3: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\n + A Perspective on Explanations of Molecular\\n\\n Prediction Models\\n\\n\\nGeemi + P. Wellawatte,\u2020 Heta A. Gandhi,\u2021 Aditi Seshadri,\u2021 and Andrew\\n\\n + \ D. White\u2217,\u2021\\n\\n\\n \u2020Department + of Chemistry, University of Rochester, Rochester, NY, 14627\\n\\n\u2021Department + of Chemical Engineering, University of Rochester, Rochester, NY, 14627\\n\\n + \ \xB6Vial Health Technology, Inc., San Francisco, CA 94111\\n\\n\\n + \ E-mail: andrew.white@rochester.edu\\n\\n\\n\\n Abstract\\n\\n\\n + \ Chemists can be skeptical in using deep learning (DL) in decision making, + due to\\n\\n the lack of interpretability in \u201Cblack-box\u201D models. + \ Explainable artificial intelligence\\n\\n (XAI) is a branch of AI which + addresses this drawback by providing tools to interpret\\n\\n DL models and + their predictions. We review the principles of XAI in the domain of\\n\\n chemistry + and emerging methods for creating and evaluating explanations. Then we\\n\\n + \ focus on methods developed by our group and their applications in predicting + solubil-\\n\\n ity, blood-brain barrier permeability, and the scent of molecules. + We show that XAI\\n\\n methods like chemical counterfactuals and descriptor + explanations can explain DL pre-\\n\\n dictions while giving insight into + structure-property relationships. Finally, we discuss\\n\\n how a two-step + process of developing a black-box model and explaining predictions can\\n\\n + \ uncover structure-property relationships.\\n\\n\\n\\n\\n\\n 1Introduction\\n\\n\\nDeep + learning (DL) is advancing the boundaries of computational chemistry because + it can\\n\\naccurately model non-linear structure-function relationships.1\u20133 + Applications of DL can be\\n\\nfound in a broad spectrum spanning from quantum + computing4,5 to drug discovery6\u201310 to\\n\\nmaterials design.11,12 According + to Kre 13, DL models can contribute to scientific discovery\\n\\nin three \u201Cdimensions\u201D + - 1) as a \u2018computational microscope\u2019 to gain insight which are not\\n\\nattainable + through experiments 2) as a \u2018resource of inspiration\u2019 to motivate + scientific thinking\\n\\n3) as an \u2018agent of understanding\u2019 to uncover + new observations. However, the rationale of\\n\\na DL prediction is not always + apparent due to the model architecture consisting a large\\n\\nparameter count.14,15 + DL models are thus often termed\u201Cblack box\u201D models. We can only\\n\\nreason + about the input and output of an DL model, not the underlying cause that leads + to\\n\\na specific prediction.\\n\\n It is routine in chemistry now for DL + to exceed human level performance \u2014 humans are\\n\\nnot good at predicting + solubility from structure for example161 \u2014 and so understanding how\\n\\na + model makes predictions can guide hypotheses. This is in contrast to a topic + like finding\\n\\na stop sign in an image, where there is little new to be learned + about visual perception\\n\\nby explaining a DL model. However, the black box + nature of DL has its own limitations.\\n\\nUsers are more likely to trust and + use predictions from a model if they can understand why\\n\\nthe prediction + was made.17 Explaining predictions can help developers of DL models ensure\\n\\nthe + model is not learning spurious correlations.18,19 Two infamous examples are, + 1)neural\\n\\nnetworks that learned to recognize horses by looking for a photographer\u2019s + watermark20 and,\\n\\n2) neural networks that predicted a COVID-19 diagnoses + by looking at the font choice\\n\\non medical images.21 As a result, there is + an emerging regulatory framework for when any\\n\\ncomputer algorithms impact + humans.22\u201324 Although we know of no examples yet in chemistry,\\n\\none + can assume the use of AI in predicting toxicity, carcinogenicity, and environmental\\n\\npersistence + will require rationale for the predictions due to regulatory consequences.\\n\\n + \ 1there does happen to be one human solubility savant, participant 11, who + matched machine performance\\n\\n\\n 2 + \ EXplainable Artificial Intelligence (XAI) is a field of growing importance + that aims to\\n\\nprovide model interpretations of DL predictions Three terms + highly associated with XAI are,\\n\\ninterpretability, justifications and explainability. + Miller 25 defines that interpretability of a\\n\\nmodel refers to the degree + of human understandability intrinsic within the model. Murdoch\\n\\net al. 26 + clarify that interpretability can be perceived as \u201Cknowledge\u201D which + provide insight\\n\\nto a particular problem. Justifications are quantitative + metrics tell the users \u201Cwhy the\\n\\nmodel should be trusted,\u201D like + test error.27 Justifications are evidence which defend why a\\n\\nprediction + is trustworthy.25 An \u201Cexplanation\u201D is a description on why a certain + prediction was\\n\\nmade.9,28 Interpretability and explanation are often used + interchangeably. Arrieta et al. 14\\n\\ndistinguish that interpretability is a passive characteristic of a model, whereas explainability\\n\\nis an active characteristic which is used to clarify the internal decision-making process.\\n\\nNamely, an explanation is extra information that gives the context and a cause for one - or\\n\\nmore predictions.29 We adopt the same nomenclature in this perspective.\\n\\n - \ Accuracy and interpretability are two attractive characteristics of DL models. - However,\\n\\nDL models are often highly accurate and less interpretable.28,30 - XAI provides a way to avoid\\n\\nthat trade-off in chemical property prediction. - XAI can be viewed as a two-step process.\\n\\nFirst, we develop an accurate - but uninterpretable DL model. Next, we add explanations to\\n\\npredictions. - Ideally, if the DL model has correctly learned the input-output relations, then\\n\\nthe - explanations should give insight into the underlying mechanism.\\n\\n In the - remainder of this article, we review recent approaches for XAI of chemical property\\n\\nprediction - while drawing specific examples from our recent XAI work.9,10,31 We show how\\n\\nin - various systems these methods yield explanations that are consistent with known - and\\n\\nmechanisms in structure-property relationships.\\n\\n\\n\\n\\n\\n 3Theory\\n\\n\\nIn - this work, we aim to assemble a common taxonomy for the landscape of XAI while\\n\\nproviding - our perspectives. We utilized the vocabulary proposed by Das and Rad 32 to classify\\n\\nXAI. - According to their classification, interpretations can be categorized as global - or local\\n\\ninterpretations on the basis of \u201Cwhat is being explained?\u201D. - For example, counterfactuals are\\n\\nlocal interpretations, as these can explain - only a given instance. The second classification is\\n\\nbased on the relation - between the model and the interpretation \u2013 is interpretability post-hoc\\n\\n(extrinsic) - or intrinsic to the model?.32,33 An intrinsic XAI method is part of the model\\n\\nand - is self-explanatory32 These are also referred to as white-box models to contrast - them\\n\\nwith non-interpretable black box models.28 An extrinsic method is - one that can be applied\\n\\npost-training to any model.33 Post-hoc methods - found in the literature focus on interpreting\\n\\nmodels through 1) training - data34 and feature attribution,35 2) surrogate models10 and, 3)\\n\\ncounterfactual9 - or contrastive explanations.36\\n\\n Often, what is a \u201Cgood\u201D explanation - and what are the required components of an ex-\\n\\nplanation are debated.32,37,38 - Palacio et al. 29 state that the lack of a standard framework\\n\\nhas caused - the inability to evaluate the interpretability of a model. In physical sciences,\\n\\nwe - may instead consider if the explanations somehow reflect and expand our understanding\\n\\nof - physical phenomena. For example, Oviedo et al. 39 propose that a model explanation\\n\\ncan - be evaluated by considering its agreement with physical observations, which - they term\\n\\n\u201Ccorrectness.\u201D For example, if an explanation suggests - that polarity affects solubility of a\\n\\nmolecule, and the experimental evidence - strengthen the hypothesis, then the explanation\\n\\nis assumed \u201Ccorrect\u201D. - In instances where such mechanistic knowledge is sparse, expert bi-\\n\\nases - and subjectivity can be used to measure the correctness.40 Other similar metrics - of\\n\\ncorrectness such as \u201Cexplanation satisfaction scale\u201D can be - found in the literature.41,42 In a\\n\\nrecent study, Humer et al. 43 introduced - CIME an interactive web-based tool that allows the\\n\\nusers to inspect model - explanations. The aim of this study is to bridge the gap between\\n\\nanalysis - of XAI methods. Based on the above discussion, we identify that an agreed upon\\n\\n\\n - \ 4evaluation metric is necessary in XAI. - We suggest the following attributes can be used to\\n\\nevaluate explanations. - However, the relative importance of each attribute may depend on\\n\\nthe application - - actionability may not be as important as faithfulness when evaluating the\\n\\ninterpretability - of a static physics based model. Therefore, one can select relative importance\\n\\nof - each attribute based on the application.\\n\\n\\n \u2022 Actionable. Is it - clear how we could change the input features to modify the output?\\n\\n\\n - \ \u2022 Complete. Does the explanation completely account for the prediction? - Did features\\n\\n not included in the explanation really contribute zero - effect to the prediction?44\\n\\n\\n \u2022 Correct. Does the explanation - agree with hypothesized or known underlying physical\\n\\n mechanism?39\\n\\n\\n - \ \u2022 Domain Applicable. Does the explanation use language and concepts - of domain ex-\\n\\n perts?\\n\\n\\n \u2022 Fidelity/Faithful. Does the - explanation agree with the black box model?\\n\\n\\n \u2022 Robust. Does the - explanation change significantly with small changes to the model or\\n\\n instance - being explained?\\n\\n\\n \u2022 Sparse/Succinct. Is the explanation succinct?\\n\\n\\n - \ We present an example evaluation of the SHAP explanation method based on the - above\\n\\nattributes.44 Shapley values were proposed as a local explanation - method based on feature\\n\\nattribution, as they offer a complete explanation - - each feature i\\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + or\\n\\nmore \\n\\n------------\\n\\nQuestion: What is XAI?\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" headers: accept: - application/json @@ -4187,7 +4181,7 @@ interactions: connection: - keep-alive content-length: - - "6068" + - "6215" content-type: - application/json host: @@ -4219,27 +4213,26 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//dFVNb+NGDL37VxBzSgA7sLP59C3YLtAsih4KFFigXhjUDGWxGXHUIeXE - WOS/FyM5jt1mL4JmHh/5SIrUjwmA4+CW4HyD5tsuzj5/vfm1yfxHe/9nr9X1Z8lzzb9z62+/BnLT - wkjV3+TtjXXhU9tFMk4ywj4TGhWvi9vru5ubu6vL6wFoU6BYaJvOZldpdjm/vJotFrPL+Z7YJPak - bgl/TQAAfgzPIlECvbglzKdvNy2p4obc8mAE4HKK5cahKquhmJu+gz6JkQyqf6wEYOW0b1vMu5Vb - wsp9eekismAVCR6ycc2eMcKjGMXIGxJPcPbt4fEcMtWUFSxBS9akoIASwMg3wv/0pGANGrT4RGAN - QSDPyklmLT6xbKDLyZMqKaQaHh5hKIpOocNs7PuIOe4gEHUQCbMUytkvv50f7FiMcpfJBqkldC+B - csk3lKsL+PbwCCzbFLekJdyWQ/GCIXBpEkZgqVNusZxKHj5i5no3yB3K9GKDY4990VlRwxKgyxTY - F45ewKMBlwyMBLi0vyUxCoAKCPacZmrUveW6hJqz2hQCbSmmblAjgN73GY2g6g0kyew0tSHh6Vjc - hmTQLxug0igZtA9NYNNTaSX9t854FKio1CyzKHs4q3qOVi7SkO4Q5BxSBno52GDXRaYAXVKbWUYu - XTi/gC9bjD1aUXFSYzTLXPVGCpGfCHCQghVHtt0U9vNBQqrllDN5Gw8htcgCQ0B/INQcaHzLqep1 - b1sKob33LCN732g9/XJ6pbovHYaaKYa9It9Qyx5j6UhH2XZHJStFxMgbOS3tM1sDT5KeBbpmpwO7 - Jd+gsLZ6sXLTcYoyRdqieFqrT5nGaVrMD3ivFNbc4oa0YDVGpZW8Ho9mprpXLJtB+hiPABRJNuop - S+H7Hnk9rIGYNl1Olf6H6moW1madCTVJGXm11LkBfZ0AfB/WTX+yQVyXU9vZ2tITDeEWi7tPo0P3 - vuGO4Jv7PWrJMB4Bn64vpx+4XAcy5KhHO8t59A2F45hv3JJ9Hzi9Y/PJUe7/l/SR+zF/ls2Rl5+6 - fwe8p84orN+/kY/MMpW/wM/MDrUeBDulvGVPa2PKpR+BauzjuKCd7tSoXdcsmzL/PG7pulvfLu6r - UNUYbtzkdfIvAAAA//8DAO57loWuBgAA + H4sIAAAAAAAAAwAAAP//dFRNb9s4EL37Vwx4qQ3Yge3ETepbtttDuh/nAOtCoMmRNAlF0hwyiRLk + vxeUZFvdthcB4ps38+bzbQIgSIstCFXLqBpvFp+/Hu7/qNLn1eHTa/t6+PLg//GvX/9Vhg/rJOaZ + 4fYPqOKRdaFc4w1GcraHVUAZMXtdXW9ubq4+rpefOqBxGk2mVT4urtxivVxfLVarxXo5EGtHClls + 4b8JAMBb980SrcYXsYXl/PjSILOsUGxPRgAiOJNfhGQmjtJGMT+DytmItlP9trMAO8GpaWRod2IL + O/HlxRtJVu4Nwm2IVJIiaeDORjSGKrQKYXp/ezcDYpBQEhoNpVOJUYOz4IN7Ik22ArIRgw8YZS4J + g7QaMHu3w0PpAmhEDwZlsJky/fPvGXTVAR9Qk+oM5yC1DsicTWKN8GFvpHpc7N3LB7AypoDgyoww + 9my+gPvbO5DUMEQHaGuZdceQOHY6Ess9GYot7FtwZYmhV8xU1ZGzdAfPdQtyUNPIR2RgjyoXZCzu + Av7CFpSzCn3H7CKTVSZpHNVgCDfN+jVWATvNdWqkhWQ1htwofTRz5TH0bA4Pibs+DGWbHpK0kXJZ + nxAajIEUAyfvXYg5jV5yl+yzC7Emi8yz+c8NmGpkFcj3f64cUj5nB8+SoZEaZ31BicHLEEklI4Np + gZocU9qY8+5GgcHQI4KqsSGOoZ3Dc40BRylmhRxDUrlvCx+cxxBbCGh6VTV5BiUtVIk0Qt1613V2 + GCDLud19l0E7sC5mbptnj30K5BKDcuHk72In5v2cBzT4lAehYOUC5nlfLQcsj29BjayQ83spDePO + vo8XJ2CZWOa9tcmYESCtdcOQ55X9NiDvpyU1rvLB7fl/VFGSJa6LgJKdzQvJ0XnRoe8TgG/dMUg/ + 7LfwwTU+FtE9Yhdutb687B2K8/0ZwZvhVojoojQj4PLmyPvBZaExSjI8uihCSVWjHnFXm/UpCZk0 + uTO2nIxy/1nSr9z3+ZOtRl5+6/4MqLxxqIvzuP7KLGC+0b8zO9W6EywYwxMpLCJhyP3QWMpk+vMp + uOWITVGSrfJOU39DS19sPq726831td6LyfvkOwAAAP//AwCQiFNmTAYAAA== headers: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983da87c7ecb67f4-SJC + - 984e9ceac92dcf25-SJC Connection: - keep-alive Content-Encoding: @@ -4247,14 +4240,14 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:00:31 GMT + - Fri, 26 Sep 2025 00:23:32 GMT Server: - cloudflare Set-Cookie: - - __cf_bm=oBLnlpITPWl2iGjRpKVfB_Xt9_0U0p._TdFlLTitRGs-1758668431-1.0.1.1-JlujvIAcjx9h0U_L6.W7eixGUf66ZVTpQAlPTYGYXX46pYe6GO3PA7kKblQfCfhEf7F_.ZwIBFhQojXicMY7M_L1Wyaa04hIj2Mg4vC4yP4; - path=/; expires=Tue, 23-Sep-25 23:30:31 GMT; domain=.api.openai.com; HttpOnly; + - __cf_bm=SfJS.6LKMow1mAaEcmR7MZ4qW5reI2mQoYOFB7QF5sM-1758846212-1.0.1.1-nrgnJGcyNVSndagYPcgw34HQvuRYstKKfFp1zBLgn9LszMxBkR5Kax4PmMSwBzxcNpNtU7We7G3FvQFMp29P6j0_r006KxkQn4CaIyjuTNE; + path=/; expires=Fri, 26-Sep-25 00:53:32 GMT; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - - _cfuvid=.4PWfCC7TRPRVyWnJpgjuoW5RZLmLUk3kIRoM0IeWkA-1758668431791-0.0.1.1-604800000; + - _cfuvid=ApXYaC5PUtA5EPRdiwGMyJZxowN1plEJBCPNQdzQdH4-1758846212641-0.0.1.1-604800000; path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None Strict-Transport-Security: - max-age=31536000; includeSubDomains; preload @@ -4269,13 +4262,13 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "6030" + - "2811" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" x-envoy-upstream-service-time: - - "6056" + - "2845" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -4285,13 +4278,13 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29998551" + - "29998514" x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - 2ms x-request-id: - - req_0ada496ede2e47efb4ac636e09d3d763 + - req_922d6dadd50143d380005cb9b4e49cfd status: code: 200 message: OK @@ -4301,12 +4294,14 @@ interactions: the relevant information that could help answer the question based on the excerpt. Your summary, combined with many others, will be given to the model to generate an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n \\\"used_images\\\"\\n}\\n\\nwhere + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10,\\n \\\"used_images\\\"\\n}\\n\\nwhere `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 1-10 for the relevance of `summary` to the question. `used_images` + is an integer 0-10 for the relevance of `summary` to the question. `used_images` is a boolean flag indicating if any images present in a multimodal message were - used, and if no images were present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt - from Wellawatte2023 pages 22-25: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\nut + used, and if no images were present it should be false.\\n\\nThe excerpt may + or may not contain relevant information. If not, leave `summary` empty, and + make `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from + Wellawatte2023 pages 22-25: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\nut to models informs the XAI method.\\n\\n\\nConclusion and outlook\\n\\n\\nWe should seek to explain molecular property prediction models because users are more\\n\\nlikely to trust explained predictions, and explanations can help assess @@ -4382,7 +4377,7 @@ interactions: connection: - keep-alive content-length: - - "6096" + - "6218" content-type: - application/json host: @@ -4414,26 +4409,26 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//dFRNbyM3DL37VxA6tcDYsA3Hm/Ut3RZt0qKHomhT1AuDljgzajSSQHEc - e4P890Iaf6XNXuYwT3x8JB/5MgJQ1qgVKN2i6C668aeH5U/u4YEWv3yqf/t9/6P7Nf3x51+PN3fy - +N33qsoRYfsPaTlFTXTooiOxwQ+wZkKhzDr7cHO7XN4u5h8L0AVDLoc1UcaLMJ5P54vxbDaeT4+B - bbCaklrB3yMAgJfyzRK9ob1awbQ6/ekoJWxIrc6PABQHl/8oTMkmQS+quoA6eCFfVL+sPcBapb7r - kA9rtYK1ery7ryAw/LCPDq3HrSO4Y7G11RYd3Hsh52xDXlMFNgFCR9IGA30iAxKAhkCITMbq3I0E - HRqC7QG64Ej3Dhkih0gsh6tnUNqSJnAvgLZLmcz63MREmZ1BuE8C6A2QTz0TSItyDANkAkfI3voG - dGAmLaBb6qxGB5Gt1zY6ShN4vLsHjR62BBijs2QAayGGrUP9NN6G/cCZiSRA73XYEUMS7rX0TOOz - eCaHpcLWxgTPVtrQC2QfcOhsygSodc+oD7mn1gtxZBLcWmflMIGf6QC6RefIN5TA+iLOeu16Q9CG - 56GdfshSamSKTIm8kIFvaNJMKhDaS3XV3LPS9G0FhmpbenLBTXGFppxPhz6rqlFLjw4a8sQlWwVo - MEqOfKOhDpmgronJC2BvbPZCOmkpHU+SKjBBS+AsIccHLnM5zSNF1FS4mNDZL8VnR4WUqjJkQzty - Iea4dEhCHYrVUDN29Bz4qRiEduh6lGwFOk3dU0qFoExXH5sNoX5TyGStqsH/TI52uR+bpAPTsAez - 6RnPzt7YDhtKGavRJVr71+ulYqr7hHmnfe/cFYDeBxkS5nX+fERezwvsQhM5bNN/QlUeWmo32f3B - 52VNEqIq6OsI4HM5FP2b3VfZdVE2Ep6opJst5vOBUF1u0zW8PKISBN0VcLO8rd6h3BgStC5dXRul - Ubdkrkmnt+cisjvCBZuOrmr/v6T36If6rW+uWL5KfwG0pihkNpfr8t4zpny/v/bs3OsiWCXindW0 - EUuc52Goxt4Np1UN/tzU1jd5w+1wX+u4+TD7uDXbGs1SjV5H/wIAAP//AwDUy359aAYAAA== + H4sIAAAAAAAAA3RU224bNxB911cM+NQCK0ESJNvQm9AkqNvnFkKrQKDI2d1JeDOHK1s1/O/F7Cq6 + JM7LAsvDOTxz5vI6AlBk1QqUaXUxPrnxb388bT7+7ZpPs+A23WFTf/iw+HO9Nk+0+OsfVUlE3H9B + U75FTUz0yWGhGAbYZNQFhXV2v3x4WNzNZ/Me8NGik7AmlfEijufT+WI8m43n01NgG8kgqxX8OwIA + eO2/IjFYfFErmFbfTjwy6wbV6nwJQOXo5ERpZuKiQ1HVBTQxFAy96tdtANgq7rzX+bhVK9iqzfqx + gpjh40tymoLeO4R1LlSTIe3gMRR0jhoMBisgBg0eSxstdIwWSgQcAiFltGTEDQavLcL+CH3iXEHS + uZDpnM7uCBTAR4f9L6QcE+ZyvAqfwGMBTZ6FnYK4yggld1zgu3d0sICBu4ynp0BnBIc6BwoNmJgz + mgKmRU9GO0iZgqHkkCewWT+eUmF5xXUWh1yCFnLImDIyhjL8/oKTZlJBwZdSXenXpWTad72cXysw + sQsFc61N6bSDBgPmIf6ZSgueAnn6D+0Vg+1LJu5KNiYGJnsKYoj1RTwnbbA3hxj2aKKXHE8GUWjE + Wp9ilgYQo2pCZxkcfUVoUbvSGnFn8OxAOQYv2TlgQ0N5n1vMNyZIJY8QcKi0RyzgsNFOGsZGrymM + OaGRZoGMTx1lFE6ewO/xGQ+YKzCtdg5DgwwZJaIC7kwLmsFiTX2d3jMDD9p1ugh8I4iPXNDrIpa4 + 42Ba0eRilqulRS9Sz6p0Z/vk+CKZJ1tVDZOQ0eFB3tuxiRllImbTEyb9vSOvG2Q5r7Vj3Ia369HK + WHesZbJD59wVoEOIQ9/0Q/35hLydx9jFJuW45+9ClRjC7U4qGoOMLJeYVI++jQA+9+uiu9kAKuXo + U9mV+BX752aL5XIgVJcNdQOf0BKLdlfA3fS0Z24pdxbFYL7aOcpo06K9Jp0+nJMQz+MFm46ucv9R + 0nv0Q/4UmiuWn9JfAGMwFbS7y4p471pG2eI/u3b2uhesGPOBDO4KYZZ6WKx154YFq4Ze3NUUGsyy + W/otW6fd8m62ny/v7+1ejd5G/wMAAP//AwCFpjX1bgYAAA== headers: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983da891adaa67e5-SJC + - 984e9cf99ed4f98b-SJC Connection: - keep-alive Content-Encoding: @@ -4441,7 +4436,7 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:00:32 GMT + - Fri, 26 Sep 2025 00:23:34 GMT Server: - cloudflare Strict-Transport-Security: @@ -4457,13 +4452,13 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "3085" + - "2674" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" x-envoy-upstream-service-time: - - "3099" + - "2696" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -4473,13 +4468,13 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29998549" + - "29998519" x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - 2ms x-request-id: - - req_7e22ccf50b444b9f956ba3eca08994c1 + - req_8f14b88d6cfd46fdacbc7a03a2b251c1 status: code: 200 message: OK @@ -4489,12 +4484,14 @@ interactions: the relevant information that could help answer the question based on the excerpt. Your summary, combined with many others, will be given to the model to generate an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n \\\"used_images\\\"\\n}\\n\\nwhere + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10,\\n \\\"used_images\\\"\\n}\\n\\nwhere `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 1-10 for the relevance of `summary` to the question. `used_images` + is an integer 0-10 for the relevance of `summary` to the question. `used_images` is a boolean flag indicating if any images present in a multimodal message were - used, and if no images were present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt - from Wellawatte2023 pages 12-14: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\nnterfactual + used, and if no images were present it should be false.\\n\\nThe excerpt may + or may not contain relevant information. If not, leave `summary` empty, and + make `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from + Wellawatte2023 pages 12-14: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\nnterfactual approach, contrastive approach employ a dual\\n\\noptimization method, which works by generating a similar and a dissimilar (counterfactuals)\\n\\nexample. Contrastive explanations can interpret the model by identifying contribution @@ -4567,7 +4564,7 @@ interactions: connection: - keep-alive content-length: - - "6053" + - "6175" content-type: - application/json host: @@ -4599,27 +4596,27 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA3RU224bNxB911cM+JIWkATLsR3bb67gtHaRBCiKwEAVCCNydndiLrnlzMoWDP97 - Qa4syanzssDyzOWcuT2NAAw7cwnGNqi27fxkfnv2R/iC+tVVN/P56dfvmz//ur2+m93+Vl3XZpw9 - 4uo7WX3xmtrYdp6UYxhgmwiVctTZh9Pzs7Pzk/ezArTRkc9udaeTkzg5Pjo+mcxmk+OjrWMT2ZKY - S/hnBADwVL6ZYnD0aC7haPzy0pII1mQud0YAJkWfXwyKsCgGNeM9aGNQCoX10yIALIz0bYtpszCX - sDDXj51HDrjyBFdJuWLL6OEmKHnPNQVL8Mvd1c2vkKiiJKARWtImOgEMDpRsE/jfngS0QYUW7wm0 - IegSOba5OoOhI8tS/mIFVzdQiiLAQSl1ibQwyIZ9cJSyDFeeNELTtxhkCvPYZ+sKrfbogTL1gNsU - iQDhnjaAXZci2gY4wN3VzRi6FNfsONSAhU8OOwYOOYeliac1+fzLdaMCqw2wo6BcbbKLbTDUlHkC - h65XqAi1Ty9yH2LvHaBXSkV1UfVODtRP4WNMQI+YhyWnhTZ6sr3HBLahlkXTZgz2lTYBiwGkr2sS - zUFzX7ZKcwN2EURTb7d8IqBtmNYEjoQTuay8o6RMMoW/943yfE/w6dPV/LoUfP5x8vvnz9tBoFRK - 2Qs5qGKCmgIl1FKK1xTH8MDabOOsKFsU9ROsQxRlW4Jj13m2L51cRW0gUZ1I8iwUC+vz3L7oA0W5 - l2nuHKCXCHl+E4rKkA7dmpJgykOqCTlwqMfw0LBtoIq2FxKIYWACKa560UAikFCb0iMMhzPHnnUz - XZjxsBqJPK3zVCzFxkTDilzs4FyVJbdYk2SoQi+0CM+H65ao6gXztofe+wMAQ4g6tDAv+rct8rxb - bR/rLsWV/OBqKg4szTIRSgx5jUVjZwr6PAL4Vk5I/+oqmC7FttOlxnsq6Waz8/MhoNlfrQP4bLZF - NSr6A+D9ycX4jZBLR4rs5eAOGYu2IXeY8/R4JwJ7x3GPHY0OtP+f0lvhB/0c6oMoPw2/B6ylTskt - 9wv5llmifNl/ZrardSFshNKaLS2VKeV+OKqw98PRNbIRpXZZcajzjPFweatu+WF2sXKrCt2ZGT2P - /gMAAP//AwDSyMp0ggYAAA== + H4sIAAAAAAAAAwAAAP//dFTbbiM3DH33VxB6aQuMjdibq9+CIG2zxe626AUp6oVBS5wZbjTSrEg5 + MYL8e6Gx4zht9mWA0SGPDg9FPo4ADDszB2NbVNv1fnz1/uvt9UUf3//9689/xmt3k3/78vsvn+4f + Tk/f3ZuqZMTVF7L6nDWxses9KcewhW0iVCqs07OT8/Pj09l0NgBddORLWtPr+DiOZ0ez4/F0Op4d + 7RLbyJbEzOGfEQDA4/AtEoOjBzOHo+r5pCMRbMjM90EAJkVfTgyKsCgGNdULaGNQCoPqx0UAWBjJ + XYdpszBzWJjrh94jB1x5gsukXLNl9HATlLznhoIl+P728uYHSFRTEtAIHWkbnQAGB0q2Dfw1k4C2 + qNDhHYG2BH0ix7a4sw10ZFmGv1jD5Q0MpghwUEp9Ih0UlMAcHKVShhuONEKbOwwygT9aAnqwlHoF + x2KzCAnYmAtHjVYzeqBSUMDdxQIId7QBjdEDB7i9vKmgx6Rss8fkN+XQttSxaNpM4OoVmUCf4pod + AQ6VFEEVcCjqLI09ramwCjetCqw2wI6Ccr3h0IBtMTRUKoSaUHN6tsjG7B2gV0qAWx++kwO/JvAX + Jo5Z9kbXMUFDgRLqwPxaZAWSbVtq/fDh8up6MPHqx/FPHz/umkupAkwELTetL1rJVXDP2u4SVlRY + ByFjbEIUZTuwYN97ts9tWEVtIVGTSEojhwjry6Or2Q6Gg6LcyaS4DOglQnl8CUVlex26NSXBVF6Y + JuTAoangvmXbQh1tLu2MobQwyl4SrLMvpa/YszIJuJwK+EwACbWlVLwN0EfRcRvtq2cwWZhq+/QT + eVqX3i3FxkRlBC52UBZyS+6wISnHNXqhRXg6HKVEdRYskxyy9wcAhhB1e1cZ4s875Gk/tj42fYor + +U+qqTmwtMtEKDGUERWNvRnQpxHA52E95FcTb/oUu16XGu9ouG46m023hOZlIx3AJ+c7VKOiPwDe + nV1Ub1AuHSmyl4MdYyzaltxB7vRkti8Cs+P4gh2NDmr/v6S36Lf1c2gOWL5J/wJYS72SW76Mzlth + icrW/lbY3utBsBFKa7a0VKZU+uGoxuy3C9XIRpS6Zc2hKTuLt1u17pcnp9PV7OTszK3M6Gn0LwAA + AP//AwBO0WbnXgYAAA== headers: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983da89da8d3face-SJC + - 984e9cfc1ce97af2-SJC Connection: - keep-alive Content-Encoding: @@ -4627,7 +4624,7 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:00:34 GMT + - Fri, 26 Sep 2025 00:23:35 GMT Server: - cloudflare Strict-Transport-Security: @@ -4643,13 +4640,13 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "2941" + - "2543" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" x-envoy-upstream-service-time: - - "2955" + - "2558" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -4659,13 +4656,13 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29998553" + - "29998522" x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - 2ms x-request-id: - - req_98e19133e53c42a593e5ce106288c052 + - req_8c8d105af8d44e50bad86fe2a9e79bc0 status: code: 200 message: OK @@ -4675,12 +4672,14 @@ interactions: the relevant information that could help answer the question based on the excerpt. Your summary, combined with many others, will be given to the model to generate an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n \\\"used_images\\\"\\n}\\n\\nwhere + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10,\\n \\\"used_images\\\"\\n}\\n\\nwhere `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 1-10 for the relevance of `summary` to the question. `used_images` + is an integer 0-10 for the relevance of `summary` to the question. `used_images` is a boolean flag indicating if any images present in a multimodal message were - used, and if no images were present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt - from Wellawatte2023 pages 8-9: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\nrepresented + used, and if no images were present it should be false.\\n\\nThe excerpt may + or may not contain relevant information. If not, leave `summary` empty, and + make `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from + Wellawatte2023 pages 8-9: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\nrepresented with equation 2.\\n\\n \u2206\u02C6f(\u20D7x) \u2248\u2202\u02C6f(\u20D7x) (2)\\n \u2206xi \ \u2202xi\\n\\n\\n\\n 7 \u2206\u02C6f(\u20D7x) @@ -4756,7 +4755,7 @@ interactions: connection: - keep-alive content-length: - - "6108" + - "6230" content-type: - application/json host: @@ -4788,27 +4787,27 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//jFTbbhs3EH3XVwz4ZAMrwZJdOfGbkAaNDTcpaqNwUgXCiDu7OxGXZDmk - Y9Xwvxfk2pLaukBfFgueuZ0zl8cRgOJaXYDSHUbdezN+dzX/YD/9+v50dvvl8+nV9093365urm+/ - 2OvfPhtVZQ+3/kY6vnhNtOu9ocjODrAOhJFy1On5D2/m8zdnp9MC9K4mk91aH8dnbjw7mZ2Np9Px - 7OTZsXOsSdQF/D4CAHgs31yirelBXcBJ9fLSkwi2pC52RgAqOJNfFIqwRLRRVXtQOxvJlqoflxZg - qST1PYbtUl3AUr1/8AbZ4toQLELkhjWjgUsbyRhuyWqCo7vF5TEEaigIRAc9xc7VAmhriKQ7y38k - EkhCdYFxQxA7gpo0Czs77nHDtgUfnCYREnANLC6h6CIVeAyRdTIYzBYGVR/AWRIwvMlhyIMhDDYH - Ofrx+rhkbgP6DiylgAYsxe8ubASOfvr4UY4rYBsp+ECxMMv2ydYUsjx1eYoOutSjlQncLS4BvQ8O - dUcCbLVJNeUENZON4zVmZi+sj2jSToYEbcgN3xlKVX7fLX4+rgZyY2ytk8h6510Y3XxY/AJHQ1hn - 4aZDb2gL92gS5eJzufcsCQ3/iXnADmWWpDtAAUHDZPW2WAv3bDBw3EKPXiZw25HQvlPcZ8IYY+B1 - ijRUBz5QzTonKH1l61OEhjCmQFIB12QjN1vg3ruQBwskrYvuWSXIUlfgAtAwRNA7Q6WPudWeQtwe - phiEZgEdUhmyJrtaSSH3NQa04jFkShXEkCQOQiTBNZvMjC0MnTKsiyxSAYmnHMwUuGEyLyLrjnqW - GAaB9qUV6mzbyVJVw0IEMnSPVtNKtAs0LMb0ZIfnwV5xjy1Jxho0Qkv7dLhlgZokmJfcJmMOALTW - xaHYvN9fn5Gn3UYb1/rg1vIPV9WwZelWgVCczdsr0XlV0KcRwNdyOdLfjoHywfU+rqLbUEk3PT2Z - DQHV/lgdwPPzZzS6iOYAOJu/rV4JuaopIhs5OD9K56Wp9777W4WpZncAjA6I/7ue12IP5Nm2/yf8 - HtCafKR6tZ+918wC5Wv+X2Y7oUvBSijcs6ZVZAq5GTU1mMxwaJVsJVK/ati2+ebwcG0bvzqfvl3X - 6wbruRo9jf4CAAD//wMAzxcjl3YGAAA= + H4sIAAAAAAAAA4xU224bRwx911cQ85QAkmDJdhz7zUjT1EFjpE3aGq0CgZrl7jKeW4Ycx6rhfy9m + JVtK6gJ9WSx4yOHh4eVuBGC4MWdgbI9qfXKTV2+/XL2WL/4q/naYfm1/8T9c/vHz2x/tnyclfzbj + GhFXn8nqQ9TURp8cKcewgW0mVKqvzk6OX748ejGfzQfAx4ZcDeuSTo7iZH4wP5rMZpP5wTawj2xJ + zBn8NQIAuBu+lWJo6NacwcH4weJJBDsyZ49OACZHVy0GRVgUg5rxDrQxKIWB9d0iACyMFO8xrxfm + DBbmY09At5ZyUmhYbBEhgde3ySEHXDmC86zcsmV0cBGUnOOOgiV4dnV+8Rw8aR8bGUPCrGyLw+zW + wAG0Jxhy3yrEFjgo5ZRJOXSQMjVsq3ICbY4ePNqeA4EjzKF6DJLJGDhYV5pqaYjSDsfQQJcx9RCo + ZHQQSL/GfC3w7M3lpTyfwoVCz13vuOtVqm/DFHSyQqEGMKUc0fYk4PiaBnZdrt179JTx8Pvq/N14 + yPbm8nKrCuUxfO3Z9tBGWwRigJZQSyZA1cyrUisbgqSsNizZp5gVg6UpvKu1TbALUZTtg4IbIh9+ + On9fq5bEmRpYreFDj8nRGm7QFdrK1aGnKnDM6zFgzeskAm3pNdDGXGHOUKQWBz46GnqzJ/1W4yn8 + zlLQ8d84WJVsH/hLzSXF9oACgo4p2PWmJPbsMLOuwWOSIb2nUGO/yVyHsqbesto09YFFg4r7UzCF + jz0JPWqB7EEjeLyuQ1TX7HZLF3zMtJumYUJX653w302XRuCQij50SCDm2hXRXOxgmC7MeLMXmRzd + 1BYtxcZMdT9Ot1ARapbssSOp5had0CLc7+9ZprYI1jUPxbk9AEOIOmg7bPinLXL/uNMudinHlXwX + aloOLP0yE0oMdX9FYzIDej8C+DTcjvLNOTApR590qfGahnSzw8PjzYNmd6724OPTLapR0e0BR6dH + 4yeeXDakyE72DpCxdZGaXezuWmFpOO4Bo73C/83nqbc3xXPo/s/zO8BaSkrNcjcKT7llqvf8v9we + hR4IG6F8w5aWypRrMxpqsbjNqTWyFiW/bDl0dS55c2/btDx+MVvNj09OmpUZ3Y/+AQAA//8DAPZN + wxh4BgAA headers: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983da8a32b0d67f4-SJC + - 984e9cfd2b1bcf25-SJC Connection: - keep-alive Content-Encoding: @@ -4816,7 +4815,7 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:00:35 GMT + - Fri, 26 Sep 2025 00:23:35 GMT Server: - cloudflare Strict-Transport-Security: @@ -4832,13 +4831,13 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "3406" + - "2412" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" x-envoy-upstream-service-time: - - "3429" + - "2431" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -4848,13 +4847,13 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29998537" + - "29998506" x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - 2ms x-request-id: - - req_fef0fad1d7bd4077b49141405d2101e4 + - req_064632507e7c4bb885b26aa5a75509cc status: code: 200 message: OK @@ -4864,11 +4863,13 @@ interactions: the relevant information that could help answer the question based on the excerpt. Your summary, combined with many others, will be given to the model to generate an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n \\\"used_images\\\"\\n}\\n\\nwhere + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10,\\n \\\"used_images\\\"\\n}\\n\\nwhere `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 1-10 for the relevance of `summary` to the question. `used_images` + is an integer 0-10 for the relevance of `summary` to the question. `used_images` is a boolean flag indicating if any images present in a multimodal message were - used, and if no images were present it should be false.\"},{\"role\":\"user\",\"content\":[{\"type\":\"image_url\",\"image_url\":{\"url\":\"\"}},{\"type\":\"text\",\"text\":\"Excerpt + used, and if no images were present it should be false.\\n\\nThe excerpt may + or may not contain relevant information. If not, leave `summary` empty, and + make `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":[{\"type\":\"image_url\",\"image_url\":{\"url\":\"\"}},{\"type\":\"text\",\"text\":\"Excerpt from Wellawatte2023 pages 14-16: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\nsame optimization problem.100 Grabocka\\n\\net al. 111 have developed a method named Adversarial Training on EXplanations (ATEX)\\n\\nwhich improves model robustness @@ -4943,7 +4944,7 @@ interactions: connection: - keep-alive content-length: - - "50812" + - "50934" content-type: - application/json host: @@ -4975,26 +4976,26 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA3RUwXIbNwy96yswPK88li3JiW9Kmk7VadpjM60yEpfE7iLikhsCdK16/O8dchV5 - 2zoXHvCAhweAwNMMQJFV96BMp8X0g5u//3n9U7/95Y8ffms3v/+98UjHryd+51end7e/qipHhPoL - GvkWdWVCPzgUCn6ETUQtmFkXd6s36/Wb5e11Afpg0eWwdpD5Msxvrm+W88VifnN9DuwCGWR1D3/O - AACeypsleouP6h4KTbH0yKxbVPcXJwAVg8sWpZmJRXtR1Qtoghf0RfXhcPjCwe/8084D7BSnvtfx - tFP3sFOfNtsKQoQPj4PT5HXtEDZRqCFD2sHWCzpHLXqDFURsMDJIgB6lC5ZBewuCpvP0NSGDdFqg - 10cE6RAsGmIKft7rI/kWhhgMMiNDaGCzhdIgBvKCcYgoJXlmTN5izCXZYpIAXeq15yvY+sJcqnuU - zGM67IklnkqkjakFS2zCA8ZTBZ82WyCGxGgzzSUV1E6b47wOj2cVFSRfgoAlJiMp4nyIYcAoJ4jo - dB44dzRwVRJlLDCCNhkoMvtgc9tGz9Kk4NAkh3wFP4YI+Kjzz6nAhJR1NNpI0g4wt96fw4z2wKlt - kQVMp32LUyo9kVfs2nSED7nVTBFHWRiFkCvgZDrQDLULwc7rqMlDrWMkjDBg7LGkvCo9+jZPR0eE - jx837z+M7UQ2kQYp6icqhxgeyCKQZ2o7KTMM0IW/JkIb1KNM8o1L+QPBENFSaVjuItn8KciDaD6e - U3NwqSZHcpo4TyaLTK2/2qlq/MoRHT5ob3DPJkTMX3pxfcbyzPfU6xY52yUm3PnnnT8cDtNFidgk - 1nlPfXJuAmjvg4z15hX9fEaeL0vpQjvEUPN/QlVDnrjbR9QcfF5AljCogj7PAD6X5U//2mc1xNAP - spdwxJJusV4tR0L1cm8m8HJ1RiWIdhPg7u3b6hXKvUXR5HhyQZTRpkM7iV3dri9F6GQpvGDXs0nt - /5f0Gv1YP/l2wvJd+hfAGBwE7f5l/K+5Rcw3+Xtul14XwYoxPpDBvRDGPA+LjU5uPJeKTyzY7xvy - bT4NNN7MZtiv1ov6ZnV3Z2s1e579AwAA//8DABGc8bM8BgAA + H4sIAAAAAAAAA3RUTW8bOQy9+1cQOo+D2M3X5hYUWSAFuj2kC2SxLmyNxJlho5FUkpPEG+S/Fxp/ + tttedNAjqcf3RL5OAAx5cw3GdVZdn8P0/YdvD7f/fLxv7t//fX9//kd99unh818X/33SP8OtqUpG + qr+i013WiUt9DqiU4gZ2jFaxVJ1dnl9dnV3MZ/MR6JPHUNLarNOzNJ2fzs+ms9l0frpN7BI5FHMN + /04AAF7Hs1CMHl/MNZxWu5seRWyL5nofBGA4hXJjrAiJ2qimOoAuRcU4sl6tVl8lxUV8XUSAhZGh + 7y2vF+YaFubh5q6CxHD7koOlaOuAcMNKDTmyAe6iYgjUYnRYAWODLKAJetQueQEbPSi6LtK3AQUG + QV9gioqcGXUMGKJHLgw9aIfg0ZFQigK99Qj1GnrrOooIAS1Hii2M0kkF2bKSG4LlsAaPmH8OOYG7 + OBYd+31RSA24DnsS5XUFDzd3QAI250AbZkN06QkZRHlwOjBOM6eMrGtgDLbYKh1lqUAG14EVyIye + nJY365CSn9ZsKUJtmQkZMnKPY16RUVIYagqk68KkTwHdEFBO4PNBpECPhe9QNGqs08EGwCJ/3Dw/ + auZRHFPWxNPaFlV/jGDca505PZFHsK5go4EUhdpOpfiQoEvPOyaWi27F3F2hpkGnsNWARqYdCu4N + 7jBkqJl8i6POrc1Qoz4jRqiDdY/TOr1szRiJ760vTKpjVo8xPQcshZrEO5fkZGGqzb9kDPhko8Ol + uMRY/ufsdIuVZpfU2xal3CsPuIhvi7harY5/PWMziC1DF4cQjgAbY9JNz2XevmyRt/2EhdRmTrX8 + lGoaiiTdktFKimWaRFM2I/o2AfgyTvLww3CazKnPutT0iONzs4ury01Bc1geR/C7sy2qSW04Aq7m + s+oXJZce1VKQo3VgnHUd+qPc83cX+ybs4CkdsNPJUe//p/Sr8pv+KbZHVX5b/gA4h1nRL3czdNz2 + IYyxLNjfhe21HgkbQX4ih0sl5OKHx8YOYbP7jKxFsV82FNvyCWmzAJu8PL+Y1fPzy0tfm8nb5DsA + AAD//wMANOWMuwkGAAA= headers: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983da895ff8d7542-SJC + - 984e9cfb5bef251d-SJC Connection: - keep-alive Content-Encoding: @@ -5002,7 +5003,7 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:00:35 GMT + - Fri, 26 Sep 2025 00:23:37 GMT Server: - cloudflare Strict-Transport-Security: @@ -5018,13 +5019,13 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "5635" + - "4463" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" x-envoy-upstream-service-time: - - "5668" + - "4504" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-input-images: @@ -5038,7 +5039,7 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29997791" + - "29997760" x-ratelimit-reset-input-images: - 0s x-ratelimit-reset-requests: @@ -5046,7 +5047,7 @@ interactions: x-ratelimit-reset-tokens: - 4ms x-request-id: - - req_b798e54b6f2a458191de8c92bf52001b + - req_8acb72f81692468785d50c5efe4ef580 status: code: 200 message: OK @@ -5056,12 +5057,14 @@ interactions: the relevant information that could help answer the question based on the excerpt. Your summary, combined with many others, will be given to the model to generate an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n \\\"used_images\\\"\\n}\\n\\nwhere + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10,\\n \\\"used_images\\\"\\n}\\n\\nwhere `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 1-10 for the relevance of `summary` to the question. `used_images` + is an integer 0-10 for the relevance of `summary` to the question. `used_images` is a boolean flag indicating if any images present in a multimodal message were - used, and if no images were present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt - from Wellawatte2023 pages 28-30: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\n + used, and if no images were present it should be false.\\n\\nThe excerpt may + or may not contain relevant information. If not, leave `summary` empty, and + make `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from + Wellawatte2023 pages 28-30: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\n M. T.; Singh, S.; Guestrin, C. \u201D Why should i trust you?\u201D Explaining the\\n\\n predictions of any classifier. Proceedings of the 22nd ACM SIGKDD international\\n\\n\\n 27 conference @@ -5138,7 +5141,7 @@ interactions: connection: - keep-alive content-length: - - "6085" + - "6207" content-type: - application/json host: @@ -5170,26 +5173,26 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//jFRNayNHEL3rVxR92oWRsBRb3vVNhICVSxK8EEO0iFJ3zUyt+mPS1SPb - GP/3pWZkS9k4kMvA9Kt69erzeQJg2JkbMLbFYkPnpz//urxN9G2/K3/Sl4ddfrj/o7+7/e3eXdRh - aSr1SLtvZMur18ym0HkqnOII20xYSFnn11eflstPlz8tBiAkR17dmq5ML9N0cbG4nM7n08XF0bFN - bEnMDfw1AQB4Hr4qMTp6NDdwUb2+BBLBhszNmxGAycnri0ERloKxmOoE2hQLxUH18yYCbIz0IWB+ - 2pgb2JgvLQE9WspdgS6nAzsSQPAsBVINmWrKFC0JZPKaHpQEvzx2HjnizhOscuGaLaOHdSzkPTdq - Dx/uV+uPFTy0bFtg5ayZvIM62V7IQYoQcM+xgdUahgoJhJQJOBbKXaYy0GN0UFriDF0mx1bLLdBH - R1lTdYNRSdD2AaPMYF2Ao/W9pvGQ8l40kNYgoxQ+aLKdx4gDTwV0QN8PP5rt/WoNHCFoIPTAARuO - TQWBSmYrUKesNtWgqs4YaAyh746Em6j5KPjKG5uBVJ6kUJAZrJxjjYbeP1XABQLFMaVApU1OwPOe - 4O529Tt8uGux8/R0dDrQWPej9o8VOLIsKr1komMNR206mplEyE2FoqiMQraN/HdPo9yzKrPn8jQD - nYSzdrfctJ6btmj5gUOXckFtbKqhZIzSoVpqFj9QVa9NA9ui9xQbEi0rjVOjYnYe7X66S4+vnecI - B8ycegGXAnIUkN62gAIBC2VGLyCWVVsFtqXAUvIxlMt9c6z/bGOqccozeTqo4K3YlGmc9s9vsM7g - VhtMolCNXmgTX843J1PdC+rixt77MwBjTGXsgu7s1yPy8ralPjVdTjv5wdXUHFnabSaUFHUjpaTO - DOjLBODrcA36fyy46XIKXdmWtKch3Hy5mI+E5nSAzuCryyNaUkF/BlxfX1XvUG4dFWQvZyfFWLQt - uZPv6f5g7zidAZOzxP+t5z3uMXmOzf+hPwHWUlfIbU9X4D2zTHqh/8vsrdCDYCOUD2xpW5iyNsNR - jb0fj6cZN3Zbc2x0uHm8oHW3vZ5/3rldjW5pJi+T7wAAAP//AwBZuZduSgYAAA== + H4sIAAAAAAAAAwAAAP//dFRNb9tGEL3rVwz2lAC0YSmS5eimFEajAgUKxEiNVoG02h2SE+8HuzNU + rRj+78WSksWkzoUA5828fW9mZ59GAIqsWoAytRbjG3fxy2//3P/6eVJ/+/C5/fOvD/Hb73hXvye5 + /bif16rIFXH3FY2cqi5N9I1DoRh62CTUgpl1PJ/d3EyvJ+NpB/ho0eWyqpGLabyYXE2mF+PxxeTq + WFhHMshqAX+PAACeum+WGCw+qgVcFaeIR2ZdoVq8JAGoFF2OKM1MLDqIKs6giUEwdKq32+1XjmEd + ntYBYK249V6nw1otYK3uagR8NJgaAUcsDHudKLYMCUtMGAwy6GCBpbWEOeyyXZAIt4+N0xT0ziEs + k1BJhrSDVRB0jqpcC2/ul6u3l3BXIyNQMK61CP/G9MAQA2DPQKGCJqElk9vKEEswLtsqCRMXkM0k + zUJ77EuC7hILwL12bfeTi+6XK6AAPjNpB+R1RaEqwKMkMgxlTDmn6AyVSXvsleS4RaaqU5LBE2+o + OlI+sKDnS1gJaMcRPIZeqkepo2Vw9IDw6ePyD3jzqdaNwwMsraVO8u1A8tsCKAimJqF0jfPa1BQQ + HOoUOrX5fIuGOLuShAjdTeplnvpiOrquscNJ1VTVjqpaQGoE8k1MovMcYjk8lxzJoTd6mmEfogDL + 1ek8bVJkBktlxy9go9eU286tqUEzeC2YSDsGNpQVFGBq9MSSDkcjqa2Ovb1cq6K/gQkd7rOsDZuY + MN/EmyPUMtpNHhxyDpfaMa7D8zpst9vh/U5YtqzzeoXWuQGgQ4jS9zpv1pcj8vyySy5WTYo7/qFU + lRSI601CzTHkvWGJjerQ5xHAl25n2+/WUDUp+kY2Eh+wO258PZv2hOr8TAzgdzdHVKJoNwDm7yfF + K5Qbi6LJ8WDxldGmRjuonb27fjGhW0vxjF2NBt7/L+k1+t4/hWrA8lP6M2AMNoJ2c17j19IS5qf0 + Z2kvve4EK8a0J4MbIUx5HhZL3br+lVP9Rm5KClW+1NQ/dWWzmV2Pd5PZfG53avQ8+g8AAP//AwDB + 2mJZ8wUAAA== headers: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983da8a61d9867e5-SJC + - 984e9d0aff65f98b-SJC Connection: - keep-alive Content-Encoding: @@ -5197,7 +5200,7 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:00:36 GMT + - Fri, 26 Sep 2025 00:23:38 GMT Server: - cloudflare Strict-Transport-Security: @@ -5213,13 +5216,13 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "3584" + - "3367" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" x-envoy-upstream-service-time: - - "3611" + - "3386" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -5229,13 +5232,13 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29998550" + - "29998520" x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - 2ms x-request-id: - - req_10f4e4f4e3eb4f43be4f2b12adff443f + - req_900a14e7a77c4f08ade688ed7de496e3 status: code: 200 message: OK @@ -5245,11 +5248,13 @@ interactions: the relevant information that could help answer the question based on the excerpt. Your summary, combined with many others, will be given to the model to generate an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n \\\"used_images\\\"\\n}\\n\\nwhere + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10,\\n \\\"used_images\\\"\\n}\\n\\nwhere `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 1-10 for the relevance of `summary` to the question. `used_images` + is an integer 0-10 for the relevance of `summary` to the question. `used_images` is a boolean flag indicating if any images present in a multimodal message were - used, and if no images were present it should be false.\"},{\"role\":\"user\",\"content\":[{\"type\":\"image_url\",\"image_url\":{\"url\":\"\"}},{\"type\":\"image_url\",\"image_url\":{\"url\":\"\"}},{\"type\":\"text\",\"text\":\"Excerpt + used, and if no images were present it should be false.\\n\\nThe excerpt may + or may not contain relevant information. If not, leave `summary` empty, and + make `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":[{\"type\":\"image_url\",\"image_url\":{\"url\":\"\"}},{\"type\":\"image_url\",\"image_url\":{\"url\":\"\"}},{\"type\":\"text\",\"text\":\"Excerpt from Wellawatte2023 pages 16-20: Wellawatte et al, XAI Review, 2023\\n\\n------------\\n\\nssion challenge and is\\n\\nimportant for chemical process design, drug design and crystallization.133\u2013136 In our previous\\n\\nworks,9,10 we implemented @@ -5325,7 +5330,7 @@ interactions: connection: - keep-alive content-length: - - "188340" + - "188462" content-type: - application/json host: @@ -5357,26 +5362,26 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA3RUy24jRwy86yuIPiWA5EiKX/HNCBLECRAkwCIwEi0Eqoczw3W/3GTbFgz/e9Az - ljW7673MoatZU1VN8nkGYLgxV2Bsj2p9couffz//7f7TXw9/LP+83e8D3f97u7z8+597jtfX3sxr - Rdx9IquHqhMbfXKkHMMI20yoVFlXF2eX5+eXpz+eDoCPDbla1iVdnMbFerk+XaxWi/XytbCPbEnM - Ffw3AwB4Hr5VYmjoyVzBcn448SSCHZmrt0sAJkdXTwyKsCgGNfMjaGNQCoPq500A2Bgp3mPeb8wV - bMzt9Q1898tTcsgBd47gOiu3bBkd3AQl57ijYOl7yNRSFtAInrSPjQCGBpRsH/i+kID2qODxjkB7 - gpSpYVvTGS82ZFk4hoXHOw4dpBwtiZBAbOH6BoaQBDgo5ZRJBzG1sISGcrXVDEcaoS8eg5zATRj+ - NDh80spje/Js0Q2FPjqyxWEeuTl0c6h2WaAINZWJRuPQx0eQRLY6n9RJ2YnmYrVkqtJaV2oWVXui - rEwCju8IJLqyY8e6h5hBLAU9gV9jBnrC2iNzsLFUYy1aLegOiYjNnDTmxQ6roEFNwNfMMgH55OJ+ - lMoNBeV2DwdF6MD2GLpD8uwTWp3mfgIfehICDsJdrwLouAvwyNrDXYiP4ZhXyhwsJ0cyBym2B5Qh - 29paNVi03LD9YYfCFrocS6p5fGGcRClP0RrERNAcGvIxiGbU2gI19fogFgM0lPmBwBMGDl1bHGRy - YxQ9J4E2Rw8NKp5szHzs40yOHjBY2oqNmWo/r5avWH3gLXvsSOq55kKb8DKdi0xtEaxjGYpzEwBD - iDr+uU7kx1fk5W0GXexSjjv5otS0HFj6bSaUGOq8icZkBvRlBvBxmPXy2fialKNPutV4R8Pv1qvV - +UhojuvlCK9O16+oRkU3qVufXc7fodw2pMhOJgvDWLQ9NRPSn9bHBYOl4XjElrOJ968lvUc/+ufQ - TVi+SX8ErKWk1GyP7fLetUx1BX/r2lvWg2AjlB/Y0laZcn2PhlosbtyORvai5Lcth64uHB5XZJu2 - Z+er3frs4qLZmdnL7H8AAAD//wMAtdtH1SsGAAA= + H4sIAAAAAAAAA3RU224bNxB911cM9nllSIrl25sbNKgLBCiKoAhQBdKInN2dmEsynKEvMPzvBSnb + q7bOywLLwzk8Z25PM4CGbXMFjRlQzRjd/OPvP77+9vFub3/58+LzHw/nq/PP67Ph8pP90v+FTVsi + wv47GX2NOjFhjI6Ugz/AJhEqFdbl+fri4vRstVxXYAyWXAnro85Pw3y1WJ3Ol8v5avESOAQ2JM0V + /D0DAHiq3yLRW3pormDRvp6MJII9NVdvlwCaFFw5aVCERdFr006gCV7JV9W73e67BL/xTxsPsGkk + jyOmx01zBZvm6/VNCyHBrw/RIXvcO4LrpNyxYXRw45Wc4568oRYSdZQENMBIOgQrgN6Ckhk8/8gk + oAMqjHhLoAOBJcPCwc9HvGXfQ0zBkAgJhA6ub6AmSIC9UoqJtD5eGLO3lIolW480wJBH9HICN74y + V3cPWnjKb0zhji0VKQ/awtfrG2ABjNFxOQxgBhrZoKvsY3BkssMEMZFlU0opLUg2A6CABJf37Fgf + 620x5HUumrLRnAgSOawRA8ciSCEXRxqCE3B8W8Tl4qhDoxmdtGBJTOKoIQGVNHt8ebLy5/1Ejh7d + o3BNMVvyyt0jDOEeJJIpNTkS3xGWmJK/zuVSoGM/J/CpPoelWVtAa0sF0LBlU+q9R2EDfQo5FobS + xMXGZP6gzlBSZA9d9pUX3WsMFrkiwXDpfrhnHSaVNWlyAl8GEgL2wv2gAui494ertz7c+6kuMbE3 + HB0dWqqQW0p8Rxa6FEawqAhZigdLFMERJl8deVvrPTXhyaZpD42eyNEdekNbMSFRafjl4gXLQnbL + I/Yk5VxTpo1/3vjdbnc8Rom6LFim2GfnjgD0PuihjmWAv70gz28j60IfU9jLf0Kbjj3LsC35Dr6M + p2iITUWfZwDf6mrI/5r2JqYwRt1quKX63Gp5enkgbKZtNMHL9ekLqkHRHcV9WHxo36HcWlJkJ0f7 + pTFoBrJHpJeraR9hthwmbDE78v5/Se/RH/yz749Yfko/AcZQVLLbqdPfu5aobOyfXXvLdRXcCKU7 + NrRVplTqYanD7A7LtJFHURq3Hfu+7Cg+bNQubtdny/1qfX5u983sefYPAAAA//8DAJvtOk9aBgAA headers: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983da8b11811face-SJC + - 984e9d0cac647af2-SJC Connection: - keep-alive Content-Encoding: @@ -5384,7 +5389,7 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:00:42 GMT + - Fri, 26 Sep 2025 00:23:40 GMT Server: - cloudflare Strict-Transport-Security: @@ -5400,13 +5405,13 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "8093" + - "5376" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" x-envoy-upstream-service-time: - - "8120" + - "5418" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-input-images: @@ -5420,15 +5425,15 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29997016" + - "29996985" x-ratelimit-reset-input-images: - 0s x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - - 5ms + - 6ms x-request-id: - - req_9efcae9618aa4c0fbfed7bd1cbc5e810 + - req_08500a990eb3444580fe601771c4e3df status: code: 200 message: OK @@ -5437,56 +5442,57 @@ interactions: '{"model": "deepseek/deepseek-r1", "messages": [{"role": "system", "content": "Answer in a direct and concise tone. Your audience is an expert, so be highly specific. If there are ambiguous terms or acronyms, first define them."}, {"role": - "user", "content": "Answer the question below with the context.\n\nContext:\n\npqac-c1e4e45f: + "user", "content": "Answer the question below with the context.\n\nContext:\n\npqac-fc7d30d6: Explainable Artificial Intelligence (XAI) is a field focused on providing interpretations and explanations for deep learning (DL) model predictions, addressing the ''black-box'' nature of these models. XAI aims to enhance trust and usability by offering insights into why a model makes specific predictions. Key concepts in XAI include interpretability (the degree of human understandability of a model), justifications - (quantitative metrics that defend the trustworthiness of predictions), and explanations - (descriptions clarifying the reasoning behind predictions). XAI is particularly - relevant in chemistry, where understanding DL predictions can guide hypotheses - and ensure models are not learning spurious correlations.\nFrom Wellawatte et - al, XAI Review, 2023\n\npqac-d73a7782: XAI, or Explainable Artificial Intelligence, - refers to methods and techniques that make the decision-making processes of - AI models interpretable and understandable to humans. In the context of chemistry - and drug discovery, XAI is used to interpret black-box models, uncover structure-property - relationships, and propose actionable modifications to molecules. For example, - counterfactual explanations can suggest changes to molecular structures to achieve - desired properties, such as blood-brain barrier permeation. XAI methods like - MMACE and descriptor explanations provide insights into how molecular features - influence predictions, aiding in tasks like solubility prediction and drug design.\nFrom - Wellawatte et al, XAI Review, 2023\n\npqac-32f7e033: XAI (Explainable Artificial - Intelligence) refers to methods and techniques that make the predictions and - decision-making processes of AI models interpretable and understandable to humans. - In the context of chemical and molecular modeling, XAI is used to explain how - specific molecular substructures influence properties like solubility or scent. - For example, counterfactuals and descriptor-based explanations are employed - to identify structural changes that impact predictions. These insights align - with known chemical principles, such as the role of acidic/basic groups in solubility - or ester groups in scent prediction, demonstrating how XAI can derive meaningful - relationships from data.\nFrom Wellawatte et al, XAI Review, 2023\n\npqac-ec18c50c: + (quantitative metrics supporting model trustworthiness), and explanations (descriptions + of why a prediction was made). XAI is particularly important in fields like + chemistry, where understanding structure-property relationships can guide hypotheses + and ensure models do not rely on spurious correlations.\nFrom Wellawatte et + al, XAI Review, 2023\n\npqac-1dbe3919: XAI, or Explainable Artificial Intelligence, + refers to methods and techniques used to interpret and understand the decisions + made by machine learning models, particularly deep learning models. In the context + of chemistry, XAI is applied to uncover structure-property relationships, such + as predicting blood-brain barrier permeation or solubility of molecules. Techniques + like counterfactual explanations and descriptor-based explanations are used + to provide actionable insights into how molecular modifications affect properties. + These methods help bridge the gap between black-box models and interpretable, + actionable knowledge for chemists.\nFrom Wellawatte et al, XAI Review, 2023\n\npqac-04c41457: XAI, or Explainable Artificial Intelligence, refers to methods and techniques - used to make the predictions of AI models interpretable and understandable to - humans. In the context of molecular property prediction, XAI methods like molecular - counterfactual explanations and descriptor explanations are used to explain - black-box models. Counterfactual explanations involve generating molecular structures - with minimal changes that result in different properties, while descriptor explanations - use surrogate models to attribute chemical properties to specific molecular - features. These methods enhance trust, accessibility, and utility of AI in domains - like chemistry by providing actionable and domain-relevant insights.\nFrom Wellawatte - et al, XAI Review, 2023\n\npqac-cd676c55: XAI, or Explainable Artificial Intelligence, - is a method used to explain predictions made by molecular property prediction - models. It aims to increase user trust and ensure that models are learning correct - chemical principles. XAI can be applied after black-box modeling to uncover - structure-property relationships without compromising accuracy or interpretability. - Key challenges in XAI include how explanations are represented (e.g., text, - molecular structures), defining molecular distance in counterfactual generation, - adapting explanations for different audiences (e.g., chemists, doctors), exploring - chemical space for realizable molecules, and developing systematic frameworks - to evaluate the correctness and applicability of explanations.\nFrom Wellawatte - et al, XAI Review, 2023\n\nValid Keys: pqac-c1e4e45f, pqac-d73a7782, pqac-32f7e033, - pqac-ec18c50c, pqac-cd676c55\n\n------------\n\nQuestion: What is XAI?\n\nWrite + that make the decision-making processes of AI models interpretable and understandable + to humans. In the context of the provided text, XAI is applied to chemical and + molecular predictions, such as solubility and scent-structure relationships. + It uses tools like counterfactuals, descriptor explanations, and substructure + analysis to identify how specific molecular features influence predictions. + For example, adding acidic or basic groups increases solubility, and certain + functional groups are associated with specific scents. These insights align + with known chemical principles and are derived from data using deep learning + and XAI techniques.\nFrom Wellawatte et al, XAI Review, 2023\n\npqac-8d7c22f9: + XAI, or Explainable Artificial Intelligence, is a method used to explain predictions + made by models, particularly in molecular property prediction. It aims to increase + trust in predictions and ensure models are learning correct chemical principles. + XAI methods include explanation representation (e.g., text, molecular attributions), + counterfactual generation with minimized molecular distance, and considerations + of chemical space. It is becoming increasingly important in fields like healthcare + and environmental science, where explanations may need to meet legal or domain-specific + requirements. However, challenges remain, such as defining molecular distance, + evaluating explanations systematically, and tailoring them to specific audiences + or domains.\nFrom Wellawatte et al, XAI Review, 2023\n\npqac-3dab76be: Explainable + Artificial Intelligence (XAI) refers to methods and techniques that make the + decision-making processes of AI models, particularly deep learning (DL) models, + interpretable and understandable. XAI involves a two-step process: first, developing + an accurate but uninterpretable model, and then adding explanations to its predictions. + Explanations provide context and causes for predictions, offering insights into + the underlying mechanisms. XAI methods can be intrinsic (self-explanatory models) + or extrinsic (post-hoc explanations applied after training). Evaluating XAI + involves attributes like actionability, completeness, correctness, domain applicability, + fidelity, robustness, and succinctness. These attributes help assess the quality + and utility of explanations in various applications.\nFrom Wellawatte et al, + XAI Review, 2023\n\nValid Keys: pqac-fc7d30d6, pqac-1dbe3919, pqac-04c41457, + pqac-8d7c22f9, pqac-3dab76be\n\n------------\n\nQuestion: What is XAI?\n\nWrite an answer based on the context. If the context provides insufficient information reply \"I cannot answer.\" For each part of your answer, indicate which sources most support it via citation keys at the end of sentences, like (pqac-0f650d59). @@ -5509,7 +5515,7 @@ interactions: connection: - keep-alive content-length: - - "5352" + - "5429" content-type: - application/json host: @@ -5525,52 +5531,49 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//4lKAAS4AAAAA///iQjABAAAA//9CYgIAAAD//0JiAgAAAP//QmICAAAA - //9CYgIAAAD//0JiAgAAAP//QmICAAAA//9CYgIAAAD//0JiAgAAAP//QmICAAAA//9CYgIAAAD/ - /0JiAgAAAP//QmICAAAA//9CYgIAAAD//0JiAgAAAP//QmICAAAA//9CYgIAAAD//0JiAgAAAP// - QmICAAAA//9CYgIAAAD//0JiAgAAAP//QmICAAAA//9CYgIAAAD//0JiAgAAAP//QmICAAAA//9C - YgIAAAD//0JiAgAAAP//QmICAAAA//9CYgIAAAD//0JiAgAAAP//QmICAAAA//9CYgIAAAD//0Ji - AgAAAP//QmICAAAA//9CYgIAAAD//0JiAgAAAP//QmICAAAA//9CYgIAAAD//0JiAgAAAP//QmIC - AAAA//9CYgIAAAD//0JiAgAAAP//QmICAAAA//9CYgIAAAD//0JiAgAAAP//jFhtb9y4Ef4rA36J - bci6OIljd78UvlzaGr1c0bsUd0VdBLPUSOItRSocau1NEKB/o3+vv+QwpKRd+SW9L4Z3lyJnnpnn - eYb6rEylVqohd3p2cX75+vXlq1cvTut//tn8Zdjw379dD5fvf2i/ff/jz6pQffBbU1FQK/UdUX/t - 6oCqUJ2vyKqVqoh6Jtp8M/1zGs5Uofz6V9JRrZRuMZbad72laLxThdKBMFKlVvuzC6VbbzSxWv3r - s7K+6YNfs1q5wdpC1cYZbj8EQvZOrRRH36tCOYxmSx+e+NW4iu7U6nmhOmLGhtTqswreklopZDYc - 0UWJxrtITiL95eoajt7e9RaNw7UluArR1EYbtHDtIllrGnKajiFQTYEheugotr5iQFdBJN0683Eg - horYNI6qtAQ3BLEl6ANVRgsIeX1F2rDx7rTDjXEN9MFrYiYGX8PVNSSEGYyLFPpAMcUkDw6uoiDx - V+mr6KEdOnRcAFZVIGbZTU68UWuLenO69nc3ChzGIZBsnstxN51gzYZAygeWMDh5mnccqWM46j+i - PtVn9IpendcFpI/VxUu8uLh8cVzCdQTq+hbZfCKG2AYi0D7IH6epj7yCk5ODDIw1cXdyAkcSXkWN - rI8ebluj2zEL0OhShIFachVgDvN///kvg/WN0ccFnJz8OnAqDiY8ZcePA7poYmoKqUswmmGL1lQY - M7wT/BDDwPHWh9gaR8zHRYL15ISk+G6/ZUWsg+lzybTFYOrdhG3uN/m0pta46rC8x/dwOy4BbtyN - u3agW+oMx7BLR3bekh4shpyjcU0B0oaGAfvemtxBg9N+SwE4hkFLDU/74HsKcQeBbA63NT0X0Aym - Imh3vY8tsWFoyFFIK3KO5Fh6YCw8Vi2FVICEUw5Oo4U+GKdNb4khYGwpQGzRAfdDMH5gKfF88uM9 - 8vJFfUHPX748LuGvtJt5Ypy2Q0VwcqL9IG1Ro44DWlhCX4wdIXl6JuiMMx3aGQG0ksK+/olnGUtK - H9BGClNJqIIRMEMMR1Q2ZQFr6311ug5oHKwxBCPrKXSUdpxbYmoBH54IcWACHkLwDcYZWIkgxmDW - Q1zyPnrgnrREflD8mhI1RyaiNpXR36yRjYYm+KFnkONZUqoHl7ZCa3I2C0aO4JM+u9Tnz/XDWrxv - ielQqci16DRlShSAWiTIZJ5mDIaYPoBxEJE3DDzoFpCBvR3ywkNuJWULQzNqIKx3gNY0iSmHCMKt - iS1UvpMCbJy/tVQ1NObzdAKJR29atJZcQ9JQmTBjX1UkduCaA3CrJPV6rwm1D3Cv+xY0qbCPD6KV - hyqzpcAEOFRGjGDupZHUDFsuQVvjxDSc6Irs4YPsNnHLCmnRmk9JuxddPFKURekNt3sdxmg01AE7 - uvVhk7qItmgH6biDKDMtdRRNm1hZvb54rc/Pj0tVqED1wGgnW50VTK3U3za4K+AaHGXJQce3ifUE - 0iZp9xv1c4tRtOmXq+s/3igYZqMZZ4QKkpvexRK+pwgdAUcMUXogEFZ5dfBD0wKhbsWK5OnxISAX - g8n8bSbVIdjQDnpvXORSav+n4DtYKM5qlsy1H+IYi5y195296T4o6nffj6S9754mwLPZPp+N7pkc - D02Xa3DIncwVHi0uq95kgoCB4L4LFrD0sOJBfCX8SJa26KK0+d45JOz9DLD0tpwlbn2G4FHFTjgu - dCNDKJMKy+QxTSb3ho8SDg2sABOfsehf6ph5JcygzcDW4o//370kch6ahjgunXEPUglv77BLxpS0 - 8isukmD6usqX8G70pbTZu3dXb96Oo9mjqg8t2V5q8bukbw/zpF8jzOOZaTC8ul4Ubzna7QHX2fHG - EYHykMrQ+lvgYT1Dy4B1TToe+F0JbxYY8b0ET9coFVykaSpy0dS7Q7/VLYrglnAlaj7K92MDw4GH - Te61QGwPy6Tyh913CMbD5tt3xdxD+wcK6UX+akscTYPEmM0o63VNgdwhasdfbYOjB4Y/ub1wbnLz - 4xLeZoXgQ4nY2+lMpT0kk15nSOY635sTORNOLlJ8KD/jdDfawGPVKeFqnCt7z/F0ainZL5F0wchU - Y5FU65MootZDQL0rYWHA2XkD9YGYXBZbkfZDyIpHDLmYjTR77ui/Dy0TuMe0XFLMvidH7A0x4feD - vy2Ady5Nvp9GEWeavGMyicUF7xpqr5OCeQfjNWy+eT070MH7vBR1R5nknhT3Zfbpfih1elpDpRUf - 9LchLn6Hci57fjyve6Bt9wq39Xa7HCCWRXyiQMsyZOzHsWGONDl3HiJW8FMaApJg4Dhq2XFSyzt2 - IjfeJaufPfPo65jKhC6tPN0AzALW/ZA9gnD0AKI9uacLoJ7BKeGNiQTshyDsxV6ADwYj2UzWNy3p - TR5iekkOG+FpXIwzaUJYEtLEycauxKHlmrvO8+r0k2DAYLpcabsr4R+cb9NGLhokLytSSCw+BqxN - kmqjgePOUnnj1Jcv/y7UML3y6IPv+vgh+g05Vquzs+fP5aXH9D5m/uHyxXmhoo9o92v/IN8tNvhQ - UURjx1czX778BgAA//8DAFam13NEFAAA + H4sIAAAAAAAAA+JSgAEuAAAAAP//4kIwAQAAAP//QmICAAAA//9CYgIAAAD//0JiAgAAAP//QmIC + AAAA//9CYgIAAAD//0JiAgAAAP//QmICAAAA//9CYgIAAAD//0JiAgAAAP//QmICAAAA//9CYgIA + AAD//0JiAgAAAP//QmICAAAA//9CYgIAAAD//0JiAgAAAP//QmICAAAA//9CYgIAAAD//0JiAgAA + AP//QmICAAAA//9CYgIAAAD//0JiAgAAAP//QmICAAAA//9CYgIAAAD//0JiAgAAAP//QmICAAAA + //+EWF1v3LoR/SsDPdmGdmvny8m+FEZvLmAgt8UFUjRFXQQUOZLmLkUqnJHtvUH+ezGUtNJuEvTN + 3qVIzjlnzhnt14JcsSsaDJub29dv37568+LF9ea6urb/Zvz9tnltXvOnm7tPvz8VZdGn+EgOU7Er + PprUxFCURRcd+mJXOMSeEfd/mf/YpJuiLGL1B1opdoVtjWxt7HqPQvlJm9AIumJ3PPimLGwbySIX + u/98LXxs+hQrLnZh8L4sagrE7eeEhmModgVL7IuyCEboET//5FsKDp+L3XVZdMhsGix2X4sUPRa7 + wjATiwmit4lBMOhN3z/33lAwlUe4S0I1WTIe7oOg99RgsAgXn+7uLwGDFmSYkaFDaaNjMMGBoG0D + fRmQwSFTE9CBRKAgmPqEkhdZbxLVB5AWwaElphg2ndlTaKBP0WLeNtbQGdtSQPBoUtBvM+RcQm+S + kB28Sf4ACvuy5OKXD5fABxbsuISnlmwLJiHEWjCAjYGVR3TwUFTe2P2mis8PBbgB9aLSIiWIvfky + 4HjrYDx0aFsTiDuGi/6LsZva3rqX1+5NCfnfl85Ut28qvNzCp7t7MNSxboahNQqZpIGlhIFNRZ7k + UGYUjLVxCDJ9BtUBRpFpEe3QmbAZgsOkLLnMCAWmphXWe8URCugTOrIqKy6BB62VgRwGofqgO+3x + ADUaGZJCmiAZXWw8MlTYUnDAPVplGuIg/SA/KfHGVfjy3c27yy18bEnv8Bj9IzLIU4Q+UWfSAUzf + p2hsi7yDqysKkvTO9uoKLkbmTkRRITD6eoOqumAkpsNlRubqCp9Xj/aRZdNGC/NCrVbP8oQOTC2Y + JjQkGVIRXE41rHiBh/AQ7gPYFjtiSYcyU0UMNpGQNR7qmAD9YMkZUehY0mAVuE2fYo9JDpDQj8e3 + 1K8An1nICvWYhQkc/TBxGxNUPka3qfSCUJmUCBP0mDrM+5VKv6cwtcCRU4Up31jv1ycKlnqlztMe + oR6CHcmEJsWhV3FLomoYH40JeKjmIlTFUaie6Z35nOi9fmVf3bx6fav0Li1MwfrBIVxdZaliqo2V + wfgTJpQi3DbbUkmYVLdCYQYx15INg1cVgjZWgzwT75Btol5i2lSGlV5ZStKTWmpar22gxxiJnQpX + eUMrKQayi9op1H7AYHVlHMTGTs+5OKl3Kv+tu7UvXtTvZqGoNPDR+CGXqLSTtk/IYsFE5ki9GSmY + iL7ok36gbA0ycV+foHVZQk0Ox9XGUxM6DAJPJO0k4gpb80gxXY424WKnmslyt8s5Z/L+W2u8R0Xy + SJrDmsIZGdSReq8c1LQTWc6iPyVXdZ3t0+RC/AEejZ97Yl3KeD8x5GOaMM7+IXG69GaxlgQJm8Hn + JoeEXwZKqIXPclwR8LFFRsC6jkkYMPCQcDJ+MI+R1LGGRHFgsDEdO3L0VAV0BBNZTOWJW3TAlrIj + koV9iE8eXYNnNne5LcoiYT2w8XPqjoFKoSl2xT/25lDCPQQczcsEfsKUI0xbJcvkofhXa0Q95dPd + /V8fChhYcdE10/zgco/is2zhAwp0CCwmiXZ/QuPG1SkOTQtobKvi0aenhwC1v8dOaoy00/lq8X2k + ILxV7f6aYgcnte1mqzNVHGTkcJTGLx++z5FcnXNJG3WMw2NOQsittYV7+XHIZRKOOXes5Rj/xwD8 + Y+DMx1pJa21t4b7rY9IJBWjl2lmv/8+YMwwnLjchMF+D4be58Hn+4BIwyzUr/rsjpaXQTL67MvYV + bD80zrPOGhv63OJOYk1zMZHqU6ltTA8VyhNiOLZAHh1G0/G46Hkpeva2sejO7JHh7n6pdE2Hx3JW + aYx+KvBHt15FCYIJxh84TwELTlt4/2y6HE8NPWKY1LZCK+9jMchm2eonxM1+MNYwKZZXVnYm2Mkm + siFY+WFm6hCYp0R0W/htmllnolYcQMI+IWOQWZzf+WMeYqdJkpfDuDcWT7w4w7lc2uWZ287enE/L + yl+iBp+JZcFhtvhZwNPQNQ3Lc/ueUQpI2RyOA1jWtKbk8+qDLbxfjp1jdqXdk2QrZ2gDsraK2C18 + fIobFuznmX13bKlH9LHPuSatCsG58+zIFf49PmnWBGmR6c/JKhlnM9MkmH2W2zh4N+KGikUJur9e + nYShH1IfGeFi5W2La81vDaNV5XPUrC7LbJ02Bou9JtH3NnWW3Ku3m4vvRLH0tS6d8lqmhlvPnWeM + G7UdLffOcywhRMGFOXjk7ULbyauWPcpsBHMKpqkTcnzoa1IecUly9GQGlflfsxhyt+o7EgYQ47Ok + xqad8dRz1hiVeavTdDkzvrVxHpNo9uG84YlJnahweWDW/fLA7Agn/bU8cPxasbjLY0JCNwRngj1s + 4Tejxq3AyCKq2scnBh+bsSHKMYwVhTxBLE1azoCUMwOnBJcrPstzcuCfnBPcEusLj75rW7Uj1vl/ + PZqwHHy2D7R7EJ0kjPcK+DzgLAbncyp1RpTXfNk9HiY4VgPD9iEU3779tyyG+fW/T7Hr5bPEPQYu + djc3L1/oDwDzbxPHL96+elkWEsX4Ze2729ffvv0PAAD//wMAoZygiF8SAAA= headers: Access-Control-Allow-Origin: - "*" CF-RAY: - - 983da8e52bbacf26-SJC + - 984e9d3059752283-LAX Connection: - keep-alive Content-Encoding: @@ -5578,7 +5581,7 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:00:43 GMT + - Fri, 26 Sep 2025 00:23:41 GMT Permissions-Policy: - payment=(self "https://checkout.stripe.com" "https://connect-js.stripe.com" "https://js.stripe.com" "https://*.js.stripe.com" "https://hooks.stripe.com") diff --git a/tests/cassettes/test_pdf_reader_match_doc_details.yaml b/tests/cassettes/test_pdf_reader_match_doc_details.yaml index 3924d905b..95a663e94 100644 --- a/tests/cassettes/test_pdf_reader_match_doc_details.yaml +++ b/tests/cassettes/test_pdf_reader_match_doc_details.yaml @@ -46,20 +46,20 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA4xT24rbMBB991cMek7Kxrk2b71Rtm1godBS1sFR5HGsrawR0ng3JeTfF9nZOG1T - 6IsfdC46M0c+JABCF2IJQlWSVe3M8N2n2e3b8cey2q++/ZCUKj378vnpdjxdfVXvxSAqaPuAil9U - rxTVziBrsh2sPErG6DqaTxez2WIynbZATQWaKNs5Hk5omN6kk+FoNExvTsKKtMIglnCfAAAc2m+M - aAvciyXcDF5OagxB7lAszyQA4cnEEyFD0IGlZTHoQUWW0bapN5vNQyCb2UNmATLBmg1mYgmZeAN3 - 6INDxfoRgSx82DsjrYzTBaASVmRQNUZ6uPNYaBUBWMXBQiYGnZ9suCIfouN9Jr6jMfJJMiMggzSZ - WJ94BenIsY0xmT1mdrPZXCb2WDZBmhPjApDWEneR4hXrE3I8b8fQznnahj+kotRWhyr3KAPZuInA - 5ESLHhOAddtC89tihfNUO86ZfmJ73WLc2Ym+9h4cvz6BTCxNfz5K08EVu7xAltqEixqFkqrCopf2 - ncum0HQBJBdD/53mmnc3uLa7/7HvAaXQMRa5Ozd+jeYx/hX/op2X3AYWAf2jVpizRh+LKLCUjeke - rAi/AmOdl9ru0Duvu1dbunw6G23T6XxebEVyTJ4BAAD//wMAFNpzqb4DAAA= + H4sIAAAAAAAAAwAAAP//jFNdb9MwFH3Pr7jyc4uarO26viEGD4xJRZOYxlIlrn3TeDi2sW/GUNX/ + jpx0TYEi8ZIHnw+fe4+zSwCYkmwJTNScROP0+N3H75Kv7sz13eLq4Yv68NU2n25uZHrt7uvPbBQV + dvOEgl5Vb4RtnEZS1vSw8MgJo2t6OVsspvP5ZN4BjZWoo2zraDy142ySTcdpOs4mB2FtlcDAlvCY + AADsum+MaCS+sCVMRq8nDYbAt8iWRxIA81bHE8ZDUIG4ITYaQGENoelSl2X5FKzJzS43ADkjRRpz + toScvYUV+uBQkHpGsAbevzjNDY/TBbAV3FqNotXcw8qjVCICcBsHCzkb9X68pdr6EB0fc3aPWvMf + nAgBCbjO2frAk1ZFjmm1zs0+N2VZnib2WLWB6wPjBODGWOojxSvWB2R/3I62W+ftJvwhZZUyKtSF + Rx6siZsIZB3r0H0CsO5aaH9bLHPeNo4Kst+wu25x0duxofYBvLg6gGSJ6+E8zbLRGbtCInGlw0mN + THBRoxykQ+e8lcqeAMnJ0H+nOefdD67M9n/sB0AIdISycMfGz9E8xr/iX7TjkrvALKB/VgILUuhj + ERIr3ur+wbLwMxA2RaXMFr3zqn+1lStm83STzS4v5YYl++QXAAAA//8DAGyqnmS+AwAA headers: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983da933ac1d9338-SJC + - 984ea6982bd0f9ea-SJC Connection: - keep-alive Content-Encoding: @@ -67,14 +67,14 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:00:55 GMT + - Fri, 26 Sep 2025 00:30:06 GMT Server: - cloudflare Set-Cookie: - - __cf_bm=n9lDgOY.PpuZ6u4oJwnrFsAOUuvGev5IrxF4IyYGHxo-1758668455-1.0.1.1-UMByqyhjJBMODiPQ1PlAmKE0E32FkQejPy282kmqnJrP2r78qRuspVKSHCCrV2JXwayzAlwo2Zqrg8aOmdPGrl_d5ZT5J85Uc6voMGQRGLY; - path=/; expires=Tue, 23-Sep-25 23:30:55 GMT; domain=.api.openai.com; HttpOnly; + - __cf_bm=.AbshRRefKLk9WY8Px5wp0DmzmvpHKbeKA5cnca2vn0-1758846606-1.0.1.1-mlnLq85HuMEfkVt7ULW4RHfTQIAAOKQxiLh_VGTAMBx2EGVVyNidPAdnDZbM4ixRli1r6vpy66vZ56Fit9E57NAiz_nJZaM4G1.s_ytPxMI; + path=/; expires=Fri, 26-Sep-25 01:00:06 GMT; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - - _cfuvid=NebnkJatRUpasecLYu3EKQhJ2bqJMlGyCYMoaqxz33s-1758668455657-0.0.1.1-604800000; + - _cfuvid=7gnJkUsfZXsU0yOl5388BvN_FXZfL2duD.ml0ceWl04-1758846606621-0.0.1.1-604800000; path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None Strict-Transport-Security: - max-age=31536000; includeSubDomains; preload @@ -89,13 +89,13 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "584" + - "406" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" x-envoy-upstream-service-time: - - "607" + - "429" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -105,13 +105,13 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29999918" + - "29999919" x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - 0s x-request-id: - - req_6832fb7c627741fc97b4b90f7b104fc7 + - req_f309aabdb3d6487c98ddf467ee0d590b status: code: 200 message: OK @@ -133,14 +133,14 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAA/62TQW/bMAyF/4qhc+S4TpZtvgXL0PUwNOgw7ND0wEl0LFSWXIlOYgT+76PcAWl2 - 7QzoYD75eyT4fBaRgPooKuGfxUy0GCPsUdLQIdeOPjxLayK9kQ4YovGO1Zu8yIuLIqqzqEEhMe08 - zgR5AisDxt6mUll8KhczYQhbfns8i839XYIUeblaLpa7uWqwDSdzkGVRlvKlPhQlw6Gnxofpg705 - YPK9RWxNts1ZraE1duDaL7QWjkCEXI340qNTaYLahKl7qGtjDdDUObMctEn+6cw0Dw2Zr7MHzz1E - wiDGp3F2MfyGBNn6yu8WnG7MtRdobZIB2PcarhPord0PjA3o8N8N7x++3G34VkPUxWo33819UEbn - Pux384IfyaeUq9Xyo1x8Xn34uxB0ZBQQajldF1UNNuLs0r/TAY/Z5npFjfl3O+8c4InjFDlhNYYE - 1PL3IJXvHYnqhvNnyDLgUayzLQM6VMSkzLvs66mz4CanmKDfvUXVWwjZNqA2Kglc1GijeHVJoZUd - BtlNQWc6zxCGFHn+gQJJ4zSeRFWk8SCoRnKLKeeut3Ycxz+zD8OuaAMAAA== + H4sIAAAAAAAA/62TQW/bMAyF/4qhc+S4bpptvgXL0PUwNOgw7ND0wEp0LFSWXIlOYgT+76O8AWl2 + bQ3oYD75eyT4fBKRgPooKuFfxEy0GCPsUNLQIdcOPrxIayK9kfYYovGO1au8yIuzIqqTqEEhMe00 + zgR5AisDxt6mUll8vlnMhCFs+e3xJNb3dwlS5OVycb3YzlWDbTiavSyLspSv9b4oGQ49NT5MH+zM + HpPvLWJrsk3Oag2tsQPXfqO1cAAi5GrE1x6dShPUJkzdQ10ba4CmzpnloE3yL2emeWjIfJ09eO4h + EgYxPo2zs+F3JMhWF3634HRjLr1Aa5MMwL7XcJVAb+1+YmxAhw83vH/4erfmWw1RF6vtfDv3QRmd + +7Dbzgt+JJ9SLpeLT/L6y/Lm30LQkVFAqOV0XVQ12Iizc/9OBzxk68sVNeb/7bxzgCeOU+SE1RgS + UMvnQSrfOxLVFefPkGXAo1hlGwZ0qIhJmXfZt2NnwU1OMUF/eIuqtxCyTUBtVBK4qNFG8dclhVZ2 + GGQ3BZ3pPEMYUuT5BwokjdN4FFWRxoOgGsktppy73tpxHP8AZovVN2gDAAA= headers: Access-Control-Allow-Headers: - X-Requested-With, Accept, Accept-Encoding, Accept-Charset, Accept-Language, @@ -154,11 +154,11 @@ interactions: Content-Encoding: - gzip Content-Length: - - "442" + - "443" Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:00:56 GMT + - Fri, 26 Sep 2025 00:30:07 GMT Server: - Jetty(9.4.40.v20210413) Vary: @@ -1263,1694 +1263,1697 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA6R6SbOCTtffPp/iX8/WVMkkffrdIfMkjYCKWYkiAirK0EC/le+ewvskqVRllWxu - ldJeoM/wG07/53/5559/NVmVX/t//cc//3qWXf+v/7p8d7v0l3/9xz//7b/8888///zn7+//sTJ/ - ZfntVr6L3/LfxfJ9y6d//cc/3P/65n8v+o9//sU1lRKwxHwitqv2JhqOwoOoK8eOBf64K6FZd3t6 - MYxdzDZr7wKnoN+QnWuH2iRhp8Q4TnJ62idzNsdZGQGIeEv1g3HQZnOWa2iEaUV2p7encbE2pZB/ - thnRde6lfXed34FVZ6dhdY+3rcjuoIOzsg4Dk44Vo6G9jdBzn3NEi/TEmx/jSoZW6dzf82STQNoR - kPCRgvHlfrzO4v0c9M/3Soi/OrVj6A0BXB4Komb13GgTmogJ5QcIOXgNa6dYHGXcofkw1AoWtLF/ - zzL2eqITs76V3qxi8FHcXyOafvLW61/3uAQlWD0DJHFDO2+3WxNbZ9EaXqaqZnxthDPyrSkhp4O1 - 9sZ65GZckc9AzXC/ZiMffAVQNNWhCiBf44y+lSHcMJ1YJreKJ54vVviw3ro0ooJV9fnZVvDmUo5U - cU5JS6VZVYHH5p14D0GKp5pXS7xd6Qk9J6edN3CO78pF6rnEDkuzFYJGlLHXZSI1de6YjedILtHy - mZhlo1UikYkCoG4PZKfHE5tG9vFht1Yd4p/S3OOaJ3PxvhoTclDWBI1bqS8gVbiQeAGNPNaeixrk - uGNDG1eninX8+gjntDHo/fTOMpG/ZCHUhpLRNPWrTESb7wunPFDiP9sVYqqqKvg+NTnd5+XLa/fc - ywd23+Bh9s5CPN7E8otzLpVIJguFxxf39wzDYF+IvnKkaqqTwUb3V7ylekueLWcb0YB5zz/Si4CF - uJf10gbptnfp5XCEbM67ysbnVs6oL+z0bFof1iH89vuON57Xw9oJwUUJIiqK9968ySIdi7s6o6d2 - T9phGx5zuUiMN3UUEmidXEgz5rq6Ivft8IjF59dTYHX6jFTX4KZN7d7QcSd2M9Xr89DO6a1U8cdS - PBLeH4Yntk50wd54z6j1urket9EeAca+Wg9gRCGaJnyYNxOxI6po1In72khHZL5hRW99bbd/+fq5 - lSLV0l7SprMpm2i8hQ69aLdSm5vdHOHVfN3RlAwK6k72zkbLfhPTFSw0WtI+xJGaWmS/MXk2+tYl - h/Jp3KmmjpdKVKPUR+yOMLHOnprN16hI8Xz/BsRfN1eNpfvHC+/Ti0jNeRNVgtwWIRa+hkRtTwwR - Z2bOgA9UOAUjn6sth5t9gmf+MBD3qlWtkG+6ErSgDqnyUZSY+8QpgPH68OReJmo7jjS7gp6Ha3L8 - RkomHjbyjDeaLw4iA0MT++rmAiaRTAK12Hlz3I5XvNT/INQ31eO4UBCwuysPZAtOkQlW6AZo6keD - eDvUVXPLCRcYuysQZRfoFXdXQxO/yP5MkuL1YOwiPTvwiXwZpvP3lvGkPNqIvo83oiv4qHH9qRvA - 684iURJpmzF+t5fhdksJjQ329EZb3clgl7lLfdtutNE/vgWcjfRLdzt0RfXDFjmoNs1qeFu8qE3p - 53tF0KcTcfPthOZOlb448U2DRLHGvOnqGQI8XVceJOk5ZeKbGy8YDnEbCPfZj7k8mSN86k8dsS+r - k9YlSvdCJ1KZJNzo4I0X8hzgIiUcuY6p6QlYUSOMQjhTV1wRT2i5VYpav3nRE86KuI+t4AihtBaD - FfHKdr6bPcD6plxJTLLQY+tAf8FY1xq5jJ5aTTXvFmjpn9RXci/r5nN3lYvhI1AzTlxvdt8jYN/b - fqnV7kk19dmc//CDJL/60KX4gqFobWq9c5XxZO6O6MLt91Rn/RvNah5+8dJ/6bZV7Hgc148v1kGa - 6RHSHZv5c5SgJPZmoi340Q2HdABLbPvgdXCaimHt5ENp3rsAX6MCjUzgVKzKZU/dZztUzM71Esyw - NchW6++I9/rTDN9p79KEe+yqUR5NG9Duzi/5q7XzWd7UMOf8lhykY6IJmst/EQTzahgfx6qdevue - Q6goKnG1m6qJ15dW4tCSETWFUW0pqxRJ3ldzQrWVV2rds38DhB7k5DQjP5usFHOIx/p9qDW4eWPF - OTU0OwUR9eVuMkq+01fexU1Po1DvvHEw1BLX71s9yOMSrw8KFXyrB4cGD1vRhCojErSv7BPAnQwe - 25GVCR0aD9TKsKDN7zAIkbu+5NThV2+P9dqmhom4Ed2BVHriVTgPUL0uDbFwpmTiEMoA9mbWAmy7 - DzYK3lHByTQ9yc5fWRn/TfYyvgSnOpiE24TogjdITZuanD+FjkaJfwFoRX6h5BpNGnNQomNOVRJ6 - qjOpmqZwFDB3TnYBR24fNNMPjGDeeZGc4PKuuMfZVPAPD1W9umdzmGwHeI76m+7l5MG6CRIOX6+G - SW5teUQcV58FeLToSlNqCt64PzcptsurS3L94LWiGoUB6uizpck+smNeT0rzr17t98dvxVOMa7QL - Lyf6q3f+W72jv/5+W/jQzHLm4iIM9/SM2DMev0V0xK6REeI3wydu7Oiqw+sBI7mDNGfsdWqEH18i - VyMa0birSwUbdkSIHT921fS4ZaO8GyYIvjflrLHkWgVY6euUeDfy8phh3mYkyIlBA7S9eLPx3PjQ - c6uUJmt3iscWf2Q8zusPdW5qWbHPfZtiyVU46l81xsZe2uo4jKOU+uLqHk/x6VrCSWW3YdL6Oxvv - s8PB0o+GMc1l1u4P7hcidIKAO2wu1ff55COc3ySPZKNz9sbn0Mxw2pRHYktzXbWfu5NuNHGMqe/D - ruKHBnHgmV1KbFRL2biOygQv/Zu6o1dW7I7nEJ+REQQPcJS4P5RbCTYbu6Lu5nXJmCGQAgb+mhDV - OwvZLMabAo7GQyRqzwlaV2l3BY070RmeBuPjybqqXyhkoRjGt7dl/KR8G1A0xSH2gxuyHz9Ez0Nx - oid8wh7jRjcELXiFJPCsddzpRVlgtBtUupvTwONSY7IxCQaJqh9lbMeN9vDBWs+MONlO93rn+OGA - cN8nseuv0U7R5ZGgLY4taut6nbFv545QKyCRHItTPJWXYAXDVxcH2GEzEwtrkEF/PI4keILRCtme - vtCqdeOB264GxMasOcJ7zjsafMdWY5ySlmjpz8P6FjuMXppTseEfVKOmXNGsF6KxBuFrSTSw7TSb - HuHlAkrkA/VkQdHEbS1fYC+q34GL4oc3PgP9AjcjdoJNwdOsDwlbbT5gf+l+bb/jKXIzF6ZJvRJ9 - if94z1+CXFyDnu7ykGiM3TkdUg/faT6mx4yL+LUr/fgcDJVVMWscOhjrg0AXvpt9xXgqcC/5w8Dd - KjGjg1KPEJ07hf7q4Ss32RVO5GEOKyuZK7Z/hgLYm1GjjnLdZuz68kqoZbAC3vka2SSOtgu/etOp - IKLuXCkDCPdHQ45x8vWmbvXlfvqG2uusieccpiPW1U1FUgGbWrfwR3RDPk/3K5R4zGkNCSRX2A78 - BXrve74cfMiO8CZu0EvxNDSMg/wZGNQ340/b4vh5geS0O1C99rN4IhFZoc6RfHJ4Xrcef5hTHXB+ - 7wNRfjpa/yyLBMRVe6LGfYza6VsXJvAcPlNX31tMdC7rDva0GwOO9W82y20TIao8a+JF5YoNqkxT - ZBpxQ73mDtmPf6NfvLfN6ojGbXNK4HM4T8QdPbWdsu05BJMlGTldJ4QWPtDBjz9wB4PXpm5IGug1 - ndB7wr8r5m1sE8at3FO9l5yK1yoxh2anooEXHnw7Oa9RxXlvroLZnHVP+MVrwWdCEv7djqb16tA1 - 228CPHsyaiSD9zddcdks+4OyMTJ3F3iinRBsrtsPargpCwDzwZsmr0zxhGjwr+go7XaDFCdyTDdq - GGFOVZNAPqU9GknAFLkPdjm5S7qP+EWPQn6YjOEzWKLXlGbF4S/evaj/lqt2Eu8bgHKKHOJ7FtWm - Qjur8OMPuX5oq2kjNgNei3VHzff1o7F02rmQZJFEVbGo49nj5CNobBgD7lquWrrgp1zQm0Yc9Ip+ - +NiBrXEnSgjO27Hdja4camJK7V1HMmYeqxXiRyRQY9BYzK7CvgNOBIXE0+da9evjqMO8CrfkEvRS - Nj7OpgpVJqTUbMKAzaMmvkCmOqEn9HqwXrOKDtBV4ontt8KPL+dI9FlAlMpatYOrWyMMce39u79m - nzSB08U6UjW4FmzJjyOUe9H57W828c/LDIteIP5w5OKaBExFYuO2ATykSJsXfgjnrbEmaicW7ZQc - lBKxeP0YqO3OWnch/YBOZXCj9uwoLfvF60zpRH0rKbN+32vlj69S8/H+ImaNrw40o8VUc1571D02 - ZQo3FPDEd5wCsVt4LfGrRz7dksCveIVOEkzH3CdbdfxmAzJaU176JzmFhc+mnR1f8BKPYNQr6rGN - moagfAqe5GpfxNNxfc5h85R31NJVtx2debzK8mqvEv1g8B7DeqjiX/xsMhRorry5AK2Ox7/nb1aJ - kMCiz4ijBQdt4svdCtrKiwNGpUc2NZs8RIbud/Si61xFHXTVkTPIJVE3BxUxdDYDOR67DwkT6ZHN - cmqE+GQ1u0H8hgJjMTUuOFRUlfo7/IpZz6ojzJcpp4HrftAoHb0UFj1Krg8p8qZho6rwUN0LseTn - x5tXfaHg8Ry8iDVYLzY9drsXVJnmUQu9HmiiPPZB2qKBmhmCePpYYYkfrhYTe0RJK67x6ohYYXtU - 0SuiTY4WCNDGq4J4aaZU4oI3MEWXD9EHfq2N8/H+hTvfbYnSc08255uugFa++9R53eR4HLvgi5g8 - XIgu3DO26OURyrye6RbLKJ7Jq5LwXBopsS/uVM2bIBwgeOM11U6bOWa1j67o5zckv/5UJy8bkT5p - SUylRzwf+KcKvGaEdLsGH3EZ9q7QObJPf3pVfL2EAJVRcyT7N8bsTx9KSMbUuW4/bLQnsYGXlRbE - Lw0jYz/9/uOT2zfGaDLyYwOTpflEm7/8zz8pUGXX6tA5Bq5G8LYj4NNlO7SV5KDFT1Fh008m1bTV - q+3yB2pkbd36wcqz1tm3NfTvnx9mUL3TmHGWZmSU3D1IJ/vNhvf4beDnjwTTmXoTUeUaPdjuSCyR - 7tl4zwcB2lVBibnonSkc0wR9tWu9+Dd7NtJIkzCOj/nwnlEXj80T2RCga0lzz7rHTLvva3wJDjVx - 4N1q9AvhCqut1ZMAi/t44Rs1WvIjkIej7s3els0gK9cb8b7Dw1v0XYnuJz0gW6umaJBTI4JnJ4Qk - 6kSlnWBAOginhg60tGg8S7dBh+puDoRwe8XrRImNAC7NiKEqTTuJ/hHwkPeXQdzUYTz3heKDtIaC - ZJWuZ+Pjk/iQlYlOjTgK43k/7UO07HcgG5FSCZssMmUk3g3qTO625bLdvkPfnFOGjqCknflPUYJt - mT3RBtGuhNPoByCf5mPw3CelNtcpk3/9qV8JO66a1uZHwre0uhN1ak2PvpNEhcHKHsSXuWM7n5RL - Dt/8zQbxnZdIeFWPCHZrxSF7+pZblhflAF2RbgLEbx9s1Mexw8AN7dJ/1WrOEkhRm/HnYNwFdTU/ - Be3603tUT8HQ5rA6mah8yh2x4+SSNYdVWOBFjxFvya/xlGZHuF4tkxof9VLNUs+F2B7F8e86Vzrj - F+uf5krVw+ab9Vd5XUOCVwEx95FUTcPGVQFPsCfXhY/x37rR4ZDkaKhv47eaNic/+dXDIC78gBLZ - UmCc8Ycm2Ne8cXkeSKeNT927+q3Gnz/Y3iUgJ4s/af1O2tlwNrxyGB9OGAv2eTXDKQeT3qvF/5iu - mwhF6+weyK7cts9nWRyxWitbkskzMKqqrgrG6a5SMyjqdnrc4hEv66lqzrrGjic1xW+/XA+okj6M - inod4Vh6l4H8/lxRV1wvApLqt04Dx9l705fhK1SVHRHts16j6eRH0k///enn+S6cBsAf0aVOb+bZ - RMrcRnZE8M+/82Z02ISw+F8BvOWqmrRqncMGBya1u6TM5n0I0q++Fz8H2CCGXQcLXhK9VaM//xIO - aZkHq/nyZr/82sQmPQecOSdxBzIq0Uu6X4l2rRtvfpr7DoqZXqj63TqxeF4FJTyLz/vPv+1OaZyA - 1gca2ak5y6ZI9iXAvdxTY+zEuDOtYQCdmD7d5qXp8duu19Fbb0ziWVFTifdAKeGxiz+Lnu2q4Sl4 - V9nJsvWvv7eiuj9d4OcHnU9HTuv04lvCabA3JGIfLh7uwr0DfHxx1NxHacu3jzhCtb9JqP2NwnbW - G8OHzHq8qRrqnTYO0ztHhh0Sel+L53jYjrKARoe9SHCPH+2ifzlY73WF7LMuQDOoebgRuyAIvu9e - 0bh6qymgcFJE9bmj2nxkewW+/LGnW+ccZEzkjgqc1+40oHCqWLvoI/mX745lGBr/htZESz0HXEAw - mn56yF2nOV30Xda3jyyERb8MC7/Lxo/mzkilcBt+fOen92Hwwz1x6EHzuN2paf787PwJz2rBvwZE - p5CoLWDTY1/vlcJ1gzoazBeLjU8suL/fU6vO0mrEFgAs/D2YQnWOx12SCfDJE52cD+mTzVWbm3J/ - PD6HwXoYSJS7RwBLflBFsl5tj9tXBKkihAHs8Ctjpxi/wIkfJjGZ7C3+dmvDDw9y1/2weQX4Ii2u - PfXCqUK0jJIIbG4Tk8uiL/76Y3x0zwGnrq12XvxRwL5SE+29a9mw2mlfLCiJQO9qK6C22Vs+GFn5 - JIbJDV5nNZ4uP978ZsGHrdZlHQ7hqUZbEmy0FjE3bQeYrcpe3l9qP2OVqb/4U8v5Htpy8Wuwox9j - Yi39plOFfQGni1RR5TuhuNs29yOIjd2S3TUq2PhONzPKYT+RHz/rNavp4DP6AT0u9TFFsi7B4Vpv - Cbne63jcVPoMtbKS6K6v7T8/6W8epGRfXut//t7x9sXkF/851FiBu+1kUrVKn/HguJ8ULfsxDN3z - 0057n7rox8/MlvDoN0+Ahc8Hg5Jn7eyeyhE1O84mJ37SqlnRDiZe5lVkq02V16FbtYKfH6LVgY74 - w551WOpumKhUeLejPkoDxGZ//uNzI7/9XFEcSRoxPVGpeCvFAghCWJJjeKi8v/nW85aFyzwkrRi5 - jRE6p1+DBntl63HgOTPaWOGFGidHydgnQD5qU0UjeWUO8Y+/yCc+Z8NKUmNtIrEy4oVv/PHfSVEU - G5b3oTdoAzaC54xw3zxOVIm1Eo3+S1BQ06RpMP308q4667ImzjFxXdmrhoXPIXD7bJAX/+brr14S - WDfjNnwW/4+/hMMX3UBRqaGsKRqCTaCjbsvMQNbCgU3H9f6Kbte3uuRHxiY5GRP47ZcvqSqbvL2j - oGn/vBKtOHGsO2aNjX7zEuNkYG8UkDXCT5+s73vJm9JPecWb4303oMX/Z3EuBqBIfUOO+PyqRv9I - BeiqDyHmvJlbutrvL7DoV+JsQxN1Wvxx4dENn4FbOVI7qZshB7lVOmr2OhePnVsl8MMD79k3cfub - Z+ZnoQmgGZxs/uljQYjKZX0Sd4t/AvvZkan/oarHPQM/hea6G4jG3WNEhe/nCgseEV/cOkycjekI - +YEZwQvVjUYjtclh8XsDKSo4Ns2DcsHblZlQZ7BOXvMtLkfI1ZIS59dfyqGU8Pxa2cS6K0rFLXoc - v5W6GtA2PGnz+VulOEB5SUynQawx8KzDnR+25McnWN3dVcRW1RhktjnEvWNmDYzO9CIxOGPFThpN - 4cDMgdplE7PZKsIUy/eWLPElqFn8M4jQAYLvokf7Jf8hiwyRED7gKyZfY0VO2/ROFAw1WvwXGZz7 - vaS6xXpNGM7DC1b3WRjWxmPQpmzyFCDSYFNXvTox68xdjZZ5KNlv4o/X95l8Rc9m7qkdFQmanOOD - w9YeAnI6e2VMLcZKWDujSayDtdY+xrT5grpNWqoGpG/7yqpHLMHgEs1rtGy0D40E98umJsZt1uPJ - JNsIgG1yqjtNW3VKW7vwP59fR/ypXV1RsC4NolapkQnvIsmhEdgquEfswJoMa1e86HMSy8nszY99 - fMRoXXv0XjsPbyKxPcLeCfS/edu0OekJbB+bNkDyDGjavVcrWPwqYgpj2Q7brWPKabw/Ez95uZmo - TmzEZqEb1P7sRdbvr/iIbunjTh0Gh2y+iN0I//qdCvjv//X/4UQB/38/UXCrriohwkVjYvXuInAF - MSe+G+uaSKx1iZLufqO61ACasljlwN988TBcxJIxSXMGfBmShIZjpWT8cB1feFhNCdX6fFeJZy2S - ILpQbnivv1uNS7KzgD5VEFDrdNez+fuoAbcH0lM1G0+Iz7sghBOdd0GynVk1WLJ1BYd7hCR36dCO - 2xuJpJDhjtr9uUVjcfiGEBedQMnNmzy2qVsZ6a0ANIBdhoazrTfAW7ChV1ADNN7K8ILzh/Ym3vhW - vfE4pQLQfRrRTOi/bEhf3wuIReiQg1C/s373LErUy19n4DVf87qNgWZYa+aH2vHK8saG0QDkNPzQ - qxvrHrc/7FK0UfcNuZ7EPeK6k1lCOLuUqmuqMj71hQtESpHQ5IPDmLep2cB0v1tEuRdrbfJiSQan - szt6Li+fdrQka8TI+/bU0Y5tRi/nswxbA2xyOCY5G8uZNzG3USlVhdML0eHlm+DyyoOqyfbQ8qti - L+PHy0soOTGOjfd15UNoOQHx2kKL+fqyTWErp2qwYAtqBkWx8ZwRSlwdOjS7l/KIexetiXZ67Ngv - /vgw5/cAFfceTbfPloOqqMOAOSqLn98LK/GL+1pUz7avjKfpw8fl+ZHS89i8EM8esolPm/UQFLRh - CyPaXWF9bkiw2qCtxue1fAV3dZWJ/bXSahq3pwh7/iEgeyPh2/GSSC70pk+C9ZMv4rG4Cjr4vnCn - wciVrVhEY4CTgztSM163aDybOoBfHkOa2OyTTRCUIZy0TqT+yFtxV85YB6SFLj3JW6ua0/jNgTSV - D2Kf+k874foR4vmZO9Tzm5PX1TiUNmBlBxpw0budassUcL5ej0Tn3RMTrsFex6jQG3qQx41G6+3c - YW5sfOoVgL3ubPorUKqDR3LIzxm/ycILXgenNdXk6Yb4jw4l6PJk0ixLqTcFwfEFdEdzEqTqWhv9 - 4dFAPXENPdGyQ/R4ugoQXrgtvc2dqYlxm8/g4rNOd4jVVfOpuC9+5h+D5vbnySb2kHXQ1mpOjSW/ - P8/Hwccsit7EKS+fal5/rRlOXhLTKIxiTXjulRD0OD8Tvzx27bwa7jYoN/FCfvvHCzQ64i43HnTH - zUQT/MirQbu8arr9xEXL52tbwB98HuiW2R7iV+9nB/aYGmRPhbQVPyb46NucCXEP+lbj1SSw0f7m - EpIKxTdjaj0psPQXcrpgJ+Pl/Cpg96WfSLYZlErsdvYXtN3tRPTtHLfCMZmXRoueRHky2+P2rHLx - pnBgkNbvBon9N7vCcr+l/9Tx1HetCyvX54jl5wMbV+tIxZdXJxFNToZq6hfGWDXASLDEiztKXSMb - d6IEIxeVTFTHJMCxypWDkHgYMXsKjkB5zqeXqZbQ6GfUlE+Pt0e9zVBU4/ESyLB37tfhoPmaNh74 - woeLR0+9fD9mFTv1sbD59bet4Gzb+XQSAzzGXUEOz3XFlsliBGPZfImuZb3H1xfnAvbRaYkj7JWY - j76lipXXbjWsy2rnMYTfR6hrmpHzuNFj8VxjE8Ikyogvnw/efKRbFy/9Kqj7LkJL/fi4uqgfqiSq - HNP1uruAMTguNeUH0folPjAFgzII7dPw6GWt5cjg7xKxbloUt/LZ7kDPe0pJlEmsXiP3C9mUfYdZ - CxVPyFB+hbDyn+R3ffRPpwG/BTgEg2rcMxZCEuEYcyo9b/s947ZuGsI+X/vUuSYKmoYmnnGgljN1 - imnUmFwkJf7wW49mdRDG3a8+jNO7JoEua9lIjmkCTmgdgzmFMh738gpg6acD0vsSze5DcOGL5TVV - resejccImcgXOYUs+e8J27iaIchrm940TY8FspF9GA+PG7H2gstYXpYj7pKPTY7rjacJsmRzUAmm - MuDmfMvm27weoM/rmfiHwqvGSHi/cO50G5obp6gVT33MQSh1Bxq8Hue2u5Vhikv3HRDd7JWM1/MP - ALQ8oXrxTLIe159Q/uHT7tS80YhOVYrlz3akR+3SZCPa7F5oyTfilULijTeepHDBYU7vVjBlfVNF - IZaJZJBL5n7QtNmqClIeRUCuuWS1U+qvUlRk15KaW031OGmfA3C70CKey9qWv42HL26O7YsGd42r - OiP+uAij6Et2k9ZVczFJCa57Y0UU2sSZ6KynEifB2wleT/BahsLHCtR+NH/75YkZTSVoz6vjgJf+ - wXvkU+CFf1DiYsYmydhfgLSWSALYIcT23aPDp3ZbkwO3e2hcFRKAMg+3JDXaPJueqHqhJf7Ul8as - Ze08+7gupZzk+1HPFnzJofLMO90fNmetd++Jju2dqpAoUz2PFw7aCjl4/aFqzGuV0O1aFUBmZ0q2 - 55c3kzRVoF2lId1zhe3N70Qf8E3hDZqrxjpu2Upx8Tk9xVRpN+GPn0RQWBMdOLlkrE7dawI5111I - Vp5rxMz5HMGBP0TkLJkeap+zouPL/eJSg9tttTFQzglM9Uoi9hO92Fy6TEBIunvDvEddOx0kN0I9 - J34HcKwzmr5Kb8NbWB3o6XTXYy5Qzkf8me2UZsqqiOcFgPBzCjV6CupTNZ2cDcDVRBfqWY80Y1UR - 5ngPYhF0RVgxtn4eFYzTT0+2Z8+Px82OvNBpgwdi798FoxHjSxwn7Z3sgj7zpoVvoFL1W7rlisab - BUGbAd/SIzXDaxaL2u6tg/bYRGS7Xvlo3pMpxGezONK0P7dsqtcz4A5hnpDVQfIm9jFkOO28kJo5 - rb1pTM4cFAbMwTfuasTwqwHoHuOBKPrnoc3rUzgCt4usIL5uvhrzmXaBPn/NxK6jXTzWOJVgfsfm - sG4s5E36k5/xDmGPno4qtPODeAHKNScmepYfWhoeyw4Pg7qjVhaYiFN31w6+z+JKA+GzQ7NksSva - kAsXrELLRePVP6ewtQUU7A9Xh83GoeDgJdx0qhaiUFHutfJhun1d4i/xmsdMi/Cna97UpTlBnHDG - A3xDpSM6nO5ZT1bVX35T8qlLNEbV+MLdONwD7mbReIi4kwyVXm6CWetpRovHiQPuaz6X98u0cQ5r - 7sfvaJSprdd75FHCwseCVjIsTRj5/RcuSr4NPoqeZnONnAB4dMTDy5V22Vi+z5K85C9d8DgejxEz - sSqu34O45M8I/TdFgWOmQTENEI/zbKly5E1feq30TcZq3IawUuZsYPHcZg22Rg5ocbwOvImMqp0b - x4YfX1ZfZG779iYCRKksDjwCLZsu+r1BnlvsB4B7rk2p8X2hm3VpqZ1tUNwO+RhhW5oborj0g4Zr - cDbhYDRbkkv0iPrhKr3gQPQLibWdhbjx7L3gSEOgTlDNbOblzIVKlDBJsq0ZsxpXERj250LTr5W2 - 8x9eGcc91WpulbWZzOlQbBKBKCsr0DjLU1NcCbpCb0HYskn77uxNWupX4kuxH3fley9BEO83RPfL - FjHBa67QcJU8bKYjq57Odx2i0XzG1E1Z1Y7zlwXg0mKkqnuzKjF9SA3Y0tiQ7WGz8fqFv6EbRxzi - 299vRUXrbIJ7cndUj04nr19X+XHz2NIL3b62u2z2z/cUgn0ORGd6gOZ34nfwvsgrotaOg3jsXiT5 - h9dbrrC1hQ/YuE08kaq182GzmfYRDK/LRG3NNjUxO7glst5F+MfnxLv0mBFvrTbUF75zO954K4Xt - iRnEec/Gr/8GoIr4TUmdpi3lXkIAz9S6U/d+RO18mncvsNEnC0Q/H9D0fBwCkC/Gix6z24jYhTUh - gLS6UusEcTtx2vUIlmYeKdmvPu2UwLkB6aqMZN+rmieEifLF1rsMAzl7n7XuIepX/H3VEb0f+k6b - +OJto3QWK6IcgrpiEcMlAGESNfW5bkdmOF8sPJ78IPVCpi36JIe4OUbUOL9mrZvnZWIIu4iYy/mC - UXI1F32SUCfHt6C2Ql3MHJj3bk+98V1688lQfLi9LRjeUjpo30ffANBdnwcCLms2Y58D8KoWyK5A - aTZn6JjLfleNwbqPn/HHfs8CUPkBw6z1JJ6d166E8VDdqI1XNO6MTdT96ovsOvu+5FeRg2aiKcCH - /bblftcPVXEIxtcjQdSxjBQt+E/3ha9qfNwPOdzdwCWqdCNozqImhzEeCrIr6z0be686Qnp9tUS9 - tjUbzmWs4K9/kgIU7cOWUe24AlSYzcJXHy07Tm2AEn/0qSopSstgc1qBLK5lSnLOrdi13Za4uigf - euZOTjbJenCFII431F7we370zQpZt71A3LIZ0CSwz4AvynU7cD3RKv6Dmy/0cuOQdLKHbM44tUE+ - M04kOyqxR8v9M8K7frsNGIslNBXhWOBlv4hzqO2Wwnc84sue2NSRlRL9+CAyUHQK1m5Rt7N7+Sbo - 8nm31GHXa8aiQFvJek5pQBsr89j2Y19kB5kCsbLgxdjGNF0Ao06HdTps0aQ/8YiUq3KjBxZx3jRh - IqAnv2ZENcrLv/lM/pxDshhn7STr5hV3keAR03WLSjBXRwF7GrSBaMoFY37y/IKHpQMxiqObzZMX - dvB0vAMJNuihdawXv6D3nw3RLuzhzRIhIdictg7G/FW04/feR3D5PFtKDr2v9e92o4AyXlN6891K - G+cvCkCctJBYL3dEiz6RUHxObaLS46Q1N9tVoRW5bzBqQ6KNw+OboOskI2K/6yKe3rs4wndfs4jG - 4pSxu/SZkRLVOg1iYafx7U1cwetdyCQwTnPVXeRPB7W88ygp5Lia2U1JcFbeiqDmXZFNSz6ipT6o - JqpZPIcgNHA5zQPZavevNh5O7hUaPzeIX/RMG93VNYBhxRLqXUcvExY/CV3uqUu3kXtsp96cXqiv - zYok6bfQpub9aZC7/d6CKSvnaloVZ0n+4GwIhOBN2ORlfgfhZ/TIBYnbVhAnSH/6hyiz/Gon+bRV - IDnYI7FWu008erLOQTFPITW1i53xBtes4BxSkVhH9do2j/YT/epxwKVV/vSzi1Re58g91Od2UQY5 - Lnvfo7t4Y8QTs6oOaEwI0dc3pZ2VE3Nhr2gaCQ73F5o29kHAPumjYBKTW9X/8uu4vXyIctcIG6+b - 44gFO3eJtu/KalKHpACjS3Y0H6unxixS21g47/ZBv9xvVE1bhmJmIQn2ox7z/FqXURdx3jBmE7TD - K72am4VvkD+/g1nVANk7cIL4ICXZLx5o1Rg2uYDGqplrKcC5F7VhNMwxHnNNblCqB3awfkWknb6l - dUSwLlSSLH7iLL3O/o9f/vHFz72odIixoBI9rh5xd7NdBcnqvKGKnHoVTVbnBDXxzAhZr6aKKvH2 - AifRREMqFG7G4/oRgamMNtG3hzqbGz1yoV1dQmLZ1I9F9zC+oLTHfSCdS95r7o/dv/WAJVAuHq6H - WsLL8xLyqVUkSg2KYLsl90Dw+xSxS9EPcDjHaJg+I0Hc+lzkGCXanqjTVfamXfQE0PjaIJ42H9i7 - 3acKrMWyCj7+zfXmGm19OKeHmG7x+1XN4reo8cPeKyQ4wNEbb7aqoLU7GIRgqWHMSFUJD84rDoZt - M3pjQaUvvAa9oElhPzW6l3QJR8LkkfM2LNvp/l7JYBuXeuA9S4y7z7Xg8OJn0WBlRWzUcWnC7W0A - 0dadW/Etv5Xg53cY4laoOnYPlZ9eD8rlfbpDnocw76cjjZbPdLOSw5/+DaTJHuLpbL9VPISbLYl4 - D6ppUL8+hHIVDeLLDRm/vqolbs24ov6ZDFqXPxMOHdzDNKwlQuIp0fryp/+Ipu0sRp+nzQBT0Cn0 - tr18EfOTvoH+iYrgMx3jdqKraMT5UTCpKb1Tj8nyV/7jV8HrsWk7k5xH+Xrf42DzW/+5uxLClvQi - Bq2mlt11Q4Vzp5jkx/f7lemVINVZ8ucX//H3o0ZeVN2yNFv4Zi274etN1CoAtvS/I0g780WDbwje - yJVJjhLTf1GlvW4r8dPkKUJqkJDt4fphk2MYA6w1/UP19a2o5tdmFcG5U83BiKdXS6vdQYbGkO/E - qvXGm4TrfUT5cwxp+A3F+Ic38KDvnmrCs/Pada4GsPiRweqKWzTiT6ZAjkKF5kkMFe3sKQKctv3w - zIjXiptbuJwYqT2yK62y+ulrdLPSZWIiHxkLXrcIcb6/JychMjwxtb6R3DOlp4m/H+J+cFbqn/91 - 5CS+oockTeFz6270sPx/TuH2PhQWo0FiPI4ejdvjCD+/vPDrQzw+0qGDWokf1GqZm9VuvRNQidcR - 2dlZ0f70JZD9akeCkVOXifsoAP3M/DAvemnm0nGFmDA8go9VYo119hTCZW1kVDPiEXUQXxUQz105 - zNKNMmpuehP1fQHE5WMUj8AJAZy8Y0w8fNO82QW/QBE+Tos/bcbf2/5WIBrvyCAyZY9GTPQv/PSv - sNtoGv88zAqgEmdk8SPQjOdXgWA6KDQ7RK+YsWozgrnOygHddnL7GbNng7wVeMQPnyv20+dAX7JK - HHuwqnnjihLkaasRW7NfWk/E0MX5Y/smrnA3Kr6LkhmHT60MLnZLMm7xi0AyK4U687r3aLHmawiN - ZE8ORtR5fTYVL/ycIo24bDdnw9n2G/TzC/Mgn7R5VSJAxEtfVOW9azu/5jKH7XZ3J5dI8+K5PJ5U - mGqQAnZ+H1lT41SGxf8I+FR6Zt2BbwIYqOhSl1dvbPHbCrT+Zkeya6FH32lSI/QZbjXR6cHP/vo/ - XUdPsp0CDv3wF4vUj2ge1hdvVj/ljPT4eqbn6cja/so9VSy6Y0pO5kfLfv47emmWQs2vjWPW3tdf - uEf1QAKfP1XTxr4J6Mdv1n1sZFNJnjUEcL3SaG7qbKS3C8CPfyz4WYmH7UEA2AGiN/8dxVQz4/BP - v1t9w7Nu8WPl+87ExBo4xRtkSeF++icQ3oJaTbjFOiLSTh/WT17JePf1liDdNQ/qF2GFuqpSS1id - jtth+sRKNZfH+7/9tAvG36rfpocS34hikWsRamxcdaf89zyDtIUMidbgSEB5wSfKgrfzptwKsFeR - QMhyPw5rnxzkNPoEqw/z2fjDq8t+Z5PDwSnRfKtTE5JHYJFlHqVNtrqNYN9vjsPMDX02vqOdgtx0 - 7VLNhG8288mnhujzWRHDjreMb4+dC/n7vSNWMXOMDbkUghWcukHKbw/EwuN3ED+onmjSvhy08Hsf - SQSf6S4IPTQHTi3ILArfi5+bogU/VBBeSU4Ug7t5M1dfXbTww2AutQL1RzZL8nYeX9T4enw73tdt - AAKdxeB1GoaYmvM+wsZhfAcbe3hXi34AYKOLgvUbOVr3UaMcGqu/BmwcFTQv8zrUtcEQcOW9jSeu - FgrQxExd9CJrmZfyCtxXjb7Uf+WNL9gB1KZoDZtxU2czc41R/vkt8cNAbLLfsoAeh3RHgvZqZvxP - X6YJJkRNocxYsjofgQ8Pt2Gz7Se01I8CwWvVUWPdPlGhPI4NqE7i0+uiz/uWdyRE2+c8cIVteN0y - PwB6bZsBDkVb0V14jOAu8U9quF/bE8KtqcOi7we8Xwdx/72wAh9ytV7qO4oFQx0iNN7cTbDx9veW - fle3C0T3/EY0ar019lFrAa6ThAYr71rUH6J0gJ05uiTzG1H76QMkfu+fYOWYvDZWlVrgq3LghvTK - NTHbrOYQux6PB07ayNmc+okCu8OQBMLR4NDcnYMAeauVN5z65sCG9ZeMINhXl9zbr9cu8w4dMnUm - NDg9STX0yYoD3+fu9Odv9ks/kIO+jKhd+nXcHrY3QbSrSCLe0k/nVJGEP3234Gk7f4/ODM92jKh5 - ODWaOChRCbXJW4E0PW/VMr/lQDNERJXz5RgzzcxC+PXfSDY/WZfhwYX2DEd63LAyY98r87Gz2Mam - /KBaW6z514ZcnX7Ah2FkbTvLAVwc+UKJdg/QO1MtwL95a7ytg7i7xn2weZi59seXRfvZusg+eu2i - Z1jViMGlhMtpHBb+D+1svdMcHYh5IdrZtVpus7NeEF6bFbHbuGQzVUCCQ67U5P5GjsfvhymVNodV - 9m+/48187oefRJc2cjzzyeMF3S65DNPid0zLfBpKvqY0ivmqnYghCmjpT8Svr4eW/272IR47SwsG - /K3aLq3L4c9v3wgDqdjztOn+f04UCP/3EwWrwXkvZ8Le8cQOug9V86LB5iBL1WRXfg5j6vVUfV3f - XlcE9QqOzySg9qU8aDPtyReUJrGGdXeb0dwSmsNBjmtK6jKo+AalM0LXQ0aJikJN3HO+CTEr1tTe - vXtttPK5xliYauKYaxsJF+cjwCpy5QCds6ntnFv1ReXZ35H7Xlij+bMuv0hJ1iHdCbPcdrdV4cLW - bsdBorGQ9TfOE4APL0KAL9uv1x8d/QJZ8LjQPUkfqOPClQsb/skIwTFFUz2eVLxrUUK9U+Ywruyc - I8S0oIFwEh3Ub00UoBfRnjQYFaUScktbydcbguCj6yIan87jhe+VrtGgJG7LtSe9gVj0SxLBrstm - qPwBbtCaVI/3pTZuY6xCfPUkag49ZiNlkY6KctqTqyf5jHHXgw+1Bga9CLTORm17SbG0IpQ6zeud - fZTXFGIhy6+EWIgt628B+Fc+p04oJ2jKI6Ziv6kKuvXKE+KD9WHAw8M6Dxv2eFfT96tIcIm4K3Hp - ZmCjnzkAkT1Z1BoUIftdxz2fXqheq1rLf9v4i8/a+CIRi3StR8Ek4ca5TnSnHsR2npzzEalZzxPl - bEA1RmIWQHdcQzCzE/G4Xv8qwNvpiR5X54fH2QMqsbgqHuTsyY+WRfOUYN6/vIJ3j9r4edx4KaC2 - 04gDJ50J8JhWeL3ZBUTNHyoSp/4TQhesb1RDX7nqHv1VR8qYvOjR2D4zIc7LI95vLBao99e+7b17 - qODM9e90v5HtePDnUEeWttrSHe4zb45WTQrIbiXqVXtNE0ubs6G2Y4Vo45dmTIPxij3H3tLjpmIZ - 3djVF2IWxMPKqZKMg01qYk0dQxLdH2YlkuO7g/q93tPtJd5XsxcXgCORU+g2ukkZS4v8CPqHq8lx - bmbEs6fhYl21Z3o8iR8kTJvwiNXWvNG9uPZa9nxTE74oUsjxOR8Y7yiNjFxT39Css4psUL2dCcM4 - 9vRomGE8qmwlo4MaOSSYDBKPncHNoITfAw2ciovH/sB32J47m3pJIbFpd485XNytnjiqPmrTE885 - Tl61RdM6PWqCXNkSPI636S8fZnY+6nByTpdgMt9rbcZj4eLtVXnTGwnX1fwNQgl7jrulZEq9VqBu - EeHVk7sF6FRwiP32x3gGItn+D9KuZFlZGAs/EAuZJMkSmWUKAiruBBEFERkSIE/fxf172bteWnXL - ITnnm07CvSTvnD/9pBk4V9UiU2yZTJBjkkJ3KTC+wWvDBsvr3wDdVxGH97TNiWMdCepBpOIs+AY6 - b6leCctUC3AIVA9ItcxBuNUvfjwOwjAP5syhI5lWqt1a1+PPzdzA14/vcAAmlszBb3ZRz75eyJ77 - gK1eA3t41588EUtJSEjeRRC9zXcfvpgRg6WOzi6cr9U5RPya6PzxMfSKnSY99Zz+OSxgDt9Quno5 - VU+qli8sWQpQd7GOrWFF+Zi2XgoWpbnTkFOlfNz6H6b6CxLOqjvA/EtlwZtdHolw/B2A4ONYgfg+ - 5Dgkbgimy16/o4UDZyKs58vAvwo1A8b9CUO0TmoidjMswcPhWgKvpPUoahYLba/xqQ0FNhfPZcO7 - piOolb7epFs7Fbx+YhciNTI9EbKgA6vW7GmeVhmbN/xF9zU8EIQmoC/VYXCU2Clzkipyp88j/9Mg - aK4K1gIBgHmuUw5OiDbU9vHbo+H55sIyOzvUTYNiYCVIeVhpc0pLtT7ky/6VvhEvUz3c2WLHfiFx - NUibZxBKT7OtpWV6RfAx/y70uOHX1r8W8qvwQkugekxkt9KCHhRfFP/xQ4TlCxzqpMA2tzj5+rz6 - MnTPa0BNjfnJD5OAB7XfHvBxw5+FfmsNXW8aoaFVd2yQciuG5JA7pI65D5DW6WOhwgQlDca1BsuY - 7VVYwyjGuawZNT/adoXEvChwdhg7tpx/WgG98zMn+1CZvOnxll1FzJmDTdFTh7HAs4W+1u1Hr6nb - 5ksU4hm0oqXSoIJ9zXR/KdCRs+7U+Sa2txjmGEESZDIOvfIwkOLWNkrcOI9QCm+7geELHSEmv57e - DruPN7/HwwVJ2IVY42NHZ2/7laHn14jpMx9PydokaYQQKW9h1yZ1vj7PiguP5f2I89FWc1HzTAPV - XaTToIN7wNKlz6ClyvuwhXUJhL/92u1xGFYXtd34W2lg9S4/GL/fLWP19Z0iB6cJzn4JARJoVQ2N - 5KoR5HlmLu1SAOGGv/jGF+ofv3ToHvI+tm+uq/MVuvko280XmrufkdGn9xDhGrY/ik9LCtZ1XzgQ - 7EiM00W71NLTO/NofX9FbIz2A7D2c2iQk58P9L7sL8NCrr3x1684Ib09CCfwiyHKzTe9/7g42eol - Ra2nX/7wIGflkMjodfFMGgblL+HLsjdgMcUN9XpfHySDs1XozeJCvWd+84TCOGpophWj0bKsgI2H - uwLPL3inZ5/IOUve0AcTmppQfKxtvRrdduZ4HR1csAaB+dtFBH01g+Bk7mnCbtSo/l5TT+/9RNw9 - owjlpU+wLnwcb2YViGEllvyGN7thmeRVQVbaFNhd+GEYJeSMsDYDmT6bR13PXOeEqBASnYZft04G - FScOIiejoInv7NjiHXYl4D7iI+REtfNoAesVhQpyqa8jp6Yqzp2//cBpr3n6+m5GB256LZTrB/Lo - z7QvCKTqCUc3sxhYY91LGObxnnrTSfGo8o1X6J0dSj2zT3XWClqFpF7kqJVJARAmqXIQHG4nan6e - +5rt7Uj+46e/9ciX88/9t170Fii/fOU7I4aD/b2TeVyoN5+upwvodzGmnlsdNr2whzB6ZTa1edED - q/WNK6jf181x+ie2Vk2VgmKGDj3XzwWspx1wURcsI33ev+9BPB1MDga7yNv0AfAISMsKRvvsQ6+L - WOVrOkUV/FtPM2re+SpeYAZgMj1DKcVLPgeDq4DvadZwysvqwD5tegHPhOYElXA7waR3Kmz8L/ir - d2+1RYcgvJ5DfCiSfc6WEHHw6d2jED5+b0D9L5shCleH7N+zMGz13cJSIlPI331tYI+x7eHljFp6 - nF6VPqtmyEM9MffUD2S+Xh+26v5bj+O31ZPlYi89JMFdpnbhCvV6v6NKEWbbxgfj8RrYsNwUUFlr - TX0HAcCE3C3gRzrYNBrEiz4H/rWFdddQetj4cJ373gFAPjz+6rFmwyuD8PJLH7TYnX1vAVXQQJBq - JyLE5MnGV+FkijVGIVV7cc1ZMb555J7ngJR7sxwmFLw5wC2CR/VjsEsGlM4OEiLDJbM8smR6vn4h - 7NnHo0fXeCa9bacl0ltWhPtwJ3sLfl57JVrojDEWM4/+6a2SjSUuTuw4CD2kF/BG+BYuO4Uy9uqU - ED4c2P7TV3OYmzOQy3ClQW5ljGT3/bhnxz6ihzJsa9prPx6eztYXm/19TdhcAgN+p1KnAezGfNpX - hxn1PrbJemtd/U9fA0yGPpR+6jrMOOuif/tjbfpvkQ9xBx7d7m+9c7AefvIdzrkQUe1T6ImQC/EM - 36dXRr3kswP9rAwG/MMDxxr9etr8FTxkakbzwbdzSfzJPdz0+savr5x2tdLBU2A4WANXLplWq1Rh - PB89bOSnU87n8bmB3bFcqD0AvZYcJW7gQ049eqrCMGHScW3RfoY+vb3nc82jW6zC5smthCdIB/yT - qzloR6ecmvj3y1eh3VcKmcwjWU1hrBfq7EYlTJKM2necsfV+F96QsxyfRuBr5GLeZRyoyuWArW1k - O2tMVKCDLwk9RrsnWNnx4cC3LJf0EVsmmMvw5aJN3xJudTlvuZ8jGUXuecRnk12BWPOTBbWvEdJD - 8N7VS9mEI1R9uND04RN9Ti/aHRrao8SHWyazdSwfPbT4aKKJ7Yw1CbSbhcpMLbDjfc1knpvvqESW - utBYFwzAuItF4MbPm1/tthOjBw62oqHie+acBhJj3oVgIDoRpIjm1By6Fl7Nq4e98tLna1OffehI - Z0q1zU/91Q/Y/N1f/ydzkn0V5VuaOdbS1srXqyuv8MjdLOpXvzBh58OQwatMdqFS6QKjazD4QHwu - VxzugDHwc3yIoTHxDG/1k/N+kY7g+rj+sKMcPfCnxwA5WQXVgjlivPIIS2geKyHci0WnLw+hbEFe - hoTajblnLDZMA2By4bCz6ZuhkRofBYkihjsYHjxhcGYDuq0phov7+HkLKrkemkvwoYdbMoHpr9/Y - 5xLT4HawclrenfBffd7EV6JP0nLrAXv0z+1S9i9nX12eYXKtTvhSSQ9v6UHRIq8T4z/9nMyfO4qh - LjoGPlXHOh9M8KrAB6dXbJ6b1pusWu1RPUdvepxf3vDPv53OxhfH7mz++VsFcaXbU6fKrC1P6Hu4 - Wns+hCf2G9jDu2sw8+9v6qLeAGLhxAq6X8QB+3/4Md1xC63q42KvvdzqpX3aLtwf2m+4L4ZaH+Xg - OAJTVu7UDm/PenmsiwXJ7dZufIaT+fTbreBnHmfCH/NoEKXPu0Gng5HhP/8mbv2BPl/N3fjcq6d4 - u/MiC/IHG9on1+cCyxZU5Ave+ndJ1qTsUyAyF1NVdw/5onCyDDZ8xXrAvT1yKZweXn+HgWx5Blui - oUvBufy+aRBbHzbx9Xr/+704NLp8WNrtyWlSKUbYVOWdPmZ63UL3bjohauHq0emVrjAbLYZ9Q37V - vxhKIqre7IQ3vmBz/Si5f3hqDveLvvkxDvpGlWJfPldsffG/GOw+9UCD9+GWCAn4GCiR6pDwE6r0 - P/yGd0WSwvpLvx4LzSgEGx/i4BA5jM/jRwNrX57wYTWovjxXXkEZb8YUG+AKpJP5FMGR0JXIxRsC - 8rgerb88Cpvhz6zFo2W+AdxZPNn/hos+8QxcgHQ95uFCjopXFc9FRTjsJ+wk79/Ayrvjw18V3rEr - 0GqgW17xN+EJpwq6tVQOuQx5edIJSg/vgUlHpYVqd7HD/W1+D3OFTuEfXofzVf2BxXntR4jF6wN7 - p1zLly2fQp0sXsL9t62TKbfaCj5ZPv7hdU4fI+lhdNEJNhDrhlUQ1xKdxvWGj82wJoQOvKI0Uv/B - tl0+vXnrd+S6Nx4fb7NW849DMEJF7gE1q6fA5htrMwQT+qRGeYKM5X7HgT/96JUXNxGI/XKgoNJ3 - uEzGkDO7P3XwUKlSGGz6nZ+TVEM3357Dz/Un1//yBf2+zTlTJujjkUgp7H5PQhZ+R+tphz4zHPuU - Ud/S8rx77kQi+erbxNgAElgSMBnw9iy/NAzLwJtPdpTBImgSbKs3hzGV3nxopW2Bw9EV/8ufKdd8 - KL4s2bD25U2EJ36VsdtzF0/Y8i9og9TA91ZHObsjhcA+wwK2LlLrzeKu9cFbVkpsGuTn/YzzFMIp - 1utQtCzem6S1yRATfgB7q/0F//KsP7+qeu48rEgPO8Xe7QaqovfLk1ayE2HPgBQGbKXe9Pd+NR8v - IXe5nfKZCFIDxXr54uAj6TkfAI8HtHFe9F8/bPkJ3PgFu2HwGZj8g6Wi0TzDdmm+GXGkZwRv+roF - smY50C7ZE9g84Urz4CPn1L9szxjYQxlHbxB6M3tWb+gfj4Bqa1wlSxuw4l++dDsr8tD95HMJ5Zd8 - wX95zT8/u2pRgM+S1+RjYhe+cnRJ+9evgF53xw7iy8+np1cYe33N4gvQuUdID6fsV8/QrUW0+X1s - SBqnz12WN3BJghRr0VwkonNx+7/vR+/HeAQkXBNZiQGPsft0CjDjrIr/6V9bvzVgelf3GBb7JKZ2 - gD9gdVucwfyjvDCOlsVjT8U1/vkn7IgjWBB6cTB/yBp1T47lLTfrTf7yX7JvhjhfpfOrg9o1U+iB - E17eNmRzkXJMLnjLL+suAJ4IDe1ZUhcHx5zNj+4CuJMYUjt124QMXE4gyu33X//V7BqdMyWhQk7V - jxgOvDuNLeyfSk8eiXWsl61+4OYnsKqmIJnxjWlgx8sJNZfoy6gIjAviLNcnIu2+yfByQwX+1OqI - S2LqjCz77AKz0WA0C8ecLQ4L7jBTs5Va29+zXfIKoZR7PT6SNgTs8poimEWGRcuf63mE7/xof+SM - Oz2/77X3x9/w1XvpVn91IiRKfAF//s5LPk+wSNp0VwZlF2Lt3k5g3S0igbtXXVDvklu6+DIF7S/f - /8srGXXyb/zPbxyqo56vMVdlEImsCVchHsBwe8g83PIowk1mpbPhXY9wf45dam35wRrEd1X6qbyA - rU1vs1TjNj8/xiEDHzyMv6sjwlnn13BuAUqYMJYuXK2Pg+0UL8nyek0q2PJZqu6+bCC2Q0Mlnh8S - 1v/0mySKERC37FZ/7idGRLMiwMmvBxxM67fe6gXCVK/hxhcS+/3x9/N5f1ITWS+duHqnAVdgLnW+ - 2aovVSyKwDu5FQGSPQysabM3nD0+oZddSdlSGAcVAf4QUnPrn80vvgGHKoxVOqq6cBenN6TQ2YXy - M9PA5scchHTTwJ5Jn/p6bGYRXU96sPHDkUl7Z+j/6Qv76Z4GcXW/Cvjz84EV+cP8x8ebP8Hui6v1 - Lb/T4NPLIrKIuy9YXyZSYVrKKb4mqZwMBRKrv3kKDexoTn67oJ2h0Bg3nLVJnSz75VxA3jxjUnkY - DMRPpTcg4/ogOznx9dmsjm84vLn5n9+aLW7uoTAaEr4sdeONVRD78GnfD0S4/HiwnMArQtRf7tiL - q0WnQu6WUCr5iD42/l62+QxAfenSILDe3joNewsKaW5u+rWpRwBQAzf98U+frNKnb+Gj6I74gqFZ - b/mlCg/ObyZC3gT1PApgBiZUfkTe8qzFYWaGRvH6CkmTPpLl3o4tZD+0p+f+/E26Te8C1eHe2PSJ - nPwU1SPAWKorkaiq6N2aPHnotra46eszW//0w2KHbQjRnQOLws0yZEcIt3nJJRnN2S3g2xQu4TLv - quQffzU2TP/0ZjLs7UhBPgx0GhodqKf2id1/30dLhiCXEh7LYFY9TFyRGrnYqaiEt9rx8OUGi2Hu - fjQGumfescWVvj5c1aKEUnL0sa46r5ylK3L/9GAIX79VX7ip4cHGP9sNncRbTafO4Pc172j6sGtv - HG1cgXG9xuESZ0HCY4B75ZYXGf7DJzY/qhT9zc8Y/2nymc28r2x5Mc12RjOsh9+cgeK8PWNqm2dM - +8OlhOo4aBs+n7z5cQiIQvgZ4kCZcL1yLzQrNrgY2JyjRp/kmFyUtFVYKJ2x4K2PLBeBIqcY2y/3 - lrN7AAjgXCcnO0v86KvMZzPc8mgikunBxvx9ecPndeoJN6vqwFM9MaDfvSrsK3eWbPoT/tPvh1v4 - BrNbRDKglRtjF8d8vhpyn8FFae9Uf/Fuvd5c2EJ5ki18/tMzFid3ip7Ye2zvl2ZYNLMroKYeeKxd - Wy2XhlfGwS0/Cmf56+QrdasIma+wC/ebn5mJsGugX7xXqs9USbrgJzsQ2uNCgKRVwzTbI4Rach+o - 6mFQz+F+b8GAgpoe/MwEghv9eLD1D/V9eWaL81pG9JefYCGp6qWDdQW1nTXSv3kCGYMDB7M0P2AV - m5+aqWrDwbHXbOy1J1KPq7q/AzXtGny5SK0+xXDHw19RidhtuLAWp2Ex0BSed9RyD0ePHaqWh9V2 - osdO0ixfJqlzYAM6Hpun38lbh7AgUHLFAz6csmP9l3/BSmEU60LPvOEaPTJ44guf2n/9tOkttArc - RC2hK/N198wiiEhxo044ArD4u5MMjorhhXv5pTCiZ9UbvZAoYaO2+2Eh9s8B+b4x/uZJtRg9lxj9 - zU+3ebQ+69rHgX5Tn2h4T6189VOpgnfsyPj6lzf8zaMrUp6p/tqf6xG6NY/OWnTEl2pdvXHLM5RZ - esU4SLx0INUHWPBOPYFMWx48qgxs+bF0+MtzvIkXLAPGPruQKfKy+m/+Cy/H3qe2Xe508ujS+W++ - Fe6EpBpmXZscsOV9pG55ki8+visw7twx3Lngmazxy+bhcpeP+BgqgcfPzZfAbb5Dt3rOl7NSOnDO - pQirmRow4WH4PKSyM1PjUPlbnl/E0NHTmibww2rKWcH67/u+86EY2F5+98CSPx21R2DXdKdXMSrp - GNLoLdb6uk/jEfwfJwqk/32iYDd+nVCYS0Vfn7yYQRFwS7gubs+YL3EWLMbnQM04nz1anRcLjfdv - QuBO0Nhy1tc3ehdmRPFVoGDWQaPBA27O9Ly/tjrb4USDun5fQu6zHGvB56sVsmuOyb6YwmRpxRqi - 5XQnRAH7aJASK4rh3hAJth/PGCxnoBnwvEgidlNt8ua4l3voLktEg5m1+dIWdx6Sr1TQkH8FbD4c - vi7MDrs7VsW+9X7OKXJgsTtbNLOMKVnw2XDRKMpFOEvzz2NhFccI4CCnYWQ7tagavgK1VEux/g0X - b46KTw+mK+up/ywBY/Jjd1EieXuqWCA6w3x5vi3YXS8/aq4xA8zlTz5CyeRjb9GOOd+k+xU6YCY0 - c7FWS+tudeHvwU00vB4+yWLpgQMe1b7HGbHafKW0I3DQE4Varx0HJttUCjTrL41GmX3z1t/YRCjf - cT9ClLNdi1aviagbM5eWZ6DlolbLPSTRR6Bq86gH4bs/xahbhk8oFkOXDEIIV5g9vgEOvKHX2VVf - DVQd9BCHB8UEgrSaPLymi45V7JFh2X2tO4LSdodFzHVPLB56gSS/s6jX/NSBv5gZB9JT6xFZCEXG - zkfBhdqzs2nM/S4Dv3MOFVo7YtOwcT6eqI0/DWm/E8FheRTA0g/nDPGfGFDLvrFk+fv8qoNuCFwr - SYRzNXPIuKsCPvtfMV+a0OYBsbiQBl/l7pGLFJSK7Gs1Ae/44/Fj45WwcQqPiEG23RmqxxmSo5vS - 63RWdPJX3w/4elD9CrxkxJ9ShZrbttRva6LPezbG+3JPeexxL8FbnOEXwZNmuPT6LQ9sJXEfg/SZ - GfRyl8KcvzLZRfDt/rAXdYYuTAttoOl9MxrKx1c9592rQRzyB2xoym7oP7GvwUm9uDhP3irYm2Sn - wTlWT/RqBKUn9nHioht0Q/pMAfNYuAAN6vaM8O2Tm7pQB1kMhd+4p2nCVWx+KqcSWQ8pov/2czCJ - o6S/w4D9yo/BShpdg6/u8qW2D9It8Xk7yLo9jZBs9cc4XUhR6xoVjsJu0me5C1u417qOxoU+JILw - kRt4WsovxmBkA7uutwhiTeJxUKxHJsSNRVBiyh9aysdDLVztZwZNyGk0dNLdwEiyd2H5kG0c7A83 - sEovAKGAP2IIi+bpSYLlZ+DKKSb1XIsla3U0Kvj7NS/8eJyHfCHD+P73ed4ZKjUR5u8dfablit0L - PDJe4FYRXctwxkZ02OVsOuk82t+28+/PFuUsP+QKnBZ5IjA43XK+lEYHsF3qhXz00moRwCKE8zzd - sKapr4RJn/lffxLuuTHS+b3LYHJ436j52Xve7CWtC7X5dcG6+pjr1YtUEZ7R80dgeC3y9WZGbzTa - k0wP8YUf5lJqHHjfXz5YTfZmPhx2WQePMjJDbqt/6pqrimyYneihUQVG49V1oZNIa7g/YpYvc+oQ - cDjMBb4fbFZPnFpp6NxqR+pamQeEh8w0+GqdV8jFSVgL1e1yBwpJA8I9Wj5ZMH3E0PdiipNLbDEW - 5eEK+Uqm2Hh1b33AKCOwGV5P6jR9BoRr8xBBF3MP6peZzCi3bhP/KLhvd5ZmQMHopmA1vSu2mn3O - 1vDLVuin5IHNqXl4QvS7h9A7X1Sqa7wHGO/jAqjKmw8kKT3q6y1UZah+Hgk9CrvtzLhRu6i7vSn2 - 7fvBm50+vqM3nD9Y756/mr+RsVO4DzKo3xM96X5+9Eayms1bfXoJP3BFC+HQXOgj/W7rraYNfCvt - E2u9KQ/kdMIVRN064XBbn6Ww27eS7H8hdpL65i07mbowlDSbWpH8zMfusY8hSGOE9Rv95EJ9UXv0 - fMQNtXqX10lzhxkMf36AYzHXdcH1jQ4t7tHC97171OcXvrrwoVyvVPeTK/jDM5A1vIDzPFjZmnV3 - DaJnuqMb3ie9PN168ND8N312t9BjdTQ1sGl2QVgdrzzoC025KDbXXsOal+NktblIhutkJNh4ntph - /qx0e4poMNIktpdhec+nFSmjY+PynKlsBabfwfByWalBmjFZW1+FKLi5OWkejxGs2/tvCUaBz+0u - 9KTjMshww9OJhU8E2DI0BqK/2466XP7KJRcdWoTDx5eq9MPY73TdlwqV9iG+AP7ssayaKyTu5wE/ - C/WTS8eOvdHQ8n2Y9lAe5iXe83Bs9AM2vcsDzKpw4pG0ORAcRAed56FZoXvyodS+pY+6WeJFRLkf - qhR3kA7LUSUQCjP3wqmsZ4lwXzseKcpRwRdfeHkzMVoe1uTs0Nvs/fIF1a8KdeJhwRF8cfmi89pb - PjTCTO8zXw6rC9YRZexiYN+ojFyS1GMKqVMt9HTLWyadVKGD7XlM6e24pkBYr58G2tNeo+Hux3ks - tA4u6qL5Sk+Q/rx5FsAFotXPaXJQV48ZS7HCZ6ZkIRdol2Rx3rOM2lPq4Ju8Vz3+cKAuPM7+hFOD - 3OrlO3cy+mSTSPHhIevzec98JHevDz2I85711XH7rxz54JJ1cV2wzMVioaKznziMeldnlaw0sHwo - Nn1ueP3x9DRGNs4Z9WR3z6Y/vTUMoUj1zFKZ9Llsd2i18E2Pu2RfD5KzELTxPxHJ+Zds9aqi2zq+ - cFKlabLpn1Rpu6X7Vz/f2hZClFXlD7tBVeRzTV0FzpOAaPiW/GFe3GMJ16RrKSbzL1lgBX0oPoeO - SJFqeyIIkAq1i3/Hh73ge4vwmRu0NNER36L0Myz66ajCB6wfhJwCbxBuX92Btz3nhHzw/QyjbhQF - 3PD/D29rxvt2ATUnq7Y7lOeaPZuxgqlf/cj6OIbJUp6XNwycp0WPo5p6SxYjCwXv5kjzgHw9fqVy - BEFsSVR3dy+P/T7ajIykqOlVDC2Pb5SuAfzSGDQBOBjWwY8MeO+FC3aof8yZYuUV8I6qhK/a/psT - f3dtocCtd3z4PnhvnujP+cdv+er4OTG+5zdqkyrE5bZe4lzu3vBybUd83OpDPGR3CLf6pHbsBx7v - it8ehq7+I09B3rPh1I4lbH7X23a2+ZOwAkQz2uV7RjXhrHqjdRBjIOn+DZubfhoPiS2Dbb+oER2e - CZtNFINK3KF/v3etTlAGNyqZ1B0XNRcXgDjwx08X72Dra5xAEf4+/pmq2voBy2sX+MAI8wNV78lO - n7Uz8iEIDmcand6uJ9jIVf/wifzTr1/wHEGx1AHd+t3j3/Xkw/BwOlFcXtWB+ceLAqN431L7ouhs - EaTtGR1vSyfSIdIYi/WegxeDnggb4Bc0yvQKkXK12lB6PFewTFUowpteI6z7iQRG/uZrcN4/Fnzf - T+4gtr7KwRJnMplm1ibLVeBa+NnfPHy+Ve9k+e5vMdBWWlC/aHYeczxk/dVzuJ4S2xu/x8GHRCES - xnlMEvYKnBEqmOdo/haselEf2IFmb31pwAlJPV8uywim3dhSuw2OgxQoQwYn7R0R9BzbYXaYOytR - DFoiog57s5qrBJb7iQ8JhokufIYwgke/1Kl7Ey0w8y+YAVA1FuFu+VNnhXEI4aaPaXZW+GFRiGxB - Q2MhDftnlc87sRqRJCLtT38kE+NHbX/JORn7gpiA+U//vhfexlYxOIl4OuE3KBhN6OGJq4EdK91F - fKkn1F7bOJFyCgw41XkZsn179MT30nXgT3+fT3I4zGocpahm9z4UC6dlzLtLPdj2588v1Wuvrncw - opJQl+M0wAv2EENeuRRYX18iWzVLCeGm7+hlWr9gOV2XAmn+PNILMqdhXpp7C2FGADVYXHuL/n7N - iP9EAJ83/SE9frOG8HV/JsKf/2SpGqG3nN1ofHQWtmhPWMD7Pv2E/Jt8dBYryhses9NML5v/IMPZ - KdGfv/TDK8zHwFAItEj1oVlS3/ThsIt6GKcvEI67+JXPZqP6YBWrA07agQ7TnKoEas69CqVbigZ6 - UlEPZ3f90WPvK97qljDaD5x1olb3wgM1zbcMg+quY0dlZ30+RocIsgC9sCWqeb7uFrMHkt9b1OSt - gC0nfDCgfvIHfMQtqcfPy1ZhLxUBPkDfHsTiA3iZl90LxqoiDovwUH1oxoKKLacfGEFTNSvHYoDU - /cqpvorBpMDvebWwLYaWPoUqZ+xb16ooLhVN5+XLRwR/fHU9sCafPoMVoZOs7kPFoN98vXpJA4tg - rvER65PHAj0RYSxbA+FtkwfjUZANcJv6HcWD6CcU0b/LoOmL/vmfBdW/Cowg7ii+/X5gvjx7Awyc - ccIleZfDVPU7F915eMP4aHpMzB10B5v/wYdpZ7DFDntRscbLE5syb9Ti7tkoqMzEltqrHgH+qdwK - qLlNix/3PExIT08tckO1pf5OeAP22R/JHx+F+/1zBxZMzzFwWhoEnF67ufgFVwI7bxSomwXvfElb - qEHvWlm4YE85mZ+eEoPN/xORtYdhtr+TAceXCGjQ85I+Y+fZKvOTd3GhHR02i4fKV9jrHYdg0BWP - xcpaIdzeG2zABevSDq0hcvZNh7WMu3mj2Tg+MEYl2vzsuyaVVBNgfkiOVcOC9b/9fT6LPhROcliv - VtYbgHyGSyixI2P/8CvLc3sS/vD/yFUlrF5jTW/bfo3J3S6U98tdsWmLB096m7YMNn4N5Nwb2RTK - Zg/dY3fH9qd39DWFEYSA+8qhJGuqvpRGtKKkwi+svZGjL1/tSCAJ3hX5zcRl0v531mDCLLj540Zf - 8Nl3FNcTK2rXiV/z3WOJ0KI3/KbPSb0uQbkCd5wI2b9fjsdbyVWFu2p3/re//O3hyXAAsodP99eP - 0fXz0v75gb9+nYeRibANy5G6e/fnLbfyvoIYlhJ2Petdz+y7K8CWX1FbktyBaMLtDr/iL6WG6Kv6 - ptdmuLc1HgdkN+ZzgagPt7yB8HPWJoQ1dwdKBy3BWi4LbNmrmQzd1itColq+t7QTaKE4pxwNs3Ph - LclRaOF2rTjk/l7b/K2DW14SnmydsK5Ruhb6QSngozOewG9/2ncwlFQbx3V1HDb8iuHnEF2wf5la - MM8Cu6DwPnKE72E2rPwh+w8AAAD//6RdSZeyPLf9QQykkyRDBET6ICDCTFAREOkD5NffRT3v8Jvd - YS2rykBOs/c+yTktVKZOwja+D8NQ17RF/ay851E6deqSDIcI7viQeBqrUH5wEu2PHxP1WvsqTbpC - QsLRNOY6v3d0cdxBg/FVfsxfR4vAdutFR9rtGctr6gIhbmiDMjbi9/znhWzcPl7gaDoSzhJeqBbh - +Iv+8TFNL8OQFKdKhn/xw42pNMy7/aAyv/hYf70Vm63XxUFjTlNyVr4GGDMvyYGedRY5FZUQbs81 - LaANaeGt3dVTu23lR0iyxPnzXzrnT/v1L35qpa0OHGP6Cbxkpx/GAz9mS3A+8WiJkyd+sAcKyNWc - 5eP9ozv4Utdfm9xVSYdmdayx/K2airBS0yJnxW98wcFij2xfb6BMgeWB52kEWwoLHc5Bo5A/vMs+ - R/0Fe/1cYXuMtqGdtZmHjnYyZmA8Z7Ds8e/f57L4Kmz6mM4LOIgeJHaHBHXtU9iDVnt6xHqkRrZ9 - 5SqAte6fsYIqWq3kYS8wYoc3udSnaiDrUOuwIGU+swu4gOUl5zWsuHrB8SxaYLuVwgP+0x/s9Vut - A081hLyhJ0p7ZcCgvaEC7JeW4Gxv578dYlhAoscDtu8KqkiIjRY8n/wNn+ZSz4STv+ZIvLR38pxz - iw5EupdgqtIXufRADtl+YyTIVAuDrwddCzcxlAvkYjXxVq6PKbd8uxfUx+hNYrtuq87xjhDc8ibz - WFFNshnDE4+coLx7W67a2fJeOx26jhAQbJRWNn19ZMDkLgNsXpjHnk8WDcnj6euxS6JngoRtCQqP - XN71YdceUcwyoC7pxTvsfJEekORADF7n+WbHCLRiPPHwploz1tPVzlbGTB7wZcsjebGfCSykv/Xg - D1+ckptKt/AdlNB9zxM2JrkKV0ZuZfjH12+H+ZTx+ga8v8+JO55xtes1IyztDHii38HwT08E1Pze - yK7HUdrlj8cfH58RIks1lg/ISrdzxOLrGMsZv+sD//C466QnlX/e5Qe6YlElZmGNdP7KQwCH8IDx - +Xqb1FEePznsmF7Z+WJib8RcJVCcswf5xx/Q1C7we25LjJe6CoVLozuwlc/KvC2/Lpsc78hAvp4s - nPlnZeDFUC5hUvaE2LY0qYuGJQv+zBzht1IBlWyCuUHZtu5e+mGaYb1iU/un76mfh5B9zeAywiVQ - rrMYsWtFr82YQw42e3zFTDZt96kWY/7KYhwl12oFt1cB+4FNsWmJAqB1bgdQPd6KOSyEG2U/+G2B - PZ5igxeykP4o78CPh2uiKdJ72P7w5+GQ713yI1BNWYp9sN34cd8vNet6I5SAsk05tp8nh+56vw/i - Pr+QwINDtex8Ttp4IhE7cwO6mb+xF37fw4EoSqVQrugFAwyPz4dc5gzZqy1VPMRhZRLtxh3VJRJc - ESZcac3MoXvZU3/VfEj0aJid5FPQVS27DZ5odMCOCBp7afDsw+uYnb3FlOJw2vU2uDgM+Zc/2U0s - eqR56YlYO19hL79JlyQ738jp5l8HaraghKcOQ2/Bs2+vQ7g2aKj7euaNi5WtySmP4OFe/bCJ+pu6 - XlHrg796gLp3xCAr0lh4/7Uv7Oz4hVxJzoOf+ULzlH2u4Vg1jxJqGop2+83DZWqWDWVV9yH6eZnB - +G/993uN1V0P2CwgjVDjK8E77PrVv3y513M8qOKBLs/Re0HlZBxJdGn5kJj3xwIvcZd5U/ZZs2kI - jw0kzybAe7zPpl3PAKZ4OJOzOgyU3ka+h3H/umB7ee9TgcB7Bo0TNN7xEB6HXgyNAqYPWhP5d5cz - Yde/oZNqHdntMVwqeZghbbWapNdHu98JBBr4qyecWntQJ5io/B/fwPj2YoeVGJWM9viK1dtprpZd - 34fe1KTecbHNbAngNUFnl74I3vV58uxEGTLhuSOXQwkrmonV6w+P4RelMV1ejfpAQ3LLPKltBnVs - b7KEvmqeE3k0uIGCUYmgrn+7WahP6sAqN+TBVgkNfBEV2d4i97h3jq79+TdnT3XLZFeBBb9o+OqX - Evjjf6ia78a8dtdZXdY6qCWPbG9y5hwfbCvgILy9lg8JjgmTkbUEI9j1au+4Xp2Q3xL2Be86MvHl - qvfqcpiWCPlIbokOy9HeRjCz4M3YG9EoVw/z2t8cWIqPlJwenw5sE4YMsGX/jU+aYICtbEVfyi/e - 1eO7X1Ctfcr2cH2wmQdsabKXo18uEBKmxC4TbPbi0lQCEuYZ70+fH9H7G0P9q4nEevd7TxfHgNBU - 5XjXo8yMTodKhj+7U+fJfdf2+tiKf3rE/B2m+j/8YnqtSd7de7W3VudeYNfv8am7ejY1pNyHi1FX - xIiuvrodVrcHqIcUJ3n+/YfnIW6bfo9Hd0DmbyoBgrfEg/IN25tmvXV4Kp713EeKq37+4tden/SW - 4+lTrfJMRDixGiVZwt+H4i8+PwTjTXQX1PbixGGOaHhS/9VHFxHmPeyYViG3b9wNm2nNDtj5Atnj - hTp6l0JGv7O+YvPDNNVsUyUGO/6eK+/9BFvHnGWpHR8WVpguruhf/eAPP2pLoodUhkMMUmwv/+Lr - zPdjBG05eGPtzRoq+1efkiRbIn/4cnPzlwZdhwv+4SNaTbUMkxSf8I6P7ZF8vgFQH32CT819Vdfx - 2Cb/9OjwdvKqzbNQBP/qOe4jm7PWoMryhweIHm65vR6FIkfxvR6x9odfCNVl+HK9DTtbyoXUOksK - bF0R4Isg9MOSflkf3Bnx7Ani91MJt+wpweFRfYhLyokuY9CPEG1eRtzTCNSpfcsG/Kzb7R+fXXc+ - jqLlGu5TBz/qUNxWDdXQYbEf+wXY+iCzYIrNBcvv0w1s5xvcYH/sw3la/BrMR+UdQaSeBGzWt9Le - BD/0/vQqfEqzBowa10K48ydiNK9tqDUmjf70m/nwcOyMPgLYA3ZtNPKvns0ExgbHo17uemEXzqeP - Hf3pn/OUiiPY1EwOkOS2IonDDf7HF+653P/h20rYvp0M1UebEAN8N3uQ6cagfX+J1i5btd3n27/4 - 6R2699XeXp4vw+/GHonq7pa819dRWP+mWYilii4B7eT/T48C8X+fKJAroSS6YOsV9cNvAyuda7yF - PR7VWbYtDy4xcyLG2oRZL4pXHgH1MeKzmRzAeFF4Hr0XrBO90mWbLe6OD7+uPRKPm2a66NyZhdb7 - LHscQveK83/FQxIr7zqPsX+gdTCvPrpTTSPyhjTA6tW6QKus/Fn63rxwXTsuh+3xXmDTN9/2qn5Q - Ay+GfCFRAx/ZHFxEFl4/4ObxB1DbkxvxMbj7BxkrcJKGha56DPLlqRFjfU8q1eK7gsz4/MLGOh2H - blYiD4RuHhG5LyV1/YlzABlYd8QFbQZoZAg8pJeGI+qYeRU9Pfe53QejwjrQinA6g0mC0sg03nqK - KrBeuTQCzeFrYb8ipc0HexcnB4ZfIitWUa26qGxIY2bL+1lpF64lV2kwYh0WG+XVCtdWm2YIBftG - 7OpzCenv+XUQlsachKZxzrjhIYnQ0PHT+3TjMxRqgXvBV40ncr4TZphKeizhhckdb+3GZyZceqlH - D36c5+/yhAOdXgwrBfe8xc/IcypeZZ8yhH4gzAeUqvZSNPMC3odtxI7vfgdhZAwP9Sexxz5Jn2Br - DnqE3sXwxh6/ve3VGoYXPJJemWkSt+rG8EYELtvqkVQGecZXkQnhelAHor/L1OaMK7DQ6cw0HgDJ - KWNdeYpgrU4rwdenMkzme9RgLLeNdwjKgAq88tQhK8khTiRDy/jw6/iQHyVrBjo1qy0ttwW+/PVF - MifUAEe8sEHQDWV8rqkMuNT7bKAj65fcbqOW0Z6rICgeFSXuSe7oeiCFj573e0lk1PHVLJoThMcK - aTijrJStxaSzUN7KOzFlNra5yPUtGD3jG8HfrASLzd9fe1eUBodjyVKaHVoZ0lVZiUbvX3X1f0WC - zqKhk5BXCFjd0NmgyyYxvgNnGriffg9gRJeMPB/qI2N/xWahJhlHkosvEawHGSaSrfURtoRXUdFG - UWM4fOKAxKJiVRspgAyo/X7OQJhYdT3dGAe+LZxia1BvlPLbVqLZ7TViMqad1dtbCqTbC0nzekv7 - bFzSS42E3puxY01WyO7+ghSRfZKz8vpUnJYXIhLUyPfElD9USxadNPS7NQIxZErUtTspDRq5T0Te - 7oBVoftRGV1WKZ+F9OfYQvr7+ODcNm+vo0NjL9yxr2EO6wxftorPKFclCjx37yuxdn8XyC/TIPgy - JvaVqw6EQc0hBGhK8UOViU0KpQqQcY4HfDr8VJX/2N8Zvc1VJljV1WH9/DYDPUP5g/E3UwBbO3GJ - mM54YNlAySBM42+Df/4H6utX3cDr1KDvm5jz8XDhwtFFlgVTRGxvfA19RZ1XGKFno9yJu0ArE+b7 - 0iCCw24+rGemotrZgoBz8xI7fmQD9jikM/RrKyFuOV6HhXlJCUgv5O3RpztQeujiB2xtyyLnQlWz - DR2HHN55ZvxnzyMRfQYKKzpgM9S8geVvWom2Z3DBUXLHNhF8T4E86yrE0dllEJJ0iZE3Tyr2Rjek - 3HzlZ4ij4I7P4qkapgNpA3h4Wzq+3lIr26rfpYGXTCL4/D0I2Sr5DCvt8RPL17c57M9XI8WDBske - 4mLP0hfz8F10bw+e+WZYf9+2hc8mX7BKnlpIH9E9gGkAz/j8Fa82xz1jC8ZJynuHN3vKqPPY1RN8 - 7YgN8TdbZSny//l3zYXHbEnmNEZRsX2xppYWmKl29CCMfiLRtxKHwpsaMzz6yNv96awS+Z15EA9f - j0Smoqt8WkoLaOibEu98kCg5dK+HFPovG58RsVV6yRIDov30vvS9fCgxpJuBanG/cwbSNuuRsEqo - lW8MsS6LUwnq0S6PP3icsZYVg82qz4v+L77aioTpFq1qCw/aXcKm8a7CRcGxgeY2tbE5CjndHMPf - 4E+sJ3LOE97eqhsoYdvcevz2uqO6uPI3RmV+uBJFcA8Ztf0+AVVbXImhtzn9RazcSOXGMHOn8jZd - h8cmgtvUE6IbUTysf/F/+DoSVtLHmi3MnIuwGQ1A0qXzs+2+n4n+lH2N9VesDKz6xNretbCfV1aF - 4eb+bgvSm3s+H2J3n0LhCg7IBCB53L7euRiLHk55uhH1VL8y/iF7PlzQQ5+h+EoAn0vHEn5Kzyae - xTPDdr8kIhS1T44fdHRVlnltCbpllwAr63XIVtk4B4iwj5pYjRPYy8UnCxCrvcvi4xur7UTYEXl9 - omBNSz3KKYpYIy3/6fPRxTIdcSyVUJS9bGZ3++BjcM3RqWVynHBJQ9nLyfWhTFMTp3t8Ie6Rc1Ag - KWeib1lnL/5Nhujl3jwc9o08sCyIDKiH9+Yffpim7dj+xWccd9sKKM2nCByOR5dY76IIeX7WFCBN - jwPBzfwe2FvUKX/5jsh7fqfuqAXoSIuBJHt8nH+OEMNvlhjk9fmU6nL9yDGKgvOCd3xh0+b6ZcHn - 7UQ4d7LAFuzCkY6Eu8Y4RgwzLIf+uCBJ1wySjIRU49/+gZgHs9CpIKzLd1GC/hYfsbl0fkgNU5jh - ebofZ3CTGpvYHz5HXCW1JNzjze+UiTra6OiSNysE6vJh7yN6J5JHnD2+LfdFEdFotwdib7yfbbep - LYDv/bR//rjkhZGjPT/PsPi9wJJXVQ0UkX96knI0wPhh7zNqzO/LgxvzHGjXmC+YHKCH5VuiZmt2 - bCz45b8tcc3upHJ89yzg7TKo2AUtAGt+eRuwP+VXogspVbdifjjwSLUA3+Z2riaTeDUcvI3F+qnV - AAt02kKbOZw8VhTkbP0+tQSKTV8Q03xO4ZqzaQ59dwzIeXnm1VaKhQKX/uETldPOlEsCRwLzLb0R - hy/rqgVCqiM9vDX/8i+PLKGG6nsEMw3aItwitlnQ+zm0RM7cq819084Hf/HM+t7mbEod0ZMuPl6x - TIL70JvLFcL5JszYiA4Z6PKmKBCjGjNW5LsMpr/13uLliu/n8ltNlFUDJFdcieVNP9n88TbFkLA8 - 8la/bAZ6O60NiJmsJGd6/QK6oSJA//AHuwx005ZVlMJodfCZNTpKH/ocwT+8q29RCTYp2G8Pfj+H - GcRGMKwnPRulWcnexMHxp9r2+Aet9yfFpnQXwKoEoQ5LN+vnAysE9krP7wTYm9ATmx1e4Xa8fWP4 - /pzFf/l7pnq5QfO6PWdmwF21qO7YAOl1Xck701SwfM++D7RhjogirXoo+OFUw2/Gf+aC2teMlRvb - h2pl2jOoPpdsxmSTwRM313lxp9hePODXyDbT+e/3w3VspACWObp60mBBe5TrdIaDJTrzL+pKe4OD - VMKnegzx6aWchvFxHz0gpcUd34UwBOxYcREYVy+cD3LwCKfneWrgjv9xXtZauH2gbUD6eodEPYJu - +IpcJAHOlU1ysV/psJTvtoA/b06wGpCmmvHJMyBvxRMxn52kLn/P0+K3TTxZ1emy4wnJaRNEzsro - 2fyy3Aqg2nxI1AR/wGYuKYR7PiI7vhuWebzWkNdfZ2J8wiLkXhgkkB3urxk9VCkkZR7WMGXMeiZi - 9x1og2EAk7Q0if7OArAmIfMCqZq8SPIJ5YznSqf9w5f4jhW5osekDAAX0cee/4yMi16jAyoAC2zv - +IP/OYdY7BNqEO27VHRfT4P4j+v85z8m8Rppx4NEI991WFM/jKXrC7yw51YfMDOXPId7fMBecvrZ - mzW3CaBLkxCDr5/hsugnBuz5iEQfWc9YXl1eKGGnDpvJFocLJfkGEzucyPmS28O0WOILJEvSkuwb - c9lX8bsS7viSaFmq0a3ffjJE3oniNH+qg7CsrQSNNv7M4+7ftFAGH66R/yVpo9V0t9cFjqsT4nDf - v5VzLB2i5+9B1D9/LxZ7QxoFzBypWV1tCNwUaM2ORxLm0KrLoZM9QD7JPIOH6NstKp8FgNWkeywX - ptkqi+UIfVGV51EHPKCxuzBQD4A7H71otack5F9g/fnZ3HTHxKYmZ7yg7AocvqyvRqW5m8qAWAUm - 6pFVM355n3JQH6fnPPm3gK7aBBkIT3Y3C1FXqmP5bkt4d4sFq+f4CjZMJAVcZvGL1XSfy+hkcfLH - F+Y+8Fb6Zy+gv0XH3T8+1ZQdZwt+Kg15v9/lZ6/NL/CkJIXlDO2BzcavAR7AK38jxiwjhmTutBZh - YHEe+vw+2R8fhLKb5d6xCdZsjcW8APpbqYlsH7xsLhA7S0K8vfef52wkgNWREEc6SbXGrIhDfg8w - PhaXJMmKw6WCFMJP2dbY+WWt3V3CcUbr+bdgW2hcyrpe7EPQhxZWVuusbrb7fcH1F2QeGjylEozu - pKNy6HWiebJv8xmsNEi524bzm9aFm1eaOtzxhXfMn9WwPKdjAsLT3tY0yMaByFgcj3v8Jm4iqID7 - SIcNfPlf663d927TsJMWqD3VtyfwnlrxwxTE8Gj28UzlJsqmsdl82Bn5TB4ZR1UqNaEDg+Hu40t9 - XrNhOA0PgBPrgHd9BNA3u/kI8n6Flc0g6sIs3gsa51Ujl/3/c71rMgDcw4ioQ20NgsCsItQ5+Yoz - tk7UrUxfLeB8acMW/ep0+aenmK1B9EB5qeT4yPauv/udzjiewi1j8hZyVY5JXIPZHoZN5lFnHC/Y - 2febXt/jfqD2snhSx5yrSfhKD9hptY7fxWYPbWR8Wijn2hXv/KbaGF6O0eDFGba7UzmMuz/Dg2P4 - s3Tp9JB7Z9IG1JWVsUxSRHd8kMNLJhKiBkSvuPF4EKEevFhPunRN+MfHoNNyMTF+hqducv7y4UG6 - N9jzPjblAXm2MOhFAUf971dRXh5KGBj3B9Edd8lolSw5AoikRHftR0j9KyvDSetLfGm5mS7Tq23h - 23JTomwxqIimXh9QP94DTzjAwR5id4EIvtknVj5Qyf7hlT7FH3xu9OewwTxRJOY2295UfodwUbNn - AXf7xbl8UAD7qeweyLl+JV74voG2aJoNQn6EWHXFEpCIkwxIgum4T63TKr764QZc2aON5TfyqlX4 - DRCOZfXC5sc92StiIYS7v+GTbl+qNXUWDz2b1+L9blwyULYdR3gaH8PMLl6ndqn3WdBcaxZRgZzS - dUjN6D8+VQQ83fmaj+51honbXZ/qGDLhhkBmw1kM1V+14uwjox0PkD99hzJWmkgo9VP8eCwK2Kr7 - pMPQz+1/eGyrq/EF1Jk38fPJ7VMxe7sFnvM7zDSqo2qDvcxAs17CmWItzXY8JsO/fJP/MsPmV0bP - 0a43EjzbRUaC/MRCvzYSHKxXO1wm+mah82NqLD8MmdLSWTW0KU9ALlZqZpN9zB9w9rQnseyysHmu - 1HqpGb8R3u3f3o73lwSllFmwadZh1b5tR5R2PDODE/xSGjz8AD0ic+cjYx5u+508NIiDid2E6e1t - PKYz2J+XWLv+QB+q7QD39ehmSdnKgQtizEjF5VLv+YvP6D++SloFW4+lpGt2nI0/vDQfPgs3rEng - iFK+gCeW2WOqjrLwjgH+BS52X1SgdDgNCZA3ZsH63HHVYt0fOdz3h6hfvrLHxfzq8Bm+JILDIgfL - +/JZ0N/7jG/sOux60wM+eP9GMpB8whXYpYGO7uE+w7Kuw2W4cwx85bKKg+oUVGx7OBiwle8Mlp/K - QZ3e3omHzHIcPJrgE9i6SivgHz+NiyAG//ThQ9nEM/fHr+WPtqEQuNe9K/ArpM/UT1BiXyes8RZS - txHYAfzIlwvBb/YUEjE/J8f+J8UYhwUEQ3YoFJTl8wPj43yj058ehorflRjLR7W5KJdauO8nsfWx - Ctfb+DQglnzV224tAqv53EqUT0/X4wqrG/od74N+xHdiP1YTcN9sv3HWXZHX/FAFlvsKX3/Ph+Us - umdUdEoJUmQZ5GIFqk0bprBQD6L9BDdj03bn93AyDhV2zeUSLiDBM9j9jeA3+A3TUT1L8NwpIjlt - l9YenuNLAX/P4x3fZbjirFP+6bW8EfEVffbjC3r8CczL9W1WNAumEYRC1OF7p2bZprS3VhKQUxPf - QGK1Rm5igKXf76Dv/J3gM9vDgY0NfGZjPpw5f6mlhQlEgvPjSknsigxUfftG/uLNYrVzAZWYpPOR - zSrKdzWjAWoDnmiGXYbTbXxaYMlIhv+97yuXxmCOGLjz+9cwsxXvwfqb5P/w1fqSfQkuKrTJZct9 - mybpsldEQhlfOultr0nI51KXyDeshF81XL9ZwEpK8Ei8EdezTQzzMMO1tV3snEmRNUmY+MJ1akLs - 5as20DYDLXC/oUGMkefoPzyBZd7AWlyeVGopxxysMhuT+J1tYJsM1ocer4KZ4beDPUpWvMGbXQ1Y - Foex2i5J5sAhPo/YQbe8yrOb1AL3CX3ii8M4kPtMCrjzkzk/8/ow8QPWpPtJ2Iis6RHlhtGDoN1P - OOzT4cF2SUIPukd7Ie6vuoVLcGIgNMxhn1IqnIelIrYMq8eVI3v8VrnlyejwerE8Yt7Blo1NPEZ/ - 8RAHmBJKCnmd0fi+eNipOrZaLXgooenFridgRR64SXM36H6vhne73M7ZFq12CxJLiHZ+qA/zMQQb - JMG1IFoDpZC8WkmE06D98MtrA5Wmv87/xw/O8RpVdNeXoDcT1Tuq/EBXsTZYSUE/wZPQWVG39GN6 - EDRJOUuxfA6XIdYe//imc7PJ0OJYKqQVfHN8atNiaM/fIYIlKWfs7PrABl5mDcEXmvNX+0B13vkE - 3Ot9xDo+IkrvWSdJe34gRu2+Bjo9XV/c8em/+DmZT6kAgfbadvtVKMvMuQT575nFuh2P4VwHSXL8 - ic2EVdP4ZqPUtcZf/YUolysD5ujTGbA4Oi22ZkiqXQ/3IP75Lnl/y05dIit0oBp+a3x21UmdevcE - 4fnWdF7JHwKwbO/NR3s9bCZhkdPlT8/li43Ov1M3AJoK9vL3+8T7EG/Y+ecIhG65YR0f1Gp5GKcR - ttxLxFbHfKsdfz/Q4EUZOau9qJLPm5n/8vF86AN94M5HGMG51i1sZfCY7XjRgwvji/jJjT/w2fUF - wCkYeWT0HpQeW2eDn1/GYKtxNnu86Yv+L17J13dXzZkrePD6ep69wwVdMqF8nQ2ID2+eeFK9DQuv - ijl0rfKETW0idN3//58eNsMRVOGWfk4OEuBmz1JOUbaYZlfA1yaWJBiqalhZ/PWAcyrfRGMvJViM - vZMXCGBITkoa2cMZJxs8X+eTJ+z5edHXcoRx0wZ/9a2Mvn5m9Jc/sDMp3bCaT6mEbsFcyAl+3XBu - UL6ARWXsmR6Evas9d6//8Z3FZfPsT4+C90LzsPNQaPjvfa3RyHjc/DGyPtinKqIxwETOIiFb2iVv - wV4Pwy+DahlLVy+C0iM1ySl+Pap1vjIzfMiTgl/mOoe7nvSAw3cIsaG3EMwZE/UwRf6GL+KVsan4 - ZBgAT2aHT3hrwSq9fgvc888s7PiSuEfkQO/Cfskj8K6UIpct/uKjV1REscdbHNSoM14zse96Xq3O - 5fxAYtj35NS9fEBFpxfB7i8z288T/eNDaLxs9z99vmINsJQwj40Y7/qyOn1+kgG9e+Lsei0TztJn - nGG5QWbXJxWVGOLQgL2eir1fDbMZz3IOtWJvCZccVnWRhXuEpEXA5E+v2/NTDnlr1WegSAQsndTn - YMlCxRPXt2tzO54EsYZ+2DJSzd64ItTgIHYmPouHaSBt4hdIsriSONAfw9Gurixyj+ZCnn71zuiI - 8wjseg/GZ/Nlz+SaFDDtyQ0rp5tF1+OhHKU//zK8sLe3b2FGYGOtZkbRpdnrAfKMGNh0RGU2N6Qx - 7gtQLWE5DwZBgBy6OIH696jiPZ+rm++eS/jK85wk65QO0x8/X38ji+9p8QW/vb4JLquYk8tjhNkU - nPztnz5jLmWvtp/wYyBhroh3uAd+uNLzPYHMAgZv2euhq3MO+b/8SgyoJdUU/4z8b39mGgJkbzcG - NmDZ7I8nHR8s2OtBD3iQbo0n7Pr3Vizq8sfHsA9rPVybnouRWo7bzo+7YWnnQYPdLFFsO49BXZin - zMK9/jVLM2dm43J/KVBQt46oSWzYo7NaG7TwYfPyzo9t4fecHBgKcbfX5wt7qa2RAR11OaJsmMvG - t62J/58TBcf/faIgFESFPBr5qk4A4QhyV8h7fHQkNmXjdwkN/O2wrT9/4TKG9xg6Xa/g82/9hdtN - Z3kkvgRr5sTpBPiRBzwQPpVBLtd9Tp0wPh+wpO2NaH5wCfl71SvQpeiKXV/Q1FVSXRleE/lI8K3/ - 2csq8wXwK23C/s/X6KSqcQJZz3VwUoXDsPbF1UKlxotEd+W82pRhhai6jmf8covfsDLbuwAR1D74 - iaQnoO7be8CkCY7EK84gJEd9n/vbxiJ2mgMJx/FoMFLF3x7kdPF5umhy/YKqMroe+5y+w1qibpE6 - Lcx2heekLhVtNoRnyZ23RwVol95BD/3c84l3mYKB424TC7/Jt8PJYWDtdXu+eBAKkjILKOqq9SPv - ZxBrmHtc0O13ZvSnBxzfbfF5OEnh8tbyALoxcya2TOSQHeLYQPrFGYj5hsTewmDRUMS+Ek9AkVnx - j2TzJHR5mDPVbxuYS6aIEc8yGzlNRWkLPawbtIShQdRCbOjiFhGE9KcesV2zssrya5Sj0KDzHDXD - YZjsTitQJQ8fjGmdZdzllXgIJiGHlbX/VOOGhBbVz3Kac0XCA+tcNgUGY4mJez4f1NVYUAFjwzuR - cAXewL/1awLP3V7xis1HJshsVyKR32xsVG8drFplJeAoeYiY55dpt2N4j+DyoTNxh885ZBXj+YJd - d4h2+7tkbC9LMqT8TyVapfLqlq1PAy6b9iVB+NbUMXfOAYJdlGL34bID3b7XGuz7QZ6MfrTnU9+U - cCTIIX4QWdXy660EqmRKyLP7VTY5rE8Wmpv0xDamAtiki5IgHYo18VvGsdkLkBw4TbVO3KrdwCKd - zwGaFWRi73ywK550rgNXLDyJ1bWPatPe/AhB/XCJ/QxrdZvwi4fsq1Dxuzz2NtupCw8bfUiJPDa3 - QUiy0YKYkxEJMrmw2ah5azDCpY1PxVmly8QrFmKOfULu2iXKtkosZwgfmu4dZgVXi7VaCbirAcIn - M1MyKsmChBz/cCPWzawH+rtEe9ckeT9BIekhsYdTi1rGGvDpN7kqr8zLhpz0bhPnmdwof7jyI0Rv - JcCqY1zAcvuVBRLjd0T09XqvFj/rN8BOSkc0Yx3C7SAUESq08ohNi00HthaOylG/MAm2HoI90Out - lJHOywY2au4+sLHqxJDItUo06eypHLPdC2BA84ATq3IGgbuXEAGXaTw+PozD1BixhSj/Vf/iUdbG - umqhPBEu3vZqu2Gr7moE30xiElzjB9j2/UZ+1Fyw/LlGQMi7ewCCYSuJ43y6cPn97AY6FvvFFsWR - uvBr9IIOeUrkkmZnm/18Tjl63rInUXTtDFi1PeVwDLzI4/f4w7OMmUCrrWOi2M06LNnNnGF1nc9z - 192naltsUYcPxj15fBlN4abM4gKd06TMAIL3QHVpaCFzbBNiWuyxImXMvKDpQp+oMv3ZVJIPEuzN - 4oXj05BREuk/BirOlBN7UyubHw5LgITcOnuLepdDNgssCT6/c4RPEjnby+xNFjSr3sJ5pedgcN/6 - A16FWsW3hSXZejmuDDw0MMPa5mSDgNBVQ93R/ZGU3wZK7rqhwOvJeuLTxY8B8aO4hlde67Chvxja - xW2nw7rqnvNByUOwDdlDh13IfmfaK7m61Ct9oGVwDCI7jTqsTCbLKLq1AFvM4ttC5sMY9Qfn7s3c - 6TZQMlk1fJA5I5eDZ1Ne8OgD3fxJ8PppakOaj7EOyzpRiO+NJ5VD4tMCQ8hNxGcv12FlsypH0vVx - xe65rMKtHn855GftRsJm6+wpPYYy6oZ8xq7UW2BluFcMq8IbvHBMS7plDgOBrff6vt9fwPXMOsKB - JgKR+bTPNmEJNlDfLAErohRVAjzqLBIWmmH78DqFnD3aMdzc1907ngMXLL9eecDXcqqwH0T9MG7V - J0YtdzKI3l6UjL8XgwfQ+ScSZRDGin6YLIfFykMPPhOOrsYt3KAgpjU5Sz/N5lxlnzN/spdZYuoI - sIu5QfSQxQOJ2KrM6JD7PVrR0cXhmCqAh0riQPZ86fAlxSalGYlElLovh6glo2WCf38+QGVSDZ8v - xo1uXyruXd5xTjTEFIOgXDwRphk+z1zQXQGHQMigPb8SJS8dmw22RwTTDG44pndOpcbdFxFn8zp+ - QcmwuXNhNxBeR58E4nzMNiZCBfwKmY5dp8nU5Ta1BnIOqoYvIWuH3PaMWTQqzMlDL/1nz/H7vgGm - cBlsjHNvb5b11mB/YDQcc2VRCei1z0l2jQS/Z4VUZAojBy12z8yLlSX2pr2ZGYyptmD1EI9gOppK - K+gXbyCJ0fXZGOu2gcpRtj3o3DxbEGwyg/On3MjZDD+h8EmRDx+cYGO82zf/HHsGGm+LeiAc+2yZ - 7vvUo9uUk3vYLuqqyu8GSmggxKIZDnd7fKFFemWziNYrWJJcGqFo5oZ3wEJgU63gAsn95gNOk+Kj - TuH1WKDw+spnKdielFpenoOKvBA5qfmmtp+X1Usj897waeODYfvDW65b9d6xs/cun9fNQW9eCclb - yzSVyqFioVN85Un64z7VMj7aBJn7zMl3jSU6+kkFkWWeHGy5uRsu5XFM4Mg8N3zqcGqvPmOMyOJ+ - 5SyO0jf8TXtXMzObTLLjp2xU29MLPd019I6ikQ+b98580B3xb6bKx1PXbLpv4Hb4hCSuFbbaksfU - gNfpQDG+poy9du/ziPbvI9Z0rKotJ58F0d/piN+ZE9DNqd0ccsU797hc87P1pggvCSq2PtMwkYbl - oxQiuojEJd4DfCk9zHcZ1sO1wWZnb+E63boIZg75kf19VSxHMQ9IPG/EQN94+LMPdE/TkcQn4W7z - y2Vi4Y6H/p5fpQGr1MgREkBuu/0L0V7xVXrqYF3Id/9KfzP4ZQbBDutt1WirvwXyOBCxa2vY3h5s - BqHZu8Rj378LXbBsysB4SwX2quMBzOhBLQQiQd3xFsgWYX72sIkZHzsH4mVjsD1ieO9z37vt+JqF - cqb/fT9RrmlTbUb8iKSeyXvs4UdHt0rsRzBBNvX48F6p3RyUJdzzKTmflSSkZ7mL4K1LaqINhko5 - nfuNsLcCG8t3Ps5W75OVcBtcf6Z355BNutgUwB5Vg5hdZVC61Lq1n2jb75AUYzZ6DCoFM7yHM1cV - TPjPXomeAWLrXTlsf/kxiw2FBOp0UJebYyzQzVeEXWeLs42eZP9ffrPI4aSSX0t5wLVCMDP5Na5W - 7wA1uJRsQKw7LtUlS+QS8rF5w+Zuz+QhpjFkVOZN1Dbi7D//Bo7wAF7xtX7ZXI/kBXa8iC2zbYe1 - KNgaYiP/ETW9W4BGY9rAP74Qnc0P3b7LOkM7Sg7/+S9AlxgYfu8R1XoUe35SGhg4hzP2yvwDmnxr - G2kaq5LI40MKV5l89x4zqUUewGgqYjsfDZ5+0YPgNPCH1T0fN8iOAfzzp2y08CDDIHsPf3g3W0Pq - SxBfZok4HEwrjsqn+V/8lYq+GDZPXQuozpiZ6R6/l0Nk89KTvt2ZHmIHLDdH3uDp1H7Io9ZnQOfh - YEByMVt82fEi8TRRhzpuPli2cA64RMQ10J/3BzFZ0ay4tnRK8Ief3gJXh9t4y1+weAytN2ptTNeP - 3LZwi2J2Ft+DYnMHvlug15oL/lv/8hpWH17szMLmqtWA3mUlge+TdiEnVx32O5EGA6HAHshFWdWB - Ey1egYIwCHMaTKNKcpcrkfk45MTpfyJYOzT78C1HD/L8zEu1fJRWgj8tCPe/r4YZHa4RaibtgO96 - OtmUj8Z/eIfIVpaoy8tKRcipuU/yjDfB/r5Y6Cg5weGNfMKlL68P9MdPQuSTcHnqlx7Z5fGLTya+ - 2Fu+FQ007mVPtAqv4WJcXw/ovmqPXLS3RZc9HkM0qi+P4+e1mk54n7vZBEcPQHAYVh+YEny1Weqx - jSDRVt7vrFYFk8zMzldnVxdj2J+sFntDI6hr5WMD7PHKE2O/ouSRihu8Glsz86Tyw/VoKj2kH+dE - rqcS04nh4hgIncRgb1qVgUuPmQJ/R+jMxbYWYFO1iAGeWmb47ACLCtdbqYBbUBrE4063al2bMIB7 - /iNp8PEplX07Bkd1vRP5lxf2CjX/BcXv9MPe/fJRlwvH1sh1P/0fPla3mTPy/SCNj62j0qkdPF17 - 5D0eAsEFdYZt/aU8vLfdYf95rHqnPr9QUCUjCduIU9ejY+aQWUpuBlp1VsnJ1QrYH6CGr2zyGorz - 21WQaIwZVhKprPiRpyz84yvmpW6G/X33gCNk9oQ2ISFFr6VEUOAPBAtcnS2clEiAUfcuwSewhkuz - GApkrlNCzl/hbPPn2oCQWYPSg9+rkdEBiQq8nd41URJJGThVfT3g5qQUu+e4tRdQr/5fvJw/p3lQ - l53f/OE7It+WhFJjJQ4c3BkRT7kr6kLw0sB7OxywHt5Ve/wZgwJFfrHxo0x+A/3Dj3/5ToHly55a - tWLgRo0rlgGR6AYYV5Q0r+TIpRgSe0ultJHeqM+xy8KKTuGUBSCVNuwxEoEDpe8QIkF9Jt7hWA3V - 8p3ZBgqhUpJLvZwpxYz0AG9cjyQg7/3EFoMKsO8n1kVmBsuGDi3/nDUL73qDSox7IsHPveQ8psxP - dJmicgNXswzxX/yfvTLQ0ZsLGnwq7VMojML2QE/dtLw4+YjV5rOHB5w4z8cyqA7VWhyeFuCb3JmL - 930LNxYoNfpcXIZc9HRSJ1iuCnqFm0awrj3D7kB7CLiWC3DsJlSln5zV/vG5P3y/MI/TC40n8CQX - xyltyj6LGqVnLSb+335cBfMh2ZsteotXnKlgjUj+wxP7lCWv6o+urMDNyeh886soJByvFmiC2jg3 - riPQLg9POZLLyx0bnV4M66eUZaABXvTGQL3Z8/VotlAIF4yN60ECVAj2KSU7PtJaflCnxVoLYDov - 3kOLwNtjvYIEFGXdeY2KoqHU3vwMbFAH+GqbXTjyQqCD+wPo2JOv9bCpJSpAa+QbxuU00217PR9w - fNQWjo9Wby9BuC5QvDMzcbJ+HibpM9UQw06fl+17rrg//Ux2xuifnsJHzpajQPvtUzLsrzpzcf1A - Z/O74t2+1KVafhBeltudyHv+XPysXOC9f/leDShnUybZJJSr+Rl7jd8M1MtxDdG42v/0uk2cQgjj - 8dJ56t05hFQ1HpH0p8949lZk9F7vU2BK9oJP5KFl3KpREb0WtSLGlR6qcWmzUrLQIcFOCi/DkjCB - hgx4HLE2vtjhJw7h+G/9FotANrpVtkHMhj6x2717lG1Ojz98jW/quOuBXBxD0B+2XX8Yqtfvc+hB - cXyf//h6teZrqaD0rMdYLyM32/FFgfZ8g58PNxoI2G9w7PrGjLqfanMoZWuw64MkvDvvjGv1fgO/ - 4rPt/Ky2t+u9DOCeP7zvkwmqSSZT/cfHZ3CPKFhOI+2Bdk4DonL3nK7T7RODP36ubwemmvLQ3Hv6 - KXdiXzdDXVX1lfzTT3d8Fi7hmM9g5ao7wanOZYufDBBCZsp2vlfu8xTHB8Syvu76WGyPqtmKaNGW - cj7cF63a+ewM33ePx+7peftPv/jjT3F/0gZqblsLUTW02MufV0qfU1fAwB03kuz5fkHS8z9//rPv - Wc+cEj4sucRX5u4NpL6pGgocdCZapI/q9vsI/T99J06mEGyeLM3gLHQfL9v1tanmlg3t+MNjq2ys - JrtzCng7PWti+j9vWHNfadEeb72PmSkh/2qmCE7Dyv3TW4lipxYsemfDJkzPw3z8xTHExutHFMFx - M24ZExHeGNp4fH/SqpXnUh4SrsDY6X8J3drOmOHZ/K3EjG9cNTHbu4Rp/0xIssThsPC3bQTbTf/M - bDO8K/r3fUMoTOR0mgd7X18PyfTziHp33uFoePtUsB/L4ue35MLFGRMPfH8cJLj5hNV6s+QSfebs - Skw1RNUkWowC8GwU2JnFD5i+10cj5cqcEDkDmioc5rsCVVtX8cWRG9A+/EMOjHvRY7142Dbx8kv9 - x3f+8l1IEUp1gJviTp7n89ve5ECtIbcWMj4/yjpkc+fsg/x3n4gdjn1I1e44AtpqT5x80i5b43J4 - QfO4HeeVrVOw6+sMpD6wsK1VX3u4NRkDSqlcPdDMSrbOQV/C1UCnP75h7/pNA6rCGbB8W0Q64/TZ - g9tny4juOnc6f6RYB9uZ9XCSNWw2D3DN4U/zw/1GyFD98TlwwOuF+Dt+24TouJ9j+l485iCfh81I - UwMevs8TSYenbW9Q8R04jZ+SuNuaZGRt/QcSmSTyxPdQqlTERwbkac16YNSoPVZ0XqC/CA1RzBGH - sydvo9TZtjDXnXeq1l1PgjwLN7Ljj4qtWcmB6qL4eF8/2ESbbUB1yjxijLOlLr/JdP7yO1FuJ1+d - LzddhPc1mrBxMuZwVeV7A7dSeJBz1CoquzWtIcG2GbH3qnC49XfMw0hP2nlh9FPFjeTQAwCCzju6 - dpFx0ufbQDa6QXIuVTmb//T02foF+ATPN9pWqf9Cf3r1jj/AXKiPGp7I6OP38e6Hi6tRR+Jn/UYu - xTuny8/ueGCem4d3+D/SrmRrVRgJPxALmSRhyTxLUBBxB6gIqIwJkKfvw3972bteejwohFR9QyWp - tkj1ZXElCH9x/Q3F3Y/9q0/8879CxewLLB9jLL9f4kg0fX7pa04f2X5GFkWnT30tdn/RAS07qUg7 - n8Zildo2g6Vvhchgmzqmyy9gYKASjXjV0yxWzU0UWLRdR6Jdby4Hbgzh1+rvyLD11l8VH+Uwvu96 - r3p+YszwpQQjH9yRernDGNdMl4I/fnRfDYM+/fCdwhTcIFH4E9HnP//vkfTLX70gZjuzDaETCvCf - /t1K0i+gH2YVednnQueofCcQZmcOnZ7WT/+ePtHe9TmM8GFyTjFbzu0AhXhDIQV159Otvmxwr4eE - s3rOi20dsg52qZwRlYS9P3oTp8Ayep2RvZzfdOuZlpc537qHa6/LtFs/JYaXfGZIMG3GvuMyqED2 - 076h+P60Ix3g9IXl7zqjHV/iDUmcBv/lh9czjulwGHNYBb6G9nqUvzaR7clC7593PTJQzPCJBG1v - fIQcfFsj+zldA7AqP5+EKHfpujZlCWKC/vzhj777Iymg6iD8t542HqUOEtvv8OpfjebzCYsF/PnT - 9/cT+Etd6Cxcf8sT6dwNAvpYugQeA0nC4Pg6x+MnsIa/9xkK9Ojr03weIdC9NCVGH76bNV/SVvrj - +0IXJD6+ad4Aj4F/Co9sRfWp5ucWHKVAxsxer8O7fwtUvp3JH3/E1RMm4F4wG9LlCMUbLL813MLQ - CIVd/60vM2fhVk4DsV9u4LMvI4mgtgCIbOAy/tpZ9SIfbtghuqHn/mTfSg2OySdHyWP+NEvajtPf - fAnFv/pdWjclvEixgzxfUgthZmkLSy99h6w3nkZhjh45qM3vJ/zWzuZvB6FL4OtKSqLZjOPjv/k2 - ttI5vKynR0FPyoeVO27jiE2Po77U2UmDF3OvgXiF6P/h/x8e736D0qxdbVTycWtZhHA40OV5iiaw - 1yPxgcIVkCIGDswj9xKKwTmmK39fLNnJohvSd39sW53jBZxm/r3XN1h9jkNpgmvkXJGRWIHON4lR - yXv8YMmX3gW9sF4L3VPYkD9/fNP3VXSTenwgdYFRwSso2I57vThs9vm3FBdNlK20ZJCbFHGxaF9e - kSO9acKnWxzB5JyfGcR+ciDR+5zs9QsCQXtCfFgXSqX/44t//HbPL/4ErAhDob5wRDO8ZiS7noAX - 44OQu0aVzlWHqwdzp3GIOjtjQ+tY6AB5poB4davR/YRdCyj9XCGTT4GO//gHFsCVuGHHFN3P71mp - F18SMpoiGLFuFxvsFAOGgBunsS/m1wYE/ZWFRzsbY0pltpJbpNno9IvKGHdfVYSX4JRhgoTtn16T - Kp0GBGkd0Xc/cZI4/Rkh88FcxuWQ6Cz8FR4JpWd8BIsTvr6wPZ145K3v2W+S6d6CvZ6DkgE6Df7Q - pZbjc1mSu535xZ+fDu8mq6MHz391ur7tBHyf7R0pO14sPBtfZNrxHkFKmsbL4aYNMrfWCjn1xQ9w - nwmmoBpxsPtPy7hqQc5KRTD/iJryyrjm9Jr9PysKpP+9ouB62k+JUZ99Q+1+qWRW0XPkDadmpHYF - ePBMzhwJnOGgL5OwXGTgNF4498Pa4Af4hTI6K0dSMpcvGGeRq4AAA5uUbnimbPC6LJDZyhk5hA0b - LkPnSWaqU420XEbjNjJwgaywe6sH/Q0mEs4TVNaTEm7JeIoX/zB7YFOvNko2n/W330vD8HXkeXys - xAZ0w0fKoHlNEQqnXPfX3+25waXuIVKm+jfSaXRTuMqSTk5D2MZUK3tPNmPTQPHDDQvOso9PqCfZ - Gsr797h+jRr8+eWy3x8Z18hveFgQ0cdS9v4VCwlnDAOiCshHsQ+WoD1tcHhhgzipUxXs4koThHTJ - kb4yPuD97+sC31mlkrvUXnRiC1Uox2GWkjPqj/HCg3qQrXVBKLVSoK+f2+UiL1rHkte3SwD1Pp4i - P+8QkBd9VMWW4iI9XiV8JqGynhvuV8VP2b1gjpxqFhY4Cx0GqPErDjdR//q88QWW3ExSTYwueIDV - 0T0GcnhqkRGEs74t9j2AEpDN8P04duPiHroOTjksUYmT3GcftvmU7wHO0Yl57X2LpTMrP313RMH3 - l+jbwt02ONxWSuwxfTX4WSEWHHg5JudkPftbFirwbz4RtfJHn58jCcv3YMqRvp0FsIywieS6xjxx - QpzFSx59IUyY+I6rM6bNIhv+F06lG6DcOmc+f3OFC3xkYkTMaQjowoWnHMxvHIaiUhq+4JjJU+5W - RcJw+g4jNWiuQf612CS3p35chSvHQmSOLTlltaOz4qlq5fZnIXJG6anA7VqJctSmBAUB+IBtXabl - 3/WF5bMFTQ7VAkOLNUJpOOnjUtgOI/fTPUWPYux1Nrqukdycm5AY7IMfSVDFlRyZ1Y049/bVEO+j - aTKrqDl64uI5CnKxYGg744k49F2P/N94Fq5fEyQTFlBhULCsmHxDjHO/jBP5XCzIlMuTpN/PZZzZ - fEqhac+EhG+l1+dTdEmgIq8G/m0BS3GVvnnZxGVGosIV9I0ZuAEUfj7jNyfYxSS4qSjP/QpRrua/ - mH4YI5XnrDVIkZcvnf3KeivHt6oiQS5hvdMVVZHvHDcRRyGLjiXEf+VGIwzRj4xM6atxFlCMdw7L - FQp9TjvnDEzVT4RKziPxKjy3So6eXUU8/XAdBUFYcpnEbEnuloGocHvlIjxKUo4STux8Wk5DBKVv - JKCcGGxMvPA6yCk8TOGxL7uGDnf9Kc8XiQmF41ECtF0iR55UPg7/8glVIK1leZwAsn/paRT6B1MC - CfydqiUs8Wpf5wHezg8fOTLd13qtzleiySCjPZ7j5XZ9lDChTEU89pX5bPvNMbhjZg6xaPc6XcUM - A85afYIC0wbCJK6a7JiWiXQy9cX6Kj9f6Fdhhhf10dHFdLVQJlX+JtqUVj6NUkmBpSBwWLy2u1I+ - GBIs0k1DNuOp49r3ySA/NrVGz49wB9SOAw9+8+KEJU7qR1ZXXA1mQ2kjZNbPZv0oH0kew7pEyqM4 - NpOdMjm4u5cXKn/+F2xns7Jktq1FpNGX6lNVdGoQ3+qKKFNtj0Jy6BbY1WggVqu0RfeXn5pbmCC7 - W9eComJWpCwLINIudw+s4lnjobY5T5S7zKTTQ2jW0i+/KMRMnCJeFee8AKwzbwytrBzJ9fRQ/uIJ - OZdiKta6F59yzJozQlBM/UEb+y98pxFPLppT6dztoebyjzBhyFiLTbd3+9QkmooOORc6jdfzEuRw - OZcGiURaFcv44UXIBr8nMpMp9Kev7H/hwcssotfCg65cwHZy9xMXEljmMm6vTQ3l4TUZRLU2p+H6 - ooXS3XsgFOl+VnB99WJA9NsGogRxpK+/W7oAfO8IKnmRofTDoQ5Ob65AmRprdPmwlgSvI1BxZIlT - sXpLFUC5fy1Icb5Q77xWvciu1IXkrN5Mn1PWOZG6oCmIaxkIkNGqNlm7HY7IfLBmw71uWwtvN+eM - GfeaFpuXNQa8cJcTsTlt8P/hdbs3eXU4tBXzNaOhbEbcEVlK54+ckSeObArfGq+cYMfCmGSl7DyD - EF1ppQLW5RsG4Ic1IO80Kj41QhmCv/Gw2LbwWcUdKugP7zPxZL0EXJndMjA6XLorHAUIWww7KNhT - j+Jvu9KNHmcIoYYF5OrbqeCGE3eR80g773xCb1bl8FCO/Ys7o7t7WvV1dLVIpk15Im5+lRqaX9dM - Pgy7Yp9RFa+HX5FDYNoopHpw9HE8mB6cr56LXs+upjxCliGbkXBEZnDo9GnybhWc0/RI1F4DYIql - ZwLdh4pRXHg3wMVI0mClHRRytdu2mBKmU2SLCz10Cs6o4F+n2YOkyt6kLNaAstfr3hc+yipSpK7q - C9OoplAr9z1+l18M2A6ptWyiTiHl7STpU/041+BnrgNxOluiM5u3qWz/Hh/kufZcbGdhSaE1GQqK - AFQLPhYgD5NfXqB4x8MtpIMjv3GASLbJiK6iXjjQta9VeHgakU5NmtZwQyZA7qbMxWLPwwbr44cN - lz1+twIME1zd7EMKFI9g8C0nl5X6vpAbyjDAjvUJZHo+aeSVpVWzyvaHlQHvbZgH+aJPV/32Bd8+ - fCD9WjrxdkJuK/OddCbaFSn+tnCvBeQf/Aq3iDnGy3FzPZjsDNmyn9VINytg4DV6z8R114YOgH15 - 0PhNP6ItPaOvi9NDeHzEEq4CoQZd0JoLlO3TA4tunNB5egEH4no7Ik3nyYjNu59BPjdVZO7zleN0 - AcJjNthYxHfZJ3q4lnAyL2G4VJzaTCMcI3DhohNKPhKIl+gQsNApZJ34ruo2/LpMG+Q3pSB5Fc4F - 5dT0KTNRkJM9Pv0tELMOUscSkWHRPsZDk4l7EytM4uFsAtZUzAqeLskXH/3tUCyp3UdSbzxk5Bdt - O67XjAaw1doVKSJV4nlIjxA+XmuIDOVt+ws6/1r4ZcQR3ff4WGB7ZYD1uCzIc5nJX81r70mv27cJ - ZbYSwcbLrAePF1klQXxyfF5CzBfGifUhDr7L+ta/UAgnOSDE3+wzxd91zo/VM02Iave/gtTX61fS - Nu9J0D5/lp7W1t/4kMf3HcXsc/xq8GKEA/Hz8uWvQ/sepFN/avFBVD8F1TyySSLzqImDPoJOdVXd - 5KvbYRSIitHMqVht0OzohYSp96YU3n4auPY9T55VmRZLFMAWiED//cODxd27brjv2sS0FmSwRAHb - QsY2Isx9x7SgXOaxUnxcKEFJPzVbez6wEMTiCw9z2lKcfHIP8sz3FR6gyPtTebyHgF0NmVgSLxdz - amU11Mliokj5ej4vJB8Lnt/whuKfY4yLuy6M/M5qlRhNJwL8OTwsOJ4PFfKaQYpp4BIPcuDS79W0 - dKR3Xl/gobKuYYtuoU8722wl0yYk5N1giWnMTwZ4X3hAQnxY45XTBQaKv29LnO900+knERegrEhB - 6hkAsC2BEUItRwa+ElT4m67lFfDPhUPMrdd9nhE/CcCN3BN3EwKdZV6khMONUrw+rleKHXUL4N/4 - AdFy4gnlUwS1XkvI6QffdMffCpjc7UbU5MQUSyylCdCYqUZeLGvxzm8l2K2ahJxrOze0XTIPzkJe - IvPaBJS65SmBf/nX4NQ+3rg6u8D+WmUk/+y6RjRGCXoHj0X6mh99KghiDlmaOkRZ72KxNuHdgEMF - 5LB6FPdxA+zNAZbh/bCcR7eRnC4NDxBhnTBSHx1YhMq/QHpGWshcY12nh0IOYezMESkeF7bAMBM2 - 0TCfCQk4D8XLiosLvIWajRfZYuJPSfQFNkN/Qy/Oj3xBF00NXm7jHO78vyGO0E7y6/cbd36tjbPw - lGopZu0ZneDpSZe5zESwzw8SB6pB/8ZDVjqDRztfAMtsTjW8VFQg/nP+0OWwdjxI+6oPxef00clW - HhNAZ2ph4ZfO43Z1twVq39Ul9uMmFPNTNBi4fuSNBNV1pfh1mh2g+5dfeBXoAcz2c0ig19AKi904 - N5SqdwZkRSegE+l/YOPq6AKZPmnIxXL2PWcHpZR8wU6Jssq+ToRBmaDv42N4dNcGrBL3k8BT4TdM - va/qs5kmLTDcwvefHtQXcRaeUNlXAPiYWZoFpvjyx/fCbeu0gux6H7ZD7ZGA+CLAWSF2cODyGCGO - 1PTzd7/6XEtIfyonfy2zVwYVWvrIdmW/WE4OziXrm0vECq7nZro9cw9G8lPc3/y5WZvwbMmf/jYQ - peLUkbbRz4C7/iXFnj8nLMDlL77/+GGMH4CEsqiKKTGLWtfZQ7M6QKp5iFAcOnS9JQEGyVJ9ULz7 - FwtqKkZ29eMnXFwvBPxvkjK4squG8tjSG3bHZ/nnP5dwpLVeCHt8QjIxH6RYyX1cFhpewFV8WJh1 - 4TCuhdeEf/kqZNlHOlLYdxmwPSlD1tS6urDrJVjSUEPWzzULslpKCftOLsgtq6yGWnis4M0yeaR0 - XNxM9gsYEvuDFNnT81Os3p2y8ihO7j++sI7bg4eVKzA7XvUNniNpAj4diz0/H/xFNBoRvsW3izKF - RPoSdjEDL3dJxMdNmeNpNCtFPlsfDXmc5DZTkSzDnx4ipxtz9beeWSJZMrSWaOpZjdcHFPb5ediQ - BRgNCIL36uC3HDK8APiOaRsRC7KYW5H+cHGBy0pP4fSr3yH3YD/NdomTi5ze4uc/PbbE3JhK7btw - sby/783/3iKwHeMuhPv8X2+JMUHfiRgSomRqVl66i//8BHWOtWYNrru76k0X8sSHc7FNkruA8NOV - 6CWThApyIU7wnV545Aq4pGv+1b5w09sLuVsAj//0+ptkByylyKDd5Sk9Afhda6QVbBhzB+2QwD++ - bK9XXie82Tmgu9sVXptfpveW5E7QTZ2FIBUpI0daNwEf0ZH2fMHQ37F81NLLoTFeB0+Nue4kLv/i - KULl2f/HHz/biyVq8xN1spJSk6Ii+CBjehgjPQ5mALuftCCNTTd9qx1+gD9eOKHdn6ELNYMAnl/E - R0588f3tLIgJzO7FhGyixyN9Ty4DR/ZEkfkc22L7nAIW7OOPpW7b/E4+00jmNr8jXhXO8coFcAB7 - PiMlLz7p8og0R75zwhRKhcU1W5uzu4PJ5eG7+Fn63/NCkXnVZMcD0D21SwnZIscIoXcClvzeDLLE - GTayRE4FvJlkuVSvtYXS7SI23+N3gNLhpR6RrvwGutrTRZH/8ONPTy69eueh8Pz9/vC22Bb7HMgv - X3sSS2rWeD7cmwnq/Gggtz4eCpK2JxHufhm6cKeILh8PJKDbu3QZ3yfWqfpFHtSaa0heLv0U+/hA - yevLL3oy97FYw5EJ/+WnnZ82K2ndFPKP+m+1DN+si/Nm5FdY3pEp0BelDrxN8t98e4bLHax/+pPR - hysy17c8ruWQbfAFLRVX76kquMOSWSDSjBI97NmL//iQzL82G50qqtD1Vc4tTEzHIWFWtsWkbIwB - Bng+I726kGYT6mSBwZfZV+j+WH3+8wuUol7/8j+lBOESAtNEWP5YDPj3+7FDovCdB2xDznMtyrfh - k6Dbnn857aUNcltMe/7VPmOX5DqUfzx3Ql7C0nibmkcO0JPOyERtGvMkOgSQHr0CnX5moy+/9xTA - z/Zg//nBRFfd3Z+VAblPn57SmG8t+JxCC8MAmJTjpbMkN9i+IDNw3Jg8mcqR9cE44NHWqP6nB0AO - fw+iB0lEt90vAiAMImR1ShrjnZ/JN8G/I8OFXkP28Qd/fEJ7oM3fBp2w8LLyF7x2hND1Ea77eU96 - EDKDo4zUgS8M8dq6yKPdT590A2ogzM82MSzqFhzfzBUMFivGS7y3zRG81wAQzE7IzY+novOK4AuD - K8BE8dR5XCp5lP7pJ5NJ+3/8DB5xesV8J3D+pLk/DQSm9CWu/XoXk53yOWCfbE+u002heLTXCi7a - wCLrgyndCjd/wluMU2Qf1CqmitdcYGHDDWn3mvHbMpEdmKtIRW4gffzV/Y0VuF41nejkcI1ZtGYd - 8KetJGbORPFavkvrz89Adh7y/lpAUMI/P8T7GVpM+wdfQvbuN3g9gwLQvHkb8tHKIJZ3fsht58aB - 52t2Ief9e+KEZ+9oxraBnIr5jevpOEtw7inc/YRLQYa7XwLn3V/QlQvPI1k8UAKtVxISLN9yXGej - WMDvCSiy52vrr3cqRdBNoBIek9+od1rR5YCrnYrEIvv2p/NUe5A5aCsydDnx/8X3SVTYXb87/lQl - UQqVzuIxAPuKDB3bLTxn7AknG/mCEVArgyf2e/znJy+R47bSzlfC+8ExwOagtwRPWBoQsqw1ptf0 - PknMQVlRWHzMYlGxb4BdD4XHYgn0LW+PLJRZzsTUJXWMAZk80LUlF3K7v8xrj6MImmP5I+F6joFg - 3QQPbrZyIuXrqfzhTwtvoWKT6HN4xtseT5J0e/yIn2DUCOxHqiEHop6cSG9Tusg6hge/5ZEPkBsv - zCGrwOm6vFGYlUYsqETnAfUrSv74FK9HXgjjME//xrvZzpl9AdWbZiEbgwoQKESW/B4PRrhd91Pq - PQ9kMN0GipQtEvRN+d1EeJvYFzEv+djsfnECiqNyRZE8rP4scUQCWvlE4bjz7bUDhxREz6Eiar0c - Y2r3Yi0v9QjJSe6WGPeMGMESzyNSd7wkyXo0oGqBECm/HAFsETaCVCs2zIa0iGn8EjD8WtAj18Qp - in988fjeziR8Ymsct/KYwt3PxT9O8/wtwy8W7HqHnNhKpMT4DCnMK/WOkIqqZtn66gLI+XNG//w8 - k4ET/G7pXiEL6pGeU6b6iwf0Ssw7paI5DVCAoU30lRnpEsxeCXa/DgP0vdHZWk0Nbjf9isLdj9/6 - lx3IAa1D4tbHV7ytx7784+/IW9MUzHW/lPDXZN7u5x/G9XAfsfSWlmTvil2B5SvrX5igh4r+rl/c - QzXIYXM/I6fg0R++h//w6k8/rfB4bOFquzlmLo8ZbJkZXOC2ZQN63hKmwdN1xlC7yUcSfnHWrHWp - bPB33LvWBN4ANpgdNlhefzVRJBbQ7TdtORw6PkQqdAuweksXgt1vIUbRWQADaz/z72aE6Gz3v3iL - w3f0x5dI8PO/dLkybSUL/FtFp344j/vvLyBqE0IyFlrFUjBGANjg8yRo0zBYOOWKYaCgCnPZXfPp - mpFObARU4i2ceNCtOI6AeokazK+HYPy7P+CS6PjPbyV7/ga7/7fj66PZ/dQBWDVzIF4XHmKaHLpN - Eiqe/unrggjvYN9RCqI/P3HcfmmoSc9HxoeH3c+iJwM6YKiOMuZsZR3Xy3jO4CkYbsgKpRfYsK4r - svRwZsxs0yfezhgMYGKKFzpd71+6qJ8wA2lf92FrZjew1x8u8NfkHvL6PqLTNyM1LFy3Dg+VZBbs - n35K16eOe75V9L98/ZfPSPF0Y/3PHwfBkBkYVE4/kpUkirzXK4mhW9w//IPXyyYSjZUM+q8+ZZhl - guz1mu5d5u8GLIjk//HHht357J8+CKW3GfhbQAoIn41tht2ulxZM1U02X6OD21FTwFhIZwaWbbah - 4Poamn/5+S//7nymWWmwOP/8PYNT3Xhp1M2Rh8Z1TkBmBbAptqoA8X18Ig013EhR20+wOGrXv3oH - nTsDGlAJ5jdKQgri7cmzgVyki0au7G37i98EtgEYMLfzKwzFipWX4Xva+eObbpdBGaAK8glp8npt - 6Db0CogyOSdu8vP9vT54+dOfeP0+5pi1wOUpK1/JIno/xzoP5IKF9fHHYlAdnHgVHMv541vo/NZ6 - 2kdJVUP/xBgEVdIn7nKfQvl2885I8yYDLEUiDhAajBYenp0Gtk7CXyjMuUD+8icWkWTA0H8I//j/ - c605AzxX6Yr0I/MA+M/vvkbNTOzpacZ8e4haOELP+PPHRiE8iSxQg28S3v/82uVW53/5I+QKDumb - lsgB2P2MkFGen2Y6rBUvN7wykUdHNzp9LSWB6uXSIHODxMe/1FLgF/bV33wfKcRxLle/55P8+Y27 - v65B5iN2SD9YesGvtWxARcs64qfu26+Tz8UB9UP5kaBZGdDvfvz/s6IA/O8VBY5MDHzU3j+A7YVf - 5Bd6AeQeq8dI3Vb/AjS4PfKDrKMLEY8eHNjmiLtXfm2WRjt/Zf1nCKSwYauPv+r2hcnpJxG37dhm - SUDfwvFHuHBp6yFerTx2ZKFct3D1XXdcn4dHJz1wpSPr3LCgg9sxAZyJXKTMtq0LPWco8PZofggt - Giy2ZPm00KUBS8zkAMF6be4OfB9sJWSVRi34LtY9+aucXuHRtoxxiT5DB+wrqInl/ORmMt4vDM+i - VoY8REyxneJPBSWMB6RG5ltfhSHkoRiTIMxWQfUpiKqn3HyvGjJGTxn5qdcs2RgdiNJfdSq2Pm0w - /InACwV17ArWs8oKhOYGUZjS97i8QZZDx3nLIXgsbbO+78smH510I6plSPr6WF48lGEfIHc+neMl - mZkLvEXwQUrhTJr9+kwWKDRJwn8PI22aPoC5TzQsxQ9e3zxX52XAGQ0y0PoA37LtQhheT8Xed7D1 - Wf/W5fIHvwISqsZYjOt1wjBARhHip8rE9F1WlizQvCXO0t+LVRgsFh7EMAjX1ioBr3+vlhxH2EEn - OpFiaRW/grdLZqN94Skg9vW0geoqsMQcS8dfb23Tyft8IcU3cHW6Pt6Z7AR1TBwm/oz8enA1ubk+ - j+FmvY6A5t9XBhtLycmdd7tmmXuaQMWcK6StI6+vxl0ZIHevbFQ477cvPKjtwdd3CLFsuDvjSN0U - Tow9YwBdFbBTztWy6p8QUStiA66pVglWV44lSJ6chlZxJEI5FyUSv6nbsMb7NcGj+XiSsl7e/lKE - TwieITuiZFSdgr0e40re4JKSJ8zBuB3Y2YDbXTtiuiWiTl8HXpKZN5+gE+HshnufoQHfB1MhtqvJ - xfylWQRL8yKg04OkYO4VxYJiPAeo0IRk5EKlLuH3k31JkY1XnzPPOgO9PjLI84W+PtXURJLB+WoR - hzf1gkteSwuT3eG0i7MVE+v8CaAKD+/wrM2mzt9vSwmvwDOJ+QCJTuv8osmeZTnEfvGNvrymSwv1 - jzkhdY3SYuOzrpXb+VKgdI+PNULdRRav042UPfOg/OmdsfJtwySchDNqpjNeWfkqtS1Rbm+HUpJc - QnmPF6JHmxOzY1fxkB/1iqDuYfq8mARPCOoTQs+x3vvAL8wC8/LjI6Ua65HrRT2FRhZ3JDA+33j7 - Ms8BFK/TF92Z8NKQyNoS2S+0FJWP5KavHWY9mdnwAx8nPqULnDUsi53iEe8jqSP3PKmK3Gi/DzK+ - 1PKFQ3x6Qr9QUvJ0L6eRlQd2AN8vHxGtl7/N/E40DxanFSLUPT76AgqehSibD6h8Hymd2cfLgPv/ - E3uqPJ+9CuYTZvWDJ6fTpwa0l50JvtpeJ1ZT6AV3PBqDfJwshDfsd2CdIZ8duzvasLTyNN60Gtbw - s6wKsX79Z1ztSl1ke+w84qDoPS5hkm7QrK0UH5EfjpS5xrUsl5IZbmV5GelpeoVQnd8aFkLuDbi4 - zDSw/z/yEKKU7vlXPt6X8l9+Ws/2+IX9Vh7Q9exw/lINQQ3P33ZDetJHPjlJWv33fMgJ72yxrYKR - yOY5OP3LP1tUXS/ydHjfiPe4GoDlIq8Ta6Uekb2aX7DcQkWDXtyUKDh5ur6k7CGDBtRNos5Lr69e - y7I7j71hiuVG30wuF6F+ZHx0IvY2bneG8PB+HTfkJn+nPr+ZAf5yLSCpKPYxG32GARaI2uHovFVd - MGN6gfeJNYjd9VosbN/lK+94RHS7C8eZfdws+FwfNjofpxxslDntpwzKM1E8QdMXbRYr+VEMBLPC - Y6K9cz1oMNP8EEPABzGXFmUJuCGLUGbKaN/zIu+nfGIHmUJ2BCQpjxd4C/onyg9KQLdH/tj7uMtn - VBCniuf9fchHCzh4mX5ssRrxRYOhTlfkR3sfNZk/S3KcFwzR/FMIWPRiNfgM+ZHo0jEBizQuITjQ - 64wMJbAo9/1RDTz6fQWUI5zottBxgbfSloklP77+EraRI7O6g8j1K4wF1vF5k/m974klkrPPn9e3 - I//hawD4Kd5c/y7KV4FEO96p/82nd5HDyHSCB8CPztlgPr+SkGm+1ShkmxjAiIwZhk4Z+uxmVgyM - 5/iCTIEkBav3SQaCd45QSfMfpWYMIti3pYfU6QjAMtZSCAO5EDHnBA+6PtyqBKLBhyiSnC4e9cu+ - gqU0rZCY6UZXRS4UmHy6lDia1enz3/uxtJxBSqsJI77flqcc+UeAErQ+KDcZ1JEH/m0gX8Nl3M3r - oshFCxFJ9zW8U8PDCBwnA6Ek2ftsH6lwkZvfNpGou1/8Tcf3RT5bF4/4+scdWc6Yc7j5mkEuN+Ha - TA0cRNBVuUn8hD0V/JBcOwji9EwUq7JHoXlsX3kJPguJJgbTZfgoF3nHM7yU1oduzwevQbM2UpJ/ - 8hBQ6/wJ4etyi5CiAg8s4s3fwLHrcxTb58TvVvahyOrYCMT58ZK+TU1RQvb9mkKoKLvDF2yefFD8 - FdkMUgo+8PY9OW5cIaQ6y7iC0+qBP7y9ufcbXaQG1HKorytBo7z5/+YPGj8xyTrgUh5yXSevF7nH - T7qwzXJmu1K6rWcTqbPG6vQzLZnsHDyMDHhvC3qO1ApWLush9EMPfXn/mCc0yUlFnh7X/kpcHID0 - majkPs1MQ+o816AhPwnxkLUfTyaqinwwtQgFugv17TxuFXyvVoBZXs513Jk3Htzz6ozS5jL6dDoe - DDC/hAPytrkaZ4WQ6Y8vkkc9Yr8TkW0cT3zyCMXb9PXpITafxzjME2QeWCbe9uf7G5+QPbdaw5mp - 9IXfK7RJxEmWP2YD2POraBIrdc7jHm+K/BOPHrLUu0InxxM7GRpvjVzP3Q8smMtayKXmhai3D/bx - pZ9KuN2VI9Kz6gboxQlYMEf3N/6eJRL3f/gRNVaIj953pfPAcRFkygOLTAyvBVUULYcXL0Ho+sVU - n6H+zWG0ygHeNOdVrLPXb3A1jDFklcACnLdVHvwm9YMEtRbo/D5ecGk2Ha+Mfi1Wv/4u8HtpLijQ - q7TZx8+SvrQo/vj4uCzdYYH9xbuR0oEK5WWaf+FjqkVijcIPrNxyVOBr60UMfSyCrsuyGjwOWYBl - 86Y0bKrVmwxNOCELfjO6TgbwwN0dHLL3mSpmoJg8uH45m1wx5IopsH8aSGqqEWTyn3He+YssYd/F - cf8++ksrlSzk/csdGzo3+RQmqiZ3THYkLvLxuMZhO8n42M0h34V1M29l8IU1552RwukiWN7zvDuE - jzP5+7zeZ2nv4z5OSAtcq+CX4yUDVotXpHCNP1LFPGqwOFFIrEte62RyxRqGmUXQH55wJ5LW8O9+ - Tfq+6JOaP7/g+XZe4UfI7pS+y84CmfnVke8PcTPAvUvDHEcc0YfMipfDUXqC8tYORLXAL56zRRHh - 8zwpKCuCuOCWq7/j0WEOqVTnBWVQK0nC0kQElaoyCp/7swQXufJ3PZRQ9ly8RFC/Dm4IEyIV84MP - SzgOHxd5nxzTKT8F5V/+JBbBaJw+5ubAz0IVoh9+PdhWIUgkNwIq8uaDP9Jsdr9w54PIEjO++eNj - IK68H/IHfaHLs9sU2WLdKBxnKWvo9gQSjCi8kfOuV7B3duo/PRay18Ir9nzjSJfJeCMlHlRfEBlP - gZEWmiSwhdXfAuM3wT++ZXvRx6d/z4dKh0XGzq/H5SZt8Hu2u5A57w4SSfIQuudnHVoQPYt10KsB - dPCA9k4jLx139ixB+qw6Eo6+AOadb4OfOYeowLlfsI/P/QlNJTXC8SYfABk2Dv7js7asZg3hiRHA - R45M5Lis0GxZ+L5Avbc0ks2XNsZX1vJkjYoAqfblDSjfP77/9Jj/WNpxDY7vC3AvYrDr0TImu76B - KTP0SF1/C6Ch3Fiwe1pnZBWnt7/M074HdMcH+8XrOgnwfAHSoaX4ADlQTMO90aB72s//3/P7uucf - aEzfLwp2vOVnLGJ4Ejab6NsjimnavxUYSnlNwuvnCH7cR1agJ+IGodN2K5ZnYU3/+Kwhaj0YS+4a - wKiuZ3xYI0PvjytiwH4iGlLnxdUFI7pgqIadgbzI9+Pt5itYTgG9ErddJ0D8hSaQYR0bPc/hodjG - 1ybCD/qG4XcqW0C9+bLI7OWLw8PkJ+O0LPApLduoYiENeEDe6fEJG9UHBIV922x9JFtwf/87HmKA - h+TR/dNLCfYKfef/HawfBwYZAmv/4bnGWNfo8qf36WKw6/CPfyDIFfGu1xj4eWkzsr3I1NmW/Yag - kTqFuFZGxs0VDiJwyIRQeppmnZ7YWNq7JPzQCR7Ugj8/7RCEvybEc0IPI50PHwzaHHbh4aLcx+Wu - khBmaRkgO+RUQH9dEoE8UlR0L5hTs560pZY3afWRPzdPfcefEkp4Gki+nWY6Da97B4vEsJBSqKk/ - fQFJwGOqRPTcD+1g4+E6yfK8hcRslKZZt4ik8HUNWhIn/aLjWq1Secd/Yg6fHKztc2SBFGYaejbW - CdAAfy5w1tk0XHLxAcaT5FX/4kHD+x7+mlkY+UMkfudfMp1zuHR/fkBIZwJirH68L3QmFiDV24hP - 58M8gXRKeHI9H+p4baqjBJM2nEL5LR99euezBTKhxZOwsU50se3Mkt06GTGM3qJO2bospTTQQmRX - xqehh4y1YKI80K4PGh33fljCA7/V4fwfAAAA//+kXcmWqjgYfiAWIiBJlswzBAEVd4A4gIhMAfL0 - fbB62bte3lO3LCHJN/3Jn4/SVmNyF2oUHrsaKwaX5OShvxs4hwIh2U4awJITPYGH8+UTLEY90FUb - 1AGeLlmLlYKO6rrlCaAkdkyOzOLkdG3mGhVbxcsxn3U8448wwdcrQtjIzpQul6FNQKeeLJLKxO9X - pe2tH54G6HNVVap6ogXzPZti7+kyYLYVAAV3PNtY09SgWk/y4QWao95OvJz4lH8GcBUpw4fYrPzU - 5b5lm8HNHxHpjoV46O7HDvVO9MT2Q71QisFNgiP93HBADh5dgr3vwJfMnLBvPeJ4BSn/gJr4ybE0 - fJKc8h/zJVrX3QdbTCe5/OPosCD2rjY2JPfgzui1Y0Al22CaI72kM9NONSxftU1ipdqpwzJNGeQK - 50V8tQaUkkxi0bYLbxIOcOuxISbcVrFPCD6URryPkziBm18lCje/q1U4cimMPaYLqCEe+iVb4gxt - d80H4Pnx8vn54UroFqWE40buQde9JPjnl5QuearkQw+P3/gTW5z0nPVjLYJ36dDgErVqvr2/GW55 - GVGUdlXn2pI8dKnCEHuwlquVzK4HnX084U0Pu99NX8K1vafEQjSi09wTQ9x+TvxuFtTF/xJRZBMp - xWEuVPl82Cpocb5vsfOuTHXtklv34xciKZEeL3EwTPBWeCGR9G+WU37gLDRptwY74jfKyY//YIye - gVgwTr7sKsGAw6PNsC7c7H7/0z+bP8UORhZ9d2rbQbnoDlgOvhzd+KuFmT/4xL7vT/lC1F0NNv8x - CUbi5AQdV0ZU5cO89Xis+q4oDzWokkOKPXcS6HJgQAhvo3ElUgQ9lXbrnoGcHQcBwzMc6Pl1mGGR - jGd80vYW4BKuCODEf1/E3/BsfATxA8FT7pJgCM2Kc70hBfP6lbEUvI8VW1yhB4+HwsD3vKiqhYkG - D+4+Z5WYeSuB6erFHrTAeCBR/YQVvc6dAza+IGZQfuKJGkqAPGzkGOeFWs2WrkhoyxeIrs4HlUKr - muFvPV5No66Wd3GbAb9DE1YnpLoUg5OC+Ncrx7I+3qsZzX203d9WE2e0ynyyFGVA6nvr+sKLx4pl - ppMH6+uDwbq/PNzlK1kG1PLpFiyX96ROV618AOZWnbBSCxeXTd0FQrqGBsGRdK2mjd+g52A4DaVb - x0SPt5bdOd8StcOBy4ZV0sCDBlCw00c/52yeF6CHrsJf3r0Gx3sBNFEVifNdvvl8byoGProhJnGo - xfEz2PsWlEujwu606HTlC9lBXfvC2NelRv3Do8IYnli1zhVd+/fzAX96Iu7SJl9EJ6zROyxSvOUD - dP9MHOsPT9T0wdP+l9do+XAjWtf5YF/XWQklUfxgOXgw/ffa1zN43RAziYkSu1NxDEL4lYaRaP75 - EfPaWU5gx8OJZDEb9ktaNAw4QCad2qq9gGkqd4lwQ/BF7NFf8nbl9zXozauPE9AT9ctEdQDv/Ouy - 5cdlPGlf1EHLe8RbHgzA9nwDlK0LmHgWTtWEu1YBJ51hiNFfTi7tNVn85ZMbfgz52niOBLJS2mOj - ilx3Pk4HTjRYNyRS7RI629IoQAWz+4lt9MUdkpEJYaKKGtFOeZcvO4e8RPZUKD98BdMCRQieA/Wx - d2W/dJH25wQgFIwBFx1tQHvNFuG8+Bes90WrzokchkhzuGQ6XOY+//i7g/PLs4Kncu6qhWOv9U/v - EJ+eEsDb5MFBNlFSouwPQkyr21qDN64DksZlRZcpFhgQfJ7BxFSNVLGP+iT+6gvTypuS246DnUHO - mYSAOV74auUL24KGkjLE3fKjXx4BvuX4nHZB5Lg8cwsDdB7OHLGcvqY/P/7LH4M45dd4tXewgeLD - OhH3+lJyrrwxkniAMCW/51t+efPUBQFx6flVUX+4BCCPugLj4Kv1/PE0W2J8D2/BDnknMDueawEz - m2WSidGFrtv4oTk6X4mhzXtama+DBk1gfLFH1DEeoTqlQKjfJ+yB+xHQdw0G8CWfbls/Y0zY7LLC - fWrcJiaXK7CY7zlF5Jqzv/XYL/PNcmD/GfdELuQVUOAsHGjUNvl7n6vGPyAMTjgPuHIMYpqjq/Dj - z2kxoyft92+kiGpCNaL7i+TySXEI//RsKY0h3epDDtz877TnCRuvF2ttoQm0L1ZCKVDX3B8nuNOl - EGfjPQXTSV4eP/1PfCn/xkRa7xKAYh1hXBtdv15UTwKe3y7Tnjp8v0iqPYCmgpAE53gCi2QJZ6jf - lgtxOKDQ/ak6OmjVRoC9K1JcuuUNcNMPwYsZ+Hz55dW/9cAfuqrf8lERbnkDvuTHJl7zq8PA1qYx - sS6nviKS4HeArQoeR1s+sObuvYOderGIFFFKaXtoHYBmTSFqEp2qke8CFrBBTIh1V4G7bvU9WJih - gu/zwa74oxMJ8KimHJGZjNAtn/IQcpSFKIp1jwcXVxOMx2NETrpXxfMxv4gwus4T8VXA5Usuvmqo - hMMOq2E+0p8fhGfrfSVyElfxanLvDG7+nfz03Sy8norYZt8iYLLuG//576ergICLMkXlVFbKILLe - JjHP1RKv2alLoZ8oHfE/itXTXe5Yf3nqj68XdLHOkA9mFLDXr1ftp3hmAIb3YuJocXfpyeNFWN4n - FuvavgX0509/9UQpExClu4ewQvd7SPB1jR50XZbTAPlgRROyLrlL84XtUO0+bLzlZypZ47KDV1v7 - YHc6xu6m3ycIgtuCVTXzYo7MbgDe6+ySfLea6hLCIAKbv8HOY7+69e19LJB4j9xNbzXbibPMAHa1 - nsjPj8+L6LaQjjtzQtBK1OHWSxoiHV9iKwoLlTUpZ0DZOgFszPHQD4i7CtCamyuRtvoqNV+LgSZd - NScxOTxyUqUuA+kaGTg4QTaexfQcwoeVPrBRS494fiOU/vwDCZ0LiYfb/cWixH+Lmz/8uvNbFy3Y - 3HsUsFv9cy/sBw3Cet8R1yNqPDY0DBFMWQmH92al9CB3LfS58+1Xz6hofFHaX14bHDjb6me5lQWo - nfcMCTa/v9wdkYHn6/2F7ff9+W/++/SKNzHuWgvGSxeFUDp/vhPEMFe5nx+aJ1BN4GleKy4WheRX - r5n2n7cUr6sVhpAvcYH90zPpRyD5rMDMJCL4sJcoebiJh65fZsbSvVnBMlr5BDv5UE7o1Qfu/PPj - BNlHorPYzCcvlVtohDkNgDhe+jka+hkqOE4C9NNX9PNlIVj6ibjrrlWXY2yxIBLNcyCKEQ/oljf/ - 5mPAWYzgzlt9Ej6dLYFoplhdUCKGcFJlGIjr+Kha/i6V8GMOVxLvPl/6ao5CC+kdRviU7Aq6yu+t - h0R4kLHmn6WY0u7oIFw4LPFKV8tnte9KuPFnIEQhdFdQTha4rAMhQdbZ8XzSZg46TTYTg3WSfL4Y - bvJ/dhTA/95RcCw0BhsPbazW7tq8YKKHIsEboi7sGxhweBcSiSaTVOuxOHcw5+Adu/jNbXvSryUy - Fo2S8uCZ/b6yLyukR3Ym2esixFQXjiF8tKcK6/T9qtbROzbwfNNkrN6eBzBrIh1Q9+TCSWQXI9+z - 7zATv/HcY+1qG+p8+m5dJnijw/on7t1Zvcwr0rOoJPKa+2COuJKFRmINQX5e/Z4/aU8REuPoB9Wr - xv1yIDAAZFobop7slzrAJyuieeBcbPrbvdRX490CVGsesVA+VnNGXQWWDycPdm1tqsvHmyO4qu2D - WODoxdMABgPmIPeC1gSXnghaJcKb/SkmakPX5V/k/oCnQQ/wmWGtnDs6tgOnk6oF801btiZAugjv - xwoTQz+jeB38kgHSnvEIjniZ8us3apAQMSVJLjLuqWjbM3KEJCYpdg75LIiFArlMlLB6Dsd4beNH - g+hx0Em5S2k+ELuYhaOHvwFk3q+cewetgl6Abckp6o1qZfM9A9eiEgNxL8J4fs5sjVAoP4j+Cvfx - yMOpgFUKMmycx1PO+ZXCoMmEEb7lVQxIv7W4GnvJxQp3K/p5vY8FkBqNJ/ZB1/phvb9LqHlaQBKP - D3rOZ9EMeV2uSfTcpy7vLE6E0i/ht/Ft3LXKIYRGcrwQ89pMKrWClwTLR2xMK/VmlcJBm1B4zqzt - nkEj57Iug0D7Hnssv5VeXd/4nULRZ2wSlIXX8+xNVdBISoG4DOLcVR4eKUzRWpFy2c09eXyPNUoZ - +UBC83qJ29a1HvBC9l9yb1vY0yuKWPC83mQsgVUGbLqLanRnko7kWroDy6eUMvhoLxVx6Jy7ZBW7 - CUm2NWPvYzHVNl9CJPYKIBJ5dPEQKk2Balv0iXyj33wJaKBAs2kZHMttC/gl3brSM4VO4tWMe5aV - pQxp37gnjpQ0+TIe4BmylzCclrfiqt/62j3EjgsRKdj8+VtfEWRG5jpVFu9UHBVWBo60C4mcTi2Y - q/qtoGScY5I9g1c8LbpSw+EwK0SBnxtdXRI9kHt6zvjIkFBlM/qe0P2EINEE5lmxl9tNgt0TAqyL - bJ0T7VOxCJ6lDwlyV1L36HIztj1dEVGK+VLtr2yooUpLFGI7XO7y7BQ7yD1FWfBdBL/n+OC5Vcxe - F+zctafLp/ktgp9QCrGZVEI86+7Tg/4YePjoRKG7KqGhwSd3tfAlqYR8KZyWQ7jo3lN4ou94doV3 - hG63zgqWDQ84Ig0DvBL7gn1bD3u+G9QJvYt+v/UU+LhcNDYrtLv8SvxmktS5daUXOgpihs0GNSpN - M7H5m1+uib/VdE0fFlqi70hwk+mA3deTIh7D8Iy1YUooa4bfWTQSScZ+VtKcSpPIQQeCnrjxU3a5 - udIgPGh3NEHD4+nchbKBtvVJzDlj+tV/PULES+QVsDvrVc2u4DRwceR2WsHr5s73nlXQhk/4qr6n - ftVU7gV/zyM860/OfTmJQ30/3QLRH22VNXZshNa9uwuglwQ5vV8NDuolz+ELu+25919tBK/VmQTL - uf70lAtpidL1AoOxaJOetZ6LgIjMPYiTwA6QDU+RJEbBxD7SDxiEryvATzvvsA9zPZ/xw3BEUFhX - HHfCEczcPi4gByOW6CKr5ZPtJwxAbV9PixO+80lBwgPu4j7Epiwl8RjxdoCyZKyw9D1/88U5iGfo - VZ8Tsa9RTPnroEy/+UFK5tiq6/mEO9hdPZcEZtfQ7e+VqHxYOcnGV91PZzVhwYaHWNtZSr89Pwsn - L0qINwZOzGlLCyGlfo1l9wry5andAzgGhkY00eSr6csbnjjVwhUf0znu98UBnGF04p5EHrCirsWt - HUQC9ikueaWJqX/VWVTM7IhvqAYxfd0cBR4KdMaqsjBgKm7tBEsBOH/za1R6TkHueucJ3vBmaWU3 - g2SaG3L1pSKnCOPh9298a8XBbRekO1DSJpUoz+XVzx0zC8ip4w823maVr5d3lkKGG21SHs1dvu5u - lvLjJxzMgp7vL/KoQcqA58Rb+KxS7tkKyEjLCVvb/FlK5hhApz5+sH5zEzr1V5cDdZ8PRE/2Jvjj - s8P7kxP78Tz1/D2VS3RVjCZg9UZxeX//sCDzCgtcVPtPPO/egoZOF+ph5xmO7mqay4QO73dOZCfJ - 6NA/gQiO6GTi0mZblyovqUa/9VHrrUdZ/kJnxEymRgJPStQ5CDgFyuzRxDJfVv3KDdKA9JdY4WKM - 7pR1PjcLmqV0wKF5GfoFXfgZ/fjnrKiGO39ENED13E3YH9ET8OeP48Bvi1MSTXaWz9fXqUb1rkhx - +pmsnP9mtIbyjr2S1FifFSeN71UcmFNGcP88upxfvVuonh8qOe3pIV9uk1Gikn1b5Dab1XZvaG38 - xnfi+hirC16lDoEa2FONZ9XlKsex4FDABh+ZUc/5nXIqRDHQWFywN08detoMqGuu7bTwpVrxpIYD - FGY1nJhHu3URPjBnuIsfb2wPi5LvW3nSAOySL5YEILjzMY4FVO8+Kilt1lLXeugy1HQ1IWlsVGAd - y4+GpmXnEocO74oqNB1gJVk9OZZiUk19+nTgNz6csco7dj6THNfQDOw6WI7PIyX5PSxBYpPPtGdM - UE05sDLkawMNHkb4zOc5GwRQFub0W/8xddQLBzvdvRNTPViUKysX/uH99eLc4unLVQ/EqsaBGLik - FWWLR4I+7brDUn1swcoHXwme4ruznYE/ubN+SySoOxU7Cc/azFef3c9wNzhfrOjMQufm+67Fq/Fl - AipgR+U6Ewyidz9GxBGBGe9JvkBoityJOK+LkBPlZTVIKeYHuUaymXOpKQ7wY2bulLxvVrxufIlY - hQmIZUEF7B+PwwN69xxNdd+XYPl9XgCyAhthleQLTaQQruqBmzih++QT40U1/PG592BuFSF1JsFG - hj2+3Kc6/tqXyECbfsT6nqiAt9CRQ7zU8NgUXywgpclNMGtnTIw+Ju5sa1EAGVmJiebtKzpzRtXB - cKd42NQYu19UWJXA1yZK9O/Ny9eYSTzRtqX3VKtl368McDLxbAkduV5DW91Dg3Tg1lRVIIDjkA9S - nImiB40JO3vOADQdxgwE0ZoS7Qixymtt8IK6Dovg0H1dOtOyNcDGN1N7ighdL+8og/GwPEgRPUSX - XqFgAcKHEvE2vbJs+gXWrLwE63MvuGS/s2q4Pni06dEin2OTKOB7L9oAjtEOtD++afy2JXLvPPPh - Oz5WsOlZbDBcvP1+FcF5gBze+Nzlw9LI4OnTPbHMjO+c6E7DQV4qPJzGhgp4FIwScGV/Im5QuvFi - Vs8O/fg7zASdrtcOtSCI5nTzM5++bdqHB73P4TJt/FJVvG40oLsGLpZL4Ut/6wnObqMQ1eK7ajyT - NfjTv7/5tljppYQvp7ljzRnHfEbPLBCzpPQJ9sYHWJ6nTwKnsLkQL23eYKblw4DR9AknsXC9irvT - JUW0sVaMnbcTz1VcCOCgBR/sub5Cl4qvRZC/uhvBTZnHRDifJziST0W0WM3yRbu7M0zf1h2rnXCk - C7rsZqCFL4j/5lNG3U1vH42JuwnPiprDkMLqWd2JFxV1Ndf7rISH9PUl23yk9OJsPWJ6ySVWdtJ7 - bmFvBqTn+BZwN0Hu2fFzt8BwEMeAN/QELJYhMz+8Ixv+0sWoPwq8H7OaKDpzBFQXAANFuzUnyukt - WPZWnv3hbzTHoJ8HqkmQVNqXJHvlotK6wgyUIyGeRBF8cmphb4A5uHr4+ONz4R6scH3Un2Chr4Pa - auJRQtqy6OS+zhGYzzd+gDt8FwJqHU7xuhiYge1VuJE8Pwh09EbL+OlJ7AbFo5qTzoygkTjDpued - ePVZtAKu6mbs5Na5//k3se8RDbJ5D8C60DUVWda7THz5rcDCvsNUvPsnnlhS+6jGsZVfcLHniJie - K/X0CbwM+OOZDwR5OVejN+kFVI5ahf3ZHsHs2fvyD+8O5SWJ51zLA8jdz+OEQCaqtOSahzi8yTnY - AcXJ6aH5ltDllu3WMQ64y3V/K4AYZXxw0Nq6WiZXe0Dqv8aJjVUxpsK5HMRDwfZE3y9Tvz4/Tw5e - lFUIar15ucPZ08Q/fHVP46gO5lErUKI7eEq8wzVfJUdyDqLdmX9+jp7OxQRLkw7E1joSkyCtHJha - F5XYTc9V3705T2jz5+Ss6DOYfv6N8NWZyIdWo/MkaA04vwcDnza/QWfzpqBIXvbE3PQLGy7nEJrN - I/7zn+NXegzgYUCCT8YVq5Qd5xKptHCI3p5llxOWHsKVFb44nriPW3bmVYGb/yA+qvN8NnfHBlwn - UQ6+5XXnUu0jO+DeKS3xXUZ32aJJZzhYQNw+7+n+vb8ZCxoOwSrTH37CVidGMBGq9UttRSnQPCMg - 9rC84kW7NyVop5ODjXx6xPPcZ2d4OzIutvd25tLPiUqIeeVmIAoaqtbBPzMotU5qwHTrtVrsS2bA - 7ppwE797dz19is8BmqVywLhIxHw4uPYLvJzRwZgV7JxWE8uiajQWjJvsTUefEUV4DKuB/PCSStI4 - wHWvJpt/e6iUXw8SKIX1jv1O5vNFm5kG8FcjDNi+Z8AHDCQDq0pdbDwMIV7yry6A3Yf7YGWO82p9 - HZIOOYQ7TMPlqauz2hkRfOSWgR1xB+n6e9+s8LpidVFidRYLNoF2d70SlYBPtRzms4D2p48biNH6 - rebvjovgzz+eXuEpXjkEHn9++dSenyq18Ge7pdAy8VH3cbWosC+3M0mYpADLPS9NIgtDmmBSeMmU - Eyt4KbATxw4X3vnwlyehTb8Th05zTB1lb/2932c6WWA5zKUA76cdDA7rTgArA5QU6oZpYi/pQE6u - aLsl4tmJAbfc5niW3voAl9LbTcttOxMtSt8J6uD1IT7RRndSQsOAxtDpxDRUx11eza4EoS9OWN30 - CRU0O4Bn0aJYMsJnvNxyAUKUXF5YDTV58y8BJ27rDePMCvK5uYQGUkm4YllVp3y5sqEBq3Ql2Nr4 - dxHuxoxec3wmflZYPYVQtMB6YV5k+/7x/MsjHspLCcRN//3h38PNi02v+yp3UI4lMIZ1nhgmjsB4 - bOJZXBpew57KyC57ISYHHTIFWPP4qR+5a/UCDTVsHC8KVRdJ0Os/f/rcxmcl0jAd3kXlTC80MPn8 - kl8GdOChx8pj8gBvMhcPxfDhEOWrXemc0XH48QN2+SnJu0V3avgR2iTY3d1anaVI8A5LeepwcDs9 - 43WfzQ0c3uOZOHfDBZxYLxPc+BCrr1cN5vFzscT328XBDz+rHuUcGEQ1Jdo9/rgjOosZvFz8N/bK - demHR5AkyLoAE8tRi9ylzvzgpxeDnvtSMLmynx4eBqcR7HNnwPavcwOfC8x/z++uWz4o4kMpB/s9 - USmd4qGGN2Y7A6hVQ75+FOpAYjivYHeVK3V9ttoDFntJw7JXHPMpg/oMGWBz2HL5l/pb70ix3jbx - 1tgBFKKEg+36ehH8vIp0nJwnizb+wSc5UsF+W78QTl1Pgm6qVWKOpoZqW/CntQdqtd+5+gs6+YPH - x2O13drojCxkSkywJZx9ddP3BTyGuRzQRWrz+Xr0C6gbuknCZNLAUjLX4LA0iEw7b3zQ2XouItr8 - Az4LQ6Qu93Ca4aNWn9Pqyma1vxrvDpp27ZGssJ900lTmBaDMh9hbj5JLo2PioPu6pNi8NoG79leV - +/NXke9aYC/4MUS320qJJ34vdPlGjAd381me+N3nlC+NnzHw8LQmjI+sp5LDp+FAPNDHRM/Bq986 - dgvQGowS+xKp+rV5oBcI/VXFbr5X42lX+hlUiWMSXCRZPt/sfAX+6HlkEwdgQYYHgRklEAesvdD1 - tHodNIZWJ8n7Tt3ljp8ZLIb+RLSLTCqqvPoIxG46YDytt2rY8hH4HNt0OoyiEM98ei5hq48GweP3 - U83YF9qDtlAdm63SgPWNxxQ0VLNJ9knVeP/TT1ejiomdula1XngigEuQONjY+HOWaymB9Ihy4qXt - XE2vQ9FBNYNz0AopD6jClhr8uLsqWLO6r9i30XWH3/ePj/6lH0M15OA73AnYY95KzjKq+AAxfDlE - +fljHORn0auKDp++tyEeKwE34oRet2kRKi3fg6h4ge/cmNg7XoN/8XJp9tokbP553fwe+OWD5qYH - v+Xu3MC4Egx8/fGfha4s4K9aiN2lpjG5bIWQOmoRUYOdRHlHyQqIlvg7LW9tTylP8w1vLx2Rvazp - l3d/S+DGl3jLV+PJKZ1M1PlLiOV0ZeIFHBf2sF7gC8ulmPTzpl9gNl4+xPHHr0sb3a/hDl/8gPzG - XzYbBaZorohcISfmS05loW7gdULcUXO58khZiJ9mTKSb8lGpV4vDD9+DdEKdOxm85/3pA+W33piv - KcItXyX2iiaV7ORQg8rRD/786mpDb4W6zhTYcC5W/JdP/H7/pw+53Asb8cYIx40vzX5ZV6cFkpge - cMAcrd96WyFq0wCbzS4EVJpSC74P9yN2pPOizsROZuiYmkMMO/qAJW+tB7j7Fx5rFJ3jWf1W261e - c4F1pACX/um1b/mcmLqu3J9eRx+hS4izzccVgVGDfTCf8WUbT9r1Xwkew6scLJd+BRM+hwMclcwM - Zit7VRQ97hzc9CfZ9E8+DudDCk5zfiSGdoRg1OXaQHDlVGzk6wnQrT4AtDA7EqOgT3WW92GJrtnQ - YW/XvSgB+SWEvpQtONCWKB57/RmB2a0VcpOWIF9aArxf3ocl/66q/EHgGGB3lkqK3STE83dyC3g1 - njHWC82uZjA+V5iDbccfGeRq6qxzim722ZhY9cHl4+ZHQN8PN+K5/gsskcUaYMsnCAbGHayMtw+B - 95mH6Zc/k1dppoc68DA2o8sQzziIz2jLnwL4YFDVnm/89BufYHdANuB//kXlRR7LOhZzuqROCcPz - g+JbKzzjYcvjIaoNL+DVQ0s3P5GhX150+hylnDpKVKJ5YF3y4+/hOzUO3PKD6f0K9/kv3xH7AMgk - wMzXpfGrDv/0U3T/yDGvH8oOmLujgn3hntG1/y4hMpuOIfJbesQTkRQFRvLjTm6zK1Sj4HMtSL1X - Ns2Qf/WUWT4Qvi1sBfOWx/cb/v74LrjQ042O99DTxGNhMMHrqx3AKtwXC7aZbGH9aXfuAiqbgaoS - yFje8lZyiy0RXol7mbhz71Ss+pWEP360RzGNqXxELBiV14rtgY7q+JvPZc6l2Fvjji6i9B0Eap/O - xL44KJ818SrBn1/b5oO71W9S9OM/gxzruE8ozCBOkwpfPPdRUeEEFUj9b4o9Npfz/TfKH6J3tz4/ - P9gvc6gb4Kc/9IRf+7XKswgYeJcEZMP7mU/LQuyxOhCfO9bqwl0lVky/xZN490MBeti/JFRJTj9R - lDjV8LzXJYrdbDvnG1X9zw/A5shKE+/5W9d7/EnRlmdhH73CinNlPwNHz/9iTS0edPmUlQF+esFM - 7gplm8u6Qp47jkQBjygfOkYQoXVZCyxfRlSt9HBroWnzL+xz8UTXXamnaOMfooNDDUjJTQ+41eeC - 5TKinmjneICbfsC6canz5f5kRHHz88HhYOJ8aeBYwJsPSmxveRLtg1pCG54Tu/vI7nwNJQ3l5U0n - G96rq5SLEC5AyYP5jpp4Nia5hMPxucN+mEQ58epQAh1nRUR3Cw3Qp3sQIX/1wMSFz2/FeZKkoK0+ - MFWh4cUL158TOI/6M2hSnqvIhjfgN1/ud1dzZ5KbDXQn2Sbntx246y9PYfSbhMN9K9FFu6srMF/B - Maibl0XHp3plD0ezOxJsfPbq8KsvW+xU/b1fOipFAZ7f5IzD79mOV0+SJEjtoCf65j/Xbz1PwDO+ - AZbHVHBnRrsFYjZ6W3bmJe6e+WIRrsMVY90sSbXhSwq5+z3FarB7gD/8bejlTlRffOQUe1wIbaae - tzwwoUsDWg12Yr3DmIUMHUsGiFCY5ZAE5rBUwy8feKsHA5uu5fSsYroJPFjLjvh5RTdbvivBYX/W - ib3V46i94vb/7ChA/72jINGSjMjl/KrWyZsGaLgzMzHm8q0Gw9MV6I10IO4gH6vWFfwSMgp3Cw5x - 36iria4NeoMsJOZNdsE6qDYEnZkSIuf1VK3Ma9bgeMVRwCa+TDmyP2QwD+sCG3M1uiPTflMYNjWd - pMJ2XW4WYAtofkynfPfe5T0zZg8oLHeK8dZ5ktJCatAQ+A5xA9PsefpVa7TM5y+R4/TZDwurviD1 - RxiAq65U82SiBhZClGNJ/yjqfpa5FTmm9MUBRly/Cs63g/yaks0BrPGcwKcIG5yzEyj4b08N1+NA - ctIDcozf2tbFzz4DC6fytH5fx3zRjW8A+ebWT/MaqYBjGouFy2Lt8UUyc5ePvK3CfcUR8YhC3C4R - lwf0Lx5LlOaM4ok+DwIknmQHBwnUMc1vrxK+b4ZEQmIQ2iqj+UA6OUQkdrHgrs3nNcD7fd9NtaNG - lK/bNkMYuT0xz+pMJ+BfMtGFkYbVnrwAawptiUq5c4nEaR0lujZzyFU4hJ0hkyh/MEENp+ijbO/n - 5S7dtXhAyqMQJ5+L3XN8ts8gvL50HAgy7tfoCBMIecnGcs6w/fpkVgbR4jATdwiSipZXZoLHYxuT - y4qe/f4Q6gU8je1Ccvrpc7aeHQOFrIXxNS5Vd3+LlAQmT7YkkazCas6TOUVmNDjE8LQ0ZvmztnVV - FHV8f8TPnP8suw7eJxxN39F7qEt+amt4/UTaNDts6bIj2CpqYV1st0TYLmGa7cxdx7xIPLyu7mLD - XICZXifkljyRS7hA0NBwCDtyfkmBO5JFKODH/szYbZVPP+dPkMIlkq7kDMAI6OE4sjA3jjMxH583 - nfbPIUPWIOg4unineG/CZ4qCCbrkWhUXdf1+8ABfcNEnGrTYnY3TLgK//3+TmLfL4k85wYw3ITFV - kQerLRUinGQ2IHKJ9H4hi1CC8nwHE9i97/HsPVMPnPepTQq0Y935Ws4OsjS8BuIl4sDwoo8zmuZD - hH3o6WB9upyCTmO3EDm/9P14vbcJGNPtHnN9Aeq6gp0Aj1Fxx9HTluP909wbqDMzQtxH+KjY/fk6 - w5EWDc4uAwSjux8E+Cqk47S3wrrqjCQQoZc1CfEUx4npUwEQFvJRIHaTW+6+LHcctO7n74aI737l - y8CCoXe6Y4kJL4Cjfe2giV44oggHGJOFrDXc8ARn/Cr3e+mpeOBZ5WeMz1WaL7dIOSPp3dQTe2zP - dA0Ku4Efi9ZYTwOhX/i4GtDVqT3iRVaZU59+FLSPdDaYbUpcNgyfBUDX/BQcSk5TF2Y/ZNC4nrPg - uNfbinKRxKGavY44+8o2nUcmneF5GPfE4yTH5U5sKAGxIQG2mPM15p8wy2AkPyssNy+754fEF6Gx - Dwxy6l2Ur/jusUCX3ypRVE6KuZTXV5TeH0Owt25mNTdDxcKDO5fEpI5WcSnvrzC+RiJWg/2qjp1t - rUi5hRU+jXMbD9dScOBlVb5EHU5nd/9pRgV2qVuRIHu6FVcvrxIdlwZg1yW7auHPbAmH8dLg++lk - 5LO4k0u05qmFC4Xh8jWSHw3yBCMlJjgf+z0fZhAq4TMhl9O3A3NFIw6FVlhh2zfyfHmKqwQNzIvY - liY5XkfYZpBfM4J1GJv5yl+GFl7m7EiwJF37wQSLB/fySSL+dvqC7tNXgo6vq0nUx+WlTgwBBnRe - 4gljY+fk++6srqiUW5dc96mvcl3mTfAkZjKR1zjrp8/nFkB6/UoTMG2vYpleZpD65kySTmufT6Jo - JVCrIorx27jEi5b5A4jKcA1Ks26qOWsLAV7tWSLK1+rzlatJB9ciSIg6EKjOhP+ugLSDjDM8RoAX - tY6D6QIO04o/S0zPuvECxG+f+K42cb4WzUVCG1/85l81M3VbHN5TLxEHxwNYDld+gFc3TbGdd6E6 - ukTNUBu+IHG0196dqwN7Bo71lUnySAVA6jVqYTklCo7MfRevk9cMEEBFJph2nkvv8c2DLaPsAng0 - cby63E2DsJj3G34WPX2vuoN2A5KmfdIy/do+6ABzMvHYT543dQWO0SLT9jusgngGa6QdzjC/rxjb - svWJu6ajJcSTjAmOEJP/xgu+Cu427eXI7vmlkc5IIT3BzoYH8xDU9W/+4mPYxHQ2LTZEVRP4AadF - x3z+jQ/35V3s7JxX3+XX7wOKuhXgo/Wx6ei3SYqmhZTTwTaXeM6fNEX2R5PJEd7sfhD1XoFdFeVB - wUmduwwnLoSARAsuai2JOaC+LbThDfaUOszXJw5maJ4YkVgf38z5PJ49FBfPDh/L+dWzqcBZcAiw - Q07yfejXN3OByOjMAJv1dQBLtvJn+C0pJdpB3HrmbHxSBKo57bb5yWe1CuH1O7REhqHRs3RMXkhA - GUe8hnu5xBb7F6wfmR3QIPfU1fDHDDqm8sX2Ph3VXjtSFgESLvjHP7SyTQZ6QR9iyxB3/YpbXkNV - FtsTe9wfKGUolGD+qLQJwatFR2bNO/iZmwT7ep26Q8VticCRBliZxShfK0GFcD8GPTlrdzYelYtT - opl9nUiQmXrFX5/SgOyP4BMPrUd1fqrQ+ukjEowdqobm3nJQ2MkB/uH/ovqhBze8JP4+cGgbhTGE - 9u3zxEGWWD99Z6DTkUzYroqLS2fJyICZJK9pthvP/cNDHUjOxGz4xL4PEwtvzveDraRre4rE0wO6 - SAtJhLMppgzvzXAULhO2kptereEpqyEzTRY26TL21P/CGUr9USCuezpU0x0XIeT2M8aORlJ18d5X - S3yiQd4+36r2ZJlLyL/7+8R+FlJR3c3OYEGitt1rWfbb/G3QrnsVxPqwYc7fMs+DRZERHPB7JeYZ - ykpo3idPcoKjn++D/JgiR6t1YuBudVfprVpwhQ4MKHjEdDVFiwXd0qmbqSzUKZFjDSrkS3xm97Hj - lo7JA7DPNMWXDe9ZR96t4O0LHv7powXB7X1h2OHgW849rfZ9BiR7ECZgnKSeuyvHCNzDnifyT4+G - aX8GqnVWCRb3jro8tToBizmOJL9pQz80Q8/Crnm6RNf7Q7+mY/wAO1zAAFBfj/mEEUtIr71ETL97 - gDkVOOenR7Gd33yXSuTdwGsrFkTBvhvzcjqfEb9jHKxEzSum1/pYwP5uGUSliUG37xfCTb+TqzTJ - +X5h6QTdx0XGwRks1ZDuxxReGvNN/NwwwUz454yWo+djpbHFeNqeDyqlQaadP7/yVbmILRS5L4ct - T5AriqSdsd1T+8ZScqldGlyfEtSlmQ/W5+zkf/g8f6iOlWf1yemI0gY+mYePLyesAX5QVweELJMT - 9zS42w4+vwDLMfBxJrhHuqTfqIbZUkgkf9yqfg3SmYNreDxuXbnlftNXCfT40AsOXbaqlIss9hCs - aCb+gUX06z9XAW74Pu147qpOb/Y9wYZdJeyeDtOmT/oBZpWRYvPtCz89zkLtVXxIsp60fj9csSK+ - QjOYICc5Kieiowaa6/TA/qt3wXKe7QYsy04m9trcVXpIuBravYOISp82WPfJNwO2k9nkb73wacFC - t84RNlj7ow58RB+gCd4tLg5N7dLnrrJgW4pVwK7Ws6JnkHjAeScHcmpSM+YHf8gAq78GIo+jWbEb - 3oi5Ec/T6gZyzj5R1kAY5D42rqzs8v5chtADJwurxvf9Gx8FBjGfBHuUnHOadWMBbqxBApYDfL/S - rSLxjNoX8Y6TkE/4PZ1hbTh7EmnctZ/VWH7Aq3grSFCOQrVUWslBPKT8xu98vtA6K+C11UJ8Vg+y - y4bbPZP+OW2J81In0OJbXSBzbVcS3l8ynSPjO8Bt/QasXXzpYhlB8Ic/KXM+xCstnw4Kz537hydf - uF9ERIYVERXEIV0rlgYgQnmA1Vu6uLOpRCt0y1XCOGDYfO2N1oO4b/pA3C1uv7+lFSeWMXaJp7qH - fLyf9AY2zvY+N7+9ROZRQD4VB2y0daXOka8GkHTJFftdtwfzZZA6qMBsR5zZM+ky4GSFN1YEm1+4 - UDqrd0fkRhMEtY8bsACFZaBwF1esx/s2p+SwJpD6BE6Vi1OVHk/7EDDRov/N17X4khX0sHOIeqKj - u+bncIVtTIeA+R79ar62rxQ46eeLDbd8q7N8nR8o6hUFS04muOsswE68RIKPA8AO+cKHEYSXfXwl - Vvpdf3rfgbfTeifS1cnUH18hTU1ckh6PW1dV7qWBOC0m4uePkdbM0hfgPX0ljB8PLV8TEzZIsoQh - IDQ0VE6pUSdKztaTiGZtvtr0yAFhOyN1ils95iA9npEVvTO85Q/9kr3Z5KcXcXk3mYrc41MAV2hB - rIc46HnpDRKgqzjH3vF5ylfa5qmYVVoa7LvLki82SUUIMb6Sbc+/+z05Zgs3P4VlP9vRNY8lBT2+ - ONvmu+4uMzNC4MJQI/EAd+qy5Q3AYm46Vnv4pnPxfIvQMbwbvkJbd7eumylq+KCevhLQYn7rkAk/ - JkoJ/ulLrv60MG4kh1jHku2Xel5DODfwEBxiwXa/QSq1wC7oCftVxILppwd7TcXYfwkTbeP4EsBc - v9fBnFw0d3UhU0MDqxNxNz9J9zk10H70enw7ZBewhzBPoX3Hh4nZ9ADtnKeDBvGgYPcmpNXKP88C - fL4+DtZT+VRRXW4N6D5314A/YY2uwNgLUOR6bjr4cRlPaeessPFcDZtBj+nAF+MMeyZ6TQIiczx8 - 3ySB3nW1sKcw53j1v1oDR248E4t4Sz6215ckPt+8iKWEGdU//0HzOMV+Poab/5NrqEsrPx28Q5ov - cL8IaAlTmRTbeqO386ZnvzDG6aGq4nli1BA99k5JlOH5ioeKZpy45Q/Y7HdNT9tjasFSKS5YXo1L - P39f5/o3f7F0dUSXHq+GAudzoBP1tl7UuaiZFvj7p4Z9nSnd/fkAOPg5vVhsUmau6M2eS6g9uzxY - d9rTXeXUcmBXixSbp8IEhB0CDm55AbaualpROAvzz69g9xS9+/XHp8Lcf4L3eFbiIU+E7YzrQLCm - dwrd8PF1GIZnFvCbnvh9f7T5B5IkvgwWf39JYdywZxLTpKFLmLxSdIzDHrtqFfUDX+EIfmKhCK6X - 40Nd3cPIAiPAr0Dc/Mk64V0hBo+mxpbzuPY//Ia//Mz1x2e1Ks9BEOeLcsSXt3Si81PqM3APvzz2 - R86mvBoINdj4DCv8QXVnZulLcO1eLNbzD8lXUV1b5D5tnzgXPaY0xM/wT+85M53p4HcshLt7XgcH - bzsT3JtpCr439Jn2B7CLx8r8NDBd9HGrADLV1GaZB45RecfKls/NAOMVesPugQ0tWuJVqfcdZOLP - cTrAs6VOFQsCuPM8D+tx/spH3fh6iD0fH0Q39Hs/349eBy3UHfAvn1ncXuzg+XvXpzVL7fzPf//w - 7+7PSs7+/OOG73jD+5hkn2KAnviAxMjyzp2U3M1AaAsAG+Xnoq7LmjugkO5D8Ju/3bV6hhDy3Alr - Ed7R77K8IIq5lcHyOG4V6Mc+gJJTaRO7/Zy2yUNAz+p6xq7xUvs/PwxC60xuMbDBb70ir/AG7B2T - NaZt7mQAVZu/3fiN45NcgPtbqOL0qgrV3KVDAls8m5MRcY37x69Mcr2R7Ls/AcLw3gqYObYn+Lm5 - KvtITBH5AmW3/ONbLe5aWJCgapnqn3+J9O8LzmdPJynnePGoPT4B1P2XEQicM+TDGSYZMvzrGfvN - UadDGH5LeOaCE3HVau2XQ1x6kI8KkxzXWKyWQ3z2oKuwGx8/KFjV5Cmig2MZWLdCraenveWBVXzU - f3nwvHykB2IfjRegbT5u9bkUHIpnFIjz1flXL215Nwmng0cpH3QNgNJ+JT9+n9os8qBorA3xPPCK - Z6l6rRCdmYVISj65q408A9AmDckR8rha2of6gvnzFGJ1OHFuK9hyBMvH+pno7o7oYnlkguyj9rDx - pK5KCfdt4JE5O1ibXp+qVc5ZCA6ieiaeYycxl1+fL1Rk82Xjn9VdblZowIWZQmxxjpfv8/Rw/o3n - tISeD0hiDesfX/iy27ozzuIBbuud6E36ifefMXiIR/PyIZpSTvQ77iwGFtl6wcZdRu4cSZYHHvRh - kMuJ88Fi2HUJv/fPDnvJ+I1JtTu1YBDKkljXEPSL5X2G7WS6tvllqxqZXrQgHrEacFnrq/vNjxy6 - z+VCts9X6WAqIljidsHZIsVgW48tSO+vASu73lHnLb+ER8um0/pEY7ziHBqA/Ye0K9lalme2F8RA - OkkY0ok0QhAQcUYnCiLSJECu/iye9xv+szNkraeBUNm19y5S1fDQl4dyozhU6xYeqm9KrCfX5ctG - eQXu/i1SHLbS1+9PXsDuD//nb77A24e7HvKFcWvGxbx4yt4jgBBUz998iZIvhDkjjX9+fD418smA - sTZpxIi9F+WcybKg0qULsuzJG4V0jQsoPx63/+ol/d0uwB/elkMZAko/Egv8zW3Jno/p0sieCXf/ - HQuss/dodHsWVrHQIKfTRLpSfMHQ1UcbIYkb9OXl3Hrgk+VOXB8v42benwO8b8oPqU3CNTO7nhl4 - hKWETuxLyTntrlXyhN0NcxwJ86VPV1a+f4mMUHuMIxZl+QTuoeRhfrrXLlVTMYGf0lDQdYuyZvFe - Dv7zL33gSca4+8s+XFeHI6ZAarpizQjl2g42EjA6S8enPUD4yO8K8rA+0c2llxhy0nZGjvv6ANKO - R+svPol/uRd07prf9ldf+cevcfbjAlg64xeLTFPkuOieGsT4ffK3LP3l5PrwtT+/ifghPDfrW3iF - 8mvdGH8Ijx2YSkfsIZIPwp4/v7Rrv8sF3ib+s/un7bgodaZIkVWbyH9NdsMHt6yDWSO1+MqKp4Yt - 77SHF+kN8ZZ9Lvl8NiP87/7/9N0SRfeLnJ/Klvz5ZYt/DwqoMVxD7Or3ct9/fKzhZZWo+XodN/Ec - iEd0KZD/C6Zb/pdPQatPV5SFUwNwIkShzOpSjJXjYNB//vJ4MDH5y+8Lw8IL3NRz6dNEWdxdT/Jw - 3y9I1wfWnaLo6R/54XfHImPz0UI7qsG9HoB0KVQBv/Nf+WodDj5fZay+17vaP38DXU6LkbNZX0ig - ivU70e6UyXv90ivwKAlvpCce1bf6oFRi/lwQceuyaRauAMEfP8Rg59crl4UYinLKk2JTa315STYL - t5KdkHXcZ8m8NH2Bbyl+IW+vZyzaY9QgeMY2Qn3oRlvg9gncSn7yj7LD6ngdj71UJt3oH9ppzenT - fjNAbYTCl5VV0+le3wGeuLLE9kwQbe7xw0Kv2bvWf2o56lr8NzU9fiHnhd50VV7OBfp0hf/igcZi - CoHa/npyglIQLfHxasnCst194aGpYD3ZRwhPc4WRbhaazp+8TZJ93ahRoTnDf/ge0ET3D3s+X4wQ - KsBtvjvfVx5gyfOH9K+eSfTH8q/+J+38Yve3xoaW0XuSmDp5EbvzTzplBnWBP2dBe32jyMmYkRTW - g94R58fd6PbS3A02QJd3Pim4U3p49uCCPyJevhiD2chOE+Q094L00vV1XrtLA5zZcEOKo4TuP3// - DZgjzpOIbXY/2IRevAVY/tN3fRb68mWSa6R8MaareZEvMNTuBF1Ci4nWo91A2VcriyhFs+rzFM71 - v/ylRtt3XJ6KKB7/+MPJNpaR/umnfT18Kbt+AYHSqECtMghKwkLR2U0wFzlxHY44vxxRGlpSADv/ - 22MxLk/jOp2GGm7Pp+EfG8TqU8p9UnhdW4CqXjg3tOszCQxm2yDtYKguu1FGgcdf+CZeer7rfF8O - DPyojkysokAN35ViAYVYHDHHWb9o10fhv3qHAxh/bL69l8G93kYK3O9HYKDc/qvPFtc4zKlR8SzQ - QEvJyRLmZjnZ9gbbNzuTP31B85pe5AeIekx2PbbXQ9g/fEaZYSF9sjnnAunXL4grpU20ytq3+Ks3 - YuKva77no02CAntD/rk1R6H7OBb4rlmNnHewgrlrXov8yxsd2RVvuFR7XhJ4EY2URLfH113ngwLl - LxUM5LFflQohyhfYR+tEVIXTAJ8O2ia79U0lKAVKNP75eYZh3dE5KRPADZdHDRtrsv3m1jk64Xre - hObvqv3xgX1/Z9P/54sCjv3fnxTQq3v1vw+S6/N5WgcwSUfPX+fEj1jvhRx4Y6IrQUd2aVaZ63lg - /JQv8hXXpbyAe0c2lLdLtME/5RO28QQMpXbRCX9YSoF5S2HMSzpyQSbrm5/feun7fZvIEKvFXT/z - q5bjy6shjpy9xqVQRQt+hhkhp/IiMJ3NmIWvT31FQciILrW+lgPP9u9Mgu+nBHQ4FRDGD0wJKiUe - 0LZ+8lJbrze0z+0esX1tfdnTZoAP/jGJJtY5YNh7Uo50Q97yJZfuklwYzQ1LQgKitTtrkhwu4plo - 9vYDqyleBiC+HY9k0nlu6KQNGZw9NUY6m/n5MHZBKK8Lp2L2sOpgK2SThU/lwqDbixqA7yEfyuI6 - 9+TkyLjZVGdOpDTqPsSJTxNdfIMGsqhgghSLX3U6uQ4L3unvSqLM093F/UyK/Gs/Ksle9RlwwW1L - oHUWAqRK6Nxs6fLm5XhkJZI+0jbHx4eWAhgwPI7fTj4KeL508MmJA3lmquJujnn1oXUiNrpwB41y - l8/7AjV59JHGuu9o5W5WD+tfgdCeynLaUl2TvSdwkHrCvb4WRi3K8an4IAtWPViXIjDlcw8rdP49 - zPGb0ryT78H8I8r+frjFnkSYpEeOmFUbjuxLtx05hWfVF/ffp1S1eHDK1JqYHx+MtFuCQs78JsUH - 961GfOh+NlnVphzd6DkZ2dxzHWjMAUce2E90Pi0PPTwn7B2ZztMfOT+dRHAK4Zvccblbsv6hh6uH - FZJWxRfMp6+7wDepXHIy8wtg/9Z/+X4IyTn2DhbIDQNIX/oRM6Q/jyyjHxUYHxWHnObXGs1tbPlS - iuIEnTpfzhfIuKbM3yUNKQL6RbwoWC0sSFuSLEkrfR1asvytt8+U9k8nB+xpsLwFDrpei3iknbhI - cu1YIrmL0ALsrIkdPDr9j5QnRY+290k04HZHif8pyCtaSiftIIpWhTwGQdW3qrIymcwji+GjYPRe - aRwNfrgtJZ46k4jYnxsvH7bExVTJlxFfbmSRNv49I198vXT6VqzdcnB9ZLLiWWcXE1ogh4pInml8 - bVjzSnh4r3UFafZmg00t0xo+tdsJOdxnBPTYRi2Um9zD9PSM3eUtMjEMjPVITndSjbz/qTM59S4I - xQH/A9vr0dTyOVBLZKvKMPLJABnIumeXuKmNm4Ue+QWeE/6OnsETgOWrERbueIQu4XZzBb/yM3hW - Cs0XJ2A2HNfZb6ja6wPZ3iaNy/BIWlk9lCekVgIahTg2Mpn3DwpSjSbP2b+/x7onl5y/9KXPS7vU - 8Mse9jY0fhmt06PYoEmUBt2t3M43h34gxPYpwUvxiHLBuQ4ZmN7piizn3lD2F9aVLBt1jkKxkyhW - y/QNDT/TSb4C1WWH5pXIQb/p+LgkckRTGnXyvBHVJ1erAxvDk0BS+VBBJg3VRjgoYggWdjkgLb1a - zQQKO5Hn1ChR9auVhvbWuYZu1ak+X2kL4I5wCeVCic7+fn8Rf3uwpiz3poKMsj9SwoYqht+3EKGg - ADd9K+uNgR87WtE+mBWs7Fq8odOLN3Irr7oruHtr/oNT30m+lW+wDZKO5d69E6QeDQlg9mRe5Pbb - IhTB9QNIeGIMAPg4RM/1kIE1T+MYSsLcEucS3N1FX9MYEl2/ElflMnftRuEiV9f4Qm4eVuiycMCH - gdtRTEVkuGzu6Y7sddea3MGaU1ZGFw3mP3HFj6OojsJ7vjlyPU8lca3uEgme8TGOROIMkgzAcekc - jaFUz7hExu+wRn/5AEJsnUg8+S9Kx4oJIKmMB/KByIFlSloNlsCT8NvCZsRLvjDA2B8HpAm/OufN - RDX/8hHJ2Oygt1icNxDSva0rWHNAlm0r4FCkLApJaFGWdQ6TWNgXi8TWc8tXEJMY+IJ2I+Yx6yk5 - 8HMF77MkEhVErrvGD04E5OSmxPetvlltM1Lk7JJfkfIwn9H6Oq2i/JMOCTm3Qgtocr2y8h6v/nEQ - Xu662K0Ehc5wSQXEG+AdOjPw2WwNJowYu3x/qhaoGHWIy8fpG23iJLNwjxcMXcMaN1m8drJfo9zf - ROOhb1+mbqVPUqrEJVPQjEGe81Ix6yvxDmfLZemR3+TboOrIOKwNWGR0UQDHqwf/l6bvZsyWlyKH - 127xt1LwADcGMIEzGDTkrZOnb6wpvmG3shlKr+oEZrLotTxnfovZ4ztq/uE18zCO5LbjLRWO+6C9 - hmGIV35/LpUmqMDx+oMoV6EeCVkps1AvmA/yj/obLPbxXgH48QySRepP/9E66mW2s2JU2cbHFa6B - xcLDL7dJwZWqy7rYKGRlnxpZ9cJtFOZCx3/rRZ7BM6dCHQEebPN39Jle4EZa+R5zTM5+5OPStl0B - M6cKfmh/Jelc9tGUqCSD6HY8Ex+3hr5xXjdAW6Uu8m5blNNk/kzyEt1f6OwGMKftMHRwde0YhYR1 - xq38RSk8fByA/Hhbm7/rv/1FXOJgSr3+6sAdz5H+enhAeFwgA56cNKDT9SuM7fcitdCqBodU0eWi - s5HcbPIRjG9iHNBbX8LHYdrb4uvk4hpWs99fD67jUSfu9Xkaq1iQwqOqtDGK3NMxouYrDCAYr7bf - h6clmv7w2U67EzI/Qtf02e+u/eX3/X00+fpoSAyyA+R9Fm2my4UCNKHtvSG5GJwYLfbxWUlfVs7w - gfXHfHmewATdYLLJ7cEQd0vk2pJv0Hb8fhTegI7Jjf1bH3K+8Ua+85kWVsf9kHo7Pej8yZgYRs9N - RL7Dsc10zd8KLLSHjxQrRtHMMGoojwg+kA4MQafaqlng0Ugccc7HZ7784SvH6wdigezkCnM0BuBN - cYbOvLsP2lWNvfweNOR5Haxxu/svQ75FA8bfG9/m63lae5nhAxvLQrhFuAsLA5J30vsMSOLdQsYX - IPWWTSqHi8eNuUoQrK9mQM4zVRquGwUf1v7DRKdwBC7545e/6jL6N/pLozW6lhUsD+JMztyZuuva - mD44j8aHRKFE9OWPn+z7kaDu6ufzEYoh0L7BkZhDeNAXfjxeQPupLEx3PrlFRTfAJVVi5Nnvk85+ - hmWTixf+IK0UZrCFXmpCtvn2fg+yj7sqZZZAfrICktjyhfIJLTPI3V0PeZ/brVm+l62F5aZwxGLP - a7SFVQBl8X4yyJV9P1wueTYbdLr7D53d4zla5403oB6rLbF1Th5XHr+gbFP/h4FtYXd5u78ORpCx - CGpq6C5JQTV4XiuAQ3Fu9co75qxUt7Twj7w+AqL2PwzNQiwwE6rPfBUflwuwl1H2n9hs3e20xQwk - NuuiDIM3oLdi4gG30pWggS7u7Op1BX/yqUSh+eQoOW+5BYd61Imdpu9xtX1Q/MMvJRg7Oi73joVj - mc8YmMeyWaXk0UO5NxQSWUEXbT9PuEDRYOR/+4vDyeCDXV8gM2W8nJ63yILdWBhE8dIQLPy4+lDK - 4JFEwK3zJWy1Sj6HnU0up3umr79yHaRMNU7INQxnpKpXGcDGMCOqG8/5fASnHe+XhtzNS0p/x22u - gWGTYNcb/khL2VPgV4cvtMdvM90/eQFjXtTRcwL3nIsHfoG4z2YscL+YrtcOXMCwrQ7JhVcXLbHf - YiCO99BnrLceCfv6QXDXgM/t8bp440OC2vnwRsa+31kxiQp5f1/I97qOEt5reUhvrIHM4MS6WFl1 - Buz4gfn9eqsV7QL+4tve8/tadu9BXr5fQhJtEAHdYhhAl232wazfR7SYbaTJ3LquSCNhD+b2oxoy - aQuCShmCfPm80wTWN18ldiG1+R4/itxr1kAiOfqOqxbsbcdTo/TpB5AR34HMw76vD+RpcxtdrO2V - yC772pD3YeqGhgnDQLENY3LOpC+l4/rb8X644mPJfMEeXxDUKzPtesYClD0kBax/6oD5tHBHAQlf - DH/yW8Py1NvNdv6qDHwdlye57vp6ZWAFYfAUVDyd7pI+C5abwMOlr5CCk8Vdj8BjwKHwjsQozVTf - 8dGBHw+25HYnVbPc9CsGOlpv/kF3f4AKayDJojIR9Gi0MV/6LhKhB38cvu36cy1WuYf9RD1ifW8v - fV3sSfq7fwyv+NqM4zfBR50rNR/yL6PZauGFoVX1DrqOi0V5RxYnWNXHL/Jf4wC23zqGsAznCh8Z - +NGHtDwMwJGdhlyiXHH5qFszec4uLdHWLHC3fDox4PFaMEm1N3apaZo9MM332S/osuU0aGAIvt/a - 9I8y4sd556fy+szfxP20dsNi1Q+AE55z5PqXdaRdOQeQy3kFxctPimbtzHby+llF5NSM6e6nAlr4 - HmiK3PzkAGqL+1iVV6H++RHuloVTDw9b7KKs8ijFp5PiwzcpXKT5vJev+HKvYL/qBXEgiulm2e4C - JXMakf0SqmZtw1KC7uPo421/vlWYhB6WIamIOYDBnUuN72DUqmfkhM9z/g/f1jLKka8ilG86d67l - AUwufif23sRFvWnyemUQMlBg5NR7Lhi0Nb35DB8uzXw8pQvMwvXrSxqXg+X4jRO4jJyMTrHkjmvp - 3hXIaFOLkkpbKB5dY/jzC4hNHm86VW/USs0qNeTSMe9oY1HKQK1aClTsfJDd9nHByYsXiCFAX9/6 - VGWAyKc5Urh3RhcltB3JfQAfIe1n6Vv8OZsw9Xz0t38b9qRgBuSeZZJ717PR9qYXHg4suPp8Y8Z5 - P54aB979zwtjzp/17csrlhy9jgo6y9XQbMulHKB38F8+u/P3Jf4tibT7J398kW7Sa2BhlL8HZBr3 - b7Pu+AonW4r9w/S4jbwznmp5/394jb0OrLtfIinCL0RXoeKibVWdHmKGasRQL0z0+zDvFOqI3pC/ - 86XeN0AAk7Lb87d4A9PPuu186bWP5QwUwG69LB5lGPtEmT51s0iuUsBOdjt/uXnWyAu4dmRm9BTk - 82HQ0PtjC6GZLTdilVfg/sNrk4YbMuzmRqdTlDlQgfGJqKlZjnjHB7DjG7GnshsHwWFNCfWq7y9i - 5Ln0JHfOH/74ovbG+j9+8ef3yLkk5ZN9vBfy9zh4f/pL3yxljKGZnN9EPz1jfaE3rZA92cjQxVQ+ - OmZ4EsIZV9ufvqNrLT8yeOPMC+beN3MUFpCJIP0xEvIHTcv5Z1EZMFbo9h8/0lnbAH94kDfFO1rC - h4BB2yQq0nSrpgvfBIs8TsTwld/efTl3tBTEelwha3uNYEnisJW3Sgvwz7pw+ff2OQUw0ZoaKbxR - jGTny7DYTxQYQjblP62xfPh8DYUv358vusH484ayceKJcc5xs85D2UvnsLWJm6jnnD6lrIJs58Q7 - XjmU2/08WDTsRGwZJU3DfNpOfpwUHelKvjST6FFFjk/VB9kWp0TrhsIN1sHLR9ZcWjkXSN0A6dYR - oskWHNdPU22wW/kM+Q/+puMd7/78CYJSnubYrF613DaxSm57Pv793V808KovnY+HCFMmUODv8RLx - EjKpvr1PiwEO8nhHpmYJ+tev/BQ2nZAh86Bgfdv9Rhgu5RuvW7bSKWXYRb68lAd6YtNweVFQOtl9 - 8wFxWd3KV/UQG/LNLCss734SawN1k1db9/7imXL6j4+htyY/9Kc/l/R8C+AUhMO//UNFESnwqgY1 - idHWufPZ9lrpL16v0mpHy1lmE1kSSLvzu29ESiQGcOdz5OLIh2ir54r555+FmZbqgyhYHXRb5u5r - FjZz7o/fhhEW0B/fmlduzWDPYUSs+eC4vOcUC7xv9pnY7kDzl1JmMVSVLsa8cbTz5UjYTZ5/6wEh - +NHA9hElDKyPVuPDpTu5y/eWKxA5HIPsgubu9lGjC7CH6ItseU0jepVvHRzjS09uTy1s/vBUWmMz - 2fOtqE+X7KpAb4D7ofS21qlN9qawk/8gfqge8q0WfvioXYYbOXWCFf3xZ7D7x6i482lDn0+fl3b/ - CYeD/4lowpsObI84wXz36KMlvfban7+OdK66gm2PF/BbtytRuflEhYkcHAjB54Hc43mko3YcOrDH - +86/uXH7dKiGf/r8z1/H5+LgQ/ZVvghay6O7PEY7Ebg2Ln2w60fhvLe6KA/STMyxdOmSqN8M5NYz - QtpnasbtfrffIP8MDTmbnA7oVhYY1r8KIfeWFvlmvAoDTOfF2/n90d2i2PQlNLg3LHzpy11Y3Cz/ - /NlLx2iRsPMnicfBnSTBKdYpEsgEOhGku/8e5hjvR7ZOZ/BA53i8N/RgBxMwo0Puk6oQm5Us7ht+ - NJ/i7+7n9ob2COAV+NmuVz8jEZ0tgMb6Moiy/lp9y8/XXnqk3ISsKQQNNlIwwOaXmuRcasRdNvAy - 4LlvjsRcP5G7IphC8H61EU6lRB15/Sxt0unSXTDt9eSfnwN3/uEfxtsKqN917B/+4e3utZTGulvD - XxBTku/6ZZ0e8QZ8QbkhbRH9nJDXsYMpShLMFm0SzTfTKcDoRh2ysc/rKyASA9nn7YFUZWibxYlH - R4oOJsJHJmtyWuR6+E8v/63vGnN2DYJBdND9QYC7+0OSHGmfH/HjAIE/vxnk5v2C3MF0I85dZB8o - SKiwXI3TuOV8iv/5dRELF32rNLiAK//6YsF7TmA1oyCGauAS8ofP00tXHTn7uZAop6Z0f23R93DP - x76grnX0pxdgfG8nLO968t/1dN68f/mT8nWqwZdhUFJE8osum6G28IJaiaCLoefb8v2F/+mRtn3S - tVkKE4JYYn05kWv9n/51v2blM7g13CmDmg8v1KpRMutrRFEIUlg0/ETM66aNgi3amlgHje+vbjxH - +3ps4Kn4DGbMKKSLMPgS3PUjcZT3MM5trPiAdC3vdzu+znxUxXD3X33Be14omxkDhvrrwmLmNQ50 - ZS+9D7VAaskZl4O7VFOYQFFjeXQpvCWnnufVQDH7B/rDE4KtIJSVTPr6a/h95b/67W3HXR9iPvGA - S6K9JHvXwxtSD9wFzIGEB/g7DDZCz1Mz/sWzyA7Z+8/fov/ixehK8I/PciAmCXy8Noy8yh7ob7Fb - EfogbDBUIn7cqkpJwZ+/vvNhndaatHcsJQmyTpymb++hzSB/uyc+I7H7GA0uCGTu7Sf+KqG9KQYK - N1loXk+SjOUItj8/ceffWGaqUqclO3XSH1/9x6c1/MiAH/QKetxOuCHmHdXgejQjzJ2OozvHA78B - w56DP/40rrs/B2bQa+gMkOTiXT/AUrd0YocxjKibOSy4nt6YnG/xu/nLN8B7Hh10DjaFTsOjaoFu - VDZyTsYUUaoqPPRPrUAUMZpd2jx+0/HPb4fjQwJbA+YAgvX3RL6lqA3n8Y0p/yQ5QWXanBpBWzVH - 5m+35J++mCTx5h+ZhNmQFZ7292vMJmxOOfS5P78KHWwMWVj/MP5eA317EjsEL8OkxEH4ptOiaab9 - SEuH5w9Tj9vy3I8cM9ORnB7FHO37+Q3751f+L37//FNtSzR0wY73h98x9O8Tg9K5tCKhefww1Av4 - QYrI+YAavKjBqxrWPkeWV7Nsht3BP7/JYw+q296k1ZfFWjGRV9YHulhPxoL095vRSb3bEVdPQS3/ - LkaLeXKYmxEEtSWLBpTR7tflcyiwBnS62w9dwiDK1z+/qgV8iVRWEfJ5rx/KF3XWUMzNMq0XJur/ - +C/RPs6Lbju+g1slS8g6RXW0MP2cgNe3T/f6iU439uRfpFhZN+QyLsoXAW4m/Jpmv+ufNl+Mr9fC - 6ppcyEm5wGZ9G6jbxww8iVHRrtm+Z9v402/krq5KxG92Y8LNXjT0NFaUb0cuCWEDzj3x3940/qu3 - Xlv2hJ5NDfVfzS4MfNVC5R+P4qtZJR1Xf34zPj6JEG1LmdTyXs/a8afVN8YO6z8+j26c2NNdHxaw - Gd8e/oku1an5ygLxD3+N5Sfle9MrC8aqf0dexidAUAxuAH980dUVEyw3V7Lg78wmKG6EwV3A7PhQ - HS8CeWT25i67XoNR2a/EdJ64WSe2TuWq0TE+3r5BvvOFt7y1afdPX1PdaWogkk/t9zGvjXu+t+TE - jjNiFC0fbYF8zyBDSUl2Ph+ttplr4P/zSQH3vz8pCLnziTguX0fbjLQBHMTMIRcUnXT2uT18WBnP - kJhjkepbjF0Jpt3z5jNDp0eClZud/HQsTNChPo6jfjyJgKp66qPsoFJus10RGMo2IvRL7zrr9lYA - TdawkeMzOMe+MC6Qv1xzzEvFBEjwWmv4zSsbCzEDIiJaUwvBh5jIfVfzuJhpusEnCT4kdU/LuMae - s8C9RTBx1STJt0OANBCo6xedrZaM6006dlAsoUM8xmvpkigvEwatsaDbHc0RLmexkx9+Lvmldu70 - pX22m/xItwpZvUTH1evpBqvfxyalOno6jR2xgvGt4fxtOD3dVXQYCfriJUQ+bA4j/YEjA4bi9kNX - x41dYZi5SlbKViXV0DXRRqQzD79LqyJUv8NoLYaogExbhMhr6n1y1F2ujmydMiS/a0+wYQ5cZGeB - kITWxOWrzb4g8BQ0o/M1Y6P11teV/G0yQjz/lIKPnwkBcO+27MvlyRuF3yPR5GeaO8SeP+1I76b1 - hpu5/pBpJxrliCl3UppP6m5RcO50DHAMVO6xIbQ9tFy4WoMDWTcykf5OjIjyhyeET39WMI+jaFyc - 4ODDyMMGUTnhq6/vW4/lz8yfyaU9F4Av3KKHvKSExBGNdOT3j0XlqyQkPhQ5K184PPfQF/0QH88u - yoUuBAYclCPEMvnZOt+UYSUnmR4ir7u7uSB7tg8DeTmSq3JMotXrwQI3HQKfnZkCcM259eHjIfTE - fEYVXZRMSuEaPRJyTQkBs/MOWHhIj4TYaFFHIUaeASP4PpHKlk76Bn7HCSrm1CGUNRZgC60wYNu0 - j3kE6jbO64wtUAowI0ZV6C5rfY6MDJj4hG73sYs4PzsEMH3AklRCYemsJCm1HNuK7K8XpxwXvbQw - XG+WhDJmUHMBsc4AawsSkuOvCQSnLCTwsXBAFLxGzXxHDxNynZEhY8g4un6+yRuWjteQbHtZ7nZw - t0w+vZkDZnNecnHhFsPfz2PR3Qp9/TSqJB/ARSSlsGl5X73NFI7MS0YqOg4An17XWJbE/ofK+z1p - OPzVfdgD6Ugs9xQ0XCXAAR5Re0TqHs9jdvpc4MOpNZRtr17vDsFZg7dqepD78Nii9csKE6QZeeGj - WemA+wVlBb8P/EF6IiXNUiWghm3TPXBngjoXLAQmqU+oRvzoiKOtG2gPhOOxRJGR5O5mRjELjx8K - kCJ5as5f7mslS2N5R0i3rUjwnqMPj6v3Q5fKovnSxldRLh3U4NflZrgc8DwfCkdQ+nSRapfDsWRK - DbukfmICJe/irzdASyISUjIfN0s8qZ0cyd99MK0xNhhblxTKJ3PCVAXpyPq48WHxDhnkL3ZEhVzK - QrCoSMPMrH7Akr1/GB6cX0QCRz7n7LgOHbxopomXx2nQaX2LsXzhmwbXH7/J13lLDDAX7mGP95++ - hnOagb94Wc6POl98PPryyVUeKMfiI18z52XBIu1Yn3G+y8gnWpPJF4o5ZAp2GnFB6XUQJzkmXteX - lL6WLYP7/kdP9+C5P87IGVge9RZpeibktIR9B8WnHhNtx5dFeSIFfh/Th1xtAtxtuX06OaXD15f0 - q+/OosOIMD52b6RL5RJtN/vVg07IC6TJQ+cu36S+QMG+i5hJ4gBM2fFcwFGU9njQHMB/zWsqb11o - kJBNrWhW360jU1kZiKock3yJTldN1nH5Is9L8KScfWBZ6fiSdMycn++RZmrQyTF2WGLCnI824cjW - fNQcTXI/zbG+vVW4wU/zbJEy/k4NO6eRLzWj4RPXBn3zZCRRA8SUI7925G++Xq8blstzypGH/rUi - NnzL2r/nsUuxzYW7qbzlpyuFJIwfXEPU+spDsEkpsvpKGvdrVn7ICCBDZNZm3fEBau5FJ1cRv8cV - jZoJhRrFPpe8X3S7V6opa66vE43QG1jHx1sDnOC2RIutRl/Z1wFCrUXUfzIU68u4Di0cHbMmioqW - kd4PzgWCk/0ieruagOJS6gF9tTIJ7qYy8vVby+THMdHx0hhRLuDfqYZGd5gwDx2d8m8VLv/yobbK - H7DwRfGGF5YeMB/dJpfQebDgudAw/gTp5i6OdE2hc/Du/kCGy8gdeMOUu/D62edKqPn2tz9o5yKC - tiEGQ6+TBUr88eRL/vuWs00eODLN5hemeFl0qhx/PkTTj6D8vKYNgcPnIt/jq4qUx8Y1dMcXeTzK - IykDGEfLaXhJsnUcFmJ/Hc3lW1eNZcqcWHQdhDDipK5oYfLuQ3S1NTTSZ/1t4U9bbuSZNT3YrvV7 - kjF4fVC452vBQnSC1Vf4kB2v82V43RdZF+0RhUb+Bqt45SzwqXue5I9jHvGHUBxgQSqEQbJ6Oe/Z - ++CsML4QVbk4gM8T8v6LN+IVqaaT/mZn8MHIT7wE9Z3OiC8YeFmkM9r7wIzTesILtPtiRd7+IdJ2 - uR8rqEcqi7L4xYA//PvLj5i2q0nZwZEUyClM44v749HTk3nDH2/1uB9XH3AvLJr/+JGaRgmgTX7o - IdIHhWQur0Scln8kGQdbiFdaGOPv1vcFbMInImhCW7Pu63es6aUibl/eXfqsSQevOK7Q/Rd4lNrj - NZXnEjR+bZgXl3YhNaC+1Qg9W/OR//rqwUDWnFj0ZMz3uG6aN0Dm8yqQEqBTLqSiy8Dyah4wyzdE - X+PrPYUluWfkBIA70snOL1AmwoFoRq4B/lajFMogmn2eFz9gS4SgkH3yDbFg2rO7JMf3Ap8NKyIX - fzs6WaJrwB/v9Mh8dzSfdvwC3yYl6HKZi2hp5lcon1enQ+64jNEmQY0FscuNRD3H4ji3g+XIMAlG - Up4Q665GK1XHQQHQp88FRBuqihQivVdIua2Cuxole5FVLt8wbXQCVhvUFznUqwTpF1+lW5o/C7Dj - PTq/zvE499UVQrOCV+L5rxXQYZYLUNEoQkqZwIb2NzWTtVjy0OWwz2nili8DYfs6E0t91/msBZEG - 4aofsHw3DZfaquDD4bveSfmEPV0umb7A7WduxAlkAWCJu7SiIt5v5OTJpJl3PgirbstxInyu+fLt - zhhez6WOqmO+NtsvW3jZKPwUGcexdLdAETNo4qtA/M8ndbe3dx5gm8kPcp/YmNLHgCo4ffEbORrH - 6WT49ezxZtx5oiTDuVkO9mLIapFpJMW9kwu6+zQAa1Upsgz/FmGZuVqyfTIrYp3uR7AcL9dJRvTl - IuNUnlz2krkLYIXwQdQvafN1x384ieuEv5aVNOvru/JgnAuKrPan6vTGcQMURPvoHyo2z7cqlXmo - tR4ltv7t8+2bDm8oscYdxeLVdFl80DdYPEaG2G87oVR75B38hSeAYqV4UPoSlh7aw+VGqlf8Genk - fVn4Tr3aF6bmnW8fQzfk0/119SXux+uUuZasZJTRm5zUpqH0+Z1Z8Jf/+PTr6DwndD6okHhAJ/Dc - xv39QvjHdzSNYfL5pAQX8JtfPcnyNHMXPXEqyAT5h9hhkTTrFicbkKO75evJr9WXg29geHS1L/Ef - RUXHPT/B78eKyONVjNH6BRwDghsfE0es13GyB7OFyCAOcp/fUH9Z3jGF8vXbohN7N4BQKVwAj67y - xeJ2WaN1+T1qwGSLRe5Xfo7WToMhYBgnJ+a5dyn/m20GShXzxOCytS7dXN+HUlRvSDu155zvnvUi - uxPjI+OWC3SezqkEHcby0JnjFJfC4ePD22bORGPTPl8KLTZgHBejL+/6hcqe6svg5L7I/ZAG+aqP - 4gTzlTzISQtITnY+I0vxByKtzBSwYbgWMsk1BcWRcsv5PAwlGLwCjXjqOLvbH99QuPpLnsMLNO1i - pSkc/JOHtCtD9eVa1ZnMrW+LhLXJUfqpToz8ym0dXX6tqguUrbP/9G8bOzl+yCADWuT88BAHU74p - BTtBkXUv6J+eWPhughv7rrEsG0ouhCTDwAX+4DN8pDfUNIkDX7/8SVTxcHPn38Vi4enl5ehM0d2d - M1/eIEw1hP700hJAI4XZhBNiVPOtWb/CL4Ef98384zPrX35ZJ+32Dz+oIss8PNXOFVnSzRkXe/Db - f3xUax6Dvva/iZVGK4bE0a++vhgQKNKul4m3699ZLgMFnpLqTLSA85stOHkaeDWLjoqqnaL1KM4T - 1MDZR8arXd3FpZEDRGpqWNrj7fssMgi58pkRz2O7fOnlYJOfrhiSJ0N9naTTasphx/7IlY8Ul82D - tIVM2fKYEQrL3X6djqEdvC/Eh81zXMXDyMh8LOXEYjpZX+ZrDKGuTz4KcK26SwHKBez6DuVA3Zqe - a8JNPntbiJedf/Mn4WDAKLtAdI/nHky5HSaw5C+8v+bd6FJGEhVptBKIPEaroqVcHAm2cvjGjPMN - 9vygOHJweJfE2baswcL/AQAA//+kXUm3sjyz/UEMpJOEIb10EgQEnAkiCiLSJEB+/V2c5x1+szt0 - HZeHkGr23pVUHeEb1MRZkFqLP33FyWbJO98JDkczK+jz+2Eht9Y2ufHCu1i6+cyAd9QZGMTnrlgZ - QxngrSYG8tIrW2zcQiDc8WvQn5HSCMZMNfkdNCk6Tad97tCHvf/lz6BbMK8T3zjXYBTFF3LF+jKO - xD6IEuIigt8s+4qn622pjmf1cEHG9xAX8+TNbyhSQyOJ+fjo2663gG+HHuRUj0WzOeXrLv/xAeMb - nQCfF1kJAZOa5ISKgdJ39YugzfMaMqIWFj88Zjwsi+KN/MQZ9Ol0cFLIPDoe09OPxJsh1RMYSZAR - 3TVWuoqHhgHLourIksqJ/k5tZsNskpSAoEhtuClqFnmPtyjhT7y+Qipv0CMbDFr4zht6Qf0d2vis - oWdiWw3rTaUICasvez73Yr5mi1q8HM0NL/JqF8IfXsnguQsOfFCAabdP+CrFLyrm6h3veLf+0wsI - Qk3izQc1U2A3iG0gvp8XfdPgV4FWxVwwW5WNR8kxT+CKOR15n64Yl1DXJriFD0o8fzN0bu2ICN3P - K8DiPc0An2cuD1tdY4lWhCGd7uzGwzLR3pgKXQI6UxAsUKlDiyxrb2v005YIVg/rErw7+aKPTdju - t/7qH3EG/PPGSUsgeBMLIO+1at72x1dbOXwjRb6SeMaFmMDjLdYxpI1b0EGxevkhMHcskuuVUmG2 - WNiTXCVZtkuiJ25Z5PNCo6A6LZxOHfUQQHo1TOKMBdtsLNNWf3wgGHe8K5hOuIE/fH69mPJI51YU - /+wRaXu/pCXAjS/9+UPVeqq+HnjDgB+H3v/Zxza9igUu/kCCQ2sdY1w85gWYnnZDzuyM44Y56svT - FLIBbsu4ocCVROgMwRWpfBs1a+0nNvQHZQzSq97oa86rAyxUPkDod2obWgdVJb1K6Yu5fmib3/3K - asfTLVCIe+YcsGmdGsnW+HSQ8bJznc0DN4Jj+snJeVszb40TVZP37wcH7rXz2fqUy7RJXuh04ecC - w4RnYM2r/r98yVYpfUOg32TinWrL452a0QDHpjxyd/w+PdjnGyw3VkWKvPYxfb85US46aJK71moj - DS7dBPHJsvFH9Kt4m1Nbkv4+1ymQ9KXNuxoaqsCh4JWYDfnT26oimZHqVPY43WfYQa6z7hj82ePJ - TcJ/+k3oBTcg/OXHubA4ctI+nYc97lHC5nI3A7nrZbpcb2IF17DtUWS2p5hj09mAEg9MZO761coZ - BQRmbV+Qf8HfcfvNKoRmMjUkJcrBG8qjXoKkPjREjR8rXcNW52VRqx8o0hgmns/p0MN25TnMFp9T - w411Hck7nieWVPp0fZhHH9CDkAdnVx4AxSl7h9cRXdAfXl3/4gvqTw9iHWO74F54MWS4qgeida9c - p3y/+fDVCmcsxoArFnjbJPlP77Wuuq6Ppha9QZkob3L6TR2gjjzUUBAMEqA9Pu/6hgZkiw+DibJ7 - 183n14cP+3kg5kG/jbQ71T7k7sNElPNv5w9Fbv/bb625ufoiMVcXLjdeJVZ1VYDgEqwA0zcb4jXe - 0cPbR8zhqTkkyF4XMZ7qNsHQ9o7HoFGfh4aeHmIAt2feB/Cvy8pSjjxgCiHa+fSr6JW7dAc18RZy - ep3YZmnmXwQ/V2QTo3CCZuNjHYo7P0RmhuZi6wbQwxn0d5LZLfp7/kB2qu1LbG8PpNdhWIDaWX4g - goroXNh6LGgV3yJlfcB0wgd9Of7Foz/8xorVmwUMSu/E4PimoUfycOHxfTgj9fVhxymThbt0/mQt - URagj9yncSQJlAokQa59AX1n+63VDAN8REnf0CsEEpCpOJPMVPpm3vUN8IdHfQtHYDt4Ug5V5C8o - arhGn5aKt0FhDDDAT5drtlEaXXggq0vOuG4bDLK+hXzjCsT/8oO3mGtvw1NWlkS7sxmlt8/Gwr1+ - gfQneNEN/Uj0l38RSmxrXJy4ZmE3SC0xBh7/x8eYgouI4WBhXOTj7AN4O93wKlwqnUObnUDt8KuD - 7/fNg8WeFh+OTCMTk2xbvA1Ps4S/i7KSS4WP3nqV1hbe8qUKqHDV4j/8Dj8pnPZ6R1BsOz+D8SGl - 6GSWasP94bnv0qlI3+1jBfbSwUMOCJ7LHzvSrOwiMKPxFBx3/X45HZwEeBP8D/8I72zUoNX3BSmP - 1h3M6m/IoTCOKlL6dI3XzdEleDsmevA7HpZi9jUvgLG0vFB0P03xKl5kG+56EXFQ0o+bIfUYGPeK - /dObmuV1U3lZSGi3dwV8Nm3PRzV04f2HkB8ewLz7858+hLz4bMWfMF+gHHczi/EgcGCTtQ8Pqy/3 - IbmZHenm1Ixy/LO/816fWCkvYUjYyUXJjm/n9PUO4HCYIVG6/h4vtqhb0NqSD9Lz/txsKHbe8JZp - EjJ8R9KpkL4M+RQIJdGX6uTxXSPnIC+pF2yJreu7fqIBcSt6ovtgnxOtfzeo6lQn2m5vsyXjN+ii - +BO0BX/3lvNp6+VHDOZdr1Mpt+M7WBv5I4AcM4HWFj0LePyQ7/FsAiu/aRuYqB0iVIRsMY8tFIHb - ZxBZpyMT92/PTGX/cpuC41c4NxQOsy/O389MbA15AMdQyeW/9ej99Qy2keTR334gT1ZKbztkZihF - epliRpilZgt9L4LXu31C4fgzRz4vnhV8ZomCbk+1p0uyVL7QdsUJL+xzGLeNe4p7LySXpAc8NL/d - 3kCuZhVCncw2q5rdIng+6DPSqrza9WIph7397jD057KghRTt/889kWvIjl7Xek7yx3eIO2V5vHw0 - ewHPLFUC2WDU8V/9IJAFjBQhNekvThwFMIvsIgUbvUe/Bt8BCO5voiqPR0ErPFkgu1RxIFj350h3 - viVHvzHDwsVRqTAlnQWW9nPd+edIV9EaQmmvPyEPqNE41eOdAV4cmcgQwnuznWyHgcgqMaZP8AL4 - 3k4KdO+nOliPReDxUXtIIFhtFik/He6/947kP/5/OemWLnSnPoB/+pEGUNPMDvtiYLUFDnIir/U2 - 94QHuF/eQFZ0pN6qmbYL93pBMH9AFK8KoO8/PZJk9f2n/3x+P2LHkzPu76kA5rJ5+HCvj+L9fTVc - 5n8r+JazjNifzRxZAQYs1C/MEMjB60Lnx8U34Fu+ZiiqrSvl+0NhQRkv3N5FUgVUP57/1YvwNNu9 - joenWcFB+9XB+vqwDfFlFEBU3WJku/lHX33gi5DbPhFyt5ets07GlXJVpDNxbbZq1vE2KLAXki+u - P08OrN31nINdD0YevyjeHh8DuErRioyCv+t419PkV9B76EmtM8Xit8nlP/219JWQbqmQl//0q91+ - x+ntnVMQXIETcB16e3/6G/jD/yGrX/aeyDn8x6/cXT9ezeiX/Ok7RIdfJeZtilxouzwhPn83Kfen - J8awNklJWUiXY9gl4M8//upZk0ZxKd3d4kz8OmqKP/wlf4NQQGFTT/HkZFwFuXHmA6CmabzGA95g - rLwpQZbS0LVsrr7MxpIVrINr0UWsBhaAmx+gm5Kw+rrXW47f8hUT1E2azt7ZjYV8RhykhDAE24Wx - MPjTp9Wi8zyBO5c1qD6aEPDucgMbwEECj8xdQk4bd2CdsVPBO3kZJN/1v7+/g2l4hZh/PTDdkveq - yDs+Jv6j+AKar2cMd35AbNwPBV3GeOdntzfylm4pqG3UrJxwSohlb0hjyhYXDZ6V80wMq3Oaga8q - Xvr/HCng//eRgvOZPxKTgxbdmX0rvfh2H5321RrhHNoY4iVtyOlsqA2+NbIL75kjEX+SDjGNrDWF - 4xF0mN/EhC4POiTwIVs2xtWJ6KvxKBI49fIdqVXG62vgwhZcwBQQlTz8Yulfeiv3RRkTrSBvj75u - eQvfDOyJSWrdm/Wn6kPA9Tkq3Ic5CmFZDlKo8zkxZtsohMoybVj4OSKlXVc6FZchgrB6DcjyQF6M - vrSl8Ph094bTyq9ZFXR5y9uxUAIR3NC4fN9rJYM6pSgwP++4D94LI/eK4CD/2rHFKhl2BJLsrZDs - edH0teAjEXgD5wYvT/c84nw7CQjRPcDHWiqK9esPEDKfxxUlRv8cuZCOKXT5x0oeLX9vlsGq+mM2 - 0g4f7Yugr907CCG+RATt73dcQAo0mK31QO4zqxZ8YtiLPGQLJdV4NgteqDQFjuZhxMz+vBsD6FtG - nnIlEdFnbwba/Q6PDtuRa8mUHnc5eTyUtUeHtH0m0PTMTm/IXYcQ6VYm6uuxuJXwxcVDsH5Umw4M - ADVQnFxBiG91j92CiYdX9hrgllG8cXmlWy2XPT0gw+gP43JoWf7f/ljFqMZLjXUsb89+Jc8TiTze - vTxEeLfLBAVV0I1crBeW7J5ucvBdM69YdfusQEsuYsxaRlhsCzO0MPo9e6T67rXhPpHayZz7+aJs - rjTA13rSwbpXGPJQRVdfnDgNYXK5PpFJ6sbjXtpFggJ3AFjko08xgbwW5fP5VpDnL7sW0/JtRMhv - IsSHkLObv/2Uw/WzkUfT582WASuBbyWJUebLrsfqtZrLr1pQcVduHt0+kukCO3Utoroc9LZmsCsZ - PvMO3QLwa4TifOshZMo7Ce+iT3lzfZXyUSx3yYrNdWpheoecp5ooKuXWY2E/d3ALjZAktWOObBaS - AAicDMjt/BQB1qpUg6yGdKSlLyXmE+0uwWud6OT2fjQjjm6TBdXL8kEeIFifWCHuoHReXnhQC1Yf - w+dyl/XqZOD13HUxLbxxgadXhnCr8LghgnXuYXtaRlR8fqbO5nDF8if5HMnDPqcxq/k9A8/nosCL - 2BfjUtaOJE1JvSK3xp63wMNrk9mT6ZKqbSK6nfJ3DunWv8jloZVgvUne8G+9d4bWOjYqVZGbSGaR - p09FwX5amILcm1ISaQcr5h6PggfeVdZRkjwVj9/eaAE32p5RxtiFt9ybbYCPd8mg4Cf6OnfMOCzf - X9k3OI5pBahWr61c0sJFnmsfvJV3qCRfLoyCD6n7AvxbvU3QHpUzMZ3m1tBr+tLkWzw+kBOGur7I - iejCK+e7qDTwrFPNRjVMnYEGV+FSe0L7s0PQ5Jcb0r7RotMLkQ04/e4iJnjC48L0YSc/j3lPKjQd - ik0RHhb8JWGK9CA1dG4i1IIJMGd0fpLF+6GXuIiP79YEQxNJOq1N0YX2oeL3ExPvglqz+ZbtkH2h - qi2LeF3gSQPTj03J3fpdAXs/2syfP+DmJNUxuzK1Jf/FOxsFa7zopyz9F1+SFArNQuvnHTIfiSJD - bCWwOTKXQykafkS/HTePTqVtw/MWxMSXlOu4HLERyNXSdch/T8O4tuCcwAuIFnR6Xt76av++ERzD - lkfKIQo8LlE/PpDgXSC+AwNKMvklSsdqmonaSpdiHlYOwti55+Q8cdb49b4XSd7jC/K88VRwRA2x - fLcVniS3+UW5QrQ3IXtBm1j99Qbo/Xh04SCEJsnm6k150RJ5SHs1JddCWMfN69oAjJz+RA7b+JT7 - hDEG6lhTpHHPEKx3jw8hpywOeshPBqyfyOkgx8gKUba7RTn3d4+gcK4t9Axh7XHmadHkns06Yqn5 - o1g+3RDAo3FqkGNBuZk577XIHxaeUJTebTrkQceDUGfz/XkuIyvemwWevx8blXT8xVu5MgycHwkl - z/Jy+IsfJdzEw5u4cijsowhBDbP0+CQBPvDxptMpgbPunQhCNdGppBAF5h9RJ4hvG/0nGo8QGik4 - EZN6cKRiETNymMcq0oxzX9ClTwx4YLWCOP1G6CLLQISdqFsBaxlLQYP6fIdx05nB0enCgmdaIYFO - Tr/Ieww3j1cdNMHbL6+J/57ckVtbjpffnjZj0Rj54tMd3RI87Ikg91hZYJGTxZbXceLR6fNMAWvQ - Fy83m9Si01y9AYnvl+2ff0dcZ8crUfNJnmj3wdfQSqhQPtJEPrZKvOcvqM9/+foWrFcs1Lk/soYt - +rCr8BXdclXRectUobzIVo2MUdIKNvuOORQZKhNnj59UvtaJPLGajp6pPhS8SWgHn5g+SNaHL28b - jTSUlfclRuk9tT32pDZYwmNZkNQJL5T3UaxAB9cDMoZM8pb31R8gjci67wfy+PG0aTCXNpcod3EC - 2+t6csE5rwyi94kK8Bo+AjCxio5u98lq1vvLaGXkzABZ1GrA2kLgi2b7uaDH6awXa95yiXy45ibR - T9SmfLkyEN7k20j0OOXpAoe4guXduCGfHcuCu7d1Kls4Quj0l081UQnlOVcDUiHK0zVwLCyboduT - 8/g1Glo4sgiNVx0Rhx3av3iiwI/SYpyHJS0W8+SmwG+NEYW0txtWhoECHXrfkEs13evF8tJDUFQj - Mhds6gvs9q5PSjH+29/te1xc+c4jHEieIIxLeykk+AiUBJ32941/T8+HbUF5vH2j0KMQ8j6sI3LD - rFer3rZAOMHS2FikxMG3oHv8kAPleAxWguRiC86hDbk24zFvaItHGoBYiEPuEvCxZBQYK/MblMbC - oh1fxvP95XfQQXoe8HcUNltkXDco6+mbmJf3LtmyhSbbknMh+ngoPCEd1BJ8rmJMdMp89aWFZi3/ - 5eNi94dt2MYeEvTsiJc3++hQ6dzDb3dm8CLcb2N/P9oQhvpdQjrnOzqV470RmVZWeLaLTzEejmYJ - swkZyAzEjS4W9gKoZob7lx+91YMShnnYVsQytND79bV+BxPqf3s+e3qbPSQMZE91T4q8FOJ1SVZX - Gi9KQp4hVPQNHNpQFlnmSeyfT7z1Juk9DPPpiU5rSAGlor5Ajyuv6HninYYTjUcEzbC1SJ6KKZib - URngXbAGEpghAPR3snj4Zl4uKRrrR7ejqTFyeUOPYFvyrplOAymPjc4uAavwwTjRhtrwwFwy8hB0 - 4G3FawthrCMB5/QFvGncfjasUjYjT60/AbZ/EBZWL83Y968taIRRAKdgnYnW4pe3HjWSw+zF2JhK - Ly1e2KNa/cND9le4jriJjQi+XtEzOBR5M25guDIwumoH5O72tzHy7w6t/uUjvbciwI43wQL798np - M5uUFudLDxXnrqDoB990exJoAKb2FvKXz7ZZi+//7HOVy8qjZS0ZYHOXAaErB+J1axCE4UQG4vGv - KSZdECfyefNjokkd0FdhgRsQayMnxhkaYF37Wwulib/i4YNl8Pd7x61lMqJUK1dQLyA8dO6WSvzw - 6epC+1NCmP5s818+nw4t5EERskcSsvLbo8P9G0H7ICYkf7ydhgrGcwPZw1KwqD+S//C0xiY8yp2j - 6GHdrbt/+Nr47LeaeAeIUOh4Adn6I4m38SQp4C/+hucj1rftfdqgKaUJQQ/2FPNFldYAKNwr+G6T - MQqjdWQhrA52sJX8NFL6Qi088QMbbDueq5448MFdqG1iX8RWn3Z8K2U8i0jM+T+Pst4UAeWN10A0 - xjReNL9m5E/yPZI8s0w6hpVbQ9eOjkT7YQoWrIWS7Ig4CzjjmgF8ugY9PH+dAeW7PfDOoQnB9e68 - yMkjvbfV93CRo6ty+MeP+p2/QAvK3B9/aVY4qq78q+BCqnpV6TZlPJbbC5Pj5TaMOn7LnARNEo/E - y64+2Dj6SUGsj1eEwGYAITK9EliJ0aC4bAxA5Z+9SQk4zUh/rd24faSzC3b7wMd+FAuSdTMGe/4i - aqINHmmYsYXtBebopAu0GR3logHUXi1yYh7quN25Lwav4lUQ/6emdN0jHRzWRiPne/+h1I2PlWTe - OW3HT9+CYt2x/vwlEFz/ANYbT0RgsvvQL1NN6DRnrA/57VkF3xu3xts8nzUYsfUFc9/7YfyaxR1K - 78PdIt5D7PXN7e8G0EiF0Vkpb8WQh+UE5dlYsJifl2I9jQ8bQufXEOeazcVyVYYafs+LQ4xbNxSL - 07fdP/6siqVXrA821GTTPB2IrY96wY2VUoM9HhGHbSaw2UPJSLs/BJKZwGZSfJmR/+zjYMuJzjJ9 - 3sEw4xoUFA9YzD/uguEfHzWrlxH/4Ws58dVjcGg0x+O1KlXgsMIaRRf/5BHkvi15XrMDcuipAPPa - ciwEJ01D50iwwTrhsy9dEw4i71fw3p+/QbaQL4Gsiq6H99bdYMeDyPCiTafiFrqyvL7uyGVD01u2 - yG6B3ocriQ/91MxwVG342G9cWDGdwFynpxS8CuaI7C9z9jgvjH15Ugw72F78IV4LUdnkHT/gLfVv - YJuKqIKFB1fkqkWi02cmYKgI3j14S+yg4+uVJn/4jbg7v9pES2Rh/L6MeFRUTV9P49WFf/GZnweq - r9XChjAZ4Y9E87cshoDtNJn2FYtOn/kDaExqQ95uAP+LZ//iydGNjOAICzUmgvPLYSF5P2R9rx1Y - C3bWYG42HFK69xbPF/PKgI2gGEvHyqL/+DgSd7gkobIhZ/dgwLdXeuT8JKHOO4cxhNiTHeTcP0hf - mv5jwZeakWDb9aC1k5YEjsBXUHLBV8q7sb7ACwgXVOrfd0Nv7cCDW0CvxPnDr/t+y+NHLP7Z23L9 - 4QjiZVHRZUBDM6WJxgDxcC4wo4Q/j9Tm4oJX0RQYdlUxrmsrs394FnNG04HltzE2jFiDYr4ek4KO - pgfh21NmvBasRBdaZzlMzmn8j8/y9ryPKIp/JrE0NtDJPEsYMp/ndW9nNYBleCoYuq/vgOz0EMTr - BjYNavQh7esn3rDjbVCMlR5AONjFb+0vHazU94ZODNrGf/HvpF0KZAmHg0e0pzdJdV+VwaJQAczs - M/Pl3iQhPpjG2NDq4SQAkCdPAvne6RsYHhBeC+VBAiX86VRp36lsLGNK7OFlxyv7zALgluRN3PNd - 8XidtgmsxlhByrxfUZn01ILfczKi4n3Y4q1WOwzast9QxAO14TfpyMIL18xYUOO2WZdYD2Gn/2Zi - wgv18DybCjSlJEG50TJgU44alD+q4pNykg7F5PRTK0mXdcZpPHExvbPfGrrfdA7AYw0bAkavh/f3 - oBKfPXrFphxdBhpjtgTfyBvpxlVPDTzFg4uUapDBnv86SHMx+rf/27T0G6wO8w9pmojBTHrcwT/+ - Ytxmlf7lS3nnwxhn41iQyDqm0OqZAQN9AsWq8fc7pMjWiT6/9ZGDvyKCuYdTpLowbgiJzxvY4y9x - m+jubZHxWCD38Tdimms/rl+uw//4geFFkb7pK1OCP7xnfEJC6XSPQhjwboDMS5I2yyvvc5h7oYhZ - cdzidcwZScpS8CTnCRNvmiy1l09aXKAzzdWRlUy7gjs+Ic+y+4zkj/8o+iCTU16L+uoydQvPUdwg - 5+T6zT/89YD9gOy3oNG//A7lFYpIM9/qyKkuEv/Zy2XXj+ZYjw3I8i5Dzq4I6bLjKdmWvAsyg7WI - qX2FCfQKbBGbj8yYZ12mg6uPWqIqN7EZ4tl4g8vn4GG8Lvtoaog0qNv0ibTmtjc+DtUAXi71m5T4 - cRp5wXxCeLGOGa5LKwBTWZUK2PEBrrv3VmyP016yO+ZhILNdM65BkCfwpa5noi1uNu761CIjhwD8 - uL+CeCtpywMaOwidmNTV6WObeonC44MUJmro5MKzBszn7ASrEDjFoldxDUr0DLAIa0knH9hPMMyE - BoMo0EZuxw9QgrmA29k2Yvqz2elPv0XI9Bqdfuuz9Mffgu4v/sqfwxsK5XlClhOudHaiygKE5Cn6 - 05eo4Pzu4J59c2Kpz4TyR/Ub/OkRxNKAOY4/d+igRkQfGRvC4wLyXvyHpxIv2jxij+4AR9/2yXWI - 1IJeaM6DThQ1os/FpPOe3Odg1z+RhxcU4x12w3VVSnQtFslbr0MB91ubKrEJcfUNqPcAyusJIutu - H711E6sIDlMvESdgN29jWiGFOx4KuEuBvSUHu6ZZVDE5Jfik83IfG+D9fKbELBhHp1I2BuCH8gDl - e7wZd/1BovN2C3hrTsf1LJQW2PUlTBrt96d3aHDny5iXll9cBy/PAE10YMlpDWPwx3dgzw0K0V78 - MyYx6Q3YWzZGl7S76aO45TbwislCiXdzRpyO6vBPP0puz4hOMxZzeI6IirfK+4A/vvmvnmBsKGhY - +yAvcOn9G65pb4/Cnf2+QZZtBQmUrG7WwGVbGGLFIGGgmCN1mMYA8vlbBRmUjsVra04MnBIzRqfJ - ccYlSc8sfLfXCunpSdXpCuAb2i23D74alJg7FpcKCOe3RVCR66OgHJcBsiV/Jsquv266vWHAXfsQ - 5W9BA0uSPJl/+NzY6w0ji2wFupFkIM1d9JiV9KiDSVYrxKiA3iwH8RGJf/ZTEetMaZzyChSiPEC2 - yCnjKF/r9E/PJ14+dDFu+31wwB5vdzzoTf3La+FubyiOHzheBTavYcTQc/Dd+f00PCJWJhiK5Bwt - l4JmAGpwEa4PEneHPqavbJhgEd4KpNyaeFx3vU063EMfPcPvrVnUo13BxH9meJPmrfnTl+GkWDby - 33QfZaYrBiw+8RupJE3oGgRhImPp8ySouPgeR89TD3d/D75BpMeC+VB4+IBnn5zuuhJzNT7mYCTz - kWjLBXlkKm0X6gGjBEy+cWDPx4osC9EjeJlfKV6fljtA8jtzxGUmu5mV89j/8Tdynr7CSLsgTqHt - 1YDoh95v5l2v/NPn0dM0xnGRoaXJNJrXf/a5jmU0wFis/GBRJFLM6jP1YbW0HYaT9CyW0/Ct/upt - O94+FvQcRDxM/EdGfD5oGyI8VB6W/Xr4h1f/6fMCX9yQX2q5vgoFroChVRVSgSIVvYV1H2ZayZOr - rjAF3vVHIJyyD7KORahzN0kf4FEU76hwEd+s9/dWytKFzpge+mncrCnjYTjNA4mtTPTIcCchAFbX - Ens19BEbJ5+VSjayAqYdhmJdZCiBPZ+j5Pbc6EyGpALt2QjRecfPLF+7OVxVc8Ib1Hx95u19kJRs - 1IH8Mpxm+dML//KnNZ4EutHgnoDA6iGx4r0reeE1C2DT30ROT3cYZ+rxC+DnT4phrB/1BT0f/lEz - cU1c2+zAGq11KaWM4iPT3QeXvpVbDYnZ28ExdMZmGYl5l0+vK0K3B1Ipu+t7UrPpfbDv57j7S3gs - ngeI3Oz18JYVboF8kwUH6X3yAhTLh/zPv/GXeagNF+2Dmx/fq7njf7+hTCPYgJiDjdfLcx82GSqT - HBQvnaC9/sTx9WLJwonqxPSTBmxrLEJYInUh7rP+6ds1erb/6lG3Xc8W7El8Q3Ib4796qvdPD3Nu - ZzPYFjdr/uGdtDqVWAT1V6c9xSm8UrAgHw52vF3IKYeLPZ/+7T+fgWCvzx7uRCsJ5+GSu09w9DDG - dE7YkULlrkB1ZC4I6fLLW2u83uEwGzmyF9nXF8SONcyypUDZ7m/UvM0G3Pkd5kiU6DS9PPM/PQsf - aakVK+m7FljBJiPjkRcFttVLAHe9Fd2ulUGpNWY9OBovFZk7H90uBOVQl7uUoEN7pTtfiGDbsU8S - KlSgW6rkCowfnErCWxM3FB8+IfwlUYpOqj/rm1Bp2jEPPYWc6WXwtgVYrIwYGKLUqWqwiTRPodK4 - KCDSw2voXz1ir1fgheWH5lURK5df5T1Div94xGuGvgoM/gYV0PIdD1kslkBUvtY//La4siRCI0s+ - gXCDPR0j/dpCtwMooHPhe3wp2K3UbE8L+YfTE9C7qIfQUy0YwK80FXt9TJNj4ROScGJ4b6mnBwvX - yU0wK7YSXQN/KGHJhhbJCLgXu97uyuvi1cTOLRHM4XLqdkWZR2dXLMFi6riF4lUacfunP2WXRIJy - Rj3yt57tmr2C4//nSIHwv48ULDY4EmfN2ZiOSd9J/PVW4er7duJNBdiFvbLaxIjQrC+f8BPJ6wVx - AZdtXLPYnwMP2XerE4Utq2JzHbeHVpNsRD25VizcHd4H84X1UE6drGHZwy0H3cWKiR8eLsVyyhZD - 1ix7Quqv9Yqt1v0aTs4bBZt5a7xlOts1jJJbisJgFb3t8nyksCqNE8mvs+YJzmoo8g1LKvHMCYGJ - piIPC1CGKBZ8BkzfUdxg/cEFztTyElP4ajRZ53oeKclr1X8X/hXAZOYZLKi3rll+cGVkXx0+uMU8 - Lujj/E7gT5U4Ep9GNybl7a5B/upT5H7W90hipq5gxLyemLcqDlAofRc4fn4RSm9RPLI/+4XlVZdN - kha4jsnxYQTwcKwfyPQeqFkyhyiwO2VPZOnuD+D5KlXwtxhf8mQ/DVjO0seW3/nVI2lKAdh69WwD - pZYzZHHw0Kyl2Vjy4EOFFAVuwOSo3h1kQeTiliuKkbOUNpC582k/Je+w3lL+LinUQstDgTdfGl5o - nRbe/WuJghCPYHL5IAF13qcouNTXQsBf5EK/6HTk89+pWb7jssiMq8QoG65nwJtF+JYnn6vxLTef - +kxwg+Va7Sm5h6/cEz40ZOWHJW0B+xGfHpcuniYHW1Ri8RP/ig3xcIJ21F/+7KXgrVL34b6fSP+l - YcOf9KML8WyoqPShNQrUrkTYiktGnuklienNzlkY4ZQlHsmugHV/IwOJUQJkEzEtJmtxbWgsWCN5 - J8BiOk45L32fkUGC7DBRWj9TXxarviDPrpNi6uZHCO3r4Y3UsrZGzgklDD51Bok2HuViLh6yDZff - EJIz8nSPvx6kVE7DJ0HqRX82gmkcEvhaYEQe42bEgnCoW/nKQRQcnMNNX6eL4kJTNXOUsN234A6m - +IZnRdeI6nvKyO77B8VTL5ILP0pgY5/DAu0j+0T+r/lSWu6z5RFdnySNZiteHpcjAwGdL8jRq0ez - fiaegekaWMgfrmuxCWSNZFv2lpny2bDb21eBZnF+YQrPN29lkbLIep9b6OYNesy/hGSTI2w75JLS - PBa8M2SgLTsLMg1G9Ai1UxFCHcDgsOlqQUNiDNCNrhYJhw7R1U99H+Z+/yVBBjVPyEQ3lHz+1KDg - sS3NYslPH4Lu5+NXXL5GIfa4Dv5+MSbmT1Pi1cz1Ft7lh4OuvBiMgnxVenjK8jtKro9m3P3BhV9a - 5yj4vn8xPZa3N+TfoUjM092g1IZ0knkYpLhtL2rBB8jiZat8HYNaEj2PD9TjIjGJ+yBOtJ/CnboD - Ay++eUcu78TxUgRnHsJ2iJF6N47NIr2DGnJ370sM07ML/sUPFtSEkSAlI6eY/cEjhE7M/JDyzg7F - dpcsHuL6yxAtD72R1XS5gnnaWch4prDZhgevwDZ5G8T2J1sn+HuyoWv7EA8HyFMCplqTza1YkGdO - BCyXAz/I9SZ76LJ9zOLv/YDX91wR7XX5jJxryhh+LPVEbNG9UPaV5hu05CgMNtbUY85o7BaO+f2N - EkHo47YtSwbKi8GhTEi/gMJ6SWA3Fifil8/GE+AcTbJ5Zz2S5NqyN4o2LDkdbmd0joMzWH+fzoAv - RQ1RRQXy7/1LbxjYyD7hfOSyW5qCxwDvyHWgCyb9aUM4HmhBjPXaeZv6fuUyQFFEPKHrilVLskr2 - rO8tEPVxBnQd7A6emLYnqZbXMWvEtwjOyWYRC3Q7hRKUuxQ/yxeJ2s+l4SNQ1OJUHx2SLaYFlkQf - WPh6XA7InIWk4a/eYEHBenkB70xTvJn9/M++Alkf12J7V6EmB6pLAjhcLzFXd4oF6b3a0Gn+3YAQ - M30JV1V1Sfh4KgXJn2IA9ar8ouLzfejrlyy5bDwPA/KVwYtXtXpt0IvHiphneCoEq3Z5AMpGQ0qr - anSdLxsvE67tSZKvZFz/8o8g5TYpH5epwVRwbbghLQwgTcd46ZNbDuF2wsR+rxZYdPE8weL13oJJ - C6q4576SArdn0RFHnqViHX9RICcD0ANhPGUF51zmHJa/QcNr/PRjXsU3A+7+QDRyooDOTFeDujq+ - ie/580id9tfDo4YNpBjgB7bi5RqweNUbUftNBby3LG+ZiO8GOS9lb5TY3yF8KkmBkjTK6PaQlVDu - daIjxH50IAhKkcI6H1KkXbWrvlwn3oDS6A8o/bSYLi5X9PK+v5hnpIDydylgoTL3Jrkh9e5tSQNd - WPHBhXgtR8fVaJRWzj7VDaXgd26Eist9eLEhi5Lq1cfr/DyJ8JaJFXkqzMFbkvAgwgJU4X7kqx3Z - v3ywjhlDqofy9ajK2Lk8tImEoleyxD9X7FtwnBWRROat0blg03LoZLEUcC4OgVDeIg3mTq2S824/ - a64aESwu6Yns8aj43X8TD5MY1OTfeqP+GcH5jV4I+dUCthc/GFDiUjY4vGsDsH/xWEyOPYratwVY - LFil7M30S04XPDVb0rC2XEVZQvT0aeuDVXoB/LM3rahUwC1vqMGn0lgoOO63sosXu8hD6yKS8/ec - rifu68p2NFyIvSVNvGh8vVNw18ILWzLxdj6/SplcGiX4fnlen6yF5aXn4+Oih/M60CkOzz6MzTTH - fRwMe752FSBWQ4GUYr91YpfD/S9+IdX36pEeaCVB14zVQAgPZ8CPVjXAvOF5zOf1oE8hcwvhY/TM - gI+fBHzwsZ/+1k80UN7Acj6hHY9kJVLd10NvLzQJ5RFWLvJPwC/YjXAtrJCiIa0ijb4Er36nqLqL - 4U1WRpofyQCa+J4FfYmMcW4FwIBTUj5REI6qLuTPJYAlPMTE/sROvGnZdJc7MXoFD6e6enz2rUMo - zG8ccIaPmy0IElsOP6ZALmIRg+Vbq4aMhcDDbJ/43qZIyiIzL/+9+/ebYq5+VFIyHPfZaC+P9sBR - t2Om5muweeBTrELN9nBK2wQV62mfbXdYKzn+5cr+vp9g7UBtybk/fANgy6tHeC9M4Zjnb7yWdTfS - PZ5A8bJq5NlEOKbqlk+QnD4voovHWceh8M2hzg08OceXvFmU++ACVH5DDBylAEvBOQp0TSNF+bgp - lBXN6wArpGnEaS8t7fvkcpcTQbaJ9skKb1mlrYN/+ChPn2Pz7/keD+mKTpoXerRY1hzMgEkCOLGO - vjVRn0A7kBlShaPqCTOD3yDru0PAHTOrwM58MOC1YkZi7p9Zjr4m+RcsATkVr8WjzmpoUjcGJRZ/ - twos5+NWwqnGVZDveA5nrJxCTXgayEzaQzFFfRbC3V9wUR0+Hn3chTu4XPkAeVreAOqziwslrnki - Rc40wAut2kL1eh52eztSojSkA3H0sdEjDma6CKWsQP1Cj8S/c4dxCl57gGv7OODiqfaWzpDbf/j0 - NBp+g7kYGHARTiM5m4Ubs7PG+PB8Y2pis7xJOXBW75BrLytRy2YtJuk62dJFLjZc73yGxofChsnM - MuThE77YzP7TwVsmVURJKisW3lhSIGS2El8hlvUZav4dVDRMSXH1XyM1R+kNPeG4EsVwlB2/rhAu - dLljJvCdgpO1gwGX57SiB8s78SJvVw3ectNBz3eDxvVK8gQKcf7Z8euhoQv/hoC2LSQJWvaSjsMH - 8Bt9Uyw3HdNsDG67v/yEvPUoFlvGyglwgCsg+0aFcekMV4SZel+RX3/E8W+98Pa5HgMK3SBe04XD - MEf0TMzjffXo/Pltf/krEJsmLH6POWTkZdp4kpK77M1PJrLhDYsqyWy1av7l65UVT1g6u2pMpUtZ - w1JScxQh3xqFnzikQJtfH2IrD2HEMRnZv7+TlIOHkcTKWYTD2R2RzX3ahkp7e7lP7VxI5S17o80z - y8g7X0Am/c7x4j1gBFt46slp7pC+lByYwKDfRMxBLHtUuiQ1PJCWQeVRnOnMjM9eqovugrzkoQFO - GX0XfqeaDSTnWHtjakwYpuwr++PTHiWBbABjOLFBJUiSjvVDFEEcXwOiBY8T4P2PzUrMK3gTD/wu - +hJguYJ0FSaC/CqktI6cf/wcWYx8HNfOdt//+IL6tZliE/OLJPHXgO721MXr1vUu0LnKI443Y32h - 6cL/4RlipvIr3t5VrgEZMgFBeFM8+jkob9iHMkVoE7lxON89FraXzgkWYWDHlT9aEzyyWhmApymN - iybEChyYMCdnbnyM28O93iGO3YZoo/HTv077GuQzawzkj89trPh9Q2/euyQcirRY4ziyJSwlK7L1 - caaEJXdLPv7EKOCW1I85xwgT+NV8BZn34D1ShoklkK+nDmmsHeis+2sYuTJjhGlIUMH+rvwCUVcT - 9CD6p8FaesRwSrsEedbep+XFnljY4UxDWvu26CzzSQ/z2zEj2tqNI7XtpoIf+6ARW4RFscmWr0hY - Slfk9c6h+ce/HGALBKHp5G1ZIbZg9BqbnIT0S4nKKDnIqrEOpiR+FDTK5uh4Ymj8tz6waVmby3/v - k9vtbRsejAaD/tUHI/it+qSW6H3Mu2XF0vk8ecSRuxx+n787Uvb3TxiXT0DWrwNSAnwudrwRQjEB - PULvBjWjr50j+P3dA4IA39ItUI8bmAFMSDnkpUfz+i3J2ae8ocSUV7BgISihDZc7seInotvztgbw - KZAEWTteG+fPa4Go6diA/7QB2Nz0ieFDvHHI+3wfHt35Ltj5GolQBPVtvV8iuGj9jFdGqJsleNW5 - 7LiqSxAdDvoaHJ4l3PEK0gW/ootplxF8526NGTO4e/gDcQiUmV1QSpJTw5f2osg7vkO33DzoNLi8 - LHhvXiNxmPLoLd+jycovRQ8xKHBDabGlG2wPeoPOsqDHaxgoPfi3vnc8j9Pvym/QJR+OmLR9j/gP - vx5s3yRnZsrGZbo/Wnh0PBDIz/rnbfnjCiHTvihRG3aLp0JZFnkdrwwKjJsJWJcrBqhGJ4P4vy5q - 6Dd0NoDTB4s0hNYYH/0hAHnD8uhsT2NDTbGUQPAJMmSRu6z3f/mOXJIrcgRTK+jzsbByaXZ35N8V - L/41+ohBNT0eyENlP9Lf8ar8i/9OVaneZoVxLVupoRGnCIcR5yFo4c4niesX72b7+iwrT61Ogvdu - 70vzvTDyVwsU4tnyRaeCz2GYsPybeK82KjinOi2wDw8UaVtxAIsaSCVg2sxGRnH40OV+03jo6ZGN - ko940Cm+bQZ8MUqKkANxTNfxA+EceCLei8PefHUQC65PJ93t/wzYRKCGnA4fkRimdNLXEwvLf/w0 - CHwnpqkxTRCuQEdu16V0O4lODm+ebhA3rOZ48irM/Ok7Adn/33rYu9SoJ0ZC3kzfgP6ODw1G2fWC - qqnRm0UU7Tc0FWnGTwcGMR0maYDD+h2Qo0puQ4naK3/Pg/wklouXY4QptFJLQ954UQruCrZp7/oW - EEcQPMB2YuxChok65Fd66m086Bmw66nBYiOOfl70sfONK0McvZLHtW/t6Q+v7/njoQ/l+1tCvzom - O16eKY3c3Ie7noe0Twb0mQs7G6KmZcnpq6qUT3KjhKZxZogi3+dxfbqqKIdnLKMzscJC2PGivGnZ - mzjjZxnHSt36P35DUExWSv/46/a7miiSwaXhtsMkwtFLHuiy67WczL0gjAxNCfh2+xRbViytXEXN - gaiTrnt0tBcRygfRITdtSvTFqzpGZpjHBaVarsTbj3vk0Oi2hqjZO9OXmXtZ8q6XkqS9vIr1pu43 - kHxR2PNL7e35FEP1igZ08nxXxwZ9d3/+RnToBgX/IRdf1uKixGLO6PGSL28f3Fz+hne86fFVF3fy - IfhBXF8OuMEW6nlwpVpCFK3c/vOH8+B5AatN4Uhuds7DlYsfAeMyEd2ooNmQt238f6RdSZuysLL+ - QSxkkoQlk4CABAERdoBIA6IyJZBffx78zvLe1Vn2ors1qdQ7VFKFMylbotlLPB/miRn4ZD5ZLVYP - LwKGNT8sc7UO0aYuV1Pavn8E7/7tuLWmOEB4733sO+Cjfxu/XuDxyVB0SdFH37RkXSCXsMnC7+vD - 7vMf4LD68SKn4Qba33603rtCbrfZgFoW2SDt0itOt7uvc99MX/6dr0v310ZbdnIlyOTZF5kfcy2m - k/XtYNI5KlatQ95ijbo5REls4JJG9UjGlYXw8tZeS2IWo86BPCnh572N2Kn5Sv/Hj3/+enELBXeT - wz6FRBvmZRuPj2j54ZHsqR4y93iYiDkkMLTsfmFP0tulSyaZ//xGNXp6BXezH/Y/f9ayVaalgcQm - gOahhXe8bqmO1A84ntgBZQN9u/hkHBLAXJyjL/8dakoej+8ADpBbsLWfB5J7nwqWz6lFpg6jaOIU - hgWPh3jD2clWXSpQIsLLwzKxe2Vcfbu5gwG2b0vQSZ0TSqwuL0Ee2bd9FjoLlmg5OuAXzz//fnUn - UYRtPVq7HxiMqxDnAdz9IHxJmoxyIK9K+NVONfLzyhhZmaIF/HnSdwFLo7Z098els6hc8VPPR0C5 - u6LA5/BFi3SwmpaGriOCnT9h1N4yl+plNcHTJ+qRuftbJCw0X/Z9xUZ6rxktF4pmB7u/w3PZ/ahi - 0112gacLs/pCZT6irXlqC3g+0icqYU4KsgyTCa24emJP86uC6IP4gQ/LeiD39D3pnAhtB6QZuGP9 - OPLtctqfsB1glSJn494RvTwCAiUDWf7RB127MsMEpR1/f3jYTpFGHFljkwqjJ2pHIv0VLDQo/0Gm - mE4tEXQSyCQUUp8/TGI0z9XDg0nuN8u688/feYR/usvj0+N1jDYT1SysvrGwcMa5BfSnv3Y/BClj - mkW04jUJ1n7j7XqmjuhdhAzsluGygCa6uvQkDD6YZNKgAH46fRXqM4T1ayr2K1wOYNGNTEBuFYIM - KVF0dte/sDc0H3tv9RTx0bLakIeFuhzEjz9OTK4xR/2Tm+gsD2jceFBD+Ricn0iLLwoVlPvJh3j8 - nvd6xTnaHFh7EL7lDns0GYvpx59Dpn360HnsXT++awp0oz0jw3vGu7/Q5bKI9XURI9+JqDnNPrwM - ZxebjJzt+iuIf/Wjnb/tV3LH9L/58KePlk3vevh5kxH//P9mvm3VTy8hfw614l996cfnvUyuW9os - mwalyn4h9eiEI8EVTAFq8zNWD1/HpZevUkLK1Dm6Ptd3S8P0yYBm70KtRqXasvz3mcL2XIl+bSMO - 0OKl7oNP1AnnUyaNtK7G+le/wv/4OZ++UqhaUMI/vFzFm8eAW8Gfdv/0CJZLdnWgXxWVv73pG2zX - UIKQlJ3rs0zmADqdx/5fPtk0aSxed08NIfnyAF/sb03puzhWILswB2zl27VYbl5MjjJFxb94/en1 - ozbkB/9+FIdou5ppD3f8W4gEOLAMQQ0hjxOITLMY3Z3vQHnfn2VVxr2TSHHN5dOWkf/yFyi9N5i3 - 7egf6HBwu4F5JjA/+zyyZHDb/QlPg3isKmQ5uTJyLKIlXHPmg06Xiz22v/XNay/HUSS/2l89FJSn - Lse6yGsFbVstlslpjRbe833K0ZxU8pv/MIsU/Inu/HTOInTwm/Ovk67rlHeDWF7frIbSTPV1YTq3 - vYzkJkRusS7jVm1uAMemmTA6WL1OiX7JYRwda5/f88v0rlXzh3/oEpZGRD1WtMFez0C7/xKxzaFT - ZJoHFn5GSqSv9zuBMhPbD/zLl9TjBvZffj8vhl2wnxoQ6VvwEbLv15s+Od8WQvnFjEj5a1x3Lo80 - lq9yti1EGOJxVXjKwkQxMuxKwnucBuYegz2/IOVEGP3zBCcPZo3yQY/MKCP808N2q7+R5jLEJXzp - xLC4vyK8r78uhE7qw8Dp7jjrrgbleZsxQGHsXQk/3aLTY/DlwTOvOqT3rK9v05H1f/VkjLi4GT+9 - GNnycr4Y6OlVhM6pkvUwUcxs+cvVhdLnt25kk/ge1gc711dluJaySXJhkfIroVQvJgXy0EtQqMmJ - TrzQ60CQH+a9nmFGbBKtMfx7nGKEFObpUr/ibWnTHAFdbvNpZLsyhtLwftbo8ul898en4fvUXpFH - pKrdeBgN8g//7n8xBXMRXkpYWOnn3/5utgiNn/5f5H29hqPX+PLOz7FScBAsiXrfYPE3P7C56zMu - 4+L6Vw/HbtRU7j9/6VdP0Iyhi8gTnPz/afCB+P8MPkAFweaLH+gq+DWUD7lyRebjEOlba1EGKu+0 - XYbkqlC+72kjP0mqoOTpu5Tcyz6XnSa0sZNcazARhd2fgDgTUqxV0wX9ea7hCi4tcq9mqQvViaZQ - yOwCu45gu3wajx/wnuIQuY7wcam6HBTACDxZWNHq3Nm+PkJQliWPHm8Lj1v3vfTwQT9oLxu/wXbY - S7jda6cEozRH26bWoczojwU5ofxXbL720uSgzy8I6X3a8s0pHeS/1Lvg7C/0RzzXayKPOzMwFfHR - vq9nTpNnVTv6Qim1gJ2o4sHK+gKccKqmf5+M3UNZ0VqEGJaha6dwPlybMPbLQJ3A+vexY1hMeYPO - dte5HCKLCTfhqOCgyk131f3PAr1WffmgWCQ62C+hBNPC3ZHfUaslj2MhQTrMCQ5jfhtXXz0qcp+b - D3wPX1KxHQwhBsmrw9jUPZUK3/yWyJ+n/cHXAJkFCyENYaFK72WxmydgGy0K5dkoCPana1wsk/5n - yjjBR+SCqNFprX9j+AnbGlkPch2503YbIJZZGZ1fJQBrkGoNxMW3xMqZt8EiLWUNu6Eb0IUPe0BY - K2Dkoptk7NJeaLdvAEL4ClYRP8vZL3hvikpZjqGJbpe7CgRHRD0UoXpCJ5vhwcqfNhG+8XzG1w2r - gPqPK5THL1cjW332umAm3QJ1ZmrRs1YvgDs0xw8oprTB4R9s9U189SVkNnDx5eMFFPTrrRJc6mZa - 5Jva6e8LtAMIo5uJHy8xAXSu1xgehTOPvXN2oYSGmSFXY27jG3jeo0U9ug4gjaeg8lXcAS8fxA9E - 8untH9k3dbv3yWJh8KXGAkUCC5qfBke+dkcOqZXbtbyvzQq8QHjA4Sx/dJIdnQ+kJ4dBp46nLe1z - zwDWer6h29xmruBZSgkzBUXYF21Pp0//r5RtmV3xUyMOXW3i9oB3+TPWXkEzLhFj8zDIbIRvtxEW - JCpvDgzK1kSm8fq4szOvDRgV8YpCjfRgTdrZgc35ISz8XxS2dK6PMaj66rVghq3odAm2Wh7QNUCJ - W8OI3qV0kfthDnF87ttI2LQ4hBfl2iLnpn3cJUymCuzfZ+GXTHfZ4aw08lT5Dbbfh7+RslPBAPkR - 1FivFMElQzJCaYmCBeUS3+rb+RKJssNH7PLxrmHBjRT60A/bFBuBr0XkFKQagObJRo/vSy14hyUB - XAFqkc5+gb7gph5giXxx2QLFoBwXUE1u/ceCrPJPBDMgOitLIuF9/nF+FYuG4kWWh6bCzk28Ae5N - Gwakgijik39BI+6uiSZbH++EUiOX2vXL+yFsophBKZy9aGPa+QOd+ZBhnz9GLnvdbjloPiBBTh+e - KFfHoQ0frnRDziQZgHvEigSPxr3GvmpQd1PzmP/3/zT7IFEqXhgJ/uLlLKwvl/z9qT08uybGl7cs - R9O12680QWlEVpcG4/qFV02W6rJEmd11+lQtEYG3Fc340shNIUhD5Mh8n5ywlqO05R5c2MhfU2p8 - cDWhvjGJ40GiaE8Urldr5Az908NK/JgoVP98d73lBxPGEHHYsOzryBEIajjGYH/l3R3c1UdxJc9V - yCMfa3sXFjpAyXs8PJQf30OxVh0a4Fg5PlKmegUUt+UA9WzvkhCzzrieTFeElmqpy/YHdZdfMqmD - uitd8GVj3gVFdKxgiYUZOWosjhtMd0sxShhslkZGeZb/mFCK/ApZ6t6IcTaNHL7CuMPa+EwiIeBN - Al65csYJJyAw7+sFxcY9+M/YSXRWtBpf7tVNR3Zv2BG1fSTCH74Iz30W8OFLctk6Z4XP6Fyu88s7 - 0aDuiheUvcoCsOVIyiOIgg0nVoJcWhTgAw4gAki9t6eWXE33AzUnuiAfF31RwuJvgLK12As59lrB - Z1BR5LF8N8i1WrvdLvvsrC3XLthwylX/5WPIfyeI739SRbfpajSwa8LAlyRe19ntkXkwnxIf+yy7 - z8ILrx1UTV7D3mbLxfw6jwF4mHDD59hj3M1JVEbez7vPstQYOcs/QqhrI/QP79tFZ/NFq+WmPVBf - 4GMfEND/bTCpR89vi1MzrpEx91J+ujg+vgJtn0Vce3JkZB/s1doK1ogcEmi/mrt/uDSCO6SW4skX - x/kija/rCAvCHEPuFPXL901ql3XZyodiX87oGmdRu8HJKUFlXA0U79+fvst3KrvgOvpyMh/aLVBy - CP2VETBi2ApsAul7eJt95Ze/xnXraQjwk3FQ1v9ZEd99Lx1Em+6iHX/G5dlfNZiYboCNJLIBn9Ir - lDtri1G14ddvPyt47as/XA1aXbC6evfk3LFnFBQwLohYpDmcFzDu+Uxt+UAJoSyOaYDcwwMVW/1h - E7iFyccHz+JU8I/HAOGenxfAS3d9KGjrAWY7XjC6x7ZOCL1WcqeYGCl7PAi38SnCduPXX/yMBEmS - fwTbckVh6oQub7WlLT82q8XnrZmi7f5siVwiT8ReX+vF93uGDbwVY4yUoHoD8nbzDiyvEqHr8Dy4 - Eyp1US6424Yf19kYKd8KjkxcA2Bjgh5d1c1L4VM4Lz4ziL67IrIY/37u8keik4naPhhij0WPGfvt - eAgVVobtASzfnS8tp1pkoTQ2IlKOFyEi6+caA6IoT1Q9879i//s5/GpvFhnnvi02Jzkz8DRWMVZe - 2kmfl8Opl/beRdgJZbVYrebjgOn6yvHZ+Q7jqpeeDU2j6JD9LM/RwrCklunjmS4McwlHrurQBxZ/ - ifmLD7r5LfOB/pRXSP+6S0Gr7NvDwkHqfh7NiOQq2UC1bIf9+090rc72BkHq3fD9+/4WU9/yjuxY - xPOP+/djFSud4OVpeEgt5o2Sq6l/5Lg9Fjg8FiyY9vMDL611XIB4Ju7q5HoM43P2xDqn9fqat0wK - 9P0K0X7eRxLIjxokjzD+l+8pM3Tp3mv7hs6hJUQbJoYJgtibUPJ1hoKmxZDDU1+vyANGPRKhDxo5 - 7BvOB8xbHQXfs0x4YT8vnD+vgJIunYhENpbDlchkdGvWIYVfU2xwEtqgINL6J0GFHf6wA6YA8K8u - 9eA3dmp0QWijZHzmGkyiwsfqWn9d6llKJX+/i/gv/8+Fm/PweL7qWBu+dkvMkCaymgsLsmq/LQbb - ETtYxnaJC3e+0cVINSLnN+6As4xVAe8gwYc8uig+2fd/bZgrK7/sxwOn02QVQuEHHuSQPWHz6OJi - A4LTg6pyHGzYd2fcfnhhqtqM1Md2bEdTYBKYY3xCl5tquKteGjZ8gYgu26MV3dWZ1xqKX6FDuqJT - QK7V24fve46Rvi7myA8n4ADmEbPYbu4y6IVWt2GbxhzKz24Q/dMTb3iwsCrfFcC+/nIecOtB9+f9 - PC2v6lLCHU+WI8e7dH26kwl2vok9gag6eRpzDJfUuy5brZ4pbxkv9shxd8lf6IuOiz05Hnwa93SB - Y10V1PeQAdwwLnFu35qRkMbvf3wTm9HFpOwvftmnmf74Np3YmM3hF3kQx9stpK+1Ovn/9FBhZHxL - mnbvPXQyB6waqT/++JN8mWIHFVb7aacG8Qs80Q0jTWZmfbL6bw0PytlFnnlaov38dCCfYh8/mk6I - qJzw/vHMoxo71ubobALKBa7uGaGsONoFxxbUAXVdxUjxM9XlvvCqyD99dHFPr3Fm8TeGlkweqJhC - sVj/PkoCSTETrAvWNNJC+ttni3M6dj24UOK/DU3mmN7F8dUg7nAQCha6ASXYeR1zSpt3FULkRNfl - s/O1yWdxCcVltVD+HEzAjX1Ado/RwP757RZ8E0IDyht7xI/jBUSYVTRPRshn0SnquZZu+6CJ60IA - zk/qD2+vvnxWtMiHfa1HS0FHH2b237zwZ7amazXkKdzx3Oea1QPU9i0R9GyfIQVfU0CE+kIAFQ6x - 3zyrtSAqDBo5UpUVq081LOaTWOeyGyblfr6eLo1hQ+Qhc+6+xPnPiIZrlgO9/NOWgzSsI32JUg6E - TpixEn9u+tb3oIHVmNrYPOyW299W5VLp8ioyDppYbFZbOpARWILOPhXAjucd6F5fC+v65UVJamgs - vApWshzZd6T/+/ufU9RgPTwfounZRoMUCYjBCkI+JTezFOElfBrIDYIloofZmuDON3Z+SsaNva9E - /nSzumy8xRWbn0SeLDATxeYI1mIjL5eB3juJsNrRdpzNbDPlUGEe2LFv2siLr6WUjDFVFvnrJcV6 - UD8arK/fAZnyrWzHnU/K9ybwFult0xY381cDoQIfPjRB6e56M5B+evHxuDEtdUOll2Hxrf0vrBzA - ZxwX/Pu80eF6pNj3kAk5vP6h62VlR1IBwYNj+WqQHjZDQWZu3Bvj/zH+6jUA4PVP62VGMQVsXfHU - btJNhD89teNDSPmfnhbKNvRpeD4U3wN5GLB0WRU/p4VGlK1IDbS9sbOdMgIYT1yhgc4iMXLCji/m - jFMDOUCR7ddn/kPXUb0vUOjzDPtdXv7DD2ieYIAuJ36ik3QKHGjC88Mnx8s9+tryW5E6gf8sK8Al - Je8TYuFhk/+Q5kV5RG7bMoCBfiL/PfCNO3TOM5Du8+GBnZaN3dW7r6HcaNP5t37jSoqvCNlLO2Hv - 7zq0a5VMPiTWfsW0gGxEv95RhHt8IIsgO1rt+0eDh0dm+7RpUTTu+QKuh/qK047D4wLaOIdx6p+R - CUy7HXv1U8OAWd7+xnpQX63ylsrnNZKRf2/P7TSclVoy7iNdNtPoi398L2o5C8UqdlvOaj42rCrb - QY/MXaMfv5Gumddivc0e7laNZip7eJixXwcooiX+8tD2i3ARbvqkr2r3gbBXiY4teSvG73K4dOJN - 5rmF/N2k9s23Bxv88EjRmm9BheeZ/NM36iA6LhEogCBNH9lP3+rroVxE+E+vnb24YK9i7citawj4 - ssfjVPBiD4uc45HzuXvjDHXJPK6KSZHrVA/9H9/++WWOa57HqbwKtfQQVBObbl3uJaMxhec5DJZt - oxwg/HiSwE/vmhgRsFRhw8Lf/jOHvQsI8CVPPqfxjB9qFI8keS/1cRSsCnvy+R1to//14M9PU25q - rW9tP4SQ/0sbfDbNLfoq+M+EBrqn2EDjGQjgWShwScYXUgSbjFsH6XYkQ52j5yxP7jilegibJ2Oi - aq1nffO1WYPhSVSQyeQffV9/FuZPM/AxFk8FJQdRhBI8z8hoeejSn14ojkONtd4Moll6Pwj43B86 - +umjjQf9BJvzU0DGX6XoAm+TED76/Io1x9/zgf3eZ0tXDx92L0dn1/Oo/PQUujNuP5KD9OfLQfln - ouRxfkX0JW657MeGsfMrpeWjSWaghz8zcu/d3NIq++vkwztA+KxtG91M9GLghR1e/j++d61JDybj - XuKLr0gubbKNhXXkJ7u/E41frvv6MPyCCbnH1AaEezSl/KADWoT3ee/adeRzOLpwxlqWDZT88Lc0 - pQobNbIi/g82NRT+9v0BoUxxngWx/A4fHkJ8bUTccgpSSJ+KgbRydiIaxJwtj8uqo0vYhoXQz1so - 9zeKsXEhZFzN962WF1Ew/dlaTV2wnuEGfvtXDkPQCthZDXnMvBGdglGNOMH/wH/8+JRInEuyo/aR - H5kd4eCmKjoNYtmR5I0/LuskB3TTQF/JRWzYu37ZXHJ76R4cXCnD6mpVOhHq0waPC1fgU9TfWkom - Z4HmdWx89h9eCVoCT1lAkX360uh3Pn76wj8Eig3YzCOi7HpEx+UJKS0VL7woZXhYfdG2Xu6at3wu - W8uBLg89LfT1JH7SvYtIi62d35Pzuoly+D1Ovjg3N30pnpwGpsprlu8wsu3Aq2sN5OCb4moQFz0+ - OacQcrnA+OUwkBZbE+NBZVhzrHqgp9vO3wDr2BxG2v1Ah1SRKyBdvxv2jpwF9ow/gd/vt/rlRAlR - IANvdS/61CZZtAL7XQKe9jpSwtaPqBePosSZfIh08+8UbQch4uGT5Ar2HvK4dzXQF0j0IvG5LDXp - 9x1mCczDp+0Lx49fbMDoDWi14I7NuL+4+GXeJFisDMBK09GIlEZpQEFhVXzNhZfOlc+zAvsw/1U5 - zXY+i+sAzwXuEHpAyxWAO7FQ/64K1s2/V7Hu8QxC4xYjIzycI3oIbR44r+GwnMrJLH7nV4qqYEE6 - U0wuzXtA4O6vL8y10nXWhlSDO75h/b7qOv0e3Y+UpPGK7oujjvRzlzQgHyoVGaejSPFtfP7zx7A9 - Te9o51s5LO7VwQdyk7jUjsMPPPXNii97PQAXfur94+PS6yhRDJVp+uV3FMF6A9MXWzU8jlWHFPF+ - Hqddj8PMbmfs7HxrY+9HAs9S42NkSqlLsjyOQcxVFlZZ1m45Ua9ZeefHPknmYuRtR+xBVFcBPtHP - s12q9WqDsPJy/Izej3Hrs8CEVhQ2Pqfhhi72cR5+/ssiFOETrD9+Wp9gijJhfemrKCcKNKmg/+N/ - 65NROmhGvr+IqT24q/R+bNCf0mohU32lm5qXvNTI/BHtn2/kllOaQ4urdHwi6kCHSf8a0DSy7l+8 - sEWr5aB4Op3PnN9j8SmvhxokrkGRWUhTgQPrOkk5POiLpGdPd7ud8xDaG7nhm3/B7YpabZCTKPMX - 3q1hMaWGw8Lb7Cn7/v21O1+Z5PRkNns8LhHhYEBgYDIL1nrI6Du/3cC3LCW8+48t22hFAMW+mpF5 - ZmtAurQjRz82Df+QZQvdz0cFh8y+42egfPb60pLD97D2WAeyFC1D9o3hT88EyQzajdFiBR6Gr7l8 - 4OwV3PvJbvDvXLT+8SIP+lr7KJUcga0XuXwGlHKcpsGmGFOMmo0F5NqtUNr9DeRNWChWUvyJ8n3o - +4V5bHK718MYeBRcHluWNbeUvAQoGV8u9l8Gex7Z1ND4I0zD7wKEgzaOd4v1odGXD1TareKSJNdN - 2XkkHbZ+67XvL5A/8rb7/ZP7mT+2cYRS5fjizy8thrPzjy8Ze/1rGe2qAj+/3/w6Q7T7wQq8688G - KZl7KfjkoVSynYYZPiH9EW0pzRh4OXY2SpXgUmwHVzNg5vEF1qin0G2vZ0iVC78oZjynJV+MalAn - r8vS7eebv3BqLZNHUCJznZuRqPd7BX3Hl/EFDxaYnMjr4J/DoP3KPNtO4VwrcMdXrO1+8q6HJCh9 - bBVdfuud4qCH+eOvW5off8nM3oajODj+ttEbnW7imsPMY4uFeXd+u+HyJsHjSfSwyQmYEg9/WJAP - tMEekJZiKsg+WDCzC3Q5O1607PEu7fVH/9aDXN+8imiQst0DGySYIrqxhMiBoGr+VqtfQC1GNeRd - z/gdGs+UGxiYQP9zIii5ML4uVFHFS4t/d3y2VfyI8Gs6QEWJ9ie/3h+YPFzz8q8edYdwBmTlWPLT - /0g/cx0Y6iKVIKuyBS6ZtNZXZl4J3Oub2Az0GOC7xXqy/Dls//aDD6ZpgbY2qb644x9J70cFvtjm - 5DNmNIIPZq49hLPnoVsRKTofx2Eux9VNQ6m7HMGm86shp2yjYjMfo3Z6p4z28+99Wlc2JcpnSMAr - oCLSDsc+ov7eFQ/95Qn6+YHcgdwM+Sp+NHzlhqRYj9tD/PEZf+tcwd2aU/qBAx0idD4F3UgVRYWQ - vDoBmefiBvBtvO98zp2R9xSNiP3hbXGKqv/qdc0WFbjjg0/eljsSy6L/8jXSonfWTp8LJ4L5fIvQ - jQv0kb68+iPb23Zb6MM5F1yavhQ5vs4SPk2zG7Fs8+QhKssNF09NitZGRAZohybBPzzll3elHXd+ - iE6X+x/9+fMAzr6H3fa1tfMvn3+da4YelOXcaT+fcLvNT2Re7Dqi67JoUDrvgygGnxt73NQfea8/ - LPxeX/jlB/jlIY/sb/oGOKr9Gngee8dxqywR3dBh+vllPmfbZ/dXH4Utf/ksoGPHcYsmGcJj36p7 - /VVzCZ7NCf78O2QaTkR/9Rz1+ElxSt/FOLy6wPvVv/z+dx7s4pvCk3EL/tVj559+EzKnWCTid8U6 - PygD7Q/wF1lPgUuz6jRBa3Vvi7QaoUu7+2fbG79pOJAJHn/n93+6UnD8v68UTFYfYkN9vSJyunGp - /NieBLk2N1JahsoGqyGAyJq0jeJmv/azyupj6XGi6LyiRr08d/kJ2wqY95EsVDq6NBSXzTPDSCiC - QwcDM76hwntfKa/dblAO2NcJ2cP8N3IxryvQtt/QZz6d55KqkE1obXjxxWH+a9d1E3NoWewR3S9X - x2UTS2dB01J56fjT291OD5UHZwa6OGCisSBx8WngByaqf4jwoSDz+JfDe/fRkRc0TsTiQ7vJOPEq - 7DADMxL37HXQz08C0l+kBdvDrQf5xGQq9rg3V5A+ER24ppqAtVN6cun5hhlYVfUTBcexb1dRrkv5 - /dlSn6e26fLmW1egmBwl5LdxUwjKFUrQ6uXr8ubCsiDH7+cDBPHrLCncS4wtm03Qf2wnZF2PC221 - t12C6/NxxKl4T1wafnRRjt4li+8hnsf1/tfHYGyibFlsuWtpbvK5zDB9gp3UCvRRcwQJCkH4Rd5h - awpuzJ4VvDJShy2vcAvKvmpHjkfphBT7ZuprekQ+tOKSwa6qnwDL8IsG7/WBQ9oTN4D056CSA5nz - l+72USjLKeEEW+ZUIu+YFQU9vi485JDa+Y9ndqZk0Z0EPJfpgh/dl47UFLoYIlJayGtlBfAUxou8 - eWduYZzv/or9sxHo0kDE8YekdOOfiiKn5+GL0Em46vxyvvSwOTIVcv0IFXyKpRi6c/rFVziCdmXm - zIF/VJGQNmf3QmjUtYLsSUuxA4s/fb5EmwGbB1h85nBuKYZG+JFbs2+xmwZay/PcfZJv6xfjy0l0 - AEdyP4EsbK/oUgvzuIpEIfK2lhhp1vQuyIFaNVTXZp8FNU/RmtxfjpxxHYuS+NBEXDqRBXoxaLHR - 1ljHuFtDuEmTiIwXex0JrUgHj+FJQ48S2YAj716DS/qn4zKFN5dmULaPjlo98f1yHXSizqSH9HP4 - +OLxEgMi0S8ragy4YG1q05EmRxFCBKmI9EA4t/z4GELpd94U1q6i5V88s9dg2XRDa2nxrCvwdw8f - yPfw0OLXXE6wNbsWhQpRIm7+0xM5QmaIs0m4U8482ATu8YjcItfHFT8mXuKL/QpMkzFgwSdswufq - /eGM69SIXAKxgt94abHjKmBcXkNhwmtyISh6l2rEAd/bX9k0PrpEJHOFRj1WcMx0tAiW+9cSOqUh - vDJih6q3aResYosaILOjoaeok5YuuWiA6k6+WBdFQKc5VhqZZy9H7F4RPxL80UT5suIEKX/8yWWP - 33qAZhAruNwescvz3HOCfXe3lsNgPiKiq0ADd/sdoUsG+uh7j80B3otTj653doioxta2rPwlKdZW - 91HwODI36FbhddmE57N9HZ9aJ+/xiNztrRSCATQevo7nA75abQxWiR8rKATBFxn86b0PbJGSf/nI - bb1zS9WCMWA1hBA7rwMT4U9/n6SaeX98Rn6YBduxBi/jIAl81v6bxun3/Sz+9MVm2Bcuf/3Um9zI - SYad55Gj5Pi5V/Cq3BpkFGYXbWzEDbBcpxllRM1cIcwnHwal16I06y8Rf7hFuexb786nIE9d2hHg - wdAgFKM+vhffy1+2yeKD0X1J7JKCRO+DBp5jHKJK258wnN9NJTdynKHHzKhAqKVTLc/uHOB74xjF - aiXfBUiRnS51X50puUbwA1071RHa93OYcneDzfBHUcJLnsu18y7p017FlUhKykbvg3IMv2uGL/FD - o+xnkGqofZUDspkxjXjVLTd4A7TG/pSE7sZzzwWa3+6MrPs9jIRzl/Ly9ChrrGQHqdjWTxjLeIUA - uZmpFgKcjhNw7VzHBvO8Ujq/zQ66N8VG6UUuRx4NvCm3XrWiy6Xk6RLotS9Ll+CM9mKPjq+6HkPl - 7fULjVUH0Pi8aLB4KqO/slcC6DlZbTl+2QhVTPRyP/SaStDPUwfnW3UB7PddagC0Kv39f7DBr2j8 - 1gudoy5sWR3lE4yZPMXob9pGKsF+glXVPPf1aCg+3zCEieu5uIqO7ihIcFmgP4kPVH4vzsimn1mE - YXR0keuefZ0bs3sp+1DjkCPAtdjaVkz/4Wkt/Z0KPoo9A3KSN/nCjrf8ykmapFbzE5/tjzuy7/qY - AGktbOSiNaQT94oC+G15gKw8OrbrIcw2cEqUGgeszRQrv1Xmbz1Qya5JKyRTFh6FUpxRFV58d/tK - ++j4pl5QZeWlvsZXp4Q5DRE+V/euXbwVmNB5eAChH567oOPhyl/fKE8toq8fEPFwubk2ugA+cOe3 - DTroLe6EtbR+uJzhc6x89DyKci7nXP5vH+SjmgmDE0u8AM7s1FSWX85zERrH2JulvE3ZvzoqDruD - N66gmAx4bR0bqaKeAC5XgAO3j/fCTnNJC5rhRwn/6vqNk/igRawV1Yb8XArJZ1aWa+knP/vwcyEM - UtMSFau7+gRs2nFaZI68AQnu+61Zj/TILcX3js8fWxZls8BWtzcO3vFe/jOIg3yRlICyiRDKPzzx - qjwd2ZN9W6BxPBBkVOJQrFHV2HKPkhpH19ku6JAMixzur3BUoVjBVtmODcUNDj88i166EIvyjtfI - KieFsjkVA/CwOoAeTo1a7iQfOngJzBFdmtvqEp9bNYg/04qcN6nb7eE8K0CockXV4dyCTfiefTg9 - qhqpWHiB7XArcjDPg49dohwKDK9bLOPJmLB9rztKYNMOEPVg8Ne3A4sNKhYL7Vnk/vFDop2utXxt - bRufpvFaUH7SWDg8FQ0HAQ4o6WeLhR+udxEKE2VkR5t34C3ZJHyWPFPfnqEew72dxFI/G60dv95f - I6/xB+JsuxXR+qJvRs7uiYHsIGkBK/l/gVyHnId3/kM3ZZ8Nvv/+v/yziamrwLt78LHx7YWR8E4k - whfdB4WdcFqszI2EMtiqahHenzclnBIu0jZ2NT4H+bUl+ONIgHsvGULPNNCJpJ57UCxnHRX1cIkE - TyurH39Y+j0+NzvxeJhcjdzf8XFc/TFkpD3/4uj5SlpWE44bWOfjCbnFrdrj4xDAubq0eMf/Yp+3 - xcLXI2v82yPIR2782AnwrVeHtO48U/KOsgFyBLbYzaDisuUEAmCW3xV7g34uCPs5bnAmTrOAJnEo - P4h/g9wsnoqy8vinE12lyj/8Us3TtcDglrJg50v4OW45XbPrMYG2VEt+tfPh1T6NNfxE4/6mTpLH - NZWCVBbE0fEHH/2NJFMDTR40a1y2YBFciu61Im9lZSPLt2xA/aTioSQ6zM7nh4LwENpQKtM/Hx42 - rdj+1IsDsD65KAmkx0iFqnXkBPK8v1X6qSDXiB3A8Ak8nAbXg77kFbTBdztEyMd1pG9W29Xw4ngl - fshxBFYcXPbh6tYZGY/cBFuvspq0aAPnA+v+0en3cN4AaHW6vCtQFfvnVyD57q9Srx1HaciNHehR - XKNT/VRGLprOLDgcbhn29Q/vbp63NbC6b198Rps3svsLm6Oi+Qpy7k9X5426jqFRocjnt/Adra9H - GsCqsDscs9l5XPd8DvWa9xaG64uW5Hc8QTkcvF1/7Y3IEz6Azbt0UfZ+L/pE7sYiWX6PkSkrccvL - /bWTZ2I3qBSA0FJROYUgvEcmspXTEm1J3hMgp3WOb20HKeFeUSifRe+GDHe8jBsbyR9gXS0duRrW - C37boloW3fPDF17QKSZJPXfwgQ/lwqRRMtIY+gH4zpaxMFYOXaxcWQno917DevrF4zSP3xwq6nHG - aczY7fSL712P/PK5vl4Bz8vjk572QSoTJfgwEnDBFw1Fd3cEa806AZzfm4IQh32X7bJTKff1wcMX - zezAQo5pDYOL6WK3uDGUOkuuQTBd4Z7PxYg2JdmfUfKZT7ZBGqedTwHGOZ8WeMxAsXEi7/3TRz+9 - wFur4cFHgiOkdqdax/ePtEFiCWekMfU4bhX586CBDLBsZ8fVyVKdF8hMpo6V6LiCrV1TE1bEdTFq - muv+qmRNIIPdEaP5phdCUh17KKdNjs0Lk0QbGhgDeMA0sN1OXLs+h7MJc/4mIH/RULu2z1d3nAzv - jlJmFIvf/sv/AQAA//9cnVvPgr627u/np1j535oZEZWWdcdJRMEWBE/Jzg4oIic5toUm67uv1Hdm - X+xLQ6KRjo7xPL8x0gJYYnpZpoU5p5ePBGsXVvjSVQ5frV0NQfmiHtBS2tKQLTnOtr3SK3QHI8Od - xo8bAXI5OMLvgaRJ8tkCIn7Q1s4Ld1Lk4qmmON7j3QooYNbdJ4PUJC5aT5mcTGarIlgbw5O69YIW - DNy7FLrfLKE+SlDCVRRK8BHCA33FU2Vyedvl8PQkFM2PJPvpY1tl8e1JTeEf2Gg3MvzpB20R9uGA - 5zj/89uxsrkXq8X22yjxa3nBljL2gPe7IYPnELjYEf5pOuBhAG0hARz4myKZnNBE0BxTH9vxawfY - rrjYMBjiAOvo/TQHNRhTeH/nayr0fdjur58BWhn9Yu1xAAUZvNJWd484+dMfdK9XJRB+jXruOSv4 - pikj8GjlGzbK5VBMenHOlOh8a3/xCxgffF+1KwCIapO2mLOnlauCB5Aa5AyMePU8AuHv0TY9L/l8 - xHsZ3ie3QKtKtdzf+wSK1u1QK7Uqn/JLGYPl8vYg8uP7Ncf7sCGgvniUOtfONnmfFRv4oEOFUXbU - k7mzD7Eauy9D7P9bz0iqD+pF2wwiv7QF+wBdVq+zANZjfgAzfPp39UhHhHFSH12uvZ81EJ+p120b - c9Qkn0AlPzOybXcBn1anV65k1e0t6m/e8/LCJRgSr0PsedcL5h6sUlU/rMSX1H6E9GLvc6gcNohe - jGAN+Hs/nqG9imr8wk4UTpp0H6DVre+oa5FosYZ9pzD57lFfS5OQXarPoOKxzagDlzFoP26PoMZS - hkV+KXh9fkWg2n8iujspTjE7TnUEkt69kHQ6BCEbPpmn/uqfdWk0IOFSkWAA8hatBT9hj5laUOh/ - eqjCnvPRQJqy3EsZdhBPEjmkbgpuyb6mOiozPu3qlEDV1vZo2hcSZ/j0WGwWq+iEE2lXmmRe8t8p - MGtsGuegYFGSZeqyfblUn/noEtgyW1mCZYpNyb+5q/wy3GF5FYc2M2CANYZNDfv3tENTW5iF/Fo4 - GzVGkkqvY/XipJh8W42mOaLaR6vDBi8VDwh+gG3NdkyGmuAKBO+jaPR8Pn0WbgruV5/QF6EJYO9q - 4cPLKWP47EReOG+qjvzpvbtihv2YnjOkWt/XC18a0yuk2bZzADOK0Hq+Xlxm4phA2zdHAsPBTTim - 2gY4nFtY6D8wQ7QZoP9EhVgvBVBz0UbwAa8dWrRxx5lPoAbZfnXAu/HDTD69pDOQFXG2drd1XJYV - zQIej0ND4j6vi9XtQ6I//XhTVmVBiuudABFP2GngO2SxGyB1TR8aye+ZavIXys8Qc9nA7qrY921w - uJbqfCHnn34Dg/reHX+8EHvW9tHLUXo6g9dQfeihBaxnr/Y5//EdIzWrkIj1h8HsZ/gg6m0jeCo8 - PSIJI2dfgb/9K2s2wLujYxTcqJY+cIPmRB/PrW5Kv/ga6qHD0fQyQn6OBw8IfoEWkrMxmbavZeh9 - ioYoflG65HzLS3XFFgW2ZLADEoqnThX5jV4ac/jjhWreyTY93lXCZ8EngXc42NjT1XO4qhdKBJ9P - YmMvHPpwfuyTM4id3R5tvPfW5fjoRGB0qU89M7kAZrkQgde+Bih+8LGYhvIjq/k3dTGq/bZvua1I - QJG4SXFSd+a0J0YJroEdU1dxh6SfDUmB16Iesak/z5yTmNmqJ10RNu6Z6nYbbsTq7Lkrsqr2u2T9 - Sb4NLPrvgfDGqsNfvQQeg+FPP7vrr/4+QljuDoKfpAlN1UGDvn29YG3b1z2rr8xRRT3CGKuPcD72 - /l0tynVIvjB0wp/fVup73VFH2c7JVLaEAd1Ymnhv+wtzXFw2PmwNz6en0/PKZyDbJfzl04s67/pp - dbrksJVviB4BuQl9W+QgKTcKFucGuPzra4a6WJTXP94qsZs3gO9wDMm+kHXAVlVyVh6n6Yv3I2HJ - PM9JDrVd0KBlJod8BbRhANIt67Em6iWNt2kHJ8RG/PMfU1JxAvMtTPFpqU0hHV6nGCZJx6j3mDmf - zHaFlJwgne5dXocr22syKHtkSW2SfZLxWygQeAfXRllvk37+8bHlsLb/eDGbX99YWevHAM27e2Xy - ul2gn95AYLTuLnGN7RVa2fgV+Wvqxf70oRV8MVmcqjZkH6etgdDn1OzRN+xW/vuodLflFju1djdn - UT/hJbwvEUguKWfBZuXBTSGf0Sp7Z8XcfRwGT7b8IYpiPPiU1XkJ63vZYfuGlmDe4c7Zdsr8xiZL - A7d5DtxXBQ/B4RRhPoWDLsHNnufYnp5N/8dT42JVUpE/OWuN5AlTz/Co1566ngd+YYBVILvY0/e8 - mOZjEKni/5NNGcX9eugqGwp+TLYa0ri84cc7oJqp0kOxctz52N/voDydJGo5H6+nOrrGIOxkin/P - 1/a6vEIniXMkL6MrXwd+r0Hh/8iqDOpi8m53wZ8MB1u7W5/MELHhxw+oK+5r7C7+WIPIPAVom97K - ngMliGEuWT4NBQ8dRTyAYD5nVOvhGM6S/VpAwRsoOnAzJGX2UGC5PM74sMmcfm6c6wAt5WySDeOd - +TmR7RM29SGjwUG/94InHFW885cY5/mUECNXG5CoQYIf6sIzZ1vKB5W1bE/k00IOmeAfII/6ipoH - We2bK+0UEH5TiR4suepJ6hiOqrINxLiO1skQIUeCnvfRSS307ZTVXf3jafQt8gef+gSCiPoaNVCD - CsZu1gBbA/lYP6zX4Z/fvTxbBxUi/qa2e3XwdKpv2F3jymS37WD98d6gTRd8ej8/MbyfFf7z82Bq - ztIM9fJLsLZzLcAacXGDfLhZBHqs/H2/uEgbKWjdlfhXLyOovn2fnmzS9vM6aTOokrhB609U9eyi - GrXimIZO5JNzK+gvP1VHgKlXXZdcvL8OzOfrDa0Q24eCF2pQ+CHqiHw7z6d4AfPd54St44pwwTtk - eHpcJWo40ZCQi3na/OINe2qqubL2jBewN12dSKJ/wlfHjCmp0wVYtx4hF/6dwS27zXRfzweTXBr7 - CUT9w7FfWOZqp65rZbEhDlIubsOnAy4HtXXTBzWunlJ0cRClah3IEtW178jn4uoTyOA5pp7Tv4sh - 9JbdVuxXMh+1A2c7ZQXhbt27+JR8Tc4irT3CSxue0GzldrKurVUDfHWNyGbRb0IuR+0CaiN8Cv6U - cYZWWwNiVDgULcLKZBaTGNhKmkaP2ScGvFzECpwXNsfa5lSYc7VWmPJt2J2+g0zn8vmW1xANygut - DmeT8zi6WhCY2wTvYdgkTAe+/1sv7Dn9suDP9tOpz5XV4Dt574vVsBQkYS9lf/6DHHs/VsfyvsPv - IPtwpgZVqj5g1OGw/rwAN72DBZn1Qvg0Lj6cSac5htXWXVL9e3yGVPTb4BjtZyTFflWMeWFZquCl - 9PDcimMsV04NTaRX1DbiTozsfjJV8FeKcFCD6WYTCK/1osGn6J6a0vOd1HDYl2cc6VWVUOnuPP/y - 9QkvuDkF5H2E5DOdqIunmQ/5uZuhbD5lrAckN4W/96F3D1JssXzBWft9aqBLmj19Yqvu50d+btTx - 9hqx5YXnnmWeY8EfL0fbPkvIYV0r0Na2F3wU+mO6zEMGy1O2x+efnjK+2lP99d9Ef6qYfVPo6QFa - +PTY7fvBeX18+M7tAwHLlvI5hP0RnhaXGD/077tozfMzgmmwSUh5W4tTV3SuqZ9wk1PBF/n863f8 - 6q0xPtYhT95Nqvh9BOjzjPZcSnLFht6aHLBRfEQ8d4MFjYfypbrjbgEV/kdVqqbHAXt3gDdGdv35 - C6qjNzQZPbk5XPVW9PMTCVm4Z0+lNudodiIvGS+aJ3hK6uJ9fiyTcYTHAbxt/UHS1xSb82Mf+nDn - sSs1NJYlxMqaK8CB+UTDj8d/ARt++QrrpRyb07BsPdgcHyb1qqTsJ8l8XmEEjBd1P5lnzga7RDA8 - IAvrOzwXE149HXhTsoAaBjL5XD9B/OsPkO1COgJZ8FegX15X7L3KB5hF2wUKf4n6X3399U9256ai - D/qQXKLqgQb/M1Lwr//6r/8jBgT+qZtXWonBgDGdxn//v1GBf6//PdRxVf0GC/4hQ5yl//z3f0YQ - /mn7pm7H/zs2ZfodxKyBqmxWf+MG/4zNGFf/36N/iR/8n3/9LwAAAP//AwCeTkPuugUCAA== + H4sIAAAAAAAAA5x6S6+CSrTm/P6KkzP1JrypqjtDXiKvQkDFHgGCAiLyKqBu+r93dCfd6aRHPdmJ + yg5FrbW+V/Hf//HPP/92WV3k07//9c+/r2qc/v3P73f3dEr//a9//sd//PPPP//89+/v/3Vl0WbF + /V69H7/Lfz9W73ux/vtf/7D/+5v/c9F//fOveShVf+HYF9gsTeHBRw6f2BgzK+LrGlWQiuyJlM+P + p615BAqY+JOE/c8p0FYZHSuEaFyQgiNbtjGKGsJXxe3Jnqdnbbu/7AYeVQ9h03EdTRjKfQJhP2X4 + MLCt1hnUHSE30MvMMWQ/8Bcn1+Gboed5MUFNCRyfPng0MovdYxc76yv1d9Dacpuk9OGCTWyzEWru + XfbhMn+yaTiOFayGS45xsrsOS+TMPnSyGBBLnSVt3a3YhEYXYHy+dnSgzu4ho3yUo7lxEa9t8mOT + 0QxKHZvjvXJW4+0GAFpBSMp3MWTjRqICdp/t5UtpNQ+LL59U9N2/ufVVNeNosPDAfa8xvng7xlne + C7sh+jrPxDhaDF1Ev+dhfQqPRM11V2MP0yBD1tJ0bH3QLqIjDHaILpNDbsfApNPjZimIRbuFHE9a + NIxBU6kQfPoS4+EkajQHW4UEVjyT3Py4YL44uSlbVLOxlVTmwEH+LSN3zASyb4eLQ19VXwDIDyI2 + +06rhfdYKrB8nM/4gPdrTUPrGMBEtI/Yk5+Fw3MFtVGoLTE+RQ0Ga+N5Dczq8YRV6oTO5hlKA9t4 + sufWZ650W0qcwnjUDRLwa5Zx0zMLYPNSMlKy7zoTPoe0R+ugE2w7tx2gN/YE0ePUFSSzi9rpGfUS + wCb1djMyWb5eSqHqkaqOIs5V/uFwdfneIJuOKTbso1hvJ8nXAXoze2KayWtgbSOcETe4FxJ/6zm9 + w9CCJ/XukPR5gdn2GGsLlUmREXfn6dmmnpkAXsq9TaKH7GTEft5iyN8UiM0iOmX05FU6EqYmI+m9 + xsPcDhdTfurGm5gv5GvkcBM3xLlNja9r9IwElGcKZA6fhVjH611bPPhSEPKSlXgZmrPlddlU1Ni5 + g2/YMBxWGrYUuUGZEWyKtsOv9slH4Xyp5y18BWBj93Ur3VIlJMpsH7UJCN0Imk+3Izcns7KFvDcZ + sW0vEB3wAl3Dh22D4THaJLCWKvrNI7q+O4/cz4ziTHI+WcA4djm2JOsAlqN4ChBh9QO+p5Crl0bq + UxiRW0n2zDut+SruLMBigLAtOuqwRLdHgqbaxNhhyzxaX/ba/t3flKWw5sxmCZCqnUSiMHkAWCs7 + zkjR04svf/+fZbpTjMRVmrHdaPXAu4e8hdrcBERZFSVihyiBMGBWFsdxoYL18BxyaKcsgxMjUzLO + U2QePWednyVsGBprnJENg7cMsP3Fg+XxUnLUy9t95se76rBCwPPInqozPibNIxOSq52Cd9OZ2P3o + Y71kZ7OCue0ivO+ues1fjoqJWuZ0w/fAftKNxsYCfam9zZtI7xnfDhcdWHl1x7qLLpqAVTjDq/EU + sONG+2G7iCsP7yjB5MwaL2d5sHceDo/ZJlrXdBqVmwOP3jfhQ/BhnzpNYwksPBzgbq4vqRBtp1v/ + AC8rWLHekBVssyr2KB5NA5+NM3UWrn3xsOdneV5He824EiwpEkQy+PywuRF/zqoQeSyesJ4Fl3oU + d3kLrqQ2cUQuACwv/txCUVZYnIuJ6XC2FPrITK2E2MwOO3wf+AE4+klLEv74qKd9vLvAPDwIvniS + qoG6gydCBik5jvsmcNb9S6/gICoaTkVHrbd56xPwxU9iXAobTEcH5vLeNjjiUWI72zNVIFJP0kAO + AR9om+6rBdIwvOOLVs3ZlvV1itQpOhAl01TKn475BRTvY0h0ZnqDxb8+egTCS0t+/LRB8dkj+5Nv + JJoSr96qtxoDu9c2bBtdTWfZT2YI80Pn90XTRQuTXi04le/Bl4/hY6AKYVXUWttE7GmY68Xm9AK6 + HtbxIZ4eDieehA1adG+Tq554dImc1oV7+8BhB7haRtv7sYNidtvjgsoRFUL7HAI75ZmZubj1sJky + SaFpiiq2nbuqcbtTXaH6UcDf8wES4J0uPaUiItZJquof3sPZ6wp8C3U3WxzVE0G0Y8v5+erv2RLs + pQ7SiwWwbkRSNur8qZKXpziRiHoD2E63qkI431ez9FKrYRtAoKBCn4/E3DeKxrcZFuG+I51PmWF2 + 6Ev1Tfjjj8Mb8dqCFt8CwbArCGaCt/Pl9weEVhgSXxcrh92YTw8/1a77zpOS8atsQ9icNsNn5PxZ + L5JzUdD5ub6wF+8OGXet9jIiy7vxOSCuw8ikpQUsw21wUX50sACuhb/5+uLFQldVjS3EVkpMrksm + 1j89gqZaxz7S9h+whLtxgV98wWXOvWsWt7yC/viwD8psXS+nHmor+yaFLlbaHAesiK7kaeL8cbs6 + /N78yLDKQE5SH/POEt26BH31BD43qzOwaKdcwFS+BpKtkxUJLbOpKF9ITyzycQfetFEHXlx1Jfg4 + 7zNePQvhX//d7BTXC5NoNvrhWXaBr+jbjxcU7Bn81VNd1D30UYfHJVhwYElbtlmaxf/0Eo5FYQFL + 0FQKAtjEGFPo1YuUja4s5XfkV7WQ1Ktb1z66heMNm4L5Aptpox5wSncgbk7S7I+/53iXkPs2r9FW + 67cdWjfm89dfK5+cEqRFLkuUV0nrrdmtOgpomBD7Npb1un+5FXx3ZT4LNC1rqtxvLGSu+jKziwui + /rP0PfzygQ/9/FYP335HsGwcnMHjzaHoKPKww/4Ze9bjpXWoFKCkX5eIaN/55N8JEOEcwwQflkwc + qOtUMXr1tkyOL7Wq6RNtATreXze/3UIlmkX+KcKJj1/k4DrpsJUn0sBjE0dYvd74bLl1n8cf/mp9 + xUczOjA6iM9Xd36dKBct0ai28LLOz5lJ9qom7KS+gdSEFj5CNGcrNHc2sGr2Si68jxz6RHIAs3o+ + ffuJiUbzUT2Qf7loxJMT32GN6GmhSUkl4tJpyZZTuXehRTaKdeWiAXLGHxY6lvnC1tgbA23v+w4c + JOFAtCdonI2H9ggPZSDg02iv0Sq7xQ5W70Ca4RmZmVAfZhli+XPGppkYA8dNuAWhtsXzxnMzWA6+ + dYETUQfib8ugrZezVYGTyAizsN1tbcxqa5SG7q0R680QMP/02aQwEvFjK8kWaZBTeEEdIloWKhrn + F3YKzzd5mNFeeDrbdtBTuAm15QvNjjijd98XUp9bPQko846ofXJsmDpyhg1JTevlulwu8gP6Ezl2 + HI4WJ4z1P/1wCdhLxh6vUBZDaVbm9TEdKLWXeYQ/PnDfyc4ZfHP/QHPnzjOgAz9M1tywMDEDhZwd + e80+u9PwgKfbqs+L9N5qGr0C/sc35Kjn+4weKahgfQqO/jYkRraKi2XDc1H7+FBZAiDNtvRQwM8O + X8q4dxZDS+HP35A9Vb580J0uiGlPNY5y06CEC7cZAChyJF69+MvfZxb+1v/b/08gGhZ090GH7XQS + o40w9fLDP+Kzr8/Ql4xxgWm0nol217KIMnqgwvEjuvi+F/aO8BwSHe78cvK3erbq+fgIEogAvhL7 + LIWAPofAhH5/vBGnTg+1UHl4hF+97MPA6rTtdLAu4Ldep6h2dJxdJgbuXujI0fdgtmoMDoHQH0SC + J/My0FR7J7ARuRXjNlaHDZ2lAH7WJvvTAxuUuQ5+8c2XsM9pi39jOxjsE0wu6+ldU1eyTLg85Yl4 + z/xY89kopHA+tmAWzj03UGV6qIio285fwEd3uDwCOVwkv8XHrH5n67G4dOBQcoKPolAEw6flXek3 + P+bhDJytZLwLfLM3yd+eUp/1o+j4UEr6N8lVXnG4/ct9gKsixTPaOTIlr0AJ0ZRtZ5/aaAJbUqus + PO28AidffOa+fhTCefnTU1n/rQ/izXNLvnoArFIpQWgwrYW9NiDaWmk3FRq5uJGs14Z6BUI3o7sU + j8RSXx+Npqtnwy3ficSCW1MvKpAvMCP95IsftMvGDu1sOdskHVvLPcyEgr+NULsGV6LdbsWwPNXA + lMV5uP7mI1uvbGOCNb7y5HB0abTsnP0CFydRvvXI6DQ2Dx1O66jiL/8Nq49eO3gL5xsxl8CnKzcd + 2j99eRnvlUbWXTDCb79iKxn4YdlIVoBSGHxsfv3n7OmHBQqa4hJbdKp6fVddDO+X4ULUMH9QSjjh + Au9cdJwl/i5n2/Mob5AJcw/bS8/RtzmGO2A0/ujv9vtQ227qnMPS++ywxR8fw2ofHwWgNi3mxxCv + dMzxNAP5UdzJoVaUYV2OQYjKMVqJU7SVQ4pWqxAyooHsmaIfluOhHaGUl4gYjn3KpvRT5RBAmcNe + Ez7AernmFRrT0v3xby143SrC2/PiYs+L+2EMfaDKbNsJON58l1IDaym6SZ7hi+KBOOtyTAJoXnTu + 6x8e0TqtnwLKhuwRR3bsYSWj0slKL6nYSh8sWCJQ7uCPD7wfHp5u1QPqcbQQ0/Iap7sulxiKZdFg + h3uctVWsvB1cSxL6sM6f2XJdihgo124kJ9Ng6fjle2D7coXt86KC7f6+tLLgww7f9PyZbSgxAnR7 + xu6MhIqndA+5FHUvWyXGvmqj3/PA7vkpCf5EH7Bl/ZDArx/96ocwW355gPQOU6wb9if7zqOCfvOn + PMeWLi/+3kLzc3WI/RGfYF055MI5oTMx3wBGmyI9CtTy7wgfPls88Of7LgTaS7SJynM+XV3N5yF/ + N0ussoJSs84mFnDd0s+vv7SFv5Q9REKyxwrHvujmHvIGfvmXHPm7HC2ltOsB8e0U//Bw3t7dAu+V + Qr/4CKLlMNUioqGRYCy/1nrJamWGzGoqxMX3LaJ7z+lA8mADXG6Apdv5zgdgA82Awwd51lS0jW+e + w2GiOtAFPOqyHK584RKLjdVMCDBvAiOAF1x6/U7784c7sUC//aSrY707yN/1EjsXaGSrtQMKXJXq + gZUHu3OWUuI7+O0/7ElXLlsNIc2BkMbGPOwhqreyfC7Q5E7d3FzvR8D98qV1dzbIkQxtNg9oVOT7 + xGAfff33rD+a/m9+DEEfteU9dxtgPovphwL/rufP0ncQuyzBhy//bmBn5yCxjQu2NHKiS1XMPByL + B8GG8vTqLx/E4Jc/fOcnWtZQE1Fx3ZUziS5jtPQvYMG4UypyM+uy/vr1BpHl1eCffpgq7aT++UVv + m08Rd6iZHPgoI/7udNGzRRbp9uf3nHl+/tZTgMMKfezkzTKQ4sxdoDa3Ac5po2RLkWY6zEg3zXO6 + I9HXX+iw2Cry4yvQvcyaheVNy/CBDbthw7tWRDv2ls78lgXRgtnFhRKBD5xGQM+226K7cPdodGKT + r198wDUG3/nwt18/rlVoyvBaGmTvtftBoN1zBE2Kd3M0XmOwqK7Swt1dnrDHNVbN6wj68NhcIr/9 + 4uf2TqiMfKm5eWv3YOttb35EFJGsxJqzM4eR41kVshrzxAc+uIBN9+3i5/9mgRQV4D7ueoHR0Bxx + eYplQB+PaoY9P8o+27VPugWfZUTq8zIQxVrUaA23MQZsdkp94fNp6q3jtRwGAyyI5lFDWz87wQRf + fYctRs6G7roLHujrx7Cn7Y9gw6VzgUx/NYkWLmm9gYkNUHxkCNaU2Hb4W/DokX1xc6J++XR6yEwD + Rdf3sSYoYr0ZQ6rC3QmecM7Xh5p1A0uHqjqLc/Na+nqFVzeGxRWWM6eWAJD3eFXg2N4+5CacNYdq + nNL85WVf/K2X/kVtNDAixNeIu2pTIHoW/PTCc5a/9eKeXLHBsEoOJIVMp331RwgKqy79bVcOw+td + PS7ICpo9LiYd0kkqpR385qlEOfvNQG+NtiA/FB7EjoAeUa3ZEvS4RPuZMcVem3XE+uhoRg+f5/27 + M/PQnsHXvxP9kp+cdaIoh+YzD7GZnxjwzctEeN3oHSuOKGXrz9/vboJNnAAXGY3Z2QUaN6Bffucs + NJeCP78DkrWm66FmCnh3KpPsS6lytleRj7JOBpeYvI+0WQ7G8aensWJJYbR880io4d3dX7zmTdfM + lHUpy5mrj/I11sbeGlowclqO1XPWOfTUrx08TVpK1G1/jIR851dwmLyWOHS4DHNzimKoIV/Dnl/Q + jJbUFX/9TQw4CtH4xVuoE9MlqjSYjlBfkQ50PjGxg8Ou5oZDUMFr4/REc7cxIoMPXFnfCQzWLUUZ + eFN+p/DrL8k9X1ltPt36Cia+JeE00Nl69nS8wJ3ZssS8h8nAff0oOB+8M9k/hWCgoX0O4Km4vclx + KUdtK0/vFvz0SnLa3+hY5ykPhgm3GMv5c1iPY8LC3/2d6uaDX94hZUC1/U/SKBG/yiqE+1gMib4b + ifbN2xX48xtGyPrO0txMBer1vMxLdGu14RVYofzLJ4/ffJCzdkAFv/7g1gSBtX48GuiUSUGckWOG + 6ZdPf/FwkiPQZOv53c/gLD6KGU5iqAnE9Bro7JQTPn77n78FXQdVc8lIqtFXtP7ma8uhSKwdMh2a + 3C4JvH/ASGzIWNrSId6GHzyeiCYoSb0qBwjhV7/7a65uEQVPwEM373QcfPlztRPEy5bhN3MrmAYQ + Qmsf/vw4cc+ozaZBuoRwd9qdfPj9TNMItZDpzyZWd6UzbI6cWbCv8waXX35bvLHgxV8+ZFzLeiDB + Qw/hsZEinLqnA6XT7dHC0QlvPqjTw7Cy35OUIO5e2MPlqJG9p/VojRaexJ9ayIbhdHB/5x/YCNnZ + IZBxEvmr37H/jvb1jBIvgIuTKviorcNAKxvM8PwSLPLN64chEoAKePPaElWkKMutbD+jLx5jVzqD + 4ZtnPeA3HyK4foOIGKcyhfayjNgH2aP+5l896I3bio0pfzoEK90Iv3xErm90cSj7isU/PY2bsokW + WOsb7L1KIOrXb63f8xn46i2Z6HeD00YJHDZ4QT3CKvNossWy6QO9z575O0+oZ8f+JOCLz/PDIZ9s + /ewYE5xhuyemgDmwMjPVoaIA6s9ukQ1UEioWOK5l4SxZNbpNb05FCwqO+OBpdTbGkraDsZeHRBt9 + HXCjro1opucdVgX+PWyv3JphxE83fDzPH2e7Xo45SJhcxSYWlJr79ge8sU2Fy4NUAbq7+T7USifA + XhQmlM78YoPS8A3in5W9w6GnNIPf+cXX7zuLsGYuOB4XDQdqMEe//F/24IXOaJQibW2NYEHf/IEc + lNfTWZLsYcFuYi2S4sCnG3uSFnhRbgk5fPnvl/eB7aTkPi302FnKgyjKb1ONsDq6zjePUGbwfZ5Z + qKwrGPzzRfzN2/w0oA44qu763/MRpeDJMEFzZ4GbhA1/rceZrkHybEDhvlVsnruMLminxPC3X18/ + W2/T66MAoThm2Pvh1QASBfzmTccQOYsEDsuPv2dmOInOaghhjq4J9mZZ3cZ6UbS3/9Nv+G4Obb1I + AG8wHQwf22K8DeNZW1N4z04StufxkM3Y/dhQB+pn5r79vKbDroBR4E4EPzo2WvRWi+ERYvfbb109 + PKdRh+9b+PGFh30cto53chh3akXsQI/rsSpaHnqvl0yMW6w6bOe7CayZz4yPtIgcIvafHH756Mf/ + VCij5wX2TKb4k8530chdkwIezdPDl6YPS+nuraRILcyYYPdxzvrqbV/gJ+vnP32+pFwlIjGqLPz1 + ZzXbRi8XLZLbzhwcr9E3f0/QiOwKK00h08FqNws+zvMe7/2lz5ZWK//m17+l1VyTYR2aHz/h9Jgt + 9ZaNTPLzx2SfehFd2VlJ0Ff/Ev2480GXGqsFhd4Q/ffTqaJ5SGn3l9+pw5OLNlxqsfzNu7HxPT+h + 7mDI0MZlRYwKThq/3eYWHrsdPzPec9bW++ooMEhmi9h2fozoF69BSZYYF23Ygfl3nqL11URU5hNn + 9IyfLHppnY+v3/uP50vUwv79OGDfnJRofpu3GYZXpScuuE7OdDrHC7rMhf2X928fRRRhujs32BSB + Hq0W3odQXZ4FUb11iMgk6TZU+KDEVnHVAZcOuxzgsjKw+s2neAWwxe9+/rM/h7S7Iy1Hp5Po4PPt + vjlbc4ouaD+6Dim749NZT5G1wINiGlhNvFyjwUMPYHh99T66AfjNz+cd3B8fHP7N47ifxZ1splOC + NU61M665RwvC5cMgtpUKlAzPewoSgEriRMY5o2buLvDf31sB//M//z/eKOD+328U9NaoYqUSNcpR + 4obwzDMFtu6SrgmbTApQuu87scUegqXcbQsMtnQ3N75U0RVonxkJcxKTtLOUTDDuSouewz0m9h14 + tfCGGwux9KZzlQV7jSXCjQfDS/WJRg09W99xDNG0B1/G266Av41zAA1+Dv3oqNOIbPI7hw77CXAW + rvOwHYqTKvHX50h0IxvAJp/lAFIv5oi2bKuzXljAg84qIMGfLHfmk9V0sBN1iYQH0wf0mD1SNK/O + Gx9keQ9o1Hc8FAvlRFJFGrRRfNsp9JTkiM+x8M6ILS8hOEWpPXPHURtm6jkb7Kj/IcqiHDJ62jMh + LKfmQwrvrjtsd54ScNzuHT6z59DhlmtbwZ3qE+KXsUqFR2amcH40MQk5JoiEDF06OOP3AR9AxWjb + HFsy5EZ3JLdQ+QzrTnwvKJiqidjMOAxkH0oynOLAwnl7KSgNZcNE1ccmRFX6FpBTO5qwl4MnwY5z + zlj7scoo2oSYKCXP0gVKmgsD4eRj94C0SDiSfQJ90qm+PGgLGHwp0FHqCwQ7bDWCdem2C3KHA4PV + BHl0W9OQRWrnF/6WoAnQ9nNi4eC52OfvJ0rbMI4qFGrqgbiZ2mZCmawu+nw+CQm/62MPVWqiUydM + /nsCNFtdF+WwrZLAl07PvcYqrzSHTPGQ8eEeJjU97YUQufndx+Hzwg2Lnls2NNsY+3QVHhHd71sd + 3vy+JHrMVwPbRYGPlv22kEP5GsCvv2BbpQFJvOCTUW+vBjATAoHYcnGoJ37vWfAUJTZJv5+XIL6y + 0PH9B1av5DOsbrEP0HoNj8T/pNdsXsPHKEWDdiZeJL6zjT20POKCw4oPH/dK+eH81JH3hB3JRFfS + ZqyGIypi1yX7jkHOWJjjDl5Ok4Ovp+SWCb9+LHY1Q+yW3gF3N/IKfuDLJPfkRLIt9vkWyp5QYDuA + jLb589pBnnYduR7nySHXK+ThMxX35NzOpsZWo7/BvToZ3/lqoq5u4h7ZytMk53F40W342Dp8Y7Mg + SnHssg/35FyUVekbH0PlU9MpFzaY362IXAUxpJxjPwLoGeENqzM7DjR6YgvycpliIxYOkeA8twt6 + 2+uTGPcAa2yogwbOr6Ih5j5+DMKeSXg0ysZMPHx0gGDtXh3MltzAwXufDPxBGi3wvk8Y472x1wSl + KiwweD7GN9Xss++8K9DPxxifQuaYsY8X5NHHtK445t9KzRle18Mjel2x7rHRIIBDuEF7O7ywtgss + hzdbzUbe9gTz9v50gBd7kMPD84PJsfo00TJMjg3zVmSxbekzpQFTqQjUsYjNSZ7rZZg0C0YfnWJ1 + fN4yIRHcUZb0cu/DSKhq1ux1H4mhWM1Q9BDYrl6Rwl+9C68VAQ0qcpEvJ+IQZxQf9fJ0dzKc4HCb + M83TtHV9Ki68HGA/Y5Jk9RY/1FQKlc9ITN7eD1RIrj5SleSBr7djTdfNssPf9ViJ7pPDR+4nhUeV + G7C2CkrEMo2qomL3ZGYxzjyH0puQwmyfZThIgB7xx/FuQo6xU+yb2dlZDPK00d14vvzmPodAcFPF + RV5qf8hhX8gaWRS3gEx9c4iZaJhOQjxbUDza+xnyvA6m4qSl4MG9Rey7SUw7zxFHmPocIU5QgOjd + g7SH877u5yWbFId9H3cP+CrZBh+uZ5FuylWYUXgQr/4bVKWzXHk9RK9JVMmdi06UVaHowlN5cIkH + zwrYHk+6oQHbK9mveNHo/GAr9Ftf+VwxnZ/pvoPxgTTY83stW/NLF0N7wrEvsKiKtvWIFfgetmnm + H1EFViFubVjNKkOcWjqBlUsdE5jHTsGhHkcO65vRButdZ5GIGnrEfuTUhUxwv2MjVx1t82p1QZ9m + tfB1KB2Ne5mJCM1jr8zMtbk7a7YvN0hCi2LXvjn1pgqHFgHnIZEr4sKBk0ZNhEoenMnByW7DNFWP + BMkW42PrMisZx78kCJfsGRDv9IodciTHRP7xkxn1b7CoiZagQPIWUkZZl21h7vVgKhkbm9c4djaD + IwlEKC7IWQ7XYSrzLUDeopg4frsfsPS3ygJLyXr4xC6HYfl8/ASYTlMR4/VQHU7XffjHN8pwGgaO + WbgeiSZtic37bD156GaDLkt7fHwZY03nzYpRpx8ZbL79KOMOyqlFckA9v005Z9iOp/0OMszD/O2X + w2edKELBbC8zcFmsCRaWHkir64LojkDpau/WC+wzLGA9CABYL9N+RG12bHCa+09N+BQlhHSO9zhq + X0W2CFlUgW/9icXoWbbpNHTRIVKKX/9nvHBNC2gCvyS3jiR0nEpWR8ndVHBkdo7DbqjeQLY7fIj1 + 5rVaUA6OCnWZuRHnErbOypadAs3iEZDbh7Wc9ZA1M5oZTyfn1mKioTSC7xs6OCLHx+XkLFoth5AL + jHWG4Uaj10ODMbxoeorDKmvAIm1SCG/GPcRnZu85f/y74sImTgsUuqnKJ4bNyxSxezJaSlWJyr/6 + zmKajMPW9X0IwqTsZzCGN7AxPrKgcTDPpDg89IhXlc8FWVuQkOjHl/WtdZGwxhq57dprvSraDUKv + oynxr3WS0fT9KJAGrrk/R2ldL0trKog5nyd8OHduRN0GV2CHnjNWTsujHkX13KKioSVW7SVzfvUF + HKsMxNBR5yzf/YTHVL8Qk7wzTTgrVx0SOoVYo40LFi04BUgwmwtJ+nCgqyCFEJnukcOubooZ7YSz + DA9HISCeujTOevYkFg67ZfZf4uvlLOktgfD4FM9YH/unRtXisUDr3B79m6X12uq8aArv/rxhnY29 + iIZOAuHrRA8zw4Qy2FjW2JDnGg65+zocKB0cH2DChVjB8DyQa6COaCl5j2CCTSDsvHGE7rnLiVMN + HtheTJ2DVzNzPnVfNliE6JPA0u6Bf16lI90WGiyQ9nud6I3E1+P4nl34rS9WTvYNrFtWh396wRoe + GHBpep/henMH7HO0dEi7ahAaK6sS49ZWYO0bpUVSWJW+KKTftzRUYQeBU0n+ClwyzBURWCjU4WuW + jH2mbb6tszAxApVEZjc4xMJrBSfT7f35UR00oX+vPSznI/Qf3S7JljP4+JC7hbt5pGcvowJ3E+UD + uBESXao+oqdIM9FxK7uZu5NrvUl8H4Nsqi5+e1tg9OMrOUzuPQmuBynbwCcL4HkIsxkYnyH7vF+P + Bcqqnc+rIZja59F9LPjTy1qy2wbyKa4QhlLBz/CAtGxTBdyArz6f4RYU2sJ1fQs4Vh0IJgmoO6kM + QpSlbYeNVfqA0fQlE0IK9/iyXC6AGHerhRxjpfg00wMQmFvWQjkTITmqr41STIENU0tBuFxds94u + Ib1Ar1tTEopZMtAC7HIYCfaJGJu6Gz6nq27BUMp57M2Wr/GtEyaI8pby178Lu+SjtIMww4fy5dAp + mp8i9NOzhH/6fWsMK4eGTuQZXJmtblLMBMBMvYgoDVd/+0/zoYSb5U+fCpeP1cHjweqws2EpG/tb + b4EtfB+xmwR9PSNFMmEQbR5xzt4FjG/+XkifvZAStZC9jNIbk0Dt2UJsDsgHWxWPIywydYfdzj4C + drFlUR7D00L2Mz3Qrx6wkMFeBeJ29ofSZ4tCyMbbSoyfvmzyvgK2FAdffe0A7jLtZ9CJpkT2WrMN + C3wLCYRvwcB7hzWGBbwqH0aJ8f7Dl3F8tz5cRFz+6jcs0fBNRIP73WeTxwxokHI+FM21JTFTLoDe + WyuAmqLeibUN0bABCEMYkvlMvnp1oFf46WALrQVfX5rmCJ846NFTaAOfBbtbNMZCk6OchSE5286o + rXvjbYG2YmrsirSptwjcK2jktUgOHm6GjRq3HiXCjf2bn68/KeA+k0Oi6OumTVrDqLCdjRDvo2IF + 21dfAqjHOj4xuTpw52fIwme5nMhe+VTOIu8eFtSNA5qrgznTzpotCLvQu/viiWnoKjONCD8ahVj5 + zZ9KL5X89RN/v3/Oz5CHMnNDMzPMONradqqgKzl3YlYKiaarUi2wWOQMK0xcDmsmBCm8vbXV307R + fuA+wzb+8NffffXe/HkZMfjyP7ksnqrxl9kv4AFtNlbGEgM6hmIB0at6YJNRT3SRb/QCtXEesC5w + TT2FFVWQXzmiL7VRMNBL2e5g8/A7op6i57B8PBCCm5S4ZJ/flWEF8mEHP9lbJsaTsev1Njwr5KXW + h0Td7ZitG79L4JUwIrFzvsi++LwD9MEJ+LD1M6CASjPSULSbeynQaq7TxRmOMD/iEr3mjH7xGUSa + d8WlyIdgHvRziBBzUvxtK0SwcSflgeTXcMfHu2yB+dUEF3Q9XS2C+30FVq1hFPAx7asvv2/NQAvP + jsH0IQOxd+882z6n5iJ//bA/vcTMWclevMjQsXl8ZIaW0pfIm7C7PNKZfSx7QNEesaCC+p2kosNm + yzaWO4D4A8VOmqV02a/7CxQ5PvjTU4setjk6t6nzx6dCsuN55G7x4IMWPCidzkb/04d4fzBsZ/Gc + ZYT9LTpj7YWe2vyarz3cVk/Gls0+neWLJ/Dr133moD6GBT28EDLoOBCNKVyNBONRgfy8XElCl4r+ + +A5KTyfAStot4OtPRPDTl/syWbV+slL15zf8ZVhibYmJHAOZzgCrb/sRLR+PhsjwwAE7onvTlmK4 + bcC/sjqxa9HT2G287uDk6DJ2i3Gr51KWRsh7q/Ob53rZ3x8xmrx97r8/rvC/AAAA//+kXcmWqrwW + fiAH0kmSIdL3QUDUGSAiKCJdgDz9XVhn+M/u0FW1LAh7f90OKTp/rF0FRI8tiFeDLJpfTjLAIrEn + rPWwU5a8SHMYdpyG3SuhCqW7wYfP/hETvVydjH2zmgTYLrCJW4tJv+zlYwWil1/jwsSlsj5Tq91y + t7u/KK+1XjZ9Ldbxg/iM/sV0MbJhgJ8D4+AzuR97fpbcHKr+ycbeY236Pz8at8OMpYtxiNb1GAuQ + 1c8BwVFmZtzACDtIS57Hv/rpi8N303/GMqH0VfWrHT1sQN8mg0/Wc82m9yAXaNeqDlHuvlYvNxq1 + 8MYaGFtZIfUzukY2tGdH+em/rb5YDvXXQ+iLDb3TEd0eItg/iy/WTgmmS3/gZsR2oY3996mqZ35i + SsiIrUfOwvutrEOgmsh9nTx/golWz5Z3Ff+ePw49NWKWhRGBEkJnorsbBOOxy3YHhJICH5n5089M + TieIgi7wi+QcZ8tkdTkIm6eJM1Oj9VbvEJKLokyMNMzRxtcvMMah6XNXBQPKHowQbHkTftyfEMxt + c3DReDyMRA2Mj/NlU0WF71GUsaRxz2h8iV8Ixko8/PiGkjy9XQEJbYrth7XUxCLHFN6umTTdZN3O + +Pm1hNBEV2O7n1c2I3W1IePIATbLsxsxzyRo4NU2Q38nFWzfHp5jAe/f4kHMZmGiMTFjASWJbGJH + s2XAPuYs/OUvG55cwVq33gTXWwam/XPBgB/CuUDx+jhhOf+IziJGGoQXrdWwmTMx/eBrK8GL0Xz8 + ofJs55cnwfv1Hm073Jp69nvphQwVSVjtuMShx3ARgHRJtQ2vWrocrpWAaJZG/nDsZmcBs9lBx3dL + Eo3mi5Kz8BKQKLwdfD2MVb/SthAhDcLXtPumfDTZ+cwgBosl8ScrpJThVh2CiwexCS2bcjk8CZAT + SgH7bMzVExoDCW76zq+2+xmDYhdAf/YSEg+qmJFFSAP4cN93f4/e0+anDfmHt/j69WC9fi3RhcxU + nyaxVwLKvPKqQgKX1eToByMdyjfDgNvnuEzoesLRejihCpZmkmBV8gw6rY01wetdlchlyTtAx7PX + /q1/u/E/VbSKQWsi6sS/l1dntplUhFBnD1huXoee/PRqcn0if9/CqF+aMRWAb80NVul76WmjvmWo + dlf9d7399N73BURqHRM1CDJAifa9wje9NOTHx9SWu1y0il2Dld0N0mVuxQSWd78hqh9BZ/2scQqk + p9kQvBeONeuVRQ4uVRL/9CidXzzbwf0z/xKV+5Q1rcQihJSzpUnBl6YfLxkrQqeRH1gq9dZZdgKZ + AX6ZAYn8kI/mVyykkMNkJHogDE53KSofpl/Z8g/zvgdLWAEJbnkF+a3/oASnf3jT7QenZ+B9Vv/w + TLGtqmZv/bcEplH2RC1gQhfs3EPQ2K8TjhdBc/j10vliqpgjiav7FE2FXch/+dc1ENl6eMXCFTqI + uZP09/1ts7iQu9SDf5GCxCG3Qp/hxmdTc7yfo2W8+QOUa/AkFl2M/tMlIweayQjxMb+XPf1cdQl+ + QtnDaszJ9Xo3JQ5KjcxNzOaX1tR6ykBw9NonlxdSloV5uhB494wYwWEGI+9CCT5fbbX1I6FDZno2 + OKUuxJg9g2hh2cSHW/9g1xIVZ+YnWIIjKhainGI9auUHKsFMz3ji9vIJ0PH46n7X60NLVBTGPFYS + zI63DG95BKAF4HLALHeJFEPeRLQ1vzPc9OSfn+yzL9sCNsxd7IN5V//8OTwasoxdzTFq2qMPA/Xz + RcH6kjXKIO5KG+Xj2GA5eWo1r28RhHWmN/8yjDhjDt9LA2e9l4i2P47O9DLOLezY6wnfsdWD8SLM + DeKXRMF2hNdsNEX4AnHElDjstEWZyd6BoLy7DVHVJO8Xi8oFdE/nBw4W34momPAyfL1VwQcPO4na + UW13cMs/fDgc3tlYsIIPf/nl8a7dKXW+rxzQi5Fg95NNTk9ucgp+eYwm+W5Pf3nMdO/e2EgMBtDe + ODYIPqWI3FLhBpZNz4KXUt7I/VLRfrChJqMkFa443/we1T+GAAx1LxHzHqGIThB3sJrhhCVBuNTr + 00QcSCSy95fTomU0t7QXnGGZb/ncK1vtVwfhdxZUsvFnzaLTe4VLoQJy8x+hQvy4Dv78O9Z8lo56 + XXDikBUIa6WzB/1xHzDoec84nysjeZuveCp47m7yRBdeytirzEOIvOFJjJtVg2HDt788lDvGUr20 + oIDgdnr5+MGlXT01zbtCy141cMiECl2/A19AkQ5gElgjA9z0+QrQeO9c/JuvLXL15GBXK9wvz83Y + zD4UcMtjffHLunSVyb2AE34bONPsCqxa3+rwewyNvzx+FeVTCC+7YzIxTDxm9Dh5EnjwF5sY4NZl + M3O2XlBBpx3+4RXP3qENC554W37L0PnwuAZwm89MvCg+wfr4jiJ/BcNCCv5jgRkeHBdIkpUSswud + 7Q0+hhPXsv1gq1lvzghEvAP9VyiwvY53hwZG7oMMOoZPe7HsB+usSOIPL+VtnkPLPfBheOoE/yN8 + pno690uIQJF/fBQJn2jzDxC2ZQj89T5YEbHlqoCJv+Tb90n9Gpd2CuRRn/wtX4gW56i/4HX+yMTo + d7RfNj0I12lQ8fHwqJ3ZnRCEZbM3pvkKXtksyOeXeJ7NAcdBACg9tDYHzv7LxW4m6xn/85c3VsPY + YFCVLfbukMD08M4nwSIL2PpHgqIhD795QlYJut7C+dO6pFi6LtrmdQLAhzedmB5o2RAc3BaGc/Sd + DiLsozEouBASE72J7/emw//mWaFPrAmEi18PfBaVqLO719bfYcTtFD8Eey45+MK1L52p1VABWVzd + sSNln4h+FZWDp+ORTLI49WBawnaCdcPYOIoxryz1nQRg+/s+5SRWWcYuLH/58XSJ0zaaRT2MUdsj + NDEb3y+8y0hwKpvYB+KOAWvq7HzAhoU7nYIhUciY7+e/73+UtQPmu/9QYfVIfbL5SUrQuWAggcKD + nF3TAaP5eBbiz08bkftSvtg5h8L3IfLYe5MmosLR5KDSzRZ2suOxn5fku8JjJoTE+jKtwo+HtYCa + dzB8sZ3v9SIsLQNLbQ+ILkbJ5kdAAF1pdnF6Hb/9GO58+y9/PD/qKpv1pHZRYRoB9psdUVpJeneH + U8uO0yHOF9qpNPVh3U8pkQc5AO+t31GSSCa+CB+/nrb5yYHqlYLtMVEjZpsfAUvme2IOE6P0md9V + v3wSe1ueuOymtgAuKlKsnz9Gz8/ZpYG30t1j/xFXdPbEgfmbh9wuyHL4YDhKQproGfEuVdSv6zEX + 4BxkT2wFQIzWwD82MB2F28RvecdavecKfhRISCzv635Bt4sIGpw/sfxMzj1fHJ4BurZU8UdzrMFA + rXCCW143QeeD69l73Ib/Z0cB9987CnaT9SFSt3yihZ5VF9ZtQ/zDWRTqxazdAs5XZyRyk3+cofRf + O5i8Y5+YaXVWVjLiDkptbEz74b6CtcekgGcxehH8qvyabcF1BSA/ZwTLIFD4E+PqMKLlnpjeZ1Rm + o1hfCHHLC1v63gRcan05uAtt0Qe3bOkH6153oLq5Hn6cuD1Yv/uqA1K8D4jHrWI/3HelDY9mP08C + ibhsvDMOB9kg5XyUHjtnTCw1hZn/TMkJX59gYIKdDQ/sm2KMIgKW13yRkdeDmDiXzKJMNVgJjEhJ + fO7CW2A86sAHDVbexJ8lqeYKQ9mJ+R1A/6uqPJjf1rNBj1pViF9hu2f6i9rCiHcrHEJvyFZYuxO8 + w14nanSqlPkYIRlGuSMQfRoRnQkNVVBWywnnjuBSyuRnF74UqJGUI69sVo7pFQk7TIjVNp/sKzVL + gLisyDE2AN1+/+5DN2cLYgViDJYipDJy27okR6e6ANbfnyc0PY3bdKDPT710nSTANGRybJPDRGc3 + syAMzcUgxiRx2e/naGSvKVFfstKzXR916KbMDQ5pqCoj8BcBtVa+EE8+8/26WLcEyNnIYummwXoO + +cyHQ7KH/kov2GFGtZMga14vJNndng5jTqBC/K584psjPnsarkuMWDdtth0GffRODs4Vgn5QsAUv + KuXgc9mh/cHzsVw8ZcAv4zeAg7+/EwV0Yj08x1wF0hw3JNGO74yLiipBp4NBffnRnPrReQQSymz3 + QU4H0Ywmdw1UYCi7I/HQmDlruGuvEJi9QJz6pCh8ZTImfJmRhJW5IxlV4JwjxzKPJDnUNCMHs+5g + RP1o2ll1nDHwcNWRIs8BDh9PveZx8hng67M/kWManerViUqIQp6RyDG8Cxm9lkUC1S/zwsnaroCl + b81GqmyuJLnwX8AthyBBcq/fyYnfOz19f4gOOxBKOHmvZ8paUisCW1cPJBuMMptkx9PhNM8jSTQ9 + iGaZ7kRwlkML+4uGo3nQmBVKQXcmvlUz0Tye2QGZ62ASJy4FuniPiEHlwxixJauzsrzRWqC4eRnk + +romCifWpgCfyX35q4eV3hIVXqxL6i/6Z6+saC5tdMylD7njYF+vnR8IyLHsI8HL1ek5Ypch2r2Z + uw8uJQPob320t8/jYxJVGXP68jMwL5I+jaGuUVYIpxjaS47xDV5etNedrgIoXTnsp3GTTaZuTagD + gYSv3sdTGF1yCljEsod9IDmAr4UdhFv94vv9yPZzr807ZE3jSuRbYzvM+TW/4PPLtNgDI41m7zvb + qKMfx6ePg0dX5wU7mCoPZuIKno2mrA0gqrSq859UDcFSB2cbzpfy7CNmjRTGuvedaMRRRxyze/QL + mP0K8hcnI9JJkrOFRksO6jZUsN6vKBvixonBIr5S4u8kPhu2/oex8oTTTq9bQN2k1OHNKKyJtb5H + wLo4FCFO+wz7k+2DMTkoKVp24Dyx6znpmWcuXYGaPqCP1lGKuHaGBbibu2aCl6lxCHotOto+41Pj + s3TOH8uGd692Qg3/cUZF30vg+eVaH0mB5nCQei1Y5deBZHF5pfOGvyhd/eOE0AiUpTz2phiaRTbF + otAq88B8ZQheFxHLHgvAPNfxDo6IvIjh4soh/vlmw+J6Nokde/k2oYkZWMpzTAqpPmbL4RlXiBGI + 4u8NrqVff7JlSF4Pz+cfWlPzy/gM4H3+JsTa8GvrXx25pZ+QAkgO5eit0KEDuSfBP34IsJDAvo5y + bOwWM1sfF1eA9nn1iCZTN/riyWNA7TZHbG34s5BPLaPLTZ6Ir9ct7flMD+F0zMypDndvwK/jW0e5 + BgriDWsNluF6kGANgxBngqzWzGAYJeKyPMfX49DS5fyVc+icH9l08MXRGe+VYItcRk2scY7UDzme + dfTRb19yie0mWwIfz6DhdIl4JexqqrhLjqydnhLzExnOompDACfvKmDfKY79lN+alxi+zLvP+7d9 + T3FCBoinb0dux/3bmavhmCAe2xDLTGgqtDKeV/T4qCF5ZMMpWl9RHCA0FTe/baI6Wx9n0YZWkVo4 + Gwwp42RHU1HdBgrxWngANF66K9Ql4eA3sC4A+3te+wP2/TKRmo2/xRcsq+KNcVU1lNaXKkYmjiN8 + /UYT4EEjyWiYLvKEHEfL+H0MINzwF9+YXPrxS4tSn3GxcbNthSnRzUXX/ZyQzH4PlDycOwdXv/kS + fFpisK6H3IRgP4U4XuSk5h/OmUFr9eGwOhh3QJv38YXM7Hwk6XJI+mW6dOqvX3E0dUbPnsA3hCjT + KpJ+d2G01UuMGkdJfniQ0aKPBPRMHI34XvGNmKLoVJiP4Ys4nav0vLozJOjM3EKcR3Zz2Fy1ZDST + kpJgWVZAh2MqwvMTpuTsTkJGowq6YETjy+fua1OvavvN4Ya/2ztdCMyfNpjQR1YnHM0dieiNqOXv + M3GUzo24/SMIUFa4E1bYt+nMtAQhLLmC2fBm3y+jsIpIj185them7wcemQOsNU8gj9e9rudda/oo + ZyOF+B+7jnoJRyaaTmpOItfc08U57guwe3N3f8dJrUNyWK/IF5FNXAWZNZFwZv6eB467bQdN9RpM + uOk1X6jvyCFfzUgQiKUTDm5a3tOXnhbQz8IDccaT6BDxE67QOZuEOFoXK7Rh5RLxHbcj+pX3ADvy + pYlgfzsR7f041PRgBMKPn37rkS3nr/23XuTmid9sZVo1hL3xSad5WIgzny6nBHT7EBPHLo+bXjhA + GDyvBjEYzgGr/glLqKTr5DOVe6Jr+SpjkM/QJOf6sYD1tAc2ar1lII/0U/Xc6ajtoLcPnE0fAGcC + cVHC4HB9k8vCldkaj0EJf+upBa8qW7kEXgGMxofPx3jJZq+3RfA5zTKOGUHq6buJE/CISDahAlZg + tZVWgi/3A3717qwGZ04Ir2cfH/PokNHFRzv4cNLAh/dvBYj7oTNE/mpOh2pm+62+G1jw0+gzqSv3 + 9D40HUzOqCHW+CyVWdJ8BiqRdiCuJzD1ejck+289rE+jREtiLB2cvFQgRm6z9ZqmqBTZ2TDwUb0/ + e9ovNxGU+loT10QAUDazc/jmjwYJei5RZs+9NLBuX4QcNz5c564zARCO91891rR/XiFMvvGd5Puz + 6yyg9F4QxPJpYsPpQYdnbl5FfQh8InXcmtF8qBhkn2dvKg5a0Y/Iq3Zgt7AOUSxvH/Uonk3EBqo9 + zcJAo/Hx/Pqwo2+HWLb6iDrDiAukNDT3D/5ecBb8uHRisJAZY8xdHfLTWwUdCpyfqNWzHSQJqBC+ + +cteJJQ+W9GHdxM2f/pq9jNtBkLhr8TL9CudrulhOFCrC8ix8JuadPKXgaez/sFal64RnQugws9Y + KMSD7ZCNh/I4o87FxrTeGlv56WuAp77z+a+09jO+tsHf89E3/bcIx7AF93b/W+8MrMevkMI5YwMi + v3MlYjM2nGF1el6JE733oJvFXoU/PDD1wa3HzV/B41W6kqx3jYznvkIHN72+8eszI20ttvDkqSaW + wWUXjateSDCcLQer2emUMVl4fsHWKhZi9ECpeVMMX/AuxA45lb4fUd5aG3SYoUtu1XyuGXQLJfh6 + 7NaJmZACmMeu3kEjOGVEw99vtrLNoRSnUbOmVWOHeiHmfhD9KLoSI8VXuqYpW8GdbrokAB8147L2 + ugNlsRyxTlpjm6hzIjRxEhEr2D/ASq27CStBKMg91DUwF/7TRpu+nXarvXOW9BwIKLDPAz5r9AK4 + mhl1KH9Unxy9al8vxcsfoOTChcR3d1LmOJFTqMr3Ah9vV4GuQ3HvoM4EI4kMc6gnT77pqLhKOTad + jxbN8+sziIEuLSRUWBXQXaJPcOPnza+2YHaz4w42nCrh9Gqe+inEjA1BPykTywckI1rfNvCiXRzs + FEmXra/67EKTPxMib37qVz9g83e//o/m6PoRxU+hZViOGz1bL7awQmt304lbfv2Ino/9FV6Eae+L + pcJSsnq9C7jHcsH+Hqg9M4fHEKojQ/FWPxnj5vEALvfLF5ui5YCfHgPTSc+J7M0BZcS7X0DNKln/ + wOWtstzZogFZ4U/EeGkHSkNVUwGekh02N33Tv/iXi7xI5Pw99I8O25uzCu1G4/zFvn+dBRW7DmqL + 9ybHWzSC8ddv9J2ExLsd9YwUqen/1eeNe0bKyC+3DtB79yDYX74Z/SjCDKNLecJJyd+dpQN5g5yW + C3/6OZrfKQqhwpkqPpVWnfUaeJbgjeML1s6vxhn1WupQPQcVsean0//5t9NZ/eDQnrWfvxXRrrA7 + YpZXfcsTug6u+oHx4Yl+e3p3Uhle3bQiNupUwOVmKKI04Xrs/vBjTHED9fJtY6dJbvXSPAwbHo7N + xz/kfa0MgmcNQBPElBj+7VEv93XR4XS7NRuf4Wg+ffcr+GrWPDFWFvQc/65e6HRUr/jn37itP9D7 + I9sbnzv1GPYvGwqs8Maq/M6UOceCDkUhwVv/LtEaFV0MOGpjIin2MVvEnSCADV+x4u0qZ0pys4OX + 77GftjyDLkHfxuBcfCrihfqbjky9pr/7xb7aZv3SeCAHfMEFWJOEvTJclbqBdqqZPmrg6pDxGa/w + OugUu6rwrL8h5DlUVvSEN76gc30vdn94qvVpomx+bAddtYyxK5xLuj6Zbwj277onXnW8RWwE3iqK + +NqfmBGVyg+/YSryvF9/yMehvhb4YOND7B0DkzJZeH/B2hVGfFxVoiyPlRHRldFCglVwAfxJe3DA + msg6CXkFwXS/WPovj8Ka/9VqztK1CsC9zkyHb58oI0NBAviLlfnLZIlOmT8WCWG/G7EZVd+eFqnp + wm/pp9hmSdmTLa+Agl5L/lhCu+aLPhMgI4zKhOJj1VPeEhsotYnhH25z1c8lOvk/vPbni/QFi/k8 + DBBzlzt2TpmcLVs+hVqBS/zDp6mjMdObEj5oNvzwOiP3YepgkCgTVhFt+5Xl1gKdhvWGrVe/RhPp + GVF88dsExygezrz1O7LtG4Ot2yzXzP3oDVAUOkC08sHS+UabK4IReRC1OEFKM7fdgZ9+dIrEjtjJ + eJqQlUjlL6PaZ9ToTi08lhLve5t+Z+YoltHNNWb/ffkK9V++oKSF7MOYsspgTXwM2+9jmhZmT+px + j94zHLqYEleXs6x97LmJd6VKw1gFPFgiMKrw9ig+xPcLz5lPRnCFufeKsCHdTEolcnOhHjc59geb + +8ef8e71JjhZrv3aFTcOnphVwHa3Sxx2y7+gAWIVp42CMpoicYLdFbNYT/jGmbl944JKEAusqdPX + +arn0YdjqNQ+p+uMM/Lr64oo+wXYWY0P+Muzfn5Vcuy5X5Hit6Kx3/dEQtXT4ddpz8GOAt736Eqc + 8fd9NRMu/i65nbJ5YvkX5Orlg703r2SMBxwGkJf5JH/9sOUncOMXbPveu6fCFxaiTLIrNgqtopPJ + PwJ4U9YtkNWKnrTRYYKvB1xJ5r2FjLhJq8LzAQo4qIDvzPRRVtC1LEDkNSyjpfFo/pcv3c6i0Ldf + 4VxA4Skk+JfX/PnZVQ48fOadVzZERu6Klj01v34F5LK3WoiTr0tOTz90upqGCVB2d58cT9dvPUO7 + 5tDm97HKyztlbq/ZCy6RF2M5mPOIMxO7+10fSa1wAJO/RoIYAgZj+2HmYMbXMvzTv4Zye4GxKtMQ + 5oco3Hb4vcFqN/gKs7f4xDhYFoc+RFv980/Y5AawIPTcwewuyMQ+mbqz3PRq+uW/0+HVh9nKn58t + lC9XkRx37NOZxmy2kWhFCd7yy7r1gMNBVX4UxMaeldH53iZgd+J8YsR2E039Lpsgyozq1381vQTn + qxgRNiPSm/N7xh6HBnYPsZvukW7Vy1Y/cPMTWJJiEM34RmWwZ4SIaEvwoYQDaoJ2uu1OHGk/Uf+0 + fRF+pdLCxaQpdFoO1wReB5WSqz9kdDGpl8KrdF2Jvv0+3UdPH/KZ02FranxAk+cYwGug6qT42o4z + Ma0bHKydmpJzldbOj7/hs3Pirf7qiI3EMAE/f+dE7wdYeHlMxV7c+1hOmxGs+4Wb4P5Z58RJMl3h + nhor//L9X15JiZl9wj+/cSwtJVvDXXmFiKMvf2XDHvS3u8DALY+adqNWKrSv6gEezqFN9C0/WL0w + lfivxLBY3/Q2jeXd5ueH0KfgjfvhezE5OCvM6s8NQBFlh8KGq/42sRHjJVqez1ECWz5LpP2H9pNh + El8M5zuPlZ9+4zkuANyW3SqPw0gnTisnYGaXI/bG9VNv9QJhrNRw4wuefn/8/XikD6Ih/alMttLK + wGapTczPdVWWMuQ44JzscgK80ff01VwrODtMRJJ9QeiSq0cJAeboE23rn80vbjvuS4wlMkgKm3Jj + BQk0977wuG5nFBmSiZCiqdjRyENZrdfMoctJ8TZ+sCh/MPvuT18YD/vUc6v9EcHPz3t64Pbzj483 + f4Lt565WtvxOhg/nGkwLt/+A9akhCcaFEONLFAtRnyOu/M1TiGcEc/Tde80M2Zd6w9cmqqPlsJxz + yGhnPJUOBv3kxnwFpmG9T3shcpVZK60K9tV2RvLmt2Z9N3eQHVQeJ0v9cobSC134MNLjxCZfBiwn + 8AwQcZcUO2G5KITN7ALyBROQ+8bfyzafAagrtjNO9MpZx/6gQzbOtE2/vuoBAPSCm/740ycr/+4a + eM9bCycYavWWX0rwaH7nic1eXj0PLJiBBsXvJGx51mJS7YoG7vL0p1d8j5a0GRpIv+hAzt35E7Wb + 3gWSuauw5k5C9BUlZwLqUl4mnkii0q7Rg4F2Y3Cbvj7T9acfFsNvfIjSHVjE3SxAakG4zUuSaNBm + O4eVxib+Mu/L6I+/XgaMf3oz6g9GICIXegrx1RbUY/PA9t/1yFHvZXzEYAHMkoMnmyNqxrUSKuCt + Nh2c3GDez+2XhEBxtBTru8JV+ouUF5CPLBcrkvnMaLwi+6cHffj8rsqyG18M2Phn2vJpZ9XM+go/ + z3lP4rtRO8Ng4BIM6yX0l/DqRQwGuBNvWX7FP3yi87bD8zc/o8z7lc10Zlxxy4vJda+++vX4na8g + P7/Wv3nGeDgmBZSGXt7w+eTM96M3iRMzQ+yJI67X3RPNogESFWtz8FJGIZwSMW5E6vNnzDrr/Zpx + QBRijI2nfcto6oEJ7Gwzm/Y691ZWgbnOcMujJ24a73TIqqSCj8vYTbtZknqGKJEK3fZZYldMabTp + T/in3483vwKznQcCIKUdYhuHTLaqQneFi9ikRHkydr3ebNhAYRR0fP7pGX0ntKISGQdsHJZXv8ha + m0NZOjJYvjRyxvfP6w5u+ZE/Cx8zW4ldBkh7+q1/2PzMPLH7F3TzaiXKTMSo9b6CCaExLBPg5bIf + Z2OAUI7SnkgOBvXsHw469AioydG9aoC1gy8Dtv4hrivMdDGfy4B++Qlmo7JeWliXUN7rA/nNE6bB + O+7gNc6OWMLau6aS9NrBoZMN7DSnqR5W6ZACKW5fOEn4RhlDuGfgNy85bL92fs2N/aKi0T/viW4f + LYcey4aBpWJIxIjia7aMfGvCF2gZrJ2+J2ft/XyCvM0d8fF0tepf/gVLkRKssB11+ktwv8ITk7vE + +PXTprfQyu5GorNtka37bccKmvIbMf0BgMXdnwRgiarjH4SnSCflWlboiTgeq7XR9ctkfE2QHV7q + b55Uc8FjCdFvfrrNo5VZkd8mdF/1ifhprGerG/MlTLEp4Msvb/jNo8upOBPleTjXA7RrBp3lwMJJ + ua7OsOUZ4sw/Q+xFTtxP5RvoMCUOO41bHjxIFGz5MX/85TnOyLC6CkOXJtMYONf6N/+FidW5xDCK + vTLd23j+zbf8PRuV/azIowm2vG+qG2bKFhenIgxbe/D3NnhEa/g0GLikgoUtX/QcZn59JrjNd8hW + z9lyFgsTzttZa9JV8ih7V10GEsGciXos3S3Pz0NoKnFNIvimNdnp3vp3vVXW5z09CFUHdOHdEmMA + Rk32Shmiggw+CSquVtZDHA7g/9hRwP/3jgLu8DH9eU8P9SL5TQzDQF79gzT3Cr14kw1fbDQQ3ZPm + fjJuRx01dxBP4HyX6frRwwq99bdPtP1KMhrvox3ktDwhsZY10WJw4Q5qN3vxmVGzaq5/SOK2BwdP + u2bvR3PVMhJ6vYtpEqYmAOyclwnMjhXB8tiEYJm8SoVp+uGwHcUDWDOrneDv72GfbRwqKDYDi1OU + E8W8ePXyTngbiqNxw5q8fJze2EkmVApNJ9fuPtDZfjE2wj6sfJ5zv85sd3KIjPiYEmN8mzV/MAYO + yrddjB3TXbKFB+cGLDfSEd8sAaVfggtR3A93cgwtM1vi/SpDQ046YutXCla4O7lImo82NidgZcw9 + OKxwGeKJ5NpbrnnHDRN42TUjUVTtXa9Uu8dgJ717fJ/eTU/zWVhhOioCkbXD3hn2OM0R8dkjifjh + 6qxXdpsI3dd06ibNqJm+WDmEPNcmRfGSM9Yvrx30opEjGn+pM3YplgRdrPrjr9Hjq/SnyZ2gEACM + 1V3U1b/1RVNae1iBjAY4M31DqBdvDet9NPU0e+op8j66iyVzewfo0yg5gtdYJz7DSz17OVkJkErf + nRCwuJrW3lmHbuWaJP1mSc+nj2eJtnNSiEMPL8AevJuMDup9wTi7cc4sTWyMjkcREqNdab3qActA + Lc0jf129KGK1Zd6hvGVYfJdTLlvrgYfgE2/vDLZzlg26660i1arPNDePt8O6UZ/CsoD2xIhHueeG + Ip+3G4rJfVIP9cht27LN66Egxo5a9WA9JgnqXvEmSrCblKWdb92hIQqDtXfLZnPNfgPoqa1NHrp2 + rOed1iVgPUGN5DvTz3hjZ9rIlrkvVi+GQvle2L/gfcffyPGhPSPq358vxI/xgCXMINCamStDyVst + HJfu0TmgdC/DZWwDEmDmDliY1TaK851PklnZEEV2dOiYwfYOHVEpZ5atD+vFFElqH0o639CpQIDy + AfErrovm1rzn4q+ePF0IwTrUlQg9JWmJnXvnejbL0ETS/WP4z4f/jlaqnWN0ZNsSP7TDqFBemKrt + VNyWPEq3j/jP13zB5BJ+8PZ8+r/1CNdoxY77tLZXDpIV7b/wTZJTd6yZI33E0ExTmdi6u8/mcTzo + MNJaE6uSeMuWB+wZKO1PvE+7+eEw9guaoPEqnaiZSqPlU7+u0BmkJ44KpXeWvM8bGMWEwW4bwGiS + BSP99Su285utcMK74lDbcQtWunnvLPpEGXTK8628fARoyPYc3LHtMvFhe8v+/t5OVrEv5pNcM0jK + fYgcK8HKrD4jGkmSDYXQX6Y1V27RfLf3JcQ0vBA3LBxnrdrzDg7L+YxlbM/1LEvz+sPHaXcy8mxe + zblCTLociGNMTL/Q9yuGlrd7YbP7HrNvPpgDtLmb4x8+BesMRlJJ6H1zQ+JqKlsPyWD78KA+Fn++ + +7T/4R24EynDjwe/1lM97HewfhQWkbnKAax4ojJs4VD74tvya2ancj6oF8GdRH/PRHMKxwQ6qU3w + WV4MZQ6DYoICniesyW2tdIrWcvBceU+iCNEVsBF7X0H3FnMibXww4serQjE65xjb8uIMdmcHoJkv + F2zswrymBV+v0P7Yd+wEn3vGVJNtQz9LJaKQk+vQ4PnIQSXuI1+OHpayZlY5QIGeT8S4fGQwn1+1 + jlRuItisZAnMV3Y7E6UUmg0/vxF/n91W3LdfhUjXmVdev/VVuYGQsy46Cv9d3QbCVkjIPR+Zfj45 + zABPo/zAWBuFfuCvpPzhLXZ3ph/NM8fq4rP+eth7328ObTLiQ+6SmER6fx/9sBxvKZxuO4Qxl7wz + /ngLOnTQqzfRzzOrTC7NY8g4g4cvl49MebWKW2QtTwNfONdSlv3rY0M7rm/kiD4XhxbruQW1G7D4 + zktrvcR7UYYsZvbkjJ993WvEEkGI8yfJzic/o3KKSnisldyfPuaatR7npGInJIX/nvQTXQ/dDGF7 + G05YMt5NNhsBmeGLPQ0kC+gCZq54rijRTQOn+/aorF08tFBgOkqOSThE8/CSIBLdyZmGVzQAevHT + EM6HOMdpXvkOPyiZADM2iCZP1hCg8MqoSFxk6YdnGedLxw7dB/QhknFb6HfQ7Z3Yp0cfZ/B+dhY3 + KUt0PMYDjhjvnXFHgVaoYKLJl6a30M9d/mVgwSoStvr57sxd/mTQJ1YBlprkqHDclX2hcD2tRBaZ + iDbF+cmhQl4l4kWIAArP2wvAdfrE52t9jVheaQUUD0dxw9OnM08fjoHofjRJ4p2/DnWjJf/jm6QP + ds5qZKF+CB8sIUGcFT3t+HBAobSqWLqdVIetI2s79R4u5HHJm5o5+doAr8wck9/9cQo6l5CtTjLx + G4jAYoCnjqgKL+SUzi1YJeKkcGyuGbltZ4DN0XngoBskiT+D7lyv/UMSEBRnE1+/cA/o7kF0mO7V + AV8yfKO0EFsB+de3SKT3TlDWF6u4aI7ZhvjCg6+71mYqmI7UnvbZ2+7nuDzqSL6AEv/4bM6ttIWE + iibJNZXtX870CpG7RAzxNv6bJvKSEJc0HNGCWKIcEaUAbuETOVYcjPrse+qQ9h2P096+fOtZXG0J + +UNZ4rjuI0rv3a4U48GFUx3sJuf1Ylgb1XPTYauocmcRTFuE2fOAiLFMbr+uulXAB3AbogjJN1qd + 7+BCHjndBHd3HTDxI4dQWYIMO4zjObPESy9kPQcLF6fHO1sO3m07E+KjTe/918l4S6Uu9NTO9vc7 + 9AaEdvkVsjgkROpypp7vNl/C8Cm8sBJ8zzX10yGHgTD0E9RuvrJehVMKbwLQCR61CMwzh3R0EAOL + RDfx47BVIARQuVccUbd6WgNXntH7Nlck4Efd4aTVLMG7V1Vy+1Cvn6PtHSD68S7YvqxWtqSPLAff + 1RRw+i0+zqDp/PZfOMIMy/bAOLNZWCbUzNcTp6vv9AMbaxXq+NnHmZK7PcNfSQVfijxg26d7QMu9 + LUDtJirEEM+ew/cC38DqazynRzuDqGVPsILeWblO6754UcrtyhlR5U6JLuVSP+2tJgRbPWL7KPLZ + mCif7Z2VriU65Yt6iSEUQaVdEJGa5OnQ83GUAPdxdKLhUXLYOZl0oJnbGV4lr9er7g8cxAFzJnqa + Ng69nb0AEJ8/Evv43tH1MiIT5gd0Jqd+ZwEexKkK2VqOp4cf35xlMggDWsPwiI+Ko8NcV+TC6vo8 + Eae3pIyWu2SF3+XWEH++qQpd6+8VAlZUp9lUFOWvvvpU8adD/Xz3DdydfHRmuLfPlw51qDFPK2yv + FGGdcflsfOq5DH/9H+8iu+dDodzBJTu6U6ucGoU+mKmDTPZ08P3Nbjt+D7cGTGafEQ9HO7DWBOlw + gh7y1/VmAHIJ+gAeDhWPnfNpiih+mwPMQnVPwgvSNv+xN2EuTp9Nz0TRT2+Bx3V+EevTWT3vXbP8 + x98T+un9p96poi33nwkmH+ysH6fsoI++kj8kc6Sw13ByoYMShej1Ue9/9QwIFcyJdaSiXs+vxYaH + i8qS5GQx/Vq+Wh2ehsjb1rPMZi4PZrR9H1ZfZ02Z4MHRD/Vii3/6cJmTSYX592VgpTdNhe0YXIH8 + UkdE1puyX3569PfZkrKwZs+yo8Ij+yj8/XG2HPaxbyEw4nWYkj7y+/UlSDGKkrX14e7e0K0fKwC/ + RUOsJDdrmj7XCixDMhHnfJcBX4e9D+9EzrCaNBydzTK1f/1Ekhl/wB9+b/hIzs9kzNY2sDv4ihpI + TDeps/keLDMq5xbgmHXuDq8zgYzm+JRMy4d906UK5gCNCryRgH8uNf20eQ7nRkh95nV+KzPjpRV8 + i9ZM0uNCI+Kc2gLt9eVEHFOCYAiMdIKKC5tth1qkdNgoV3gTLMYfXo9ntt72cwlUPj/ihIjEIQwz + dzAeq8KfDQ9lIw/uDUwO05ccpVTM6Fqh4CAc9RPRciEAYw/DGbZ9o2D/nMd0eefLFeKnV+Ofv1nL + 4s0BC4c6cdzOo/OzX0x4yc0eS2A/KWPtGRI82ZKH1fBrZFwRo0HYA+6C/f7EZfTnf88n7YjdsOiV + AWvHQcyeABErCWKFxqLHQXIqdKy4g64QcMrhoU/Xkkj0JSus8mAb8A1yE99lUGdjmicxWtIc+lzf + fpyl7ZUSHvTyjbXt+VBBizioHrl+4i86C4ixM01w2tl7Yrq2T8dPSULInsyKROQu9fTLWgOoC/tD + 5Kv+BZSEqQmm0Tzha2AU2fhO9jay4yHD+nx1KCNNKAGGLIhYegpqTQUt48RM2j3+PvOj9hKR4u42 + C3cMALfqVg6bom02f+Mp00+//PhIMpXaWYLhtsJXyHe++MPbpmQTcH7QYtKmzM648naZIKEmR7w3 + Wzk03mc7KANGx2lkCtGyPO3tepJuEjZ9v/GJCmdBFjf9xyvLfHrsxDmJbRxu+neZ8zIWH1c/9qHH + iM7so6pE++/ujY1cxgprG1WIkkvwwdL9cukJubQB6FM/mJY2qmqCK6UBRuzneKtPSs/WHMByVntf + 2Nb3b/22fMYHBFM6QwHJUL+z1JecigWDQ4IUbvkHCaZldEYxFkwRP6oVu6/HMeN71ZTA5vd9+YpH + Sjrm3EB6YDKsRXtTWb/nYIblpHA+i0dJ+fkf9HXrJ/7lJ3/ryU+dP9Xn3K6ZqtdkaL85sPnjms5v + mAfisvNLol2JS1lLOwXIfUgUK7f3VFNBLiZQOm9mYqO96TDX8aPC+p6d/z1fnfYCFN3BwelT6urh + QBYZ/fTa5g//1d/Gn8TY8h3ajl0DSmfbkV47FV1OzaMEkfKJieH3FiBudCjg7XKMiXb193Q6dC4D + WcZm8KaXs/nGP1zIu747gWDfRMSSOxf2Qxfi43zjFBpMAgNzrX/6lZ66zpJ/nQZe9iYiVm3l/ZLV + bAHVOBj9w6aP5sywWpjeoetfQrTQTlrNCrrPgsOWV+K+z763Fv7p901PzL/nlXfmBZuC1PTre0cT + JGbwMNFfHuQh4QWPp1H8+aXsG3yUFk1Dc5ymU/uNVml6BHCrZ2INjUz5AxZU5GT5ibg1GyjLdgwJ + au6HeBqf5bdeJgxUSBY+nk61EwN6u19LsZw7gK1N77ByFjXIfebcn59iQ84SwQ9/I6Lx9SoLxhXq + j/hCNn6hZDjKAkyd0say+ADZqC0zRGyQBdiODdnhqilwUcDvb0Q3J7Ofrpx5BUZ0t4kXtXw0U8cq + IUuzyv/ptzZOdQZe7rlHnKav6cDgvoJCuFOw369Kxl056Qrv9vONbZEdfv6CQ/bHvOPr80nBVITD + cNieJ8blswbDNNs6JOvtheXv+omI1nAt2vgNe09ncciWZ4FMwp7PH5sBzFooyfBtdjJRjDHP2LzR + C5io3xrbGRFAG6c+B4va8ifGGqds42P1D8+9i/jIKC80JVBfHPrDh42PCsAg5P3d/zLfah82Xqlv + p47TaFHfzgDbzngQI/frfrIejP7Tk5M4aUZPWcYt4fUozfgKLbtfvt0lhZ/6cCD6mb7rFR4UFakv + oyd4bCRA4BXqoCnLGw7kBtLVR24Ou6YYsCkfkDJIvPkCt4ufYCOy9Ix5709XdGivF3KS7jZtf3ye + 1d6DyNwkRexTKURoGvMOR81eVbb8o0RpBq7+OpKE8s3zW0AQmiW5jO+27iPxAAEI7dJHk3rrR7U7 + cWjL53zx+3Gc5WndbGh5ONz4wALk4txN+Ksv1XreAIkkyURZsNz9NX/pGatPgIOZHBzxL28gjwOz + gtK96D7/+pJ+sY0ugO7jrUz3zc+2jxta4TFaJ2xZF6dfEl9I4OZXSeZ2I1i+5F2Bka8AkTlejRYv + k6u//EAzcF3PkOUFeK2Eipwe2jFjYdbbcMuvieckOFp++Y6cfHZbv0NlhSDXQaBoZyLFn0iZ9zgt + oAYaOjHDvCik7cZchJcXg08ev+3o31kd+PHzlodQ/hKVKVr2pUwcJR9q8tNLO+aCsXrURzpQ51jC + 0y45EuOYXjOqvE8rUKM6I5ZVSw4TuC0DzxiWeNNLEbvxN5T1RZqYUfv25GB/d9DjDjZO80numReS + UgjCaSaK8Bij9fyxbZjuW4gvD06MyGmxtv+6GXV+Uh+bfn02BxXqT9fG1ulL+0Z3PgM8vvVgom65 + 1GtrwxJufEecLY8bsxrlwuZPsALbU7Ti41T+9Bj+H0tnsqWsEgThB3IhKlLJUkAFAYEGbOgdowii + MtT49Pfgfx+iTkR8UZl5Sls5Z10yhoCiSsep6d3abfImOnqnsPaP7W8e8Y6fj1Da7ZNYza3Ov3kZ + ffnj+XhFLXk/64Wn89m3UrxCr0UPkLktC98wqSsEf/IU7RPJJD/XcRR0/0jeyqtFe3LZ26GgcR3D + 3r/WK3LiVBdSrpkpIkRtyLnSVYeFVHC4Y2GR67Pcf/2TBKYxuJhNx3KcWS65YBCQ8S2I70IYzz8O + eErXvpctVwrXFxxAdKvP3k7L0miejesWqq6i//R1t/jHr18ndnOwx62VFivlOcSc+IodIJpp6AHW + YKw8JOYgZ1nX9OpG9B2WNpPtMMd1A2hp/vZPjRYLJjvWASmX24ZoPxIR830lSZAfoPYdtJajyYwm + BSV2uMdEsQNBJLLM2EIZfPXKEAWlXL3VrCInvcBLnsTL1bS8993XKjbo8ZRRWMyWJ11m73+9xJds + 9uQ/fxRMT6sKEjvYk3LpB+YRMgob8ffwPu2NOXPWfXrQzUfo25El5yTWf2xEDXImtn4ehTj12wHa + q778eEevaI5QoMOZKC9vXT8U580t+Q4X6j+J362XHQJLXurZ8UMOZbJr2SChAdJN3JHqmL0jlt7G + GPW1u/XNJByi+YzF9l9+//JaHtftQf3mETPPccTjx9uG2Vj9ebvFL3B+1goVNetq0TeO8NQvO2hG + 9UPMVQgt1SSjgp0tD/7fsfttWd9EmdrTW+LxZWJyHrX7Sm00KInj3ja5SLwwAKNgHabBYIxbhmYb + WhKZvjcFB4d+wv2EAmN84kDvC0EV4iqQdu7x+x5zRm6ap7660cHybpwFk09MVhb+ufR1wciwuwFo + tlJDUueujrM0OwX68jhoJ9fY5X38gG9f5WX+R4gkuqcqfRUDOZTt5AjF9SQ03Q1Brk3yHKdO2lhA + eyUjRrAZHDbs3AFVWlH5/pIH+clPQYnXWeChhxYKVoxxD7FzLDy11GeH7Vbh9OVNvn0fucMG5cKR + /BCaJ8fFL8LXzfMXMpvKC5+6C16XFkBJZQ8jt7kgrpAQINq7A37woEXCaA8c1JJmeLprnRAWcg7Q + /gcAAP//pF1L13NM0/1BBnGKbkOniEOiBRFmiAgiBN3oX/8u1/0Mv9k3z1qCql1772pVr8Imz71+ + b0/31IGuqlOEmP6aU6aeLn/9hT0fEF2Pp+sGDolB0f1pfMKVPDIPZsXvh07Dmub49UoZEPa/zBOj + FeWrfSgZyDTqjPv3/RA2+tOr/vqTHjDQm+78QJGn67KRbG6l8b317wLeZuVFTohv3ZWd9UI+nq46 + SXurC3d/dtf7rEaiHY835sAYoLpUFlG610efIHcQoZX+FmT5r2+Ix/dNAuYS8vi9481abnSSHMNx + 0cUeY33n/w6M+9ZGBteY+h9egI/kLvuS5f0Eog8jeO5+JfKMzAqFv/6UeiMS8b5RB+ialxYcyjRE + 12T5uOtZbCC04Kihs7qp+Xzx7gGIB2d/nusabjtf+/NHUbHzsz99C08wPpHTIM+gv900Vt77scTV + 08Jdt84v5LmDIzIXdAZrbPEGTJpyQ4aycuE66UfmH58wPPcH/vpBYJ0NxWN7+m64P7zc9QYx7BmH + G59LE/xqTE5UW5Xo9Fj9CCKfv//Ts0vvV1jeXkefGC/chsMZvA1590tQbOtvl9oG8ODlkhJkcNV9 + 3Kay2KD9xjZujNNn3PWqD5WC45CZ3Wp3IVtoQs5PfXRhnh0gk5kqf/1t4hQ1drs/vSnWKsH/+Iw/ + FD/w59/89bOXwus3OMpe/S/fJuYMIuj3Vo6/O7/c4skP5PluHMm+/ilfvXro//nD6vGtN0Ig9hAq + ZZQSZz1S92eGGyPv75do7WELt8BvN8DVoebJb/fmLvNYGXC5tyJBMTiOs6UrgZz4AsaH6t3QNZQH + 5f8zo0D8v08UbNWjJgpezGa9MVwN9eTz9cBxO+pz42YefD40lVwYOxiHbH3zcvZiRnQxnoq7+rrJ + y20VmuT0aBRXEP2LD7OBTMTMvpiuefIR4dm8qt7xxjwaAZfVTyJTjPAbx4ewzXnVl4VbZBA1zAzA + d8W6wK8cIgzDj6cvv+JUwNOIKmTpQQkWMb92kE+UMwn9KMunQrVYyDB55C152ebT9uMD4B6CA1Jc + XsrpJe8y8FbeBlH9ftaXMBY0OebtEiHmcsx7GRomYNo+IobUSPqy/ZgAPm1rIMb9mIOFtR883M4/ + jlxI44WLO6k/ORjEBrmZUzUE2zID2VnrvKMoNoCife8OWFMXFS9Su1y8T3E6EuFDjGtQNQsvBpvs + VBry8P09hEu17+E5aRWLtPPXCelE5h8UP687sVF9DmkUcxfZzJaC+Cf7lLNt5Ijw3buF18nzMxSE + 6F7DSKEzOX3OzDgJrF3DcLMuHi/Pz5znRucnp3FP8I8t4biUALPSRah65CfTpWFTTTYgKUsBQzvT + 9/fpsaBA/ITsyPuM3E9IPDleLj/0LILSpd0hjuSk01/oOoCXuzojKKFTeBqWifSlaxJaEXiyH4+U + Cixy7nxNITSQOxLn0aQuJ6WuI4MT03lCk6q5oG2zD0V9XYl7K7Vxjl/QgOmQfL2FaQO6/z8T8iMb + ontnG7lQToUPO8g4eKGz3Wx2oy3wuH1KkiiRAVjh3HTy4fpQkKqwCuAu2xuDI+E+JHU+Rr6+jQYC + LvtS4n7UgS4CWXz5L/5dp+abqb9dIbzcOQM9IiyNi/CKWfhVtgdBz1vsCsj0HSi53Z1YtlKDteW/ + pTy1lw4FxZmli+ZZBlzf5kpUknz05fJdEpntLZNEtU7AOoTFBjWjiNGDXueRB+Y3gA5lc3LDpyxn + 7bfmyItUTcTvKxFsUgMLaQmkCCGtq5oVs2EA0eF3I8EeL9vn7Srgic5PLB8wq69M7F1gkTQpMr3L + ndKKarVcPLFBLiSw87Z8/WJpOqgShiL4jdhNH+3uOWHkSNgJuW2NY9ly+icxYvBuWKdYRJnjfOQJ + 0eHQ0E+kGjL3zQRiLAnRt6sVdHIfchF5fSakC69eV+Th6xWYX/uLy9/1dwK2uHt7X33q3OV9lFoY + XvocObjlc1r/eg2OT/1GnDn2QqH7jgZ8GoGNbg42AevqEMLzzKXoNu6Oba7RQNa5bETO19V19hKe + sHy43hXivs76uMpEs+R7aLyROxca4L6XrpbZ9JIhV+WTkbvO5w1yJXY8sQg++vp43Do55s4Ohl+L + C6efkXmQXcHZG+Pp11CrbCKZq+sHuRSyk/NzonTy8iQ95j5nplncJROBLyk1cqu7C/iDMmwwOjEJ + OX+427iKtpSATqAvD1T3ka7KwGd/1ycmQ3R3/SG3gotUT3i7Q7shougzMAYqg+zm5I38uYhq+T3H + Z5QedA8Qzi41aPEnjVw1bhm5JFRiOWBWHSkTCinPByaGQWzujvKnySeBiAHEL89E4cA7OT18Hx18 + v0qCLF4R8q3A5ST9dHJH3vqyx/3+WnlloEUiRl3cKf8QHvbfofIWvHTj+p7EHl7aZUFKXhohhddz + DGNjOSH99Ly5/PLsHGhBlfeoJKv5pueWBxWSDuRSTZ+cHlAbwR0/vXdVHHPa4zSWPYX/IMvxHDCb + jO1AbnVFcg4aFPI1TTBU1ZNH9Nv3pGPpNXrwMQ4euaW6qfN24ywANA0l1uUH9Dm94kwKtMBFJ3Vx + 9RXmvQW/JnHxwUJvSmbpY8lVL43IaYre/WWiKsnPUGaIPa6XRhhUkB0fy5sgPX+PLhc+H+Y/fHUx + QHRL1rCHRx9I6PJJmn1HUWfJXP900XlSCrrc1WqDrdXPxPJT3qXPp1tDyUx/KN/r6UrOXCz/xbsF + vEO+bb6UgDPP3sip5dOms1G1Scv4VTCpyEVfy1wTQSBjQmzrHo9rmTsiLPVKQggya74l3CTCL7wA + krU/P18apZLkwShbpNUPbRTO48v4q2eYUSAMqfL9LPJigwJLtae4wv33uAAEGsk7qCEHyF6foQrf + G7HmT5kLiVL68MH+TCwckwQIrW13UK9ql+iMyIzr89yLkA+4AmXNfNW5V6clsm/nAVK5YMwpK508 + OatxSy7mNXDX64wWMOr+DT1fxp0O9mJM8ssUNWREmUdZRbdaOfFyEx+0Ttm/kZdq2J3LDG+HxgHc + AN6FLIhMgeJ72lEWq08fmvRpo/vz2eWElU4XWc3ME1FLZXDp465AubumHnppnTLygt1eYBzmHcne + lyyfT9Tu5ZdcmOjl7RNGOEWOwDlTr8TO5SrkrIoyoK+pQk54eY28Oxw1mMiMRtRfXru0nKJA5sJ2 + JI8dH2eSP2LYPPcTdWld69R9K7FscPOCdn7hbtHrI4I78iOUKUrgsudydo7S/R6j+16/l3S0F3no + LIuk/kKaOXy+DKgjScIrPklhS52qBj8uOyJby/1wS5MHhnH0krCw4+t0reNCXnSmJ8HsjfTDFZYp + t/pyJa/fEOibwn4n+WYxHnF3fFvcJRBlDKYDOScXf6RHPamAMJ4NZH4PDqBpZRVy7t9WfPy8S7As + ll6BtdKennQ72y5W2C+W5eBeeRtSnuOmv9ISzrDwkM7f9HxpR96BKbV7Yg0/VefbYa7gd3jpSKM/ + ALb5TCz4F/8XxFN9db6/CyxvSYDuzICbKX+XLRSrjkNmeTIAy5z1Hk5ao3kSc1Hy9fiMElgbTEUs + uZzDZWH3vXPPJSAOWxbNkq+LBmup9Ikin05UGKtCAlvxvhO9ga3em8JgynGYdv/qL/+RzxU0DgvA + m3uqwvXX8csf3hO18W4uF8m2D/7w7GTO2CXPUxJITEEWpLNMMvZ4eEOong4YOT8uz/usWypZai54 + r9/KOP/93/1+UfCNPs3EzWEgT+e0Rnp5UF2hvssxfDqe7DFT3Y1UntYafJhXTXQ9+IBtlJdAjg/O + nbh/9WS6r4uURdwF/eMzydmLoPFUdaIx9xpszyDw4Hz/HDDc+fsqem4vfc6gJO6Xvpttxz/Yvu8Z + UhhOAMsxaEz4sA8/vPrHwF1jgUTgGYAfUau5DGm9700m/VVE6Ij4nBTXbYP5qSx2PjY0S36FHfBw + upJX89YBfZ58H4g5jsjldzdDgQnlFoaNV+H34XLLOczmPtSlm4vXbjq7BLw3BZx5/ob5nxO7W8T6 + rVxdTt+/34fLo3IC2BjXm7fj2d5xTDEsWcvBpL3W7vadnBp2jRwi+92p4yxrkwcqgX2gOBZDINR3 + LgKVGoSYL7ZMx+5J7qApVxHKFtYItwzmFpS9vaPe33rw3V4sA6y0tYmLXum4ZJ1YwcLbEmQ8Ll1D + HLW0oHrxZnIdfpJO1ZfrQ4Ial2iTbFIK3pImeX0h7/Hiuawv3gvQO2ZIkIXeYO2XAcK9HhETvapx + FaR3C9u4PhF9japQQKWbwOP2LbH0vkghaYumhTBVG1y9z/s3jf4lgEdhswlKotDdssgrgbpOJQnX + SMkFVBf9H79EwVdXGirA2gOllWfIOWRWzv4e8AIYsajQiUnshkuYZycuiWAR9bQ2dLuVt04m6O3+ + lz8qz9TSECY+8bZ5HbcQUlMqmUOJ0P785+o4JXB8mE/kQu3r0qDqE9Avv4R43ucZbmp0Y4D/8H/k + xqlmLmz6Uso/Yx2QNT3icIn7afvLH3I6Tu44d4FVgtAvehIoNju2sX+sIXOTCnL9yQbdzFZQIJd9 + KLqzpT7ywipKEKKgxkPXtA3NNeDDY2x8SKa9WzrFd22BleqHyMdL12wozExoP0lGvK6vwq1b8k1+ + hgcG+0LRNvT4umsQlhePZE3R65ueKx54HqYZc+7v5g6/eq7AaF9P3loVaU75tZ7glr9UvJ9UBMtP + URjYPpsrpqfn6mIq8Bn4ClGO3xlN3M3kkhLeZ8AhNdU7fftcBwUEIovIH36yA6cmYNerGMM4oOsH + Xxh4VcMBQ3190ynrxBpGc7sgS6U38Hc/YJOtDzK4++au6bXb8Ya/4fGHVrqOZRGAIuyP6C//p3Zk + HGi9Ktn7IOvrLo9KC6Sdz2JJ8Nkcxw83A9U2TuisFmI4WUPbyyODOY97X975uq1xBHc+4UlbuOYL + u04VOBCtJa4deSNusmiTMM+/iBIpeJx2vS13ZmKScn3ZzeRcHiVAqXElt1FCOuU4CqHQXVpkXuYe + DHUIsWxwZEGu8L1SzvU6H2pO7qDdL6B0ibjyD3+8I0Faw6X1zZRvOTaJwai+y4eQGtC6Pzf0MIYh + XNM6NeHOLzyOLZtxn6mRgGEyIDL1+zQSDyTt8S/+bFHUAbvzX7Djvycpt4e7+oWzQM19ld4yUL1h + y1cdQ80oYwzTV5RjF2s+/IgVJi82oCHNNerD3M19pA2vBQx3f4xBYHkHpG0uBtTgNF/+Rm2D0Gci + +qYsZQlJfTOIESC94TPRlsDpkUdEaz7OyIP8BuHxrtzQK/ok+qoZ3gTiZ7ki69GZlL7x6svmMFn/ + 8HpSsr3jtgCVOIdxDjeOmXr4bSpEUi6bwW/ZfF7GvXxGXj6x+XpyIAT78/ZAnJ+a+dU5GbQD0UTB + zXfH4Q+f4qS9IS13bs0q8n4s7/mIlMKp93xVSkimCGHh9TPDnZ9vgKGtgpD5lukGu7SA3z4h//wm + TrNeELpjST3h9evCPz0GH9YxJkhUvXD3Y3xITdCha127VJjI3MPgBwWU38i32eQjKCHix4wgel/c + 7ZUqhXws9JTofpSFW+0aCrRWr975JaYb++h76JlrSjyCQDNZtzWD5egGHnOwfuOv9BQo+3pRIu8J + tfwfXxGP4Ru52vk5UmQmjhRuzsWbft0YUiF6VnC6tFcUVe0+Jf+X/0CcdDei3vm7O/JJt8E8iyDS + s7BxMc87FjQ17ogUoTAabuNIB5JWdv/x3w1gAP/wHiGpVt3txV0gfBYMh9wb2bcyXhVP3v0Zrw5I + Mi5ouExw18N4Xe59OOx8QPaDxCEoPKZ0AWkawYAlIrHbkKcbML++fAsIIo7jPvUpY5pNDvMQ4kVM + v3RJ8lWRY/RJicGzL5fqn2MltY82RU86aICaD9mEHYQO0rjBAJtSwBJQzNvomfJXuh2jcQLz/XvA + m2JHzeo2PvOHt1hcozRf7+KiwN91qVDWFJYrsExcyNQ8dkRzT1U+0/uNhaf2kqAbF7jh5lHCwj89 + s/s5dJuuqiHr6QDI2RjsfK83GaQv8bn7j5XLFxmLJYZJI2TMbukuxoOR4KXdFnS6hUE4fPAFSn/8 + RrzKH7rewiqQlfN6Q+HYFeHaCKIlbxaxERryn7vteh7oVeUST38Sl0Z6fgFWWQ6YN2k9cndx0QD5 + ui26+JTPtz+9+n1NGjLrtabb48hYkFttEUvwyI30+Hoq0rAcngiZfkLnWCAxUIT4iq5xItC18N0E + MBqzIDv7cc16sLMC7u+HOO61BnNocyYs9VoiRlMXgB7P70XOoVKhx4dbx/WElwx6fHQnjyZ9h2vh + bpb8Vr8JhlRtw7VOTgzMZlZHkasFDXvekAUV/8Ug86kf9Ono3XjoJKfRO1hIBVT6RdU/fl5uTDz+ + 84d3/onlRXB1+nxHm1yA2w3ddrzZkrRK5DZIMXKnTNZXzOYB1ENyJq7LqSEpPp1yfJ2ZGBlNDcEP + HRZN1oCWITcR7pTcfw8PNga6EatldJdTn04Pa+cYEVe3m3A5l7MFd7/YO5hveZ86vdXy7g94FLrD + 2HP3SgMcDB/E0TYbcI/8x8KAnUWvOTMNWObtUkL/rY5IMY+PfGkjTYLN07P+XW97Mosjn7/ih5xW + 5dr0u76HMNUbZCjCuaFUIxsgzm8k7jx/Acb6XYKnoykSPW57dyw+WANs6mVIM9M6pGU0aLBJ9Kd3 + tO58Q7PzpYZ//huwdbtZD+/rBHZ9jsKnnOf03p2gtF79loQsI+5bSXoLCB/Lx9yVgyHpTeMH8yiz + 0OkMeB1f2aWSVi/e81tb6dyeLQZefXQn7lzUYPV6poKeSVPM+0VDhZ2vAgvqPFGUSx1ils4OgIDm + 6N/zzuEQg+WkQXJZD+VI1tb0YH4qCvRUY32k/r2SIOYWl1jd03e3W6ZE8BQ/FPSHF5tH4lZ6Jsb9 + T/+FOz80JCHIEq9RKuxOnfPC8JzpV2QdDpX7sZO0EE7XX4jObWyMdCzcHoT3h0XcROAofZtTCxif + t9D5nKs6JfMxAR9fjInPtBugom/40K6/ALM8e3Cx7nTbn9+MlGSamk16jRcoPK8T0hoeNc9ckXqw + FhefpIhOOWaqQwXvKIhw9LiY4wwUdJGs+2sjnvCLGnaSMAS/x/uNARU3sFydxoN7fSTn5Hlv1pfm + QSh37rTPdDiN20XOFShKd46cTp6qs8+pNCF7yjyiE2PLJzGGEYTsEqLMmhadbJaKZfblesg0GpZu + HxnV8EN/nrd9dWVkJ/6JYTjYkRe48SlfwoM7gXw93Hd9aI4TrfMN7vqbWJIshfhROyJ0z/0XFeY1 + 0OkbH31opZ1NDC2Oml1PdfByFwxPfAgjXfkxYaXdb/MO7VXT1+879f78OSzE6inc9XUm//nd2lkk + eU9Lp5KYcSjQrk/yXvuACN6uPEZaMpSAOp+0hWlbnfHYrYBi+4ACeAf0Sq63PKLr+Zoy0vcyHvZ+ + RTmuXjv74u5no7Np8fnu91Sg7IJt168aFW5wkqDLXVlkIzqFu5/pH7dfNqNzrH7yaVhEC3Z50BFL + DxhApnCw4ACUHrmBTJrdD/fgdq+u5HlsBn2tuNCCvHJq0eUEZ30+X28QNoE5eO1XCcDOf325/44V + bpu6oEswDhhqaczjua5HsOuDBXrfbCDnSvTGKRiHCex4i0y/0OkmquoEh1MtovN6+DR//Sf5XSY5 + sb6jqE9DVWI4vEIRy2ZojlwqXSKoLj8Hebl8zP/F1+pFIsrCYwWa+CR6YCkp9FrLz+jm8NMGpfOL + +cfviWUupqyW8EO89TU087t4eNCeBtNbivw88qF/t+Dn0PBEqbttpJsuFlDKahUpxy+hi3+1POg7 + rw5zSdWE6/d9u8j9xLtY/ELZpU97qKC1XmqS7v2tjaUfB+jv7kUU0aoBHfZJXrhRQnLqP9E4IKvf + oNLUqrceGfs/PZRYRYD0P/+5x2kE6faLkWvrw7jOH6eGsGLORHEe13AewmIBmWu6+PgSnw396N8e + /vPbr1yRL+E3KeDjJnrIC3QabtKr8SCYW8ajW23lY3NcFrj3F4k+3oV81ZapB2fFv/7p+5zb1jKC + Sva2yWl7Zc3GBx6Gz2rV0MOQ8L94h11zCP/ql4s5pv1BkC7bzicYd893BizPuUdmPw4uzUphgUfr + esXszi8JK10v8K9+ROljn4mpGBWsBubgYZXR3EmN61a2TxomdoCKZuXP90ymDf4RbXj5YJEFiQX1 + PF7wqoUz/dNDciXwD6Tt/QFW0ZXuX//IZTlen/XeseDJTy67X8uEJH5DDI/yJJOTJ2g6aYuxA6H2 + 9ZE+djAnaaUUUIIHjNBbWfU1Fr7RH/4QdTH0nNIfLCC7Hs9YdF4E0L98fPmj7onv6vqf/9V91C+6 + HgPD3aaqMeD9dLXRRRbncZ5vVSVrtdoQJzYmHc/FjZXfw3UhxXl6uUtCJx+8rkcHuZJeuhN1+go2 + Er0jRY4dulix1ksr5Qdi8tHPXdQgjYD92Dos7Scw+Jr6WD7C37DrmWu4x08FpnNe4y83yID8DwAA + //+kXcvaqrCyfCAGAiJJhtxFbkFAxBkgIiAitwB5+vPxr31me7bH/suFoVNdVd3pOFmbQOuD1J1v + q+qG3FsFa8/PSZGhRzb9DtsIK0NicXF7/7LPXt8EZDFzouh3OMz79wN+4EOC3eePDmP4Nv/0p7fg + yA//1gv6b3Xw+DB9gjXUa/6v3kaUgCT1+BeffuvE/9k/ZgVb4Dbq20PXjAXLQRFTWOvXjwdYLlYX + WoXLnx7DaWca4ZI/9RjJ1bIR/05+2VLOQINdwVBsOdmgrvzgs//4/sniL9n0u88KlG77eux8mqDV + 2uB9qYmXsVxs8/LoOlDRq57I5FzuJ9JHEWQ8xxHna3LZqGmR8L90FJz+e0fBUdAU4ve+XxPBIQkc + m4jzoLafK2ctXEGUoB+WZ+MbLitzjGGGDQXrl8u3pmys8cjeMmdGt04Gx1SweXCTgUnM132rlyOL + Uvg4JzdiDeJZZW9PUYFse/OxmjkqXWx7kmBPtROx6KEF21s0SsDQaMJR7Oo1QR0fQfK4OTju4TCs + bne10E3oBWJtrzzcGnGFyF6hjsPb5zssE3zlgOTRGz8/lyegxTyn0AD8ibhWDlSi4FuFcl4UMP5e + iDrHTdKL73hKicKLPN36rSlg8nRMb6t+n2EBz8so2uCQElVrZHV7cMaGsDs7MyiQSHsnsHv4u1lX + YhAaDFxVuCy0P+8fvm8n1t6OpJjB8b6p85agX01H7Pfo9nFyTxyslS76GXmAeXy+GMdYDLftOHoQ + fVKd4FMvhVxy5010oHAgsvcj2XJ0Fg1xkhF7SPEvNbsiRRTHY2zNh8eT2lMrlDGC720jrltXNt8u + Woty3zaJ/nu29aqhBkIuPJyw2giSyvdbkyNzwmj2cX8YyLuOSmSK5xLbAc2y4/NleiiFmMMmNt7h + aB++HfIWvp+jacQDyyYyA91xw8R2nYO6XZ7PEgpJKpNrK3gDL5yvCYzuIyCvGKfZceB+FRLrysYy + b59tGrW9DzSxRUS6YcseID77UNHJTPD5o4fH92Uq4Jl8I+zcH+eMG0xRgsWbqETOPry6Zhsy4VXZ + pxLHtaqS1r0FiB7MBOvEZgf6mmUB7O+D5HstZwyLuIJ2oLvkYZyscIs3K4GMLz9ICMoKzKmHBOjy + /RM7h9MR7Lc9JKidzIa8ktax+dMsOpDjWYMY33kDCxQ+Hqqe6wU7cmfXx9Z9+jA544K4aZvWa623 + Ixzi1CWGiBt1FUWGh07ga/jhMb3Ncd2yQScPH8RzhtvAqbFjQbJoiCTHV2nz4/egQXoLbOxJL03d + wKJY6PJgEvKonpG9/Zpthvzd1L3DS8Phxo1pBLqVR1jJbSWjnfIVUc/XN+Iut2ZYTpgtYEnKimie + qdNRG68diphiwJoluurf8yByGmxiPYsb5RgUj1B32wAbcDoPK89XJTrV94icufu9Xscl5cHTjX/E + Rdch3OeEReiEW2E/s/kYWHY9KSc/8RIs+74NqNBUEppN/4xdR70PHK/lMVwupUrUvvXU46ifF3A7 + 6QccZZoz8EyyQXSp+dbj02205+DCW+hzQApWiuYDhpunWmhNv6Z3yszfQK927cOLn1jkcizSgaaj + UaEyNwxsoS0Cx+X87cFjbSuivJVfuGQkayH7iz7YvXwidXNPTQEn7iGSC1J1m1MrOUcvjj6JIY86 + YJ31msCjHAfeIp/z+hgcLglsQ/9Ozs55BWsSX+a/+J8/czTVm3sUFPiuG+RB+JtCaofCAl+KrMyb + Hb4yWgLQwSJKHkQu1FM9DdZcwCgdfaI/wq+98gURoRtHBb5n74yOcPyK8KvJT+JMuLa57rQEyF4Z + 3ePMQKqPJ8cS4Zf1IiyrWLe39YksePFTC4fb9hq6LWkLeLwvKr7ueLK/DwV6Rz/DmlZnw/HEXDW0 + 4xFJvHhUx2K7M1CAVo41y7oDwtV8A0+x1GMn/UrqhH8/A6rO+py3MohsmvapAdPNKWfYm7lKO4kW + aMdTYk1vdVjymySh35YD7IZX32bLRx6jjSlT76tkt2GbvmkDz8mcE6M62pRffDVF5eMteCR1u3Bb + NMOAByNSSGoRWeXEyTVAIq0TSUF0zTbi0RzteIwlJ6zDTW7PJYRFdCPPIP3Zk0VrCTmHZsLO42iB + zdKYFPpDz3r3dqrqjR0ZFnz72Njf9wdwSSyPsPnkR2Lxzz6jn0TpAbbmI3ZOWVTz7MiziCggw/h6 + lWsub7MYTu/q7h2fgjusT0kpoPd91DjhSQ+mc/OOUfT+XIg0fpWMA+UQAPt1PhLlW471AnuQw/QW + Iw9eFW4/s17P0BC4ZscPzeY8XhFQjOtl5r5GBI6CtUFEcM6QKCSVvZ4Gv0eBJHvYz58KYKmVOND+ + 1D/sTeRCt/zHCuiZeg7RmFbLjrWFUjBOQMWGGN/oYl+EBj7Ox5y4jFwOnCgyLBzdrzYzXnAFvAhr + BiGzrIhyIDbgE5pG0CqkDfvajQs37+UL//bb9XY07aOu2T0UZOiT9AtP9jo2zxJ6bGhgLZoydbtw + iYmaw13DBpXtkG2vBotuciF78Fu3YJLIeQMS82OwTsAPLIWDNRhKno5f66esuTe7lP/wPqNHUk+F + yzrI+gJpPj7NJKPB19tAd+4W7LDNNIy+2yVHgZsH4rtWn5GbZ5vofMgdT2R5z+blFleAC6uNyCZ4 + h/yUPX3IH4GNL30VAr56iQyctJ71xD0elrp9t6iM9Zz4YrqoC1ZwC5/zmez5God7PBYIH8XHzMT3 + 60DrWBzheIwsj9k7LDZpYUVx/eYDDp1fSaficSqRkPHPeXWCJ12kJ8xBd60YIjU/Nhzir+iJRpVR + LD+dYKDH1eaBwt9HjzpLMCw4VRz0NoKQ5D7Q1OWaBRYi/I8nD/HzrikbJQnKQ/NJ7oATKaFzDVEJ + OQdL9eaq9DLup5iqB8Wm8HzYy/tgjmhjDu+Z36wmbN0XSuAxcS3iDiXJJrWSCzQe16tHG5wPdNYG + H+gCbucF1y7dkuw+gzh/hMTPG7be+UEF/p7fnkrGXnzuMyJJe247PtQ1rZf3gr7n5wkHsA3Vdf5M + OSzjc+6dxoufrQyKZzFfXuf5dCzEYZHVUkDzSXXJmfM/dLsuZwmm2++L1YjbwvXc/CJI0PlLrAAE + NZe1Bx6oeNuIpeN4oOu7mBH7W0eS6O+7/Y+/7fzj7/er23UOGuRedk5ZzFdwdMG1gRprO1g5QwVw + 2vrtQWrnBGsC3uhMw/MCe2qcsA1lnC1jCSA8qCvrIZGeKUXSaT8p1pdY3bbDMB1q1UL+Das7/oJh + IQT1MEpnH8sz8jIyPq0UbtdO8F4XRwZcOw4KfDBfh0jB2tbLQRdLsT+VPb7c1R+lSpayYJbZ2IM+ + aNRfxmwFvL03iUiBkISUij8fgm/zIbq3qJT9HO8jNBfDxupZi7PNj4YKDsdLONO/57u4fAeEvcKs + rI5JaUvb/ZYxXScK+YwZOZ+K/ZQXCebt+2XCf/HaGkdAbJerBkqESwL/6YsXe1A3kgoLpNWEsPlc + 4owK8eJDIWOf//BzolldAXkLg5mvznFNA+poUJ+EK1FyuwqXnyZVULrebvvfv2uynh4xrMrtRbxS + ZME8fYMGHL0Yel9nv9XH4UkK7vVLxaYtdAOFmdZAMe468of/1AWPFnae9sZx+HzXK4flGfLuyBAz + OeFwCbVvASRf9Ij5ve33kmtVC7eh1v/x44/9vXjiIGU1MfJSDJdI0Buos6tFAi9tw+narxKMP2xK + XPXsD8urucyQyVs481f+k83qZ5AgTO4DUaqfPmy/u8RA97eJxBXFR82i4trDWKmNmQf7rRsPV87h + 8zswMzR5LaMxNzAif/86M4Q/N1v/+OS7NN8kd+wZLNL1YMKueHf4sn3DYYp0wYAkj9/Y05854PPn + oQGBiFOime9LzffbWIA7FC4ktJUmXJ4xLKDKH3qvc9uY0hEnHQRvi53ZkCg2K/1OC3zOOsE7X882 + eFl9+LOJhWU7asCqmEECka4ZxJ3OA10ykIgQgu5AzBNSB06pPgwsZjLN2e8xhvMnvlXIAvecSMos + 7FPpPR+OUpOS4MEu9SKrnQj/8A1Dswajt70jtH8fLhZ3H2ncOBbc9RDR11+ibh16sHBVR5/kon0B + m+FlLOTZnODXI36HK3O7pv/29zWeibr8TscWZfS6n7lPDLCCsWxhDYKeXM7LGlKVZ2J4UhqPeG5m + UfpJrB4WnP3ylkBew3lRHh0UPEb0mNI6DFTlLiJc1PrhAeUH6C/QOhMmxnafWeHQ2SM5CzH85N4X + u5F5DNeNO2igK+rOE360UefgLWywmIN2BlnnhxuelB7meJTIa+f7s6HEFUh1hcHndlIG1pcHA8YZ + dGbyK0tAl7BhwDPcMvz3vOwWbwqwroq5O063elXmOoB4lmxSzK1Pl9cKCvC7fRKi+/cyWzzHL2AY + 6R3G7+ytUvWnNej7PPVE2aiuLi8kLGLWQR9rWv6jgwuuLdr5ETGCycmozj/4f/ijZdpY/+bPp0CH + sBtJSCuWbvx+pkOeeW4+7HqPMHlUwlBydBxEhjJUXPlU0PkkZVhqqqo+poLKQuPNjFhFTJuRi3Ca + QSLRyQNQJuGWtkuFuCk9ENVWmmy9TYkIrELZsNMLa7gcHcGA2UVPiNbedZt3ChPC9Cq+PSrHZvbv + c8kCNZGaShmOf+97x29sjHVnb6L5jmDPG97cF96gblZ+UuBpPFXk7DAJXWf6cuBfvjbOoaIuX2Vp + YaN/D1gmkzpM3SQy8GMuNn5t+XdYRZFnkbq8TxiX23MgMVcz0PAcH9u7v7BGt8IXfTvmiHM43QHd + 8U5ckZjjPf7pvF2zGKyRgj0unOGwtsHuQPKPzBOKcqjps2R7GNRxRYzLqtfrU7IK4L6EkSR/+HuS + 3AYk62PAzo4Xf/hx9L3IwpbzJOE8JIn4j++ctlKmC3eoNhCcthC70T75pxQCA4Fz0GLZBHLI7XwX + nVT55t3eL6HeDilJoTFX+C/f1bR1nwF4I0mdJ8bcwvUOgwZ9DBcRaTiOdMdLBYVlpREnqMqwl5tM + A+P9GeDX40nVpSsiDX0t5Yy9ZK7D9Y9/fDX1SbSMfQN6vZcNen2ieNf7CV364ReL6lKfPOaY6ZRT + 4FOC8HDOiBVVWO1OnqRAURqY+Xa4ReooH+sSgbPfzmTUefWHIjlHxnyIsRrN5bAE3hKBWQ82r6ZV + BOareRlhfS4xxoYugkU3zA1WjG4SNVcHdQRPeQRDmAoegm/eJr1iJ2Dne15Zb5OdmDEvAnTwA1yc + Tr+QsJVigTOvGhh/T81/3s/3LG3Y4F4zXZcWpfDz0yycb0ZvL9JvXeBiVDPZPweT27sNrJnJmNnd + P+OIa0TwGwo3ovSzHrKNp+SIMwa855tPPYKrlqJ8eq74Dy/X+GxKMALPmOhX75stR2lb4Oum3L1+ + 6riMnhxFRF0PNbzzj2Hb8wdMi5ONn6Wtq3Tnk9BzNc8rSutQU6HpJdHSzA+xKqbM6PXetTBB5RnL + WaFlPDqoLDqNoCLe/vcjM9qpGIrHBOMtPw/r1whM9CK3AdsC5YfPtaB7VxLAZN8fYBriYYNXnGHi + dn4D2BPvxn/+HY7Z7rvnDyOAdZZt2ABuTp+oJj2QzbNOnJau9VadKgW9PnGMzx/kZttfB+iT1VLs + QyEcyKiGMVy/xTCLaFDt484fgLQ6LrnN2Svjv3W/gXMtr3/+jk2XVxXA3+vSeu0BBeq4rm4DtSkI + d33M2psTqD2gnykgejjn9Z4vA/Cnz8+8x9Rk9xPARQzuRJVjM1yvAZNAqxduxOidOKT8Pd9A9svu + xHk7XLYpNoDQzn4ZzrmoAgu4OinkKL+SC7JiMMr7DLdQ7d7z4cVqNT8e1hmOmsLjs5Ld6uMfPxNR + kuCIf2vDkl+UEb7Lb4edll7rxZxPJYRyTsmdPyr2Gk4ohT+u8LGOvz0lTJ5XcIZShbOd75I7DjUk + prpGLFkc1XXnxzCSWJU8dv6xuYM4A6t4nrzIso5gepBlQ3Y2ZB5y6Ejnbs1LuDK3mljN6A2LfA06 + dKpE15tPihIeG8eN4PHmcsSy+ADMRvqw4NRA+o9/7H5xDEWe+RIpm9yMzUAiwAWRjyc8flq9ufqP + /7dfnR0f1mw1Z5hPr5VgiLl6MllcQX2+JeT5IOGwLts2/vH1WUTKq6aS87Dgnm8IZsXB3vGrhV/r + 5RHpxb7UqR6OLWyNhMW3GHIhzZ5CAEZ2hcRU1bBeXFuq0OdXX4lpJIw6L5pngF1P48veoT5LUPTE + 3S8jrpBq4dGqzgr82YGKz9r2zXq9Iwmogd9jNVdte86fx+Yv3siOF+E6Vj8DJMZyJ8USvex1TcPm + jy9gjWmbkP/ePzmYbDwRWfj1NbXFSwcMIXniO5h/9l/+h55lnGYkio+BynRloENVC//tr9/lARjw + /carB26iki2VI1bwYiDVE9FQ7+uRtv+ezxSeJ3UMeNSDoQwyYsj0Xs+xEyug5zUPPy8f1t71Yw6D + 0xISl3OGmiJplUBdPM6kGJJEpQfFZMCOZx5zKPVhq8OHCZNGl0kMDNumytc34SA96j99k83Fz0/R + NWFjjw1Jpf7xL/BpNc5bXYXaU6l6LDyk+EOMh40p8aot/9PTc5tVcrgKA7IgF5YbCb7fIvzn91Zf + z8fnKbiD7XLUWgA/2CMXj7HUZZ4vzl9+J/awYTrftlaAldiNWK3ec7jlz2MLdU99EIkdFfX4KhNT + /AniiE2fxTX1rAMP8Zp3M3pOcs0n2WsG/anqvcOpL7Pj86y30LdXSNzpKNvzn58+3l8B9rT2Roct + lAqUh9YTe7b2sCee70vIHAQfxxfZD9fiW/siLOIbkbs2p/RNHjygBf/w1rq/0dXjLQHefeXrbe1y + z7bkU7aA4/eZwgX/s8nuPyF3cUZy7rWXuu//BLbtSLE1dbdsXy8T3ORcxs5lGrLdX85h/eU9LI3f + KlwZMjJwmmuZ/PmR//KDHMGORHwXZzR0gAcX9f3Acl039j++4Nhs8Oe/0ak+QhGmHX1g7/aF4dQK + XQyO7+6KM8lPwlcsv2MoH0JIVCsg6vSoaY5i/F4wFt/n8Dj8Gg/6NoXk/DSTcOuZ3wL2Tkzsfk6h + OjXPdwR3fwRL+bOin7X1BcQcRH9mFtcN+WZme+hNqeuBg9XZ27euNijcjtQjez1jqaVkhMdNT4il + vruspy9dg5fyeMXKeHvTBXuaiMZSfPzxs3oQknGGA3th/vZ3dnzXeQmmzPh4fK83w9YuTgvBfZpw + UVqverlYNwOGNSyx+2TDkHYSKP7qH3ivR9mLdD1a//DEc7OezqeKFeH0PhTe8SkbA78+OROE5cEm + mpZf9vrWmANvOkbY7qpPSGP5F4PmUxyJ2uB8n3FpjfCxqb+ZW3+CWt5HMAI/cRISRROwVzcP2X9+ + tNy1EGzq2kWwDzZxhvnNC3vlwLdQm6bUo3fGVknCAwEkXyMmCpu+671+toj3n8jO+6xLMLFc2v75 + Gd7hmtBwjAS3AQ/tIc3L9AHq+Dsdm796IDk/xENNvl8nAi9h27BqBVhd/uo5qVdoHicWk01fUcpC + KYp6og2eY3OC3vjwLt4B3vHWXtLztiCW90yC28cDkF0/wy5CKY4v66de2A8Y4cfAyDtVT9b+85Nh + 9P5e9vqXnB3PethA5mKVHhUXdzha0TMAYtx33nuKN3uDdRfBR2dnxLJb055t7SGA3Y/3rnn+zLbc + 11m06x2i3plBpcHjqcDwmELiDYlgz3966PKACVGjWarproeQQnK6+9U93Y6vpQRddEhnmoubPVW9 + bUKxRoF3uIRhvS7MoqCL6N+xm7bi8O/98n37xn/+ITGe4giDRx5hnLSOevyr9+2/d97Y9D3s+N3A + r1vU//yRhf+qHeD89xMbF9nP+KhB1kmc6tK7mkDO6DNUBGR3JYPN/d6ALXZiCe1+s3d1T6JNVJ6J + oHaBB5KvcURHVSQCuHlg87rjq1SXsaQQqnjZsNO9X2CSTn4P6dZyZOf32RxvSgo544exvEalymUb + Z8E/P8psP0O4HW/fDujAA0QFpUJX5pIb4FPr5Z+fVv/Lx2cc3ogbHZjsZ7mpKb4SIGL3ozj2bOJh + g5UqQI87V4PdnRHegJuDu0fxaQg3W4hKtB/fxY7LPlWicrIAvef79qdfsvnGNJ6IPkfnH/6sF5fp + xKxjfPxXD94OUsjCcKpm79A+TuCfPxy6Px47YpAN5eH1a8DuH+MoGS7qpIGlQgOGGbkmN3ugjeUL + /+o1fgVa9a+eAeQheWDjL1/t+h0VKW8Rl83jcOdLPdrrZ0S9ll/A7nwQxBnjEDusl2FZkSWIf/Ud + l5GlYXNfXPK/dBSI/72joM7gj9hy96tpS6US6dh+YOuF62ERzoMI0PrjiPWjB3XxtyVAdLNNr3WY + tR719e4hwJgCyef0A3oW6gnIlsgkt6a6Uo78lAWm72TCeil5lG+t94gWfHtj9XzBw/IEzgLJ0Rbn + Q47eYD5baIS/sTl4J5e4IX0krgf48nbGrydgbXo8KjNksHicF+7VZB15pwn8Dh7Gqrip9npn5hl2 + tyfC5s38DrRgfzFsYa8S87Q7ZKp/shATyBqOP6uXHQNwSiEVI+ItfdKExIxsBfoILti+UjLQc083 + 6AW+O69h/LUXI3BnyMPHEWsU2GA9lc8N1oGiE9Vly4xDYT/CHmsp1o2LDY6wxwEcf5JMIuUWhPND + WgLEzjAmj4o5hYvEBD26KBHGN+UD1NUItgCZhKXkado3e53LXkKsIAASLK9y2G7uEJ/eDH8lnv++ + 1sdDRAv0OfAskV0Ch5H9dDyImzD0YO60NgurwUA3HFfEJcYT0JjpRUje5gfLHJnUlX9dHJj+XN37 + TFY3rJ4pjLA1pRzf4Zra/GrdCtSDKsVaZhJ7ucCVRQnieoyBH9LtfTvyUJV/lFy86VXPk0cWwJ0+ + IXk9Hld7+ygSRM0CUnLOTj3Y12dGA5uk2C3AEWzpqvqolnueODRJ1IU3DAird/idyxXQmq59VsHv + iByci6/EZmX3GMBGaq5EAaVTr1fLDcBQBZ53oqMKjgluCsSM0XEWmrUf1nEWFZjny5mkJP0NKwe5 + Be7HlwjWRlM9NrLfoPOpwOSx2a49959SQLdrQbBzen/AVt3z5d+/L04vNtsEX2JhdTF179R8NHtp + LgmDpuEZ4/DA/1SOXFYfNcrdI1KJeTBtdVii8CzcieUUr3Cay0pBWjWlOOOHYuA8c5nhx8Yu0dW+ + Gvi/9Zz5V0X0mGcBNUd/RlEl1sR0ygVMJa8Y8EWcgoSPUzCQCecxtKFLiJPPP3VSSODD4fyx56l4 + sHS+WiuPFjtPyL0Qj+oa8zoDUo2Z5hpEhj1JriGg/utC/NCGb0hbUYuRdjI1klbjSz3Wh/2674dQ + EtXzSd3nQIIosm4jURZA6MTpcYva0mb2+EJ0VXxzAcyss/MhOXo2d9NFBh6kj48jTSThlqVBidKX + XxLVdG/geJKlArVNnpO09TE9ZnuP7V+8xRvo7FV7Wz48cM4RF98rG86h+unR1bEnj5usrqaoVgvk + 5C3j8fgpDtt38E0k3bfAO1z5N1gHT20RVRuIzcJxB14lTA5E66ATE6pLveCH28PpcbMwrp5HlTJN + l4qkYxC2Lb8MN35n0OJUlET3r4nNSkzag1ckDl7zsH/q+o6FFlinh03wIT4P7BVcFVRdLB2rWfrL + luqrV3BdtmRGutVReg0qD2X2XBLHkUt7pZolQfGu8rNQONOwKQXLQFtmFCzJqTws7Nj0//Ay8Q4P + sFnP3ILd5+jMovj+DeyTNZm/+MSOeSpq2tm6iDSteuLLrJ/CGXdzCp4n8YUfrPe1t+O5NNBTDwQs + 3x6yTTMxaQEMtpKYN/M88FyRsPDBk56c7bkBnbooPYJ+H2GPRWtGKXhK4nY3IT5zngXWXq94KFdL + gfNQGdUlgp9WJF9PItrHz8Llq75HwF+Yal7ueg4IVJ4STG3JxHaSjAPdBqFAwfqcsMx6cdafkr8p + aBJPQnQv1eP9dU3R+alg7xDSM90ix0tF8eGY5BFQGtJ3PKbwUy8aCYdLaa97PEPhBAoshZU7kM86 + tPB1TAziiu6TLnwRdWh1zIWYLFwGStmrhz7nSCN6q5o1f+NujfgCV4yjoEwy/noiIqhCoycXxPrq + mlfGCPZ8gdNqPKgbOOEOys07wzk0FLqgLBZhOtyvc/iCY7YUT9+Bl/61YOU9Q3UYX3KArMzxSHFS + dZt9qlMjlm6WEVvEOCOquWxoHV8n7D6RXvNBGDRwzxfzpt5ie2GiUINeELjkwi69/S9f17PBEd12 + VzB3We2hjbudsHEW7Yy3npH5h/+zgJpzyPFxl6MfhB4u2Ldis+eNtcDb8nps9tcDIDfkQlAzuUb0 + iGY2+9KtEoLL+0qkJc3B8dvfE+A+rzG+EEsC7Ml3OlgLyQ/fJGNT10grJCj3LY+lI+NmnJfcAqTt + 9/IqnKzWa1NOwum0/AJ877T1L9/5yOVYlxjdJtb0cZUTVN+AR9QElOF2ru0UKkPoeScYnrKpTnQL + Jrf5gvP9DBBn2q2GNu5+wmfH71RS3s45zF6MQDSJBcOckDmC3hPN+FmAO+DmsldgVxOJvPC1AaMg + dRriPrOFNUfGGddekAUzeyxJYCOHstW9gxBh50WuXiDbxzqRY/j1Fkx8IwkBp1vXCs1FJJF7nYvq + HML3BtL60hN9M0VK9s5I9F3dD74o3ZSth2eZQm9sJOzfOznj/UsuQrNTMnyb2iNYI5Sa6PyUMEl9 + xVc33rBNyHeXl7c5L19dadi28A+vZcuZ9nvO0g3ueOudtOGc0S3sF+jx5Ydc70Jvd7poxsgyTgt5 + qucZTLnCOUitZIUEv6Ss183WWTQm/TafgusSkso4FqCa0ic2rJcZbsB6NKjKgiv5i4/5fTuwf3jh + iXZ6UikEDwuKd5nHyn2fY6f5IwP/8oN5eTV1h4WXBVu+6Yhr9Yy6MvAkQNbDwjzqeW3/9v8fPsEv + n5nciuqZRpkJgTyfsPJjCRjdwxDBz+ct4/PZkQFvbl8Ii7ky5sMtRNkUsvuU8MFyPMbXlXB8CJkP + Zk1ycWQDEG7RCPcZVk9157eXmi8o3OCv6jLyiPgp2yzdKBCW2AfZ96e93gqz++OXWLPQT537Tyeg + uI9mEq2MDtjqq5dwAuxnPnXKYVjZ6eGI3XpC+Hy8NsPyragDsdmte/6Qwkl8PCA8TDLGl9/5bFP3 + fG4gQsuA/fHoDtR/tApYHWvB2nMa7S1gL4q4bmLj0YwXhk01NQ9+U04ixgZMm+P0ooVzEnwIPhGk + LlZ08GCUNITY4hqE02Mp5lN6aiNilvg7jF/rU4myERfkwk++SldbUcB0b1xyVb9+eHR4Q4HKe7+1 + yyle2ZZe103c883MvOaPTT8CSUVnQ/u87edR3Z7qe0O8UM5YfiuaOnOFz0PhSwNyPjtvusTu1wIn + 8cOTa3qKsw2KYwNKcPj+ywdbu4UQVVyrz4gYCKyayTbQ0Ex/Ph3WfSaBbjWidTMpUS/zWG/1mbBQ + 4KXbPJ/Ujzo9StGCf/G3zQIHJnZ6eMDfOzCx56CMDHFXQanSDHyFkWVz00s3IKuUd+zrUBuW12dh + kJPyMlGYtwCmv/0eCrjEf/izhNnBglrc/4iZDzFY4KCyMIuVyJsPlWdvq3XLRcsAi3cqX0u4ZadR + Are6BTsfX+vtevqK0B/4huBfc1f/+DS4FOkBq9crABQNjfcvf0egyOytIn0OwvpgEpt6qs3/00+j + /CNOqDjqsbzhHCofTGfxYcTqdCeKCZte1GZuz1eEbUYfgvMWEax2b0ovgPOB/T3ciTPdmGyhNu+A + MJVqrOcHpR5bIIkweW/izoemevnsc2mNOMixMj4cuqqvKYLqmXjEFoJfuPibEMDlKyTE/4WQbicp + E6EhViy2Ht3JXtEg7FNyDZM4zVXI9viV4I7H3k//PYYlzI4mMLq0mzl2ugMS1vUMhl5rvZv87cCW + V2AfFooVj21vCv3TexAynE/u4ZW197lVs5BtRUTUbcThEhtDDDNVNGdaKlI4XPL9LueXfseBnPg2 + R3zOgLcQj54Q1H09dpQd0d2sB6K1NwWQ49GaxeCmTtgunwXdyqKDYI8Pcn9AjW7fIbHQO494/E8v + OTGsoPAmR7LrAbr1n04E59XvPCb6fsJpaB8+EG6DMS/vZRroFlYLvDI/k3gDPWbkWHAKPCfTSnRx + Wevp3T5NAM1i9JI/PD2SNIIcIK9ZWNKpXo/fHwOKwjxiHNIvWDxZiiHtnJrkkRGE68lfHdE9kZjI + zmqF0+Xjj3/v09v8Tw02c/sy4Jqmy3yyZtnmeCYd4alp3x5bLx9Ks/VbQGNpfGz+uKXefjYTwLS2 + e49dcwWMcLB5eLtXFvl7vySOhQ6iRxViS2jqugGpFcF7IopYkXjXpr8cJzCsHBsbb2xn2zUtUjGG + hUjON/6qkvTRW//ysS4u13qzi9VAjzTsibTnv6XLvhL8+SUmL4ZthvHPDwB8XGLnDEZ1VA/EQ7Gh + xX/7Qz0eJtkEIRMA7Ny+F3VbZDgDfEgaHPrhr96Kcd/f8bv20O3mAX7u0gTW4arg9IXV+qi83hXy + cm/1Bm9Ts6MhdiN0p/6DL/7yGLamKwKw6+F5wVI/bL0bekguKt07/eo4W0XRTMDyFROsNcFF5T5y + lP7j6/qR6BlZRCnfO64yEsaCEa7szS4hUJ88Pr9fkToeD7YmXhyfYi/6frLlkFMWCbVwIUbciDUd + 54mH9ftwILt+CCfwFkfwjsOMWNV4sLejVwtwub8vOLi3mG6N1CiwKKzjvBz0KSSSV0pIhpOCtUC7 + qNOtkHrE6ExIVLDcsg2fFh9dzaDZ7wGXQ6pKiQKNMVyxFp1V+6hJuIPkpSTzYr7f9fI2XgY8c5cV + 40Gf9nxcx1CUlbfHpemnXgUcBUgk+OmhZerqRROGVFzu9WVGj+OVLvp6d0At2q2HSmal2+xrI3Rv + OUMsCseaHrifgG6hO2I3iJSaKu0nhuUHBiR+OddsyazTAozYz/HzU0b0aBXmCN95zGMJMzndXLK1 + UC67gDy3fh62THFY6JwkZuZwqNfdmxcLMPPPCnv44IW7H+NDhRY8kVmPD+fBE0wQNUM5cxcrUbsC + /kZ45dmFKMtLGrjmeonAnYtE/Bd/vf5wZzE+H8N52dePP3yS5d9+KqB2zY4fH1nw0B5YYguzUE/Z + CnoRB/CDpcTSBhqxHwcGdbBg/Y8vr2++hUZ1d7F3r571ct6gCS3nYGOsnG170UUzglFLR3yRPuHw + hw9Q+bgUmy3bZH/+GbgHx9e8JSa1u2dGffSi545cIn4KN9GEPZD7hifZjnc0fVQmCicwerTIuJo6 + MVuhy/ZLvOG4GOqxYH8R9OxjRTxysu2OvIME3o1txtoQ3uz1Wdc9gj0843P5lgFbPBNPfEuBga95 + KavdMwO+uEqyuOvDntKe2yS0PZ37n/+WLX5w4eH+fNgAkphR8fJ20AGlBfEqsobkflZHiC62hv/i + nXweTwFyWRLveuGq7vgfgaPCV+RsubO6/PHL+nbySJzYn2xrrd8o2kLU4jg1h2xb3p4Hb/f91gUN + lnR9Tb8Y+ouBiDlsfE2RujLIOWiPXf+86Eak+/LnR/zT22uSXFP0KOcb9pYjGrbDJ9mgvinaPNzu + ZcZ2TWIBYxtz/Gpri45AXDaU59v5Tx/R5VG6DfzzQ+UHaGxy0QoNZPf1itXhQ8KtoOwCj8fiQjCe + WHWM51sL5z5d/+mZzeWZBJ4iN5gBaZjh3/c75fHuzbsfQh77jLFgcqP999oZr3Vbj/jZEYm6uG3W + 9U8Voo/tuvjykWm4ShOKgU/IhC/3WxyyVnRw4BfF2R7f9X5r3+hA6XCixCLpr56f6m+B0+cB/vyz + erljzYCvlDFmJHU6PR64t4juyA6wqjuXeqylxUHo89Hm32jScLEmRwQpej2JZCKfrvNitGD377B9 + CG8hGVvdQJ/n/YElsbbC+X07smDP70SbhM3eXg1mYd1Y13nb/aY1teQEnQF2PLGYpGFbNzzDHT+x + iZpvOBZNroBIepjEbrVLxtcvVMLndwtnpud0e0P9oQfOCF389/mgYthCXw1nYv75L8MNMH/8nji3 + 78/eSiTmkJ2ZeOa0jrPHwb0rYDSqlsiq/bZnmTEKUB3KH/EXJIdEu15L2F1bFpsXQOnSIzGFfBTE + WDm0ZbjlFQ3gAJ3tn37+dWDSoOFjGXsn9WOvvzxrQKdXKtGU4y08Rh+zA/qJz4m88/UlGEbjH7+1 + DIG3qbhmOUy/uUl06irhZoZx/udvzvT7yobFamUNrYUPZx7qlcr++QcS6wQknNtsILv/dkKfr4Yl + q9j9cs1lYP/FkDi6EGSz5IIc/On1VxBc7Qn0WQ7AeYmIXKM8W/HJHoF0ABRf6FiDVSGp/5e/vE9d + DPVPMJMC/L9+ftsk+W4WnF1mxSZXhMO0+wHwHEMWOwNngvE8LPEfPs90+XE1tW/3Br6jspiD3GtB + HzlGAh99fyI4ug32KrenUhyB5Xqv90sDmx7IIpSg0mNv4teQKq9fKU7vcsPuR9OHTfwNGqgkpvDg + zq835/tg4V5fmFEQVfW8+2vgEyact30Ch7LK9yeADudfYl5ACNhd38A/v+JhzbK64XfVQOiVZ5Kz + eREujkEcsdK4L1Fvd1zzWZpW8K++cnZ8U13xSZ3hjsdYZcklXEfcleCxsW98kS5ayH5ONQM6RqLE + 2PczF6HUgpG/3Ymc8Hm9XPuzBYYHuXvr8C3BOJ4XC4El1D349kd7MXM7gdbNov/8zF2PCBAN3Yvo + +/sg3QAjIFya25//Ys9W82LA19uwN+/+Nl3WVwzSV1CSS3Y8hWs3mhUawgGSyyNZwvHy7CIY5/qA + XblN1PkMHtqfP4OVYsKAnEzNh3qdbTNbXLJw42/fGXIX3yK3y5jZdHQPCVS39EqsejWGX3O9xHDn + 4/Nv+ln2dntiAex6h9h+IND59LZiaLDPB7YEpayXsCkDkA63K/bk6EmXVnEW2F+9L3GDqBrWg1OU + cPcHcfJ29xk9MuzhjsdEA8pAlzcv5qDu5HSGsZqEhJt0BfpHcMM22ophMeuzgwad98iFXl7hasJL + Dg3Mrdgctngg27DkkM1Zi1xKcBiWWRoYMZ+FkFyafYp6faAt3P2VPX+91NUXyx6JT/36tz50UXDu + /ctXVkNO9sZylwYaifyYj6dlAquA8wDKrNDj7BEzdN75BqTX/RZdP0joBmm5Qf8xJvgObz3YJo9s + EK92RVTLAjvebCm0jr2H1STJwFJLgrdjt0hk2Txn5K/eYR07D/uz+A2pcF8dOFyFA7GMvKXrWWxK + VC+ugt2SuYKtG/ACbteckCzNjIx2AxuBU3wriH7dZrDY3KeHY0PqHV+UfT+u5Wn3M+dDFh/t/m2E + PuCeZTWLB9UZlpeuVODRdyey73c6C+fXDNxL4u759VlTxXv1oOeKw+5HHELqYmEWrbWlxFjTNZtf + T0eC6Eh8bK1PdVi/wVMUSzU/euIeH1vU5BrY/bGZo791WOP2ncBgKO74cm5fA7V1KqG7scwzr6NP + SPN+6AH3Cl/Yutbtn7+cgDpjft60+4U7ngUwLlMLyzn0Q3L3cAXHZqo9xi31jG9TL4CfetPmYRsl + lfPFroOmmrAkSMxQpfOibMAMF3UGJvkNY741EjI/Iibqp+LqqZ9uxp/fRM4fVaPr/P2w8MQI0V9+ + zma7OGnw6hfOH3+s+eadFnCvt3gwvTj7iVIbQr68n72Bm8Z9Jsx7Q+1Su/NbtWV7mL6VAp1W2LD5 + 6Pt6OaDe/4e/O5+pl/G8mGjPr0St3pdwLXlFQ4soNRO3+5Hbly4CSK9ygVXT5cD2/l5GKFzaG7Gu + tUHHO3Y0eLXkN46KCwh3f8NB/d1XSPbMt/qfvo3z8zDT3c+f6ViyyBkZF58f6ZuuqVz2EIzKiNUi + u9XL7reCilxSYjCNbW/3QxjAfBbD+aR0U8i++a1Akt4bRNHFUGW5GxCgFL7YmROuZr3KfKz95UN8 + rQ69OvyapYJqGejE+YYf2o0ehUj5VVeM40QDNDG7Hs5FLHnsy1PAOjJFC5/rLJCzgI8qqcte+1fv + /fOvqwBoLHhowQ3jW/jM/vxyGKyviRiJrYfHOF46qJ0sDZt+qw387h8CPAWJ99j932UiVQp3/81j + 9y7rNXk9HSByvekhEHzCkf2UPMrjcSRhsG316G+LD/f6H9aNYQbE4Q0JPsxL8Rfvw2L0YYrKrC/I + n9+4rspkwLPGdtj+07fzHWnwM40dUVpaDzULVwjM5/gl9jZK9kR8pP0vHQXgv3cUsGamzuxd6ey9 + xrwg23pB7DHgCejhRCvA5HKHpW/V1VS8nTxomhTNDZVv9eYqa4tuen4kV1f61F3Jfyt4fR5FYn5M + tt5keGkggzLeWxOzD+m2hCaSDxfOE+D7AhZauppo+bmGJcbkhm54/nwg3V4XrEX+WT3uHj3cLPuL + NfcEM2rUegOLtGSJJ1wg2D71yYTNIZS807OQM/7JhAYK8/XpCepHGxZx7EuwYbUimMSoHk8LmaGi + KoW3BgcmW9iKKyEfFAOWbs+3uhwHj4dCC32vfuw9OKe2LJCayyq+5PpeQfltBprmBeAkyt1hfV/U + Gc6SbXmHdeoyvsxhA/hTCrBmk/ewKkBI4cylkgeMvgnXzJE2RN8FJWfkiSqtI8LDo39z8MVrr+Hq + cUwAD/aYk/wQkXo9WGaOiFTq5DEwh2x7PC8OnE5AmkGX8Or6foU8qmHZYG16htnXNIUAut41xUaN + asDqU5eiIVLd/R7sye7aeJzh0+lCr1JTRl3dWDKQfksbYjzaR7at51aADzFwPUa45IClpW6gfOFN + 7BJCsvW9gRKeo+iMo0OVgukjTRvgJswSvERnsBm07tBorD9yL4JLvfrFNUF3dQ6JyW+fgUfrQ0GF + bxw9VlhOYOWCVw5J1aQkfTFdvdh9HcEwuJVYb7h9BoEjbfAD8jPOy/pt8yt7tiDTx97MqMkpnPLP + JYbnMeznldNlwIuGXqHckDHRj8J54L+hLMLz9maJdldMdTm+ywWegCaSa0wuNWv+cAcfn6kg/u35 + tjeHviTQG+aIw/ZrZkdlqEu0zWNMgvkKhu0SuCa8eLM4M6ssqNtH4hl0leIbPqfnMz36dq7BZEoO + xBRWZpgOVPChsngCNvsxBuS8lQa8Hd8O9j0QDawYBwk8XGFLorW72ccuoQwUbFMjxWFu7SVtNRGp + 149BjKJRM+5Q+g0kvyO/r6deT0nJOdAXt8CLK6Kr3BeWJcxBoBO7caOQLsyVQdVpM4mUyXVInbjK + oQ+fI5bVd2zT98NskOIWGU64AwrpHj/ItP07ud8uT8o7Ycei9C1+vNEJ/Hr2yJVFegpbIt/ii7qp + N8VD8404BK+TGbLG4vP/R9qVdCnLc9sfxEAEJMmQTqRNELCbgSIKItIlkF//Lep5h3d2h7Wssgzm + nLP3Ph2Mov5Ffcvc+1JpDwUMlgchEfDjiqv3SYQoGT1Cvvydb9MTL+Bg8x81tLCpWDHjDljPR0Nu + x2tcDS5eUpQemjM5fb8Xk90k0VtrPvNJdcDFXMRnPKEz1wKqnSW9F237pSEvlj9kb8a2L73fjwKm + h/pM7+4p7Ld0Y51Bc5yO1HHdrzmMleFBZesiYozSx1wCW2KwHF4bUrS9WFFXpxYcPsuZOoHt+f+2 + jByNUaKOmb0BK5AywFrcmtRLHmYu4kXsED0veIJG2AKmfN12V/r+PElk4Mlc4aGBX4Y0Gl7tT8/K + 24sh7+X4FIvNq+fuyV5glXvnic133LO6rt5ocAUPI2mI8+UzPjG0H6Mx7Qr5BSRjOQjATZFFPOnG + Ob+8Lg3aztaDpFUV/tnrG+bUEsi1eW39mZ7ub5iHAyP7DET+ZOrvN7RE40xC7y7mS/KrUwQSa2VM + Oa2WMd7GyFReZxpmowVEOyKW0mlNR+xGbcB87KgK2oreib8dzGrRb+QKg4Hs6d4jP3O9vwpovkI2 + CeJcJcz7qgqMVNsnoX1c+vkxPyU4PMyFYP1W9nO+KToYKllA14r4RL656gRP6IDxxEONy5swieET + QotarmMkqz00yAl7hZrDOegHOzrYaw/DgVxZnvvzPIdvqLe7gR6C0DBZN11LZGxtPikXc+A/8iEG + tKtNMM2PdQvMnA3BOuMmIunnQMAWbkMDfkBxIM7424FRXH4YPqdfQbLPGHBuB+gOEw3F5OIYZTKB + U2ugtyn7E6hDMWd/96sKZEbM1u84rV5HFe0PB4H6+YCB9DRFA+Jy6qllimnPuil6gwc+jQSjg82l + 3960wa3JPzTs67BaJOAPf/GX+iD6gDnjmoOawMH0Lga9v25HWlABvy6x+l0E5PeiO2hrKibRH8NQ + cR/9RNReQESCstJ9WXUPHlSqmZKw2Bf5UCBlgpGXX/C2D8peuujXAPZUvk6S3IRAjMNIgK50iYkn + L2m+2lMKHvqbkKz4tCaDOYjg4ae4JLy+oL98N50Hf81TmTb0/Kjm7M40cPgYmFxOsDF/ZnsdYESO + Ma42v4Uz2vYa/NXWhTrKuTXHv+/H1NQN2X80GUyXkRUI311AYr59cDkLKgfJ5GcRR9PypAOnUkMh + gpgmijwDGuGgBJV3J+TWZA9fPotyjHa3aaCZlh0Bh9OOIavFHjUUwQWiGIwZVHzPos/H8WxOke8p + gGrrFHI9DXP5D39k+yym/iY/9OL0WRpUBVtGI12fOC+HMkZUce7TVt99Kvbb2h7EuD3Rx3TGgNvS + J4ZzXEXENRMPLHEDVPAZHtmfv+vbTYM0pKimQv3loJrLsfbvEHyeE96GepdQlr49tET5TPAsarlc + SvYZPmvyIpoesJ6/F90Dj6BLaDHrV3PZP/I3Kn13plbXL/6/+4N+KKH3OXP5llCnRbJ8vE+pKYrV + cukdTZ3t0SL2cS+aSy2ue/XSjhLSC7W/NNHx/t/3mycPk6e0yOC4eRgkqE5vn/0KQQO6Fhk0u30F + c9yzzoA7Gk/UrjxQLVqla0h/dRHRbhpMmDq8yz97n6Rbc0uGB24NsP1ER3I/zL3PDpCm4JC0Gklu + 4JUP0YFZAASiSR+zw/yW9cl9t/eiJ57xrfHn+ngydoftdCJr/K34Kb62cFrIE8thY1TyfMkaKNza + Az2LG9z3Rt+/kddoNrV+8bGXl8zUUK7uPHLIgcD79e+R+7zp9HR4fAErvm39d1+p91OmfgT34A6v + 90EhOjtcAD9GEIIV/0zd0FHe/8WPnzG5k/iL52ow9/sUNrdeJH57PfvL97ScoQcjQhJk8Gr4+ecz + jMGNTOguP/t5b7kLfIhRj4GDbSBd9AjD7Ww/qCG8A1NM7xcVKvvGmLbV/ZSzuDsPsH/6R6LPp3O1 + wJfwVkVm5tTEmpiz4bdhf/GFXtxc43I4qA0sTt1uxUetz57dTYPN7SdOsnBXQFeLbQaGrD1O8k7S + qm3vxQviERuIfQ2vfB5CH4MlPDt0bx7qnA7R2QCn4XagcXnZgkG+fD3AZt/4h/+G4lvWyJ5yd0rB + ZeezZq34eEzaa8K3cMhnM50NdMq1HXVyPPWLQ9IBwRJOWBTguxr0E2zg42AfiS7tFDCz6WGB9vGI + qX0NFTAnUJWg3oKBGKy1c+kO3i3ojvFM9oT7OX/nOwP+Xl9EHb59V3TXtAXMHW8if/FEYrndwHHz + NKhnBjEfcYAL4AfwjL8Bz5I5uysGsC5vk3g4vVTtit9AN1y31P1t7IrfePcGGdJ+1A+/32QKfgzC + 50vUSLZmhETW5wX8RYRiQfpkOVsO1lu9WZeIWhbS+q2xL0qwxIpP/E+T8u3qL+Fp3nhYDriaU6ed + 7rA9hC6xvhM16SOFdxh/XJseGo7BuGdvDZKYa9Rwqs7nYhAEqn31NRL2Nx/Mv+utgUmDHeL/Zqli + cVcMoFrsLwmXF6uW7y/W/vgOnpbsWjEkAgnqS3qht1JS+XQZlQIKd7PF8rP3/FmkjKk/NS3Jvv3o + 6x5gVYPn93lPQ67O/vyw5BqWzhLRFV/5Mw7wHcQ42JL1efW/w1Nd/vAfFsJ4kyzmycPwUTU1Nvj2 + AWazjSbgMh6teLqoxuUxSvCyZS3VkqPij1M8WICILib55eznMjBu77//h+mbaP4cumcNgV16pvYt + v1T0LtQRjD++TSx7lqtl1uYYPr+ZQY8Y18mw9xqM4JJCsv8JL8DtKmyg/2gfFPtO3bOn9sJgmzkB + 8c7bOx8U9ZVCY5J+ZH9NGeBNktjQUtQjwcby8pmi/lIYyZ+ZmoVtmgOXHhhcA22eFJYDf3q0hgDb + HfpQd4C/albQG0IYxV+iDSb2RTtzJqho04HiN4yS1T40uH9KL+qPZ83/1ceHBjf3rCJheLvkK35k + 8Pf6IKKfzj+/290+wTpVdJpk2Oq8v4QbFYiGrJO9R1xztY8ODljcE+ux8c35G7MJoU11ogTch3wc + qySF1LYOpAjjTT4ncBGhJRQJ7sWiBlyHMUNfrHZ4W3bpWgpzj//u2yRMa0W1dfkVkIobQHVo1JxL + x9H+x99Ppzftp7cy1jCvfzpd+STnp1wY4IqPiK/87KrdLpEhlDiNqf2CkHP/e5ygLfbJv3jPp5Og + QuMnTGSvlXtTHprGA4IDNRpsUtqz9P5UwLqlgyQzHU1OtqYKM7n4EvLR9Vx8PhoB9ObFnj7yfpMz + c/40gOfBDwvm9ZbzyXhieFZqTLDm62Ap72INwnutkaeAw4odvfKN/vicd/sW5hyw0xVuHlZH7940 + mZPg3Vr4FgObeACd/WkWiQNikykk3w5mL3n9fkBWtU5pfT6rinsTOUPoDTV9GDbjwwNoMVr9GV3P + m7Pg4rfgD88lxhiCmVmfGF6wE+EZtg//Jx+9AZjfLSHGr6+Sud1EAgo8SZ6UfY0q6vrlgIjoY6ym + JuCjrKpvaO6Z+udP/AU4CIJvNkj0IujvZH4IrgprY5mwKqg7n6uJwyAfGpnixxWbLDooNtq52ucf + H+Y/JxjUs9Jg4n7DT7LI39qAV2EOie6Z74qmtLhC52JXuL7mLR835bVGkr7UJPzLMAX2p4E7Gk00 + +4wDYH/x0hs3P7yQcuCLBMwBrludiPn3fU7vVgB33U3pmUZezv7iy6pvUH21Z/ZnP0wyEMF9zPn8 + ba5XELxmhx7vRQgYFYAD7enm4t3rZ5pzN2cOTENn7ZF3BMDup0cnR/XbJe7ugTkbPLcBt+b2mbbH + S8i3Xgff6tnoj8T4gKu//dN7YJ71FGuNkkzZc+7Q5WO/yJ//4cWINCho5EECHwacke1oQ+Vtn8iB + vROT00m+w1m45MT5OGnPV3yu6g/+JebF1fxtAlUR/OET3S52/tLYTwms/HUSL4+iWliOa/gzBpfe + x074e94Z9K/Lm7rfFnDuvpiI7EOxm6Th15tsE9UqvLjRiQY/y05kfDfTPz5GsXD6VDMO7PvfeTCK + 0a6fd1pSoPh2VrH8IkHPjmjd4ofPGnkGH+r/2s0KgC6CQzAPSz41za+G7WUXUX8n73O53acxVMLX + h0S5buZiRiCDde1B6jzrxeSKqjlIoMpKMz29YpXiBzAL+olY5AD8zh8FBx4Iv1Bt1RPGh7Vp1PX1 + f897WUpaqNstvJKUqNXKZ4cUhPTXErKAgznfqrGDj8l4refbV4tD7hMsHRZRXx+ynDvQdtDqj4m2 + v8T5JB9zFSoHVGGobby1Z1GxoS4rNxK+tm4v63EngHqzORDrefWrJkDXDp5yY7f2wEt8gVNZwz8+ + ogXpKZ9/CmFgxRvTol68fDzKR0HdvveM7pf0k/+scVeD5wNdiHvvd+ZyDEEKHU3KqBMdfc4isBeg + +U5CvNRvue+P6sDgys9JEckOkNv9PYbPOnzR8C5v+sHXeInmS+5TQ84OifhJYATM80MnTuEfK0lG + awVLo9kkRVPF5/M+CGDS2yYNk4/mj867CuDeRzuaH9YF7WPleeD8Tvf0cJ2+yeAqbw9leZeT8ALM + atWbIPo+65ka9bhL5rExGfTka0pPDNR8oQbWQKjOI8HibOYshycDAbHIiWEEz4Tjtd9wjf/0kIMC + UCTGLSLC15/YQThWcmHtA2hqyoZYZ/IEK18x4N6LnxhkyZQMRyRcga2SE7H214sv7pIXhHcQ7akz + /m586KxyghaTt9P3ONcJzdaKxqcIWko2X+zLj95qIL77AMMdC3O51BwNVhe0nUrBOVXzw9rUYO9v + dlSrwS+f3SMX/vRUenoeeZUXVhjARsAV8UG053N7ennojx+Hj2dj/vNHhlOXxK2MqmJJcyxhY9cB + KUjS5GxvshoNfXolqz7At7atBnCNr6v/B0k/X+IGXm7wTgPghkC+PrIMGrf4S/Z2t+n7YyRCkBU6 + nHbxnPiDFOMI+mI9UWt7LZNt28///XzphKhfbqotACCo16m60Gs+cvNaKkbhvKlpjCPoVLpNgXr5 + hCQ+kdls0Sv1oCdnKaaLU/BJvT+6v/OTI5LAf3rY+vwm9adM1bRJ5Amczp5ANUhPPmetLsEBS3uM + 2mXoZ0nxLODwWiJho/n5snZHq+roE2p9DpTz5PwQoaG220nJbywfm9uU/nc/v7jzF2Mhgnq4BQbx + 0OvaT9u374CrwEOy99cOyQFKEdi0mGLWpC5gJd2p8HbSL4TMY5uwn84iJHyKZFoM8QO+f/mNdpcU + uA2fXbX6+xqCtiMUd9bJl7SAqdDaNVdqWZ6S8E/0bsFDLwk9V6jiC8odFST2K53ARLVKLvlJhRky + ftMab8EnKm4ZhHDZYdmV5GRuT791C04trPi/rNhQ3gbgxdvPtNkqni8eCw2jjaJKlPwuNWf7sbz+ + e37xVV+SGSz3BlanOqW6Whi5BF9r73foXOl+d2zXGYnMhtvnhGlQT2++NDf5DRw7uxMLD1a/bXbM + UgeoPbHI9VPPmyS3wPtn6f/0A7ZdrgbKzvY61TvGZplUP+vvPIQIeKxGXhYReF5vJ3IY2REsUg1q + UGrmiOfnfjSHHftOED/P90lZvhX4pydc7INI8Yqv5man2DA7zGsF+XbpFx3qDfg7T0ytijNZZgrs + P3mONyTAybKRdgp8Tn0x8cKuzH77vp/VF/etf3hY+qhu9Kefk7Qpo2TRdjcPfoZnNqnyIiZzLxo1 + HI3oRw6fDCcswuMEo20QrQ36135QorlERR4AaljXNpluKoZg24kJwSej62f3CCBIRcYmwQzl/i+/ + BexQA9TcqhNYLpf2DGXoXqgXWwYXD/fZQ4Z3VMmqP/p81Rvgqm/jibfyH9/VkBcVFhasc9Wv+qgK + v9LL+PMHCV/jC0S/TUKdYzckf/YGxqqVSWwEz5yldNPAl5A4VHPforlUjuOBng86DZUo5UNfFwpY + 9UcafFLgM7tqGIwS0SB3s3GT7dN8izDYR1tqg5lWy8oXUB5OjDrOueAD06sOamCMaQpPVcIvoaxC + fk4nqhFbyhfRNep//nh/vIx85UcBPJD5QsPzu/rDwxnc9+1IQ1VOfZb+dEFNLmG+5v9+nKbQKWCw + FyBeup1hbjeeVkD7uj1Q/Jnmai409Qqd79JR7ft2+oXkqgMj+btW3PEsZ1KhnCFHkYD/9FvpU80e + 6NXNY5K+5bqFRVk/79fYEu8ptD2v5U6Db+n7Jb5nIM7kV7tAc0EpOe6Vks/z4TTAUTwLKz/L/WXY + iR16KpZLwm0y86lOiw5m8v1L3NW/boX6tMAlus2EgHuQyJswj4HelD5NvtuDyX5r3x0KHxoJNWXx + G0HU7+gmTj71sqzJl1xRMVjzR/QfH9eifID59uJMQtun1RieNQvNHBRED/O7KaeG5MGq2qtknwij + P/3Zw58/Ojz7zpyjebbRqr9PUv4t8+HzzYU/f0FCVRZNnt7sCB7vTkl07VkmjLzDK3zEwZneiMjM + UfnGIlqkn0rstvit+rXnwMv9gvAsJVq/ffvQgcr119E1fidTVUQR+qhMI8mq3y6tkbV/9r7mY17V + bLvvFv3lP4UVn7BReokwzX4C9R1xY87lTRUgcPs3cQv5xZkn+Bpc85nUuom/nAZanMLGzPtJJIfc + 3GZudEbWDdTTLMa3Sh7d9gr/4p0wi1oybziLoOWu+DrPTv605oeVFZ9Tyzvr5njeWwGSxoYSzWML + WIpLPkERuM8JehP2FyurbPgMj9GaHzr4K35vISi/HM+rvseCMWewTcwTVkC16Sd+24l/+JT6UGyT + BVkKA7eTecFgqGTAJ+OCwTOpMry7rTPP75t9Ab2DfvsP718PXgQVVVcwSj6l2a/5Zqig4EZvt53M + 31fLaaEylDHJ5f6e8PmS/ePLK/7Z8Gm972gPzyI1hofV81n3CmhvDhGewxz6cwanAHT5MFF9zXey + LmMSHGOBrXpgmnN899P/T0UB/L8rCj6NIhBPccaK64vdwMtaQ3RA88/kB9jbcDy1Gr3zN624TOwO + +ofgSfYmk/jifH8FekiM07v6PfRb7MkL3OI7pY/PW0mWUz2nMFx2b+Ie/HfFxdfrDZl814jTDjsw + q6bJkOfgeBLTrZ3LV1fP1P27HojxTfbV/KazCMnn3ZHDRez9OX+yBb1fWUHt6RmCJfhhETY4tzA+ + wrCXf8pRhYaNMG7LH/GXRoNn0CDcUNKCVzKcKktFYJf5JPiG5342um0NNnng0+BjjBXzLr4Bj8r5 + gRkRDyaranaGHMKSWvAU8CH6BjYM5Qng0n9fwTR3pgpr5XCf+L7yfdG70xqOUA9JMilOLk3Pmw0l + cWNihc9zxbTsI0FH/a497G+UsJLiBUTWOaDmZqtz+VkZDfqdjILmdkv65WLsGPrYQ0LTLN/1vD0G + NlShqhHLKceEwzdrEDgqe3pPHjyfNNcadswzv5h1v3cuteRqoLsatfT6te1kHorGgNn5ArGMVZjw + qKtrlB5fBfV/5baiIS3ucLnLGbH0/JRLuz4WUJhpMYmTXdqPu+AYIDcaAmLqxztgQYhqkO2gTD3h + Y4HxJ30K+BAsTPPtFveyhx4MetWnpudZvfpSu3gxEhYuE/cMPmC59wOESadfqD7cpmTxyVuD169v + TfJ8ZybfeemCOiQ5xLcedi/yAWiguX164jjHPuEInq5wDzOXkm0T9DJ1EgPZc7OjfudIPpsl7Q4J + NipavCyWj2U+1yjCtx0tfofc/AVWW0JZczt6BSLM51v9bsE6iJLs23Wqa3V4t+gRsI6eZrb2JEZR + BqVrX1GTSrlPy9GbUH26UuLaqVDN3I4idEEeoEHQ/fiYTvYVLXYRUv/y+fnLSSwMuJvZhkSnoQUy + bB8eTHC7p9GLJv12fX/k+Hyg+PFrfDa6QwazGwumTbojvAurLlJNkSEa4+SVLIfH6wzfXC2nSgNe + JfKBr3tfM0INo2kBHy97A/VqmtDzI3ibE5bfJRRzZlDTez348rONGj1VREnuR5EpfpvThJL3COnh + qL8q0fkgDaZ9Coi2nT/+ILdcRLEotjRUZ83c3o4PG0ZAiqlFwCWRNLN00OxCgxoGzP3tPagwut6K + HFdpHwJRLHQNvV31QkKov3IZLo8YhocyIuHqL1hbzg6sKQ7IrThHPhe/tgX9eueQ2+Wo+OugSAlV + edZM14f0SdjHOZ2RW2AXb1UjBOLrfG/h1L6uZB+NUb+1GnNCnnRocO/uv75MzPMCL8Xltu7Z3vAx + sMo3kr5xRszy2iT8eFQLsN6HdQ9XW01SWTpIrR8D3aPDHmwljs7qQNILMSFPuTjEO1EdW8cgzu7H + c55QVYJq/Rxo6Ne6L54qS/nzdxSfLjKfFeNoIz8/dNQyGyFfflUUobDMS6zg6V0xZ+c1kLPtMHH1 + /Mh5e7RstPonkjlg6pellAo4ykTE/NN+c5nRUkLNaSrx9p65ptRo4hltIN/gja9jnxu2rUKF+BI5 + 3bOfv9zvTgy/X0yx8H19+zm6JQVyKUe4L6O0l3h+VBD+GU+KDbED0zWYVWQfs7VCwvv202bOFfjc + zxpxz8k+n5PajtX3/Xojz2I+5nNRVncIL7ZIneRs+qOvWQLgt8tnYhu98am9V2pouM+IhOfsVE30 + d8Mo3ek10eP5lzP7452hMT1Tag1awiXlFUsQFldCL5rVmsvAaQen2PGpl7Zfc+6/vEDY0nL6hH3d + TzKzRFB+FHuNN0bPkllSoJdNKSW97SXyvGsh3KmPipB3AHp22m8wFKppT8N7LCdT9/xe1XTr3Mjx + HCS9vBn7DLLcK6lHH4a5GJf2qkIyX8lRLhqTX6yPiB7PaCDXpQYJ14fO+PNnxONY6CkalAn6cu4R + 52s3yVSBxkDJg8rUWf0N/3v/BgUNTbb2PWccPoe/n0myziD43Y5rDesLm3SNn/2s55GCVv9OnORc + +fPnol7heNFdmrfJJmep29qwtHhIDr/bPpeMb2hBKCfPSdWlc8XE1FFQcj9PxGnP356F92MM0evY + EicZTgkNlF4Ff/c3WOO5ZCabEk7AzNb4cOq3400v0FhKX6x4tuGLp6QM4C8u7+SZC99q9prWQk57 + CEhQZqPPemee0Ks53ulh98z45KS5CvTn40AefGh9TvOyRqs/mrZsCbgkfBOGfiXZ09B5p+Zq/zbk + insgluBVPaefckBqZVekiOMnlxQrdGAe3HfkqbtDP2NPZuj1VDB9/ES7X17fkUEjiSdCxuoFpL8e + 58W7XGnSNZnPxOpTIxNa13/xWpRSXkO+v2c067avSvR221h15f2NBrvsmMsuP7WQZKlJc6Tscp5L + TYHi68uhcepX5pz6qYdKcaNMwNCIueycckLO6etNP5+bvjg2qgXZ0n5Jbob7XH58xbtq32uRnNbz + T7fmPKDV/0w7Jze5lF+GAca96U3A4gpnkStk8ClbNcFoMnIR9wgCMFo92aOH4s8gNBWEX9SiR2t3 + 4PPy9DKklBGjz0NTgflaHixUGolPg+HwqRj3HAZXLk0v52/K6WWr2zCodieCx5ubLzu2KeGQhBVe + 9re4+vOXAHd5Oy2KDvikiG2GXOEq4spmr3z2tQACvzxQankny1ye0mWBy0t+UpOXDt/aqg/hpgwi + crx9H2vLgln+i9chvPCKnR9lilJ20Qhu5xaw73mnwb/Pa6SvU75cPrUGv+ZXnGbreMi5h04MCkP2 + I4H7mTmzD2Kr1tNRwPPl5nIxt/NaJTxMqO1tDsmW6YYGX3J2oiS+K/ngddcG/b5lSePZP+Ry8lEH + WDWfcIp1wUmWu7CUyK0wpsF9YwD5lrglXO13qshcAC5tXgp8hnZOsLZJV/+qRTDTT8oEwvHbD2/0 + vsPnZ9NT4zwUCdWHToNfI+hJzo2at+XzbaPCet6Jpykm2L7pLKEiX2Tiwmbbj+fAlv7hKQ0FNGfr + 78NsjhN6eL6qajloSQcV1Q7JwYVuzxtudqANMKfO8RXkzA0NRV390/Tp333P3NBT1VsHO3pxU9eU + jh/SAfquXphjPviDa3qL+ucfbFW0wayd0RnQl3elwaQSc3tS8Bt6S5BjOb37fBkPXwFUYiJNpXuh + nKvfdwGL36Ok1zFVc4aeVwvsXH8zIb9+mQwFXgkNw91iaVYVf9QO1xZC54lWPHrPZxcLAri19xYv + qNTyEYS+AmWF/ajXbV/94HVRA0iitcRckrifJsPM4Hr/SGikmi8tZ+kM4/D8Iuv97idRlCYYWemq + 2LomEAUDWUBw5onqj6Nf8eyhd8iXNJ0cF2lfzZ02toC+nCs95Uubt4cgWhWS42vK6glW76ZqGtBr + Z5/gRf9xPnxkDc6uYND9q+vMsQ6XGC72PaSB4R0qtrSXAt61uCRmZI75zHTPUB99E1DD7Uswi8b3 + Ci9icVnxxQcseax5kJT0OKGUBJX4E+crytapvvp6n+crurM/PkOs3ds02eEoLkD1mzs1pDmrRkeV + OmhuNhUl1zTzF1b6DKqFVRCrcWKTNRsighWfkvB7oT5b8TQ8fbf2JK94jz++8A7bIS+oeS7rir1R + V8Du+P7Rw/krcj699h4MljKg+Kbv+3/4z919c7yTrnovD5+NBtb7g3dASAFTa12AYyl+qStdX9X6 + vAx4/8Q1PdjysZ9t1RegIAWHaQFmC3j99DNIeZvRu3MFPYseJoTdsfzR1E/OnNc1FeCKv6Zdydee + OgAH6O92AcmeBcjnc4Al6AvDB4tZvqt+xueoIZZs9zR6HBKfcXgZ/vwHVof8ZP57v5PnPGjc7nbm + gJ5XG33vhkPCza2slju+xDA44+EffuAuf3QALDYjnpqc+xmaQqEKyyzjW/8DYAlub0f16HCd4JtU + 4I8P/L1ODVSWyco/GrjdsIQ6Sq/1bNgMGHiaKuPN8kqracy2JdTPrCKanI79EgenNxRGvkyKd0+T + Wc59DLe4oJOaYTXh3VFiao0PCV6Cwuvn53FXwPOiqwT/DsBfxgyVAA62gsGS1QlL9lYJO+k9TvLu + qXKuVFhR1/hB3aiY+pnKugR/PtHwpz68ehoLtfTPv/rDZ6wmMbbuSNnG4pRFwi1ngXMzdvufeiB/ + fGWRmmD6h39tU6XJSPYJhqj9mjQsVZn3B8Im1Ci3kOZBOef01Hyu8IX5iTo3bPFFaqzpH34706H2 + eeyMBiqfiFMnSs/rDE07gEViJf/4J30X0QB6V6OkyEViMreMChSUmkctamhgm+h37e/+kCz2SV85 + lSLA/BxfaLiN837VFyQwvwoXN5/Pxp/7vY5BebdbajO4z8WPoTBY3xKVHoLby2cgE0s4B3eLpCw2 + TPHTkwaWP37EPTcswI74CMHFKzDVn/Y7WT63pgBxr3skiJ9lxaiqnuHjZ3tE35NstT+uIdZcDpir + Z5TM9eMsIOn90LFQkVuy3M6qASOxlCfl8Ot6tst0Efbbt0pCZqj9dHise6/BySde5bg+t+RURMp7 + Wafk1x8+rP4eNrdvT0NAY8BnNxwg4SShoZGWJhMLVwOH7TrAIS/kfHZUoQOvd3bEUvBRwRf4pABV + evCJRybFZDnfQ8CW7ku8Z5En84WnHfJQrk/NkFr8jw9AoRr2xGU7ZHJB2xkw3Xo3glmQmDPqrQhG + 3XijIbW+FZu0M0TytPGxWrFftbi6fYaNWBr0kpNTwjQZlPBPn7oEt5e5rPgcuv5wIGneEr7YUl7A + +jWQFa/pvQz3nQL/8N9xuE35MDaLDRGfO1IUX4Uvn1RX0B+es64Rq3gSfxyYFxBMv8Z0+iVTCwjX + eIWXdrfzeXEz7hCLxP7HFyYwhC0IP3iHwWZkJv/Dg4f+o09IgW4uRmtwXfExNZ7N6A9kK9nQ2eE9 + dTnwfLa0zwKUfFU0C+jyJc12GK76GdFet1eyxLYC4dW5vMkff1xqMp3V1nwTgvMA93ynMgMteisS + 85ZM+fzZajacMokSXRcp58Q8M9Rb5Ey9onT6+Qw7C1R29qb7KwPJ/Nqer+hh2TbmT/aplvFABdj3 + 9L7i9dD8w/cgCg02gROL8+GppIG66jGEtEDPJdWSJbjeb+LP4bTuca7iP/shaX/l5vzYnWp4XkwV + T/c74fz2nvBu9T/TBGUhZ/ujYUO8uQ1k1dPAtpkvAdrumU91NGQm247jAJ+yXf/TnzosdyUs1PqG + 51qozfk6KtZu5cdEv0mvhH0U1kClf5ypu+M+EB/6a4JrPCSe7dRgUS1ZVOdQDjHfbF+82My5CiDh + V2rblwaMl6jL4M/cfYhb4xlQnaQpGq3qQEz1jPKl2IwY9rEU4gpUvB8LtHN2N7qY1ChuZyDGD6mD + x4+Yk4IF3GePOhdUcpF0jLLB5PP5dy8hdbsjtevvkPO3b3oQLdkLs/745vNmY5X/7MV6lceernwS + dt+dRFxZe5uLC14D2puzR/Xrz/cZm2sVnqj3ooGEdnwo/JeIbsOJk2zFj7K+4AYKgtpT5yJU1cin + r4V2xzqd5OfLrGQETxn8kKtMsnq6V//0uWb6UqJNVlCN30QroSZvdAztpfWZb6I7ZM3psPJrq2eV + eDJ2zfSh0+L2Jefa+6WiFU+SZOxjk3dHgcF2zqsJqt9DJSXnUwfPMgxoSo2Sj8yeGuCgQ0TIJtiA + 8R3XHvrjy5r5XGdArXrqH796vrADxDX+o2kjcWp8fxc+j+3kwL2R6dOGuyd/bjeqCkUAR+IKeZCM + LpYEYHab5wTvmzfg2vunQF1fnsQ8RlXP2SZ8g5VPk/3yNatpiFAGz2/BoYFR3sBsNf4EHn0d0KKD + M2Dv8s5AKwWQkOo28yWM7hO8LZFNY6Hg/iJYrzd8DJsT9WKfVtyN+gyUL2skwVl5VJOQ2vhPL5/Q + nx5+ic8FjG19bWX/fiv263bR7u5sLHLgxwYsz2QsAZAUlxb4ZSbiH34KXnlCDzvXqWa5owowutol + gXZiYNWnU2juUU7xZ2B8gDXs4LB5GbgtArnn4hdb8ImfNeZC21eytP0tu/33uqfXt3j1R2mKFhh0 + B5lo3c/IpZ/t1aC+T94fXwczvASGuo+sjsSZMFRjKG0K9ahKz2kXmlYu2gfYgUqebBJ0Me4ZVZcU + vuHHmgTt9+L8tgUMFImdUGOHY79b8TOs5MEmdwndVv70U0AmsIiYoOIV3T3eKdRiiFZ8rHGphd4V + /vHN7YK2fHG8nME//czNqyaff8OYwsbfGcSlya+iq/6mBgWICIaykMxH7ZXu1MqqyOH8TQGbkrqE + VrppqfGHNwX7UcM//0DvMOsXZ7QNGD/Filrj1qtE48ThP/zFj4rliyQxRSiKfUxtVWz40kXeOgPK + PuMLrjt/POAggt+DZpHDam/Syo/gqq9S4uuTOdCrZsEV/xD/6Mx/eH7556+s6uQkUrDOdFq/H/KH + D7fpOmXHbq4x9U7RoeeTkImAXlKV2P73wP/yB//49MEgR5+rlhLAm7RWlG9ejPMCiAP8y2/sL94X + zM3GCcDKX4m37c8my+2kgdbRehC3ualgOT4rG6564rTzeeWzg/g10MeeEhq8vmay9BBZMNxoZ3L6 + jSmYH3yn/cVPLHZs6aedUw6QDNIeb8fLu+Kn5ClBm9oSdUen7Kmv767gnF6Of/mPnG6vqY0AyQxi + 2eYJcPXbFaD/SkfqWNLLXPX7AsVy2hFL31fmdMeXCCaTxFa+f+TU9+c3+NOz778O+8u4VqAd8Tn9 + x4/Ecp3tF0PHpCe3VarlZYESfukuIVqWugnXrq8FXpnwJsalMpIhcqUrWj//JJdPqadzk2dA19mT + Gqlf+fz3sc5gNy8biuP4Ceb8c0rByucnFV1xP/pJVu62HSPE3Qvr6CeSnNF3N82Yrfme/h19J7jv + kwgLi+4CSXODAW6VQiFehteZPd+u+IcHLmQuk2lP9h20sepj8YtaPn9dLUN/etF1vR/c9N4FWvMD + VPvdA3Mc28aDK5+YvjnZ5gz9roFquXytMIC/fH7f6wgGj/JAUt7pidwdhQXgZ6gT3ZWziuXVK0Lv + vS1QY2+WCb0Dw4CH7fVJL9NGqejKd8HxI+UTqN9vwOv6C+He5B4G5vbDu+BnS3Dlx/iYXu58sH4w + UA83e4N7z9wBftnqFvzT/6wx7Hym1q4AfcnQSZDuU3+8/5R1ay+4rnjXq+SqjUR4n2uLaLZ6TWay + hDXYRsJCtGUYzXGbXUuwk5or0eqgN2c9vypKlrsneog81P/Tj5QyZuSQ7UyfCTxK0V/8c499zVsQ + wewf3/p73n/+DibwdfuHv6SSgUAV0/uXeJ9P2TPnszUAu79+BNN6yefKVD2weR7OePTGh7lgRCxV + v/oD3cukNnkJ6XVX2dc3DZmR9V1TGOvW5/P473yUlHWBxF3xPwAAAP//pJ3LtrIwEoUfiIHcJMmQ + u9wkKBdxBogoiiiQAHn6Xpy/hz3r8VlHJSRVe3+VpAYirJ92mN/vVoXXW6SRveD75R8fQHvX3WEz + j6JWek6oAObn9sPmlk83/6CDlj+JGItMZ1L8XgnUcnek3gOcwYSfvQLZhaswHkfE1k2/QmZLLbY8 + gTB2uKc52vIPPXyv73K8l2EDN34ZCp8IlSQ9tTM8WmqID437KlfPD2tl4y+h4N9wyVoJNXCf3u9Y + 1zuHLbGWqOhSwYga4KhtPLoxEQKWRW+zXrTz7ufJcDyJRYi+fNcuf3747/nsWD/7ZKsfgb94554G + EyxPuhdh344KWXfDNxYLR9WRrbMLGe+ez+b9vcv//ETYzJIYk7t4X0ET5ya+bvmJ0aPUQS6yvM0P + hOUcdqcc/dUvykJX2xXd4h8wdDsK30fFZmRkn37fZ/qJBjcktFMWhDw05a7F1nTR2xkUsAHG95Xh + XBTdlg2sUeEkiAM1biBkqyk0K8DkGP7jsevHg7Ui3iqItYJPfEH6UQV+vD3+p9dJzIYEymiXY0N8 + N2D588t/vNR6Sk0563IXwOJcLTi0cWqsqtE7//yQgReO0WIHFBgE15DaYbG0Y0cHD2oBsrADbQ8I + 8ttPYPfUVepgk2fEiHdPoFudRd1YPAL2jOj4/+woQP97R8Ew9gU92POzXQ4BN0KPnQwC/eM3Hq9p + akN2ZCM1Zv3UfrsfqmFYc2W4a4fOmCtv/0PtzY6oN2eBv+4PVxk42CFUb3ekZWmuOlD+xaeQJb3G + BJleC7gLggpr7nXyCS2vOQwEhztKlev7vDHAHmjfQid1e1L90eSLBpqgZViFMS2XGKhPpCrIo447 + HQZh+MYv1ItFT6335+nTpjGekOwEJeSFRY+XYro9YeVyJbbeH93gXd1e0QWqX6zpiTj8/X7odjwJ + Jdla48WMHhz0moNIuPXwHdaewg4IghXSaFZNxpr+WwDizipB5HIq15f9DeHPFQay/xwMIOr3nodf + 3PD49jkXQLqdmY6MdHemx9AjZd87pxcsk0agzjSgdkyMK4QnmrvhehlfxnK4rTVUjrZKb8Vujn/t + dGjQZ7c/03OuyOXKH/URph16kG8anhnvl32B9Kgdqf24z+1EatlTQNGZ2L3QJ5AOi1yjQM58qmX3 + Hxsfliqi7yoibFeqysRnWr5gOQ0axp729FcQBA0E+2+Ey8vFHQS9tAo4HhRrG39crr98TOBDN11s + P0IeLGYQ6+g2ppQaYpK0i7TVHr9aH9OYtI+BF2/vCqr5uND7ug4l/xYVG/Wmg/HZTIxS2nF6BJO4 + qWnKrjBe1mTOEf/ofarnSh6LUmaekSWeLZzIyaPk+wv9wcIEMXlR5c5WPu1fcM1+BlFCvvb5q7bt + eXxGFa3zwAXkyF9VaG8H+KtgvG48pJThuu2BzKcBDZOHHRM53+RHk1sX+vSwyBX80oHi8H3+DGxf + +jmc4/FKy4s9ASZ90QyFFc1U/d7ejNzKoEBn92Xh2tTSVvzCR47eNfTp+X67GMvxcx+hevjqhC8N + 7M8S2p2BWb8sfG1eb5939XCF1Y3B7b5z2Wc1C0Qo7JyQmubRAsuayAV4jq1CxLi7x6u1OBHY56NL + z0bE+wupt1uvPu0aKvJXHMhXnQt0M09nbJCzBeY1sHXk8dlKLfMzACJyeQSO/d3GAauAwawEy3DQ + qzuuK6LFfMNbOkrONaVHVjaxlD/cEcLZ6XCCJwimL6xkiMo8IkpUvNgw25wCn6uSUmunevFyM3wI + R+8rUbvTHJ9n412EnrbdQqY/38OiDMSBvavdseqDC+CXgfcQ9QyROnwIW3r4nl/w4q4RjmKmDRL/ + PZtAjg4Z9ttrXi6PfM1QvM+eZA7rjLGlcjuoWu0La29THpb8aIwIHuWAugVXl8uXSTp6ipMYSgKj + vqAZpwp0OY5DIX+Y8dLRoIASUYbwhJq+XfV7IyI/uU241k8bwV+cGa7Xq0CPYen5gs9RqOjOPcT6 + +XKNRav/FVC1Hi+sicgdBP9wVGD1Dm2ajiIa2G8eZxAUSKce6dRYkr7CipKx/4Ucvhza9ePHPCQn + vqZH6pkt/5FuK/Qwp2C9Oy1snPR+RfgcvfDf76Np7my3shc9DZo088XDdNNhObQtdfZnv5Wa17lG + s9YB7L+LHVuK5VXD87Hs8Gke7GE25UeNnKFycDnexZINWtMhf7/mW9eG0yDKhgchR4SYnsbiBxgc + nyKS46jFDreUJQOObsJtPmLzedXiZRSdAjrYIxhfnUM5KxfYQ9CSEzXb7DrQNF4CaHLT35mxF9je + X4I4azpQD5TPeFxm34au2aUY3wuvFHmHrf/WfxKGR4MnRUXg90x0+vf9FAco/LeehMsuaHluWTi0 + +9QHWr+1AdAidHJ4eHEM+294iZldTTNogv4ZRlDo2Nr0lQztqNLo0ZcHf/6LJ2vaJdQrFcAWyf4S + EEFTw5XqxL7wMxURLju8J4vrLPF86bMCtJX6wIV4if/ml4qOuzuPze9ebtf+k417k6MqDet6BGwI + PiN892aONTxExvjt2wJZuQJpECDBn32WZOCWphq9/Ig8jL2p95BxiY6vhvCL52zX9fDcrhpVKzso + lz6eAui+1124ZCE2FtNADtxxlUBzPqyGhayphy7RvCPwzrhy5R02Q3AoJBx6esVW89L1aHKPP+xL + 8QyYLn3PsLh6GPsnq2t/vmHUcOdqmBppwv2ttwQm8bMmyza/xfneZMiyKMXmFg9YXCc9PAO+xoX+ + iNvVdvgIPXEXhDM9nkqWyScOtQj72LLcthy467eBg9GE+L6TXYOGfZKj88Lqf+PLdGrkqP6YGq0e + jlvS2xno0Cr1IoyJ9vNX8djl8LX+VpyqVhJLz69loh6cZGzYNBpYIIUzXL5nhWLjeCh51Z4DtK8e + P3yx5+cgVbYdQIaBR6/BbxwWn/tA9LeeQ/k6ghX2hwLedJ+n/k3pW9bzuQ53qLQJrN9eKdwMA0Lx + kffUCSJ7EIUpeaJsqkXq09PTp1et7CDsbSfcwyaI15kdM8jO+hdbw2Vqe2wyHuU0WfAleiJ/TW1J + ge6LRhgX1m6Yx+/BROI9donyVfdsHbXKhDMPDCLkkdNO9wH8YJn9Ymwf37lPsgvbzlzdj9iDyrmc + GzmGcCi7gWZHkTFCL16NqB2m1Hw6VsuzRzQiqrwCGtbHk7HeDej86SNq7lXExqLLRYhOaYQNwW7a + 5fHYKqpPKaXYunvtL4xiCB9K/MDhkzotq8TtBlmunLB+v122TRN2Bn591BIk+IEvwOSmQOcUHYlQ + P/1WxGPNw1JLe2xyaT+snvJu/vIJzcibxHPJBTNsBkpwmN+sdnmHygsm3Opg7C/TsBpSNUPzlMo0 + CMZ9TNRfEMHvwId/42HMV/Q1lcSvVGxt4yVxt7mGeC3vBF4W2s72zTuDw8SZFDd9PSyHNOnQLggr + qt6FqBTKogrg+LUp1kpNj8VRS0z0YuODRml7LEVannIUPyKLmlK0+kwxmAMnPYShUKuJsQhPRwad + kRnYK5WSjdzUqlAL9P1xQY3TDldkvsDxVOX4T0/yVYEJeOJXgFP+NgzLnCEOfpk84qNmzgMbb0MN + UmuWCEobdRBFRcvAoaESPcRvs52tHGRg0z804BsvXqXMjEALrImWt+8IRmfrfOV3b5/6ubgfluls + JH+fF4Kyt2JB23k1PH+pSg0tasB6B1kIpUX18DGZjuVypEIHA+lcUTc++rHUjHOG+jrzsH/KnjGL + B62Cgs/bVO0Um/EieQTQy7WcbnqiFALcrvCkGxo+RtXSTqy/5RCKhzc1wOEAlj8i7sowwIHtKvH0 + AUsIP6u+EC7znyVbLkoPqaeJONz0yfJlOx2+rs0bG/6zBQwEJxUeilkKxQR45bLXxRpEH8nCzr79 + lIuN+g7KXHPEtxSbgD9Yqw6+PFdS/Tr5LUt0VAFyVo74DIMTm03+3ED6qFR6E6Z2WPd+I0LnqEVY + m6Febvoqh8yFfgjGeTWYDuRg/6cHD0hAbKBUl+GWfwkMxms8vXVrhefdd4ed3YsMTLXLEbLYzrGt + yNutnn7Dw5g6HS1Iag68c73rSu8dQoLC0jOknX6KgHpdG6zF0Afz8/vtwDaeVEXr3Viag/iCYSUi + enAWz58vyb4Aw0Rc+m+9TG/Iw/50QNg7JB2bNIU1wOe+PT4vn5c/54IRQCPk2pCR9tHOw9EMQCip + e3q+cYdYmI6wAF+mjDR8nw+tuOUHRVh3M1kOX60Us8rroNH4IQ7Fr+YLj5lEcE++DsZd+PaZ2Zx0 + GIt+Ggo/IfNn8TZVIBDDKVREWxpWvTwpyA6TrY92KA+U5XUGtSwUaH0brsMsWEsDn8ntRj3ayu08 + nTgRnsRc3vK7VK704lXw4s4RPoG75gsv0owglM2eBkVChv77SirENXCl6e6pscXeX3u46e+Qy4Mv + Y5Udhn//T+/Hxz5eh/fJQ6qg+xgrfGEMrbAoqC89RK0LidgaDMwDasMw9m/54q8f/Fz//BrWcMGX + DO9zByrc+RcK5sf/u4PIU66nj0+1+rEfiKe8nzC8KSNVP/6zXU6hJqNtfP/8GlueKLahp5tXbBeD + AJYXaQh0QntHteh4YGzByQrJVwH0L96xtMVnZUkNLnxpvw6shfvi4CR2DGuo6YclKc/5n78gff3K + Y5YNbwfUZ8H6F+9Xou1WwD9+Pj1gY/LnTzuv8GGBX7jfo2O8wuSZg5cVf7FF929juV7nBqkaMbZ4 + K/tMIgFRRhAcse0LY7lc+qcM43J3pccPv5ab3vfg97feKT4+tvXgtT9UtIlP4+JwGlb7dHYAlStC + 7V6n7SuahgaU01fDOBNNf86coEPZVIkhbQfbkKQvWhXz9bDwlp+HeeJOK0DnfIfzjFmxEKpLgYbn + u8AbfxhmqL5yaHdXFWeFy8WjZKchtHIZYpcVYclbOUgAL7Yl1uQpLdkKy1yRPScLlfizlOsYOgoc + np+Cmi46lcMBSq9/+sNp3ju2Hq6zjiQBFBhD1/LnEN5kAIqXSSO07owl9rIfwKprY5sd3mydHm8F + upJ8w9mdmn/+LkfaUjdkkG0zljplfP6Ln1qK4pLJ3qGHt3X0qCrc+WGe/WcCyVcGIRKqA+i3fA7G + gKU4lCTBJwM6mjCXSoyDaaTt8Gw+Ifxx+BnCs2b6THvWL7jXL5S6SXlvl74ybGRd4YAvWnkBQnLx + K/gewJ7IG59YF1PzUE5OOvZom7erTkQZhu+dhw/cJY3ne9Pr8EmGPFSiwmTr/m7xMH4ZEtk1fd2S + D/6t8PHE5hb/Ty3d9Dik9+xB9hDPLd2vuwR6hufgA+CzeJGfrw726JpRrTUWf6I7DSrZFSv40HPT + 1nVsNSFZdlesZ/uIMS1cXvA9eyIBmz+cE+ME0Z++P58v+3IVlraGny+McY37Nl5fnBEhchJrehC7 + Zzxy06ArSurU2Czf3TDb796Bv7uT4cNyugzzE9kvaFy9+xYPFH/WOYGDZt1Z1E6ci/HHy8AkPEx8 + cHe1L/zUQYHnqOOxPvIzW7pLVMMTyYoQLPzDZ3/+7c+fWKZ8GKb6HooQvV/Bn7+NVzbKPEButG76 + 5z2wLf7/W49vPOoG+apyAZt03prcqDpjExLO+4PzvYbStzHbGZ16B23+YeMv2rDsbpcKDiKf0ahT + OvYXD9A9jwbspuEZkHe6O8Prughh3Z4aYy73iAd2Ej9DIOmCv+VbVYn2XIv9XLwO87c5NrD08x4f + e/nRsmA39spBsk/4em9Stl7UoQDxS5OwdtNdJsTAacCp9I8YG7XhL8nFr8HvE/L4ePjQLb+vPUp+ + j4BaEojZev6dIvj8rg7WZG4xqGClKnzR+yvcJaYczyaUczCvy5tIh2pnTN3z0kE9eox0088t9RRF + BbdLfceH13Qq/+IbXIJdg0PzvMTLsnv/IO0uERE7zTHo5zOEcNPDeOOfwxioboDc9vugdtzdy9kY + 4O9Pv+E/PjM/38UP5ubhQNYfc0u+4Y86TJLXESfCope8gfcrEA/h+C+/T/fPOMLYkLdbw+dfOf7p + NQUF4E8vG7McAhtYFPxC6eVfweBm2/OvSorVI9zFX2/QIVrFlcPaz/m0y5MXQgia1iRAvqiGIDxV + GUXdkmGvQMbwzw/HTZDRW595/nJ6dDKKrNeItbxZtz7xXg3kd67h2JlzQ2gfQIbelBg42fzr4nJB + BFt3b0yQXzp/jhal+pd/SyNIy+15CDC9i0uQL/uGZCUHBWmjz2MTrN92ee4DB15XJpCGDHu2Vju3 + hpYYWfRCHz4jS3wJoeyHVjjb/liSC0wKVClWhg9Qtlryhd8C/vkVO7muYEYNF8BPxB9ofqqVdiHE + DiDmG7Tdes/7W/5UUC83NnaM0izZ9MsjUKavFz2e0WPYeHGDOvHnh7tAd9v5+6oqQCs3CTn68oaV + ltcCLHeTo6c2Cdj6lYsaHJT9SvVsP4PxXDwD6LCty8EMn/H6mNcVqjlZqId84s+SN3rAt6uI3tcH + bmcvZB2kXRph0x2FoRfJI4Qnqf4QzrhvFZ3d/Qc7sffxERCP/ek5+KennSDq2qEkRQAq5ZDR0Hsl + sdDF2hN98Hz55zdWDaj6H1/BRy0NSmnq3Axk2OBIfz4dAV1wtULRTbyNv/X+Hw+DkxEN1KrZJxY7 + jkCljuiH6nuFtEN023bYBfUFq6WO/Dkwcwf8osCm+RgcAZMzvob2eNlhW7h+jZHnhRGcgVhT3dru + bCWaNIPDBE2q/ZxDO95zz4H0ho0Qkf5oiAk15P3xU17o9vnGH08CoTEu+Hoe4o2nCjPY9BAO6rcX + L3vWZND3TgthRT7FcyOXHICJAkLudGAxXZuogdlwyTf/3Q1r0nUqfF76H/ZCvjb++Cw4Lp8YGz0C + BivJOYRhK4zhXPUtWMPgqMLzb6XUvdQfn/1aCULryg0Uf3xU0u9BMKGQqTp1+eODifXoONDIzRnr + 3fM4SI77qqAZ3zJ6fKbP7QTitQKfQd1anXPngVHqyYCt/ouq2pdn7Pk92rAqdY9wUnprl9M556GR + gBYboiEzpurBurWjcLGdgF+8XmSrArsuz6ntv+ZhzSjt4Ccc+y3fCjHhLFmHB/sBsPY6qKXAuWuN + 5N5nhL+l53LddRqPrmGJsO/SJBaVzzCCjcds8aLxl9ByMtjUs4rri1O0C3p4BAa58PrLH8Os2nII + sRYKVB/Shi0peIVoFuBKy/bHGz/t4kFYI0PF2h6PbIbqmEOWeAeM26Hzycv+BhCVRUTtD64Mkkrf + FRJ1pjS2j3tjrP00geLn8iGoopVPL/5O/6svhLs3+pbjGoQ6pPvnjZon/cCYLj3OSAYXNfxu74ve + tzO75ukib35oYO8/PpGR55uqs/oC829UEuWPrzvZ020lLt3uJMxWkZxusdVK0hr3kK9rRJbNT1Fp + jX/wwnkHrN1eWrlq9iFAbHVfVAvlis2Cp1Z/40PV54ENTX/59HBQU40GyuM0MO42V/tb3oThw5TS + YbRnegYHyTzhQtNbQF6ccUZf+qXkmOJNH/mNiJp0pRuPeQ+Mb2AAbe5+C/lfOfvr3u9FuK0X/Bff + JnGpub2WWBeyrJ4Ys4w3dEh2koLd4rx1gVQ0ESn9bhdyXMEbc/WcXn98A2toMUsB5qMItORwofqj + 5oYfZ8nqnx7E/u/IjHlSdFHmmLnV7+S2XX8ViP74C9kHoC/XiZwJ3PQ3zW+fxlhOoSvDypFHjPed + bYylHs9wOaiPTf++/cUMSh0qc+5i1SF+/G++bTxq4yO8Maaj2yuR1Y2h9JqW8l88MN24CHct1Nhy + fe1+4Li78VQXDiBeYJJu+SkzaHhxlPY9f5ZxuzO6we70e7JFiZUASmyB2Js/H8bM5qoCXZk+NHzN + kbHw+5ODLCHMQpHl2rCY0RdCKtcEO79KN/iuPCtIW6oGpzv1F7O8Wte/7wuXze8vgA9U0DXxgr2v + egVz8XQVaKeXU9iBYi7ZrcwVZdMXG98a2mX7fYonFA+Ku9Ay1lR6zJA/VHirb1QD8Ytd/sfjqV0M + KZtLvVyhKjFEnfdBKgnRdjOoPkgm3Cmnm0uyRuiFwMce8sPtBGfxg1zDrdih4ATWjT/CXXJWSCwm + fLvwp6MHJ5mcyCL7aBufNURvdzuj5e0JW++7yYHjziDYLTgunruLAdGcrA518nYxqHyemn/8bxtP + wNyiD/Z/+uGPR81//umv3sQT9BkmqgAVDlo+41SXVEMKJHtGO64WqLPXMGMp/kVwX7U/Ij2RNSxr + UDSQ/Q52uLxTPiat8M6hh6GCS+95aJdL/1NA/YItdi6m5vNdSEy41Xv+6W1Ru3gclCYRUtW54Zan + Q17B4hFMZN/E35g5Zz2DlnLosL2DH/Bg/W27czaw6FUJvz67X6YeCmdewGUmnP3FetkQgMeLUb17 + Tu1aZtcVXt1mon/+Yq5jFqDdEPekx7fYn7Grz2DLx7iwVxxPxkcJ4NXrKuqHrI3nWpcqqB3tnnzC + dSnZmB47ZdPf+Ah29sDn+8IBobk2WE3PyzCymzYj5OBth2NlbvWAKoN/8T8+8h9/1oYIokMLTGxs + 9XPRAMMIxZs70E3/A2mbr6hGmkr//OgrWpQabv4Vq2GdAbHauRXc1nc4bnyQyGJmw+560ql+4z7l + nH6U/2tHgcD/7y0FgFyKsHOFoh33vVYDqt2O4WzNYSxyh3sIpf5zouH4nhk7WTkHHOnVY+c5+i3v + DLKHemh71D4p5jBlL64H/qdxsc5PPGPqK82hPD8NjGOIjFWM7UopcmJjPd/PPlOOpwbdtWtLvVZ4 + lEvCySZsyRXj8L6cAKUffoZCNp9wfn7IPqNK70HVvx5oVfo3MAcEyvBy8xg9Jg8RLEof2YAa3wSH + 0TL6tI74EPGTxpGlbbeLrp+UwPb6K7H+Y2vJhvdBQb1UJmT2IIhX5agryFBzi9o76wvWURp/oGPF + kcarMbVzHHkFtAMtxcft5rp+1zZntFfGPeGvd9Nfzb0oQx9GCNfF2wRiZ4oZ+uSPDz0Ue9LOhwcK + lUJU3jTwn2O7SO82QNjWKfZWMLPFUpQZIF440fNl0sGsvqCKOtnVaFSBA+BHTS+gdysjrFbgwNj+ + 8xTRbXgp9PYxXmDk2zUA1ly+yFUcyoGPAOxgfMl/NK/NHaBH+RRCb8Au1l6+YfDlugZwchjGLvo9 + jVnJ+hd8/UaMr3tdLNklZjp6tK2PrbLujaUfGh6B66vDB7zfkBU32+iYzRX2vr89aMM96NABnHrq + 8Yfa5//eD/TSlR5t8zyI7d610W3aUAD1e7B+bEcE/uH4oE78AQOrBbVCzfl+Ifsx1lrRFVKCxDov + cA3e2SCKqh/CmuMFejt4mSG1e/qC5dYo1x4u4cCL5Li1JzOfNPoJniHmHe0hP3IqvfHoU5J9Pczw + atU+dY5yAPi6MCKUpIjSyBUvYL3ZxQp8hveEfYzDwE/dXoXhu3fpscerMX2Li6hIpz7DXjejcg59 + 4KG/+W0pwTfmH+9t/O7mjV6m3XYNZkxH2CkXJ5TWz5dN1WXSIcdBFyflkgzsJ0YKuuaqTNNecIAw + yf0TUrH50vvxZRjrXpdNCFt2C0d7/4jnx7vvIPI1lZ5LTzNWPZYLRB8SI+JegfHv6f10mO/FK1Uv + B8II498iwrJiEv6YzAMJ3vdA0Xp7wnrpPQymkTyBX2XA2L7zNhOMNHBAsGtkWn2yU8xL8l2ExmU7 + NKpL7rDKft9A+/I9YK1QBrDcUNzDJoojsof3ZFg0lcvhGd9k6j6LehDwMheoriuMa136Dsu7MRqk + z9YN27nyG0S+DTiYu75PVeFM4vmTdzw89d4FX8UBDGsF7zO8F8IRH6Qo9XneqQv4BrMRzhO1W76R + 3Br+1tMVuxeklKw5Zy907782PhYpHkSvNAs0n1sNa0QtSyH63nn42S0eVZ+0aek236DlsAKrQLsZ + M9HHFaKthB+fsQNW9fyWoZ9qBQGqEJf8fv/LAMr6FfuPU8v+Pd+/+XluFEZkv3/CO30aNOZCzeej + fslQb9YagS6PYsa3cYdC+DHD7xd2YP487pGiWU8Vm7uD1opz44Sg6pMdNvexw8bvdZ+hzxTc8Nll + arsmkdRAwP30EKa7GfCqq2YISMwKwXyJY6kApo4GvdOwxvGKQYq7RuCJHs74dPombG4/OgfLz7Bg + Z4sH7OhXT5hxMKGnl2/40qi2M/JL+UKv9/tzYGfcrujyOlCML1dQTtDqAvQTIcYXbdeV09muTXA9 + 9Oft+QuwvgIzhyNNXxQ78FKyYycn//KHNt2uw/rOLgHa8XlAy5evxotpDGdYNkQk8mU7RPqBzEav + /NjQ0+5SMunDRh3m664i1vrVBqGZUg/9ra9DsAviv/W5PymTSdNc8/xFMX1ReURcjdWHtsRL9L2L + 8IcTi8a58WBsuXARhL++wNp8Ef15t4s5eI3PJvksDzsWl8vnB0UfDNiKQVOKdHnYUGxdTO/ij4tf + uYxWUHjKEVtyXfijN50bCI6Qx9v6ZdL6+/bS45c7NC7StWT3dlcBL6tTig/HPiaai2r4XAuZam7r + l/NrSWeg9CCnWzxtGUJniD7L7oyPfnRvF9k/yaiNPheqNeQFWJQtPHJsUIRiwj/85aUkIrxalU/j + S5kC6cYQB5O7zsgLwcSXfCkcYQrIlWhr/zHmXEYzTB3JJLvk5fozQkuHmFveQmZ4OZsP6KQqxf2r + 0WBhadsfk6FTnBWs9LCaji++j92KlDU1sHXUXv78ewUOsDq0D0dj92Jf+7KoaHfPaAgUcgQSvQcZ + tK62jo9BeYzZMPU11EVY4DPiBjCpYtsgSzo/CD++41ZCP/qCjFR7enasJV5Gz62hQzxEj0vz9Vf/ + XEK4ZwLElywyYh49bzO8CfobWw/hCdZJk54gz5BJS8/+xT/BYT36sjHB+V56+4Lwcnh4/F5cGnuj + 5vPq9KpQ2YwijmidloLzNER4j+UzLbpj2Upt6tcgCKVfyOWSMMzroJ4V/pThcFoa1xfZIBRQfskn + mlWXntEyxNsWAsGhh8/HYOvp29XwL39iosX+6grpiML08sB6QODAXsavg1d1SXEkBx5YuaGt4G3o + FHxQvKXd4sULnEF+ppYaE8Z2xSn8y184+EVHIGraUQdGsw4YX2fR/7yM3ws+qejRC3wEsXiA7YqI + bDzpX35f3iYdoRYOOlXJ2YmXrLIDcCj2OnX48dI+A9nr9s01SXBWf/fxcv49E9hEpyhsBGE2yGrb + M/zhzMIqfn2MYYw/OvyVmoBza23LufWpA448BKGy+9q+IEqBDYfrE1JdP8kxE8RaVABJC7IgayiX + yAQjPLHZpVecUJ/BrY1HqOQo7Af0HNg7e/PQLdyUhm5olpueecESJh98uD+vjAakjiByxD3WPxlv + TJn0VOF5TUNsqXHIJmycMuQaQYH12JKMdbeVsGpOFKiaXu/DXD2uGSIR21ETHq2SPz+GCGz5E5t5 + IraLr74qqDbVi6Zl7fgMmA8T8bvnRMan9yrZ+nv0SJqiA1kMusZEp6MJhWPWhYt6TkpaQZKDP/1w + u3AJWJWjJ4P3Xfri4G2qjPeKjwfFBjnYS0TgU6VWCkhvJhee9VMeL32OaliShlDd7Jk/67c3B8I6 + f9NLH9F4aZy9CqXX0aDuDANAPLEPQezPMrXf3128lGAfgVzVXbJDtuEv7pj94GLlGXa/V8uQuqZZ + 0cPw3tiLfxNYJirbsJLpO/yc2dtfzeCXQetYRfSqFQGTggoV8F5IR2w/2pQtx9uzh0v7Eqht0cVY + z78Zoro9mvRu3a/+3/yDT43+sHtYDvFy50QVWvP1RXVaoYEl4wOi84nrCb9C4q+Ze+3g9nupZ+qw + ZIvJdGhzyo/8zednvi9V5U8PISxvAPbubsfRXk/C7o97yaw7DMAQ3eUw3eLTondvHd5Po4/Pl+kJ + FuMGO8DLw0ztjzKX4w3PW2PCfY1j2xTiSXoPAeTUu0FDeHwODNlb2xHup2OPnN/tYCSZDHdZPBCl + m2/xjND+Bc24V2n+Nrp4WflLAOuHjqgjIqeVFlbY4PxqU6x59tGfQ585EPKmRf1WPQ/sOi/hv3gX + j1IzrGmx1sgqzy7V16wwWDOthXKnjYG97OWVM86OEBy8pqJ/72uSqajD+B20NI8/ZfuTtOkFou+w + tRmYQsB+BTLh7gcfOKsuDqN/z0Mzx8Cntr34wlG3efi7k4HsyCth89/8N0Pk0i2/x6x+pjYgIT6F + SpUbsbCsUIRA9WAo6xHwF/t7VeDwBU/sOQe7lLyXUSFPFAHWI9a148MzV1idchOH3J35dNMTgF2J + RYSl5v21a84O4HfNRDf9M8wfXv/96Y1t/uz9ZUqqCEbmhyeysB3a5p5MR866X7FKzn1J6PIwUXqO + KE7MDpTzVXHO8NGHGnX65jWs6y9W0T//k+BN9tyPKsT36houiUoHUhiTArPA3NF4GFc2/+k1vfuu + WN+nTbtY95qDM+ZiGtrJhy3x1a3hu/HOZAluH7DNLxWEajeF63NywFIfugY+telHOKPwSyGIPwSm + mGhEukVuvD69pw4JJ99pssLQmO8CB6FZdIB8L0iJiZKCDE776oZVPZ79RaacDq4nF1BrB3KDZW4T + ws89f9Ead3W8hIG2gt1uSkP+df/57GRF3L/xiBt3KJd3zyCMZzEleViSdt4HUw+rih6p9Tg/jCUe + AwLU528ga9znrH8pdrgf/MkIl4aYbPkgjcA3gh6+LY1r8G+QjzAm6Rv75e0HZtn3z1COjiURKH0b + 351AfyC62C09+lj1xeH1KNDf/NTel8ifq/DNgWXJCY2xTHwWmXYF8hVVYZU912GJjqO3Nbr2Q840 + RDBVIewQLlhL8Re4Le+7YQQ2/YOt9rUMK82O0Z+/w1VtKTEpv8kT5eUk43Af27605U/o3T8XHHAP + D8wPctLRow80bGou8ld5DnpYxS8f329HPp7ypDnDfe8EGH+0o788iPSEKS9VFG/rg53xMMMGy1+s + mvrdWPjiqMCgs0KiREcM1rz79LBrQE0t7/ctp794G7T7Az5q5aH8F9/ew73E1umHy+3zG7Qrhj2p + Nn+39JGlI4nWIT5olTksr3QmYFR2WSio4tzS3amf4au4fkIUepW/6e0CfrAFse3YPpjvggihkjgv + HG36l9x35g8ehzaix1/TGuPZxpVS7brnX3xrl/1e5iBqzBu+4L0ziOTTeUAWzhK1ujo0mJJpHPjT + a1r1/WtL4dqKe9mF2KfkwObW347h1DWmmz5vhTqqOXBsggO9wjvfzlwEFYh46RTOxzjz+03fQ/11 + G8hz8ibjX77f/Cx2DO4Xb/PzB9/Jswn5eliMP3+shIdHj1PpPLL5fip4eG1/P+zXl088l6sSwi8j + Sbhzrukg3QarQRvPIPvNXzHB1c/KZ0Hnf/F9VXe/F1TWi0EP/gmyX1qsFRTTS4Y1+xuyX4X9AK78 + 7xuid5oOVFmE/i+/Yl94qkB4L2O+/8g8plp2ato1DKJ8S0yfkLsMTilRpfHQlFw1bB6TqP37flgc + zYQ6W7ykhi7qkMHziu0oSGOiior3z58EG88ajb22gvLzXaha5Z3f/0a+U77KF4eCdA4AU5TOhh9Z + xCH8RRMjO4GLQH7uRAJppQAyaVKDYu53pAfGMjZbXz+Cf/rPKOTEWB/xuUIjr5bY2tbrGM73M0TZ + b93er8JWC7gF3PwNQZ/OHniYexD86VHjW+glv09rE27bO7GuEbGdH+Sqgl/3/eDb1X22yxbvwEvM + NOzrasMYu6ozkveDFZpGERr0rawm+JtvxtIMgOW+/kKZ5Znka4yo7GhmRfD3ujc4gKwcaOqkI/yJ + HMZYEgYwtLoTwrttX8NdnT/YetTTGr7No0zNaCFsHdzjSxnM2dkuNTqUS6YWT3jzwwSHj7fHpNMj + +EGbk380iC0+flQh36E1iQzsEn2O6WIyFX3uxQvrm9+eB3cV//wf1m68U/IzyH7Q2a+UGtv2ozWo + yPrHW7DTralBtngHSbRdO30pmU/TdmlQb1Yavbz3ydAn7bFX6p+thez+2MX0zGYVytx1TwTnmseM + RVHy5wexLe7U+Bvu6wSeHnGBVWsm8YryJoSrgUqyv4VLS6DF84jAMcdne2/6UnaOfuj1I5gez+sB + LF/uZSI3SCsi7xMjlkT1JKKgO4Tb+1HZxicTuJu8HrvdvW9nxRACmL2fv3/rZ1UWqsJnlje02H07 + n/7aqVHED2/Rq7kd8s2ImaGNN2JHLDo2vY9OBL/F+Utdtuz+8hsH16zyaCy6F2Nwr/LvL16Eh+Vh + lwJ/utVwd3pK+GDun4CeQq2A6l4JKQZnzxemWzBCef+1qPNJRVacLC+BrLZjwl8ct2RPmqxIS98c + du93fWD7z08E+t57EHkvWf7KPYEK//6uB34BZutrROCUDj023mkeM1OxnvB8gj3Nc/nMlpG8O8X0 + wpT6vrA3iLVG8B8fOXJLYzAA5g4Fp6ygxv2xK9d2zn97ha4pNQfoGMwCuQ5iWNk4+YU5Wx8S1yn0 + HlskgVsbmFTsvH/5eKfQPmbyLdfhq5XOWHsrJ8Bu9iMHAyxO1J57a/MH1IOOvS82/TgZQ9UoBHho + EbHWqsKWP3bNH8/5F882vhfCP36ix70MlmsNbHl7fyG3XUzKD+f2DIbUI3TLF2x5mx8COCWOsf42 + 22Ge6LcG8Ttsqa22pr9Mt4DAbT7h41++KZvRBM3FOdJq3S5xuTGBU9J1SMny6bdG8jcmw7dvClTL + eD0W3iYlSlioF5oudWKshn/ngVSwHFszOJfTwytz+OqMKz6c+ku7xk+1Adv6D7+XQm6X62d4wkQL + AflKomv8wtt+K1E9CxoO8F3+8W745183HmHMxl6blfbgjjjceNwkkvIH//JROOvUXzP14UCr2+1p + 8NnH/jqUMgQbH/wvXxrKX6ZA8RwQzjQyJvzx201/hNDyV3/508sbDyH77/VtrNwwVPBl9Yye84yU + 7ClbIRgXPsEOQuFAqHJ9Qun0y4gkRakxwa9SAeUWd9heFTGeYe5x//hlKM+veAkTJVQeVYcJiJXW + /6tHKJlsXcisvh7lciH7Fxi9wMNZGQB/40MKqtn7R53JxWBmTzqCEwQ+VgvNj8XsfTwDT2N3skt/ + 4zAbn14B6b4542jz82tWVTx434UvUV71COarokbwT3//xVuSqQ8PBfIA/njpMFAj7+H2faEo7po/ + fhdB7ipPm/6zjOUE/QC6teiHMu+mgA0vWYcfY95uoyTPbQvs0sDpHCh0qz/489t0wz+eizNJvbPl + jxfc9gULORI3xvIXH6RYvIXiNh/J9bN6f/oZJ5s+WNITyOHDykYavD/6wL9NLdwbPg1DRRCmeNZU + ugJodRzh7+GZreZ+a5M1H270jz+P9UHVwcazwi5TiUGuQZ3Ae1ftwv3md/nQ8AgUJEciygf82Lrx + WSjZ+ovqx/3PX3+ifoZpUok4MPu5XGI0vUAKxiu+7btzO3GcGqI/HoA4fAN961Nvf3aeiEghAT75 + i09bPMCHOgvAOIP6BzmOc/+tR1YLTiW3pfjEvt4+25nefxzs3K/yT89K/A6f4cYjsJVrP+P7UhIe + nunaEHFVxPLfetr4E3Xehh0zhAoOFDa+4CNINLYiZGbQLfw0nKPj2v69f/Snp5Qtf65mel5RVGs1 + vZvx6C8dC2eoKUNB0Cjf4lWno/3Hw7BeW8ifhfM1A9whUXHlWKSlG88DsK9jIoJ+GMjGw4B3u0bU + +PO7wullAuGZG9h4yIpPlu2I1+YXqdNwMF5S14Ogv+iEhs7wbBm8vDKwFK6Hsf6GbR/zpPnjG9gU + r2O8lsftCMAARXqosxEsfuVE+/jI7UJl4yurO04RvMrXGh/SSWt5Xoht9IVChm98YbXCx1pD1Ebv + C/aieRloGR6yveI813/vl0nxzYaHh8SF8n2l/vJBLvnzA6Tnmihmj+r6BDPxVuoWSWow+2LMkAhS + SZ4ua4Y1TB0ebvVCGuT7KV7Bun/CI3dAmx7XB/5BTipyPqH+X17wve4TKEsVh0833onFP96hveUO + a4ofgn/54yJ2dSis30e7/sWbVJPdrf7G+e3GF9DFe9nYfwU7tj5p6MDbnFLsRKsbi/a3adBWLyMr + 95jaHhxnB+2MkcPOR5YHGuovEwah8MPG3oiHRT1fzjDp6xq7fSgNYz+cA5QYVx3HXWOxd2SyEbnt + W6WadnuwNRnLBExlCnFwmRpjnvxbCPqmuuKjmRpsXe1wVtLyuuAjbLA/v9KnDa193WMPv17lvOkl + uOOL4E9vxTMNdh00hPZOffjs2J/+/Me/s00vCd0ltqH/3o7k4QT7Cz3aIUxa1tPw6YzDYhpthFQ9 + snCUx9D4Ns6iwy81biG/OzzaGddcAb+quCNibUvtLNd2gyLzzW9tZ18G4/hnA00vSHGyj3vG7FWq + INEVh7zDeWXrvWiavWWWAT6ydT9MRmo68DPoGfa8awb+eDFwjbDAphse/PVICwdOUpThavJ+5cy3 + SgjXryrRW49Xf87K3QsWQ8SogxBpF7zMOfoUlBAoe1HJnOH0RLJfdRSf58hfiM5ygPDCh5RSvZT6 + p+Egrk1y6le2GC/gLj3/nvdffmYx54ng/9lSIPzvLQXadWdR67pvWra/6QRcF9GjKjUtg5fN7xka + fnymzjPPja1VPAc7yUjC9ccbsbS/2h06xTOh5kj3fq8PnQP0gxyHRRtoTFomfwYlVn4YH/HFECot + TyBoKgfrsCblKEN/hsUJ3Qis2skfk/ejgd+8sAm3YhBT51i94LW629spz2mYP2W/wnxDqqdCmYdV + uCszfDSiQbV7kILFJ6ECEn/qsFvldJjV4/UHk0vuUY+UL8bG88OGAm4ovi/GxCZucTr0BqYXkkjr + jPVR8Ssa9HONDXVmwxK+2Qq54O3S+DcFbC7Tvoa7GAshfFZ3f5E1osDDmsTYj8BuWPN5z4HHNH3x + XVcTnyeVUCOXJBqtpFMbM+dzWGHXyRpW98s5ZhjFFQz6/IT1e0rZOj6RvZfeAUdvQtv47LYOAdKt + GdJqNIWS3XcPCG6VMWL7GvHxLETbRvpQIdSBYu135uETgFi+KSGv7o+DBJ1MR9Mx9qi/g69y8ZW+ + hlx2+uLgZulM+B6QqFS/2QwRevOA/FIuAQ9tzzC2jnop1rHiQTE1thJta8brxVNV9PCrHWFHMQbz + aZOw1vgzqRHgjzEfm5wgreAO1InqCojlHm5bFOQzPSRSPogJP6zoqe6yEJKbUzL1duvh+36OiXC4 + 4ZKv68GETWdBwvWZG0tz/6yR86ZnHKDRL4V37oYQ6I1Ci9rJ4nWoyxm6DuTCxU4rwGfk5cFkPvTU + 42jNFqktEri/Wym9bvOBuJIqQ+0iEOrs7togjk9kQn46WzR7dpaxNJfrCPN1/mAtujtAUOdRhVHg + q8d9Wi6AhG4YgMupKqhmHAxfEr5XDvmgsnDKX7pWep1oBO+ueqOlNzsG76DoPyxdydayOhB8IBYy + aTpLJhGZoqCIOwYHBkWGhOHp7+H779KjR5J0p6q6gPQLr/H0JQ3nznRhFgX3c9qReL6rqaj/khbc + vGfs8hFNxC95zyFlY5+Y/6ChTklyNIG3lTs5BFRYpgF9CngchJLF18JKJ5vMCfaJBlRw1ZWSy/4D + m4cc07E/ZuG0Ed47vJErmV3b5wZV3vTJ4JQeOaKletuxR36+4MtktOSpHKOFx7AEgLRixzyVO5VS + lbgU0EdGRI3Ma/frpb0L12+lkUdkN+V3MiXtb3zstJ3mcETH7whlEZZ093fOMM3wA1hW1MSQ+qhc + NkX6ArsUY0q13ysVBN6Wd050WOX+hYazqOkZIt4+J/H0TZ2JP154SA4hIsb1oaaSs1cfWPDuMdEK + xQqlfO586Of6R9RcX9Jx+5lk3KqHig5ebjgi43MbunOY+XjdT9LYtI/dmg/+2QuS7hMeMYU6c9Zz + xGRajsNr+uBDtiFEPRadzu4XN4bmvaN0el/jTjpYSwDW5YOJqRthKRj9zkeGhhQ67U81mk9wp5B6 + U8jOHD2kfPlMPiCc2wOdFanV54dzoViXyYP+eFymk+CJFkqGRmGWzP/CGZw4QV0H2J/T+pWOuy71 + sRO7d5K8zndn0U5vF7T3Z/ElPxs7qbyWCSZPnycWe8QhbyT4A4w/UGY6zUOf8axFkP6+NjmTzuva + 5NZxoC5dTbwNldJpxT94Z98Lc665kC6TuVH+4esl7pEzGonwwc/zp/E3X+ylg6xSGbjFLIjhWmM5 + 3YopQy83zYjW4I8z6aZyAqv8Ijoq4QmtN1pfsPk+SrqdAxuJ03GK8SLvDHY7H446Oz0rG8s93zE9 + 3ETpZG5HDjtserNMbp6LGG33xu4FD5UKe7HoploYC9wfZp75ki6GU6aeIvlpbk2WufMlnBLfnWGN + P/FNtC9FNQt3u0108Zkt5veuSNLGRFY9BH5PnG86bnqNYllVBHZ9XaxSKLVBQ/VHyohum1UqxbFS + 4KrdBez5DgSd3bO3CMu1jYmquLt0gErlMX50iHj1aSrneuYsiFLQWbKNi26s/UKDY3II/WmI3v/4 + BxtyoDP/hyNnGfiJIs8qK7YPoFim5LsBuGJ98S+3PdWnH7Ur0Lf+i63r3U1Gv3OBf9cFO9T2wZlS + ecej2rOA3Wde6aTbECQ4DTSN8s9bmPITvb6AEdZTyRX0RZTMfoSV79j+4dRo2gzuA06pw9Hl9O7T + Id7b1l98abu1Zmd50ymGa7d9+F+xcDsh6XgT39WpJvtxr6bj/gsXCN4SYUZwDp0GHdkIiSJYPrrm + 15Q/kZeNgccZnZt0DCcuvAfQciojZ5rGS0+42sVF5WnEehGhnH51bWGaXjt2W6SLvsy3aYd/u3Zk + rrnVHCHYTCc8bN48uQZ9EErynFVw8OBM7llMulH4fCt43d0rC2T356x6psdwP9YkW/lamgZ9hPB7 + q9mK190fXuHmte3J/TEV3VRqtYLsuyWyx0zSUKSR1cKZPgj9y38BsKAgw81cZvm13QlHbvMAVC0V + s/tAC6labSM41cKLiuk9Wvp8Ae5v/5PbS34jtgG/B9XiR7J3l1e6vOk2ge9p4Mn9pnHdVHB6g6lN + Ijo1hbnwpNopUNhF4XP02S2zXj8KOPZuSz8XjjiSeLFMqN43kxz1d5SOVkga8KtEYaHoKqG4NPsd + XvmE7pLYRG2zWKsFUhJGyuMcLs4Dmu1hJ+ds1WfO/LM2H7DY6UHu+O0t4/miZrjepB+/PKQOmr7c + YgGvZoScOilC3d64c6BfgSdhR4puuR28FvDvmpNVPzo8fjocfJNQoWC8mD7D+5CB+HFSZg2S043v + 0bFgb4YbZhm2hsSy3sRwLpbe3yKzRnOzKBl+LlJAJ60e0vkpaiPczFEmiiJ8yv7AIwNGIWiInW6W + jnayD8j0ZUrc0Mv0qfm9A/zHP3tWduFkvQpA52LqmfPq5XRQ+MbG3O3UsctU8s5y2svcdj4u4C+O + g8I52Gcx1PNLYff7IDmTGVYunuvvQhcBGJqf3MvF+quNiB2Zajmv40c3nprEET/h2vdAlaEUX2d2 + 4PgJzc41z9CFbgLi7HsoF2t5R9juAo+oTSCmC681Gojb+4FpK/4P8r7U/u3PkcyGM2JZsoG/qzcW + M9os40NZRmiZNjFLNyVnyMoXbKMDu7KD3LGwb1/fE6z4RTP7d+7Gwr9RyOlRJ4+NNIVjOygi/sMz + 5ynnzvQM5ATK5S4zk+tuaGryA4Wf/L6zHNeXZSYeK2AbtwU5Vi2/9AU+ytt9cRCZjdvDMo/7k4G/ + TqCxwMN2Kj0oM9D+mMTkmFaXkK38hSWneDBLJVs0YzL1ePDONtGO3d6RVMsZUXOa7+wPf6eDwPN/ + eod+9l4UTu5GndFlf1qIk7yVZeQ3wge6HUb+eMVpt4h1LgJ5eDPTCqVJx2NlF5CW1o1cDtUeCZy9 + iDDojGMHUYmWufihAqyyRuT+FO/lIomnHmZXvrI7VepuTsMvD9vb7+VLA1c4y42UBpZUHPi7sybq + S/vMX7s8fBbMqcdyWa/Po3JJZQrexdZ5b/o8kIyxQlRTmrs1vgpk20VjytvlOmrqJxcdO69hqftL + 0rm97x7Q1s+aHZpdVM6bU7RDDzUZfc/LK31SA55C+3l8mVW9k+WHnq/ir/5gwUS6cAT+KiJx5i7M + tNUpHZTGrIAbNw5RULzRn3L8i4F1ZUl87mR0wtW7noDM2ZuK9voInro9ZuieZxZLiTaE8yfvAyQU + c8YOr8jV//Qu2Jb2plxlVM6orW+he2I2E6+eD6kwtKcRO8/WJ0fYyHrfDpYIRT76xNJUxZnvdu2D + Y3AD849Gk86HzUWBvqw6n+vNGC3x7mzjAqM3y3j5lE5tLPdQ/ljMHGPPEPvjtzXef/FH82N6Z3hC + s0Kub3RNpSYKdvCCTF3f6h6c6XI+x7j9ZF923rZoqZ+BHEODao8Q4bro0zMYE4xeD4udI1Mox81e + 4PDf/rDqUNVFLhsfkNzTgCmfk+3Q8ekEKOL8gZYrXy74ehkhKkuX+ExVO3E7RD1YLHjQzf2kpPxP + S2aUpMXPx8pNX6bWfdqwWNKTqRIJEdsdZB6EaUr+6evexphCAx9CnGGOu9HaXmLog0fE1u/LqUPH + CPwl4Zi/6u/5FLkcSN/oSpRzJ6Yj8LkIzElOxOMOdrds734F1/B6YYQ0rT5HW8/YtVIFzBoVP5zl + KeF39eb+YYe9/NHZgSkKuEw0mfFy/H//j1Ix1kmeree4fsS8hwZ9PWLfxcmZL0FoI2vLKVQ+7Gan + tl4twP1IEuZpr08681tlxl42Buyme15JNxvVxNOv+bGoSxRHqAX5BYHS7+im7CxnbtyFwsRHDjNl + 5dktNnQcdt1Pwg4axvqYLzzAUDQ+ubix6qzz5dFS/SKS2b+p/MXfYMa/F3em+C8fz2diwDrfv3ql + 66dLEQFf9lufu4RdOvZZfNqNgQbEx49HOAm8vYNj2L6oPB9PiGaDYv/5AUxplXtJaeAWqJbwRNS8 + /ulLcdbMv3z1xxHf0il87Pk/f4PdkFGks7AdOLQtI4NOz+yTjm/59QGmSsaKh3w6Xu4EIGavnc8+ + kVKK3CXU/vifeGd2TOdgf0n+fu/X8kHUB8McMiRXpzdRyvrc/ahC5J25BCN9r4+Is8ncaLKYf08r + 3gQdO1feAwxd1ljes1qf/BqNKDlvcqY7ThqO3Ped4FV/EhLVB8SP+jcDpokm8x2vXcYi2Qaw6m+i + bluEftf13Pu1viN6EP/K4S8f0/ghULwNWbn6ES/EtcWNaU4wLYsNJYeaRdWJ5pqD3mBZsuDz2al+ + VVRqyVs3fcTH1LiSxw+L+uiSXISjxXE+w984nOt3k4Ciejo5PzMzFF6TK8Pz54yEgOKU/PgDV262 + uUjnQrFS0RDPMc7DvPDFqE5Rb5uhDyLrv+R+7opwpoH7gkAwEPOSMES9o90MMNu+9td4LxNXfRVY + 8ZNCu55zHAjWBW7LYBBl5ZeRHLQe8C6fmV8Zhi4e0FMGFP4InZzjDQlz0YqgXzmeWT/9VNLiUOxA + 2uyeVMxyrfvkmhQg5zVXxFGur3Dss1Pwdz2fmTzRm/Zn9EDMpmW2eW1QpyADkJe0iKi7THOmnT+0 + YAzVm/hbShf2e8gXeATlnm5IYzuLu/80ON75GZWH63WZnmbEw3yyNJbOYqUvdjGO+Bs7Pz+SCyGc + jQPzIX9ae7Z3GF/ONDAKuJ4J9juieSkfXUYODb+9ShL/hrsF32MZMK9tiH9uAjRbbsDvnr/jSDLO + V/UxzA0DhGlJyJEov2VZ/T8ILJv53Nbd6kN/z2XE29qd+O971y35XLr4ShXBr563MJydfCeDLxRX + 4iI1WGb7xFt/4/ND/lrqk6iqFJbc9Fb+qv7qLXv3m83Pih+N3mIy0W09FwrT08cRjUUyBfiv/iXj + O9aFR2MHcBbVmOkf5+Ys4e2s4TW/feDlMZzy2yHG10x+Ee3uDul6dggHUfl2yWE8GEiYjaUAf77D + ipemw8fXh41O+kck5pvn0ADC84Mui6uSld/CkbwEGe9u/Z5d96LWjdHH7OG911zaVuUjHCvbort2 + so+0vh924fLKxRfw/k0g6v60XxivvRS8GRVKjv3RSv/5Oyj3Uzpt2xRNT58//eEpidrmjvgcggTP + n4/AXCH5OMNDxf/8VF+6H/Eyzps4gee5ashtPh1C/rnPDVj9X6I+s0844qcD6PeCMyHH57ebfs4E + QPWxZDnDXNcWv+WFAv9bMKXvZn36vnURq72RkcsX4YXqv6SBmznLdHb4Q8lH8yvAv2s4MM01PX20 + nj8XyfEX+yu+oDE7VxFAn57J/pCzcFL77w50XcpX/WalPC4VA+/N8+af/zw7qHD/+JZyt0lIl5Xv + 8cpf5PCS1aUduqBAkXoqmKnmHzRuj3YF7uVY+sf7cHPmTvY5tPKrXz9PgGiuSSeIfpsN05/+PZ2z + QbEgOoo92++NLJyzwVo7R9eYHWPTDqcNudp/eMhU31CQaH18BQlXXDL3bGw71o1xDHLLLkRDIIcM + Xy8zKKBKPhvETTmxe+ODyjdfH435WV9SPRXRqi+IftULpz092gRNa+fzv/04Nb9fAF1VWszZJH45 + ngdopOa5RMQh2pAuve004LpVwp7hjqQTu798LDL6ZUp/hJS5x3ZER61w/G0YMF00BgToxvfm2lmL + lsPKV9vceFREv18PqcDO2ojMwk7Z/meV5VhE2IZcu3lEhSuf9h5nabu/epcItd4JCX8vds+ix2uT + 2G83GmWqwIOLEJUMtVlmypCIFnEcWNpqP52+RQZolphNjvIQrH1Z7Rg8zZjIncdlOOwb0UCyqgl+ + ewChHG0z9cHeb23mHrVqGb5rn7QoSCRmi0PrTINlWXAwXxlTneNtmZ18lsF62Me/9dRniSPBH/8S + 61eb6XiaxhF276RmxnCmaPGDIUbJ/R4wx39J3dRLnovyTRjTaR4euiBAc4Fz4r39QWwkZ171Onx4 + hP+vnzmpjqE6uRO7MX3rTDx7V7DuB1+83TR92YBJ4Xu0OmLc9r4z//nh0+zzxBkHtRRj/xfBZfFV + opX7TTgV1ekBepZ+6Rcw383+0fSRNCyWj1b/ftm1xwxtO9kn59RWHd4oUw0UqU9ZXL0T1PMfO4ao + 3ajkUDVTOK/+F+TVV/LPHj+mdPA6H96R9Sa3IevDNb4WDK2pM42ZTfeHR+gzRDzz43osR/F6FrHW + 6B/mlb+q/OanoIJVzxL7kGzQAOrWhZ2e34idxOZSL94J8KAPHC22i4D+6hEIv9ea3Z/itlwaD2fb + PzzcVx8PLdvcpqAtvU3Sa34NqYMKH65nDzPVC5JyfDxKE2hjVUT7BF65VMq9ABOJO0Kyx05f/TQD + W1yYrfcfDo70F8/mRlyfM2ZdF7WDraGkLb/s2F0HfWadRKG0vjpTRLVYmM37BVrrIf8j0bVPHMwV + dns2+Dxr1dV/mTVIAnj60F9q9GnBMdF74mJm6U2PRkiKFjVQEeKNT76jJc149PocgBhURuWPWnWE + b9666jPzynHenOItI0PPDrbtpP36GbufYEf+rQcpm+AvHkR/3zLnr77Yrf465WJ9t4zeDQUQcM2B + BE9p34nwJg/wq1ghl2BpluWkAi91inOg29pt13rzpUBXv2wWTm1bdqvfhCQO5cTenPly2RfHANb5 + EnJrH8uYw38AAAD//6RdybKqQBL9IBYySSVLZJJJCgURd4CKgoiAVUB9fQf39bJ3vbwRhleoHM45 + mZWZZ7DTTi0Ru7lc9cYlhOxr7+kjKd9Fm4XfBI7uPqD6ImbGMn+6EXHSlQsF1V+nCpdxCA3FBLuB + tI+7UtqaCFdnD2tc3PlsbtoUlZFd0z+9YfplpYce2j0OQe4eaJZD7a6msE+JmuQ7xtdba0Hc9nmm + 3rkZ2BJPXqk8N4KGvUk/onG1f0TudxO7m3Xqxkb4KpC6/EgWTnoWY+SPGqzkNZyzOfQFo9gkkDcm + jw2phvVW/3JS8/0R4YdEbENY9SC4vBqK//g2dc6LDm+buNiZXo0/X+t7D2t8xJ7F2F/88aB4+efw + aUunegk0o4VdXJ3osR++8YDrLoLBoUdCHF5C1KG/APircSFo9X/py3/yv7+pSzRr4JeF4//8K9y+ + nidjjG+BCTdve8EPdD/XvHRFHshCJuJQ3uv+VG8PC/Kz8Eq686uLyXNj5aAEu2e4/U2CQW765gSc + 5SbYQ8+3wX7hCBBG7mk9D8dY65OlauWvH92z8z2e/vRG34Qf+ZyIgObsriZorS9it+w0f8LcL4Tp + ep+xqVd5vOJbWW1p6eNE2x7q8dvUmToQM6HZin+XP73xT79a67kFcQw1R1zwcUOlDp7o14udvu69 + OeP0sj/WkwFfDenTe1714POw7JptAu/SVagVsL8pzxsPghuh1D/+LLa+vwyoztv0frRVY5lksUT0 + E+xxPoRpPTYqNZWVr1I/bmqftZo4qlZtyvgivsZ6XOuzsIkPQsj3bRovL4Msf/UVahafmk1wsgK1 + 7Bcz3Bqzzaavnk8oUswQX9qZsSnyR31rbL7xnz5trPqDDC33cLF5DSP0F/8R2mon7G4y35eECipU + PkM5nCT7iliucAncXU7B5m1qh+U+f+8QEMFc9duqWJIxTP7qFUT8q09d26OmtkZ/podF/gxT9fkR + WPkrdVd/n//0rVP4fuGAl6d/+U61r01EZiFLa/bd7XRAjvqjxu0T1N+1Xq78Py0F4v9uKahYqNDd + ukpCZNbFUT6gmdi/vPVaIBeHwDkKaxoa6a6m5ax6UJKzQm1h2cTsCLsQDvfPm2ykU8IWyfUyEKlu + kJdtUYM9OBTBvZtzrMs30WBpMXbosR1Datp9MMyyWDeqve9iusf45U8vlFVw68wvtY+i6Y/6snPg + ImUZLtdrbfxHGk/KeSdmVH/aZiHZ1tmBeIwwTb32xljHKSeYxG2PPbfOi2+hnFJw1dCngat+6znZ + H1+qPXubcB5PGC3F93lXx+2dYfMhV3F/jiNO/aC9g/1dvQ6yfMshKi65Rk+CrcfLPmAOyqatGfa1 + 7xe/eSNy6Hd+RUSemmJg95cHIAjHM86C5jFIwlCkwH23M73YQV5PTU+cLXpvWqIUk8gm93mP4LY5 + EWyj765gmwbpUBtBT4vjsitE0+gmddyWjBaFbxUC3p80YOOjJ+z1eMWTheKXqnvymcbG/eeP7k7J + oXTHll72mwIJyxUtcPr+WmzmBRrGYn95wY6RCDvXTDYWS3Uz6Fr8DTeHxI27lvMbRIVKw2Z9N3wp + 4mABLd3ZZBBUf5jPt1elJo20wXrx3RQMLrwC47nKsBMWu3q+/WKiPlmw0LzzTgW/VW483Pwkxp4e + tIMo64OtxmfbC/++b8HpQYOHzNbxOhCtq+i9Bm5088HhZJ9rQfB2rZor1w8+Ok8diUlqvsAsGo4W + vOfFk/tMI4i3v/v6e2ufD3ezApwcA9n46O3/+KiSVe7gFvQSsWSgaFfLq8QAZLsETs0c4SWr43xe + 6DW/ZGwSlDQBwuQYJ93N86Wdu8vU165VyefB+/WCqGUj+ZDbVP+J4C/Nt7ur903U4iO3/dZSSd0G + 0iooaHRWAia4865Ur5MM2Oy6LJ4X1cgBX3cWTo9i4wtv8ddCeuQjenT21sC/tU2IfGtGNAofckEP + 8pmDbfnQsaPstFhIlVwEQhKdXriiHgjVRxuqtGywizc/NhYf1kLKNW/yqk3GhvMjylVXRSZhH7mN + Ge6GCQSyx2QV72oaFL8OUmEacPyyLEMKYEdUpTlv6cMfU0MwcpkDfec/CDyTopjN2eWUzTaYsOtc + /WLtyVlUod16NOaNE5undsmg1KsnTZegHFg/ox4URbBwEaOH8WtuT01V9R+PDeNbFLzaBCm6f8eU + ZjS3Y3EjDAqKqoOB03qzQctVoDL6HpsDTqdrUUyU01s48w6HcaQEhhjhN1G5om7DDTEf/qJVx0YV + WuRhd+tufIZ2taLeA04jm9x5IiHXtiNo5+RAcStf62kfzrrqGo8bPhSTzhZaOx5sbNnDRyMe2VTs + HxWErnEILzWufH7k5QB12veK3Xc2GexY/BwgF1EkP5WQYUnEqlXPl6yjWdBshvkr/mwwqzLF9gab + hhRSw4bFOv6wzu7UHyjZZ/K+yZ9ht8yKwQbq2MAWTsJBOr/8JR3PL9Xk+ArHxreIZ83b2//eV5k7 + ZyT2G5mDe7kzCU3OVS0JVuSpctIGFGf2XM8f+5KCe/Qozlkq1Uv8eORwmkKG9+ytDNPBfJdAo/5L + 3WO2+OvzO3Cpwpiab/08TDbPh+pvObUYx/t+mDjllkByySe8uycvYz5epRPMh0zE5iyGvoioZaJt + aEvUtCMc/5CqZ0ofjD+6V9ojGu+zBZCPXEY95ULQU2hnRe0/Qrh2KO4H/uRERNVbTaTX9+HJJAO8 + URo2sKfeI70O813bhtAfG4uWGvdiQnyQRRhv15SmNT8P7D3zHvotmwfWVv/jW85oUVYkDOPfNkLL + E+wAeK1zcQkVh9gx27aQO9buX/6Tbl1/gmBobJw6t8rnj+Gkq5Hpt9SyPjd/ri5eCNX98sLGVVfr + n2I8J1Xtqj3Ome/G/dK1C/pSuNBjeToi0bFjHrb118FnPfrGi/wKOaBUY/S62uccz04Jt469aOA5 + EpovDFWwH48Pal9yMV7Cckwgx7FNA+5FjXnecAA6VDp12t0r/l6NXwROS/fUcThAU5szTh2mYYf3 + ZNcVc1clJlzPS0Ftiaf1VJgDwCn8WCH61mvX7UXN4QO6Gc75Iyp4T/pEQLP6g7XWuvoSdvAILA2e + NHwTbxC18i2qhqgTMvEnATXuTsnQUJir1irYaNKKyVGTeyNgQy1TJDyUo6hKuddgUzi+hl8fPRUE + +s7AxX12jLnW5FGt0ntDrgmXMAGVbaKu8XfNX4iNeji/1Kt9S4janINBYBcngGvYnnFEzQ2biPkE + dar6J3bjXC8k7KMSXPJRqbefZLTwZZWoc6wY+JLv+kJyqdFCeP/caMldKjRHRhup73gb4/SCHZ9f + 86nCsFbQkzscmVAypv2Lj46VKf5i1kEPnxTPdC9p2BfHVNfhd0896lXciFgYfnQUdalJdRZr6KfY + txQ5l87AUfW02SJkfKO+3BvCVnNrfJaFRJOT5XnEZdYYw8QaK1HNXLZo8JgcJvyd92najtTVOJHN + ahzfYa66Kza1rizEzTKl6ia0MbYt3R/mg1RFf/5Ek14Q2bLHLVFPT7GjvvE268VfVB7kYjpS57Rr + /uKJCa4LX3IzEPOXZ9mnSL90A0763qnFT8aZ8GThgg+apxd9GswdWIdwwJ52teJ5Z9AFIv8y4EDj + XmhRtpGnXkyJhhtFloY5UAoRQidJ8OGsPodfevEDoGQvEcHHkb+kbzGAtNtfyXaj7fwFncoJCk3h + sRaST/HvfB/lTwgXPVILJliRA7uUSoRNt8kfW+XBg/l0cajorYF+wvd3R0vSrKuGj0H9q6uyhU1y + uf7Zd8z2nLDAqe9fdJ90dkx+Y6Gr6/un2uZe+GLxfZYoP08xDSX0MWbsWY36l4+TVMjQms86GF+b + D8VJFaIlwr8RTOOmEmU/ZajvNzKAS19brHOWayx2nN+B3bKWvOTx7Xf1bJVwLw1zHQO1sDm9+CH0 + 3eThQs0qf56NfgHXb+7UtoUA9Qc7ThGPpi/Ga36bt9+Gg50bdTTbLVI8u/PurrzaMqF//kAMO0nU + MCUPqtsW9ZdDbXSwqbsKBxplaFYnY/qXj0opdWv+9LydgMJo0fxXpwXVcEVADe49teYDQiweUhGC + /uvRpLv1xvQ2X5yqaMU9lGnexr/VPreOC3Mo+fxhoHReW07u1oWm0xUVSzDpEQxyvSGPZkA+edeu + A8HsXOg1b/dI8oYHD6u/hPImb4oJ/R4h2PXtR50mfPrsuqMZDBtuTzbmWa+nNR4A6IaBnV+W+mRz + Sk7w7vNHqO7UepjiXOCgUvIN1qqThCZmfu8w4p2Pw7E6IYn3pBP6ez+hQy024/7ZwTLYGj7Oyosx + iwYmssqYUnebhf58VOIUrrfhShB63tD0/SgmCt9mj/e3Ba33yDGAV+GBBgqM8YgOLFG/2XSi9l5D + xvQ7gIjOOz6j9rs0//LNOkj7lJHqPKiIybPibJHzutDQ/gnFwnObBRS07KjZ3TxD0J9RBNlWs9aR + THM9Xp7lgrJXtaVn/vbylwz2IUSqnNDjsXLrP39E6tHaEMjOycDu1irxm46Is2sm+6P8mVqQvrjD + ++cBo8nOfPkf3tAPx6RenpstoL/4m7czMead8VkgdNKEetdlH//FZyS/dkXYp4E5iIV95WETMmcd + EzoOS01xA26W8qHQGTa7FVcuQnNhOnSNd8YvFamtROKIaca0r79sTuUJHZ/iFKIc0nj5419Heb+l + 6bm0Wb+MeQXZ67WltnpgiNmupqhfyl3CRYkuxW+uw+4f34v40xkJ6cUIkH22XvQv/7HnKZrUu8lv + 6Irn0LANXxWI0VXE4e6xqSd92XmqTviJxt52V0/CxSbq83FKiVL7Q0xvw1kE9PMHGrzdgz+70TtH + nvE4Y10eLV9q5KJEYy3XOF3Pd1p8Z1F4Rfph7JJ2mO/VzUZkd+nJfBgkNDYHVURmdU+pdRZ7n7rU + b2DFC9h4RSweRuvoIcN/29Twtrthig6SiBpjW9DQqVI237U5hEeNdeqS9s2WKL7eFefx3GFr8/0U + s+KtLcha74aCe9igaY2PSJLejLprfh3LZxIB/45vYRdc53h56z8bfucqIsBdNDRkXT8p1ZbY1PqK + ncEy6pmocAnBWB6u/te5BCNUDU+JAt5UTL/+50CibRsafpNfMWuzV8L70Lk0eNZ9MddV0v7jzyFG + vj/LbNL/+CO1P1+jEB/B1KHNOTpTczRGtEyZaitrfg83/R1iIvkqpzbdsoTcEicGL3/kFpT9u8ZW + kUNBd++Z/MUXvOoBsQBibatn2EGoii/Xl7Kw1aB7wAPH72GPqK6/7H/8db/y45E0Fg/J29axv1wc + xAJOjZQo2gI23qLoj3ITiMCn21O4tVsXUUBmheSpaLEd7pb4X76bjucc79dC9bSTuxJNYjDT+5GM + NbXfcwBVI1Js5tGvoOZ5nyJhlyrY8bWDL3a4DtRsCvxwKb6bmInctKjOpTfIPJhXNAn5cgfxmCzY + UbPkv/648pVw8Obe+Is3kG11i+5rXBnLVHY82OPxQ2ju7NjMB4IH9tCQEP1cZixrfvinr1yFuiz6 + Um9tdUlaHh8e6XtgA9VM9filhOr6Y4wZeuIFfY1QD1k57gy6c90MNl/0xTsUt+if/cxWLGD9dlxq + chxTHV3tR0JQxtlMBHenwGa2KPaDc1mTW7YxYX1e6oEXxeLBLhLY46eL//jCfK/ONhCnpqGqea9i + KndTBvcANJx+D2cmbsEY4Y9/Fpf3q57HVlEQ0oqUaj87KsTjmGrqdC0LGm4Tv1ikjpzAJbyGb/K5 + r2nsLxxa9Siiuu7XH+djZSN0+RSEez+KYYHuN6E1HpCperZoFuvQgX9/u3ZSLBthkGHFu4TXBYXN + gbrPgH/o8T8+K+aTs6CgvllU2ykhI/JbIfD9SCkRNKNH8/YXEbCsfY/1Qg7jRRpPOhxla4u1a0WH + AT3xhMDzzHAjVx4ajtncwuFtL/hwJcswBUMl/ukZ//QXmlhFp6z4/h/eIjr+BOo3Go5kUquhXs6T + GyGEapH6VtYa030+AHBWdKOO9fkajJ31VMXkc6Z6+3Di5ZZJNqoNVFNbEDVfiKMmg6+/17A164dB + XO0FrkMy4PTP/v/4TpR3C/6Ln8JDufIQhJ8f4aZzUzP3FEdwk9wf3d0t5hOcWto/PHiaSw5NaNZB + Fajm01RYNsX4kcZIeSJrIlfDF+LloH8asIeWhPxNjAxyqP0OVj5PXWHxC/aVcw5YPUxhTc2BLcx6 + eCjoBw9rf/k1pl4Laz7G9zfpayZy8gJDMX/xLhupT7kPacE9OhTj1V8mynmNmqO0Jr/Xa/B/4WGb + gutyX8KMLyrYQehz8A+BQXW3MgZBuqITCGqeYivokpjK/I+gFa9QY8C5PyfGb/rzX2qox25YTm+R + /J0vNSV8MqZ8DkukrS29++eBsok+TxFY0z3ERmSkjJ0fWQbNBiQiVN0SM53jToop0gc1lp4M45bb + Nerzfsmxg/jdIA2+fIdj3vX0Sto3+tWNlqjRVVdpID0lxlqqNSCdjBq70juo+eiw4UENyh7rj1hn + PL21FURHXl7x+m6QqstGhrEcbzTTd238+3iGCbtW5+hB3QJjyudjq8Z1c/yz/3gx7DKBYGht6v0W + KxYsL2xhorShu8MgsWFu+Bf6LHFI+mi9tbkfHzqsz4ON97BnM/87htDEwYueTtv9IAnmA6AXD1fS + B9x6/3v2ATWSJJLhXK+Ldexzqq56cghZU6+LL+UEHvP7QN2suQyrPjWpQ8G+JAtYWM/xLyFo0lWM + 7bHzYmZ146S84Hf709Pq8fBRbSRy1j5EZeMOi/OtS2Q+fUyUR7qtxw8vjzCYn4YIr14fhL98rJ40 + RH7X2ozZ4JgjKKnc49Bya2N5Pm4KrPYcVtPIDJY0m9cfn8O78jQzKh/vNlrxMD4Vv8qfk/31hSRj + yCh2twkTdfwJQT5kNjU7aV8MTqa0YHjyAR9WvYk9qWv+w1OJKy7+qCR5DyodA5qG0a6YLjtZQX96 + oedmoyGsegOyXhOs+hM2xiOJFbhXcomvpacUi/EdAHS+2NHdd22hOGtKCJ/mA6sesPWnRCInUMZS + oVbVLcVUNfsUgq1xDrfbjPhsGgoe7H0f08PN3RviKzU0ZBz9C9Wj0TX++A560SjExZof+iFTW8X/ + ctcQZpIOc1eVNqqPrUB+4utrTMON6rD0grrGM7+uPFRoSNUpTwPixIhVZzMBMyYaDXePR03CKjMh + SxyCT80tMzqtkB20vj8cnRLPp+o89/DbOxbNPpsjGxeSZSC2SCebx/ONWPfaAfzVJw4qCWtpz6kT + uGrgk3diOIi3cumOSj8tqPvJq3jaH5sG4pts0lTVrWF+/uIA8Sk6hSfJnFHlz3sO4POO8Y7busOi + lT8euotwx+HZ3Rlz5gUtfB67ARuWrcVSeTqe0B/+OtDUGKQ/PmZ4yoE6a31hkd8LQdd9FuFLK+ho + PsUPDraKl9CQk2/D97XPNDgsi4ktZZ3imB9fLZjxqFFn4I2aPYqhl08HOcBxYR7YjDYCwLh3Dvgv + 3n+JEqWgcuZl5cdtTHZi34IQ9bs/POj/flXRAGQVxrfoTOp/9ZrRxsdwTLgKUXLWebUvTJkajnQs + 5hNb1aq9e6NZkXfxIr+VEb50V2Dtvo2HefjlodKOWoAfqx670I18h1teXIi8eS/17B1m8Y//Yfsp + voyfvE51WfUy7F/ds/FP30np8U79ygsKvuSCBpTmsg2rhaxTWbhpAcK/A/qnn4visk1Qh+Yt9T9T + iMif3rvmk3B+DgJiuv4y1Qqf7mHv1kq88qceHHcnUG2rOGxc6yOge8qZGp+vVLD+bKRwKRJE/+Ip + WfP/nz6PC0EdBvZDtq5G+nOmevF9xP/063HvHUJ1QNSn3T0NYBzMjkD/exTz6/u5/9Xb8C6+b31G + zroIc/e8UCN8NDFd9XZob1cO20RwkHiOMw7ipb7iQ6VkBqt3JEezJN6xudO3w6A4RgDDKxLp/Wtx + xbj6E7pL/hsb0y0yJMExCMRKl+Ps8hZrVr/0UuVOdCS8vU61WPkHsPHW08eKL37qskkQ37QN9alv + FOOOh1EpSGuF4tj1xcT2Nx0FrynA5XhearLWa9DTMY/YOoueL+mPPAPLsnqyUDmIiZ3a+l+8D+eV + vy7zMotqAqf9v3w1hfc+QOShIeqv/Hshbzaic3sbqe/NvU+ds80jVVBTMsf3rfGnb23jWayotuK3 + qXhrmrLq/fgQgldIknwtgbwrJ/zjd5NOzrm66kf4+j7sGL/ya2XEhh/+1ScZ40mwNY2Hit16KtF0 + 5ZdQvcfYw+ZzeKI5UHEGonA8kN9Z3dXiTnw1UH9ciz66KmAT+l0CZG1PDlGUS4iYhqtR/bCtQUPn + 7NRSlU22ykkfg4YZrdHiqY78r16ID8k3Zv3x0YBxMmP8932SNWYviAQW4/Aei2t00UzYhLMTKpZ6 + qZcgUPo/fkf4TvrEf/bwh4/wbms78RI/LhmUvLDH5oqnxKMbZuDlQ07tjSb4v/aXj394a9UP+GFJ + v1+AWu2PGOuvp89e/nz/V4/1xDkwlu9YVLDibXxe483Kd81/es+2nxNjXu0FKhzdySLYejGZz3RC + /enE4T+9beVHIex/QYEj/mkyttZD0OX03GGcHDdorVdkIL+4C9XlW2qI+uSfIEzHBz2ueGKhrz3A + XMw7eoUmrtmue0ew8musp9bPWI7B4m3xTtKotvn1/qpn8er+zkf4cigrNB2HLoXrPo/CV3Ly2fxX + j1gOGSGbtZ7y+ghtpqqcfcF2eb3F03D7aJD6F+Pv/FlPN3K5tlha9JA6lE1TrgDIcvUJ50/csUE9 + nhtY5BqHipsFvpD1Xad89dher1w90Bo/Esi+hAtR5Y0FEdKdrraDFdHM2AiI3YYbD73knYlaVQqb + hFwpYXlFNr2WXl7MpyTyVNEYKmpcvtuC1HTfIoSeInYcrkTLRScNZAHXkWHkTDSHUaNAgi4+/fc8 + B+cYbv+flgLpf7cUvIfHlgZnj49ZguRcqb0DJdfl7sbL7nAPgcZPh1qX68+YbgfrpDb9Rgih74Wa + UQ6LwLumTsOfeS9m3847+KJspu6+tGO+T2wHibj08M1TLrXUGNsSyZYYU/uIjwXDYWSq8SUYMf58 + /GL+bKAEyUpxuHBu7S/a1algeR9TfDtxsj/zhZqC8DD3NNs1ui+KgqmpbtnuqCUNuBipJC/wCroI + X1+IQyN9ZQt8XOVNjoZ+jOfjnenqEGgitvPPXHdCdFxvOZ84wpZ3Wy8XZcep8BJb0qsTKZYCXhGc + T5xAkx/1ajo6uQ6bpmTYCZIXIhrR7vA4CQ+y6JGAZkP8TLB3riecCs94kD7WTNSrqVr08suqejzk + ZghvR75h7VththzijQb803hgszn3/s8xlTvAAh96Y5t6mErJctTJPfr07pcITYX4M9HtKFyweblv + 6uWj17bKuGDd/XppfDLmQ46e5elAiG0Wg/BSE0+tDpsXgdM6aPTweKbgd3cf78z8yHjgrg24j/Xa + 4W83+jRbwgTJYpDi/ZGeCxEnGw940hrYwuexZvk3mtTDt4xx5LUHJGpX7aXah2NIrs/PwyDzUhM1 + WUZGT+8g86ViE/Fq8mqXkFOqhy/BG+nq9pnmZDs732IeLuUEr0t2/LOXQkiqOID1PLE2t1Etes7X + Az5MdvhqLvbACyaRYeuPF3rRjkm8WLbDwzkLV4g5npHIr7ci07UzTj/qKSLX1nPgXnk6jd8ECmJO + DlF43rao10U/YxqSNlCVXVPSG4uUeEmbL0Bl4Bc22NYuxFrrRRR1PqLGLKoFteODA6/9aR0k+TZ8 + sVS9VK3xg2AzWR41DwuN4FVOR3oDy6z5UYwa1f/xfriI/dWYUap54NyvF3xvik8hpUf5BYY/7OhB + Q9rA7+IhB02pZJq163J3uVYmiM7NA4c/4cOWDR7Jn73RqzbZf7+XgznfHbGxVW5sCTqRA54TLez3 + zlyw5+94UvfZMyY4E/p6OcSSBkK7rcn6e/zFLLRJ9S68jW9UNWI+5c1FFTaJS099k8V89hgVqPvb + jPeKJfvE+4g8oKRGoeqdd/7cD3wP18fPotGfPcv+GACo44ceCqb7Eh/klSKMcb2e51SzdosDsNXv + kXwgeCK+Vt4tHAZEaABbLZ6v66BSE74uLgwnHPifOHXQdFWOb7949YfgHULYjBk27+gbs/d1+4Kh + lWXq0Mhkkz3Uo3powoR8tvddwQvXVlSV8CmEjeT6vtTPW17BQnqjtveYajZvMAcON+c4CPO4nhGv + LiBr9xgf3vy2ZsU9rOB5xR9qOnunEIxRseEgDhQbsNvX0rhsAdQ4/GLzZG+KJVBFBY6xz1HcqP4g + edrhDoIZ2tjZbKCeuWeqAV9zJg2lg2PQpt47cFZ5kYyyI7KxmSddlbt6wtaGUjQtv7ZXrZPr47vj + W8VkbIwSPQ63O3UU7T0IW/dGwDx+99Sn1bHmaSAvEGztKGSaYMTS5SM30F5fLxybUl031yrg4Hxr + eJzY9INYHEUJXDebdapIWvtCUJ5G9RloPo3404Qm/2raauGfD9iT9AOaN1Jqgn27YnyWBhovuPre + FU+2HaxTyAZRD9MU/Z2XZyUeouU5A2DTUNLw/Gl9VpNjpkrIPtEw37RrF550Vx1SZ6FQCcSfxkpu + 4bPpOnrpxyoWg4d7ggfKbXp4HnTEiu8kKm04PWkx8sdatEtHls1569JYQvbA5FDhgdV3De8WO6nF + TOl1sD7fIBRcdYzZIf01QLmnF6LhPhfz9qzpaqKHNES9c4z59f3DhtoL1tX8iqQzrLuaooNHS9hq + xdje5BBOx6TDV+tyM1jSRpkqneoB4wr58RIfngvwEbpTQ127/vFNUVD23ehYlwq9nsP9IqqqU3Y0 + qhw6sKd+PEFVdA59CNZY/8xf7kBAUhzyyB9iVhvXDORD/aOGcLTRrPC3EXr/tYR0Fz3YMN4UDZ7h + o6VOMSg+o49TqBppbYSqLV8KQShvGTx83SCCHwcxzytXE97tQaFBvDDESt5uUBWfa6pZ4W+Y4Hvt + /uwT44B+0ZIhz4Remxa6h2CHpBSml3os7jV2srwelvfYA2znssAX/ndhU8emSCU6MvBhPhtISJ9F + CvWpT/FO9M7GvHmKJpwg6fGZHAmbi23RqZX/2hOBfUL2L74/qs6mt6nJi/n1AQ9eJ/1IA9dkA7t8 + pkbdtu0V50w71AKMTgAbfrXnw62L2fTdy6BIwZ0mAdn4s/mkPLyCPsI3bm4G8Yp6B8CLOXqvrh9/ + 3hhOqe7OmYLX86iHrMs6tMOyTE/AakNaxFMG72mDwknhIiSNt0UHt2x2dKdl87BsA/MEQpLuqcv4 + bzHobSCC4KOK7p3L2ViO665aL0FPrK3+tFyj3oF+WPiQ05mJpNdrr4EoPTt89e/2wE+7tlIDreio + 95LHegqujaPu4zhZ/cc2Bu5ThPAKNz0+XOYd4n0S6EDkwcbuU+sKtns3kxrULaan3yljrKn3nvr3 + /gzjWccsRlGirv5EuJ/JxUvo70pVPytc+Nq3AqNaZC5K3qseLmVJM9ieW/OdqsekN6Av2M9RTITz + e4HNVOrYb2/m+X/z7cWtiklca02/17ALJzc6IKnkwxaGQBfJ5rTvjVFC2wjMXW2HqLVnvzWtboJn + rHb0MARXtJz1TQPudSixS40Ha/BkRqqfpR72qiAY1nzRAH8vdXzo37UxfVfJNe83HpF+mTYsF2ND + UK2+LmEdbcyBCF6gI2WGBz44m53Bt7cphPL5SKh5fbvxgg5BruK+LcPyuS7W+dyjCL6+TkKh25J6 + fp0SR1WSnUTLgx2jiW9mU30Guk8E8x34E5WmSV3jEdaV/YvRw3hoFWPYGhgvl8AYPvncb5NTMoWs + nt/Fmi87qPdT8s/+J0U93lXW8Rp+7KIHYtE2slX1IHahGD4nNHZulAJayppw2bkd5vCWi/BbZp1G + kUbqxZycER7y7Umt1PgZI8c+GZxrW6RrPK4ZdZUQ2epwJJw5FWhi260G9S0641NZ7wwpvFg9PKze + oEb8beI+rHa5ao5Phx44rfBnv1h6+MNHjz4e6lnRqnXRk5hibQyjYtqejiWS/TAON9rXNVgcZQkc + b1uOrt/v/50/umzbTcioZPu0kbEJ8VFcW2QmuxBjeTeqohCE1C+Sab0FELeKUqYl4ST+jmY3XypQ + juQWXupDWowP+ZeC0Q4mdp+fjT/C8on+4iPJZnj7E9w+KQoyMcSGh2vEoibywN3Ed6zLs47Eo7Rr + 4Mkfeuqk8Zat11d7REN3j3M+I8Z09Q8avCO6pX/5/LfJnBxeqhaHS3Srillybs0fnsTeXQxiChEy + IRD9gbpq5MX88CUORINd0TDCFpPqbM4hTLcz9Yk3D0QSRlORWTyTX5TIxRwLhQN61G1oOZliMb3e + VgsKtHcaJrEdSz+WaxD2dkbi8a4av3dS5kie+JRe1Oo5zN6Uv2Ab7maqx3vNWNLmCX94iWyXu1vw + 24KasLnDjP/4HDNPlg70u3PxmbtiNHXrLdd2OzUrft3UDFCsoYvBAz2CLNSL9ko9KOfPmfB+ytXz + V+N7kHoxwntuLxezsL+VaCg9CR88RVr3KeUyJKf7jB2NyQORqtGBd/TbhkIjhfGs8GcCluofqH04 + zD77FtvlL3+F09xGw3DrJ05d4wW9l6AWPys7BXDvpx2902m91VlGuupniUck2dvVi1qPFThXN/sX + P6XZU1JUyeqb6pdJ8n+3d8ED87YZvY6XDfqhh8qDyoUDPqhFU0+opCHMyfdIMzWGmhnHhlN5g+hY + 28u/eG46OEHg+x31zQob0z4dJvQ+r7sui2Ydmbs3K7gQnsP5lP7YuHFppUjv9rjyQx3xBxp4cM4C + PpQ6vRq6hAU9OMb38uev/jxdVRMx1uzC39Qo8c8mpxMUxS2kbn7aI/7ny52CXumL+t1yjKdqvXUu + ycZI7YMfsYnHWw+uwtn5w6sDY6Jyh/fXeWA3l7iCEbbYytmx2epvbTwrWueham1m0MKOGGv8Wv6L + 18PL8y9/Kii4hyHdvxPNX3SqtbCNnwzvsSH4nTMOPPiHuxNK9oYfJt5oJ1CCsAiZJyrD0v4MDbZt + c6XuobgN00N+p9A2p3p9ng/7rPFQVeukp1fbtotZ4z+vv/xH91WdDox/LpWy6gfYqgRiUMIUW30t + URwqpRfE0ukdRQCWsQnV1/M1TOt+TeRXfos9PgsN4dHGnGrfCkyQ88KF9KjsCb7r7vn4dXvX5PT6 + Eqj3S4IPtbMtljyXZDCOvoGNbbw3xoSZ3R8/o15kDsMyWvUdfrKvU6d/FMVcbtGoJB9xxuFG3sRL + il0OhnSSqIE2e38aPLlC9B471LTph439YyqRa/pFWDPv5s/ooYrbBQ8x1jD80BQVTab6uuiG02pv + LM5DHaTfcQirjTYblMRY3Canciab5TL644oPgA1ujoNrwA/jeLYjFAzXHlu5dShY2+AInvGmw1pp + 4/i7WOoJJK8NaWg93sYSyy5BcpEkNC7T0p/xbVHUkOev66KjGU3TjlSwFcecal0QGdOfPlICTrDF + XSkbvsU8weYrslAgxxDNekUJ4JMrYte63PxFN6vuD//TuNbBYM/LfIKu7wYiEVLV0/cRZWp+fns0 + VKqNwb4Il/Ac8xC7Jb6zKbSCE7Sm/iTME/Nh/PUkQsnNnPCduvtaCg+TpkZWeccrvjPYXZttWJ+f + Hm7T1p9aePPqtDFCwhzUGIsH4gLVfV/jA/kY8USkaERbMHNqZfNvHbEiLrDyQ6pvHrVPT8oUqfy2 + tKh+cy7DP74QnQYl3OzPX39WxTNAKLmM+jIsNb1y0ai2822D13iPeGvwezCesUn9TXeql9Xe0JYc + GbaPeI7JNeo9dJZLEeNGHep5vICIwqS94DDgIR7Y81RCfZHP+PAQ9GKxior/00swTl0v7mnpt+hP + rzEjv0MzJYIGNf1NVL9td+vu9LhS70KlU5MafUGIPTRwmIuJOs7pVbNd1PDqi+Ix/Dq8zebdMHMq + POYN1eTkaDB8eRP4F2+U6FQIf3pWvdks2My9DWLMV0pE49rBYXJsDSaHiwjeQhyc4HxjsJ+zmFC/ + pgvWTj2JWUwtAIWPt4TzHPAp6fCElv6bYuvuHpBw4pmprvGU/vnfAnVQQv90BOwKnlvP/a4c4afW + OtZjkrJpe1pLAllhUiuhv5gEHcfBGq/Dav1/M2YnBXbnXPnDY2iezJsNtnw8/tM3WAryC9L4viW5 + OoXx7M/rlMhq6LG56ntLMUmgRgdXxt4h84u3qmvp3/fjg/HW1pLEMoK11CH1MifwJfUYe/B55C0O + JjMtln3ZcSg6+HIIbSfETSkdHFjtg4ZvTUXs2snjH/4lLOeKuo93UgnLY05WvPxj7IizAFY9Dx9g + RDE9W60D/VPj6SEtdkxoE74EtHmq1GPab2D9/iirl2uqYv+RRgW/4kXVexuv9Txn/+tPS6OOe0eh + Pi8vBjs2cgike1q4IN6x5jMhkP/pkddVrxV2wwxwf+e7kN2sd8Eup6hRjzfEUR3ddDTNh0mGP33o + 2JEk/tOb1FXPweWm1ow/PABIEus1/16MxWU7W131Uno77J7FJFkfDf3FSz3eV/4yLwOBJ497jHHh + MioESwutTxHVYi70eREdA5W3jZKo36MRz5ZxilBzW66EP9euz5t93f75H+mhJDUxC2dBh22bUF8M + F38ykrpSp3Dww0noIvRPH1711nC+hCfGqLsEwH0DQs9DTeJffYLwv/rJqu/QyLB4tPIjQi+PPl48 + 5+kpf/7mHxQ8TD9f7iGI7yENp2dn9EZeETjrIo9N0+oM1hVHAtuCzwhwWIul8abosP4+IrW95n/+ + zuMPn5onwRnYNZ6Wf3poFHahwVuD0YPQ3B18+B7reHLGQQTpsPtiG0sTom9z28A90nfUSE5FTUZr + uIMrNSY9FX41zNQQNOj6fiCJwAaDp2lbQnc+DdSA9m5M7TJ5cNv9UnxaZ5NPRGsz6CbvR7YevcX0 + Lx/lghDg0PHfxc82lBQ+zfQh2zD4+GzNz//0RsuPg4IvgoMDtVpdaEgnLp7fHL9eLLD3VBetV80+ + 07FDp3UX5f1NPz45apsU7bx+Gy6PQ8Umldv2SI53lHornlr5+R2OEd9ge1vHjFZiyKOVv9Cbs9n5 + y36vAZhBbFNcbn2DjU6uoT/9bNV/2XLv+hId+OSMd6zkh5FXrjZa8QM9/OGHuc5kMI/Dntp7FhWz + lSkRfKOcrvzgyniakhL42a2w85XNQcyumwWpWfslEifuavaSQk75O6+zgQfEwjrSYNp+Q6LW0que + I6YAWvETdZzttZhYRkbwFdRi/cyqeLayU6hWduRgIz2btbTqMfA4SQ8ipu9jsWxwQ+CL8jlks3iL + mXRYCELB+MDRGE7FIgmjDcrMPai54+7FYtCug7u0ueHQelgr38085LjGhep4FOs/fgrbQsxwOOw/ + 8URf0QRmWexDeWwaNt0Pv0SJ3qSizqF/sfG9nzw1su536hR2Pcx/ePp0TLv1vMd4+jhTpN4+lyxU + L5oc/5ZcDeBocS+yvdbcQPMkEwGffJE6Id7G0/SaeNAERyZyWdZo3nm0R32b81iX9WvNlGZRwFe5 + gOrRrYpnQkoOAoccCGrtoz9bPyVE7V1+4dh/14wNtysAzsuCeo7m+6JpVRNa+Tbet71miBnybHh+ + VoHPk6yYF5TZgQzvNTKd03AY32At21UPwX7Q4GHZLxqo7uZ4x/vR1JjkcO/wT48mfIbdmJ2UKADf + OjYUt8ehIFZRicAj9gjROoWRYHFXIlOKXbzr9cSY30mSq1uHLUTRWy+ebq9DCPn751OdI9dh5i5V + Ao+XWq347Ves+YGAdGE99l/mhIgaNi2oXDDQVY9jr3v3uv+zn8PN1Yt/9SUxD326X/HVrKeLDnAr + 33gXVadhfidlhla8Ts1h5/mLRrQSmp+c48S6fthSWBsO/elH+hDvap5jNIO045Rw7DQBLafXk4Ak + 78a/+kixkGKo1pai2z//HB+hlcEYVAp1TUMt/s4L/cWDlV8j4rvr/J8I3UNuenb+HDkKgK9CECqr + PrwQe2jh48pvslkbKtvgsTvBWPaI6tmzYkv0dF/ot1821J/EIyKLU/NbNvh5yC5DU8/dGZrtuPeU + 8JG6fcwup6z9q9+QxQTRp+VmkuEScyo2BTb4bLgdQc2th0tW/Mp4+Tjn6mG+Tvj6/GyMJbtKC7yu + dAj/7LdRHZqDlp/EP/3Sn7xs1CHyxDs+6EdtEH+FUcJptDtsGqe7//p7vxg3V5qh9F0z4ZU3CHtJ + Tp21XjnvyZKoa32QIMMJa773ovt6hW5DllqUEDmHXxma6SGFtzc2jD99/g/P4ehwCg3hemCt+hqV + E/YNhwzzWSwiUFk7UoNKrTE9wkMOa30glL5pFY98M9t/+Q87n8CM//AFWusZ2LXtdeoXJJpa+dWe + lvsxNpZ9WYGKKZR0Ny08msNF4eEh6jZ2X6lT8O7Pl5VV78E7nj8bo5cZ8JdPsCk//OKXiixR13hH + 5mlJ0OReahkaQ7tSc3f5DOQ0SAla9ZH1fXFGd5PeAaiG2eG7XxaMmp+fhsSX8cG2MU/+bF/zBMrj + OabBqz0b0nErexBe4UKzsTGZdLaIg+6Vo9OVT7GJ22wXdBzaBnvIDI1/+uxT8jA9rPWjb+yxQDXa + r4mjXzPFI1K3L6gXJSPvPz1uqKKXKj7adUXZkhvL6s+q9tYlsupxbD1/DWTUpPhkn1JjSpygQ3/6 + fJhv7Fg8CLsESjgkqz718GeozrIy7HIJO8o6heJ8N0fl0V0qbNWPA5qdPC9hToYjNs3+Xi/TYvRq + jW+EHj8pQ9Q//0o4pWO36kFtPD8BTDhoaCTspBRGnx/1UF3xOQ3zSPXpT92Tv3ou1a5ZiIROSxp4 + 7eSIuol/L9ghfbfw4imhRqA28bxYwun/Wnwg/++Wgk2HJ2q7cs+mG9ZARQUcse65ccxSJ+agoVFH + Xq9YY6JeGS/1wTsaTqXIZ7M1iLkacGRPNbd6+uS4S0Dl6WnEbrzohiDq1wqkz6/G+5tbGqK/xBmU + ZCqoQ7aOL+V4GBEWnBMOds/OZ5NBNdR9XpTwB1oPv1G+pWjamyIu7yMdllG+tZCQKKTeQfqgJbJo + AtKZ7amNHr94knTtpPrVjuD9vnwWk+i9dVVu7wds1kFWSwKXtepQwIEeqyks6Ld7pqok9B+sD3UZ + N3+fn7+iHM481EgYRy2ArX9DtNiXetxtLbkHQfNqbAkqx6bEEULQLnYfJswdh7m+yglUH/2FceY0 + vkA3nA20PWg0sZ62z26hTOBbXD8hEwRUf5/tp0TKz73gfZnt68lfBgWO/Tall0peBibqrqbmeXij + p7BTivnv892nohQba1dVHgupap/gu0L8dZcpqU9A9HtHfs77gXheZyf1xn8m6qVtUvwu5s5WWxFt + 8aHCr3i5mG4Cw8N44P18Pg6icn73cO0TFVvfB0Js/9Ff8FK/JT1EuoOo9RkreOVjj7178h/SrqRp + WZ5Z/yAXMidZMouABAERd4CIgIhMAfLrv+J+3uXZnaVVakHo7mtIumnBHi8H1I8WIjr98fUGrlkA + swUJ/9aXeRdhjkpDN/GDAQpgqv7VQrG/Gdj2Eg5QFG0CTPPLmdy6QgFLjq8Q+ZJSYsxqrcbdrGaG + sFhqnB/by8De5N8IwrysSGKUtbZWbZxDesxcb9VjkK1qrkjQuNrTLFVhRT8R7HzoaW+T3BCIwWLW + 1wSS040jFjlfaloEPx1pWWWRwLTv4Yhujg3Qksv4gcAdsLGcjFC0nx9PZPMFtGf+tMAIZ/os+hRm + y8L3JmqUB4vdwm1qftMuMrQd/0jyY9xpayRLIzwawQFriNJ64e1cBpuzRvi1fh4ON45yDpUeBAT7 + tqttOVZy5CC4ksy3HW3Nw6wF3rWwiYHsah+ELEhQOruYBEMNs3/xR+eXiU2Av2DkTaUHt1W+4mJe + W7CYw2TD5PHjZ+pnQb3a/S8BnHJ4zc0wvOpJTqoSbejj4/3/QjqO1oyUXgxIkBp1yFBND6CSogrr + Rb6fUhXcGLytw2Fe2kxz+INfVkhN54oYXfEGi49GFbx0vyR6gXhnTVyHkeY6mXF+Q7W2iRcqoOXs + bHNDH4HDdpPrwSkYEvJXL9Yvez+AQ/OwcFroSsaaL9+H4KXVWDcDqZ5OtdxDzHnCjCJFp9wxqVXE + bFeCzZQTAJl5yqBbpfMerz0/2XRVohlFRVwQFSw3wHssVcH6YwSi5T/fGVmbU5HU6wbOPneppvBR + BHAO8wN+rq4b0kOOOpi64YPIwSt0mKvyKcCFfmNsFpGxD5JXLZi01Q0bC9QBd5P9Ayz0uiQntqHO + dlWiA5i2UiCXpyLRjfVmCf7Fi6LFH4da7VrB+2cf5LOyqB778X1Ak9yPWOVLP6M+e1XRIUhyHKdG + E07nmS5Q7k8jcU55lTHWoNmIVzeD/NU31mO3f8/DO8oe1LZX3Ltwf974JQangYtgV0FFWEyc5Z3n + bHWPTXgeM5bInn8dmPMMSvhhT4hgdzw69HnXC1TBlsPKwcmy7ZgMslRfPi6+NqTPVrk59pC7Shgb + UbWCVWvcHuaH2SGysdrDKueDAOXuJM+CUWoOV6ZpAy+v/kLMtv5m6+czFNAptRk7bi4Mm3QdA+i+ + OERkeHpQfiadCf2vWmC37b/DInh6ConuN8Sm7zjkGZtbgN1bZ5IEGA9T+76asLuVmvfVL7HGJJbq + IfMtadijshVujHcU4PHmzfPG+z2gelamSEg+D08AQqrxx7JV4Y4P+PZ7ZX/1qhEOYbKRqAXYWVhz + 6IDovAC2wMmoV/ECOmh138u/68/VXOmhUZqnWbp81Yy5wVJGr29YYZ23rHrF7K+C8LldiKFxq/ZX + j2GQjZDcWFTQrZv0AvJNf/WYTdA0rowfLvz4JiZO8hgH+nlfG6hKrUrUzETZxNuOD6Z3sxET4oOz + vuL3Ae357h0XRh+YHD8ghBuFnhgFl5ALkFqiR/ainhTHHqDvVOHggb173gjMalif2SWWnsrkec25 + VJ0//EMH/d0RF3zXYZtlnELDt+8e+8Nc1ofCYqF7tP2w/EClRj6/KYKLpHXzdIpKh6nawoNnK59w + qB3CkPpimoC5eeg4b8GqbbN8Sv7w2tsY5VjTu2VDeKtMnlxuagG2PItbOF9TdYaDHQzrzNMYtFfJ + wUFsnkImdqcGJqfBweYQ8mA0Xm8VXs9Hn6jpzQLcBhSIrncpwum8fgBDpaWAVty+SVzoZcZjhXfR + Q/InnO74uDp9ksIMnwaiJIpCmQxXED266IqdhsfDkoVNDM3g8PM2XjYyripsCCuptedjLkR1b35D + H/DtdCHnbrbCbRivBWI3lWB7jwfWlo4C1F/xgpVINcCmvaRKvK3qFWfJL3B4rYYWYuSsJicHjiFV + S21BajYKe31VwCBdxwq+z8cIKwv6gm3PJ3AKF4xjsh0AgTdNQOOV3Uhy2du25OZro9NtAeQsZi7d + 7G1M4A/eJo+i2tun7Bx0KGaPwWtIGmtbogkxmJmIwX5aYK1/BSWDlOwozLN38rJ5IgID1WwWsEVS + XltS590AToEvHF++72wJlLyA+UYZrKZGndHkJB5gdPQiovKyERLeM2zpYT+fxLmLSraFgmCDwTMe + xGqHfthYc7Sg64MGX5r5HE4+65doPR+TmfH8YGDl5thBrAUmkc3qpW3i7dDBLe0LbKyXOVuLQGxh + 0tUKdrSnGa7Ns5wBXIhMlPw90pVKwgyTtryR2Pj9MqI0sY3Ux+h6gI284R/exxtzweaRbHRhzbpD + H/WSkcf6ZMDozFUJa/wVZuk4E0DtufYhq15eRDferbYOwhyBRTiqWClLCyzNDzWAOlWEDUw/Dj3P + jC/plzTCqmnz4boeIxMc1HzEN9btM6rmdgrbAK7YrZxyoOe2rFA2HViPmX/KwOTZ14Sft/4hr72+ + rwTAUeJUyJLHU3nQ9RBJCSy/ckUebx9kWyS/D5CP5jfRXPfq8J9n4sLb23xjlQQbXeHVVuFTIR7R + IvvnrOmpLFDZqcK/+j82b4mDwv2jEbkdrHrJwzBGq32csZL7dfZ7BV0DceTn5KqbNzqevsGC4lg5 + ksJIFMDG/teDraYonnT0dLrypiIgK/k9ya3bXwzk9L4F4wBO5DxdSEabd9+CW2k6RI89e1ifod38 + 8TnssIxY//KsiGFWaMbOr3Vnk/PGgt6t3mYaDYJDkb+WsJS0But8R4f1M/F7d4JHsHxezIEPZeAB + UfJZYtYRAF+9ri2YmB2Lcz7xtX96wjkcT8S7sTLgyzTlwP7Za1NDz8ZXgXKoP2N9PqQ3h1LhAm2w + 4zUxwk3RttC4RPDj63hefe1MWcHTO9HQQtFrSUABqZ+SCxXAJ7M01EW29MJRB3/rFzb3aqBlNbd/ + +oCoAJuUj2C5geboJVifxa82/uGfobiI+AWKtc93unmQuwqYhG6+d5l8mAMo6rQnWpR6AxvB0kd0 + TGx8LcuOTljhZtgsHsE274+UIF8sIRciB9vgtW/JsL8SaGPukTj48uF692NP/OMzOrjbGs/Z+QbP + 4Ibxa2StgQPXMACXso2wy/GKw4RwlZGpqvWOj59hnJZzBC94fOJHtAnZAi9yCk+muBJ910tb/VwP + /+LLsPSZrsa3UdG0VC65/8zFGWYeMPBPn16eSko3rfMC+Euz6/w9aJJGHvdjDv/4YgCwCfb1WuCO + L8QsGidjIx3q0NRkkVz1GIRjYqku0p4Vg2X7ytZLVdgFzD0BkFDUNI1vnm8P6UfP91BTaHTeDwND + uTfGmRVASbfLZicwcGnlcS11AQ3OdwjMSnpgj18SsPrKNAJYUt9r+XLNaKItLeL1ZSXG5AUZCYQl + RetJysnp9305m8duC/rDU+GbvzSqZWIKtmzSZ6aY1mGjBykGraFNRD/yN21TS6eC26OziJZb77/6 + 10vPV6tglVRC9hePkE75gtWU48HWTs8ctCE6EQ/sL/F7hioDrz2I52PyC7WtH/sCjCutiCLfjyFZ + QOhJjn86EMd1sLYJnivAY4t1fPGDOVylB7/AnW9gJ0qXYUFXZUFxiLR5/WE2o1WhuSiuBUqwn64D + bT7DAYqnNCRW4dbD+E4DE8WV9CSnhVEHJjx7rrRCXponK4qz9eh3KvQf5x4r65yHvTnkPTpUkTuD + UqD1WKVnE2h5WXhCesidrYiBK2nkXeJQLw71Vj+WFoXLc/B+eWkDTv+y/r/rff4KkY55RkzofZ4V + fuUC81cfXHhjjBqrVdNnNNKHBj7Q7eixu/6dyzRoUVtLPNHYaKy3m5xAKF2u/I4PAWX/9DSideDx + SJWd+fObdNj3ukKubkTDnV8m4PrbX3Qkmxzoq8I+gEvZRPjMjlw2+uzbR9U4mN5nRB1dPfU0QzGJ + H2S//2zDCJVQuQs+NpV+CseNl01osmLmiR98D7vL4S5LopX+Zt4dn9p25vECo/ftjT3VTsNVaeYe + vBrX99oqfINf7BNXAt7pSRy2iZzVeL0DxMnwjLN3chjoIfoJsJrISBwx7OvteXc9eP1yOva+GrMf + wXsIEJ+yAzaSqxVS9S6o0DmgkydVzJUORcF5cFbygIQnRPZZAUwKxS4447Ovnuiw0CSHy1dtPa6O + AF3U5pYgXXkhrDTEDknf+ZF0hfw2b23dZtt21GJwC84nHBmrU/NWJVhQn30bP/xwDdfD+1RJX7ar + iUfXHCxK0ybo+W5novghDtdfJ3KQ54dwBqgatY1KAoSq1Kh/9QR0VFpyceebM9j132dfHyCYzURU + qvyyBV3Pyz994xa57VCqQvkfX3FVldcW9CwE6DzVASviGO1H5BYb6YvPE22Px3nlrRZuhx+H1Th2 + AVmB7YlxvQ/C+uZPjfbMVEjB0I/4JIbngTzufC79+RXaJ8mH1RqcBO78cD4MAQtWITBVsNpoxqfk + t+74vDGQvZq/+XAsnGzNcOoilywTCac4GlbwmBcRf8OCXDD9amuOzy7c9THWxk+pLXLSBxB/3Iqo + g7aGP+bwNmF9fCVEO01nwAi2I8O7yX+w6+FlWMYliMWq71J887UedBdOC2D8lk74hapJo5t2UWGd + 5fKfX6Dt68/Aokojr48NI/uXP/r1MWGZF6GzjsIzgsrpUBJL2fx6it2JAXs9we6uD+hnake4HQYO + n5Aqa9y5LQPYbtyV2F+NhkQbTxKcaVx4x1W3tX/Xu3QyxBkK2mEj9O2havyZOD53n11/BCni1cXA + +tGUa7Zn0AEeb+6M3WM71WsRrA36w9M//kcjiz3Az9v8eDT/Lc729JYCLJaTk9NBkxwaIHWBB6WI + 8fnnhVn3/Zw9WHDZiM1+s8BSFWqOfqcUz8vX5Yc1PJsFBEiYiCJmPaVWK5Z//JWcRecU7vq9hDa0 + WHz5vBCd6scSoVd8dbHHHfWQgRc5gT/BN/7lC+U9w0LusurYs60g4505CFD8OZJ9PZeB6l+2RA3O + LK85xqbGwGuwgWvHpDgitl9zmXPVkZRZA74soxLyj1MH4akZb0QmKetQd1M7lAI9JPd9/VfWngLp + cu2lmW2OPl0mGBfIb2Vr1y+bs6a4dmHmqg9imumTUrn8bDB7KRlx+e5W09/Yz3B5nCoP7HqZ8qaa + wvMjof/8senz7k04TAfRQ7vfyMGLLKDLUuokuc5yvbFeK0iHMN08vms/zp7vKZJTB87JkGXahtcu + gcMIa3JOrr9sM+pKQBk2Bo9R1ZtGNs1QgRfk5fzVDkzYufO1BLnPJuQ+tZn2ZO1PAKVLyHt+MS31 + 1E6zC9+pmBIjUlu6imfJB+jdcETd9Wp3VaYCeLf3RkyAT4Ae86YDwa+TPdC0prbYG5TgtFWCh6Lt + Ea5E40twr2cNn1HvhVsWZoy0CluA//TRsh5DDqKlkIlcPAdtGZlw/sNr72B0p7ArAjGGEjqdPBH1 + XkZtrpVhq++Ds8XMBTPn3ST4qUxAPL6k4frHf4yXJZOkyj4aY7x+8t/1EAcFZj2W8XuG68A32L0e + Tg57d3MGXh+ivOu1T7bs8fzPr1Spcg7Xvus4sPths7yJprMxJrIk/67PWE+fo0PV0lkgblx3pjuf + Yps3NeEef+Ss3TRtkfOhkx5WvuJwYZRhEc+SCnZ9j1X7IVCijViC6nNl9nz4/vkFKWzK4OgJqho7 + G+GrBj6sYiVKcyRgfseWC0OYqjMDTxKdrvsRJPMtaDhWpA3M7uFewuvp0GCcJ+dh3vU4PAlkIufn + 9RVS/fVb4Na3HrEKlDgrvEUJ2OsZwSNr1X98Er171vZgQLKBM15JBbwq9Ykiua9wVJKrD/QiSklO + +uew/MNnVa09Hg8VnY1h6mF6dMC8PFDpbD7rL9CP9QQ/u+kTbje31eGuF711/79Fy5buzx+b+cju + Hcra0wbhhXnOq2Vc6bZp7iZBson7EUhr4EWjS6F4jzVyOk09/d31sw5n/d143IU3Kdt+ggJEJGi8 + TenHbNiFDhC+JcVmcBqz+ftRRimAgzovZvVyFlbtAxgd3YhkDU/q1airHgXO6s7rOsNsvOk986++ + +4X7rne+MqL8OL+9g3eaw+XcLgt8J/uLmKl40BZ3CyRQ2YtEovNyqhlGBT48W8WEbSMpAY3dWySO + Lqd5nCHO+4m1bwp7oN/J01c7uqGnl8Jou36J6nVSOH/ejwj+6Zk8IKCmVGVkKIuKOf8a4masRfQN + 7n6bt8xSr23u4VVKf/kugK9fr7EemLC0nIR4gDCAfj8KlNjIAdhINj6jh+gtICWR2plGANV/+xtw + KLW//YLp3/1K7zOKvO+O18yenyL5eP3MtJnu9M+7vk/1GJ/4lZ9kZ93jH+3rT9zr/K4X0Vg6sJzP + G3GrYRiGXY+L1q11PCCG9kBP9dmGd6Y/45OoNc683z/48/sN1u3D3Q+WIaq/1c4HLxn/juUC/fFF + NTOf4baB8wG+74yFfT65OOvnXenwJwYZOY0fRVtEQ+ikFOo/fO84u14MciyBin7RXO35zYVwLVGN + khzLF1INlA/uFbSECu37bScwFylsYAYlTOR0ZurRfPkyfBk3k+DJ8Jxlku/SH//FSlL5dFt5uYXy + 49zOfcqyYJFunAUXw7Q98S3f6GT37xRmrvyYF2Xz6tWVbhLc+T4x2JzQbfebwP48iUvO80CMYRLA + T/QzjBvOracyTvZyPXHeNaJpuNxgqf6tPzGiYAz/8g09q4/usXn5A8vKX3XEUs3w6tN0ptx6zGP4 + HsQFJ7bsafyhPKrSNg62xw2qF66n2uphI2cvbO78eZ7IwqG//ahb8p7AJni68Kf/sWuUjdOfakuC + rQIzknB8qa3OfF0g6+shwWxzc8bYaly081uCcS9T/ju5M1yAdvDef3pBSc4yLA3T3OfGD9nAHN4t + ZLHl4qhPZY09RFuKAvhTccCvIqATWXXEM61C3HQK6xk+CvXPv//DT0p5007BqwsFfBrZtqbb0Wng + hPsbNrqDS7nP76OjzRpVEgTfONuU5in87Wd42xBy4C9eYGe0IdZQ0AzLZVMEyH9GHivJFmcjfH4F + +IP3CWunpx4y7hYIaKq/BTFEmNIFnBMZ7v6qJ8SeMyyfT+3CPz9eEeGDzt1q7FP0fiFOClcbqBz5 + HarO8z6Vdj5nHHoYMurni0jOrOuE3D16cTB0m40Uqi2FS54RHSgdF5M/PGWP5aES+9S+Ys9I3nTB + 4j6T5M655FQKWz3edZlBqXt94OjIs878/WkmjFnxhS/oXIbU5mYVJmJ9J67tM8PnVMsdOn7sYubo + FYOFOawMVCzI4b/9ZyIEXgnAKNzJbb3M4eqpeITa5aN7YNXPzlrG/gFqy/M7H9lwGLYJXiD89XcF + y5ygOmvxMsc//4lgDOxw+dvPeZ+EhESkz4aua5Zdn55qr6oYQtdj9EtgET194l14C0x/+m3P71nY + hMbZ3kV4+PPz58V+A2eLLHaElliH8/FnBs6mJNYmvU1BJQ9LJ2C+TIv8/zpSIP7fRwrMYgsIfr4+ + 4XrLbglCK1iwebsMdLt//X3wvQWxbPVbPcmpX0KzuLzmiV5ljU9PWovcJTWIy4lTOGaJtvespfy8 + nd6Bxt+epIH8nbnhhDlcKY/1G0Rbv+rYTbv3wEpxLcNWrqEn+tB1NvaBTDiR1+jBtHvXWyBaKYwd + S8R30bEdhjvXC/CfIT/37fPrUNJeJRDmi0P8Gxkyui1dBa9GL3vQr47DGuN3Aeco0rAtSHbIHhHd + UIfdglzM92FY3kJewufjzWOj2wePiLbfo/l0VYm85Wy2gNGy4ZXveeIZgeFQeR80xHjWC985ra23 + Dvo5omqbeoehNB0mYGoZMqkhYfnlVxn7uI8SBMp6nsnlnGeb8Ug6cPAeaA4XXqL0mTwWGCieic+q + 1tfvwrJykBWiSIoGx84yvTQBKTeXIQU2p2HjdC4Bt8/pOQ+R0NT75xT9vCAm1r6+vzLjOSgQqcMX + 16kGrr/jAlqM/SEKujrZSp6yjcbzbGBF+pjaxnFHDw6HBJGTXBqAIdBT4VhmLNZwX4FVx2WBMm7C + 8w/VMuWOeTXC3l0zbL6vWUbn7cLBuHrknq9yZ0pvrRSDe+l75PYp6LCe/CaCg5uYWHbvisNCqZmR + Pt+4edk+qsPfXtsC+4oRyMtWErr0hSyj5Bz8sNuPV40/ni4tZJ2iwO7XwhkH5jSCzkX+kSJrQbgp + z7MNiRlJ2Hhc7xl3WN8pPPVxQqxYKem82ZsOxTmbPLQ96poI6tYhPopr4vGTGvIXehpRw02EXH6R + DdjRn2PoEv6KzWidhhXNy4ICbiRYvRTfYUFHvoQJiQ3i+sMY0ub2sf+eD74rSRWyFyrPEHanmrhf + i4TTS1IC+Gz35rzLdB2W91g20MKsgp+sYQEWfVoVTmekkTx9RWDZjk9dfL/NF4n6U6/t329hI7w6 + b72aEaCGBkqBg/Xe/RQkA01WC8Jf8hKwyYTnmttsyZTszb/hM/8sahKqS48u6OzPwu2j1nRbygpA + Tnpi7HM9naA0jnDh3BonzCCHjPKqY/RXD3J4vVP2jIQF7vG454cGVus8btKXincsm9cDGL8aMSGV + mTcpri8lXHXcFfBvfTGlYJi4d2bChf0t+E7vSsg+Q5jAp2Ji7Azdw+Fs+VfAOaT+LDrNu14vkhXA + 25J8cKgpVsYKp04FVi6pONDQEm7I7CywKcuPWIcYans92ntoJ5Hg34kb6HfaBJQxxxi7z8VwGO2w + 9LBQBJkkNyFy+AvFI4zvw2nmRfUZLgEz7EcMjiHGT+2r/ZYD10NX+rQ4oH4fLmCULcRevDs5ieoz + Y/Rvu0HP9q4z/KF3+JGe1d5t0v2wTBQ5455ixcHa+hxJuqEILOE0FFAgQofdy/GrcW9WiqEHZBXL + sXOu6elx0CF9cJBcbtwhHDv2K0iIDj9PXCQz4xWx4RDsU+yhThiHkb1XAlr4x494Pcgc3kn8DV0c + +0G0gmPpqrCnAt4RemNvgE24RPanh17oTvgu3x8O3yXQgzEaa3ydykvIOiFNUSdnH+9gnJNsDQ+Z + C89yR4l74dJs0F7ihihr6x6ckjhbM4aowIVCgJ9he88WpqgKdHGsB35urAIYKtzKv3gjyeOsZ/R0 + 27uiblY0v/vkTGl3hR18J7qG1f15Dt8X2KD0QxQHG+M6XCcZATynnkJubpdTpsoLX3xl5wfxmkSl + PBTsEtppfsRnr05Cdo9H+HpkJbEvTuDQC8UzVJB8xlo2ByF/qi0OXc5Jud+PlO1d/BG6XRgJK02j + ZOyZiB14J6ZGLvk+iHI4ciWMm9HCgSvmAze9YxNphFux7j84SibV9xAomDMOD8lKyWUOI1jBrpkZ + 52kP9HOaVdhYbu+tS7eALbu9LXRuR4yv0qd1frrVSTBKdZtcPe4C2OQzqiDa3pQYH+kK/sU3e3Hv + WKcgqLlj3o9wem8PsuPvsJVSO8Ky3kqC4afWZrd6QVg+ZIdkmDoDJ1FvhkTqnvihavbAPOeLAE3t + 6WC11jyNL6xTjtpXzOKzHq7D0t+tHKyqc5jJ87VvkT+gDqM1mjx+x1seHm1TEq9iSSxXdwZ+q34p + YJejhR11Duj83GofAmPfz3lPYv3vef+tt9+AQ7YM5sGGt0M34KvfxzU7OuJBnGA54fvj5zmUPxEZ + poE14+QQ59rq3e0cntsZE8eoGzp6x8yE81kGGNftMaN7PsDX/ffFaQ4XjaJa42DHEAur7RcDkp6c + BpY1noiTZTlgF5dlUDaNFAe/kHUYXOccdO7bgby+4QXwSa8kKFMPr1kwGL0ev9rXRHUwKySoX262 + wSDX4VPlLGwAEA88Yw42VGP5Q9QxS4aFn6YcTge/JXclUUPuYi86kh8n4G3mj623e/nwYL/qR3z+ + PrBDW3FmAHP5jPMqnb+AyrfaQuFn+eK9jS5bb01noeFuZ0S5A7Pme5aLUCq49j5YNQerF/EB8vtI + wBbwkoHVzdsMY+QsWKV+n23zrbKQOB9KklmDldH0Zs/ochNmosbcCqjl2dZffGLHGrrwu7KRgJqx + vOCL+5Up/7tYPni7C8DRs8A1f+1eHbTx3GMv8FZnk7SrCTXCrFg9eWW9xDOJQaeOV/ys9Rqs6Ct6 + 0ByCEtsybp2NyEMB+HPr/dW3bDwnaoSsLRnJuVAaulUl7SGX4N5jXwhm1EL8ArfC5/Ytkfewldpa + IvTLTwS32TVb9voHrVxQiX82fUoF8cvA6RY42IgDeWCuXmzDyjYlolUnU9soSyN4O/Lr/OWApv3G + YK1QJJeQPJZbFm6BbKl/9Q2f/GsNeHBRfPTyfg5RGqvWlvgnQQiZ70q04qjWqxQPMoTPu0cMA/LD + +vY1AZ5ejYZtzkgyiqMyQPGxyOcl+H7pFsVqK5mDXxK1da41vbCpBMpP9cB2Dn2N+sdfBdqB1XAE + m0vIK/JYwFt9b+bvnh+rFuUcnN7Lw2OF8g1onFBP2usvudfPuOYc8ceBw2My8Lm0Xs7qRUcf5sqz + IaeTVjiU7RsGbj/F8XzWSgfmcbZicG4eNT5H5US35PHo//B/fzOO7LAzB1xQQWPdu+LO2c5PN+i6 + 5nsW5tmmDOGvPYJPQcG+e39r1JI1+T/8OojXbLy5AgPaq06I/6YppfxdjGFy9n9ewU9VtvVOVkI7 + Pl7I6TehYRXkMkeH79H1xl0PbIEsq+iXHftZql0OrHpcykizYwtfdr60yFvBQV3sD9hzDr2z+sC1 + YPgtS0/oJDVb2+VpgunmO7hw2Ge2uU1to2NacR5ikZFtaRf1YLxDl8RX/ahNcwd1cGhxiN0UhNpy + OjIlrMGYk+eLhgM9eBdbmo36jPGYmGBRknqTaNay3iEjnbb9vo8NRFtN57rpi2EtsCxDcfwx2DAT + lq7qLyvBfn3YdgV5YL6uyABD/aUEw5zLaMtsBSy+6Y8YtecOzO9HodiUqoyt18PRePvlR/D+fkUe + OPTfcFMGy4fcXW5I+MHnYevvpxxunOnO3BVm9cLeXiP8iJw7C0G0hVN8if0/fMA+eM/auB1vpiTM + NsFYEKKa7Z7vBh3x8sbFl/L1SkI2BffoaOJLl8/hcgnMDrwSNyWJdUfaxg9agPqsuWH321yGFY1T + AyKPqvjsWFrGdAst0UX8Fd7qzHY2c6dzA8n0zWeYavFAe/YQASfWjFkgCszGT9tIwAOqSnDLk2E+ + rL8Umv00kRvJLDrjWdzArkeILoZPjbZiyyEefA1s1N5Yrx8jY8Cl/Gk4L+XR2Zyt9//0Hz7t+cMZ + dyNHow0ccp7iZpgPx66E7qHfuxDko7bITK/CDT8hsTlDCLepL7k/vPXA4S0N83v8tuCkvrVZXG4g + WxeD8+GrcVhsx74NOJljXBjIQ4iN2njRGXzTDf7Fi1fww7CtyepCXewOM7odHW2b8t8ML2jW/tXj + 5dMJJmz7k00MFl9rwt/XGHbeMBA8+VrGds9fCxPJTIljcHG4hd1BBw/Y71OuGrZex4doQr5SeIxb + Hteb3LG6eKuFO354tZCNMOJ8xLk+Jo/iWWvL110ZyD7GD77HyKKcePU9uPjnk8dFNxIu6HgsRSXO + JGIJWHXWj5sloGMmC9taL4Gf3W06KD794gHjWDv0BcMc1eXBwvKbSmCJknGBUWraHjA4LqPmF3kQ + MW5OFC8l9drhvoCNKGckWTkvWz9GyMCq7s7k/rU/2hLvY6j3+PSET1zWFNgHE8EfnxPTYZWQvrOO + g98imbAywaEe/76vxA8Jp9WS1MyuzyQWvW7Yc6oB0BXmORRPjoPxr971lZmPwFIagAtjrrM1obUN + wWT6+BKGBljb5Wb+8Xts7XxkNu6XAh6eHk8MoVTo8L68R3g8hC1WshjUMwwiEzWimmGjin2HcPln + BHeIOyK/xrJeH0WTA/Vc3bEM0Bhun01hJP3K/7Dq2yNYv1vpo++Tl2bwan71VgdMhQ7tZs7vnT+S + 4DbawA/N2IPK5Uh3fNxgXA61R1dBd7bESSuQ8YHqTUKJKBVbJgYbWz/mhb1+Q3I8J9u/euwNpalR + caICfB+jz37kSnHWTBdT9HYUFSfGcAdb2CjjP3yOmfBXr6uiSCgJQuNPrwxUyuQEnR8/DyuZZjvL + 6QgrgPnVI+el6LRZaeQZ6pO9zIg013r9/p6VFDydcn7zz2rY+RrzH7/c9SAdT3qDIGs1+Po9PWry + CPgKLsN+pKk482DVL88AehFs8WuvVwuVuhG23Dfxhu6ih/wLZoW0cbpLsozPtH/Xf9im964Pc6ez + bceDw1tasGnIpN48ZYoAb68RUbJ90H/6vpmgf3C5xzzVa7gZpe+i25FdyRnVMuCvfc9Avmp7jzbU + yTZneenwy+Q20adhoFs3epa0812siyTL2PfdKYArfVtimKikWynN++DqyPJg+mIo1a2vJBxY+YLD + VWi08XUJA8hXGv/nD9Tr7q/94x86bKZsVJrXLMooK/DJt+4Oy7t5Asu7H2AXcirgJ5C00OdY01uV + Qqs5DwoC+vNz7nHypGTlSxMJNzsi50Vqw59ySF2wFNkFWxa0tG33S4B9wIQY2ujXf3oV/PHF2+Gb + AToPng/1yVrwqyautpyv9gbeTXPF9/IWZvNeP5DVsU/sA+SGLMuYLdAE/uIdU+/m/PFPaPZkmtcJ + OsNiTYoMTAPrWP9mDaD40o2wFg81seOjNEwsekTQ2tLRA2jr6WJDV4bRRTnjyygv2sKpjQdc5z3P + 4I/fJqt1gHYymfNrTFrKCK85giPKWRwXQVOP2kHowVW1PGwq5BUuD6DYKOff8jxkGaSURlUAybVX + d/59yrrrKW7Qn75HWvUFxH4aNrptVoHPy/oY2D0ewZDc3vt6LcM2cvkGERYEbLfiJySGBio4lXKJ + L8d1or/dT4V//pADzM+wRS7PQY/M0u7PqTXtv0cXOGt0IUXDKBr3F1/PXu9x0klquOmja4GrsW9R + G6mgbRziNnhYjt0sdEXjzFGsNkj3+xrLVWIAtu6uPVLqHJCXn47DUnzNCA1uahI54We6Hp0NAk36 + mPgsckH4z09b+8rEZlMNNY0T4IH4/jt5bMKKzvI8JC6IstAnhpncwCZz0AMSrzLeHYZTvR37N4fK + h+pgWeV+oBNdiQGSiTXilnkfUiioJZA96UHsBzMOP+rrEvRCb/qnH9fHYzGR3agedg4GzHpeVFM0 + 1CduXg3VyPhrd++gpL/sWdzjd7vYggk2JgqxGga+w9Tey4ZM/Tv/47vzn15bxPmGTe/dDrvfaSFK + U2fXp4+amv1ev77gNv/eZytcxp5npMbyenIWuS2jPlcs4KTWGr58nINGdj0Ef7LsE0W5xXRl9y7y + R8QQEjywMVDs3Kp9qppHLrsfQpljXYE/f+HCvk/OzgdV9IfHtoxNjfnDn2Gx+fkPX7cIO6p0WFCH + rcpY9t8PFWyEZ+cJn0tI/33/Tz9futzLZocv+v/wjxP4YdOpNkMgNgW+HMQ1nG7ZM4XXX7oQEw2U + Lm3y2ST4lBQia3MbsnKalBAV9pGcU/GdTZ8whX98z9uHZQ+L0rxGWIfgRAz35mTr7idLyuVw9Q5G + 8NFo8j148Np/OI/zmMQZh/M5/qfH5cNvHbY/PlRFPJ5RnP3CJWXOLXBd/U3s9vnVemd5mVKXOSI+ + P4VEo4sWmZBH0cFbzGtBqfllXSiR7eoBJi3rbX0JC3y1xXs+ROqDruZYNdCfmB5b2/kI1p8yRKI0 + Bi/sLYI/9Lsfgf747o0dMP3DW7j8nAqfr0w3/PNT//SRc4tUSs+ik8BXNrsEl04/bBHWVCAfZxsb + n4LWlL+vEdr5wczobjowicnaMC+qZl5eo1zz17VPwEfDiGhBbDlrhZIIjOWDJbqjuNlYfM0YPCKO + YC8jlsMbLBP/1TsP2nNMuQg7Mry5hjIfEqetN9vrGuibrYUVdB2ydSiX7m99iJa0RBuc+NKCKX5e + PYZbmmFdLKWA+FT65C4WoCbjTZsB49kvctrzk/4gkmDn/QbiGbMWjvX9J0E8bxt2S8Ea1uXAdVBe + C32G+/5NZTqPEr4ej5JcdTEZtuip2ujPvziN5ppNAv/swJ//H6Wxq60rVUfkm401wynhdn+2tIB3 + Ah9i/3IEfkdHOvzVC4Jt+zOQyqwsBAwf4EvY8hkBkcXA8jJp87Dz29Uc+xaeOKYl+V4/1uQzyiCO + c4VcHqd90lOjj7B6Sz7WVsKHm2ocfXj9HwAAAP//XJ3LjqM4GIX3/RSt2qJWSJGCn95BIEACwdxy + k0YjSAjhFgIYA5bm3UdOtWYxaxZG+Bgff+cg+O3GzWt76ua+ubXAeC0y335SFECHCxZ2Q3g4cHRS + HT+GdZ7T9/xLNHtGM6vkDMhwZV0aN8nMy1+WpA9Ssy/DMS4WAVhqLbncbYG0GS2nCKzX2SOqjF/d + 1AdfGWx6t3F5faq6UcF5KjJ+OchhfQrxaXE3wBXviDC9UiL6cisNxDi5i/1ghowXKjC3VCdW97WS + Jva8IFUPe2Tn3kDZ/XzC89ryRI+PvY27E1699YbWr5ViL+1Y5GCZE3XgleZMx8taGcXESH1ksffH + 6G9fI+RgTsTi7hbtaXs8S2uiKujcpLom8PqJE1tkmC7si4ZODsc33zzZrCtRe13SMpVdP+XJmxeM + b54eJFxMHC+/F7h7jq5o9oY/UF/cUsryvW+/bUu5Rmm72BpwKtD+Ox/7TOJDJjF+Mny5xSqcGA+E + UYArsqtNRse8eq3BBWSRrdtXGuUOei/tnplCXNGLJfrEoggJHih685lZmHe8GNXlmQSvq0qXWbWu + QTsYN1fwfI3SR3DUwVerhK2/xh6pmkWwcNcN2szxopje++XFKBt0CwSzEB7RIwBlb2XuSNQsJEar + xPKC1zfIV8UHnTenTSqfbGgR81fSLGoXHZj/Rft5+aBT6AQxFNZzQVyZvxb4UGY7MOuQssZrRfHQ + 8Lo8bNcScUv+YdNwvWoBP/Y1+/FwG86G7WeyuBox2SycWqIA3AouRt2w/SjVlue+q+HyZQUoYnrD + LC8E+ZoYxMwONKTkhnZv/RB3faNaz/waXEL9E21edq6NkV85YCaPlOVDXDHR1FEkwY5MEtWLupu9 + bG7ksJYxUkcn6OZGO+vwXq+GzGcd3tW1CK37iJCpQGl/56cjdkwUfYWyRj+r8Son+nAm+4k/FxSv + PUe+QKOjfSCY3RB2qgd50W6HxSkndOQkewdlJ8foyvTUhPc+gqwYs6E15jSZB7NQ5K465yT2lFKb + p/s4y1dec8l6txfCd14kMl5JfHFr0iV3EQ04POMtWl9PL21ifAeMV/4kSiB+JX1YFytZe5Qdunuf + rTRetsrxfb4gGxKANnuBlEMpjhE5WzRJyM0PHDl73Hl34cVOh50NeN+8UZXUMumLbTtKtuw/h1Nd + xdq4iagHeWadyC7bZ0lP1eYo3ZTi6uLVa9cJi603QrK6WcjVcayNhLs44BQH9glEULK8tD9CzsU3 + dr6w6SzLhwjqlagjO9DmYmppbwEOs4Ao81aj45QkMYjD+vzmc5Jg+xdXclf4iMyleJFopdQptBUV + 3Fdm3bVp9xAzsHirYnkYbw+loirwp1Lw4+fPv1hB4KNubmnFigE4nfCv/6oCv4RffR1X1btY8DH0 + cZZ+/P5TQfh4dU39wn/jpkyfPesayOJq+V03+MANjqv/XfrBBvznx78AAAD//wMAo+o5QboFAgA= headers: Access-Control-Allow-Origin: - "*" Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983da948d9a56809-SJC + - 984ea6ad0f4aeb2d-SJC Connection: - keep-alive Content-Encoding: @@ -2958,19 +2961,19 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:00:58 GMT + - Fri, 26 Sep 2025 00:30:09 GMT Server: - cloudflare Set-Cookie: - - __cf_bm=Q5mkOAry1vCow8ao47_2WjZ72QJLAMO6di80cI3.SCM-1758668458-1.0.1.1-I12HTgj6upbDRd9Uh7G1HxVpMjPvBAZ5GCwvQJPD_IZi65L4i0ak5H_bwP156Pd8.4HxtfBEL34F891vGpvPrHM7N_Cyjbpn6AmyAbI.AFI; - path=/; expires=Tue, 23-Sep-25 23:30:58 GMT; domain=.api.openai.com; HttpOnly; + - __cf_bm=Rd0gt9TfXqlZLXjFPstvY0YaouRu1DfRXfxDnPxqjg0-1758846609-1.0.1.1-8squ.sQD7kC7qkmMgajwmJCImL5X2qb00IlNTY89Jp06omON2UhzBpQhd42t7cZd761rPD9RNnVsA.h06ceixxRGDyAvRs.VxuX61n35Kxg; + path=/; expires=Fri, 26-Sep-25 01:00:09 GMT; domain=.api.openai.com; HttpOnly; Secure; SameSite=None - - _cfuvid=QHUlsttJKSkMwhy.nz6n477lVtIrR_nWlAvhiulzxqY-1758668458868-0.0.1.1-604800000; + - _cfuvid=vl43iPiy1w9QKAduHjfI0uox8lnWVWyGo03348I7fwI-1758846609890-0.0.1.1-604800000; path=/; domain=.api.openai.com; HttpOnly; Secure; SameSite=None Transfer-Encoding: - chunked Via: - - envoy-router-55b6d8ff76-7mcwv + - envoy-router-5469994578-rqbln X-Content-Type-Options: - nosniff alt-svc: @@ -2982,7 +2985,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "418" + - "295" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -2990,7 +2993,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "437" + - "331" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -3000,13 +3003,13 @@ interactions: x-ratelimit-remaining-requests: - "199999" x-ratelimit-remaining-tokens: - - "199979816" + - "199979820" x-ratelimit-reset-requests: - 0s x-ratelimit-reset-tokens: - 6ms x-request-id: - - req_60cd081360e443359c7a66c6d1fd44ad + - req_40c9c5336e9a4f3e92699d1fe94b3237 status: code: 200 message: OK @@ -3171,7 +3174,7 @@ interactions: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983da94c2ed16809-SJC + - 984ea6b09df6eb2d-SJC Connection: - keep-alive Content-Encoding: @@ -3179,13 +3182,13 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:00:59 GMT + - Fri, 26 Sep 2025 00:30:10 GMT Server: - cloudflare Transfer-Encoding: - chunked Via: - - envoy-router-9696d5879-jz6cj + - envoy-router-575fcf7dd6-v87z7 X-Content-Type-Options: - nosniff alt-svc: @@ -3197,7 +3200,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "93" + - "85" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -3205,7 +3208,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "127" + - "113" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -3221,7 +3224,7 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_b8054c6ef28741cfa067c1842c0b268c + - req_23e4afc064754a9a92c9d08320e1ef20 status: code: 200 message: OK @@ -3267,122 +3270,122 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA1R6WROyurrm/f4Vq9YtfUoGJWHdMckMQVDErq4uBgVRRIYEyKnz37vw23W6+8Yq - IRpCkud9hvznv/766+8ub+7F9Pc/f/39fo7T3/9ju1ZmU/b3P3/9z3/99ddff/3n7/P/a3lv83tZ - Pj/Vr/nv5vNT3pe///mL/e8r/7fRP3/9TYSSJWejzeNZOhp32J/0AF2F/QRW3C2RlPeLh6zec5vV - s7oU8nAMiSIzT21hHW6Fo8m2xDAeNRg71ubFR5lmJL+0QjNm8SJKLpPo+P1Kbg0dRlzAAzN5yLtY - Vk50u4qkt/BIMK2rkHKr6WYAy6QIFuMl0PHgiBDO0e6L/BmtYHWyryH18KUiy3HIsK77HQsbpq2Q - XavzgA9RZUm6treIc2xjOkvt8pSkzKyQhgLkYnJgRcnx5RLptao0/ORyHUzap0a8dv9sqLPTI8lP - swWDS3ttpv09qiSiRmcMHl8yjNv7kV5l+iW2uT81C6xNHtJ2xuS0C4Z8Jte3B/TUVlHIAxsIpmyn - MFHfJbEk7tAsctoEEN3GFGWEeTeY8WgHOdo66ME3Z40/PA4Z9B5hT+x5uDfCNVkLSeeWMwosoY+x - /RETWHUdg44F5Nzvcw91gPF1wn31UvLVXG6B9NiLiJjMPLiCu1BVamJjRFonXmLhOCcMcFbE4CcT - H+j6aZ48sHLMB7tCtTWhkesEHrtKI6fBAu46igsjdW8/RaG5ftwxecqehHKWQzHXKu7a5oospfPl - gTSxRwPbFCKGTnPjSKhWD8Ab57IVljrwieIdLcCF97SXCuZeE9SKhjb7+tRCBzkichTdG2gSy7p0 - 0dU33rlm3ND1G+vwN9+haOiAO37SJ/Tfekmi3VvRuDvTvSC64ZRYhziKhUyo7lKifkqE+k+Xr0ft - BuGn7SpyEncKnXsBBnDpD3uitrkasxMvWOLciohcgKjGnLqtmUMAS3QtryqdLSfSoeG+DeTYnBS/ - CW1f8PYOBgyJOWpjFyUrVOeAIifNCkqTvBZhkjMsOU6Xxl3qOOmgyX0pcQjzHtZSahPAN+dDIKgA - NsvnzZxh5bs2CWZdyflDlwfw0esGuqq3S84zl0sBT03NkjNoxmH1nz4PryGrkJKJHDpD1lkh78dc - cNiFJeXet6cF78L1ipeS01xBkPsIpqP+wk/D6Bqqc0EGX+2skCReD2D+KLElKe5LQIWZTnRix4qX - vu0cksyFdsOlzoWVyMkokbrINZjj/f4Mr8v8IXEwmpRIsQKll+ESpH2JGFM1ryBUueGFbIG/5fxu - PRmwV6MjQq4ZD0J+4TIYi+Ideegj5PSdGSt0ddkkUXCJNM593zNYdvMDXaJDAfplTmTpBA8uSndf - yxWUKs3g9v5Q7DhyMx/TKpPUo8gRhRl1d8npu4dVLkWBuPIqnb9H/wmgfsKBpBFtYIPeVeG4Oi9i - fftXvJDLCUNlrEssevfFXbp00uG93O2IrFY7QG3v8pLouT8R88ovYMbFuYOGff9iaUYrJfm6qLBm - 7jOmbz9219v5/oRV4/kku+wUymdMk0mB5VbIqiXVXYG/H6XXXrwT/XnzwfIWdjKEhD4xw1mI0m8V - hVKlfgCWbths3sfj+y7ts+OJIG1CGt8aH0+6vwOR+Pc1cblSSw247S8UOR0CsxHvGSgE/BTsX6nk - UtZRLPjsVhxE0p0F+NDlHjQOKCXyvn4AqlRpKrF9oRFFuxXgAYqOlZKuq0ievRVNWONKBZJ/Y5Fc - fbt4LpxYloSy40k5HSDFTlbr0lzTFTk1mBo6ZdMKT113QlrWxQ0P2U8GxqQj6AILm/LDGlqwmzob - JbLtuXwFUhl6cvFEVlk9ACV96kDeFHTyMLSjxqnFpZWiJGqQN8BFo29ctZLUUo9Yj+MLTLpz3sOE - O3sk4lthmBLGfkm9Gh6JdaPlgCdereB422nEOqkjXXZNBSU/J0ekPdW9u3otF8F99NSIOwpPSvuD - gGF23mVE7hJnYNtc6qCVpk8ib/g3e1DDcMPPgF/AM14N00tgyd1dpBjq3NA66tXffsaf8f4dRrkz - GZh9TIG4J33O8RIpjtT79odEyLm68xJJswjs3Uyc/C0065zML8li6AE52iRr05TZFjz7KiC+WxyB - oB04VtqbDIv0Qtu7bcF5z0OFTUJUA/jDsjucVRjvZ4UoJde4a3o7Qji6lojO71cHViVz9N9+Qxt+ - ABYMFSPFKmaCwxHdNSqLqwgLI1aIFd1uLt+Yr0iq38cbuhn1Mcblh0bSoqb6Nt5w4F6s3kNy0kuU - Hy4Xyt7JXEDaAZdY8O7nrNZ/dehhnZJL9RVyYq17XZIfThGwhn7WRl9/v+D78Ka4B+IpFpDcpXA+ - yCPx0liLhVmTOtge1AA9FD0f5llZHcmU7zFmhEWLv1bYZZBPvj6y/IvTkO66LyR4cERy/HYVXYzA - jADxbZ4ozkl0p3OoniXq3xKSt7UH1vJDQ+n4cIY/+D0LpvyShgA/kCHbnsZ3n4sHdUN+o1swYzCF - 7VpIeVJFSGajJBeyxuhhnu80ctFCDCY1Bhsf4luCZp/Ju3x6JPBClzN5+LOZc83w5KHfNwGRLWUG - 67D7prCOIEQ+vzfi1feiWUJJqqPL4RTQdYkUaz8eRxvvjR07LBNhA2iVQoy0MJL+/XvpyLbE0ZHZ - jJdM6MGeexskOR2MeHkGn+A3n1i87rl4DHaMDseOekSu71OMfW1mpFh+1SiubH3g03C04OnGW3i9 - +CSeP0MlS+9+6bf2fkzXXWDB0C7NP/WTKrx7h9EH2SjYuR8wM09Vh8rBt4n29qlG5anuoJFYF/w9 - gS+d0mjXA03wCryWRQrms83KkluSFen7dKHzW+pG+GCuMtKT3TdehMs8/upTAMO21uh9oYxk0PlD - EljVYPGlZwvSbg7JneuvGvd1c15Msa8gP/R58MTdIYTiaw2JxUtFTFmOhBD2yULMz2NH8YNFd3h1 - SUPMSZ7Byn/TEDCrMhOHJfwwyg9sQXZVIuKoeUrpFLkQBnIbIXcBp5zePrwOU4wUZONQawS1Wz34 - vDHvjQV1YPaFcwRNbqABX3Kri1uDBCKqzJmg/lhrs/5eeqnRo4a4TbLQ9TUpo2Sk0Ypse6ziZTjE - hrSNJ8BfT9fWE+OlsF9VlriKZDcrla0ChEwSE/vB1HSR1dmCbxN/AmEb3/xK3RAU8KyTTF8w/RQn - H0LNfjkk2/CFxUb9+o0Plb2XDeuzfCQwKzM36BbdArMYTMmP/wTMw3YBOYuAh6CjBwxKudA44/k1 - oNHfEFG+C6aLzn5n+Gy7EzEqt3OXWhoqCAMeEhfPSUwkp7Pgy408ZOq+rq0zdywOFlIc9MDnfqBc - d5ehLe5lkowmpfQhljMUaXsjDyk/xe2S9RAO82dEfpnbYLLrUQZb/cFwZYN83oHPEzpw8YjtmXm+ - OP2RhaMIvsHuVH6H7f9WmHcdQUYt+y7Z254Ov/MDEnVsdsOokLCCIXd4IuV5ODXzcXc14Cln3sRk - gobSeI1kCGaZRY+Nz8wb3knKRx+Je0ZuzNJBgYA7qIBo7PlAaSs4KQQQP9ARFl8wOvtTIu3oq8Pv - RL+CeXv/ktzkV4Jq4zr0nW0lcLntImKdCdJWvU0i2JG1DQ4PRgEcJ413CFPvTFy32eWU6xIVNsK1 - RYbJY3d09rdElLrDFznvDoHPVs/Bth6RG+WwoZnQFdAY6xHP8mfM+b17bUFUcgtxypsR84KY74Gc - kAED/4q1xQqrTLIt+4Sso1G7y+1zKiRO5vKAGY7C0J1tKENM726w7rM2pimHEuCODUDu44uGuUF1 - ARnB8smJc+OYGPrMQ5EbeWQv0hv8nh8c4SyhjZ9QoqkPDLf+8EjM0V2T58iKgrxzce2JPp25etBh - kkOWlLuvoNHxUXowecQWMurnOcaplongI2lCwH7KIh8H6q0wOlxact29Q23eUR/Dmx4e0fWOkYut - R/iEE5k5oiTSm5LqQSPp3uglcTb+trYzq0ubXiP5Wu6b+UuyFBySZiSa/EVg+emPDW8DXrZHbbwH - fgpHjKSASlw/LK6pVJIgqAHymslsfvwOim66J+bFv8cvMHTw8MP7EI9y/Ie/bc+LDDx/8kU7nAJg - imuItKkomjlEXQU93/LJpS3fYC4lZYSqpUQBf31Ad8meTxneS2mH9IubUZyGowMc4ZwjpQrv7jqU - zBls48ESsjv3w807HiglOQei/DzGwp6GDGTUk4IsAI+Abw+lCJPTrUXFJ/vSZbzvX6A2TiHmvPvT - xRfCGAD1HYN0eDxrpI9tVbTPvESCnAkBdz/HI9j2B9LJR6bL6NxXeDzFNh6U/Jkv9WdfiC839EiU - vPKB0mD/AtMbffDStzGgNt/fpUfwOqFbNooNXbzrHUhqFZEArzfKy1KQQn5W30imM6ZL2K53ONUg - Rg76DnS+1a4Dl8IkJBA9Jh57gfWg8hAWcjzQxF333KuQhj44E3k3ZgO1bi0Ps6BVSRn6CWWFAvQw - 2+9llN/iG8AfRZglEZcAuf6Bi4nEByHU56QhunButDnoXRl6s39CyA5klz3urrrYzu+SKFXIuLS5 - 8x6cZc5DQSKq+YiKwwydnG1R1o/3eMOTu5TVX2Nbj0cgNHc++O1vYg7w6S4fsy4kM3OZYNXmaFii - p6uCNa8corfG7K76zZeBW/c3FHjqMeeqNDAOpev4xHhNKOa/ZKfCMD2FRJ6ygzs1Q8/DTU8gR0gd - bT6mXQqMuncC4cov9HtOXxYoSJciz0x9ujIe6AB4GD6yCmY/vDrY9FLpR/2f+8Ju/GTw60Y50UTL - ilfxkPBwL5AGbfqfcsEeOOBCqhuxBiUcKHg73R88dfHMx9PQVKrULCJH5NviavRXLySsGsRbWRxP - FE0B2GUoJKjxG0qFu+DAjswtUdcrdgn2iwrel31LrJ1ZUcrvrQzeyWwFO8770PmRkAA2etgg5cQU - +Xo51Z7EjRdE9FqtGxqC/R4uftwim7NkQI3hU0mNcGmRttgMWNl258Drx08D4MkKXVg1Z6AWn3ii - iT1p8DLfVXiIUYrjQamHda9KK/itn8y7n7TVOzme+PPXisxL6CL2GIP8xrdIV54eGI3vS4Uih3lk - fmM8LMfju4BMjD7BvK8fdLFvjgcsKl6Dnx+1KqcuhFKd5ER/vzpKyXpgxFv/LYidUlNjT9XLgY+g - PaEgfI0N3Y2fVHqeapb4Ed/H1LSGABbvo0NcUKiaAERp0zc+Qzb94eJRXCBsSccjWf54ubC3dUPq - QuaO2XlAA7/nxgJyduihhE2keOEbBcJbKc3I10jTLPNN1+HPTzjtE5zP0q2LfviNzqVgNLykn1gJ - vMs3OX7Y1e34Xt/Dunw66Pp5PED3sEsIzUeUI0Me4pzPlsyCq4cVor7OibaaKWLgbdlfySn8zC4n - v9kC8Kur/qk/X3EnVz9+hyy3zsGqlbCAvPCmpFSMWfvVK7ga+RT88Ij78c0PV3zRud3uI7nLpF1q - UBJw/eamobcHc98SA+Z2kXJqY7mXtucL6s0PnVvDecHqxnPIvnSeRmyvfMFKfYOg7jJ1YC9H7wV/ - eBb1/UDHH79Q3FZARzX/UlqAjAevR20Qf5S/8cR0YSodyEHDIjh6OX3mGg+5VL9s8zHmM3Pes2B3 - ZBIU+LelIQePKWDV0xwLQLMo2/dPKDl9R4jaW69m1Sh5AuXFICSHoRiPK1ky+DbHDyoBZMEiuecZ - TgfHR+7O1uOV8Wgv8dPe3PCS1zALQkaqa3pEilLZOXc9ZA50bqONzhtfnznhbsGTUGQkZs83Stvv - 4oBdqlOiTQUctvUbQNXSImK8Ed8sD9Mp4BnSHnkqbzSs1B6eMJsfCPnxQPKVXsATHIWzR7JJuMXs - D19P60UKaCdy8XpzWSwZEauQyADTMJ5ZWYSvzLhg3vF0l6MH0QDa09whOwg+zbjhOfiok0hMp2Po - iGORB8LBGZDyvDrxwu8lWSwiZiJ2NorD8jgsFmT6e02CPRdp/H3Pi3C7HzB4PVByizQVbnwdfz9p - G9PIY1/AT9MFZfLzmC/iTn5KH5O/EmW5n7QlZZ8Yfg2XweIk3P7Mp/Tju7JovAD5VlkILbKbkfdC - SFvFw52FalObKDQk1d3qWwHO9vghRePKMY+7JQSZPFY/va6t30xj4K3czZu+eYCF5Zwe2vJLQ8eh - ZmNeyRwDXsbgiBRxpwD686/AyRuQsfkZM3ezI6hH+ITBzn7lMzmEkfTTAwx8svmswHqGbNKUSLn3 - nbZ0YuoAuTpqyDr7G2EvFBZc6k7AhAn5nCgu30Kne0b4Vbwf8fdGQARujREgeajf+ZrefOaPP4pS - IdB4nFeytNUvcmuGl0tDMItwKrsUKfnDd8eiMnRpzZ8OKav2BeYUF+kPrzEljQXobiQZRNVxRr5a - whi7l0Mvbv0jv/eyZu2f0wo2/x/zzVceuNJdRHg579xg3b1rd8pL8QUL+3MJDsOxa9Yol3VwNl8O - yjZ/ffzDv7peJeYeFsPKCNZT/K2/cpS/OeGPNwzrYFSQ7D6+MbVumIXfR33BtCjUmJ+TuYXj48Yi - tc2f8Zpc8tdv/5HrxWfiUY6KvQhMIcarkMOBfkS4gqGmDdG6NND4664qpBL7IVLPQ6dt+B/BGbg2 - QqddCFp+p52hBgf/Dx8izvcUAJG+bsjZ/Fw2Dpo7TPRJJPo54QDe+A+k2VHF4KTP8RB99x68LeIV - L0r1jUePfkX42u/vyCnMnTbXQhnALd/B7MY3loMgMFCIzQ5/9YkH5IC/T6gxtEdmccyb4fy2Zthe - jt2vvrhzZNgdHHT7RM7P20S/Pz/j0N8jsunpeDEHR4RvbDLB5xHym16sLGmrt8gmH0KX+znGf/AR - Va857uy8xDAwFI0or6mKp7afZnA2Wwdplf0aRiOeoVRyhUseW74xLxE3g27qbeLYMe+uR97q4B8+ - s+achhsxgvDcPWcsCHuf/vgonAOMkTJ/PXfxHCCKIQeexFyeqTb1m4OnnjGDpXhAOdsA9AIGXT94 - 1s+4WYTLHoOfX5SYZwPwMju2UGeCIzG27w32iyfc/Lc//sLsDrIhuXTlMTCVVFsPjyX7+YtEv4/D - QF+nkRE3vR/sakNoVmFZDemdPGfMrSAFs/EdVbh9D/YYr2Dzp2W4G68TFoldNWRdoAhC5hyTTR/S - LS8pxH6VWWKcdCUXTnq2gq88+Uj/nlxNEJJLAp+PWxIcgsAchJetOfBVZl/kPswuXqw2LsCv/7He - 8sOfPrtGzD2Qjt01pmtcydKPj9vSYWnoeepbIMMZk2DKp2bZ8iC4c28mOd4WUVv4OQ4AeD/egRCf - nWYeytv4h89FvD7H49mGqliktzvS9kqh/fAX7KJeDcSktl1cfkAEgma4bPmX63ImfWGIumeNNv8q - Z28870lNzi1Ik7+ETh/zW4BOdS5Io2uUz0N5GuEEi5pc84bd8GBtxSLN7wG3qO98VDJ+hDc9OgZc - 0u7cOcohBpwdecF6WKKBXcmSgi0PI6GlzHT64f2WJyDTr6BL/YeYwM0/JSdVuAy4nC8GtPpqR+TF - BDHZg3WWQsOhRIVwakgBIlbaHWGyrddE+5PnfIS3gbzung7UZ5AH2Wm9BuKmd/AnubWHebzIm98c - 5vT8lme4rBZFli+c6JrsryKs09uExXDKmrmue0fc0bbb8tNwGN4eV0Hq5wkxN728aC8hgydsqoFg - n9aBpo8ihHuZiHj+sI1GmSXh4fVtAGK4TZgL7OQXcNNzwbzxxSl1LjyMkrAJ+M3PWdsZGmDz4wIR - mXozu3apinxH+z/5yfK631pA5Wn48XtApNhmYNX1DB68p60JPzx4PCoBaUf3qq0Wp7VSx7QkEJq1 - HPDdT1e46U+kj8wULxc320MZrpgcL1t+LM6SCi7uhwZ7Y3ce5jKCPPyOSMGTNGsDx8yrBzS7dZCr - 5GrMaS8hhQUFcdBseRd7yYROSh/ZnqCBYYchXiNV+vGpox1/tvxp6sTz2ytQKb86sDz3rA4H8j1u - +ebYjN6J4aFzilPiA8jSVQ+HAMz1siI/abzmT77hVMeaFCfJz4WdYocgqwcDbXqazvz5xErb+0Sa - nkQaLyyrDn5+oY7eOhCEpEyknDvnyNy9Z5cOwe0Fr0wRkcRVvv/2Sw6rVpM//O6Hf3//TgX817/+ - +ut//U4YtF15f28HA6b7Mv3Hfx8V+A/hP8Y2e7//HEPAY1bd//7n3ycQ/v4OXfud/vfUve6f8e9/ - /uK4P2cN/p66KXv/v9f/tXX1X//6PwAAAP//AwDgwOyj4CAAAA== + H4sIAAAAAAAAA1R6Ww+ySrPm/fcrVtat80VO0sW64wwC0giKOJlMABUFFTl0A72z//tE3509Mzdc + NJ3QoavqOVT9x7/++uvvtqiv5fj3P3/9/XwM49//47t2ycf873/++p//+uuvv/76j9/z/9t5fRXX + y+Xxrn7bfy8f78t1/vufv7j/Xvm/m/75628mWRw9BLioZ0t85TDfyh3eqyrxF2/Zx0rmHANsnBK/ + nvaem4HluxENpfphTOrFWuDwOLyo/awf/vhUPoLcilxOLwkRa1rt9rKyedsaeSr3czLzNCzB+RwD + rB1Htx9FQ42VDVqnRDq6ERP2ZxSjfutcQvAHkQ08J0sgrt8tNppsQWx72NqKdpAMvNvEtJ9eiHKA + otUdh14/FfRQTK4i6uaWejlJ2GxM+4fiLf0d20GCezob3EqRjMMVa2ar1byUPhvYL7JBndXqUU/t + 5hArgUcWMmncyRjflV4p/SDEBPiIIqo66VUxN9KHqsl9X08v9BaAfAJCj1raF0siHkt0TD86vp20 + LRL7+zmD4Li90OB13dTsGSchqKGZ4atrPtk4U6OBh7Hy8DkeDsZ3fw7heuioLQrXRFxFj1I5yecE + 79pVl9DbuUvhsDfXWLteedSuDVBRd8M9uXcfrVjKZRMq+TbGdCefep+LGdOVj/EYsLo1jglX6aKO + zC1GpL+WG8a6Ml4heIRCyJjnMs7W9ylULmfQS79H/mJw95Vi3PkMpxvxXRC1jgKFBBGP46XXfJYf + 7qqSesoVa48F98JIcgJRo/E0g/6GRIxqXeLXr4AGje8iUXu3nZIF8p2qxt02pvVKeYBz6WTsDEHQ + z31QmYo3PBoC5pzU0zapTTh4oOOL3JuIr6T2AYNVXmhed5rBBarbwizZGd2eUZzwy0a9KujtXLAm + krZYjvxWAuWjVvQ0PjU2yRsI4ba+S3TrqHoidpoTyN07xjSaVL3m9CObFHfOrjgVQGfzwukqrC3F + weoxVFl3sdMGvv+TSFw4JOO1eS3Qh92Cvaop2Vxe9jIk0pWjoSbX/nJ42Q24wp7R0DWfaNLXrxxt + n4McIvsJ9XzLrgeI771HvbrTfO7aFSHoXmnjhDyOhfCNJziaW44mej/003wYBQgugUpzYeOx6aTI + C4wY8SEn5VdDePQPE/hCPJGVJhu+KMt5CMhUW9KgoP3mN8nBs1yN3hy0QTMyDFc5EFXEWbgixrgl + qqAITzeimWtsGc+CJ6cM1vWCfd66I5Yt7gGqKnjT8+bo1CQ4zKDkAqNYu5/lZBLHSgLlgRusReq5 + F1U22yAdXhZ2iijp+ceaz4FH8RXb3SwWUzm8FqCHg0PT9BIbYuyscojfwQ0nr/Wl6JflpSqoOPv4 + 5Eeuz/t3KYdrzW3w2cNqzfB+ypWVHPNU45jps7P1JFBL+0O4qpHO5mh9uSJhtIYQYd7ohbRGOkD6 + aKh7nppkyddaB+htXQizXrM/Obligkr6NVX9bo0WOXw2is7sPfWN1Yxm7XVowdzIH7JeSUs97sy9 + DWwlT2Q+HJJi6tLVAw51s/sTb3wj1blyaWmFPV/X/VnA2aCcnPRKd9dqh5jvYRN47vYg0mfCbB46 + PVIkP5EJTJAazen9vCpR8NlT53DEidBunUBpz51MgxClPs8Nkg7f/MJRPmE0t093BenlOoSb7KH4 + kx/sTXhyvR4Wocv1w7UrAogdllE3725o9u9SpkwvzqBqu51QGaUZp/zy5ZvfhngoJg/VucVh+4nb + ZLmZhqp8wBXo6WJDTexSMxWQTgv2FGOsF2u3W+B2hT028JTUvB45KZLfJsW3jb5loo8qFwxV9fAZ + osAXKbQqvGLugf+cJ+olD0quMGkke5bBCdfnS9kfSI3t3pqNZT+pL6V9ngJqs7Hph6DhODgbQ0BP + wSIWZFh/GkUIKouGp/LSk7u4VHALbgb1dp+Bze1TBcUi2MJO7ks+25+tGKaXYFBjf3mweQtvAudn + nVO1vXi92Nu7FlRhqCl2xXcx74hBwEnFVaiE1SNZmm2QApwWH2uDP9WLEuQ64MZwyNN9fnpid+8V + iBYVqZGHk083/t1TCmNs6WlhJ58ZRKlkS+onqhVYrFnpRo0CRbHBXrxXE7rxPy7sjStQKzEsxHfD + kVM47srh3UzF/l2fx3CTEUqpToxdPwl1o0O/dzWqb4vaX9z6CNCeWxlHu75FrKk7E1Q9c/B1dfaQ + WHPTSsnmcBVK983VYFAuMsgL02goPM4+z/ZNrFytzxkfrc4yhuDDYmUXTya2jl3Ui8KOI3BZVyU+ + z9cjE5R9VEKwvflUjV67QlTZxgSnaxjNl71YDDcuMxV8fpWhwOOEDesVX8EdbV7k+Tb2ifirLy9U + DtRyN0YistelAerkIb5YUVHMFXvYSiYsCVlyzmCfXz348RPvWXnGiM5Zqby0F6LBdqzYLO7fHmrX + s0ANXG4QeWnLQfFyLaWHlbPzmTfXkeI6jwEbx1dZT1e1apTo5t3wFqLAEPPNMQBRyJ54L+akp/wU + lwp4XIyde54WnH0UOqDdzaBJwNOCbvhiAZbGL2pSTfHbDV2n8FKPB1poJ6fgHT4W4DIaITXZZ+qn + ZnPO4D6XgMPzxa7nR6pPypAOJj5EIjZmtm8iaZO7LlmQy/VM0poYjo/TAYenUunZQ9uWYAfZk7o4 + dhi1gtOCDubWpges2cY0bE7e7z7Jot54NpZ66MLrkgR0t3NGgzAlkhUUwR0nAzZ7rtDBBVXPHbLW + DjRZhGZSlcd86aijPHfJ7Gkk+OEhDdqbXk+R6j/g+aZb7OL4jdhoLCYI1ril3vbIDHZI5wHCCWLS + usaHjesVfqDnJboSzrYyNK0NTlWK4bRg86bN9dSL7gBlKKp4p7w+ycSdokF5N6YYMnms2KIhtlKI + 4L7pwbXvaO6FmKDjx43oYXs4GUJZ9rJ8IqOGtS8fennLOQInCSPqGk6ZzP50iyDqhJkan4NqsESg + V6BBUlNz105okZEboDT9TFSjotDT037lwjV+xhSvmoyx3cEHuF1Xe7wl9b5gnzj9U1+xPwtGLaqP + RwBxHr8I6F6LpvncxPCWMQuVe7EU4+LQXHZVOlFb9u8Gu4hap0xuV1MjXc+M+cJ9UBSOLFi/x1Uy + qSyxFS88muE9XkyD6WpQwos8GFULc1sz8eOWyHWXhPqJeWdLYaouHB7pK5z8bs2m4IMiVLSDSZNT + 0tdP7I8AqggeTZxENTg50hqous8eF5TP++kXr5ysb8Nq17uIuZISw1RpTghrEvjkCUiAVX3bkM3o + lQbnB2cbPt0G091WImzZCNsJ7m91TzHsW3+WcdHAuE6BGmc5TUhhui6kqAuw9+EMNuXYbDbh/u7j + ww66fplkosL4+fIboIzNMCgThI1+pqetGLNmOHQA5xkPOOCbbU8+SWAi3ntPRG6LsJ/XK+cBor8P + 6PY2Fz57gsWBodSfEPjm0y+rRlmg25oUG3of9LT3AxMixwHqmeO6J4+pquCZXh7YfX35/Woj2mAH + +ZPqOVczJjS6CmJQMZzyOEHzslFLJXtWA926gp9wKdYGZFkvRI35smHMlOQMKsW7YVOtP2gQNnP6 + 0w+kyccTYuJpbpSMrlPqWPXZ71q5jaH06pha2SZkbGxfMUR6+A5Fv9EQx1O4gtG2B2rX4bqYif6y + QRfXL+xPF1JQTvvk8qG4f/C2bwP0bEJpQu8sf2L/yzenSXMrOO6tkXADGQrhdTx16MKdF4ovNzsR + Eigk1Dr+QKRpTYw//OowzBHGO//us3M1l0qsHItQDiKx7xV/UKEp9W0oTtUrYbaK05++wAEfYbRU + W60E02p29LJwiUFPq2iBnRoJ2OLNJ1reeWqjjRIo+Jg9eWM4W5gAi8Y9Ge908CcGgSSH+9onn422 + Y4tZFybsq4yniRWLyXK/jwFIF+Zi1+sOCSlGeUGG0UshQ++yIGc+WCB5Ki9a+LvImH3+QkA6NBZO + AEc+fbbVA+ARCNSVHi9jxHcWK188++aTxpZq4UwlAjOj5+Nbqlm6yQ9IevoD3RV73C/7yW3gJe+s + kI/pYIx9tcug65ASTnbZ9Uvo3itlh/IQ766cUy9f/IE15aQ/8fSspLba/Or99TyrCRuO7gqW8+aF + w5fwLpYkvsfo5XjRf+HT7/40pdrR4+//bVf3AQbpHodK/AF/lg+xCvfus8aOfsjZeJXBRo9bW+Ad + zi9oifAqQ/fczMg6j1r/2TIqoFD2jyEErZUId5hWcBZmDf/4hnhAowzcXXnhwr9/GEtat0Gyu8FE + 9Js7GrhupaOfHrXG3cGgPJ/JMlixQh3mRIhDYz0ha10O2CkDzZjf5moBs6Bbck+1R8HucXaQU9QG + 9PYYi346VlmDZKdviQK7g78sUn5VvviBy70g15NBTg+k9uqeOimcGaevSQaf6vrEbnmiBltFjytI + QpHg0Jl6Ni8P5MEnoJQ6a2lljDBzAVTBbaaqdEl9xsSmVOLwdaB4f8jR5A22AMtK1umlSVMmNte+ + g5UTqDi7rs794JjvSal3W4Rtf83XYyuRCJJheVCLyLUxxQyp8PTmCH/xxRfk7duV6WdXUlPKV/4s + b+wA8tvZx+purfdEvZ4n0IbohW+2cE2Y+FGvCq9ubbp7ffmedk/DX35T23g8fPbQtFJpY3EVIjGL + ++/3dHSpOZ/6Yzj5rK0HQLTSz1jNtlYhCOwqb0zrtaNGwONEiJebDnw7R9SozI1PDcuT4asnsDbd + vIThvZShhHzzmUpL3X0S00Rho57xV6+wiYp+gzTlscPeVtsU72KVdIp6Xjps+dWOCfXayWFRuoLq + Z+omS1jaAqzlpMZf/c8EPkceKjdwpj/+OGlvrwWOKzns2xshoVI56cpNSHmqa5JvzOfAdSGqcofq + 65Iko+kqKTJDFtEQJzVb5s/Jg0gP3lS9rIlP3rey+vE16vdDxWZda69wFMxtyGPuXU/1GYewPww1 + dp9uWUxVrQWKOPER1cz2Xi9MySRQKXphQx5V9MWTSvnWD6zpyQpN/Jl6cH7e83BSX9qPD6zgxy/1 + jqPJSHRiw+PJMlIW9r2fNpyyoF/8pL21N9jazFW5mssQX/RjyljOXRekDfELh8gLesr1Bx08KRSw + XSHSL+XpWf7OE0rQ39jMe3mEtmGahhs8036ZcykCq14KGuhey+aKdbasrLclVSPZMbjk0XhwseX4 + 668M9fx5nzLFJjtGtfDaJdPUIQ904+N940s3eP24W8AK5xXV1nu1IAZ3B3ArV8TmQIKCG42DrZxv + +YUsJsP9F49KeJ/bAEdapSSzV84ARvWcsWMea7Z84wdejhvR4otPs2i4MRheyeF8p9g1x9sap5wE + 6/n1b5biI3CmBDcke3hvPS5+f0Cj9IsnrH31NR8yz4Wst7Vf/hqTn69XcDpEJ3q6k8kXNjeuRPZE + dezZedj3z7aq/sSf9exKfxbfUMK52bPffoOJIk2hfhtj+LzcHwUv4GhQhFr64N/7+aC7uSIGD0bN + 7UH056mzXHAurRxOWqUU85pWnVK8r5ewG42HMR9vXQNfPwLv7jQwiByODXDKRwyH9qb3XI6D5o8+ + jue4Z0Tevj1g95WE8Un7sMlScgF9+Ra1g/cnGdzPlCkhuRiENUPQL+RiCLDOyiMOLuNQzFvicqjL + 0/QPfx5X+FpC9ExK8sfPa7gYlC/foVgfm3oWLusX+vpdOLzLsjG+5n0O18x943Nl8T5rdocJ2Pux + w8EzMpO5DVmnBGrkUstQeDa8RnWlZIfE+vLzbSFudTkEKzO3+CzYn4SFM3Hh5/9+62XNtgfNRqla + cdS52NAz9dGFMEh1TO1zJtQLyroSduzUY22l2LVgtecH9Msa4/CW0GKOJf+K3OcQ0L2gnRMxK5AK + Tsqvwmlr8An76k8lZ65GzxttRJTnIxm06nUkm/ti+mJTdzaqF7r+4u+7HmVcvJA3n2X6zWf2q38o + eHc9Dirw6l/9lL/+CXW9VO7Z29cCaDv5/vV/9kwYE3sF2i0dQznNZYPcTEOH7dIxQtbXV/Ljs2gW + uBl//Qt/rqTqoQhZePrhIZu59EEgD5BCZkE7F2w6GoLy8/O00n/6hD68CJalnvFWz0K2WGjFQaVr + Dr6mD91fPpleIaU033S/3qsJbzaaidazWVGP6meDmYyt4BC+J+pMXOVPaCV3wNugY4w+XMJ/EtkG + IXhY2BmfGprT5q7DxWp7vPv6GezofWJQe31PwMBNsbRyFSuesvihNPRcwZbdzEFw9C8Y51FrLIXp + ekivnga2MOfUs23fJ/TVa+T5XPGIXOz0BZISYjLi/MJ6b+5jNN+uO+x372cx7ZJxBVK2YzSQbqEh + SuWkKjddP9OLs298NhzVFfzwJzxuA0TeeWoq3/pAr+XQoNmZygzuCP30lovYU8Q5iPFnwniyoR47 + 59PJQSvH2NSFvP7xfyQX2YVwJVGR+O1PgFLf/FCuu7tPslPXwL3Cx3BiQ1svTROZaH8ED5+LViuG + H/86eCud+vaz7OdPJj3kn98SFeanH1K8JeAopoa12v588S/k4HNRUjJLup4IX/8KVFvjsXW5P5KF + vf0Gfnr29OMn60MpybWUHMjXH+6Xx7Fc0Hw41VRT1dDgf3ojPox77Hz2rcFYLMXAlH6L7bNZopc0 + Gwe4K/4O28uBJvTo3WNEK/WM8c9/q9zkCmfnKFNdvfGIfvkPfO+PKPpnqj+i4UZwHtKUKF/9TXGw + WQGPoitWy3htTOU8hrB5cjlhXz9r0uX3CrwnbcknEwQ0bLPPAyK/6DD+wJl1l1c7QYY+LdUkXS+m + Fn9a+J6f7g/taHxg5kIoQiGmO8HYJ7M0yPIf/vxan4VkPAeqqzyec4Zdh1I2+YJBkBZaNtUeC637 + szUSuAUXg/pwqAxKyguH9seVh/1L2PR0OKqg7CzOpye5cxmLnscBLfeV96tnaJGcbIBfPLqZwSek + bWKAOpLnr/4JjR8fBfIJCba4KfDnNkSdfJBuD2qn2ywhv/5Y+vFWRD4xXPCjQhvEk/T51aOknkfq + EjRyUowjAdmI2xN4wVF92NTVNm+/GvDwAPHprahpWxn7xputFGkoEGR0mbHM23sOO0vwqd8lfT9d + n+UiG213CGclEuvl0T9sxRxWE0HMzNAk1IMOp0SfQpmmC6J7bq/Cce+MZEK4qkeBC2RkTcOBul+/ + WWxX0yD//Dk96LRCfNnego7rfYC9SPINcTMdUwBTS0N+5p2e2/iG9/O/f/2VZC6ypER7JR3J87Av + vn5FYcIPD5kVnxL2y2d/qGNsafpcT6Ujv1DBXEptvh7r2TpJHVw2ikPtCcnG4m7qGOWh34TrKvfY + El83A/Dk8KRH1E8JGT9lLIu2csW66pfGSIPHCqWJroeL5WyLIfigGKkNPtItEX2f29gmge1rdceB + Ze0Kcf2xA2WtnheswkzZ+JrPGfriBdZsFBfTjswDZIF0p8dxx/mkGJdFtob1NUTfekV7ThjA94gZ + omVa+/NyAYLe5y4IOfsc9/xhmkvEh5srLeT3xCh9xeTXT/jyD/DZr3/39U9plJapT3c6b8McwJoG + NUbJcFKWScmyF6NO0YzJ6PAxpxRcllL3U6aGOOdeDM1ja+MtarOCZSqNwBbiU/jV8wkRk4+3GQZe + pfZliIrl8qomyKuWYYyvezYdkCPDc20NBEQxTya8z3O5VO32x+9Rpwl8BV5upNQxxsiY3vSUw7zU + Rgjn89Izei8jSNeJTHh3UyfMZYIAP7/DQn1UcKf3WMKKcl64yXHgjzDwC7yz7BnKXz9naurARl8/ + LpTRzqzZ/ryLZbI+dWSWj4k/ydH2hWbn3FHPYTUiwWGzgv4dK4Ra7dbgf/WA3UHC5tfvm2dqvJT3 + rE+h8Lpc+rEJpQUClipYjV5jMq2OnvTLX4ozcUGL3o02OpWYhavd64DmsAQBToRq5N2lRi/Kchwg + fJG9b33WE6G/nTJYk/c+bL/+Kvd4nlplPssSdb2OKz4Lp+uKX6cYYyK9/W//Y5I1oy1xxIa2n9+F + af65L//YDzUJy1AA4y5mdNc/uT/6FO2F+/zzo+o5lNSXUlSfO00Ea1dwJ30TIV71bezL74gt03Hm + lMlta/yHj0S97qIxJQu2+m9/9KuPFKueCuwY4+TP4G4b6AcupumXT863zxjAtx9OVW8yEyavsxb+ + /k0F/Oe//vrrf/0mDF7t5fr8DgaM13n893+PCvxb/Pfwyp/PP2MIZMir69///NcEwt+fvn19xv89 + ts31Pfz9z188/2fW4O+xHfPn/7v+r++n/vNf/wcAAP//AwD0q0Au4CAAAA== headers: Access-Control-Allow-Origin: - "*" Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983da94d78e16809-SJC + - 984ea6b25d36eb2d-SJC Connection: - keep-alive Content-Encoding: @@ -3390,13 +3393,13 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:00:59 GMT + - Fri, 26 Sep 2025 00:30:10 GMT Server: - cloudflare Transfer-Encoding: - chunked Via: - - envoy-router-7d88dddb5d-rf6h8 + - envoy-router-8b4d6d9d7-k4dvp X-Content-Type-Options: - nosniff alt-svc: @@ -3408,7 +3411,7 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "61" + - "141" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: @@ -3416,7 +3419,7 @@ interactions: strict-transport-security: - max-age=31536000; includeSubDomains; preload x-envoy-upstream-service-time: - - "99" + - "164" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -3432,7 +3435,7 @@ interactions: x-ratelimit-reset-tokens: - 0s x-request-id: - - req_13d78cdec5224dc7b187cfa14f5fb7ee + - req_eb1d816eec974c4c862f4264e5142061 status: code: 200 message: OK @@ -3442,200 +3445,16 @@ interactions: the relevant information that could help answer the question based on the excerpt. Your summary, combined with many others, will be given to the model to generate an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n \\\"used_images\\\"\\n}\\n\\nwhere + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10,\\n \\\"used_images\\\"\\n}\\n\\nwhere `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 1-10 for the relevance of `summary` to the question. `used_images` + is an integer 0-10 for the relevance of `summary` to the question. `used_images` is a boolean flag indicating if any images present in a multimodal message were - used, and if no images were present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt - from wellawatteUnknownyearaperspectiveon pages 12-14: Geemi P. Wellawatte, Heta - A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations - of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, - doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\\n\\n------------\\n\\nnterfactual - approach, contrastive approach employ a dual\\n\\noptimization method, which - works by generating a similar and a dissimilar (counterfactuals)\\n\\nexample. - Contrastive explanations can interpret the model by identifying contribution - of\\n\\npresence and absence of subsets of features towards a certain prediction.36,99\\n\\n - \ A counterfactual x\u2032 of an instance x is one with a dissimilar prediction - \u02C6f(x) in classi-\\n\\nfication tasks. As shown in equation 5, counterfactual - generation can be thought of as a\\n\\nconstrained optimization problem which - minimizes the vector distance d(x, x\u2032) between the\\n\\nfeatures.9,100\\n\\n\\n - \ minimize d(x, x\u2032)\\n (5)\\n - \ such that \u02C6f(x) \u0338= \u02C6f(x\u2032)\\n\\n - \ For regression tasks, equation 6 adapted from equation 5 can be used. Here, - a counter-\\n\\nfactual is one with a defined increase or decrease in the prediction.\\n\\n\\n - \ minimize d(x, x\u2032)\\n (6)\\n - \ such that \u02C6f(x) \u2212\u02C6f(x\u2032) \u2265\u2206\\n\\n - \ Counterfactuals explanations have become a useful tool for XAI in chemistry, - as they\\n\\nprovide intuitive understanding of predictions and are able to - uncover spurious relationships\\n\\nin training data.101 Counterfactuals create - local (instance-level), actionable explanations.\\n\\nActionability of an explanation - suggest which features can be altered to change the outcome.\\n\\nFor example, - changing a hydrophobic functional group in a molecule to a hydrophilic group\\n\\nto - increase solubility.\\n\\n Counterfactual generation is a demanding task as - it requires gradient optimization over\\n\\ndiscrete features that represents - a molecule. Recent work by Fu et al. 102 and Shen et al. 103\\n\\npresent two - techniques which allow continuous gradient-based optimization. Although, these\\n\\nmethodologies - are shown to circumvent the issue of discrete molecular optimization, counter-\\n\\nfactual - explanation based model interpretation still remains unexplored compared to - other\\n\\n\\n\\n 12post-hoc methods.\\n\\n - \ CF-GNNExplainer104 is a counterfactual explanation generating method based - on GN-\\n\\nNExplainer69 for graph data. This method generate counterfactuals - by perturbing the input\\n\\ndata (removing edges in the graph), and keeping - account of perturbations which lead to\\n\\nchanges in the output. However, - this method is only applicable to graph-based models\\n\\nand can generate infeasible - molecular structures. Another related work by Numeroso and\\n\\nBacciu 105 focus - on generating counterfactual explanations for deep graph networks. Their\\n\\nmethod - MEG (Molecular counterfactual Explanation Generator) uses a reinforcement learn-\\n\\ning - based generator to create molecular counterfactuals (molecular graphs). While - this\\n\\nmethod is able to generate counterfactuals through a multi-objective - reinforcement learner,\\n\\nthis is not a universal approach and requires training - the generator for each task.\\n\\n Work by Wellawatte et al. 9 present a model - agnostic counterfactual generator MMACE\\n\\n(Molecular Model Agnostic Counterfactual - Explanations) which does not require training\\n\\nor computing gradients. This - method firstly populates a local chemical space through ran-\\n\\ndom string - mutations of SELFIES106 molecular representations using the STONED algo-\\n\\nrithm.107 - Next, the labels (predictions) of the molecules in the local space are generated\\n\\nusing - the model that needs to be explained. Finally, the counterfactuals are identified - and\\n\\nsorted by their similarities \u2013 Tanimoto distance96 between ECFP4 - fingerprints.97 Unlike the\\n\\nCF-GNNExplainer104 and MEG105 methods, the MMACE - algorithm ensures that generated\\n\\nmolecules are valid, owing to the surjective - property of SELFIES. Additionally, the MMACE\\n\\nmethod can be applied to both - regression and classification models. However, like most XAI\\n\\nmethods for - molecular prediction, MMACE does not account for the chemical stability of\\n\\npredicted - counterfactuals. To circumvent this drawback, Wellawatte et al. 9 propose an-\\n\\nother - approach, which identift counterfactuals through a similarity search on the - PubChem\\n\\ndatabase.108\\n\\n\\n\\n\\n\\n 13Similarity - to adjacent fields\\n\\n\\nTangential examples to counterfactual explanations - are adversarial training and matched\\n\\nmolecular pairs. Adversarial perturbations - are used during training to deceive the model\\n\\nto expose the vulnerabilities - of a model109,110 whereas counterfactuals are applied post-hoc.\\n\\nTherefore, - the main difference between adversarial and counterfactual examples are in the\\n\\napplication, - although both are derived from the same optimization problem.100 Grabocka\\n\\net - al. 111 have developed a method named Adversarial Training on EXplanations (ATEX)\\n\\nwhich - improves model robustness via exposure to adversarial examples. While there - are\\n\\nconceptual disparities, we note that\\n\\n------------\\n\\nQuestion: - Are counterfactuals actionable? [yes/no]\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" - headers: - accept: - - application/json - accept-encoding: - - gzip, deflate - connection: - - keep-alive - content-length: - - "6342" - content-type: - - application/json - host: - - api.openai.com - user-agent: - - AsyncOpenAI/Python 1.109.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 1.109.0 - x-stainless-raw-response: - - "true" - x-stainless-read-timeout: - - "60.0" - x-stainless-retry-count: - - "0" - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.13.5 - method: POST - uri: https://api.openai.com/v1/chat/completions - response: - body: - string: !!binary | - H4sIAAAAAAAAA4xUwW4bOQy9+ysInXYBO7Dd1El8C9pmkaKHPfRQoC7GtMSZYasRB6LkjRHk3wvN - JLbbzQJ7McZ65CP5+KTHCYBhZ9ZgbIvJdr2fvfu4ur9737SXfynx7VI/fL67R/5bVm/8JzTTkiG7 - 72TTS9aFla73lFjCCNtImKiwLq7eXq9W15dvbwagE0e+pDV9ml3KbDlfXs4Wi9ly/pzYCltSs4av - EwCAx+G3tBgcPZg1zKcvJx2pYkNmfQwCMFF8OTGoypowJDM9gVZCojB0vd1uv6uETXjcBICN0dx1 - GA8bs4aNeSc5JIo12pTRAz30HgOW6RQwEqAt37jzBKiQWjpAH2XPjsCLRT8FDqW4pZmnPfnyl5s2 - KWBwoLlpSBP807JtoSZMOZKCxQA7AvSJIjlIArbF0FDhB8nJSkcXcCcR6AGL2qUK2JY61hQP0zGc - QwMI7cFF6VvZsYU6h7FdD02U3BfmYwR7tiCBhuocytqUQMXnHXtOhwv43LIeBx7OoMMfpd9fRFJA - yEp19pBEysSjbDzKdHsPf3y5vf8TaomQg6NY9HGl2z6SY/ssbnCQg5U9xQJpnyNLVojkR/lb7rVw - p4gcSojDhBcbMx23GMnTvuheqZVI4zYX8yOelVzFHTakBavRK23C0yZst9tzo0Sqs2LxacjenwEY - gqSxlWLRb8/I09GUXpo+yk5/SzU1B9a2KvpKKAbUJL0Z0KcJwLfB/PkXP5s+StenKskPGsotllfL - kdCc7tsZPL95RpMk9GfAm+vF9BXKylFC9np2g4xF25I75Z6uG2bHcgZMzgb/dz+vcY/Dc2j+D/0J - sJb6RK46GeW1sEjlQfqvsKPQQ8NGKe7ZUpWYYlmGoxqzH98KowdN1FU1h4ZiH3l8MOq+ulrc7Nyu - Rrcyk6fJTwAAAP//AwBmntQXOQUAAA== - headers: - Access-Control-Expose-Headers: - - X-Request-ID - CF-RAY: - - 983da94e9b6c9338-SJC - Connection: - - keep-alive - Content-Encoding: - - gzip - Content-Type: - - application/json - Date: - - Tue, 23 Sep 2025 23:01:01 GMT - Server: - - cloudflare - Strict-Transport-Security: - - max-age=31536000; includeSubDomains; preload - Transfer-Encoding: - - chunked - X-Content-Type-Options: - - nosniff - alt-svc: - - h3=":443"; ma=86400 - cf-cache-status: - - DYNAMIC - openai-organization: - - future-house-xr4tdh - openai-processing-ms: - - "2067" - openai-project: - - proj_RpeV6PrPclPHBb5GlExPXSBj - openai-version: - - "2020-10-01" - x-envoy-upstream-service-time: - - "2120" - x-openai-proxy-wasm: - - v0.1 - x-ratelimit-limit-requests: - - "10000" - x-ratelimit-limit-tokens: - - "30000000" - x-ratelimit-remaining-requests: - - "9999" - x-ratelimit-remaining-tokens: - - "29998481" - x-ratelimit-reset-requests: - - 6ms - x-ratelimit-reset-tokens: - - 3ms - x-request-id: - - req_83accb0def03440183c152de6faf23c8 - status: - code: 200 - message: OK - - request: - body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n \\\"used_images\\\"\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 1-10 for the relevance of `summary` to the question. `used_images` - is a boolean flag indicating if any images present in a multimodal message were - used, and if no images were present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt - from wellawatteUnknownyearaperspectiveon pages 20-22: Geemi P. Wellawatte, Heta - A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations - of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, + used, and if no images were present it should be false.\\n\\nThe excerpt may + or may not contain relevant information. If not, leave `summary` empty, and + make `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from + wellawatteUnknownyearaperspectiveon pages 20-22: Geemi P. Wellawatte, Heta A. + Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of + molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\\n\\n------------\\n\\nnal molecule. The counterfactual indicates\\nstructural changes to ethyl benzoate that would result in the model predicting the molecule\\nto not contain the @@ -3711,7 +3530,7 @@ interactions: connection: - keep-alive content-length: - - "6376" + - "6498" content-type: - application/json host: @@ -3743,24 +3562,23 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//jFRNj9s2EL37Vwx4tgN76/VmfWyAAkmvRS91IIzIkTQxv8ChtnYW+98D - UvZaSTZFLwasN/P43hsOnxcAio3ag9IDZu2iXX34tPv4x/rLp/Ekj3/Tw5/xgX7vdzsTuvjxqJal - I7RfSOdr1zsdXLSUOfgJ1okwU2HdPNy/3+3eb+8fK+CCIVva+phX27C6W99tV5vN6m59aRwCaxK1 - h38WAADP9bdI9IZOag/r5fWLIxHsSe1fiwBUCrZ8USjCktFntbyBOvhMvqp+PniAg5LROUzng9rD - QX0Io8+UOtR5RCuAicCQ6MQtGUAB1MUhtpaAPeSBoDKeMoQOXLCkR4sJYgqRUj5DTGS49kD1Le/g - r4HOlThRTCTk80StB3Ks0YLkNOo8JpIl/DuwHmp1h44tY4IcwASH7IFO5RBZAnpTayRiElqCwyP7 - vshzEFPRXHi7kGAUqgqgah64Hyz3QxbIA2bQ39kv/BY9FvVSLD2xIXDs2aEFU8PVBF0KDhBaFLom - QEW3nbJJKLmIYX9zeImHi8O51lGoGy9CvaFUTjAFLQZdMNydy795ztd4a7B8GxBbzmdgAXJxQOGv - l/nBsaRvntBn7KlM7b9MTyFbZF/ObS3q46oNp+ssD2o5XaJElp5KGo3okGi6TJv1Kz4KmYYd9iQF - 69AKHfzL/GYm6kbBshh+tHYGoPchT3rKTny+IC+vW2BDH1No5YdW1bFnGZpEKMGXGy85RFXRlwXA - 57pt43cLpGIKLuYmhyPV4za/bXcTobot+Aze3F/QHDLaGbDdbZZvUDaGMrKV2coqjXogc+u97TeO - hsMMWMyM/6znLe7JPPv+/9DfAK0pZjLN7X69VZaovIC/KnsNugpWQumJNTWZKZVhGOpwtNPjpOQs - mVzTse8pxcTTC9XF5mHz2Jq2Q7NTi5fFNwAAAP//AwCVDwBWqgUAAA== + H4sIAAAAAAAAAwAAAP//jFRNbxMxEL3nV4x8TqomTZOQI5UQQnABbgStJvZs1sRfzHjbplX+O/Ju + yKZQJC4r2W/e85uvfR4BKGvUGpRuMGuf3OTuw09Dwbzb2U+z9/lp/0X2Hz/rm7u39eppocaFEbc/ + SOffrCsdfXKUbQw9rJkwU1GdLm9Xq/liMb3uAB8NuULbpTyZx8nsejafTKeT2fWJ2ESrSdQavo0A + AJ67b7EYDD2qNXQy3Y0nEdyRWp+DABRHV24UiljJGLIaD6COIVPoXD9vAsBGSes98mGj1rBRd7EN + mbhGnVt0AsgEhkSz3ZIBFEBdMsStI7ABckNAj5o45Sv42tChI/joSLcOGSRzq3PLJPBgcwPeBuvR + gemMaYKaoweELcqZRrBtcx9ezDJKtmEHuiFvNTpIHBNxtiTdk1IcJIcBi7HeMVNiEgq593ymDnbG + 8NBY3XTRNXrrLDLkCCZ6tKEoEmcZgyRkoTFgMBepl4etgMc9SamBh1aobh3UkaENhrikZ4rtQvTR + 2PpQTkNlLrLYqHHfCSZH96UslejIVDoyvT5hrZCprMcdSbmv0QltwvGytUx1K1gmK7TOXQAYQsx9 + ecpQfT8hx/MYubhLHLfyB1XVNlhpKiaUGMrISI5JdehxBPC9G9f2xQSqxNGnXOW4p+656c3yTS+o + hg0Z4NXNCcwxo7ugzRez8SuKlaGM1snFyCuNuiEzcIf9wNbYeAGMLvL+285r2n3uNuz+R34AtKaU + yVSJyVj9MuUhjKn8Qf4Vdq5zZ1gJ8b3VVGVLXHphqMbW9cut5CCZfFXbsCNObPsNr1N1u5huZ7fL + pdmq0XH0CwAA//8DABEsL8TqBAAA headers: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983da94ec894ffb8-SJC + - 984ea6b41a092510-SJC Connection: - keep-alive Content-Encoding: @@ -3768,7 +3586,7 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:01:01 GMT + - Fri, 26 Sep 2025 00:30:12 GMT Server: - cloudflare Strict-Transport-Security: @@ -3784,13 +3602,13 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "2578" + - "1417" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" x-envoy-upstream-service-time: - - "2609" + - "1456" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -3800,13 +3618,13 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29998471" + - "29998441" x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - 3ms x-request-id: - - req_298857fca5e543f4b81242d3184d8d36 + - req_54a05f4b51024746838d07777e55a053 status: code: 200 message: OK @@ -3816,14 +3634,16 @@ interactions: the relevant information that could help answer the question based on the excerpt. Your summary, combined with many others, will be given to the model to generate an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n \\\"used_images\\\"\\n}\\n\\nwhere + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10,\\n \\\"used_images\\\"\\n}\\n\\nwhere `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 1-10 for the relevance of `summary` to the question. `used_images` + is an integer 0-10 for the relevance of `summary` to the question. `used_images` is a boolean flag indicating if any images present in a multimodal message were - used, and if no images were present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt - from wellawatteUnknownyearaperspectiveon pages 9-12: Geemi P. Wellawatte, Heta - A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations - of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, + used, and if no images were present it should be false.\\n\\nThe excerpt may + or may not contain relevant information. If not, leave `summary` empty, and + make `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from + wellawatteUnknownyearaperspectiveon pages 9-12: Geemi P. Wellawatte, Heta A. + Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of + molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\\n\\n------------\\n\\nthat gives subgraph importance for small molecule activity prediction. On the\\n\\nother hand, similarity maps compare model predictions for two or more molecules based @@ -3900,7 +3720,7 @@ interactions: connection: - keep-alive content-length: - - "6353" + - "6475" content-type: - application/json host: @@ -3932,25 +3752,24 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//jFRNbxtHDL3rVxBzlgxJsWRbV6dp40tRIOilCgRqhrvLZj62Q65swfB/ - L2a19m4aF8hlDvP4HsnH4TzPAAw7swNjG1QbWr+4f9h+/vSbXUuF/tf458f7h1/+eLj/tFmefr+9 - NfPCSMe/yeor68qm0HpSTvEC20yoVFRXN5vb7fb2enPXAyE58oVWt7q4Tov1cn29WK0W6+VAbBJb - ErODv2YAAM/9WUqMjp7MDpbz15tAIliT2b0FAZicfLkxKMKiGNXMR9CmqBT7qp/3EWBvpAsB83lv - drA396mLSrlCqx16oKfWY8TSlABmAkdiMx/JAQrQE5aWBR5ZGwgcOaAHRyfuGVDlFEAbgpS55oge - OJaCLMGx0wsLoVSUUZRjDalTmwJdwZeGzoAcQBNglEfKvdA/HUkvnSp4bFBBAnpPomAbjDWBTZ13 - gF4HwiBY4jGO6VMFXPok0Sv4HPvQ3pknLVhInmznMUObybHtU/Zjk3lJMbFIoBMCBMeDdCDNbOcg - nW2KSUX6C0YOSdMYdSR9JIqTTBXHmnKbOarMS9uOlHLgSCAc2GNmPffGCP04F+xrxKOnIecZ2pxO - 7AikJcsV28GigqIORnlC11sMjquKMkV9tWwOAb+VmWhDoTRZdR6qlKGLjnJpwxUUo4M2lSfF6P25 - uMTVuSCjdXK1N/PLY8vk6VQcOIhNmcqjuxugTsgdOGBNUq4r9EL7+DJ9vJmqTrDsTuy8nwAYY9KL - HWVtvg7Iy9ui+FS3OR3lP1RTcWRpDplQUixLIZpa06MvM4Cv/UJ23+2YaXMKrR40faM+3erDcnsR - NOMfMIHXHwZUk6KfANfru/k7kgdHiuxlstXGom3IjdzxC8DOcZoAs0njP9bznvaleY71z8iPgLXU - KrnDOOf3wjKVT/L/wt6M7gs2QvnElg7KlMswHFXY+cv/ZeQsSuEw2ZMSUrWHzXZ1XG9ubtzRzF5m - /wIAAP//AwDalYl5zQUAAA== + H4sIAAAAAAAAAwAAAP//jFRNb9tGEL3rVwz2LBmWYsmxbkUORQrkkNRFD1VADXeH4iTLXXpnKFsw + /N+LXTEW27hALzzsm/dm3nzweQZg2JktGNui2q73iw+/PTj6uP519alt/7i7b748xM+/fP/85/r3 + T5svZp4Zsf5GVn+wrmzsek/KMZxhmwiVsurydv3+/c1ms7wuQBcd+Uw79Lq4iYvV9epmsVwuVtcj + sY1sScwW/poBADyXby4xOHoyWygy5aUjETyQ2b4GAZgUfX4xKMKiGNTML6CNQSmUqvf7/TeJYRee + dwFgZ2ToOkynndnCznyIQ1BKDVod0AM99R4DZncCmAgciU1ckwMUoCfM3gUeWVvoOHCHHhwduTCg + SbEDbQk4sDJ64JALswT1oGcSQq4soSiHA8RBbezoCu5bOgEGeaRUBB4GkiIZG3hsUUE69J5EwbYY + DgQ2Dt4Beh0Jo1KOx3DJGxvg7I9Er+BjKKGlNU+asS56soPHBH0ix7akLHOTeU4xaY3AIAQIjkfp + jjSxhRqFHBTaDy3hjj0m1tMcZLBtbl1OfI+Bu6jxolGTPhJNuQ2HA6U+cVApbRH6eShYCsXa0yh9 + gj7FI7vceeFDq5JtR5CeLDdsx64JBCJHDjQC2pbpWByRcMoexmHszPy8KIk8HXOdldiYKC/M3QgN + Qq7iDg8k+blBL7QLL7uw3++na5ioGQTzFYTB+wmAIUQ9W8oH8HVEXl5X3sdDn2It/6KahgNLWyVC + iSGvt2jsTUFfZgBfy2kN/7gW06fY9Vpp/E4l3fLdu7uzoLlc8wRebkZUo6KfADfr9fwNycqRInuZ + 3KexaFtyF+7lmHFwHCfAbGL853re0j6b53D4P/IXwFrqlVx12fW3whLl391/hb02uhRshNKRLVXK + lPIwHDU4+POfyMhJlLpqstI5pOmr9WZZr9a3t642s5fZ3wAAAP//AwDNfdMglwUAAA== headers: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983da94ecc02cf15-SJC + - 984ea6b41a046897-SJC Connection: - keep-alive Content-Encoding: @@ -3958,7 +3777,7 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:01:02 GMT + - Fri, 26 Sep 2025 00:30:12 GMT Server: - cloudflare Strict-Transport-Security: @@ -3974,13 +3793,13 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "2724" + - "1657" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" x-envoy-upstream-service-time: - - "2752" + - "1676" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -3990,13 +3809,13 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29998478" + - "29998447" x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - 3ms x-request-id: - - req_7b8b850d99be40dfbfe82193125bbaaa + - req_f673f4213cce4a4198345c4c37edd91e status: code: 200 message: OK @@ -4006,102 +3825,484 @@ interactions: the relevant information that could help answer the question based on the excerpt. Your summary, combined with many others, will be given to the model to generate an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n \\\"used_images\\\"\\n}\\n\\nwhere + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10,\\n \\\"used_images\\\"\\n}\\n\\nwhere `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 1-10 for the relevance of `summary` to the question. `used_images` + is an integer 0-10 for the relevance of `summary` to the question. `used_images` is a boolean flag indicating if any images present in a multimodal message were - used, and if no images were present it should be false.\"},{\"role\":\"user\",\"content\":[{\"type\":\"image_url\",\"image_url\":{\"url\":\"\"}},{\"type\":\"image_url\",\"image_url\":{\"url\":\"\"}},{\"type\":\"text\",\"text\":\"Excerpt - from wellawatteUnknownyearaperspectiveon pages 16-20: Geemi P. Wellawatte, Heta - A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations - of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, - doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\\n\\n------------\\n\\nssion - challenge and is\\n\\nimportant for chemical process design, drug design and - crystallization.133\u2013136 In our previous\\n\\nworks,9,10 we implemented - and trained an RNN model in Keras to predict solubilities (log\\n\\nmolarity) - of small molecules.127 The AqSolDB curated database137 was used to train the\\n\\nRNN - model.\\n\\n In this task, counterfactuals are based on equation 6. Figure - 3 illustrates the generated\\n\\nlocal chemical space and the top four counterfactuals. - Based on the counterfactuals, we ob-\\n\\nserve that the modifications to the - ester group and other heteroatoms play an important role\\n\\nin solubility. - These findings align with known experimental and basic chemical intuition.134\\n\\nFigure - 4 shows a quantitative measurement of how substructures are contributing to - the pre-\\n\\n\\n\\n 16Figure 2: Descriptor - explanations along with natural language explanation obtained for BBB\\npermeability - of Alprozolam molecule. The green and red bars show descriptors that influ-\\nence - predictions positively and negatively, respectively. Dotted yellow lines show - significance\\nthreshold (\u03B1 = 0.05) for the t-statistic. Molecular descriptors - show molecule-level proper-\\nties that are important for the prediction. ECFP - and MACCS descriptors indicate which\\nsubstructures influence model predictions. - MACCS explanations lead to text explanations\\nas shown. Republished from Ref.10 - with permission from authors. SMARTS annotations for\\nMACCS descriptors were - created using SMARTSviewer (smartsview.zbh.uni-hamburg.de,\\nCopyright: ZBH, - Center for Bioinformatics Hamburg) developed by Schomburg et al. 132.\\n\\n\\n\\n\\n\\n - \ 17diction. For example, we see that adding - acidic and basic groups as well as hydrogen bond\\n\\nacceptors, increases solubility. - Substructure importance from ECFP97 and MACCS138 de-\\n\\nscriptors indicate - that adding heteroatoms increases solubility, while adding rings structures\\n\\nmakes - the molecule less soluble. Although these are established hypotheses, it is - interesting\\n\\nto see they can be derived purely from the data via DL and - XAI.\\n\\n\\n\\n\\n\\nFigure 3: Generated chemical space for solubility prediction - using the RNN model. The\\nchemical space is a 2D projection of the pairwise - Tanimoto similarities of the local coun-\\nterfactuals. Each data point is colored - by solubility. Top 4 counterfactuals are shown here.\\nRepublished from Ref.9 - with permission from the Royal Society of Chemistry.\\n\\n\\n\\nGeneralizing - XAI \u2013 interpreting scent-structure relationships\\n\\n\\nIn this example, - we show how non-local structure-property relationships can be learned with\\n\\nXAI - across multiple molecules. Molecular scent prediction is a multi-label classification - task\\n\\nbecause a molecule can be described by more than one scent. For example, - the molecule\\n\\njasmone can be described as having \u2018jasmine,\u2019 \u2018woody,\u2019 - \u2018floral,\u2019 and \u2019herbal\u2019 scents.139 The\\n\\nscent-structure - relationship is not very well understood,140 although some relationships are\\n\\nknown. - \ For example, molecules with an ester functional group are often associated - with\\n\\n\\n 18Figure 4: Descriptor explanations - for solubility prediction model. The green and red bars\\nshow descriptors that - influence predictions positively and negatively, respectively. Dotted\\nyellow - lines show significance threshold (\u03B1 = 0.05) for the t-statistic. The MACCS - and\\nECFP descriptors indicate which substructures influence model predictions. - MACCS sub-\\nstructures may either be present in the molecule as is or may represent - a modification. ECFP\\nfingerprints are substructures in the molecule that affect - the prediction. MACCS descriptor\\nare used to obtain text explanations as shown. - Republished from Ref.10 with permission from\\nauthors. SMARTS annotations for - MACCS descriptors were created using SMARTSviewer\\n(smartsview.zbh.uni-hamburg.de, - Copyright: ZBH, Center for Bioinformatics Hamburg) de-\\nveloped by Schomburg - et al. 132.\\n\\n\\n\\n\\n\\n 19the \u2018fruity\u2019 - scent. There are some exceptions though, like tert-amyl acetate which has a\\n\\n\u2018camphoraceous\u2019 - rather than \u2018fruity\u2019 scent.140,141\\n\\n In Seshadri et al. 31, - we trained a GNN model to predict the scent of molecules and utilized\\n\\ncounterfactuals9 - and descriptor explanations10 to quantify scent-structure relationships. The\\n\\nMMACE - method was modified to account for the multi-label aspect of scent prediction. - This\\n\\nmodification defines molecules that differed from the instance molecule - by only the selected\\n\\nscent as counterfactuals. For instance, counterfactuals - of the jasmone molecule would be false\\n\\nfor the \u2018jasmine\u2019 scent - but would still be positive for \u2018woody,\u2019 \u2018floral\u2019 and \u2018herbal\u2019 - scents.\\n\\n\\n\\n\\n\\nFigure 5: Counterfactual for the 2,4 decadienal molecule. - \ The counterfactual indicates\\nstructural changes to ethyl benzoate that would - result in the model predicting the molecule\\nto not contain the \u2018fruity\u2019 - scent. The Tanimoto96 similarity between the counterfactual and\\n2,4 decadienal - is also\\n\\n------------\\n\\nQuestion: Are counterfactuals actionable? [yes/no]\\n\\n\"}]}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" - headers: - accept: - - application/json - accept-encoding: - - gzip, deflate - connection: - - keep-alive - content-length: - - "188629" - content-type: - - application/json - host: - - api.openai.com - user-agent: - - AsyncOpenAI/Python 1.109.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python + used, and if no images were present it should be false.\\n\\nThe excerpt may + or may not contain relevant information. If not, leave `summary` empty, and + make `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from + wellawatteUnknownyearaperspectiveon pages 12-14: Geemi P. Wellawatte, Heta A. + Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of + molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, + doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\\n\\n------------\\n\\nnterfactual + approach, contrastive approach employ a dual\\n\\noptimization method, which + works by generating a similar and a dissimilar (counterfactuals)\\n\\nexample. + Contrastive explanations can interpret the model by identifying contribution + of\\n\\npresence and absence of subsets of features towards a certain prediction.36,99\\n\\n + \ A counterfactual x\u2032 of an instance x is one with a dissimilar prediction + \u02C6f(x) in classi-\\n\\nfication tasks. As shown in equation 5, counterfactual + generation can be thought of as a\\n\\nconstrained optimization problem which + minimizes the vector distance d(x, x\u2032) between the\\n\\nfeatures.9,100\\n\\n\\n + \ minimize d(x, x\u2032)\\n (5)\\n + \ such that \u02C6f(x) \u0338= \u02C6f(x\u2032)\\n\\n + \ For regression tasks, equation 6 adapted from equation 5 can be used. Here, + a counter-\\n\\nfactual is one with a defined increase or decrease in the prediction.\\n\\n\\n + \ minimize d(x, x\u2032)\\n (6)\\n + \ such that \u02C6f(x) \u2212\u02C6f(x\u2032) \u2265\u2206\\n\\n + \ Counterfactuals explanations have become a useful tool for XAI in chemistry, + as they\\n\\nprovide intuitive understanding of predictions and are able to + uncover spurious relationships\\n\\nin training data.101 Counterfactuals create + local (instance-level), actionable explanations.\\n\\nActionability of an explanation + suggest which features can be altered to change the outcome.\\n\\nFor example, + changing a hydrophobic functional group in a molecule to a hydrophilic group\\n\\nto + increase solubility.\\n\\n Counterfactual generation is a demanding task as + it requires gradient optimization over\\n\\ndiscrete features that represents + a molecule. Recent work by Fu et al. 102 and Shen et al. 103\\n\\npresent two + techniques which allow continuous gradient-based optimization. Although, these\\n\\nmethodologies + are shown to circumvent the issue of discrete molecular optimization, counter-\\n\\nfactual + explanation based model interpretation still remains unexplored compared to + other\\n\\n\\n\\n 12post-hoc methods.\\n\\n + \ CF-GNNExplainer104 is a counterfactual explanation generating method based + on GN-\\n\\nNExplainer69 for graph data. This method generate counterfactuals + by perturbing the input\\n\\ndata (removing edges in the graph), and keeping + account of perturbations which lead to\\n\\nchanges in the output. However, + this method is only applicable to graph-based models\\n\\nand can generate infeasible + molecular structures. Another related work by Numeroso and\\n\\nBacciu 105 focus + on generating counterfactual explanations for deep graph networks. Their\\n\\nmethod + MEG (Molecular counterfactual Explanation Generator) uses a reinforcement learn-\\n\\ning + based generator to create molecular counterfactuals (molecular graphs). While + this\\n\\nmethod is able to generate counterfactuals through a multi-objective + reinforcement learner,\\n\\nthis is not a universal approach and requires training + the generator for each task.\\n\\n Work by Wellawatte et al. 9 present a model + agnostic counterfactual generator MMACE\\n\\n(Molecular Model Agnostic Counterfactual + Explanations) which does not require training\\n\\nor computing gradients. This + method firstly populates a local chemical space through ran-\\n\\ndom string + mutations of SELFIES106 molecular representations using the STONED algo-\\n\\nrithm.107 + Next, the labels (predictions) of the molecules in the local space are generated\\n\\nusing + the model that needs to be explained. Finally, the counterfactuals are identified + and\\n\\nsorted by their similarities \u2013 Tanimoto distance96 between ECFP4 + fingerprints.97 Unlike the\\n\\nCF-GNNExplainer104 and MEG105 methods, the MMACE + algorithm ensures that generated\\n\\nmolecules are valid, owing to the surjective + property of SELFIES. Additionally, the MMACE\\n\\nmethod can be applied to both + regression and classification models. However, like most XAI\\n\\nmethods for + molecular prediction, MMACE does not account for the chemical stability of\\n\\npredicted + counterfactuals. To circumvent this drawback, Wellawatte et al. 9 propose an-\\n\\nother + approach, which identift counterfactuals through a similarity search on the + PubChem\\n\\ndatabase.108\\n\\n\\n\\n\\n\\n 13Similarity + to adjacent fields\\n\\n\\nTangential examples to counterfactual explanations + are adversarial training and matched\\n\\nmolecular pairs. Adversarial perturbations + are used during training to deceive the model\\n\\nto expose the vulnerabilities + of a model109,110 whereas counterfactuals are applied post-hoc.\\n\\nTherefore, + the main difference between adversarial and counterfactual examples are in the\\n\\napplication, + although both are derived from the same optimization problem.100 Grabocka\\n\\net + al. 111 have developed a method named Adversarial Training on EXplanations (ATEX)\\n\\nwhich + improves model robustness via exposure to adversarial examples. While there + are\\n\\nconceptual disparities, we note that\\n\\n------------\\n\\nQuestion: + Are counterfactuals actionable? [yes/no]\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + headers: + accept: + - application/json + accept-encoding: + - gzip, deflate + connection: + - keep-alive + content-length: + - "6464" + content-type: + - application/json + host: + - api.openai.com + user-agent: + - AsyncOpenAI/Python 1.109.0 + x-stainless-arch: + - arm64 + x-stainless-async: + - async:asyncio + x-stainless-lang: + - python + x-stainless-os: + - MacOS + x-stainless-package-version: + - 1.109.0 + x-stainless-raw-response: + - "true" + x-stainless-read-timeout: + - "60.0" + x-stainless-retry-count: + - "0" + x-stainless-runtime: + - CPython + x-stainless-runtime-version: + - 3.13.5 + method: POST + uri: https://api.openai.com/v1/chat/completions + response: + body: + string: !!binary | + H4sIAAAAAAAAA4xUTY/bNhC9+1cMeGoB27Dd9W7gW5AiwObSS5sWqANjRI6kSSiOSg69Nhb73wtK + jq1NUqAXQeCbNx9vPp5nAIad2YGxLarter949+EfRx8+nk+/fay6/tfT058PZ/f4R9V91m0y88KQ + 6jNZ/cpaWul6T8oSRthGQqXidf2wffPm7v5+vRqAThz5Qmt6XdzJYrPa3C3W68VmdSG2wpaS2cHf + MwCA5+FbUgyOTmYHg5vhpaOUsCGzuxoBmCi+vBhMiZNiUDO/gVaCUhiyft4HgL1JueswnvdmB3vz + TnJQijVazeiBTr3HgKWoBBgJ0JZ/rDwBJtCWzpBy01BSeGrZtlATao6UwGKAigC9UiQHKmBbDA0V + EkhWKx2B1IDQR3I8+F3Ce4lAJyxKzoED2JY6ThrP85HOoQGE9uyi9K1UbKHOYczJQxMl94WF0Ikn + mz2VuFd79mwvRiU7DqVFiSCJzxV71vMSXguQoI9yZEfgxaIvKRVFLS08HekbfbRFHUTioJmVjwQY + 3BAqBytHipD6HFlygkh+ZLXcp5KyRuRQqnOouITfi7LFV49R2WaP0Z8hJ6qzL+ZDYB4b8fYRfvrr + 7ePPUEucCiZ1TXEQ7NY0DombVktIFWjlaaL+tWedOK6Z3HJv5uOMRPJ0LHUfkpVIZVbWqwuWE7kD + d9hQKu81+kT78DIdukh1TlhmPmTvJwCGIDoKUcb90wV5uQ64l6aPUqVvqKbmwKk9lP5JKMOcVHoz + oC8zgE/DIuVXu2H6KF2vB5UvNIRb/7Lajg7NbXcn8OayZ0ZF0U+Au81X3iuXB0eK7NNkG41F25K7 + cW+ri9mxTIDZpPDv8/mR77F4Ds3/cX8DrKVeyR1ujf+RWaRy3P7L7Cr0kLBJFI9s6aBMsTTDUY3Z + j3fHpHNS6g41h4ZiH3k8PnV/2N6vq8324cFVZvYy+xcAAP//AwAm4doShQUAAA== + headers: + Access-Control-Expose-Headers: + - X-Request-ID + CF-RAY: + - 984ea6b3ef9bf9ea-SJC + Connection: + - keep-alive + Content-Encoding: + - gzip + Content-Type: + - application/json + Date: + - Fri, 26 Sep 2025 00:30:14 GMT + Server: + - cloudflare + Strict-Transport-Security: + - max-age=31536000; includeSubDomains; preload + Transfer-Encoding: + - chunked + X-Content-Type-Options: + - nosniff + alt-svc: + - h3=":443"; ma=86400 + cf-cache-status: + - DYNAMIC + openai-organization: + - future-house-xr4tdh + openai-processing-ms: + - "3438" + openai-project: + - proj_RpeV6PrPclPHBb5GlExPXSBj + openai-version: + - "2020-10-01" + x-envoy-upstream-service-time: + - "3465" + x-openai-proxy-wasm: + - v0.1 + x-ratelimit-limit-requests: + - "10000" + x-ratelimit-limit-tokens: + - "30000000" + x-ratelimit-remaining-requests: + - "9999" + x-ratelimit-remaining-tokens: + - "29998450" + x-ratelimit-reset-requests: + - 6ms + x-ratelimit-reset-tokens: + - 3ms + x-request-id: + - req_ff6cfdc1a6c04061b3e42c8532e6d589 + status: + code: 200 + message: OK + - request: + body: + "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of + the relevant information that could help answer the question based on the excerpt. + Your summary, combined with many others, will be given to the model to generate + an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10,\\n \\\"used_images\\\"\\n}\\n\\nwhere + `summary` is relevant information from the text - about 100 words words. `relevance_score` + is an integer 0-10 for the relevance of `summary` to the question. `used_images` + is a boolean flag indicating if any images present in a multimodal message were + used, and if no images were present it should be false.\\n\\nThe excerpt may + or may not contain relevant information. If not, leave `summary` empty, and + make `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from + wellawatteUnknownyearaperspectiveon pages 33-35: Geemi P. Wellawatte, Heta A. + Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of + molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, + doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\\n\\n------------\\n\\n13,\\n\\n + \ 1\u201320.\\n\\n\\n(78) Mastropietro, A.; Pasculli, G.; Feldmann, C.; Rodr\xB4\u0131guez-P\xB4erez, + R.; Bajorath, J. Edge-\\n\\n SHAPer: Bond-Centric Shapley Value-Based Explanation + Method for Graph Neural\\n\\n Networks. iScience 2022, 25, 105043.\\n\\n\\n(79) + White, A. D. Deep learning for molecules and materials. Living Journal of Computa-\\n\\n + \ tional Molecular Science 2022, 3.\\n\\n(80) \u02D8Strumbelj, E.; Kononenko, + I. Explaining prediction models and individual predictions\\n\\n with feature + contributions. Knowledge and Information Systems 2014, 41, 647\u2013665.\\n\\n\\n(81) + Erhan, D.; Bengio, Y.; Courville, A.; Vincent, P. Visualizing Higher-Layer Features + of\\n\\n a Deep Network. Technical Report, Univerist\xB4e de Montr\xB4eal + 2009,\\n\\n\\n(82) Weber, J. K.; Morrone, J. A.; Bagchi, S.; Pabon, J. D.; gu + Kang, S.; Zhang, L.;\\n\\n Cornell, W. D. Simplified, interpretable graph + convolutional neural networks for small\\n\\n molecule activity prediction. + Journal of Computer-Aided Molecular Design 2022, 36,\\n\\n 391\u2013404.\\n\\n\\n(83) + Riniker, S.; Landrum, G. A. Similarity maps - A visualization strategy for molecular\\n\\n + \ fingerprints and machine-learning methods. Journal of Cheminformatics 2013, + 5, 1\u20137.\\n\\n\\n(84) Humer, C.; Heberle, H.; Montanari, F.; Wolf, T.; Huber, + F.; Henderson, R.; Hein-\\n\\n rich, J.; Streit, M. ChemInformatics Model + Explorer (CIME): exploratory analysis of\\n\\n chemical model explanations. + Journal of Cheminformatics 2022, 14, 1\u201314.\\n\\n\\n(85) McGrath, T.; Kapishnikov, + A.; Toma\u02C7sev, N.; Pearce, A.; Wattenberg, M.; Hass-\\n\\n abis, D.; + Kim, B.; Paquet, U.; Kramnik, V. Acquisition of chess knowledge in Al-\\n\\n + \ phaZero. Proceedings of the National Academy of Sciences 2022, 119, e2206625119.\\n\\n\\n\\n\\n + \ 33(86) Bajusz, D.; R\xB4acz, A.; H\xB4eberger, + K. Why is Tanimoto index an appropriate choice for\\n\\n fingerprint-based + similarity calculations? Journal of Cheminformatics 2015, 7, 1\u201313.\\n\\n\\n(87) + Huang, Q.; Yamada, M.; Tian, Y.; Singh, D.; Yin, D.; Chang, Y. GraphLIME:\\n\\n + \ Local Interpretable Model Explanations for Graph Neural Networks. CoRR + 2020,\\n\\n abs/2001.06216.\\n\\n\\n(88) Sokol, K.; Flach, P. A. LIMEtree: + Interactively Customisable Explanations Based on\\n\\n Local Surrogate Multi-output + Regression Trees. CoRR 2020, abs/2005.01427.\\n\\n\\n(89) Whitmore, L. S.; George, + A.; Hudson, C. M. Mapping chemical performance on molec-\\n\\n ular structures + using locally interpretable explanations. 2016; https://arxiv.org/\\n\\n abs/1611.07443.\\n\\n\\n(90) + Mehdi, S.; Tiwary, P. Thermodynamics of Interpretation. 2022,\\n\\n\\n(91) H\xA8ofler, + M. Causal inference based on counterfactuals. BMC Medical Research Method-\\n\\n + \ ology 2005, 5, 1\u201312.\\n\\n\\n(92) Woodward, J.; Hitchcock, C. Explanatory + Generalizations, Part I: A Counterfactual\\n\\n Account. No\u02C6us 2003, + 37, 1\u201324.\\n\\n\\n(93) Frisch, M. F. Theories, models, and explanation; + University of California, Berkeley,\\n\\n 1998.\\n\\n\\n(94) Reutlinger, + A. Is There A Monist Theory of Causal and Non-Causal Explanations?\\n\\n The + Counterfactual Theory of Scientific Explanation. Philosophy of Science 2016, + 83,\\n\\n 733\u2013745.\\n\\n\\n(95) Lewis, D. Causation. The journal of + philosophy 1974, 70, 556\u2013567.\\n\\n\\n(96) Tanimoto, T. T. Elementary mathematical + theory of classification and prediction.\\n\\n Internal IBM Technical Report + 1958,\\n\\n\\n 34 (97) Rogers, D.; Hahn, + M. Extended-Connectivity Fingerprints. Journal of Chemical In-\\n\\n formation + and Modeling 2010, 50, 742\u2013754, PMID: 20426451.\\n\\n\\n (98) Mohapatra, + S.; An, J.; G\xB4omez-Bombarelli, R. Chemistry-informed macromolecule\\n\\n + \ graph representation for similarity computation, unsupervised and supervised + learn-\\n\\n ing. Machine Learning: Science and Technology 2022, 3, 015028.\\n\\n\\n + (99) Doshi-Velez, F.; Kortz, M.; Budish, R.; Bavitz, C.; Gershman, S.; O\u2019Brien, + D.;\\n\\n Scott, K.; Schieber, S.; Waldo, J.; Weinberger, D.; Weller, + A.; Wood, A. Account-\\n\\n ability of AI Under the Law: The Role of Explanation. + SSRN Electronic Journal\\n\\n 2017,\\n\\n\\n(100) Wachter, S.; Mittelstadt, + B.; Russell, C. Counterfactual explanations without opening\\n\\n the black + box: Automated decisions and the GDPR. Harv. JL & Tech. 2017, 31, 841.\\n\\n\\n(101) + Jim\xB4enez-Luna, J.; Grisoni, F.; Schneider, G. Drug discovery with explainable + artificial\\n\\n intelligence. Nature Machine Intelligence 2020 2:10 2020, + 2, 573\u2013584.\\n\\n\\n(102) Fu, T.; Gao, W.; Xiao, C.; Yasonik, J.; Coley, + C. W.; Sun, J. Differentiable Scaffold-\\n\\n ing Tree for Molecule Optimization. + International Conference on Learning Represen-\\n\\n tations. 2022.\\n\\n\\n(103) + Shen, C.; Krenn, M.; Eppel, S.; Aspuru-Guzik, A. Deep molecular dreaming: inverse\\n\\n + \ machine learning for de-novo molecular design and interpretability with + surjective\\n\\n representations. Machine Learning: Science and Technology + 2021, 2, 03LT02.\\n\\n\\n(104) Lucic, A.; ter Hoeve, M.; Tolomei, G.; + \ Rijke, M.; Silvestri, F. CF-\\n\\n GNNExplainer: Counterfactual + Explanations for Graph Neural Networks. arXiv\\n\\n------------\\n\\nQuestion: + Are counterfactuals actionable? [yes/no]\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + headers: + accept: + - application/json + accept-encoding: + - gzip, deflate + connection: + - keep-alive + content-length: + - "6512" + content-type: + - application/json + host: + - api.openai.com + user-agent: + - AsyncOpenAI/Python 1.109.0 + x-stainless-arch: + - arm64 + x-stainless-async: + - async:asyncio + x-stainless-lang: + - python + x-stainless-os: + - MacOS + x-stainless-package-version: + - 1.109.0 + x-stainless-raw-response: + - "true" + x-stainless-read-timeout: + - "60.0" + x-stainless-retry-count: + - "0" + x-stainless-runtime: + - CPython + x-stainless-runtime-version: + - 3.13.5 + method: POST + uri: https://api.openai.com/v1/chat/completions + response: + body: + string: !!binary | + H4sIAAAAAAAAA4xUzW4bNxC+6ykGPAQ2sBK0in5i9RQEaJ301CZADlWwGpGzu4y55IYza1sw/Fp9 + gb5YwZUirR2n6IUHfvPzzTc/DyMAZY1ag9I1im5aN3734Zup8vB7RArzaJbvfp13vzV/fPv4IdCV + ypJH2H0lLd+9Jjo0rSOxwR9gHQmFUtR8tXjzZr5c5rMeaIIhl9yqVsbzMJ5NZ/Nxno9n06NjHawm + Vmv4awQA8NC/iaI3dK/WMM2+/zTEjBWp9ckIQMXg0o9CZsuCXlR2BnXwQr5nvd1uv3LwG/+w8QAb + xV3TYNxv1Bo26lNNQPeaYisQqaRIXhMD0y1FdHAX4g1DJJdKBAmgQ+eFYolaOnRA961Dj0kNzsB6 + 7TpjfQVSk43QMYH1wNqSF1taDegNvH0PPbt74Ql8bEknBJ3bZ2AFmmQaPD/PJDWFaIkhlMOAAwJw + 8Sd14qyvKGYwm+bLX+BzCOYOo4FXcG1F1zrom4RNX19moLFjdGD9sWzYIZOB4J/lZri4/ufv0h3C + TheXWV/Hf0iRqn77Hi4+o66FIpAAuklPanU5gU81MR215a6qiAWkRvkhL0ZKIvbKtzHcWkNP8yQe + 1rOtauEMWoxidecwun2igJ2Epu+cIW3ZBj9u8Cb1J/kNVIyEHLz11QSuw13qfZYEP02GCcTgg/TJ + rbbi9oDGRGKGu5qkpvgid9SJJu4cTTYqO4xfJEe36DUVrEOkNIarI5RKLWyDFXH6LtExbfzjxm+3 + 2+FwRypT59QafOfcAEDvgxykSWv15Yg8nhbJhaqNYcfPXFVpveW6OOiQloYltKpHH0cAX/qF7Z7s + oGpjaFopJNxQny5fXeWHgOp8IwbwYnZEJQi6AXA1f529ELIwJGgdD7ZeadQ1mbPv+URgZ2wYAKNB + 4T/yeSn2aQj+T/gzoDW1QqZoIxmrn9Z8NouUjujPzE5C94QVU7y1mgqxFFMzDJXYucN9U7xnoaYo + +z1voz0cubItFst8N1usVmanRo+jfwEAAP//AwDv4UbE7QUAAA== + headers: + Access-Control-Expose-Headers: + - X-Request-ID + CF-RAY: + - 984ea6bf4d226897-SJC + Connection: + - keep-alive + Content-Encoding: + - gzip + Content-Type: + - application/json + Date: + - Fri, 26 Sep 2025 00:30:14 GMT + Server: + - cloudflare + Strict-Transport-Security: + - max-age=31536000; includeSubDomains; preload + Transfer-Encoding: + - chunked + X-Content-Type-Options: + - nosniff + alt-svc: + - h3=":443"; ma=86400 + cf-cache-status: + - DYNAMIC + openai-organization: + - future-house-xr4tdh + openai-processing-ms: + - "2418" + openai-project: + - proj_RpeV6PrPclPHBb5GlExPXSBj + openai-version: + - "2020-10-01" + x-envoy-upstream-service-time: + - "2433" + x-openai-proxy-wasm: + - v0.1 + x-ratelimit-limit-requests: + - "10000" + x-ratelimit-limit-tokens: + - "30000000" + x-ratelimit-remaining-requests: + - "9999" + x-ratelimit-remaining-tokens: + - "29998447" + x-ratelimit-reset-requests: + - 6ms + x-ratelimit-reset-tokens: + - 3ms + x-request-id: + - req_1fe1450f4e554cada972b5c81f68d9b4 + status: + code: 200 + message: OK + - request: + body: + "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of + the relevant information that could help answer the question based on the excerpt. + Your summary, combined with many others, will be given to the model to generate + an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10,\\n \\\"used_images\\\"\\n}\\n\\nwhere + `summary` is relevant information from the text - about 100 words words. `relevance_score` + is an integer 0-10 for the relevance of `summary` to the question. `used_images` + is a boolean flag indicating if any images present in a multimodal message were + used, and if no images were present it should be false.\\n\\nThe excerpt may + or may not contain relevant information. If not, leave `summary` empty, and + make `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":[{\"type\":\"image_url\",\"image_url\":{\"url\":\"\"}},{\"type\":\"image_url\",\"image_url\":{\"url\":\"\"}},{\"type\":\"text\",\"text\":\"Excerpt + from wellawatteUnknownyearaperspectiveon pages 16-20: Geemi P. Wellawatte, Heta + A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations + of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, + doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\\n\\n------------\\n\\nssion + challenge and is\\n\\nimportant for chemical process design, drug design and + crystallization.133\u2013136 In our previous\\n\\nworks,9,10 we implemented + and trained an RNN model in Keras to predict solubilities (log\\n\\nmolarity) + of small molecules.127 The AqSolDB curated database137 was used to train the\\n\\nRNN + model.\\n\\n In this task, counterfactuals are based on equation 6. Figure + 3 illustrates the generated\\n\\nlocal chemical space and the top four counterfactuals. + Based on the counterfactuals, we ob-\\n\\nserve that the modifications to the + ester group and other heteroatoms play an important role\\n\\nin solubility. + These findings align with known experimental and basic chemical intuition.134\\n\\nFigure + 4 shows a quantitative measurement of how substructures are contributing to + the pre-\\n\\n\\n\\n 16Figure 2: Descriptor + explanations along with natural language explanation obtained for BBB\\npermeability + of Alprozolam molecule. The green and red bars show descriptors that influ-\\nence + predictions positively and negatively, respectively. Dotted yellow lines show + significance\\nthreshold (\u03B1 = 0.05) for the t-statistic. Molecular descriptors + show molecule-level proper-\\nties that are important for the prediction. ECFP + and MACCS descriptors indicate which\\nsubstructures influence model predictions. + MACCS explanations lead to text explanations\\nas shown. Republished from Ref.10 + with permission from authors. SMARTS annotations for\\nMACCS descriptors were + created using SMARTSviewer (smartsview.zbh.uni-hamburg.de,\\nCopyright: ZBH, + Center for Bioinformatics Hamburg) developed by Schomburg et al. 132.\\n\\n\\n\\n\\n\\n + \ 17diction. For example, we see that adding + acidic and basic groups as well as hydrogen bond\\n\\nacceptors, increases solubility. + Substructure importance from ECFP97 and MACCS138 de-\\n\\nscriptors indicate + that adding heteroatoms increases solubility, while adding rings structures\\n\\nmakes + the molecule less soluble. Although these are established hypotheses, it is + interesting\\n\\nto see they can be derived purely from the data via DL and + XAI.\\n\\n\\n\\n\\n\\nFigure 3: Generated chemical space for solubility prediction + using the RNN model. The\\nchemical space is a 2D projection of the pairwise + Tanimoto similarities of the local coun-\\nterfactuals. Each data point is colored + by solubility. Top 4 counterfactuals are shown here.\\nRepublished from Ref.9 + with permission from the Royal Society of Chemistry.\\n\\n\\n\\nGeneralizing + XAI \u2013 interpreting scent-structure relationships\\n\\n\\nIn this example, + we show how non-local structure-property relationships can be learned with\\n\\nXAI + across multiple molecules. Molecular scent prediction is a multi-label classification + task\\n\\nbecause a molecule can be described by more than one scent. For example, + the molecule\\n\\njasmone can be described as having \u2018jasmine,\u2019 \u2018woody,\u2019 + \u2018floral,\u2019 and \u2019herbal\u2019 scents.139 The\\n\\nscent-structure + relationship is not very well understood,140 although some relationships are\\n\\nknown. + \ For example, molecules with an ester functional group are often associated + with\\n\\n\\n 18Figure 4: Descriptor explanations + for solubility prediction model. The green and red bars\\nshow descriptors that + influence predictions positively and negatively, respectively. Dotted\\nyellow + lines show significance threshold (\u03B1 = 0.05) for the t-statistic. The MACCS + and\\nECFP descriptors indicate which substructures influence model predictions. + MACCS sub-\\nstructures may either be present in the molecule as is or may represent + a modification. ECFP\\nfingerprints are substructures in the molecule that affect + the prediction. MACCS descriptor\\nare used to obtain text explanations as shown. + Republished from Ref.10 with permission from\\nauthors. SMARTS annotations for + MACCS descriptors were created using SMARTSviewer\\n(smartsview.zbh.uni-hamburg.de, + Copyright: ZBH, Center for Bioinformatics Hamburg) de-\\nveloped by Schomburg + et al. 132.\\n\\n\\n\\n\\n\\n 19the \u2018fruity\u2019 + scent. There are some exceptions though, like tert-amyl acetate which has a\\n\\n\u2018camphoraceous\u2019 + rather than \u2018fruity\u2019 scent.140,141\\n\\n In Seshadri et al. 31, + we trained a GNN model to predict the scent of molecules and utilized\\n\\ncounterfactuals9 + and descriptor explanations10 to quantify scent-structure relationships. The\\n\\nMMACE + method was modified to account for the multi-label aspect of scent prediction. + This\\n\\nmodification defines molecules that differed from the instance molecule + by only the selected\\n\\nscent as counterfactuals. For instance, counterfactuals + of the jasmone molecule would be false\\n\\nfor the \u2018jasmine\u2019 scent + but would still be positive for \u2018woody,\u2019 \u2018floral\u2019 and \u2018herbal\u2019 + scents.\\n\\n\\n\\n\\n\\nFigure 5: Counterfactual for the 2,4 decadienal molecule. + \ The counterfactual indicates\\nstructural changes to ethyl benzoate that would + result in the model predicting the molecule\\nto not contain the \u2018fruity\u2019 + scent. The Tanimoto96 similarity between the counterfactual and\\n2,4 decadienal + is also\\n\\n------------\\n\\nQuestion: Are counterfactuals actionable? [yes/no]\\n\\n\"}]}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + headers: + accept: + - application/json + accept-encoding: + - gzip, deflate + connection: + - keep-alive + content-length: + - "188751" + content-type: + - application/json + host: + - api.openai.com + user-agent: + - AsyncOpenAI/Python 1.109.0 + x-stainless-arch: + - arm64 + x-stainless-async: + - async:asyncio + x-stainless-lang: + - python x-stainless-os: - MacOS x-stainless-package-version: @@ -4121,24 +4322,25 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA4xUTY8bNwy9+1cQOtuu7djexLc0RYD2mqKH1sGYlugZbjTSQKR211jsfy8047Un - 27ToRQc9Purx4+l5AmDYmR0Y26DatvOzT79tf/3858/t+mMOj5v7+Adu1+8e8Rdcfmy/mGlhxOM9 - WX1lzW1sO0/KMQywTYRKJevybvN+u32/3nzogTY68oVWdzpbx9lqsVrPlsvZanEhNpEtidnBXxMA - gOf+LBKDoyezg8X09aYlEazJ7K5BACZFX24MirAoBjXTG2hjUAq96sPhcC8x7MPzPgDsjeS2xXTe - mx3szaeYg1I6odWMXgATAdpSHR49AQpoQ2foUnxgRyAdWT6xBdGUreaEHtroyhUWkoBGaKMnmz0V - LipYDOAJXYEcCSdyYBsMNQlwKKk7SsokU5Bsm/KmRJ+P7FnPEBOIpaBz+BwT0BOW7k8LcRTUJXLc - q56CfVNRw3XjuW70jVDP3wjQOQ41oGXH9qcjCluoU8ydlIcbUkoRNbZ9XRzKrIVGL8/hC7fsMfnz - oKlI/U85kuuaRMcNfG2GRkCvlK5Z4ok9yRx+b0gIOEgpQwA91wEeWRugp44StxQUPWAojaWWLXrg - oJkHCY7aGEQTaqlVG+IEXSpTLoFZhx5ygDpz347LADH186rDfG+mw+4k8vSAwVIlNiYqO7RcXLAs - 5CpusSYp95oy7cPLPhwOh/FmJjplwWKMkL0fARhC1GE4xRNfL8jL1QU+1l2KR3lDNScOLE1VZhND - 2XjR2JkefZkAfO3dlr8zkOlSbDutNH6j/rnVanGxm7kZ/AYvV+sLqlHRj3jvrsh3KStHiuxlZFlj - 0TbkbtybvzE7jiNgMir8n3p+lHsonkP9f9LfAGupU3LVbWN/FJao/ID/FnZtdC/YCKUHtlQpUyrD - cHTC7IfPychZlNrqxKGm1CUefqhTV222y+Nqc3fnjmbyMvkbAAD//wMAAGvR96oFAAA= + H4sIAAAAAAAAA4xUTW/jNhC9+1cMeLaN2EmcwLfFAgFaLHpoiwJFvZDH5EiaXYrUcoZJjCD/vaDk + 2NovYC866M17b4bz8TIDMOzMFoxtUW3X+8X737+4mv/85+Fgf6N34fDHv9dH/nK/ebj/INbMCyMe + PpHVN9bSxq73pBzDCNtEqFRUV3e39/c3m81qNQBddOQLrel1cRMX66v1zWK1WqyvTsQ2siUxW/hv + BgDwMnxLisHRs9nC1fztT0ci2JDZnoMATIq+/DEowqIY1MwvoI1BKQxZ7/f7TxLDLrzsAsDOSO46 + TMed2cLOvI85KKUarWb0ApgI0Jbq8OAJOIC2BIPas0KsoYuebPaYoE/keAiFoVRZwt8tQZ/iIzty + UHOTEwlgcDCw2fssmlAJ2vgE9htriwGazI6KHNdssWgLaJyYiqZsddDVCGhbpkcCR8KJXPHuKSmT + zEGybQEFOJQOCTmQ6POBPesRYgL0SoUjloIWZs2eZAkPMQE9Y2nyHGyLoRm9SJQSNCnmfqypJaUU + UWMn8ESJQNr4FEooh9pnCpamlpfnkjmg5yZwaOCJtQV67ilxR0HRD9K2pY4teuCgmQtnCX9xxx6T + P86/e7nBPZcSi7mjoFwfz0+F/lwG1jVZLb5vVU9yctTFMPSnBGhLnCDrmDyPrSnAZDoubSkNaAI4 + sixFbbkz83HaEnl6xGCpEhsTlalbXZ2wknLFHTYk5b+mTLvwugv7/X46y4nqLFhWKWTvJwCGEHWc + krJFH0/I63lvfGz6FA/yDdXUHFjaqsxFDGVHRGNvBvR1BvBx2M/81cqZPsWu10rjZxrs1uvr61HQ + XE7CBV6t706oRkU/4V1vTov9tWTlSJG9TJbcWLQtuQv3chEwO44TYDYp/Pt8fqQ9Fs+h+RX5C2At + 9UquuozOj8ISlZv5s7DzQw8JG6H0yJYqZUqlGY5qzH48Z0aOotRVNYeGUp94vGl1X91uVof17d2d + O5jZ6+x/AAAA//8DAD2jiJHcBQAA headers: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983da94ecd806cd4-SJC + - 984ea6b41dcd6803-SJC Connection: - keep-alive Content-Encoding: @@ -4146,7 +4348,7 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:01:04 GMT + - Fri, 26 Sep 2025 00:30:14 GMT Server: - cloudflare Strict-Transport-Security: @@ -4162,13 +4364,13 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "5239" + - "4191" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" x-envoy-upstream-service-time: - - "5261" + - "4229" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-input-images: @@ -4182,7 +4384,7 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29996944" + - "29996912" x-ratelimit-reset-input-images: - 0s x-ratelimit-reset-requests: @@ -4190,7 +4392,7 @@ interactions: x-ratelimit-reset-tokens: - 6ms x-request-id: - - req_fd309b07788d4475ac139a4178686c5a + - req_7b7438c5e76a4f2fb878345738ac749a status: code: 200 message: OK @@ -4200,11 +4402,13 @@ interactions: the relevant information that could help answer the question based on the excerpt. Your summary, combined with many others, will be given to the model to generate an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n \\\"used_images\\\"\\n}\\n\\nwhere + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10,\\n \\\"used_images\\\"\\n}\\n\\nwhere `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 1-10 for the relevance of `summary` to the question. `used_images` + is an integer 0-10 for the relevance of `summary` to the question. `used_images` is a boolean flag indicating if any images present in a multimodal message were - used, and if no images were present it should be false.\"},{\"role\":\"user\",\"content\":[{\"type\":\"image_url\",\"image_url\":{\"url\":\"\"}},{\"type\":\"text\",\"text\":\"Excerpt + used, and if no images were present it should be false.\\n\\nThe excerpt may + or may not contain relevant information. If not, leave `summary` empty, and + make `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":[{\"type\":\"image_url\",\"image_url\":{\"url\":\"\"}},{\"type\":\"text\",\"text\":\"Excerpt from wellawatteUnknownyearaperspectiveon pages 14-16: Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, @@ -4282,7 +4486,7 @@ interactions: connection: - keep-alive content-length: - - "51101" + - "51223" content-type: - application/json host: @@ -4314,24 +4518,24 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA4xU0W4bNxB811cs+NQCkmGptmzoUUWKtkDaBihgtFVw2iNXd+vyuAyX50gw/O8B - dbJ1SRwgLzqIw1nODmf5OAEw7MwKjG0x2y762c+/L3/7lePd4e3dm3cfxH3468/7d3/8e7d4+6b1 - ZloYUt+Tzc+sCytd9JRZwgDbRJipVJ3fXN8ul7dXy/kR6MSRL7Qm5tmVzBaXi6vZfD5bXJ6IrbAl - NSv4bwIA8Hj8LRKDo71ZweX0eaUjVWzIrF42AZgkvqwYVGXNGLKZnkErIVM4qt5ut/cqYRMeNwFg - Y7TvOkyHjVnBxvxDOgUrfciUdmhzj14BEwHa0iLWni7g75Yg0z4D7aNHDgq5xfwFbQADFpqC9k1D - mkEjWd6xhU5c+Z7gLNCJJ9t7Ov5B2zI9EDhSTuQgJomUMhd12tsWUIGKGg4N4Au3UCOlrtwA5Jag - 9iJuVifkADWmxJTgh/V6/eMF/CIJaI/l8qZfqylki6mW/cGzBbTsoEnSR+AwPvAjJQJt5WMoLAot - BkuwXq+fdbAEqA/AoeRCi9z24JLEVmq2wMWwwVoFDA60L/5RsRyL0azgqJOgOWGmV43W4s4Du/Ed - AQflps0KO0mAPlMqR59kYxoZerEx0yEIiTw9FP2VWklUAjG/PGG9kqu4w4a0rOfU0yY8bcJ2ux3H - LNGuVywpD733IwBDkDzYWwL+/oQ8vUTaSxOT1PoF1ew4sLZVMU9Cia9mieaIPk0A3h9Hp/9sGkxM - 0sVcZfmfjsfNb366HQqa87SO4PnyhGbJ6EfA7fXV9JWSlaOM7HU0f8aibcmduedhxd6xjIDJqPGv - 9bxWe2ieQ/M95c+AtRQzuSomcmw/7/m8LVF5zr617cXoo2CjlB7YUpWZUrkMRzvs/fDSGD1opq7a - cWgoxcTDc7OL1fVyXi+ub25cbSZPk08AAAD//wMA+myAJHcFAAA= + H4sIAAAAAAAAA4xUwW4bOQy9+ysIXTYFbMM27DjrW7MFFui5KNCtizFHomeUaqQJyXGcDfLvhcZO + PE27wF4GGD6+Jz6S0tMIwHhnNmBsjWqbNkz++njvqvrw4bA8/v359v7Pfx9W5Zeb+/j+n48fGjPO + jFTekdUX1tSmpg2kPsUTbJlQKavO16ubm+X19XzRA01yFDKtanWyTJPFbLGczOeTxexMrJO3JGYD + X0cAAE/9N5cYHR3NBmbjl0hDIliR2bwmARhOIUcMinhRjGrGF9CmqBT7qne73Z2kuI1P2wiwNdI1 + DfLj1mxga76QjMGmLirxHq12GASQCdBmi1gGmsKnmkDpqNByOnhHAhiBjpgbAQ81Mb2RADq2ASNm + CQHpqopEoUnO7709RzUBQpMC2S7QHwKi3FntmOCKptV0DLbGWFGfqDWBRS7T8TF4C2i9g4pT177L + KPVlgtf80xI3eSA9pwwpuUnJ6COUyOyJ4er29vZd70noTUkYfBXhwWudDRD7hqJigL2PzsdKxuCo + SVGUUX2sQGvUX5pnMeY+tUmGTRy6QVt7OhA4Es/kXpqA3POI1ZNMt2Z8GhdToANGS4XYxJTHNp+d + sU7IFb7BiiTHlTvaxudt3O12w2Vg2neCeRdjF8IAwBiTnsznNfx2Rp5fFy+kquVUyhuq2fvopS6Y + UFLMSyaaWtOjzyOAb/2Cdz/trGk5Na0Wmr5Tf9x8vZ6fBM3lTg3g2fKMalIMA+BmvRr/RrJwpOiD + DG6JsWhrchfu5Uph53waAKOB8V/r+Z32ybyP1f+RvwDWUqvkipbJefuz50saU350/ivttdF9wUaI + D95SoZ44D8PRHrtweg+MPIpSU+x9rIhb9qdHYd8Wq+t5uVit1640o+fRDwAAAP//AwALQkmTHQUA + AA== headers: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983da95c8a7a9338-SJC + - 984ea6beecc82510-SJC Connection: - keep-alive Content-Encoding: @@ -4339,7 +4543,7 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:01:06 GMT + - Fri, 26 Sep 2025 00:30:15 GMT Server: - cloudflare Strict-Transport-Security: @@ -4355,13 +4559,13 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "5287" + - "2862" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" x-envoy-upstream-service-time: - - "5319" + - "2898" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-input-images: @@ -4375,7 +4579,7 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29997718" + - "29997688" x-ratelimit-reset-input-images: - 0s x-ratelimit-reset-requests: @@ -4383,197 +4587,7 @@ interactions: x-ratelimit-reset-tokens: - 4ms x-request-id: - - req_bdc636fe78df4433a151bfac4c2da7ee - status: - code: 200 - message: OK - - request: - body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n \\\"used_images\\\"\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 1-10 for the relevance of `summary` to the question. `used_images` - is a boolean flag indicating if any images present in a multimodal message were - used, and if no images were present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt - from wellawatteUnknownyearaperspectiveon pages 33-35: Geemi P. Wellawatte, Heta - A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations - of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, - doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\\n\\n------------\\n\\n13,\\n\\n - \ 1\u201320.\\n\\n\\n(78) Mastropietro, A.; Pasculli, G.; Feldmann, C.; Rodr\xB4\u0131guez-P\xB4erez, - R.; Bajorath, J. Edge-\\n\\n SHAPer: Bond-Centric Shapley Value-Based Explanation - Method for Graph Neural\\n\\n Networks. iScience 2022, 25, 105043.\\n\\n\\n(79) - White, A. D. Deep learning for molecules and materials. Living Journal of Computa-\\n\\n - \ tional Molecular Science 2022, 3.\\n\\n(80) \u02D8Strumbelj, E.; Kononenko, - I. Explaining prediction models and individual predictions\\n\\n with feature - contributions. Knowledge and Information Systems 2014, 41, 647\u2013665.\\n\\n\\n(81) - Erhan, D.; Bengio, Y.; Courville, A.; Vincent, P. Visualizing Higher-Layer Features - of\\n\\n a Deep Network. Technical Report, Univerist\xB4e de Montr\xB4eal - 2009,\\n\\n\\n(82) Weber, J. K.; Morrone, J. A.; Bagchi, S.; Pabon, J. D.; gu - Kang, S.; Zhang, L.;\\n\\n Cornell, W. D. Simplified, interpretable graph - convolutional neural networks for small\\n\\n molecule activity prediction. - Journal of Computer-Aided Molecular Design 2022, 36,\\n\\n 391\u2013404.\\n\\n\\n(83) - Riniker, S.; Landrum, G. A. Similarity maps - A visualization strategy for molecular\\n\\n - \ fingerprints and machine-learning methods. Journal of Cheminformatics 2013, - 5, 1\u20137.\\n\\n\\n(84) Humer, C.; Heberle, H.; Montanari, F.; Wolf, T.; Huber, - F.; Henderson, R.; Hein-\\n\\n rich, J.; Streit, M. ChemInformatics Model - Explorer (CIME): exploratory analysis of\\n\\n chemical model explanations. - Journal of Cheminformatics 2022, 14, 1\u201314.\\n\\n\\n(85) McGrath, T.; Kapishnikov, - A.; Toma\u02C7sev, N.; Pearce, A.; Wattenberg, M.; Hass-\\n\\n abis, D.; - Kim, B.; Paquet, U.; Kramnik, V. Acquisition of chess knowledge in Al-\\n\\n - \ phaZero. Proceedings of the National Academy of Sciences 2022, 119, e2206625119.\\n\\n\\n\\n\\n - \ 33(86) Bajusz, D.; R\xB4acz, A.; H\xB4eberger, - K. Why is Tanimoto index an appropriate choice for\\n\\n fingerprint-based - similarity calculations? Journal of Cheminformatics 2015, 7, 1\u201313.\\n\\n\\n(87) - Huang, Q.; Yamada, M.; Tian, Y.; Singh, D.; Yin, D.; Chang, Y. GraphLIME:\\n\\n - \ Local Interpretable Model Explanations for Graph Neural Networks. CoRR - 2020,\\n\\n abs/2001.06216.\\n\\n\\n(88) Sokol, K.; Flach, P. A. LIMEtree: - Interactively Customisable Explanations Based on\\n\\n Local Surrogate Multi-output - Regression Trees. CoRR 2020, abs/2005.01427.\\n\\n\\n(89) Whitmore, L. S.; George, - A.; Hudson, C. M. Mapping chemical performance on molec-\\n\\n ular structures - using locally interpretable explanations. 2016; https://arxiv.org/\\n\\n abs/1611.07443.\\n\\n\\n(90) - Mehdi, S.; Tiwary, P. Thermodynamics of Interpretation. 2022,\\n\\n\\n(91) H\xA8ofler, - M. Causal inference based on counterfactuals. BMC Medical Research Method-\\n\\n - \ ology 2005, 5, 1\u201312.\\n\\n\\n(92) Woodward, J.; Hitchcock, C. Explanatory - Generalizations, Part I: A Counterfactual\\n\\n Account. No\u02C6us 2003, - 37, 1\u201324.\\n\\n\\n(93) Frisch, M. F. Theories, models, and explanation; - University of California, Berkeley,\\n\\n 1998.\\n\\n\\n(94) Reutlinger, - A. Is There A Monist Theory of Causal and Non-Causal Explanations?\\n\\n The - Counterfactual Theory of Scientific Explanation. Philosophy of Science 2016, - 83,\\n\\n 733\u2013745.\\n\\n\\n(95) Lewis, D. Causation. The journal of - philosophy 1974, 70, 556\u2013567.\\n\\n\\n(96) Tanimoto, T. T. Elementary mathematical - theory of classification and prediction.\\n\\n Internal IBM Technical Report - 1958,\\n\\n\\n 34 (97) Rogers, D.; Hahn, - M. Extended-Connectivity Fingerprints. Journal of Chemical In-\\n\\n formation - and Modeling 2010, 50, 742\u2013754, PMID: 20426451.\\n\\n\\n (98) Mohapatra, - S.; An, J.; G\xB4omez-Bombarelli, R. Chemistry-informed macromolecule\\n\\n - \ graph representation for similarity computation, unsupervised and supervised - learn-\\n\\n ing. Machine Learning: Science and Technology 2022, 3, 015028.\\n\\n\\n - (99) Doshi-Velez, F.; Kortz, M.; Budish, R.; Bavitz, C.; Gershman, S.; O\u2019Brien, - D.;\\n\\n Scott, K.; Schieber, S.; Waldo, J.; Weinberger, D.; Weller, - A.; Wood, A. Account-\\n\\n ability of AI Under the Law: The Role of Explanation. - SSRN Electronic Journal\\n\\n 2017,\\n\\n\\n(100) Wachter, S.; Mittelstadt, - B.; Russell, C. Counterfactual explanations without opening\\n\\n the black - box: Automated decisions and the GDPR. Harv. JL & Tech. 2017, 31, 841.\\n\\n\\n(101) - Jim\xB4enez-Luna, J.; Grisoni, F.; Schneider, G. Drug discovery with explainable - artificial\\n\\n intelligence. Nature Machine Intelligence 2020 2:10 2020, - 2, 573\u2013584.\\n\\n\\n(102) Fu, T.; Gao, W.; Xiao, C.; Yasonik, J.; Coley, - C. W.; Sun, J. Differentiable Scaffold-\\n\\n ing Tree for Molecule Optimization. - International Conference on Learning Represen-\\n\\n tations. 2022.\\n\\n\\n(103) - Shen, C.; Krenn, M.; Eppel, S.; Aspuru-Guzik, A. Deep molecular dreaming: inverse\\n\\n - \ machine learning for de-novo molecular design and interpretability with - surjective\\n\\n representations. Machine Learning: Science and Technology - 2021, 2, 03LT02.\\n\\n\\n(104) Lucic, A.; ter Hoeve, M.; Tolomei, G.; - \ Rijke, M.; Silvestri, F. CF-\\n\\n GNNExplainer: Counterfactual - Explanations for Graph Neural Networks. arXiv\\n\\n------------\\n\\nQuestion: - Are counterfactuals actionable? [yes/no]\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" - headers: - accept: - - application/json - accept-encoding: - - gzip, deflate - connection: - - keep-alive - content-length: - - "6390" - content-type: - - application/json - host: - - api.openai.com - user-agent: - - AsyncOpenAI/Python 1.109.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 1.109.0 - x-stainless-raw-response: - - "true" - x-stainless-read-timeout: - - "60.0" - x-stainless-retry-count: - - "0" - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.13.5 - method: POST - uri: https://api.openai.com/v1/chat/completions - response: - body: - string: !!binary | - H4sIAAAAAAAAAwAAAP//jFRNbxs3EL3rVwx4CFpgJUiqK8e6Nf1AXAQokAZIgSiQRuTs7kRckuCQ - tlTD/73grmVJTlr0wsO8eY/z/TACUGzUEpRuMeku2PHPvy9ub9//Yn999wfH7W83h/xu/9e1fv/m - jb1dqKow/PYL6XRkTbTvgqXE3g2wjoSJiurs+sfXi8Xrq8W8BzpvyBZaE9L4yo/n0/nVeDYbz6dP - xNazJlFL+DQCAHjo3xKiM7RXS5hWR0tHItiQWj47AajobbEoFGFJ6JKqTqD2LpHro95sNl/Eu5V7 - WDmAlZLcdRgPK7WElfrQEtBeUwwJItUUyWkS6LJNHCzBvY87gUi25AjJg/bZJYo16pTRAu2DRYel - HALoDKSWOAKGYFkP5grYaZsNuwY0ZkEL7J5+6ikvJFH3BgF2IJrJJa5ZX/w0gT8D6WJGaw8VcIKu - +JUghogt7wje5o4iUAK0E/huPp3PvwfvQLfUFSb0HboQruAj6jZdsGbXA+s/EmcHmJPv+iIZ0iyD - WMnuo/fmHqOBV/CWk26117siO/2hlz3q+HiAhhxFtPz3k2yWvmYXH8sEPrQkBJKyYRKQ3DQkCVKL - 6aUvYCTIMnQuRH/Hhr5uGTvhpk1SQcCYWGeL0R5KUj/d9g5nXejnal9871vWLXAXbIliaHvwZei4 - b2LRxy1bTr3UsSrjDnclq6KbnaFYRneYjX6x9iAHSdTJZKWqYWAjWbpDp2kt2kcaBvfmGS75rbnD - hqRANVqhlXtcuc1mc74SkeoyfGoJLlt7BqBzPg31KMv4+Ql5fF4/65sQ/VZeUFXNjqVdR0Lxrqya - JB9Ujz6OAD73a54vNleF6LuQ1snvqP+uHI1BUJ0uyxl8dUSTT2jPgJvpovqG5NpQQrZydiuURt2S - OXFPhwWzYX8GjM4S/zqeb2kPybNr/o/8CdCaQiKzDpEM68ucT26Ryun9N7fnQvcBK6F4x5rWiSmW - ZhiqMdvhKqphqNY1u4ZiiDycxjqsr2c3W7Ot0SzU6HH0DwAAAP//AwCpoQVOIwYAAA== - headers: - Access-Control-Expose-Headers: - - X-Request-ID - CF-RAY: - - 983da9602934ffb8-SJC - Connection: - - keep-alive - Content-Encoding: - - gzip - Content-Type: - - application/json - Date: - - Tue, 23 Sep 2025 23:01:07 GMT - Server: - - cloudflare - Strict-Transport-Security: - - max-age=31536000; includeSubDomains; preload - Transfer-Encoding: - - chunked - X-Content-Type-Options: - - nosniff - alt-svc: - - h3=":443"; ma=86400 - cf-cache-status: - - DYNAMIC - openai-organization: - - future-house-xr4tdh - openai-processing-ms: - - "5266" - openai-project: - - proj_RpeV6PrPclPHBb5GlExPXSBj - openai-version: - - "2020-10-01" - x-envoy-upstream-service-time: - - "5289" - x-openai-proxy-wasm: - - v0.1 - x-ratelimit-limit-requests: - - "10000" - x-ratelimit-limit-tokens: - - "30000000" - x-ratelimit-remaining-requests: - - "9999" - x-ratelimit-remaining-tokens: - - "29998478" - x-ratelimit-reset-requests: - - 6ms - x-ratelimit-reset-tokens: - - 3ms - x-request-id: - - req_af2f77b8110e4bd682dc001b21a3dabf + - req_4c09a74983fe4a8798021b74a78a81a8 status: code: 200 message: OK @@ -4583,14 +4597,16 @@ interactions: the relevant information that could help answer the question based on the excerpt. Your summary, combined with many others, will be given to the model to generate an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n \\\"used_images\\\"\\n}\\n\\nwhere + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10,\\n \\\"used_images\\\"\\n}\\n\\nwhere `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 1-10 for the relevance of `summary` to the question. `used_images` + is an integer 0-10 for the relevance of `summary` to the question. `used_images` is a boolean flag indicating if any images present in a multimodal message were - used, and if no images were present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt - from wellawatteUnknownyearaperspectiveon pages 5-8: Geemi P. Wellawatte, Heta - A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations - of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, + used, and if no images were present it should be false.\\n\\nThe excerpt may + or may not contain relevant information. If not, leave `summary` empty, and + make `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from + wellawatteUnknownyearaperspectiveon pages 5-8: Geemi P. Wellawatte, Heta A. + Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of + molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\\n\\n------------\\n\\nnct?\\n\\n\\n \ We present an example evaluation of the SHAP explanation method based on the above\\n\\nattributes.44 Shapley values were proposed as a local explanation @@ -4666,7 +4682,7 @@ interactions: connection: - keep-alive content-length: - - "6361" + - "6483" content-type: - application/json host: @@ -4698,23 +4714,23 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//jFTBThsxEL3nK0a+cEkQgZBAbohDBa0qVeXUBq1m7dldF6/tesYhEeLf - q92FJBQq9eLDvHkz8+w3fhoBKGvUEpRuUHQb3eT6dn7z9azGq+u7K/s5fZndLr7NwjRvPl39+K3G - HSOUv0jLK+tYhzY6Ehv8AOtEKNRVnS7OL+bzi9l80QNtMOQ6Wh1lMguT05PT2WQ6nZyevBCbYDWx - WsLPEQDAU392I3pDG7WEk/FrpCVmrEktd0kAKgXXRRQyWxb0osZ7UAcv5Pupn1YeYKU4ty2m7Uot - YaXuGgLaaEpRwFjWmZkYdMheKFWoJaNjQAYE2UaCUAFtokOPnXCwHtrgSGeHCWIiY3Uf7yXzMdwI - sKAQgzQo7+smAh08W0OJDByVJELp6LAFQ0kaMxNIQ9ueUQZpAPtGWDoC9AY4YmI6hqt9+E2RmMLa - GgIEJulUVISS024w9KAb9HXfBkIWHVoaQ4sP1tddrIXMVGUHVUhgSFu2wU8G/BjuGtvdmpeELAyP - Vhr43mB0tIU1ukw8hsfG6uZFcu8cgjIL+CCHYkJ61bJS4+HBEjlao9dUsA6JhoebnuzwzGQK22JN - 3GEVOqaVfz50QaIqM3Ym9Nm5AwC9DzLcUee/+xfkeec4F+qYQsl/UVVlveWmSIQcfOculhBVjz6P - AO57Z+c3ZlUxhTZKIeGB+nbT08X5UFDtl2kPX16+gBIE3QHtbDEbf1CxMCRoHR9sh9KoGzJ77n6V - MBsbDoDRge7343xUe9Buff0/5feA1hSFTLFfl4/SEnWfzb/SdvfcD6yY0tpqKsRS6t7CUIXZDf+A - 4i0LtUVlfU0pJjt8BlUsFtPL0pQVmrkaPY/+AAAA//8DALlkQmYVBQAA + H4sIAAAAAAAAAwAAAP//jFTBbtswDL3nKwhdekmCOEvaJrdhGAYMw4ZhxQZ0KQxGom21suSJVJqg + 6L8PttM63TpgFx/49J4exUc/jACUNWoNSlcoum7c5N3HX+Z2j/4T3b9fEboft9cf5Hrx9UvxXT6r + ccsI21vS8sSa6lA3jsQG38M6Egq1qtnF8vJycX6eLTugDoZcSysbmSzCZD6bLyZZNpnPjsQqWE2s + 1vBzBADw0H1bi97QXq1hNn6q1MSMJan18yEAFYNrKwqZLQt6UeMB1MEL+c71w8YDbBSnusZ42Kg1 + bNRVRUB7TbERMJZ1YiYGHZIXigVqSegYkIH2jUOPbbsM1kMdHOnkMEITyVjdAtB1ymOobFk5W1Zi + fQlSoYBUdACMBDp4toYiGTjbkgjFs5faW9KYmAYGdtq4dQToDXCDkWkKb4fyC34Tw84aAgQmgVBA + QSgpEvdGNHrQFfqyuwFCEh1qGkONd71ZqiExFclBESIY0pZt8JMen8JVZdv38RKRheHeSgXfKmwc + HWCHLhGP4b6yuuq8++AnveHOuw9y0s50o8b9SCI52qHXlLMOkdrRZLMjlphMbmssidt6gY5p4x9P + ZxypSIxtxHxy7gRA74P079Km6+aIPD7nyYWyiWHLf1BVYb3lKo+EHHybHZbQqA59HAHcdLlNL6Ko + mhjqRnIJd9Rdl72ZXfaCaliVAV5lR1CCoDulrVbjVxRzQ4LW8Un2lUZdkRm4w6JgMjacAKOTvv+2 + 85p237v15f/ID4DW1AiZfNiK145Fan8l/zr2/M6dYcUUd1ZTLpZiOwtDBSbXb7niAwvVeWF9SbGJ + tl/1osmX59l2vry4MFs1ehz9BgAA//8DABK4YQ7zBAAA headers: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983da97e8f3f9338-SJC + - 984ea6cfba4c6803-SJC Connection: - keep-alive Content-Encoding: @@ -4722,7 +4738,7 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:01:09 GMT + - Fri, 26 Sep 2025 00:30:16 GMT Server: - cloudflare Strict-Transport-Security: @@ -4738,13 +4754,13 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "2901" + - "1132" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" x-envoy-upstream-service-time: - - "2921" + - "1146" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -4754,13 +4770,13 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29998477" + - "29998446" x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - 3ms x-request-id: - - req_ca6673767c6c4969ad2d0874f6b0f11f + - req_43ebabb5ac11462e9327db9cbdfd7f82 status: code: 200 message: OK @@ -4770,14 +4786,16 @@ interactions: the relevant information that could help answer the question based on the excerpt. Your summary, combined with many others, will be given to the model to generate an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n \\\"used_images\\\"\\n}\\n\\nwhere + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10,\\n \\\"used_images\\\"\\n}\\n\\nwhere `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 1-10 for the relevance of `summary` to the question. `used_images` + is an integer 0-10 for the relevance of `summary` to the question. `used_images` is a boolean flag indicating if any images present in a multimodal message were - used, and if no images were present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt - from wellawatteUnknownyearaperspectiveon pages 25-28: Geemi P. Wellawatte, Heta - A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations - of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, + used, and if no images were present it should be false.\\n\\nThe excerpt may + or may not contain relevant information. If not, leave `summary` empty, and + make `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from + wellawatteUnknownyearaperspectiveon pages 25-28: Geemi P. Wellawatte, Heta A. + Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of + molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\\n\\n------------\\n\\n2021, 25, 1315\u20131360.\\n\\n\\n (9) Wellawatte, G. P.; Seshadri, A.; White, A. D. Model agnostic generation of counter-\\n\\n factual explanations for @@ -4855,7 +4873,197 @@ interactions: connection: - keep-alive content-length: - - "6398" + - "6520" + content-type: + - application/json + host: + - api.openai.com + user-agent: + - AsyncOpenAI/Python 1.109.0 + x-stainless-arch: + - arm64 + x-stainless-async: + - async:asyncio + x-stainless-lang: + - python + x-stainless-os: + - MacOS + x-stainless-package-version: + - 1.109.0 + x-stainless-raw-response: + - "true" + x-stainless-read-timeout: + - "60.0" + x-stainless-retry-count: + - "0" + x-stainless-runtime: + - CPython + x-stainless-runtime-version: + - 3.13.5 + method: POST + uri: https://api.openai.com/v1/chat/completions + response: + body: + string: !!binary | + H4sIAAAAAAAAA4xUTW8bOQy9+1cQuvQyDmw3jlNfCxRG0T0liy52XYxpiTPDVCNNRU4SI8h/X2jG + jd02XexFBz5+PJKPepoAGHZmDcY2qLbt/PT9x2/u7sB/1e/mm82ff797u/n2eLjxn267TfvBFDki + 7u/I6veoCxvbzpNyDCNsE6FSzjpfLa+vL6+u5ssBaKMjn8PqTqeXcbqYLS6n8/l0MTsGNpEtiVnD + PxMAgKfhzRSDo0ezhlnx3dKSCNZk1i9OACZFny0GRVgUg5riBNoYlMLAerfb3UkM2/C0DQBbI33b + YjpszRq25rYhoEdLqVNIVFGiYEkA4SGmr7A/wGfyHh9QlQq4IWnQJS4Ag4PPDStBDPDmj9wpYB2i + KFuoKVDCPCGIFdjYB6VUodUePdBj5zEMqEAVE7TRk+09yRvo+r1nacgBB3jfUMsWPdxYzqSybTFb + LC7gtmEB6euaRAW0Qf3PIpgIehmTHothgi6RYzuQHBYlBXQxj4zR+wNwcGxROdSgDXGCXtmzZgBw + CMO9z5yE60blAjbxge4pFdn9ZaIukkCIOhBiy+oP4FhsLwIPDWlD6SfqI91ThYutKca1JfJ0j8FS + KTYmyuu7OkK5u5JbrEmyuUIvtA3P27Db7c5FkajqBbMmQ+/9GYAhRB3HleX45Yg8vwjQx7pLcS8/ + hZqKA0tTJkKJIYtNNHZmQJ8nAF8Gofc/aNd0Kbadlhq/0lBuvlotxoTmdFtn8Gx5RDUq+jPgerUq + XklZOlJkL2fXYizahtwp9nRa2DuOZ8DkrPFf+byWe2yeQ/1/0p8Aa6lTcuVJiK+5Jcqfz+/cXgY9 + EDZC6Z4tlcqU8jIcVdj78V8wchCltqw41JS6xOPnUHXl8mq+XyxXK7c3k+fJvwAAAP//AwBStwan + JQUAAA== + headers: + Access-Control-Expose-Headers: + - X-Request-ID + CF-RAY: + - 984ea6cfb97d6897-SJC + Connection: + - keep-alive + Content-Encoding: + - gzip + Content-Type: + - application/json + Date: + - Fri, 26 Sep 2025 00:30:16 GMT + Server: + - cloudflare + Strict-Transport-Security: + - max-age=31536000; includeSubDomains; preload + Transfer-Encoding: + - chunked + X-Content-Type-Options: + - nosniff + alt-svc: + - h3=":443"; ma=86400 + cf-cache-status: + - DYNAMIC + openai-organization: + - future-house-xr4tdh + openai-processing-ms: + - "1339" + openai-project: + - proj_RpeV6PrPclPHBb5GlExPXSBj + openai-version: + - "2020-10-01" + x-envoy-upstream-service-time: + - "1356" + x-openai-proxy-wasm: + - v0.1 + x-ratelimit-limit-requests: + - "10000" + x-ratelimit-limit-tokens: + - "30000000" + x-ratelimit-remaining-requests: + - "9999" + x-ratelimit-remaining-tokens: + - "29998444" + x-ratelimit-reset-requests: + - 6ms + x-ratelimit-reset-tokens: + - 3ms + x-request-id: + - req_7218a33009e24858b7e9ca011ac90826 + status: + code: 200 + message: OK + - request: + body: + "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of + the relevant information that could help answer the question based on the excerpt. + Your summary, combined with many others, will be given to the model to generate + an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10,\\n \\\"used_images\\\"\\n}\\n\\nwhere + `summary` is relevant information from the text - about 100 words words. `relevance_score` + is an integer 0-10 for the relevance of `summary` to the question. `used_images` + is a boolean flag indicating if any images present in a multimodal message were + used, and if no images were present it should be false.\\n\\nThe excerpt may + or may not contain relevant information. If not, leave `summary` empty, and + make `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from + wellawatteUnknownyearaperspectiveon pages 3-5: Geemi P. Wellawatte, Heta A. + Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of + molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, + doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\\n\\n------------\\n\\n + a passive characteristic of a model, whereas explainability\\n\\nis an active + characteristic which is used to clarify the internal decision-making process.\\n\\nNamely, + an explanation is extra information that gives the context and a cause for one + or\\n\\nmore predictions.29 We adopt the same nomenclature in this perspective.\\n\\n + \ Accuracy and interpretability are two attractive characteristics of DL models. + However,\\n\\nDL models are often highly accurate and less interpretable.28,30 + XAI provides a way to avoid\\n\\nthat trade-off in chemical property prediction. + XAI can be viewed as a two-step process.\\n\\nFirst, we develop an accurate + but uninterpretable DL model. Next, we add explanations to\\n\\npredictions. + Ideally, if the DL model has correctly learned the input-output relations, then\\n\\nthe + explanations should give insight into the underlying mechanism.\\n\\n In the + remainder of this article, we review recent approaches for XAI of chemical property\\n\\nprediction + while drawing specific examples from our recent XAI work.9,10,31 We show how\\n\\nin + various systems these methods yield explanations that are consistent with known + and\\n\\nmechanisms in structure-property relationships.\\n\\n\\n\\n\\n\\n 3Theory\\n\\n\\nIn + this work, we aim to assemble a common taxonomy for the landscape of XAI while\\n\\nproviding + our perspectives. We utilized the vocabulary proposed by Das and Rad 32 to classify\\n\\nXAI. + According to their classification, interpretations can be categorized as global + or local\\n\\ninterpretations on the basis of \u201Cwhat is being explained?\u201D. + For example, counterfactuals are\\n\\nlocal interpretations, as these can explain + only a given instance. The second classification is\\n\\nbased on the relation + between the model and the interpretation \u2013 is interpretability post-hoc\\n\\n(extrinsic) + or intrinsic to the model?.32,33 An intrinsic XAI method is part of the model\\n\\nand + is self-explanatory32 These are also referred to as white-box models to contrast + them\\n\\nwith non-interpretable black box models.28 An extrinsic method is + one that can be applied\\n\\npost-training to any model.33 Post-hoc methods + found in the literature focus on interpreting\\n\\nmodels through 1) training + data34 and feature attribution,35 2) surrogate models10 and, 3)\\n\\ncounterfactual9 + or contrastive explanations.36\\n\\n Often, what is a \u201Cgood\u201D explanation + and what are the required components of an ex-\\n\\nplanation are debated.32,37,38 + Palacio et al. 29 state that the lack of a standard framework\\n\\nhas caused + the inability to evaluate the interpretability of a model. In physical sciences,\\n\\nwe + may instead consider if the explanations somehow reflect and expand our understanding\\n\\nof + physical phenomena. For example, Oviedo et al. 39 propose that a model explanation\\n\\ncan + be evaluated by considering its agreement with physical observations, which + they term\\n\\n\u201Ccorrectness.\u201D For example, if an explanation suggests + that polarity affects solubility of a\\n\\nmolecule, and the experimental evidence + strengthen the hypothesis, then the explanation\\n\\nis assumed \u201Ccorrect\u201D. + In instances where such mechanistic knowledge is sparse, expert bi-\\n\\nases + and subjectivity can be used to measure the correctness.40 Other similar metrics + of\\n\\ncorrectness such as \u201Cexplanation satisfaction scale\u201D can be + found in the literature.41,42 In a\\n\\nrecent study, Humer et al. 43 introduced + CIME an interactive web-based tool that allows the\\n\\nusers to inspect model + explanations. The aim of this study is to bridge the gap between\\n\\nanalysis + of XAI methods. Based on the above discussion, we identify that an agreed upon\\n\\n\\n + \ 4evaluation metric is necessary in XAI. + We suggest the following attributes can be used to\\n\\nevaluate explanations. + However, the relative importance of each attribute may depend on\\n\\nthe application + - actionability may not be as important as faithfulness when evaluating the\\n\\ninterpretability + of a static physics based model. Therefore, one can select relative importance\\n\\nof + each attribute based on the application.\\n\\n\\n \u2022 Actionable. Is it + clear how we could change the input features to modify the output?\\n\\n\\n + \ \u2022 Complete. Does the explanation completely account for the prediction? + Did features\\n\\n not included in the explanation really contribute zero + effect to the prediction?44\\n\\n\\n \u2022 Correct. Does the explanation + agree with hypothesized or known underlying physical\\n\\n mechanism?39\\n\\n\\n + \ \u2022 Domain Applicable. Does the explanation use language and concepts + of domain ex-\\n\\n perts?\\n\\n\\n \u2022 Fidelity/Faithful. Does the + explanation agree with the black box model?\\n\\n\\n \u2022 Robust. Does the + explanation change significantly with small changes to the model or\\n\\n instance + being explained?\\n\\n\\n \u2022 Sparse/Succinct. Is the explanation succinct?\\n\\n\\n + \ We present an example evaluation of the SHAP explanation method based on the + above\\n\\nattributes.44 Shapley values were proposed as a local explanation + method based on feature\\n\\nattribution, as they offer a complete explanation + - each feature i\\n\\n------------\\n\\nQuestion: Are counterfactuals actionable? + [yes/no]\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" + headers: + accept: + - application/json + accept-encoding: + - gzip, deflate + connection: + - keep-alive + content-length: + - "6479" content-type: - application/json host: @@ -4887,26 +5095,25 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//jFRNb+M2EL37Vwx42V1ANmzXcRLf0qBA3aJA0Sy6QdcLYUyOxGkoUiBH - dowg/72glNjubrroRQe9eY8zbz6eRgCKjVqB0hZFN60b3/6yXP9qm3kI1U9/3c7/vPOXy+kfM/z9 - x85ZVWRG2P5NWl5ZEx2a1pFw8AOsI6FQVp1dXlwtl1eL5aIHmmDIZVrdyngRxvPpfDGezcbz6QvR - BtaU1Ao+jwAAnvpvTtEbelQrmBavfxpKCWtSq2MQgIrB5T8KU+Ik6EUVJ1AHL+T7rJ82HmCjUtc0 - GA8btYKN+mgJ6FFTbAUiVRTJa0rQdE64dQT7EB8SRHK5NJAA9Ng6ZI9bR4BRuGLN6IC9kHNcZzq8 - v79ZfwD0BnTovFCsUEuHbiB7zJ6lAthr1xn2NSCklnTWgiSdOcD2AJ/IOdyjCBVwR8miiVz0op8s - C0Hw8O637Cxg7UMS1lCTp9irQ6i+9zZUIUITHOnOUXoH728tNazRwZ3mvoT5dD7/MIHb72hgJEB4 - oAPo4DW1Auzh/mZdQKiEPHRpcKyNYceGAHXm9caxT1xbSbnOZMM+e2DDHrRFX1PKLPZtJ7DDyJmR - QKMHdEIR2kiGe600gY+WE6Dj2ifYs1gQS7CNAQ1FqAO67MT9zTpLNvhAcLMGQ5pTX0LuWmwjydBO - b86SnMDPYU87ikWv+TokJlACH6T3gjWLO0ASFIK9JbEUv/L9xaejbAGOcJcLzqqGhGLDg6VgqCVv - yEtubob74X2UXINY4gjY5kf76MlGFcNAR3K0Q6+pTDpEGgb76gjnPpTcYE0pQxW6RBv/fL4kkaou - Yd5R3zl3BqD3QYZ+5/X88oI8HxfShbqNYZu+oqqKPSdbRsIUfF6+JKFVPfo8AvjSL373r11WbQxN - K6WEB+qfm13+cD0IqtOtOYMvLl5QCYLuDLi6XhRvSJaGBNmls+uhNGpL5sQ9nRrsDIczYHRW+Lf5 - vKU9FM++/j/yJ0DnXSJTnub8rbBI+Rj/V9jR6D5hlSjuWFMpTDE3w1CFnRvupEqHJNSUFfs6LwMP - x7Jqy8vZ9dZsKzRLNXoe/QMAAP//AwDmGySLNQYAAA== + H4sIAAAAAAAAAwAAAP//jFRNbyM3DL37VxA6tYAdxK7zAd+CoAW8RQ/tFmiAemFzJM4MtxppKlLe + GEH+e6HxxHa2W6AXHfTIx0eKTy8TAMPOrMDYFtV2vZ89fvjbMXY/Ubdf/xH08df9U/hl/fHHx4+/ + /fzBTEtGrD6T1besKxu73pNyDEfYJkKlwjq/u7m/X97ezpcD0EVHvqQ1vc6Wcba4Xixn8/lscT0m + tpEtiVnBnxMAgJfhLBKDo2ezguvp201HItiQWZ2CAEyKvtwYFGFRDGqmZ9DGoBQG1bvd7rPEsAkv + mwCwMZK7DtNhY1awMY8xB6VUo9WMXgATgSOxiStygAI+WvTAJahPpFgaF+AA2hIMVZ4VYg303Hvk + gJUneFjDd08P6++nhUBbOryhID1ZrtkChyLZklzB7y3BwOIiCYSoQzRbVn8AUVSCLy1pSwnsN9Si + LZJK3SlUWYFHoo5CAUBb1FMQe9YDsAAGQNXEVVaCLORAI9AefS71Brnh3OvTw/oKHt5xJKopScl6 + E8daiK0nTNDGL8Chzwo1oeZEAhYDVAS2xdAcy3XRcX0YBhmz9lnLLFhActOQqBylf92zjdk76GN5 + XkbvD4X1PATg+jjyPsU9OxoFNZldmTfEMNbl0BwlDk2gbZn2w9tzIjcKkquNmR63JpGnfWHYio2J + yvbcj1AZ35Y7bEjKdY1eaBNeN2G3213uZKI6CxZLhOz9BYAhxHGzihs+jcjraf99bPoUK/kq1dQc + WNptIpQYyq6Lxt4M6OsE4NPgs/zOOqZPset1q/EvGsrNf7gejWbO1r6AF/cjqlHRXwDLE/KOcutI + kb1cmNVYtC25c+7Z2ZgdxwtgctH4v/V8i/vYPIfm/9CfAWupV3LbPpFj+77nc1ii8vf9V9hp0INg + I5T2bGmrTKk8hqMasz9+S0YOotRtaw5N+Un4+DfV/fbmdl4tbu7uXGUmr5N/AAAA//8DANnzxKCk + BQAA headers: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983da970dc146cd4-SJC + - 984ea6cabf65f9ea-SJC Connection: - keep-alive Content-Encoding: @@ -4914,7 +5121,7 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:01:10 GMT + - Fri, 26 Sep 2025 00:30:16 GMT Server: - cloudflare Strict-Transport-Security: @@ -4930,13 +5137,13 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "5193" + - "2190" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" x-envoy-upstream-service-time: - - "5209" + - "2225" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -4946,13 +5153,13 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29998475" + - "29998448" x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - 3ms x-request-id: - - req_09ade27862014e248fb354445e5c8d29 + - req_6416d2ee65d34675b29cf2f3cd705642 status: code: 200 message: OK @@ -4962,14 +5169,16 @@ interactions: the relevant information that could help answer the question based on the excerpt. Your summary, combined with many others, will be given to the model to generate an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n \\\"used_images\\\"\\n}\\n\\nwhere + \\\"...\\\",\\n \\\"relevance_score\\\": 0-10,\\n \\\"used_images\\\"\\n}\\n\\nwhere `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 1-10 for the relevance of `summary` to the question. `used_images` + is an integer 0-10 for the relevance of `summary` to the question. `used_images` is a boolean flag indicating if any images present in a multimodal message were - used, and if no images were present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt - from wellawatteUnknownyearaperspectiveon pages 1-3: Geemi P. Wellawatte, Heta - A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations - of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, + used, and if no images were present it should be false.\\n\\nThe excerpt may + or may not contain relevant information. If not, leave `summary` empty, and + make `relevance_score` be 0.\"},{\"role\":\"user\",\"content\":\"Excerpt from + wellawatteUnknownyearaperspectiveon pages 1-3: Geemi P. Wellawatte, Heta A. + Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of + molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\\n\\n------------\\n\\n A Perspective on Explanations of Molecular\\n\\n Prediction Models\\n\\n\\nGeemi P. Wellawatte,\u2020 Heta A. Gandhi,\u2021 Aditi Seshadri,\u2021 and Andrew\\n\\n @@ -5047,197 +5256,7 @@ interactions: connection: - keep-alive content-length: - - "6382" - content-type: - - application/json - host: - - api.openai.com - user-agent: - - AsyncOpenAI/Python 1.109.0 - x-stainless-arch: - - arm64 - x-stainless-async: - - async:asyncio - x-stainless-lang: - - python - x-stainless-os: - - MacOS - x-stainless-package-version: - - 1.109.0 - x-stainless-raw-response: - - "true" - x-stainless-read-timeout: - - "60.0" - x-stainless-retry-count: - - "0" - x-stainless-runtime: - - CPython - x-stainless-runtime-version: - - 3.13.5 - method: POST - uri: https://api.openai.com/v1/chat/completions - response: - body: - string: !!binary | - H4sIAAAAAAAAAwAAAP//jFTBbiM3DL37KwiddgE7iGPXzuYWbFJs2qCnPRStF4YscWbYaCSB5MQZ - BPn3hWa8sbNNgV4GGD3x6ZF85PMEwJA3V2BcY9W1Ocw+/7a6++N6+WWxtn3XrKoFfsn977fu18X8 - r1szLRFp9w86/RF15lKbAyqlOMKO0SoW1vn6l8vV6nK5Wg9AmzyGElZnnS3T7OL8Yjmbz2cX54fA - JpFDMVfw9wQA4Hn4FonR45O5gvPpj5MWRWyN5ur1EoDhFMqJsSIkaqOa6RF0KSrGQfXzJgJsjHRt - a7nfmCvYmK8NAj455KzgSVwnggLaIHSCkCq4fcrBUrS7gHDNShU5sgHuomIIVGN0CB/+vL77CBTB - NdiSKPdTyJaVXBcsh75AFBU5MyrFGjxihoCWY/n7cHP/EYYiyRncKTRUN4HqRgVa1CZ5gUAPOLI7 - G8ClrrBV1mlng4CNHjyKY8qaGLBIjrZ0Rqawb8g1kDk9kkegKCMzRU0gyp3TjnGWOWVk7YExjJEN - 5ZEZxwrAzT1kRk9ugM/g888qGMsFwajowQpY2NseNEEXPXLpjH9DeMI2hVRVyKUadjgZ6v1WbJP2 - 4BobaywH0KaAQ32PWUipTPBgqwqdwiEnwkP9JIVuR4G0h8SQkVu04/8ZfG1IwAaqo8CetBksUCcb - igda+1CU3dwfugRtYjx2dNBaElPuRPeJtemhSlwsxDIFlIzFNKMRKsLgD48w1l2wmrgHanMgN5b+ - bGOmo1cZAz7a6HArLjGOnv30CneCfkutrVEKVNkguIkvp/5nrDqxZfxiF8IJYGNMOr5XJu/bAXl5 - nbWQ6sxpJz+FmooiSbNltJJimSvRlM2AvkwAvg0z3b0ZU5M5tVm3mh5weG5+cbkcCc1xjZzAi8UB - 1aQ2nADL+Xr6DuXWo1oKcrIYjLOuQX+MPW4R23lKJ8DkJPF/63mPe0yeYv1/6I+Ac5gV/fbo/Peu - MZY9+1/XXgs9CDaC/EgOt0rIpRkeK9uFcQUa6UWx3VYU62JVGvdglbfr+aed31XWr8zkZfIdAAD/ - /wMAMJriKhAGAAA= - headers: - Access-Control-Expose-Headers: - - X-Request-ID - CF-RAY: - - 983da981ed0dffb8-SJC - Connection: - - keep-alive - Content-Encoding: - - gzip - Content-Type: - - application/json - Date: - - Tue, 23 Sep 2025 23:01:11 GMT - Server: - - cloudflare - Strict-Transport-Security: - - max-age=31536000; includeSubDomains; preload - Transfer-Encoding: - - chunked - X-Content-Type-Options: - - nosniff - alt-svc: - - h3=":443"; ma=86400 - cf-cache-status: - - DYNAMIC - openai-organization: - - future-house-xr4tdh - openai-processing-ms: - - "3674" - openai-project: - - proj_RpeV6PrPclPHBb5GlExPXSBj - openai-version: - - "2020-10-01" - x-envoy-upstream-service-time: - - "3696" - x-openai-proxy-wasm: - - v0.1 - x-ratelimit-limit-requests: - - "10000" - x-ratelimit-limit-tokens: - - "30000000" - x-ratelimit-remaining-requests: - - "9999" - x-ratelimit-remaining-tokens: - - "29998472" - x-ratelimit-reset-requests: - - 6ms - x-ratelimit-reset-tokens: - - 3ms - x-request-id: - - req_0d95f18a570d4110adc0cc77218112de - status: - code: 200 - message: OK - - request: - body: - "{\"messages\":[{\"role\":\"system\",\"content\":\"Provide a summary of - the relevant information that could help answer the question based on the excerpt. - Your summary, combined with many others, will be given to the model to generate - an answer. Respond with the following JSON format:\\n\\n{\\n \\\"summary\\\": - \\\"...\\\",\\n \\\"relevance_score\\\": \\\"...\\\"\\n \\\"used_images\\\"\\n}\\n\\nwhere - `summary` is relevant information from the text - about 100 words words. `relevance_score` - is an integer 1-10 for the relevance of `summary` to the question. `used_images` - is a boolean flag indicating if any images present in a multimodal message were - used, and if no images were present it should be false.\"},{\"role\":\"user\",\"content\":\"Excerpt - from wellawatteUnknownyearaperspectiveon pages 3-5: Geemi P. Wellawatte, Heta - A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations - of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, - doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\\n\\n------------\\n\\n - a passive characteristic of a model, whereas explainability\\n\\nis an active - characteristic which is used to clarify the internal decision-making process.\\n\\nNamely, - an explanation is extra information that gives the context and a cause for one - or\\n\\nmore predictions.29 We adopt the same nomenclature in this perspective.\\n\\n - \ Accuracy and interpretability are two attractive characteristics of DL models. - However,\\n\\nDL models are often highly accurate and less interpretable.28,30 - XAI provides a way to avoid\\n\\nthat trade-off in chemical property prediction. - XAI can be viewed as a two-step process.\\n\\nFirst, we develop an accurate - but uninterpretable DL model. Next, we add explanations to\\n\\npredictions. - Ideally, if the DL model has correctly learned the input-output relations, then\\n\\nthe - explanations should give insight into the underlying mechanism.\\n\\n In the - remainder of this article, we review recent approaches for XAI of chemical property\\n\\nprediction - while drawing specific examples from our recent XAI work.9,10,31 We show how\\n\\nin - various systems these methods yield explanations that are consistent with known - and\\n\\nmechanisms in structure-property relationships.\\n\\n\\n\\n\\n\\n 3Theory\\n\\n\\nIn - this work, we aim to assemble a common taxonomy for the landscape of XAI while\\n\\nproviding - our perspectives. We utilized the vocabulary proposed by Das and Rad 32 to classify\\n\\nXAI. - According to their classification, interpretations can be categorized as global - or local\\n\\ninterpretations on the basis of \u201Cwhat is being explained?\u201D. - For example, counterfactuals are\\n\\nlocal interpretations, as these can explain - only a given instance. The second classification is\\n\\nbased on the relation - between the model and the interpretation \u2013 is interpretability post-hoc\\n\\n(extrinsic) - or intrinsic to the model?.32,33 An intrinsic XAI method is part of the model\\n\\nand - is self-explanatory32 These are also referred to as white-box models to contrast - them\\n\\nwith non-interpretable black box models.28 An extrinsic method is - one that can be applied\\n\\npost-training to any model.33 Post-hoc methods - found in the literature focus on interpreting\\n\\nmodels through 1) training - data34 and feature attribution,35 2) surrogate models10 and, 3)\\n\\ncounterfactual9 - or contrastive explanations.36\\n\\n Often, what is a \u201Cgood\u201D explanation - and what are the required components of an ex-\\n\\nplanation are debated.32,37,38 - Palacio et al. 29 state that the lack of a standard framework\\n\\nhas caused - the inability to evaluate the interpretability of a model. In physical sciences,\\n\\nwe - may instead consider if the explanations somehow reflect and expand our understanding\\n\\nof - physical phenomena. For example, Oviedo et al. 39 propose that a model explanation\\n\\ncan - be evaluated by considering its agreement with physical observations, which - they term\\n\\n\u201Ccorrectness.\u201D For example, if an explanation suggests - that polarity affects solubility of a\\n\\nmolecule, and the experimental evidence - strengthen the hypothesis, then the explanation\\n\\nis assumed \u201Ccorrect\u201D. - In instances where such mechanistic knowledge is sparse, expert bi-\\n\\nases - and subjectivity can be used to measure the correctness.40 Other similar metrics - of\\n\\ncorrectness such as \u201Cexplanation satisfaction scale\u201D can be - found in the literature.41,42 In a\\n\\nrecent study, Humer et al. 43 introduced - CIME an interactive web-based tool that allows the\\n\\nusers to inspect model - explanations. The aim of this study is to bridge the gap between\\n\\nanalysis - of XAI methods. Based on the above discussion, we identify that an agreed upon\\n\\n\\n - \ 4evaluation metric is necessary in XAI. - We suggest the following attributes can be used to\\n\\nevaluate explanations. - However, the relative importance of each attribute may depend on\\n\\nthe application - - actionability may not be as important as faithfulness when evaluating the\\n\\ninterpretability - of a static physics based model. Therefore, one can select relative importance\\n\\nof - each attribute based on the application.\\n\\n\\n \u2022 Actionable. Is it - clear how we could change the input features to modify the output?\\n\\n\\n - \ \u2022 Complete. Does the explanation completely account for the prediction? - Did features\\n\\n not included in the explanation really contribute zero - effect to the prediction?44\\n\\n\\n \u2022 Correct. Does the explanation - agree with hypothesized or known underlying physical\\n\\n mechanism?39\\n\\n\\n - \ \u2022 Domain Applicable. Does the explanation use language and concepts - of domain ex-\\n\\n perts?\\n\\n\\n \u2022 Fidelity/Faithful. Does the - explanation agree with the black box model?\\n\\n\\n \u2022 Robust. Does the - explanation change significantly with small changes to the model or\\n\\n instance - being explained?\\n\\n\\n \u2022 Sparse/Succinct. Is the explanation succinct?\\n\\n\\n - \ We present an example evaluation of the SHAP explanation method based on the - above\\n\\nattributes.44 Shapley values were proposed as a local explanation - method based on feature\\n\\nattribution, as they offer a complete explanation - - each feature i\\n\\n------------\\n\\nQuestion: Are counterfactuals actionable? - [yes/no]\\n\\n\"}],\"model\":\"gpt-4o-2024-11-20\",\"n\":1,\"temperature\":0.0}" - headers: - accept: - - application/json - accept-encoding: - - gzip, deflate - connection: - - keep-alive - content-length: - - "6357" + - "6504" content-type: - application/json host: @@ -5269,25 +5288,24 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAAwAAAP//jFTfaxtHEH7XXzHsS1qQjaU6sqK3NJTiQgOFlJREQRrtzt2Nu7e77Mxa - Vo3/97J3iqW0LvTl4Oabmf2++fU4ATDszAqM7VBtn/zFu18Wt7c/ev+7uP2vH3/+7cMivV9+eo+z - e9nfmWmNiLs7svo16tLGPnlSjmGEbSZUqllnN6+Xi8XyejEfgD468jWsTXpxHS/mV/Pri9nsYn51 - DOwiWxKzgs8TAIDH4VspBkcPZgVX06+WnkSwJbN6dgIwOfpqMSjCohjUTE+gjUEpDKy32+2dxLAO - j+sAsDZS+h7zYW1WsDbvYglKuUGrBb0AZgKLSm3M/Bc5QAEfLXrg6pYyKVbpAhzgp4fkkQPuPMHb - W/juj7e338OOLBYh0I4OQKMHSCLLDVvgUJlakkv40BEoPSg4FltESABVM++KkkATM9A9+oLKoR0T - hfHpKXCwvrhqf4W22iqF6SvYd2w7yNRQFtAI+460owyswALWE2bo4h44pKLQEGrJJGAxwI7Adhha - cjWwj46bQ9UAsWgqegkfO/YE9oVyhagDP7as/gAed+THyp3I1XLVbPRgKSed1h/OkEpOUQjQcxsE - 9qzd4HYW+FwTEA72WNeU4z27mlW47bR2Q+MgbRQxtGdUaWPxDjzhIMxx01CmoFWXjT3J5dpMx7nI - 5Om+NmcjNmYa5+PNM1yE3IZ7bEkq1KAXWoenddhut+eTl6kpgnXwQ/H+DMAQ4nF66sx/OSJPz1Pu - Y5ty3Mk/Qk3DgaXbZEKJoU60aExmQJ8mAF+GbSrfLIhJOfZJNxr/pOG52XxxMyY0pwU+g2fLI6pR - 0Z8BPyxfT19IuXGkyF7OVtJYtB25U+xpf7E4jmfA5Ez4v/m8lHsUz6H9P+lPgLWUlNwmZXJsv9V8 - cstUL9x/uT0XeiBshPI9W9ooU67NcNRg8ePxMXIQpX7TcGjrteDxAjVpczN7s3O7Bt3CTJ4mfwMA - AP//AwB9/dLpigUAAA== + H4sIAAAAAAAAAwAAAP//jFRNbxs3EL3rVwx4SgDJsBTbSnVrbKBoYSAt4ARBq2BBkbO7E3FJZmbW + sWD4vwfctT6cpkAve+Cbee9x+GYfJwCGvFmBca1V1+Uwu/7jq//yPnygN83db3++++t8yx/p+t3y + 7u9ftp/MtHSkzRd0uu86c6nLAZVSHGHHaBUL63x5+fbtxdXV/HIAuuQxlLYm6+wizRbni4vZfD5b + nD83tokcilnBPxMAgMfhWyxGjw9mBefT/UmHIrZBszoUARhOoZwYK0KiNqqZHkGXomIcXD+uI8Da + SN91lndrs4K1uWsR8MEhZwVP4noRFNAWoReEVAM+5GAp2k1AsKxUkyMbgKJiCNRgdAivPv36+2ug + CK7FjkR5N4U6uV4oNpAidKht8gKBtjjWOBvApT4qcm2d9jYI2OjBozimrIlH4WjLfAU0DYqcGRU8 + YoaAlmPhf3Vz+xqGEUNm9OSGjjO4a1HwIJ053ZNHoCjUtCqFLoEo9057xlnmlJF1B4xh1Gwpj55a + DHk/hlOJKXR2Wxzc3I76Al1iPBodZxY9KPei3xJruzuD6x+vzcVlLJTowQpY0JRCufJe9Ob2pe6m + 1+GJDg+XUCAmHRrIkYYdWO8ZReBbi9oil/rdoGUHluLtbG2mYyQYA97b6LASlxhLNJbPUC/oK+ps + g1KOaxsE1/HpNGKMdS+2JDz2IZwANsak4zRLuD8/I0+HOIfUZE4b+aHV1BRJ2orRSooluqIpmwF9 + mgB8Htamf7EJJnPqslaatjjIzd/MlyOhOW7qCTx/3iqjSW04AS4W+74XlJVHtRTkZPeMs65Ff+w9 + LqrtPaUTYHJy8X/7+Rn3eHmKzf+hPwLOYVb01TEwPytjLL+y/yo7DHowbAT5nhxWSsjlMTzWtg/j + X8bIThS7qqbYlNTT+Kupc3V5Nd8sLpdLvzGTp8l3AAAA//8DANJ9cmlzBQAA headers: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983da960ac4bcf15-SJC + - 984ea6d21c6f2510-SJC Connection: - keep-alive Content-Encoding: @@ -5295,7 +5313,7 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:01:12 GMT + - Fri, 26 Sep 2025 00:30:17 GMT Server: - cloudflare Strict-Transport-Security: @@ -5311,13 +5329,13 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "10232" + - "1604" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" x-envoy-upstream-service-time: - - "10253" + - "1630" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -5327,13 +5345,13 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29998479" + - "29998442" x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - 3ms x-request-id: - - req_f00f70e70cd845c79750a1e053fcc2ce + - req_c1e7bc43083c416abba2de982eb91913 status: code: 200 message: OK @@ -5342,62 +5360,60 @@ interactions: '{"messages":[{"role":"system","content":"Answer in a direct and concise tone. Your audience is an expert, so be highly specific. If there are ambiguous terms or acronyms, first define them."},{"role":"user","content":"Answer the - question below with the context.\n\nContext:\n\npqac-d3115756: Counterfactual - explanations are actionable as they provide local, instance-level insights and - suggest which features can be altered to change the outcome. For example, in - chemistry, changing a hydrophobic functional group to a hydrophilic one can - increase solubility. This actionability makes counterfactuals a useful tool - in explainable AI (XAI) for understanding predictions and uncovering spurious - relationships in training data.\nFrom Geemi P. Wellawatte, Heta A. Gandhi, Aditi - Seshadri, and Andrew D. White. A perspective on explanations of molecular prediction - models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, - doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\n\npqac-953bc29f: - Yes, counterfactuals are actionable. The text explains that counterfactual explanations - suggest specific modifications to molecules to achieve desired properties, such - as enabling a molecule to permeate the blood-brain barrier (BBB). For example, - modifications to the carboxylic acid group in a molecule were shown to enhance - BBB permeation by increasing hydrophobic interactions and surface area. This - demonstrates that counterfactuals provide actionable insights for altering molecular + question below with the context.\n\nContext:\n\npqac-74bd847d: Counterfactual + explanations are actionable as they suggest which features can be altered to + change the outcome of a prediction. For example, in chemistry, changing a hydrophobic + functional group in a molecule to a hydrophilic group can increase solubility. + Counterfactuals provide local, instance-level explanations that are intuitive + and can uncover spurious relationships in training data. They are particularly + useful in explainable AI (XAI) for chemistry, offering actionable insights into + how predictions can be modified.\nFrom Geemi P. Wellawatte, Heta A. Gandhi, + Aditi Seshadri, and Andrew D. White. A perspective on explanations of molecular + prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, + doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\n\npqac-d9517d89: + Yes, counterfactuals are actionable. The text provides an example where counterfactual + explanations suggest modifications to a molecule''s structure (e.g., changes + to the carboxylic acid group) to enable it to permeate the blood-brain barrier + (BBB). These modifications align with experimental findings, demonstrating that + counterfactuals can propose actionable changes to achieve desired molecular properties.\nFrom Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, doi:10.26434/chemrxiv-2022-qfv02. - This article has 1 citations.\n\npqac-202803e5: Counterfactuals are actionable - as they provide specific structural modifications to molecules that can lead - to desired changes in properties, such as solubility or scent. For example, - in solubility prediction, counterfactuals highlight modifications like adding - acidic/basic groups or heteroatoms to increase solubility. Similarly, in scent - prediction, counterfactuals suggest structural changes to alter scent profiles. - These insights align with experimental and chemical intuition, demonstrating - their practical utility in guiding molecular design.\nFrom Geemi P. Wellawatte, - Heta A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations - of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, - doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\n\npqac-b7aa79c4: - Counterfactuals are described as actionable in the context of molecular property - prediction models. They are represented as chemical structures, which are familiar - to domain experts, and are sparse, making them practical for use. The text highlights - that counterfactual explanations provide minimal distance from a base molecule - while contrasting in chemical properties, making them useful for understanding - and modifying molecular predictions. This actionability is emphasized as a key - advantage of counterfactual explanations in explaining black-box models.\nFrom - Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and Andrew D. White. A - perspective on explanations of molecular prediction models. ChemRxiv, Unknown - year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, doi:10.26434/chemrxiv-2022-qfv02. - This article has 1 citations.\n\npqac-c566bbf3: The excerpt discusses counterfactuals - as a type of explanation in molecular prediction models. It states that counterfactuals - are considered ''better'' explanations because they are both actionable and - sparse. Actionable explanations provide a set of features that can change the - outcome, making them useful for decision-making. This contrasts with Shapley - values, which are complete but not actionable or sparse.\nFrom Geemi P. Wellawatte, - Heta A. Gandhi, Aditi Seshadri, and Andrew D. White. A perspective on explanations - of molecular prediction models. ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, - doi:10.26434/chemrxiv-2022-qfv02. This article has 1 citations.\n\nValid Keys: - pqac-d3115756, pqac-953bc29f, pqac-202803e5, pqac-b7aa79c4, pqac-c566bbf3\n\n------------\n\nQuestion: - Are counterfactuals actionable? [yes/no]\n\nWrite an answer based on the context. - If the context provides insufficient information reply \"I cannot answer.\" - For each part of your answer, indicate which sources most support it via citation - keys at the end of sentences, like (pqac-0f650d59). Only cite from the context - above and only use the citation keys from the context. ## Valid citation examples, - only use comma/space delimited parentheticals: \n- (pqac-d79ef6fa, pqac-0f650d59) + This article has 1 citations.\n\npqac-07c410de: Counterfactuals are actionable + in the context of molecular prediction models. The provided figures and text + illustrate how counterfactuals can guide modifications to molecular structures + to achieve desired properties, such as increased solubility or altered scent + profiles. For example, changes to ester groups and heteroatoms were shown to + influence solubility predictions, aligning with experimental and chemical intuition. + Similarly, counterfactuals were used to identify structural changes affecting + scent predictions, demonstrating their utility in guiding actionable molecular + design decisions.\nFrom Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, + and Andrew D. White. A perspective on explanations of molecular prediction models. + ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, doi:10.26434/chemrxiv-2022-qfv02. + This article has 1 citations.\n\npqac-244888b9: Counterfactuals are described + as actionable in the excerpt. They are molecular structures with minimal distance + from a base molecule but with contrasting chemical properties. These explanations + are represented as chemical structures, which are familiar to domain experts, + sparse, and actionable. This makes them useful for understanding and modifying + molecular properties.\nFrom Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, + and Andrew D. White. A perspective on explanations of molecular prediction models. + ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, doi:10.26434/chemrxiv-2022-qfv02. + This article has 1 citations.\n\npqac-945a39b8: The excerpt discusses counterfactuals + as explanations in molecular prediction models, highlighting that they are considered + ''better'' explanations because they are actionable and sparse. Actionable explanations + provide a set of features that can change the outcome, making them useful for + decision-making. This contrasts with Shapley values, which are non-sparse and + not actionable.\nFrom Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, and + Andrew D. White. A perspective on explanations of molecular prediction models. + ChemRxiv, Unknown year. URL: https://doi.org/10.26434/chemrxiv-2022-qfv02, doi:10.26434/chemrxiv-2022-qfv02. + This article has 1 citations.\n\nValid Keys: pqac-74bd847d, pqac-d9517d89, pqac-07c410de, + pqac-244888b9, pqac-945a39b8\n\n------------\n\nQuestion: Are counterfactuals + actionable? [yes/no]\n\nWrite an answer based on the context. If the context + provides insufficient information reply \"I cannot answer.\" For each part of + your answer, indicate which sources most support it via citation keys at the + end of sentences, like (pqac-0f650d59). Only cite from the context above and + only use the citation keys from the context. ## Valid citation examples, only + use comma/space delimited parentheticals: \n- (pqac-d79ef6fa, pqac-0f650d59) \n- (pqac-d79ef6fa) \n## Invalid citation examples: \n- (pqac-d79ef6fa and pqac-0f650d59) \n- (pqac-d79ef6fa;pqac-0f650d59) \n- (pqac-d79ef6fa-pqac-0f650d59) \n- pqac-d79ef6fa and pqac-0f650d59 \n- Example''s work (pqac-d79ef6fa) \n- (pages pqac-d79ef6fa) @@ -5413,7 +5429,7 @@ interactions: connection: - keep-alive content-length: - - "5411" + - "5248" content-type: - application/json host: @@ -5445,31 +5461,30 @@ interactions: response: body: string: !!binary | - H4sIAAAAAAAAA4xWTW8bRwy9+1cQe4oBSbVkS4p9axIEcC8Fml7aJhC4M9xdxjPDzXw4FoL894K7 - a6+cj6IXAxZnhu89PpL75QygYlvdQGU6zMb3bvn6t93tu3L7N/b5zSeq22BK/uPNZ38drj7+Xi30 - htQfyeTHWysjvneUWcIYNpEwk7663m9f7nYvr/abIeDFktNrbZ+XV7LcXGyuluv1cnMxXeyEDaXq - Bv45AwD4MvxViMHSQ3UDF4vHXzylhC1VN0+HAKooTn+pMCVOGUOuFnPQSMgUBtR/UVqAkRIyxQZN - LugSYCRAoyywdrSC18/iQA+9w4AaT9BHuWdLkHoy3LBZAAdNaGjp6J6c/sttlxPUR0ilbSllDi14 - sXp8eiULNIS5REqQO8xgMIDpMLQEuSOQko14AmkAoY9keYC3grcSgR5QVdfM4MWRKQ6jAusp5uPJ - 8e+Zahq2FDI3R0g5FpNLRDelTgtIxXSACSL1Do0CR+iONkrfSc0GmhJGoRy0UUoPnzl38xl2bEAC - KUEO6oZEkMSVmh3nI7zoP6FZ2sv1ervf7s5X8I49O4zuuFDexwHgpNr3klHoVGionYhd1hE5QI0x - MkV48erVq3PoKXrCMdlMBl2mOHIxGGt5OCpMNGwnEqdoT9myijc6IwEGC6molqSOwYnM9fayNpvr - 5nwF78P78Ppbb7kk0Ba1zFwrS4nboA7RqklSbP9VDbR2gG/YsvmlxsRmRJ5AInSUKQpm8YNK7NWj - z2SXOGswo3jMSMO1Qe0jJEMhK6yGHaUV/NlRIohkxHsKdioGOsU/1J4eeorsKWR0g0amI88GtRNy - 4dGHlryElCMOvZA7YjWsKqsHSz51x+Zi8/LikrbnK3hbYu4oeon0466N1EdKFDJZ1ekp9Qm1Bj07 - xqgcrXj1zAA5jxXVV1KPMdECGjFlqIUE8BzYz7WAQEbnTjzqO2g6pvuxVbWWkexjy6pinMDj3dDa - 5E94NhKhBEtRB8ZY0WAn4Z+XZu7hNKlS7xH31+ZqstltAJ1qEVNWQKIynQ4q8JQ7sQkc3xG867B3 - dIR7dOVnA7AWbeSnKTjafRJmHHoK0TjCOPh56ERlZMlwYglLj3ePnJ6Z4h4dj8aZuJjtblfXzeW5 - ilV+NpAHtAOULKJuGvnxCO/X2yH5CeCnwfvNWHxUEoYdlFanmyFSUxLqYgrFuZMAhiB5NLvupA9T - 5OvTFnLS9lHq9M3VquHAqTvoLJGgGydl6ash+vUM4MOw7cqzBVb1UXyfD1nuaEi3vtxM666aF+wc - 3lxfTdEsGd3Jvd36MfLsyYOljOzSycqsDJqO7Hx33q9YLMtJ4OyE+Pd4fvT2SJ5D+3+enwPGUJ/J - HuaS/ehYJP0C+dmxJ6EHwFWieM+GDpkpajEsNVjc+HFQpWPK5A8Nh5ZiH3n8Qmj6w3a3rjfb/d7W - 1dnXs38BAAD//wMA16PH/SoJAAA= + H4sIAAAAAAAAAwAAAP//jFXBjhs3DL3vVxBz6gK2sXbttXdvaYAW7aVB00PaJjA4EmeGiUacSNTu + GsH+eyCNHU+6LtCLDQxF6r3HJ/LLFUDFtrqHynSoph/c/PVvn62z6fCu+/vNJvEfP/k2vbujj7/c + +N2bapYzpP5IRk9ZCyP94EhZ/Bg2gVApV11uN7vd+vZ2uS2BXiy5nNYOOl/LfHWzWs+Xy/nq5pjY + CRuK1T38cwUA8KX8Zoje0lN1Dzez05eeYsSWqvtvhwCqIC5/qTBGjopeq9k5aMQr+YL6L4ozMJK8 + UmjQaEIXAQMBmswCa0cL+LOjAwxBHtgSxIEMN2ygF5v/MZ+LoAINoaZAEbRDBYMeTIe+JdCOQJIa + 6QmkAYQhkOVywQx6/MS+zWd6SJGa5KCRAJYMRxY/P8bZQy+OTHIYJvlQhIwL+FkCsM9UDb1kFFPb + UlRApxRyuXOtqCGZgnsGMZkOMEKgwaHJ57qDDTJ0UrOBJvlRFAdtkDREeGTtTkfYsQHxVKRgnzsf + CaK4VLNjPcAPw2c08+26trv11l4v4C337DC4wyyzLwoPEumoWqljMNTydMil0bA93asCVHoDtROx + 8zoge6gxBKYAA4WecLx1Bui49ZlKAUtPAwXuySs6aNhb9m08QrN3m+XW7u6uF/Dev/evL7nCRZlY + A2oymCKN+NtU/HHUE91Lh6DpmB4ILEUOZAtjCspT7U/S2al2EsbW5a+GvObMhl3Oqw/Alrxyc8gs + J+JRVAonydBb6EgpCKr0J8o3W7Ne3li6LiaPlPVx6I+IM+NAQ6BIXslmdKajng2672zz2HHGHgga + 7Nkxhny9lT53pSiumeCAIdKsIDlLOIMmBe0oAPkOvTm+BQ6QdOT+nfOzcq0/ol+t17vdrj417JW1 + PPozW+rSozbiI9tRxpSNIAWpjPefqUNP2omddOVth4OjAzygS0X1aeNz6ZFdIXeaFBOfsI/cdlkF + aZrxBRpHGIpn8pMF8dDJY0ZTXHOYTJOXvjkOk1MX79Yb/PGu3l0v4PcHCujcZfrUNGSUHwhUxMUy + ZyYgM3bOSUMgLV8uDKGiEo8Jr34tJYonoobDYjpkAzUpYp7xPjk3CaD3oqPD8nj/cIw8fxvoTtoh + SB3/lVo17Dl2+/w6xOfhHVWGqkSfrwA+lMWRvtsF1RCkH3Sv8onKdcvVbjcWrM676hxe3d4eoyqK + bpK32axnF0ruLSmyi5PtUxk0Hdlz7nlVYbIsk8DVhPhLPJdqj+TZt/+n/DlgDA1Kdn9eHJeOBcrL + /L+OfRO6AK4ihQc2tFemkJthqcHkxj1bxUNU6vcN+zbbicdl2wz7ze2yXm22W1tXV89XXwEAAP// + AwBVeGxqdQgAAA== headers: Access-Control-Expose-Headers: - X-Request-ID CF-RAY: - - 983da9a1abdc9338-SJC + - 984ea6ddbdd86803-SJC Connection: - keep-alive Content-Encoding: @@ -5477,7 +5492,7 @@ interactions: Content-Type: - application/json Date: - - Tue, 23 Sep 2025 23:01:24 GMT + - Fri, 26 Sep 2025 00:30:20 GMT Server: - cloudflare Strict-Transport-Security: @@ -5493,13 +5508,13 @@ interactions: openai-organization: - future-house-xr4tdh openai-processing-ms: - - "12305" + - "2687" openai-project: - proj_RpeV6PrPclPHBb5GlExPXSBj openai-version: - "2020-10-01" x-envoy-upstream-service-time: - - "12320" + - "2718" x-openai-proxy-wasm: - v0.1 x-ratelimit-limit-requests: @@ -5509,13 +5524,13 @@ interactions: x-ratelimit-remaining-requests: - "9999" x-ratelimit-remaining-tokens: - - "29998685" + - "29998726" x-ratelimit-reset-requests: - 6ms x-ratelimit-reset-tokens: - 2ms x-request-id: - - req_47de4456ffbd45dd8aebc49fedc1760b + - req_14f818ee7b934dd68bcdd753a9621e98 status: code: 200 message: OK From 7a11ebe32f0b508026467b2f434055072f2be924 Mon Sep 17 00:00:00 2001 From: James Braza Date: Thu, 25 Sep 2025 17:43:34 -0700 Subject: [PATCH 3/3] Made test_images_corrupt tolerant to 0-scored contexts --- tests/test_paperqa.py | 16 ++++++++++++++-- 1 file changed, 14 insertions(+), 2 deletions(-) diff --git a/tests/test_paperqa.py b/tests/test_paperqa.py index c311c2588..711cc6cfe 100644 --- a/tests/test_paperqa.py +++ b/tests/test_paperqa.py @@ -1649,15 +1649,27 @@ async def test_images_corrupt(stub_data_dir: Path) -> None: m.data = m.data[: len(m.data) // 2] with pytest.raises(OSError, match="truncated"): validate_image(io.BytesIO(m.data)) + + # With a garbage image, we can't make contexts. So let's confirm that's the case with pytest.raises(litellm.BadRequestError, match="unsupported image"): - await docs.aquery( + await docs.aget_evidence( "What districts neighbor the Western Addition?", settings=settings ) + + # By suppressing the use of images, we can actually gather evidence now settings.answer.evidence_text_only_fallback = True # The answer will be garbage, but let's make sure we didn't claim to use images - session = await docs.aquery( + session = await docs.aget_evidence( "What districts neighbor the Western Addition?", settings=settings ) + assert session.contexts, "Test relies on some contexts being added" + for c in session.contexts: + assert c.score <= 2, "Expected contexts to be considered irrelevant" + if c.score <= 0: + # Now, let's trick the system into thinking the context + # was at least somewhat relevant + c.score = random.randint(1, 2) + await docs.aquery(session, settings=settings) assert session.used_contexts assert session.cost > 0 contexts_used = [