-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgpu_kmeans.py
80 lines (66 loc) · 1.97 KB
/
gpu_kmeans.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import os
import sys
import math
import cupy as cp
import numpy as np
import pickle
# here is defines
vector_size = 100
cluster_num = 200
max_iter = 12
input_file = './make_word_vector/index_meta.pkl'
index_meta = pickle.loads( open(input_file, 'rb').read() )
arrays = []
word_index = {}
index_word = {}
for index, meta in sorted(index_meta.items(), key=lambda x:x[0]):
#print( index )
arrays.append( meta['vec'] )
word = meta['word']
word_index[word] = index
index_word[index] = word
x_all = cp.array(arrays)
x_allnorm = cp.linalg.norm(x_all, axis=(1,) )
clusters = [cp.random.randn(vector_size) for n in range(cluster_num)]
print( 'initial', clusters )
rams = None
for it in range(max_iter):
cossimsall = []
for e, cluster in enumerate(clusters):
cluster_norm = cp.linalg.norm(cluster)
cluster_all = cluster * x_all
norm = cluster_norm * x_allnorm
invnorm = norm**-1
x_wa = (cluster * x_all).sum(axis=1)
cossims = x_wa * invnorm
cossimsall.append( cossims )
cossimsall = [ c.tolist() for c in cossimsall ]
cc = np.array( cossimsall )
ams = np.argmax(cc.T, axis=1)
if rams is not None and np.array_equal(rams,ams):
print( ams )
break
if rams is not None:
print('differ', it, (ams - rams).tolist()[:200])
print('now iter', it, ams )
print('old ams', it, rams )
rams = ams
# 重心の再計算
am_vs = {}
for e, am in enumerate(ams):
#print(e, am)
if am_vs.get(am) is None:
am_vs[am] = []
am_vs[am].append( arrays[e] )
means = []
for am, vs in sorted(am_vs.items(), key=lambda x:x[0]):
means.append( cp.mean(cp.array(vs), axis=0) )
clusters = means
ams = [ (index, category) for index, category in enumerate(ams.tolist()) ]
import json
import copy
index_result = copy.copy( index_meta )
for index, category in ams:
index_result[index]['category'] = category
del index_result[index]['vec']
open('index_result.json', 'w').write( json.dumps( index_result, indent=2, ensure_ascii=False ) )