From 13436ce21e74ff34863307f06ecd4c56e9bf0a70 Mon Sep 17 00:00:00 2001 From: Qiu Wen Jie <100810925+Wukong-SCUT@users.noreply.github.com> Date: Sun, 6 Oct 2024 12:14:57 +0800 Subject: [PATCH] Update README.md --- README.md | 50 ++++++++++++++++++++++++++++++++++---------------- 1 file changed, 34 insertions(+), 16 deletions(-) diff --git a/README.md b/README.md index 8b83f42..b9b8c45 100644 --- a/README.md +++ b/README.md @@ -30,7 +30,9 @@ This respository aims to maintain a list of useful relevant papers and open sour - [2.4.3. Algorithm Generation \& Parameter](#243-operator--parameter) - [2.4.4. Algorithm Imitation](#244-symbolic) - [2.4.5. Others](#245-others) - - [2.5. Other MetaBBO](#25-other-metabbo) + - [2.5. Others](#25-others) + - [2.5.1 Evaluation Indicator](#251-evaluation-indicator) + - [2.5.2 Landscape Feature](#252-landscape-feature) - [3. Classic BBO](#3-classic-bbo) - [3.1. Differential Evolution](#31-differential-evolution) - [3.2. Partical Swarm Optimization](#32-partical-swarm-optimization) @@ -57,36 +59,49 @@ This respository aims to maintain a list of useful relevant papers and open sour |Benchmark|Paper|Original Repository|Optimization Type| |:-:|:-:|:-:|:-:| +|GP-based|He Y, Aranha C. "[**Evolving Benchmark Functions to Compare Evolutionary Algorithms via Genetic Programming**](https://arxiv.org/abs/2403.14146)". arXiv preprint arXiv:2403.14146 (2024).|[GP-based](https://github.com/Y1fanHE/cec2024)|| |SELECTOR|Benjamins, Carolin, et al. "[**Instance Selection for Dynamic Algorithm Configuration with Reinforcement Learning: Improving Generalization**](https://arxiv.org/abs/2407.13513)." arXiv preprint arXiv:2407.13513 (2024).|[automl/instance-dac]( https://github.com/automl/instance-dac)|| |MetaBox|Ma, Zeyuan, et al. "[**MetaBox: A Benchmark Platform for Meta-Black-Box Optimization with Reinforcement Learning**](https://neurips.cc/virtual/2023/oral/73737)." Advances in Neural Information Processing Systems 36 (2023).|[GMC-DRL/MetaBox]( https://github.com/GMC-DRL/MetaBox)|| -|NeuroEvoBench|Lange, Robert, Yujin Tang, and Yingtao Tian. "[**Neuroevobench: Benchmarking evolutionary optimizers for deep learning applications**](https://neurips.cc/virtual/2023/oral/73737)." Advances in Neural Information Processing Systems 36 (2023): 32160-32172.|[neuroevobench/neuroevobench](https://github.com/neuroevobench/neuroevobench)|| +|NN-based|Prager R P, Dietrich K, Schneider L, et al. "[**Neural Networks as Black-Box Benchmark Functions Optimized for Exploratory Landscape Features**](https://dl.acm.org/doi/abs/10.1145/3594805.3607136)" Proceedings of the 17th ACM/SIGEVO Conference on Foundations of Genetic Algorithms (2023).| - | | +|NeuroEvoBench|Lange, Robert, Yujin Tang, and Yingtao Tian. "[**Neuroevobench: Benchmarking evolutionary optimizers for deep learning applications**](https://neurips.cc/virtual/2023/oral/73737)." Advances in Neural Information Processing Systems 36 (2023)|[neuroevobench/neuroevobench](https://github.com/neuroevobench/neuroevobench)|| |MA-BBOB|Vermetten, Diederick, et al. "[**MA-BBOB: A Problem Generator for Black-Box Optimization Using Affine Combinations and Shifts**](https://arxiv.org/abs/2312.11083)." arXiv preprint arXiv:2312.11083 (2023).|[Dvermetten/Many-affine-BBOB](https://github.com/Dvermetten/Many-affine-BBOB)|| -|COCO|Hansen, Nikolaus, et al. "[**COCO: A platform for comparing continuous optimizers in a black-box setting**](https://www.tandfonline.com/doi/abs/10.1080/10556788.2020.1808977)." Optimization Methods and Software 36.1 (2021): 114-144.|[numbbo/coco](https://github.com/numbbo/coco)|| -|IOHprofiler (IOHexperimenter)|Doerr, Carola, et al. "[**IOHprofiler: A benchmarking and profiling tool for iterative optimization heuristics**](https://arxiv.org/abs/1810.05281)." arXiv preprint arXiv:1810.05281 (2018).
de Nobel, Jacob, et al. "[**Iohexperimenter: Benchmarking platform for iterative optimization heuristics**](https://direct.mit.edu/evco/article/doi/10.1162/evco_a_00342/116949)." Evolutionary Computation (2023): 1-6.|[IOHprofiler/
IOHexperimenter](https://github.com/IOHprofiler/IOHexperimenter)|| -|AClib|Hutter, Frank, et al. "[**AClib: A benchmark library for algorithm configuration**](https://link.springer.com/chapter/10.1007/978-3-319-09584-4_4)." Learning and Intelligent Optimization: 8th International Conference. Revised Selected Papers 8. Springer International Publishing, 2014.|[aclib.net](https://www.aclib.net/)|| -|Olympus|Häse, Florian, et al. "[**Olympus: a benchmarking framework for noisy optimization and experiment planning**](https://iopscience.iop.org/article/10.1088/2632-2153/abedc8/meta)." Machine Learning: Science and Technology 2.3 (2021): 035021.|[aspuru-guzik-group/olympus](https://github.com/aspuru-guzik-group/olympus)|| -|EVOBBO|Muñoz, Mario A., and Kate Smith-Miles. "[**Generating new space-filling test instances for continuous black-box optimization**](https://direct.mit.edu/evco/article-abstract/28/3/379/94997)." Evolutionary computation 28.3 (2020): 379-404.|[andremun/EVOBBO_Instances](https://github.com/andremun/EVOBBO_Instances)|| -|Bayesmark|Turner, R., and D. Eriksson. "**Bayesmark: Benchmark framework to easily compare bayesian optimization methods on real machine learning tasks**." (2019).|[uber/bayesmark](https://github.com/uber/bayesmark)|| -|IEEE CEC 2022|Abhishek Kumar, Kenneth V. Price, Ali Wagdy Mohamed, Anas A. Hadi, P. N. Suganthan, "[**Problem definitions and evaluation criteria for the cec 2022 Special Session and Competition on Single Objective Bound Constrained Numerical Optimization**](https://www3.ntu.edu.sg/home/epnsugan/index_files/CEC2022/CEC2022.htm)." Technical Report, Nanyang Technological University, Singapore, 2022|[P-N-Suganthan/2022-SO-BO](https://github.com/P-N-Suganthan/2022-SO-BO)|| -|IEEE CEC 2021|Ali Wagdy, Anas A Hadi, Ali K. Mohamed, Prachi Agrawal, Abhishek Kumar and P. N. Suganthan, "[**Problem definitions and evaluation criteria for the cec 2021 Special Session and Competition on Single Objective Bound Constrained Numerical Optimization**](https://www3.ntu.edu.sg/home/epnsugan/index_files/CEC2021/CEC2021-2.htm)." Technical Report, Nanyang Technological University, Singapore, 2021|[P-N-Suganthan/2021-SO-BCO](https://github.com/P-N-Suganthan/2021-SO-BCO)|| -|IEEE CEC 2017|N. H. Awad, M. Z. Ali, J. J. Liang, B. Y. Qu and P. N. Suganthan, "[**Problem definitions and evaluation criteria for the CEC 2017 competition on constrained real-parameter optimization**](https://www3.ntu.edu.sg/home/epnsugan/index_files/CEC2017/CEC2017.htm)." Technical Report, Nanyang Technological University, Singapore, 2017|[P-N-Suganthan/CEC2017-BoundContrained](https://github.com/P-N-Suganthan/CEC2017-BoundContrained)|| -|IEEE CEC 2015|J. J. Liang, B. Y. Qu, P. N. Suganthan, Q. Chen, "[**Problem Definitions and Evaluation Criteria for the CEC 2015 Competition on Learning-based Real-Parameter Single Objective Optimization**](https://www3.ntu.edu.sg/home/epnsugan/index_files/CEC2015/CEC2015.htm)", Technical Report, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China and Technical Report, Nanyang Technological University, Singapore, 2015.|[P-N-Suganthan/CEC2015-Learning-Based](https://github.com/P-N-Suganthan/CEC2015-Learning-Based)|| -|IEEE CEC 2013|J. J. Liang, B-Y. Qu, P. N. Suganthan, Alfredo G. Hernández-Díaz, "[**Problem Definitions and Evaluation Criteria for the CEC 2013 Special Session and Competition on Real-Parameter Optimization**](https://www3.ntu.edu.sg/home/epnsugan/index_files/CEC2013/CEC2013.htm)", Technical Report, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore, 2013.|[P-N-Suganthan/CEC2013](https://github.com/P-N-Suganthan/CEC2013)|| -|Zigzag BBO|Kudela, Jakub. "[**Novel zigzag-based benchmark functions for bound constrained single objective optimization**](https://ieeexplore.ieee.org/abstract/document/9504720/)." 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2021.
Kudela, Jakub, and Radomil Matousek. "[**New benchmark functions for single-objective optimization based on a zigzag pattern**](https://ieeexplore.ieee.org/abstract/document/9684455/)." IEEE Access 10 (2022): 8262-8278.|[JakubKudela89/Zigzag](https://github.com/JakubKudela89/Zigzag)|| +|IEEE CEC 2022|Abhishek Kumar, Kenneth V. Price, Ali Wagdy Mohamed, Anas A. Hadi, P. N. Suganthan, "[**Problem definitions and evaluation criteria for the cec 2022 Special Session and Competition on Single Objective Bound Constrained Numerical Optimization**](https://www3.ntu.edu.sg/home/epnsugan/index_files/CEC2022/CEC2022.htm)." Technical Report 2022|[P-N-Suganthan/2022-SO-BO](https://github.com/P-N-Suganthan/2022-SO-BO)|| +|Affine Recombination|Dietrich K, Mersmann O. "[**Increasing the diversity of benchmark function sets through affine recombination**](https://link.springer.com/chapter/10.1007/978-3-031-14714-2_41)" International Conference on Parallel Problem Solving from Nature. (2022).| - | | +|IEEE CEC 2021|Ali Wagdy, Anas A Hadi, Ali K. Mohamed, Prachi Agrawal, Abhishek Kumar and P. N. Suganthan, "[**Problem definitions and evaluation criteria for the cec 2021 Special Session and Competition on Single Objective Bound Constrained Numerical Optimization**](https://www3.ntu.edu.sg/home/epnsugan/index_files/CEC2021/CEC2021-2.htm)." Technical Report 2021|[P-N-Suganthan/2021-SO-BCO](https://github.com/P-N-Suganthan/2021-SO-BCO)|| +|Zigzag BBO|Kudela, Jakub. "[**Novel zigzag-based benchmark functions for bound constrained single objective optimization**](https://ieeexplore.ieee.org/abstract/document/9504720/)." 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, (2021).
Kudela, Jakub, and Radomil Matousek. "[**New benchmark functions for single-objective optimization based on a zigzag pattern**](https://ieeexplore.ieee.org/abstract/document/9684455/)." IEEE Access 10 (2022).|[JakubKudela89/Zigzag](https://github.com/JakubKudela89/Zigzag)|| |HPOBench|Eggensperger, Katharina, et al. "[**HPOBench: A collection of reproducible multi-fidelity benchmark problems for HPO**](https://arxiv.org/abs/2109.06716)." arXiv preprint arXiv:2109.06716 (2021).|[automl/HPOBench](https://github.com/automl/HPOBench)|| |DACBench|Eimer, Theresa, et al. "[**DACBench: A benchmark library for dynamic algorithm configuration**](https://arxiv.org/abs/2105.08541)." arXiv preprint arXiv:2105.08541 (2021).|[automl/DACBench](https://github.com/automl/DACBench)|| -|Protein–Docking|Hwang, Howook, et al. "[**Protein–protein docking benchmark version 4.0**](https://onlinelibrary.wiley.com/doi/abs/10.1002/prot.22830)." Proteins: Structure, Function, and Bioinformatics 78.15 (2010): 3111-3114.|[Protein–Docking](http://zlab.umassmed.edu/benchmark/)|| +|Olympus|Häse, Florian, et al. "[**Olympus: a benchmarking framework for noisy optimization and experiment planning**](https://iopscience.iop.org/article/10.1088/2632-2153/abedc8/meta)." Machine Learning: Science and Technology (2021).|[aspuru-guzik-group/olympus](https://github.com/aspuru-guzik-group/olympus)|| +|NeurIPS BBO challenge|Turner R, Eriksson D, McCourt M, et al. "[**Bayesian optimization is superior to random search for machine learning hyperparameter tuning: Analysis of the black-box optimization challenge 2020**](https://proceedings.mlr.press/v133/turner21a.html)" NeurIPS 2020 Competition and Demonstration Track. (2021)|[NeurIPS BBO challenge](https://github.com/rdturnermtl/bbo_challenge_starter_kit/) | | +|Random function generator|Tian Y, Peng S, Zhang X, et al. "[**A recommender system for metaheuristic algorithms for continuous optimization based on deep recurrent neural networks**](https://ieeexplore.ieee.org/abstract/document/9187549)". IEEE transactions on artificial intelligence (2020).|[Random function generator](https://github.com/BIMK/Algorithm-Recommendation) | | +|CEC 2020 competition on real-world optimization problem|Kumar A, Wu G, Ali M Z, et al. "[**A test-suite of non-convex constrained optimization problems from the real-world and some baseline results**](https://www.sciencedirect.com/science/article/pii/S2210650219308946). Swarm and Evolutionary Computation (2020).|[CEC 2020 real-world](https://github.com/P-N-Suganthan/2020-RW-Constrained-Optimisation)|| +|COCO|Hansen, Nikolaus, et al. "[**COCO: A platform for comparing continuous optimizers in a black-box setting**](https://www.tandfonline.com/doi/abs/10.1080/10556788.2020.1808977)." Optimization Methods and Software (2021).|[numbbo/coco](https://github.com/numbbo/coco)|| +|EVOBBO|Muñoz, Mario A., and Kate Smith-Miles. "[**Generating new space-filling test instances for continuous black-box optimization**](https://direct.mit.edu/evco/article-abstract/28/3/379/94997)." Evolutionary computation (2020).|[andremun/EVOBBO_Instances](https://github.com/andremun/EVOBBO_Instances)|| +|Bayesmark|Turner R, Eriksson D. "[**Bayesmark: Benchmark framework to easily compare bayesian optimization methods on real machine learning tasks**](https://bayesmark.readthedocs.io/en/latest/)." (2019). |[Bayesmark](https://github. com/uber/bayesmark)| | +|IOHprofiler (IOHexperimenter)|Doerr, Carola, et al. "[**IOHprofiler: A benchmarking and profiling tool for iterative optimization heuristics**](https://arxiv.org/abs/1810.05281)." arXiv preprint arXiv:1810.05281 (2018).
de Nobel, Jacob, et al. "[**Iohexperimenter: Benchmarking platform for iterative optimization heuristics**](https://direct.mit.edu/evco/article/doi/10.1162/evco_a_00342/116949)." Evolutionary Computation (2023): 1-6.|[IOHprofiler/
IOHexperimenter](https://github.com/IOHprofiler/IOHexperimenter)|| +|MTMOOP|Yuan Y, Ong Y S, Feng L, et al. "[**Evolutionary multitasking for multiobjective continuous optimization: Benchmark problems, performance metrics and baseline results**](https://arxiv.org/abs/1706.02766)." arXiv preprint arXiv:1706.02766 (2017).|- | | +|MTSOP|Da B, Ong Y S, Feng L, et al. "[**Evolutionary multitasking for single-objective continuous optimization: Benchmark problems, performance metric, and baseline results**](https://arxiv.org/abs/1706.03470)". arXiv preprint arXiv:1706.03470 (2017).|- | | +|IEEE CEC 2017|N. H. Awad, M. Z. Ali, J. J. Liang, B. Y. Qu and P. N. Suganthan, "[**Problem definitions and evaluation criteria for the CEC 2017 competition on constrained real-parameter optimization**](https://www3.ntu.edu.sg/home/epnsugan/index_files/CEC2017/CEC2017.htm)." Technical Report (2017)|[P-N-Suganthan/CEC2017-BoundContrained](https://github.com/P-N-Suganthan/CEC2017-BoundContrained)|| +|IEEE CEC 2015|J. J. Liang, B. Y. Qu, P. N. Suganthan, Q. Chen, "[**Problem Definitions and Evaluation Criteria for the CEC 2015 Competition on Learning-based Real-Parameter Single Objective Optimization**](https://www3.ntu.edu.sg/home/epnsugan/index_files/CEC2015/CEC2015.htm)", Technical Report, Computational Intelligence Laboratory (2015).|[P-N-Suganthan/CEC2015-Learning-Based](https://github.com/P-N-Suganthan/CEC2015-Learning-Based)|| +|AClib|Hutter, Frank, et al. "[**AClib: A benchmark library for algorithm configuration**](https://link.springer.com/chapter/10.1007/978-3-319-09584-4_4)." Learning and Intelligent Optimization: 8th International Conference (2014).|[aclib.net](https://www.aclib.net/)|| +|IEEE CEC 2013|J. J. Liang, B-Y. Qu, P. N. Suganthan, Alfredo G. Hernández-Díaz, "[**Problem Definitions and Evaluation Criteria for the CEC 2013 Special Session and Competition on Real-Parameter Optimization**](https://www3.ntu.edu.sg/home/epnsugan/index_files/CEC2013/CEC2013.htm)", Technical Report, Computational Intelligence Laboratory (2013).|[P-N-Suganthan/CEC2013](https://github.com/P-N-Suganthan/CEC2013)|| +|Protein–Docking|Hwang, Howook, et al. "[**Protein–protein docking benchmark version 4.0**](https://onlinelibrary.wiley.com/doi/abs/10.1002/prot.22830)." Proteins: Structure, Function, and Bioinformatics (2010).|[Protein–Docking](http://zlab.umassmed.edu/benchmark/)|| +|BBOB 2009|Hansen N, Finck S, Ros R, et al. "[**Real-parameter black-box optimization benchmarking 2009: Noiseless functions definitions**](https://inria.hal.science/inria-00362633/)". INRIA. (2009). |[BBOB 2009](https://web.archive.org/web/20200811021008/https://coco.gforge.inria.fr/doku.php?id=bbob-2009-results) | | |WFG|Huband S, Hingston P, Barone L, et al. "[**A review of multiobjective test problems and a scalable test problem toolkit**](https://ieeexplore.ieee.org/abstract/document/1705400)." IEEE Transactions on Evolutionary Computation. (2006).|[WFG](https://github.com/White-Chen/MOEA-Benchmark) || |DTLZ|Deb K, Thiele L, Laumanns M, et al. "[**Scalable multi-objective optimization test problems**](https://ieeexplore.ieee.org/abstract/document/1007032)." Proceedings of the 2002 Congress on Evolutionary Computation (2002).|[DTLZ](https://github.com/msu-coinlab/pymop/tree/master?tab=readme-ov-file) || |ZDT|Zitzler, E., Deb, K., and Thiele, L. "[**Comparison of Multiobjective Evolutionary Algorithms: Empirical Results**]( https://dl.acm.org/doi/10.1162/106365600568202)." Evolutionary Computation (2000). |[ZDT](https://github.com/White-Chen/MOEA-Benchmark)| | **The complete list of IEEE CEC series can be access at [ntu.edu.sg](https://www3.ntu.edu.sg/home/epnsugan/index_files/).* +**The complete list of BBOB series can be access at [numbbo](https://numbbo.github.io/workshops/bbob2023.html).* +

Back to Top

+ + ## 2. MetaBBO ### 2.1. MetaBBO with Reinforcement Learning (MetaBBO-RL) @@ -229,7 +244,10 @@ See also [FeiLiu36/LLM4Opt](https://github.com/FeiLiu36/LLM4Opt) and [jxzhangjhu Back to Top

-### 2.5. Other MetaBBO +## 2.5. Others +### 2.5.1 Evaluation Indicator +### 2.5.2 Landscape Feature + ## 3. Classic BBO