-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcamera.cpp
117 lines (94 loc) · 3.65 KB
/
camera.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
#include "camera.h"
#include "vec3.h"
void Camera::render(const Hittable& world)
{
initialize();
// Render
std::cout << "P3\n" << image_width << ' ' << image_height << "\n255\n";
for (int j = 0; j < image_height; j++)
{
std::clog << "\rScanlines remaining: " << (image_height - j) << ' ' << std::flush;
for (int i = 0; i < image_width; i++)
{
Color pixel_color(0, 0, 0);
for (int sample = 0; sample < samples_per_pixel; ++sample)
{
Ray r = get_ray(i, j);
pixel_color += ray_color(r, max_depth, world);
}
write_color(std::cout, pixel_color, samples_per_pixel);
}
}
std::clog << "\rDone. \n";
}
void Camera::initialize()
{
image_height = static_cast<int>(image_width / aspect_ratio);
image_height = (image_height < 1) ? 1 : image_height;
center = lookfrom;
// Determine viewport dimensions
double theta = degrees_to_radians(fov);
double h = tan(theta / 2);
double viewport_height = 2.0 * h * focus_dist;
double viewport_width = viewport_height * (static_cast<double>(image_width) / image_height);
// Calculate the u,v,w unit basis vectors for the camera coordinate frame
w = vec3::unit_vector(lookfrom - lookat);
u = vec3::unit_vector(vec3::cross(up, w));
v = vec3::cross(w, u);
// Calculate the vectors across the horizontal and down the vertical viewport edges
vec3 viewport_u = viewport_width * u; // Vector across viewport horizontal edge
vec3 viewport_v = viewport_height * -v; // Vector down viewport vertical edge
// Calculate the horizontal and vertical delta vectors from pixel to pixel
pixel_delta_u = viewport_u / image_width;
pixel_delta_v = viewport_v / image_height;
// Calculate the location of the upper left pixel
vec3 viewport_upper_left = center - (focus_dist * w) - viewport_u / 2 - viewport_v / 2;
pixel00_loc = viewport_upper_left + 0.5 * (pixel_delta_u + pixel_delta_v);
// Calculate the camera defocus disk basis vectors
double defocus_radius = focus_dist * tan(degrees_to_radians(defocus_angle / 2));
defocus_disk_u = u * defocus_radius;
defocus_disk_v = v * defocus_radius;
}
Ray Camera::get_ray(int i, int j) const
{
// Get a randomly-sampled camera ray for the pixel at location i,j, originating from
// the camera defocus disk
point3 pixel_center = pixel00_loc + (i * pixel_delta_u) + (j * pixel_delta_v);
point3 pixel_sample = pixel_center + pixel_sample_square();
vec3 ray_origin = (defocus_angle <= 0) ? center : defocus_disk_sample();
vec3 ray_direction = pixel_sample - ray_origin;
return Ray(ray_origin, ray_direction);
}
point3 Camera::defocus_disk_sample() const {
// Returns a random point in the camera defocus disk.
vec3 p = p.random_in_unit_disk();
return center + (p[0] * defocus_disk_u) + (p[1] * defocus_disk_v);
}
vec3 Camera::pixel_sample_square() const
{
// Returns a random point in the square surrounding a pixel at the origin.
double px = -0.5 + random_double();
double py = -0.5 + random_double();
return (px * pixel_delta_u) + (py * pixel_delta_v);
}
Color Camera::ray_color(const Ray& r, int depth, const Hittable& world) const
{
HitRecord rec;
// If we've exceeded the ray bounce limit, no more light is gathered
if (depth <= 0)
return Color(0, 0, 0);
if (world.hit(r, Interval(0.001, infinity), rec))
{
Ray scattered;
Color attenuation;
if (rec.mat->scatter(r, rec, attenuation, scattered))
{
Color rc = ray_color(scattered, depth - 1, world);
return Color(attenuation.x() * rc.x(), attenuation.y() * rc.y(), attenuation.z() * rc.z());
}
return Color(0, 0, 0);
}
vec3 unit_direction = vec3::unit_vector(r.direction());
double a = 0.5 * (unit_direction.y() + 1.0);
return (1.0 - a) * Color(1.0, 1.0, 1.0) + a * Color(0.5, 0.7, 1.0);
}