forked from skywind3000/mini3d
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmini3d.c
950 lines (835 loc) · 29.1 KB
/
mini3d.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
//=====================================================================
//
// mini3d.c - Mini Software Render All-In-One
//
// build:
// mingw: gcc -O3 mini3d.c -o mini3d.exe -lgdi32
// msvc: cl -O2 -nologo mini3d.c
//
// history:
// 2007.7.01 skywind create this file as a tutorial
// 2007.7.02 skywind implementate texture and color render
// 2008.3.15 skywind fixed a trapezoid issue
// 2015.8.09 skywind rewrite with more comment
// 2015.8.12 skywind adjust interfaces for clearity
//
//=====================================================================
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <assert.h>
#include <windows.h>
#include <tchar.h>
typedef unsigned int IUINT32;
//=====================================================================
// 数学库:此部分应该不用详解,熟悉 D3D 矩阵变换即可
//=====================================================================
typedef struct { float m[4][4]; } matrix_t;
typedef struct { float x, y, z, w; } vector_t;
typedef vector_t point_t;
int CMID(int x, int min, int max) { return (x < min)? min : ((x > max)? max : x); }
// 计算插值:t 为 [0, 1] 之间的数值
float interp(float x1, float x2, float t) { return x1 + (x2 - x1) * t; }
// | v |
float vector_length(const vector_t *v) {
float sq = v->x * v->x + v->y * v->y + v->z * v->z;
return (float)sqrt(sq);
}
// z = x + y
void vector_add(vector_t *z, const vector_t *x, const vector_t *y) {
z->x = x->x + y->x;
z->y = x->y + y->y;
z->z = x->z + y->z;
z->w = 1.0;
}
// z = x - y
void vector_sub(vector_t *z, const vector_t *x, const vector_t *y) {
z->x = x->x - y->x;
z->y = x->y - y->y;
z->z = x->z - y->z;
z->w = 1.0;
}
// 矢量点乘
float vector_dotproduct(const vector_t *x, const vector_t *y) {
return x->x * y->x + x->y * y->y + x->z * y->z;
}
// 矢量叉乘
void vector_crossproduct(vector_t *z, const vector_t *x, const vector_t *y) {
float m1, m2, m3;
m1 = x->y * y->z - x->z * y->y;
m2 = x->z * y->x - x->x * y->z;
m3 = x->x * y->y - x->y * y->x;
z->x = m1;
z->y = m2;
z->z = m3;
z->w = 1.0f;
}
// 矢量插值,t取值 [0, 1]
void vector_interp(vector_t *z, const vector_t *x1, const vector_t *x2, float t) {
z->x = interp(x1->x, x2->x, t);
z->y = interp(x1->y, x2->y, t);
z->z = interp(x1->z, x2->z, t);
z->w = 1.0f;
}
// 矢量归一化
void vector_normalize(vector_t *v) {
float length = vector_length(v);
if (length != 0.0f) {
float inv = 1.0f / length;
v->x *= inv;
v->y *= inv;
v->z *= inv;
}
}
// c = a + b
void matrix_add(matrix_t *c, const matrix_t *a, const matrix_t *b) {
int i, j;
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++)
c->m[i][j] = a->m[i][j] + b->m[i][j];
}
}
// c = a - b
void matrix_sub(matrix_t *c, const matrix_t *a, const matrix_t *b) {
int i, j;
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++)
c->m[i][j] = a->m[i][j] - b->m[i][j];
}
}
// c = a * b
void matrix_mul(matrix_t *c, const matrix_t *a, const matrix_t *b) {
matrix_t z;
int i, j;
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++) {
z.m[j][i] = (a->m[j][0] * b->m[0][i]) +
(a->m[j][1] * b->m[1][i]) +
(a->m[j][2] * b->m[2][i]) +
(a->m[j][3] * b->m[3][i]);
}
}
c[0] = z;
}
// c = a * f
void matrix_scale(matrix_t *c, const matrix_t *a, float f) {
int i, j;
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++)
c->m[i][j] = a->m[i][j] * f;
}
}
// y = x * m
void matrix_apply(vector_t *y, const vector_t *x, const matrix_t *m) {
float X = x->x, Y = x->y, Z = x->z, W = x->w;
y->x = X * m->m[0][0] + Y * m->m[1][0] + Z * m->m[2][0] + W * m->m[3][0];
y->y = X * m->m[0][1] + Y * m->m[1][1] + Z * m->m[2][1] + W * m->m[3][1];
y->z = X * m->m[0][2] + Y * m->m[1][2] + Z * m->m[2][2] + W * m->m[3][2];
y->w = X * m->m[0][3] + Y * m->m[1][3] + Z * m->m[2][3] + W * m->m[3][3];
}
void matrix_set_identity(matrix_t *m) {
m->m[0][0] = m->m[1][1] = m->m[2][2] = m->m[3][3] = 1.0f;
m->m[0][1] = m->m[0][2] = m->m[0][3] = 0.0f;
m->m[1][0] = m->m[1][2] = m->m[1][3] = 0.0f;
m->m[2][0] = m->m[2][1] = m->m[2][3] = 0.0f;
m->m[3][0] = m->m[3][1] = m->m[3][2] = 0.0f;
}
void matrix_set_zero(matrix_t *m) {
m->m[0][0] = m->m[0][1] = m->m[0][2] = m->m[0][3] = 0.0f;
m->m[1][0] = m->m[1][1] = m->m[1][2] = m->m[1][3] = 0.0f;
m->m[2][0] = m->m[2][1] = m->m[2][2] = m->m[2][3] = 0.0f;
m->m[3][0] = m->m[3][1] = m->m[3][2] = m->m[3][3] = 0.0f;
}
// 平移变换
void matrix_set_translate(matrix_t *m, float x, float y, float z) {
matrix_set_identity(m);
m->m[3][0] = x;
m->m[3][1] = y;
m->m[3][2] = z;
}
// 缩放变换
void matrix_set_scale(matrix_t *m, float x, float y, float z) {
matrix_set_identity(m);
m->m[0][0] = x;
m->m[1][1] = y;
m->m[2][2] = z;
}
// 旋转矩阵
void matrix_set_rotate(matrix_t *m, float x, float y, float z, float theta) {
float qsin = (float)sin(theta * 0.5f);
float qcos = (float)cos(theta * 0.5f);
vector_t vec = { x, y, z, 1.0f };
float w = qcos;
vector_normalize(&vec);
x = vec.x * qsin;
y = vec.y * qsin;
z = vec.z * qsin;
m->m[0][0] = 1 - 2 * y * y - 2 * z * z;
m->m[1][0] = 2 * x * y - 2 * w * z;
m->m[2][0] = 2 * x * z + 2 * w * y;
m->m[0][1] = 2 * x * y + 2 * w * z;
m->m[1][1] = 1 - 2 * x * x - 2 * z * z;
m->m[2][1] = 2 * y * z - 2 * w * x;
m->m[0][2] = 2 * x * z - 2 * w * y;
m->m[1][2] = 2 * y * z + 2 * w * x;
m->m[2][2] = 1 - 2 * x * x - 2 * y * y;
m->m[0][3] = m->m[1][3] = m->m[2][3] = 0.0f;
m->m[3][0] = m->m[3][1] = m->m[3][2] = 0.0f;
m->m[3][3] = 1.0f;
}
// 设置摄像机
void matrix_set_lookat(matrix_t *m, const vector_t *eye, const vector_t *at, const vector_t *up) {
vector_t xaxis, yaxis, zaxis;
vector_sub(&zaxis, at, eye);
vector_normalize(&zaxis);
vector_crossproduct(&xaxis, up, &zaxis);
vector_normalize(&xaxis);
vector_crossproduct(&yaxis, &zaxis, &xaxis);
m->m[0][0] = xaxis.x;
m->m[1][0] = xaxis.y;
m->m[2][0] = xaxis.z;
m->m[3][0] = -vector_dotproduct(&xaxis, eye);
m->m[0][1] = yaxis.x;
m->m[1][1] = yaxis.y;
m->m[2][1] = yaxis.z;
m->m[3][1] = -vector_dotproduct(&yaxis, eye);
m->m[0][2] = zaxis.x;
m->m[1][2] = zaxis.y;
m->m[2][2] = zaxis.z;
m->m[3][2] = -vector_dotproduct(&zaxis, eye);
m->m[0][3] = m->m[1][3] = m->m[2][3] = 0.0f;
m->m[3][3] = 1.0f;
}
// D3DXMatrixPerspectiveFovLH
void matrix_set_perspective(matrix_t *m, float fovy, float aspect, float zn, float zf) {
float fax = 1.0f / (float)tan(fovy * 0.5f);
matrix_set_zero(m);
m->m[0][0] = (float)(fax / aspect);
m->m[1][1] = (float)(fax);
m->m[2][2] = zf / (zf - zn);
m->m[3][2] = - zn * zf / (zf - zn);
m->m[2][3] = 1;
}
//=====================================================================
// 坐标变换
//=====================================================================
typedef struct {
matrix_t world; // 世界坐标变换
matrix_t view; // 摄影机坐标变换
matrix_t projection; // 投影变换
matrix_t transform; // transform = world * view * projection
float w, h; // 屏幕大小
} transform_t;
// 矩阵更新,计算 transform = world * view * projection
void transform_update(transform_t *ts) {
matrix_t m;
matrix_mul(&m, &ts->world, &ts->view);
matrix_mul(&ts->transform, &m, &ts->projection);
}
// 初始化,设置屏幕长宽
void transform_init(transform_t *ts, int width, int height) {
float aspect = (float)width / ((float)height);
matrix_set_identity(&ts->world);
matrix_set_identity(&ts->view);
matrix_set_perspective(&ts->projection, 3.1415926f * 0.5f, aspect, 1.0f, 500.0f);
ts->w = (float)width;
ts->h = (float)height;
transform_update(ts);
}
// 将矢量 x 进行 project
void transform_apply(const transform_t *ts, vector_t *y, const vector_t *x) {
matrix_apply(y, x, &ts->transform);
}
// 检查齐次坐标同 cvv 的边界用于视锥裁剪
int transform_check_cvv(const vector_t *v) {
float w = v->w;
int check = 0;
if (v->z < 0.0f) check |= 1;
if (v->z > w) check |= 2;
if (v->x < -w) check |= 4;
if (v->x > w) check |= 8;
if (v->y < -w) check |= 16;
if (v->y > w) check |= 32;
return check;
}
// 归一化,得到屏幕坐标
void transform_homogenize(const transform_t *ts, vector_t *y, const vector_t *x) {
float rhw = 1.0f / x->w;
y->x = (x->x * rhw + 1.0f) * ts->w * 0.5f;
y->y = (1.0f - x->y * rhw) * ts->h * 0.5f;
y->z = x->z * rhw;
y->w = 1.0f;
}
//=====================================================================
// 几何计算:顶点、扫描线、边缘、矩形、步长计算
//=====================================================================
typedef struct { float r, g, b; } color_t;
typedef struct { float u, v; } texcoord_t;
typedef struct { point_t pos; texcoord_t tc; color_t color; float rhw; } vertex_t;
typedef struct { vertex_t v, v1, v2; } edge_t;
typedef struct { float top, bottom; edge_t left, right; } trapezoid_t;
typedef struct { vertex_t v, step; int x, y, w; } scanline_t;
void vertex_rhw_init(vertex_t *v) {
float rhw = 1.0f / v->pos.w;
v->rhw = rhw;
v->tc.u *= rhw;
v->tc.v *= rhw;
v->color.r *= rhw;
v->color.g *= rhw;
v->color.b *= rhw;
}
void vertex_interp(vertex_t *y, const vertex_t *x1, const vertex_t *x2, float t) {
vector_interp(&y->pos, &x1->pos, &x2->pos, t);
y->tc.u = interp(x1->tc.u, x2->tc.u, t);
y->tc.v = interp(x1->tc.v, x2->tc.v, t);
y->color.r = interp(x1->color.r, x2->color.r, t);
y->color.g = interp(x1->color.g, x2->color.g, t);
y->color.b = interp(x1->color.b, x2->color.b, t);
y->rhw = interp(x1->rhw, x2->rhw, t);
}
void vertex_division(vertex_t *y, const vertex_t *x1, const vertex_t *x2, float w) {
float inv = 1.0f / w;
y->pos.x = (x2->pos.x - x1->pos.x) * inv;
y->pos.y = (x2->pos.y - x1->pos.y) * inv;
y->pos.z = (x2->pos.z - x1->pos.z) * inv;
y->pos.w = (x2->pos.w - x1->pos.w) * inv;
y->tc.u = (x2->tc.u - x1->tc.u) * inv;
y->tc.v = (x2->tc.v - x1->tc.v) * inv;
y->color.r = (x2->color.r - x1->color.r) * inv;
y->color.g = (x2->color.g - x1->color.g) * inv;
y->color.b = (x2->color.b - x1->color.b) * inv;
y->rhw = (x2->rhw - x1->rhw) * inv;
}
void vertex_add(vertex_t *y, const vertex_t *x) {
y->pos.x += x->pos.x;
y->pos.y += x->pos.y;
y->pos.z += x->pos.z;
y->pos.w += x->pos.w;
y->rhw += x->rhw;
y->tc.u += x->tc.u;
y->tc.v += x->tc.v;
y->color.r += x->color.r;
y->color.g += x->color.g;
y->color.b += x->color.b;
}
// 根据三角形生成 0-2 个梯形,并且返回合法梯形的数量
int trapezoid_init_triangle(trapezoid_t *trap, const vertex_t *p1,
const vertex_t *p2, const vertex_t *p3) {
const vertex_t *p;
float k, x;
if (p1->pos.y > p2->pos.y) p = p1, p1 = p2, p2 = p;
if (p1->pos.y > p3->pos.y) p = p1, p1 = p3, p3 = p;
if (p2->pos.y > p3->pos.y) p = p2, p2 = p3, p3 = p;
if (p1->pos.y == p2->pos.y && p1->pos.y == p3->pos.y) return 0;
if (p1->pos.x == p2->pos.x && p1->pos.x == p3->pos.x) return 0;
if (p1->pos.y == p2->pos.y) { // triangle down
if (p1->pos.x > p2->pos.x) p = p1, p1 = p2, p2 = p;
trap[0].top = p1->pos.y;
trap[0].bottom = p3->pos.y;
trap[0].left.v1 = *p1;
trap[0].left.v2 = *p3;
trap[0].right.v1 = *p2;
trap[0].right.v2 = *p3;
return (trap[0].top < trap[0].bottom)? 1 : 0;
}
if (p2->pos.y == p3->pos.y) { // triangle up
if (p2->pos.x > p3->pos.x) p = p2, p2 = p3, p3 = p;
trap[0].top = p1->pos.y;
trap[0].bottom = p3->pos.y;
trap[0].left.v1 = *p1;
trap[0].left.v2 = *p2;
trap[0].right.v1 = *p1;
trap[0].right.v2 = *p3;
return (trap[0].top < trap[0].bottom)? 1 : 0;
}
trap[0].top = p1->pos.y;
trap[0].bottom = p2->pos.y;
trap[1].top = p2->pos.y;
trap[1].bottom = p3->pos.y;
k = (p3->pos.y - p1->pos.y) / (p2->pos.y - p1->pos.y);
x = p1->pos.x + (p2->pos.x - p1->pos.x) * k;
if (x <= p3->pos.x) { // triangle left
trap[0].left.v1 = *p1;
trap[0].left.v2 = *p2;
trap[0].right.v1 = *p1;
trap[0].right.v2 = *p3;
trap[1].left.v1 = *p2;
trap[1].left.v2 = *p3;
trap[1].right.v1 = *p1;
trap[1].right.v2 = *p3;
} else { // triangle right
trap[0].left.v1 = *p1;
trap[0].left.v2 = *p3;
trap[0].right.v1 = *p1;
trap[0].right.v2 = *p2;
trap[1].left.v1 = *p1;
trap[1].left.v2 = *p3;
trap[1].right.v1 = *p2;
trap[1].right.v2 = *p3;
}
return 2;
}
// 按照 Y 坐标计算出左右两条边纵坐标等于 Y 的顶点
void trapezoid_edge_interp(trapezoid_t *trap, float y) {
float s1 = trap->left.v2.pos.y - trap->left.v1.pos.y;
float s2 = trap->right.v2.pos.y - trap->right.v1.pos.y;
float t1 = (y - trap->left.v1.pos.y) / s1;
float t2 = (y - trap->right.v1.pos.y) / s2;
vertex_interp(&trap->left.v, &trap->left.v1, &trap->left.v2, t1);
vertex_interp(&trap->right.v, &trap->right.v1, &trap->right.v2, t2);
}
// 根据左右两边的端点,初始化计算出扫描线的起点和步长
void trapezoid_init_scan_line(const trapezoid_t *trap, scanline_t *scanline, int y) {
float width = trap->right.v.pos.x - trap->left.v.pos.x;
scanline->x = (int)(trap->left.v.pos.x + 0.5f);
scanline->w = (int)(trap->right.v.pos.x + 0.5f) - scanline->x;
scanline->y = y;
scanline->v = trap->left.v;
if (trap->left.v.pos.x >= trap->right.v.pos.x) scanline->w = 0;
vertex_division(&scanline->step, &trap->left.v, &trap->right.v, width);
}
//=====================================================================
// 渲染设备
//=====================================================================
typedef struct {
transform_t transform; // 坐标变换器
int width; // 窗口宽度
int height; // 窗口高度
IUINT32 **framebuffer; // 像素缓存:framebuffer[y] 代表第 y行
float **zbuffer; // 深度缓存:zbuffer[y] 为第 y行指针
IUINT32 **texture; // 纹理:同样是每行索引
int tex_width; // 纹理宽度
int tex_height; // 纹理高度
float max_u; // 纹理最大宽度:tex_width - 1
float max_v; // 纹理最大高度:tex_height - 1
int render_state; // 渲染状态
IUINT32 background; // 背景颜色
IUINT32 foreground; // 线框颜色
} device_t;
#define RENDER_STATE_WIREFRAME 1 // 渲染线框
#define RENDER_STATE_TEXTURE 2 // 渲染纹理
#define RENDER_STATE_COLOR 4 // 渲染颜色
// 设备初始化,fb为外部帧缓存,非 NULL 将引用外部帧缓存(每行 4字节对齐)
void device_init(device_t *device, int width, int height, void *fb) {
int need = sizeof(void*) * (height * 2 + 1024) + width * height * 8;
char *ptr = (char*)malloc(need + 64);
char *framebuf, *zbuf;
int j;
assert(ptr);
device->framebuffer = (IUINT32**)ptr;
device->zbuffer = (float**)(ptr + sizeof(void*) * height);
ptr += sizeof(void*) * height * 2;
device->texture = (IUINT32**)ptr;
ptr += sizeof(void*) * 1024;
framebuf = (char*)ptr;
zbuf = (char*)ptr + width * height * 4;
ptr += width * height * 8;
if (fb != NULL) framebuf = (char*)fb;
for (j = 0; j < height; j++) {
device->framebuffer[j] = (IUINT32*)(framebuf + width * 4 * j);
device->zbuffer[j] = (float*)(zbuf + width * 4 * j);
}
device->texture[0] = (IUINT32*)ptr;
device->texture[1] = (IUINT32*)(ptr + 16);
memset(device->texture[0], 0, 64);
device->tex_width = 2;
device->tex_height = 2;
device->max_u = 1.0f;
device->max_v = 1.0f;
device->width = width;
device->height = height;
device->background = 0xc0c0c0;
device->foreground = 0;
transform_init(&device->transform, width, height);
device->render_state = RENDER_STATE_WIREFRAME;
}
// 删除设备
void device_destroy(device_t *device) {
if (device->framebuffer)
free(device->framebuffer);
device->framebuffer = NULL;
device->zbuffer = NULL;
device->texture = NULL;
}
// 设置当前纹理
void device_set_texture(device_t *device, void *bits, long pitch, int w, int h) {
char *ptr = (char*)bits;
int j;
assert(w <= 1024 && h <= 1024);
for (j = 0; j < h; ptr += pitch, j++) // 重新计算每行纹理的指针
device->texture[j] = (IUINT32*)ptr;
device->tex_width = w;
device->tex_height = h;
device->max_u = (float)(w - 1);
device->max_v = (float)(h - 1);
}
// 清空 framebuffer 和 zbuffer
void device_clear(device_t *device, int mode) {
int y, x, height = device->height;
for (y = 0; y < device->height; y++) {
IUINT32 *dst = device->framebuffer[y];
IUINT32 cc = (height - 1 - y) * 230 / (height - 1);
cc = (cc << 16) | (cc << 8) | cc;
if (mode == 0) cc = device->background;
for (x = device->width; x > 0; dst++, x--) dst[0] = cc;
}
for (y = 0; y < device->height; y++) {
float *dst = device->zbuffer[y];
for (x = device->width; x > 0; dst++, x--) dst[0] = 0.0f;
}
}
// 画点
void device_pixel(device_t *device, int x, int y, IUINT32 color) {
if (((IUINT32)x) < (IUINT32)device->width && ((IUINT32)y) < (IUINT32)device->height) {
device->framebuffer[y][x] = color;
}
}
// 绘制线段
void device_draw_line(device_t *device, int x1, int y1, int x2, int y2, IUINT32 c) {
int x, y, rem = 0;
if (x1 == x2 && y1 == y2) {
device_pixel(device, x1, y1, c);
} else if (x1 == x2) {
int inc = (y1 <= y2)? 1 : -1;
for (y = y1; y != y2; y += inc) device_pixel(device, x1, y, c);
device_pixel(device, x2, y2, c);
} else if (y1 == y2) {
int inc = (x1 <= x2)? 1 : -1;
for (x = x1; x != x2; x += inc) device_pixel(device, x, y1, c);
device_pixel(device, x2, y2, c);
} else {
int dx = (x1 < x2)? x2 - x1 : x1 - x2;
int dy = (y1 < y2)? y2 - y1 : y1 - y2;
if (dx >= dy) {
if (x2 < x1) x = x1, y = y1, x1 = x2, y1 = y2, x2 = x, y2 = y;
for (x = x1, y = y1; x <= x2; x++) {
device_pixel(device, x, y, c);
rem += dy;
if (rem >= dx) {
rem -= dx;
y += (y2 >= y1)? 1 : -1;
device_pixel(device, x, y, c);
}
}
device_pixel(device, x2, y2, c);
} else {
if (y2 < y1) x = x1, y = y1, x1 = x2, y1 = y2, x2 = x, y2 = y;
for (x = x1, y = y1; y <= y2; y++) {
device_pixel(device, x, y, c);
rem += dx;
if (rem >= dy) {
rem -= dy;
x += (x2 >= x1)? 1 : -1;
device_pixel(device, x, y, c);
}
}
device_pixel(device, x2, y2, c);
}
}
}
// 根据坐标读取纹理
IUINT32 device_texture_read(const device_t *device, float u, float v) {
int x, y;
u = u * device->max_u;
v = v * device->max_v;
x = (int)(u + 0.5f);
y = (int)(v + 0.5f);
x = CMID(x, 0, device->tex_width - 1);
y = CMID(y, 0, device->tex_height - 1);
return device->texture[y][x];
}
//=====================================================================
// 渲染实现
//=====================================================================
// 绘制扫描线
void device_draw_scanline(device_t *device, scanline_t *scanline) {
IUINT32 *framebuffer = device->framebuffer[scanline->y];
float *zbuffer = device->zbuffer[scanline->y];
int x = scanline->x;
int w = scanline->w;
int width = device->width;
int render_state = device->render_state;
for (; w > 0; x++, w--) {
if (x >= 0 && x < width) {
float rhw = scanline->v.rhw;
if (rhw >= zbuffer[x]) {
float w = 1.0f / rhw;
zbuffer[x] = rhw;
if (render_state & RENDER_STATE_COLOR) {
float r = scanline->v.color.r * w;
float g = scanline->v.color.g * w;
float b = scanline->v.color.b * w;
int R = (int)(r * 255.0f);
int G = (int)(g * 255.0f);
int B = (int)(b * 255.0f);
R = CMID(R, 0, 255);
G = CMID(G, 0, 255);
B = CMID(B, 0, 255);
framebuffer[x] = (R << 16) | (G << 8) | (B);
}
if (render_state & RENDER_STATE_TEXTURE) {
float u = scanline->v.tc.u * w;
float v = scanline->v.tc.v * w;
IUINT32 cc = device_texture_read(device, u, v);
framebuffer[x] = cc;
}
}
}
vertex_add(&scanline->v, &scanline->step);
if (x >= width) break;
}
}
// 主渲染函数
void device_render_trap(device_t *device, trapezoid_t *trap) {
scanline_t scanline;
int j, top, bottom;
top = (int)(trap->top + 0.5f);
bottom = (int)(trap->bottom + 0.5f);
for (j = top; j < bottom; j++) {
if (j >= 0 && j < device->height) {
trapezoid_edge_interp(trap, (float)j + 0.5f);
trapezoid_init_scan_line(trap, &scanline, j);
device_draw_scanline(device, &scanline);
}
if (j >= device->height) break;
}
}
// 根据 render_state 绘制原始三角形
void device_draw_primitive(device_t *device, const vertex_t *v1,
const vertex_t *v2, const vertex_t *v3) {
point_t p1, p2, p3, c1, c2, c3;
int render_state = device->render_state;
// 按照 Transform 变化
transform_apply(&device->transform, &c1, &v1->pos);
transform_apply(&device->transform, &c2, &v2->pos);
transform_apply(&device->transform, &c3, &v3->pos);
// 裁剪,注意此处可以完善为具体判断几个点在 cvv内以及同cvv相交平面的坐标比例
// 进行进一步精细裁剪,将一个分解为几个完全处在 cvv内的三角形
if (transform_check_cvv(&c1) != 0) return;
if (transform_check_cvv(&c2) != 0) return;
if (transform_check_cvv(&c3) != 0) return;
// 归一化
transform_homogenize(&device->transform, &p1, &c1);
transform_homogenize(&device->transform, &p2, &c2);
transform_homogenize(&device->transform, &p3, &c3);
// 纹理或者色彩绘制
if (render_state & (RENDER_STATE_TEXTURE | RENDER_STATE_COLOR)) {
vertex_t t1 = *v1, t2 = *v2, t3 = *v3;
trapezoid_t traps[2];
int n;
t1.pos = p1;
t2.pos = p2;
t3.pos = p3;
t1.pos.w = c1.w;
t2.pos.w = c2.w;
t3.pos.w = c3.w;
vertex_rhw_init(&t1); // 初始化 w
vertex_rhw_init(&t2); // 初始化 w
vertex_rhw_init(&t3); // 初始化 w
// 拆分三角形为0-2个梯形,并且返回可用梯形数量
n = trapezoid_init_triangle(traps, &t1, &t2, &t3);
if (n >= 1) device_render_trap(device, &traps[0]);
if (n >= 2) device_render_trap(device, &traps[1]);
}
if (render_state & RENDER_STATE_WIREFRAME) { // 线框绘制
device_draw_line(device, (int)p1.x, (int)p1.y, (int)p2.x, (int)p2.y, device->foreground);
device_draw_line(device, (int)p1.x, (int)p1.y, (int)p3.x, (int)p3.y, device->foreground);
device_draw_line(device, (int)p3.x, (int)p3.y, (int)p2.x, (int)p2.y, device->foreground);
}
}
//=====================================================================
// Win32 窗口及图形绘制:为 device 提供一个 DibSection 的 FB
//=====================================================================
int screen_w, screen_h, screen_exit = 0;
int screen_mx = 0, screen_my = 0, screen_mb = 0;
int screen_keys[512]; // 当前键盘按下状态
static HWND screen_handle = NULL; // 主窗口 HWND
static HDC screen_dc = NULL; // 配套的 HDC
static HBITMAP screen_hb = NULL; // DIB
static HBITMAP screen_ob = NULL; // 老的 BITMAP
unsigned char *screen_fb = NULL; // frame buffer
long screen_pitch = 0;
int screen_init(int w, int h, const TCHAR *title); // 屏幕初始化
int screen_close(void); // 关闭屏幕
void screen_dispatch(void); // 处理消息
void screen_update(void); // 显示 FrameBuffer
// win32 event handler
static LRESULT screen_events(HWND, UINT, WPARAM, LPARAM);
#ifdef _MSC_VER
#pragma comment(lib, "gdi32.lib")
#pragma comment(lib, "user32.lib")
#endif
// 初始化窗口并设置标题
int screen_init(int w, int h, const TCHAR *title) {
WNDCLASS wc = { CS_BYTEALIGNCLIENT, (WNDPROC)screen_events, 0, 0, 0,
NULL, NULL, NULL, NULL, _T("SCREEN3.1415926") };
BITMAPINFO bi = { { sizeof(BITMAPINFOHEADER), w, -h, 1, 32, BI_RGB,
w * h * 4, 0, 0, 0, 0 } };
RECT rect = { 0, 0, w, h };
int wx, wy, sx, sy;
LPVOID ptr;
HDC hDC;
screen_close();
wc.hbrBackground = (HBRUSH)GetStockObject(BLACK_BRUSH);
wc.hInstance = GetModuleHandle(NULL);
wc.hCursor = LoadCursor(NULL, IDC_ARROW);
if (!RegisterClass(&wc)) return -1;
screen_handle = CreateWindow(_T("SCREEN3.1415926"), title,
WS_OVERLAPPED | WS_CAPTION | WS_SYSMENU | WS_MINIMIZEBOX,
0, 0, 0, 0, NULL, NULL, wc.hInstance, NULL);
if (screen_handle == NULL) return -2;
screen_exit = 0;
hDC = GetDC(screen_handle);
screen_dc = CreateCompatibleDC(hDC);
ReleaseDC(screen_handle, hDC);
screen_hb = CreateDIBSection(screen_dc, &bi, DIB_RGB_COLORS, &ptr, 0, 0);
if (screen_hb == NULL) return -3;
screen_ob = (HBITMAP)SelectObject(screen_dc, screen_hb);
screen_fb = (unsigned char*)ptr;
screen_w = w;
screen_h = h;
screen_pitch = w * 4;
AdjustWindowRect(&rect, GetWindowLong(screen_handle, GWL_STYLE), 0);
wx = rect.right - rect.left;
wy = rect.bottom - rect.top;
sx = (GetSystemMetrics(SM_CXSCREEN) - wx) / 2;
sy = (GetSystemMetrics(SM_CYSCREEN) - wy) / 2;
if (sy < 0) sy = 0;
SetWindowPos(screen_handle, NULL, sx, sy, wx, wy, (SWP_NOCOPYBITS | SWP_NOZORDER | SWP_SHOWWINDOW));
SetForegroundWindow(screen_handle);
ShowWindow(screen_handle, SW_NORMAL);
screen_dispatch();
memset(screen_keys, 0, sizeof(int) * 512);
memset(screen_fb, 0, w * h * 4);
return 0;
}
int screen_close(void) {
if (screen_dc) {
if (screen_ob) {
SelectObject(screen_dc, screen_ob);
screen_ob = NULL;
}
DeleteDC(screen_dc);
screen_dc = NULL;
}
if (screen_hb) {
DeleteObject(screen_hb);
screen_hb = NULL;
}
if (screen_handle) {
CloseWindow(screen_handle);
screen_handle = NULL;
}
return 0;
}
static LRESULT screen_events(HWND hWnd, UINT msg,
WPARAM wParam, LPARAM lParam) {
switch (msg) {
case WM_CLOSE: screen_exit = 1; break;
case WM_KEYDOWN: screen_keys[wParam & 511] = 1; break;
case WM_KEYUP: screen_keys[wParam & 511] = 0; break;
default: return DefWindowProc(hWnd, msg, wParam, lParam);
}
return 0;
}
void screen_dispatch(void) {
MSG msg;
while (1) {
if (!PeekMessage(&msg, NULL, 0, 0, PM_NOREMOVE)) break;
if (!GetMessage(&msg, NULL, 0, 0)) break;
DispatchMessage(&msg);
}
}
void screen_update(void) {
HDC hDC = GetDC(screen_handle);
BitBlt(hDC, 0, 0, screen_w, screen_h, screen_dc, 0, 0, SRCCOPY);
ReleaseDC(screen_handle, hDC);
screen_dispatch();
}
//=====================================================================
// 主程序
//=====================================================================
vertex_t mesh[8] = {
{ { -1, -1, 1, 1 }, { 0, 0 }, { 1.0f, 0.2f, 0.2f }, 1 },
{ { 1, -1, 1, 1 }, { 0, 1 }, { 0.2f, 1.0f, 0.2f }, 1 },
{ { 1, 1, 1, 1 }, { 1, 1 }, { 0.2f, 0.2f, 1.0f }, 1 },
{ { -1, 1, 1, 1 }, { 1, 0 }, { 1.0f, 0.2f, 1.0f }, 1 },
{ { -1, -1, -1, 1 }, { 0, 0 }, { 1.0f, 1.0f, 0.2f }, 1 },
{ { 1, -1, -1, 1 }, { 0, 1 }, { 0.2f, 1.0f, 1.0f }, 1 },
{ { 1, 1, -1, 1 }, { 1, 1 }, { 1.0f, 0.3f, 0.3f }, 1 },
{ { -1, 1, -1, 1 }, { 1, 0 }, { 0.2f, 1.0f, 0.3f }, 1 },
};
void draw_plane(device_t *device, int a, int b, int c, int d) {
vertex_t p1 = mesh[a], p2 = mesh[b], p3 = mesh[c], p4 = mesh[d];
p1.tc.u = 0, p1.tc.v = 0, p2.tc.u = 0, p2.tc.v = 1;
p3.tc.u = 1, p3.tc.v = 1, p4.tc.u = 1, p4.tc.v = 0;
device_draw_primitive(device, &p1, &p2, &p3);
device_draw_primitive(device, &p3, &p4, &p1);
}
void draw_box(device_t *device, float theta) {
matrix_t m;
matrix_set_rotate(&m, -1, -0.5, 1, theta);
device->transform.world = m;
transform_update(&device->transform);
draw_plane(device, 0, 1, 2, 3);
draw_plane(device, 7, 6, 5, 4);
draw_plane(device, 0, 4, 5, 1);
draw_plane(device, 1, 5, 6, 2);
draw_plane(device, 2, 6, 7, 3);
draw_plane(device, 3, 7, 4, 0);
}
void camera_at_zero(device_t *device, float x, float y, float z) {
point_t eye = { x, y, z, 1 }, at = { 0, 0, 0, 1 }, up = { 0, 0, 1, 1 };
matrix_set_lookat(&device->transform.view, &eye, &at, &up);
transform_update(&device->transform);
}
void init_texture(device_t *device) {
static IUINT32 texture[256][256];
int i, j;
for (j = 0; j < 256; j++) {
for (i = 0; i < 256; i++) {
int x = i / 32, y = j / 32;
texture[j][i] = ((x + y) & 1)? 0xffffff : 0x3fbcef;
}
}
device_set_texture(device, texture, 256 * 4, 256, 256);
}
int main(void)
{
device_t device;
int states[] = { RENDER_STATE_TEXTURE, RENDER_STATE_COLOR, RENDER_STATE_WIREFRAME };
int indicator = 0;
int kbhit = 0;
float alpha = 1;
float pos = 3.5;
TCHAR *title = _T("Mini3d (software render tutorial) - ")
_T("Left/Right: rotation, Up/Down: forward/backward, Space: switch state");
if (screen_init(800, 600, title))
return -1;
device_init(&device, 800, 600, screen_fb);
camera_at_zero(&device, 3, 0, 0);
init_texture(&device);
device.render_state = RENDER_STATE_TEXTURE;
while (screen_exit == 0 && screen_keys[VK_ESCAPE] == 0) {
screen_dispatch();
device_clear(&device, 1);
camera_at_zero(&device, pos, 0, 0);
if (screen_keys[VK_UP]) pos -= 0.01f;
if (screen_keys[VK_DOWN]) pos += 0.01f;
if (screen_keys[VK_LEFT]) alpha += 0.01f;
if (screen_keys[VK_RIGHT]) alpha -= 0.01f;
if (screen_keys[VK_SPACE]) {
if (kbhit == 0) {
kbhit = 1;
if (++indicator >= 3) indicator = 0;
device.render_state = states[indicator];
}
} else {
kbhit = 0;
}
draw_box(&device, alpha);
screen_update();
Sleep(1);
}
return 0;
}