Skip to content

Latest commit

 

History

History
89 lines (67 loc) · 3.58 KB

README.md

File metadata and controls

89 lines (67 loc) · 3.58 KB

Official code for paper Exploring the Limits of Deep Image Clustering using Pretrained Models

This is the official code to reproduce our results as published in BMVC2023

arXiv arXiv arXiv

Set up instructions

Install virtual env with clip via:

conda create -n temi python=3.7
conda activate temi

pip install -r requirements.txt

Available model names

dino_resnet50, dino_vits16, dino_vitb16, timm_resnet50,timm_vit_small_patch16_224, timm_vit_base_patch16_224 timm_vit_large_patch16_224, convnext_small, convnext_base, convnext_large, msn_vit_small, msn_vit_base msn_vit_large, mocov3_vit_small, mocov3_vit_base, clip_ViT-B/16, clip_ViT-L/14, clip_RN50, mae_vit_base, mae_vit_large, mae_vit_huge

Available dataset names (IN1K and its subsets need the imagenet (IN1K) path to be passed with --datapath where ./data is used by default):

CIFAR10, CIFAR100, STL10, CIFAR20, IN50, IN100, IN200, IN1K

How to generate image embeddings for different models and datasets

python gen_embeds.py --arch clip_ViT-B/32 --dataset CIFAR10 --batch_size 256

TEMI: how to train the head and evaluate cl

export CUDA_VISIBLE_DEVICES=0; outdir=$"./experiments/TEMI-output-test" ; clusters=10 ; dataset=$"CIFAR10"; 
python train_main.py  --precomputed --arch clip_ViT-B/32  --batch_size=1024 --use_fp16=false --max_momentum_teacher=0.996 \
--lr=1e-4 --warmup_epochs=20 --min_lr=1e-4 --epochs=100 --output_dir $outdir --dataset $dataset  --knn=50 
--out_dim=$clusters  --num_heads=16 --loss TEMI --loss-args  beta=0.6 \

python eval_experiment.py --ckpt_folder $outdir 

Overclustering experiments on IN1K

Don't forget to generate the image embeddings first and fix the imagenet paths (--datapth).

dataset=$"IN1K"; clusters=$25000 ; model=dino_vitb16; head=$16; knn=$25; 
echo "clusters:"  $clusters "dataset:" $dataset "heads" $head "knn-pairs" $knn "model" $model 
outdir=$"./experiments/overclustering/$indist-$model/"
python train_main.py --disable_ddp --precomputed --embed_norm --arch $model \
--batch_size=128 --use_fp16=false --max_momentum_teacher=0.996 \
--lr=1e-4 --warmup_epochs=20 --min_lr=1e-4 --epochs=100 \
--output_dir $outdir --dataset $dataset  \
--knn=$knn --out_dim=$clusters  --num_heads=$head \
--loss TEMI  --loss-args beta=$beta  \
                        
python eval_experiment.py --ckpt_folder $outdir

How to cite our work

@inproceedings{Adaloglou_2023_BMVC,
author    = {Nikolas Adaloglou and Felix Michels and Hamza Kalisch and Markus Kollmann},
title     = {Exploring the Limits of Deep Image Clustering using Pretrained Models},
booktitle = {34th British Machine Vision Conference 2023, {BMVC} 2023, Aberdeen, UK, November 20-24, 2023},
publisher = {BMVA},
year      = {2023},
url       = {https://papers.bmvc2023.org/0297.pdf}
}

Licence and credits

The codebase was developed based on FAIR's DINO repository, which has an Apache License 2.0. For the clustering evaluations, we used the function from SSCN

Linear Probing

python linear_evaluation.py --arch=clip_ViT-B/32 --dataset CIFAR10

K-means baseline

Note: Multiple architectures can be passed in --archs

python baseline_kmeans.py --dataset CIFAR10 --archs clip_ViT-B/32