文件格式
#评测文件
$/Cityscapes/shanshanzhang-citypersons/evaluation/eval_script/coco.py
$/Cityscapes/shanshanzhang-citypersons/evaluation/eval_script/eval_demo.py
$/Cityscapes/shanshanzhang-citypersons/evaluation/eval_script/eval_MR_multisetup.py
#注释文件
$/Cityscapes/shanshanzhang-citypersons/annotations
$/Cityscapes/shanshanzhang-citypersons/annotations/anno_train.mat
$/Cityscapes/shanshanzhang-citypersons/annotations/anno_val.mat
$/Cityscapes/shanshanzhang-citypersons/annotations/README.txt
#图片数据
$/Cityscapes/leftImg8bit/train/*
$/Cityscapes/leftImg8bit/val/*
$/Cityscapes/leftImg8bit/test/*
注释文件格式
CityPersons annotations
(1) data structure:
one image per cell
in each cell, there are three fields: city_name; im_name; bbs (bounding box annotations)
(2) bounding box annotation format:
one object instance per row:
[class_label, x1,y1,w,h, instance_id, x1_vis, y1_vis, w_vis, h_vis]
(3) class label definition:
class_label =0: ignore regions (fake humans, e.g. people on posters, reflections etc.)
class_label =1: pedestrians
class_label =2: riders
class_label =3: sitting persons
class_label =4: other persons with unusual postures
class_label =5: group of people
(4) boxes:
visible boxes [x1_vis, y1_vis, w_vis, h_vis] are automatically generated from segmentation masks;
(x1,y1) is the upper left corner.
if class_label==1 or 2
[x1,y1,w,h] is a well-aligned bounding box to the full body ;
else
[x1,y1,w,h] = [x1_vis, y1_vis, w_vis, h_vis];