@@ -11,7 +11,8 @@ Python codes for robotics algorithm.
11
11
* [ Localization] ( #localization )
12
12
* [ Extended Kalman Filter localization] ( #extended-kalman-filter-localization )
13
13
* [ Unscented Kalman Filter localization] ( #unscented-kalman-filter-localization )
14
- * [ Particle Filter localization] ( #particle-filter-localization )
14
+ * [ Particle filter localization] ( #particle-filter-localization )
15
+ * [ Histogram filter localization] ( #histogram-filter-localization )
15
16
* [ Mapping] ( #mapping )
16
17
* [ Gaussian grid map] ( #gaussian-grid-map )
17
18
* [ Ray casting grid map] ( #ray-casting-grid-map )
@@ -97,6 +98,10 @@ the green point is positioning observation (ex. GPS), and the red line is estima
97
98
98
99
The red ellipse is estimated covariance ellipse with EKF.
99
100
101
+ Ref:
102
+
103
+ - [ PROBABILISTIC ROBOTICS] ( http://www.probabilistic-robotics.org/ )
104
+
100
105
## Unscented Kalman Filter localization
101
106
102
107
![ 2] ( https://github.com/AtsushiSakai/PythonRobotics/raw/master/Localization/unscented_kalman_filter/animation.gif )
109
114
110
115
- [ Discriminatively Trained Unscented Kalman Filter for Mobile Robot Localization] ( https://www.researchgate.net/publication/267963417_Discriminatively_Trained_Unscented_Kalman_Filter_for_Mobile_Robot_Localization )
111
116
112
- ## Particle Filter localization
117
+
118
+ ## Particle filter localization
113
119
114
120
![ 2] ( https://github.com/AtsushiSakai/PythonRobotics/raw/master/Localization/particle_filter/animation.gif )
115
121
@@ -123,6 +129,27 @@ It is assumed that the robot can measure a distance from landmarks (RFID).
123
129
124
130
This measurements are used for PF localization.
125
131
132
+ Ref:
133
+
134
+ - [ PROBABILISTIC ROBOTICS] ( http://www.probabilistic-robotics.org/ )
135
+
136
+
137
+ ## Histogram filter localization
138
+
139
+ ![ 3] ( https://github.com/AtsushiSakai/PythonRobotics/raw/master/Localization/histogram_filter/animation.gif )
140
+
141
+ This is a 2D localization example with Histogram filter.
142
+
143
+ In this simulation, x,y are unknown, yaw is known.
144
+
145
+ The filter integrates speed input and range observations from RFID for localization.
146
+
147
+ Initial position is not needed.
148
+
149
+ Ref:
150
+
151
+ - [ PROBABILISTIC ROBOTICS] ( http://www.probabilistic-robotics.org/ )
152
+
126
153
# Mapping
127
154
128
155
## Gaussian grid map
@@ -575,3 +602,4 @@ Atsushi Sakai ([@Atsushi_twi](https://twitter.com/Atsushi_twi))
575
602
576
603
577
604
605
+
0 commit comments