Skip to content

Commit eb69bae

Browse files
committed
add histogram filter animation and test
1 parent b355215 commit eb69bae

File tree

4 files changed

+42
-3
lines changed

4 files changed

+42
-3
lines changed
7.01 MB
Loading

Localization/histogram_filter/histogram_filter.py

-1
Original file line numberDiff line numberDiff line change
@@ -33,7 +33,6 @@
3333
MAXX = 15.0
3434
MAXY = 25.0
3535

36-
3736
# simulation paramters
3837
NOISE_RANGE = 2.0 # [m] 1σ range noise parameter
3938
NOISE_SPEED = 0.5 # [m/s] 1σ speed noise parameter

README.md

+30-2
Original file line numberDiff line numberDiff line change
@@ -11,7 +11,8 @@ Python codes for robotics algorithm.
1111
* [Localization](#localization)
1212
* [Extended Kalman Filter localization](#extended-kalman-filter-localization)
1313
* [Unscented Kalman Filter localization](#unscented-kalman-filter-localization)
14-
* [Particle Filter localization](#particle-filter-localization)
14+
* [Particle filter localization](#particle-filter-localization)
15+
* [Histogram filter localization](#histogram-filter-localization)
1516
* [Mapping](#mapping)
1617
* [Gaussian grid map](#gaussian-grid-map)
1718
* [Ray casting grid map](#ray-casting-grid-map)
@@ -97,6 +98,10 @@ the green point is positioning observation (ex. GPS), and the red line is estima
9798

9899
The red ellipse is estimated covariance ellipse with EKF.
99100

101+
Ref:
102+
103+
- [PROBABILISTIC ROBOTICS](http://www.probabilistic-robotics.org/)
104+
100105
## Unscented Kalman Filter localization
101106

102107
![2](https://github.com/AtsushiSakai/PythonRobotics/raw/master/Localization/unscented_kalman_filter/animation.gif)
@@ -109,7 +114,8 @@ Ref:
109114

110115
- [Discriminatively Trained Unscented Kalman Filter for Mobile Robot Localization](https://www.researchgate.net/publication/267963417_Discriminatively_Trained_Unscented_Kalman_Filter_for_Mobile_Robot_Localization)
111116

112-
## Particle Filter localization
117+
118+
## Particle filter localization
113119

114120
![2](https://github.com/AtsushiSakai/PythonRobotics/raw/master/Localization/particle_filter/animation.gif)
115121

@@ -123,6 +129,27 @@ It is assumed that the robot can measure a distance from landmarks (RFID).
123129

124130
This measurements are used for PF localization.
125131

132+
Ref:
133+
134+
- [PROBABILISTIC ROBOTICS](http://www.probabilistic-robotics.org/)
135+
136+
137+
## Histogram filter localization
138+
139+
![3](https://github.com/AtsushiSakai/PythonRobotics/raw/master/Localization/histogram_filter/animation.gif)
140+
141+
This is a 2D localization example with Histogram filter.
142+
143+
In this simulation, x,y are unknown, yaw is known.
144+
145+
The filter integrates speed input and range observations from RFID for localization.
146+
147+
Initial position is not needed.
148+
149+
Ref:
150+
151+
- [PROBABILISTIC ROBOTICS](http://www.probabilistic-robotics.org/)
152+
126153
# Mapping
127154

128155
## Gaussian grid map
@@ -575,3 +602,4 @@ Atsushi Sakai ([@Atsushi_twi](https://twitter.com/Atsushi_twi))
575602

576603

577604

605+

tests/test_histogram_filter.py

+12
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,12 @@
1+
from unittest import TestCase
2+
3+
from Localization.histogram_filter import histogram_filter as m
4+
5+
print(__file__)
6+
7+
8+
class Test(TestCase):
9+
10+
def test1(self):
11+
m.show_animation = False
12+
m.main()

0 commit comments

Comments
 (0)