-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
202 lines (157 loc) · 6.74 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import customtkinter as ctk
from PIL import ImageTk
import tensorflow as tf
import matplotlib.pyplot as plt
import sys
import tkinter.messagebox as tmsg
from pathlib import Path
from GUI.draw_frame import DrawFrame
from GUI.metrics_frame import MetricsFrame
from GUI.statusbar import StatusBar
from utils.common import NDArrayFloat
from utils.export import export_data
from utils.import_ import import_data
class MainWindow(ctk.CTk):
def __init__(self) -> None:
super().__init__()
# setting some basic things
ctk.set_appearance_mode('light')
self.geometry('1366x768')
self.title('Hand Written Digit Recognition')
self.imagepath = ImageTk.PhotoImage(file= 'icons/app.png')
self.wm_iconbitmap()
self.iconphoto(False, self.imagepath)
# loading model
self.model = tf.keras.models.load_model('kaggle/working/handwritten_digit_rec.keras')
# status bar
self.statusbar = StatusBar(
self,
height= 30,
corner_radius= 15
)
self.statusbar.pack(
fill= 'x',
side= 'bottom',
anchor= 's',
padx= 7
)
# this frame would contain all the graphs and other stuffs.
self.metrics_frame = MetricsFrame(
self,
statusbar= self.statusbar,
corner_radius= 15
)
self.metrics_frame.pack(
side= 'right',
fill= 'both',
expand= True,
anchor= 's',
pady= 7,
padx= (0, 7)
)
# this frame would contain drawing area and buttons
self.draw_frame = DrawFrame(
self,
statusbar= self.statusbar,
width= 320,
corner_radius= 15
)
self.draw_frame.pack(
fill= 'y',
expand= True,
anchor= 'w',
pady= 7,
padx= 7
)
# configuring draw_frame
self.draw_frame.clear_button.configure(command= self.clear)
self.draw_frame.predict_button.configure(command= self.predict)
self.draw_frame.export_button.configure(command= self.export)
self.draw_frame.import_button.configure(command= self.import_)
# configuring metrics_frame
self.metrics_frame.load_data_button.configure(command= self.load_data_from_history)
# Bind the close event to the on_closing function
self.protocol("WM_DELETE_WINDOW", self.on_closing)
# shortcut binding
# basic actions
self.bind('<Control-p>', self.predict)
self.bind('<Control-Delete>', self.clear)
self.bind('<Control-s>', self.export)
self.bind('<Control-o>', self.import_)
self.bind('<Control-period>', self.statusbar.create_shortcut_window)
# History
self.bind('<Control-Shift-L>', self.load_data_from_history)
self.bind('<Control-Shift-T>', self.metrics_frame.clear_all_history)
# Metrics toggels
self.bind('<Control-m><Key-1>', lambda _: self.metrics_frame.checkbox_shortcut_callback(name= 'accuracy'))
self.bind('<Control-m><Key-2>', lambda _: self.metrics_frame.checkbox_shortcut_callback(name= 'confidence'))
self.bind('<Control-m><Key-3>', lambda _: self.metrics_frame.checkbox_shortcut_callback(name= 'cm'))
self.bind('<Control-m><Key-4>', lambda _: self.metrics_frame.checkbox_shortcut_callback(name= 'count'))
# Correction actions
self.bind('<Control-Shift-C>', lambda _: self.metrics_frame.correct_wrong_callback(value= 'Correct'))
self.bind('<Control-Shift-W>', lambda _: self.metrics_frame.correct_wrong_callback(value= 'Wrong'))
self.bind('<Control-Shift-S>', self.metrics_frame.update_history)
# updating status
self.statusbar.status.update('Program loaded successfully')
def predict(self, event: any = None) -> None:
# if button is disabled then preventing shortcut key to work
if self.draw_frame.predict_button.cget('state') == 'disabled':
return None
self.statusbar.status.update('Predicting...')
# processing digit
np_img: NDArrayFloat = self.draw_frame.process_digit()
# predicting
probas: NDArrayFloat = self.model.predict(np_img)[0]
# setting attributes of MetricsFrame class
self.metrics_frame.original_image = self.draw_frame.draw_image
self.metrics_frame.probabilities = probas
self.metrics_frame.prediction = probas.argmax()
self.metrics_frame.update_all()
self.statusbar.status.update('Prediction completed')
def clear(self, event: any = None) -> None:
self.draw_frame.clear_canvas()
self.metrics_frame.clear_prediction()
self.statusbar.status.update('Drawing canvas and current prediction is cleared')
def load_data_from_history(self, event: any = None) -> None:
if self.metrics_frame.history.empty:
self.statusbar.status.update('No data in history')
return None
# loading the selected data and updating the metrics_frame class attributes
self.metrics_frame.update_attributes()
# drawing the original image on canvas
self.draw_frame.draw_image_on_canvas(self.metrics_frame.original_image)
def export(self, event: any = None) -> None:
if self.metrics_frame.history.empty:
tmsg.showerror(
title= 'No data to export',
message= 'No predictions have been made yet. The history is empty. At least one prediction is required to export data.'
)
return None
export_status = export_data(self.metrics_frame.history)
if isinstance(export_status, str):
tmsg.showerror(
title= 'Error while exporting',
message= export_status
)
elif isinstance(export_status, Path):
self.statusbar.status.update(f"Successfully exported the data to '{export_status}'")
def import_(self, event: any = None) -> None:
# loading data
imported_data = import_data()
# if any error occurs
if isinstance(imported_data, str):
tmsg.showerror(
title= 'Error while importing',
message= imported_data
)
return None
elif imported_data is None:
return None
self.metrics_frame.append_dataframe_to_history(imported_data)
def on_closing(self):
plt.close("all") # Close any Matplotlib figures
self.destroy() # Destroy the Tkinter window
sys.exit() # Exit the program completely
if __name__ == '__main__':
app = MainWindow()
app.mainloop()