diff --git a/metaplotter.py b/metaplotter.py
index 775b55e..79b9cc6 100644
--- a/metaplotter.py
+++ b/metaplotter.py
@@ -128,32 +128,33 @@ def plotting(output_label, timeseries_dict, riskmodelsetting1, riskmodelsetting2
     plt.savefig(outputfilename)
     plt.show()
 
-timeseries = read_data()
+if __name__ == "__main__":
+    timeseries = read_data()
 
-# for just two different riskmodel settings
-plotting(output_label="fig_contracts_survival_1_2", timeseries_dict=timeseries, riskmodelsetting1="one", \
-    riskmodelsetting2="two", series1="contracts", series2="operational", plottype1="mean", plottype2="median")
-plotting(output_label="fig_reinsurers_contracts_survival_1_2", timeseries_dict=timeseries, riskmodelsetting1="one", \
-    riskmodelsetting2="two", series1="reincontracts", series2="reinoperational", plottype1="mean", plottype2="median")
-plotting(output_label="fig_premium_1_2", timeseries_dict=timeseries, riskmodelsetting1="one", riskmodelsetting2="two", \
-    series1="premium", series2=None, plottype1="mean", plottype2=None)
+    # for just two different riskmodel settings
+    plotting(output_label="fig_contracts_survival_1_2", timeseries_dict=timeseries, riskmodelsetting1="one", \
+        riskmodelsetting2="two", series1="contracts", series2="operational", plottype1="mean", plottype2="median")
+    plotting(output_label="fig_reinsurers_contracts_survival_1_2", timeseries_dict=timeseries, riskmodelsetting1="one", \
+        riskmodelsetting2="two", series1="reincontracts", series2="reinoperational", plottype1="mean", plottype2="median")
+    plotting(output_label="fig_premium_1_2", timeseries_dict=timeseries, riskmodelsetting1="one", riskmodelsetting2="two", \
+        series1="premium", series2=None, plottype1="mean", plottype2=None)
 
-raise SystemExit
-# for four different riskmodel settings
-plotting(output_label="fig_contracts_survival_1_2", timeseries_dict=timeseries, riskmodelsetting1="one", \
-        riskmodelsetting2="two", series1="contracts", series2="operational", additionalriskmodelsetting3="three", \
-        additionalriskmodelsetting4="four", plottype1="mean", plottype2="median")
-plotting(output_label="fig_contracts_survival_3_4", timeseries_dict=timeseries, riskmodelsetting1="three", \
-        riskmodelsetting2="four", series1="contracts", series2="operational",  additionalriskmodelsetting3="one", \
-        additionalriskmodelsetting4="two", plottype1="mean", plottype2="median")
-plotting(output_label="fig_reinsurers_contracts_survival_1_2", timeseries_dict=timeseries, riskmodelsetting1="one", \
-        riskmodelsetting2="two", series1="reincontracts", series2="reinoperational", \
-        additionalriskmodelsetting3="three", additionalriskmodelsetting4="four", plottype1="mean", plottype2="median")
-plotting(output_label="fig_reinsurers_contracts_survival_3_4", timeseries_dict=timeseries, riskmodelsetting1="three", \
-        riskmodelsetting2="four", series1="reincontracts", series2="reinoperational", \
-        additionalriskmodelsetting3="one", additionalriskmodelsetting4="two", plottype1="mean", plottype2="median")
-plotting(output_label="fig_premium_1_2", timeseries_dict=timeseries, riskmodelsetting1="one", riskmodelsetting2="two", \
-        series1="premium", series2=None, additionalriskmodelsetting3="three", additionalriskmodelsetting4="four", \
-        plottype1="mean", plottype2=None)
+    raise SystemExit
+    # for four different riskmodel settings
+    plotting(output_label="fig_contracts_survival_1_2", timeseries_dict=timeseries, riskmodelsetting1="one", \
+            riskmodelsetting2="two", series1="contracts", series2="operational", additionalriskmodelsetting3="three", \
+            additionalriskmodelsetting4="four", plottype1="mean", plottype2="median")
+    plotting(output_label="fig_contracts_survival_3_4", timeseries_dict=timeseries, riskmodelsetting1="three", \
+            riskmodelsetting2="four", series1="contracts", series2="operational",  additionalriskmodelsetting3="one", \
+            additionalriskmodelsetting4="two", plottype1="mean", plottype2="median")
+    plotting(output_label="fig_reinsurers_contracts_survival_1_2", timeseries_dict=timeseries, riskmodelsetting1="one", \
+            riskmodelsetting2="two", series1="reincontracts", series2="reinoperational", \
+            additionalriskmodelsetting3="three", additionalriskmodelsetting4="four", plottype1="mean", plottype2="median")
+    plotting(output_label="fig_reinsurers_contracts_survival_3_4", timeseries_dict=timeseries, riskmodelsetting1="three", \
+            riskmodelsetting2="four", series1="reincontracts", series2="reinoperational", \
+            additionalriskmodelsetting3="one", additionalriskmodelsetting4="two", plottype1="mean", plottype2="median")
+    plotting(output_label="fig_premium_1_2", timeseries_dict=timeseries, riskmodelsetting1="one", riskmodelsetting2="two", \
+            series1="premium", series2=None, additionalriskmodelsetting3="three", additionalriskmodelsetting4="four", \
+            plottype1="mean", plottype2=None)
 
-#pdb.set_trace()
+    #pdb.set_trace()
diff --git a/metaplotter_pl_timescale.py b/metaplotter_pl_timescale.py
index d261d11..f76a8fa 100644
--- a/metaplotter_pl_timescale.py
+++ b/metaplotter_pl_timescale.py
@@ -5,63 +5,8 @@
 import time
 import glob
 
-def read_data():
-    # do not overwrite old pdfs
-    #if os.path.exists("data/fig_one_and_two_rm_comp.pdf"):
-    #    os.rename("data/fig_one_and_two_rm_comp.pdf", "data/fig_one_and_two_rm_comp_old_" + time.strftime('%Y_%b_%d_%H_%M') + ".pdf")
-    #if os.path.exists("data/fig_three_and_four_rm_comp.pdf"):
-    #    os.rename("data/fig_three_and_four_rm_comp.pdf", "data/fig_three_and_four_rm_comp_old_" + time.strftime('%Y_%b_%d_%H_%M') + ".pdf")
+from metaplotter import read_data
 
-    upper_bound = 75
-    lower_bound = 25
-
-    timeseries_dict = {}
-    timeseries_dict["mean"] = {}
-    timeseries_dict["median"] = {}
-    timeseries_dict["quantile25"] = {}
-    timeseries_dict["quantile75"] = {}
-
-    filenames_ones = glob.glob("data/one*.dat")
-    filenames_twos = glob.glob("data/two*.dat")
-    filenames_threes = glob.glob("data/three*.dat")
-    filenames_fours = glob.glob("data/four*.dat")
-    filenames_ones.sort()
-    filenames_twos.sort()
-    filenames_threes.sort()
-    filenames_fours.sort()
-
-    #assert len(filenames_ones) == len(filenames_twos) == len(filenames_threes) == len(filenames_fours)
-    all_filenames = filenames_ones + filenames_twos + filenames_threes + filenames_fours
-
-    for filename in all_filenames:
-        # read files
-        rfile = open(filename, "r")
-        data = [eval(k) for k in rfile]
-        rfile.close()
-        
-        # compute data series
-        data_means = []
-        data_medians = []
-        data_q25 = []
-        data_q75 = []
-        for i in range(len(data[0])):
-            data_means.append(np.mean([item[i] for item in data]))
-            data_q25.append(np.percentile([item[i] for item in data], lower_bound))
-            data_q75.append(np.percentile([item[i] for item in data], upper_bound))
-            data_medians.append(np.median([item[i] for item in data]))
-        data_means = np.array(data_means)
-        data_medians = np.array(data_medians)
-        data_q25 = np.array(data_q25)
-        data_q75 = np.array(data_q75)
-        
-        # record data series
-        timeseries_dict["mean"][filename] = data_means
-        timeseries_dict["median"][filename] = data_medians
-        timeseries_dict["quantile25"][filename] = data_q25
-        timeseries_dict["quantile75"][filename] = data_q75
-    return timeseries_dict
-        
-    
 
 def plotting(output_label, timeseries_dict, riskmodelsetting1, riskmodelsetting2, series1, series2=None, additionalriskmodelsetting3=None, additionalriskmodelsetting4=None, plottype1="mean", plottype2="mean"):
     # dictionaries
diff --git a/metaplotter_pl_timescale_additional_measures.py b/metaplotter_pl_timescale_additional_measures.py
index 5b0c449..1dcf511 100644
--- a/metaplotter_pl_timescale_additional_measures.py
+++ b/metaplotter_pl_timescale_additional_measures.py
@@ -5,63 +5,8 @@
 import time
 import glob
 
-def read_data():
-    # do not overwrite old pdfs
-    #if os.path.exists("data/fig_one_and_two_rm_comp.pdf"):
-    #    os.rename("data/fig_one_and_two_rm_comp.pdf", "data/fig_one_and_two_rm_comp_old_" + time.strftime('%Y_%b_%d_%H_%M') + ".pdf")
-    #if os.path.exists("data/fig_three_and_four_rm_comp.pdf"):
-    #    os.rename("data/fig_three_and_four_rm_comp.pdf", "data/fig_three_and_four_rm_comp_old_" + time.strftime('%Y_%b_%d_%H_%M') + ".pdf")
+from metaplotter import read_data
 
-    upper_bound = 75
-    lower_bound = 25
-
-    timeseries_dict = {}
-    timeseries_dict["mean"] = {}
-    timeseries_dict["median"] = {}
-    timeseries_dict["quantile25"] = {}
-    timeseries_dict["quantile75"] = {}
-
-    filenames_ones = glob.glob("data/one*.dat")
-    filenames_twos = glob.glob("data/two*.dat")
-    filenames_threes = glob.glob("data/three*.dat")
-    filenames_fours = glob.glob("data/four*.dat")
-    filenames_ones.sort()
-    filenames_twos.sort()
-    filenames_threes.sort()
-    filenames_fours.sort()
-
-    #assert len(filenames_ones) == len(filenames_twos) == len(filenames_threes) == len(filenames_fours)
-    all_filenames = filenames_ones + filenames_twos + filenames_threes + filenames_fours
-
-    for filename in all_filenames:
-        # read files
-        rfile = open(filename, "r")
-        data = [eval(k) for k in rfile]
-        rfile.close()
-        
-        # compute data series
-        data_means = []
-        data_medians = []
-        data_q25 = []
-        data_q75 = []
-        for i in range(len(data[0])):
-            data_means.append(np.mean([item[i] for item in data]))
-            data_q25.append(np.percentile([item[i] for item in data], lower_bound))
-            data_q75.append(np.percentile([item[i] for item in data], upper_bound))
-            data_medians.append(np.median([item[i] for item in data]))
-        data_means = np.array(data_means)
-        data_medians = np.array(data_medians)
-        data_q25 = np.array(data_q25)
-        data_q75 = np.array(data_q75)
-        
-        # record data series
-        timeseries_dict["mean"][filename] = data_means
-        timeseries_dict["median"][filename] = data_medians
-        timeseries_dict["quantile25"][filename] = data_q25
-        timeseries_dict["quantile75"][filename] = data_q75
-    return timeseries_dict
-        
-    
 
 def plotting(output_label, timeseries_dict, riskmodelsetting1, riskmodelsetting2, series1, series2=None, additionalriskmodelsetting3=None, additionalriskmodelsetting4=None, plottype1="mean", plottype2="mean"):
     # dictionaries