-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimulateSSL.py
executable file
·69 lines (62 loc) · 2.58 KB
/
simulateSSL.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
############################################################################
#
# Imperial College London, United Kingdom
# Multifunctional Nanomaterials Laboratory
#
# Project: ERASE
# Year: 2020
# Python: Python 3.7
# Authors: Ashwin Kumar Rajagopalan (AK)
#
# Purpose:
# Generates the single site Langmuir isotherms for different temperatures
# and concentrations.
#
# Last modified:
# - 2020-10-23, AK: Replace the noncompetitive to competitive isotherm
# - 2020-10-22, AK: Minor cosmetic changes
# - 2020-10-19, AK: Incorporate sorbent density and minor improvements
# - 2020-10-19, AK: Change functionality to work with a single sorbent input
# - 2020-10-16, AK: Initial creation
#
# Input arguments:
#
#
# Output arguments:
#
#
############################################################################
def simulateSSL(adsorbentIsotherm, adsorbentDensity, pressureTotal,
temperature, moleFraction):
import numpy as np
# Gas constant
Rg = 8.314; # [J/mol K]
# Get the number of gases
numberOfGases = moleFraction.shape[1]
if moleFraction.shape[1] != adsorbentIsotherm.shape[0]:
raise Exception("The dimensions of the mole fraction and the number of gases in the adsorbent is not consistent!")
# Initialize the equilibriumLoadings array with zeros
equilibriumLoadings = np.zeros((moleFraction.shape[0],
temperature.shape[0],numberOfGases))
# Generate the isotherm
for ii in range(numberOfGases):
for jj in range(moleFraction.shape[0]):
for kk in range(temperature.shape[0]):
# Parse out the saturation capacity, equilibrium constant, and
# heat of adsorption
qsat = adsorbentIsotherm[ii,0]
b0 = adsorbentIsotherm[:,1]
delH = adsorbentIsotherm[:,2]
b = np.multiply(b0,np.exp(-delH/(Rg*temperature[kk])))
# Compute the concentraiton
conc = pressureTotal*moleFraction[jj,:]/(Rg*temperature[kk])
# Compute sum(b*c) for the multicomponet competitive eqbm (den.)
bStarConc = np.multiply(b,conc)
sumbStarConc = np.sum(bStarConc)
# Compute the numerator and denominator for SSL
loadingNum = adsorbentDensity*qsat*b[ii]*conc[ii]
loadingDen = 1 + sumbStarConc
# Compute the equilibrium loading
equilibriumLoadings[jj,kk,ii] = loadingNum/loadingDen # [mol/m3]
# Return the equilibrium loadings
return equilibriumLoadings