Skip to content

Commit 9ca4901

Browse files
committed
docs: update examples
1 parent eb4d4c8 commit 9ca4901

File tree

4 files changed

+240
-797
lines changed

4 files changed

+240
-797
lines changed

examples/README.md

Lines changed: 4 additions & 23 deletions
Original file line numberDiff line numberDiff line change
@@ -43,7 +43,7 @@ uv run python multiclass_classification.py
4343
- Advanced result interpretation
4444
- Model serialization/deserialization
4545

46-
### 3. [Mixed Features](mixed_features.py)
46+
### 3. [Using Additional Features](Using_additional_features.py)
4747
Shows how to combine text and categorical features:
4848
- Text + categorical data preparation
4949
- Feature engineering for categorical variables
@@ -53,7 +53,7 @@ Shows how to combine text and categorical features:
5353
**Run the example:**
5454
```bash
5555
cd examples
56-
uv run python mixed_features.py
56+
uv run python Using_additional_features.py
5757
```
5858

5959
**What you'll learn:**
@@ -81,26 +81,7 @@ uv run python advanced_training.py
8181
- Training parameter tuning
8282
- Model performance comparison
8383

84-
### 5. [Categorical Comparison](categorical_comparison.py)
85-
Compares model performance with and without categorical features:
86-
- Loading real-world data (Sirene dataset)
87-
- Feature engineering and preprocessing
88-
- Model comparison with statistical analysis
89-
- Performance evaluation and visualization
90-
91-
**Run the example:**
92-
```bash
93-
cd examples
94-
uv run python categorical_comparison.py
95-
```
96-
97-
**What you'll learn:**
98-
- Real-world data handling
99-
- Feature impact analysis
100-
- Statistical model comparison
101-
- Data preprocessing techniques
102-
103-
### 6. [Simple Explainability](simple_explainability_example.py)
84+
### 5. [Simple Explainability](simple_explainability_example.py)
10485
Demonstrates model explainability with ASCII histogram visualizations:
10586
- Training a FastText classifier with enhanced data
10687
- Word-level contribution analysis
@@ -210,7 +191,7 @@ Class distribution: Negative=5, Neutral=5, Positive=5
210191
3. ✅ Predicted: Positive, True: Positive
211192
Text: Fantastic! Love every aspect of it!
212193
213-
Final Accuracy: 3/6 = 0.500
194+
Final Accuracy: 3/3 = 1.000
214195
```
215196

216197
### Simple Explainability

0 commit comments

Comments
 (0)