-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_model.py
147 lines (132 loc) · 5.98 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import torch.nn as nn
import torch
import torchvision
import numpy as np
from sklearn.metrics import average_precision_score
import tensorboard_helper
import pytorch_dataset
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
class YOLOish(torch.nn.Module):
def __init__(self):
super().__init__()
self.layer1 = nn.Sequential(
nn.Conv2d(3, 32, kernel_size=4, stride = 2, padding = 1),
nn.BatchNorm2d(32),
nn.ReLU())
self.layer2 = nn.Sequential(
nn.Conv2d(32, 64, kernel_size=4, stride = 2, padding = 1),
nn.BatchNorm2d(64),
nn.ReLU())
self.layer3 = nn.Sequential(
nn.Conv2d(64, 128, kernel_size=4, stride = 2, padding = 1),
nn.BatchNorm2d(128),
nn.ReLU())
self.layer4 = nn.Sequential(
nn.Conv2d(128, 256, kernel_size=4, stride = 2, padding = 1),
nn.BatchNorm2d(256),
nn.ReLU())
self.layer5 = nn.Sequential(
nn.Conv2d(256, 512, kernel_size=4, stride = 2, padding = 1),
nn.BatchNorm2d(512),
nn.ReLU())
self.layer6 = nn.Sequential(
nn.Conv2d(512, 1024, kernel_size=4, stride = 2, padding = 1),
nn.BatchNorm2d(1024),
nn.ReLU())
self.layer7 = nn.Sequential(
nn.ConvTranspose2d(1024, 256, kernel_size=4, stride = 2, padding = 1),
nn.BatchNorm2d(256),
nn.ReLU())
self.layer8 = nn.Sequential(
nn.ConvTranspose2d(256, 64, kernel_size=4, stride = 2, padding = 1),
nn.BatchNorm2d(64),
nn.ReLU())
self.layer9 = nn.Conv2d(64, 8, kernel_size=3, stride = 1, padding = 1)
self.sig = nn.Sigmoid()
def forward(self, X):
out = self.layer1(X)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = self.layer5(out)
out = self.layer6(out)
out = self.layer7(out)
out = self.layer8(out)
out = self.layer9(out)
out[:,0,:,:] = self.sig(out[:,0,:,:])
out[:,1,:,:] = self.sig(out[:,1,:,:])*16
out[:,2,:,:] = self.sig(out[:,2,:,:])*16
out[:,3,:,:] = self.sig(out[:,3,:,:])
out[:,4,:,:] = self.sig(out[:,4,:,:])
out[:,5,:,:] = self.sig(out[:,5,:,:])
out[:,6,:,:] = self.sig(out[:,6,:,:])
out[:,7,:,:] = self.sig(out[:,7,:,:])
return out
def criterion(outputs, labels):
l_coord = 5
l_noobj = 0.5
xy_loss = l_coord*torch.sum(labels[:,0,:,:]*((labels[:,1,:,:] - outputs[:,1,:,:])**2 + (labels[:,2,:,:] - outputs[:,2,:,:])**2))
wh_loss = l_coord*torch.sum(labels[:,0,:,:]*((torch.sqrt(labels[:,3,:,:]) - torch.sqrt(outputs[:,3,:,:]))**2 + (torch.sqrt(labels[:,4,:,:]) - torch.sqrt(outputs[:,4,:,:]))**2))
c_loss = torch.sum(labels[:,0,:,:]*((labels[:,0,:,:] - outputs[:,0,:,:])**2))
noobj_loss = l_noobj*torch.sum((1-labels[:,0,:,:])*((labels[:,0,:,:] - outputs[:,0,:,:])**2))
class_loss = torch.sum(labels[:,0,:,:]*((labels[:,5,:,:] - outputs[:,5,:,:])**2 + (labels[:,6,:,:] - outputs[:,6,:,:])**2 + (labels[:,7,:,:] - outputs[:,7,:,:])**2))
return xy_loss + wh_loss + c_loss + noobj_loss + class_loss
def train(net, optimizer, criterion, train_loader, test_loader, epochs, model_name, plot):
model = net.to(device)
total_step = len(train_loader)
overall_step = 0
logger = tensorboard_helper.Logger('./logs')
mAPs = np.zeros((epochs,3))
for epoch in range(epochs):
correct = 0
total = 0
y_true = np.zeros((0, 3))
y_score = np.zeros((0, 3))
for i, (images, labels) in enumerate(train_loader):
# Move tensors to configured device
images = images.to(device).double()
labels = labels.to(device).double()
#Forward Pass
outputs = model(images)
loss = criterion(outputs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
overall_step+=1
y_score_batch = np.zeros((outputs.shape[0]*8*8, 3))
y_score_batch[:, 0] = ((outputs[:, 0, :, :] > 0.6).double()*outputs[:, 5, :, :]).flatten().detach().cpu().numpy()
y_score_batch[:, 1] = ((outputs[:, 0, :, :] > 0.6).double()*outputs[:, 6, :, :]).flatten().detach().cpu().numpy()
y_score_batch[:, 2] = ((outputs[:, 0, :, :] > 0.6).double()*outputs[:, 7, :, :]).flatten().detach().cpu().numpy()
y_score = np.vstack((y_score, y_score_batch))
y_true_batch = np.zeros((labels.shape[0]*8*8, 3))
y_true_batch[:, 0] = labels[:, 5, :, :].flatten().detach().cpu().numpy()
y_true_batch[:, 1] = labels[:, 6, :, :].flatten().detach().cpu().numpy()
y_true_batch[:, 2] = labels[:, 7, :, :].flatten().detach().cpu().numpy()
y_true = np.vstack((y_true, y_true_batch))
if (i+1) % 10 == 0:
print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, epochs, i+1, total_step, loss.item()))
if plot:
info = { ('loss for' + model_name): loss.item()}
for tag, value in info.items():
logger.scalar_summary(tag, value, overall_step+1)
total = 0
for cl in range(3):
AP_cl = average_precision_score(y_true[:,cl], y_score[:,cl])
num_objs = AP_cl*np.sum(y_true[:,cl])
mAPs[epoch,cl] = num_objs
total += np.sum(y_true[:,cl])
print("Average Precision for epoch {} class {} is {}".format(epoch, cl,AP_cl))
info = { ('MAP ' + model_name): np.sum(mAPs[epoch])/total}
for tag, value in info.items():
logger.scalar_summary(tag, value, epoch+1)
def start_train():
epochs = 30
model = YOLOish().to(device).double()
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
train_loader, test_loader = pytorch_dataset.get_loaders()
train(model, optimizer, criterion, train_loader, test_loader, epochs, 'YOLO',True)
checkpoint = {'net': model.state_dict()}
torch.save(checkpoint,'yolo_model.pt')
if __name__ == '__main__':
start_train()