-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
48 lines (40 loc) · 1.77 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import torch
from torch.utils.tensorboard import SummaryWriter
import autoencoder
import generate_search_index
import get_dataloader
from torch import nn
def train_model(train_loader, optimizer, loss, net, device, print_every = 1000, verbose=True, log="runs", save_every=5):
writer = SummaryWriter(log_dir = log)
net = net.to(device)
step = 0
scaler = torch.cuda.amp.GradScaler()
for epoch in range(2):
total = 0
total_loss = 0
for i, sampled_data in enumerate(train_loader):
input = sampled_data['docstring_emb'].to(device)
optimizer.zero_grad()
output = net(input)
with torch.cuda.amp.autocast():
loss_value = loss(output, sampled_data['code_emb'].to(device))
scaler.scale(loss_value).backward()
scaler.step(optimizer)
scaler.update()
total_loss += loss_value.item()
total += len(input)
if step % print_every == 0:
writer.add_scalar("Loss/train", total_loss/total, step)
if verbose:
print("Epoch: %s --Step: %s Loss: %s" %(epoch, step, total_loss/total))
step = step +1
torch.save(net.state_dict(), f'generated_resources/autoencoder_{epoch}.pt')
if __name__ == '__main__':
train_dataset = get_dataloader.get_dataset('train')
train_dataloader = get_dataloader.get_dataloaders('train', 32, True)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = autoencoder.AutoEncoder(768, 256).to(device)
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=5e-4)
train_model(train_dataloader, optimizer, criterion, model, device)
generate_search_index.generate_search_index('train')