-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathcompute_metrics.py
290 lines (247 loc) · 12.4 KB
/
compute_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import logging
import os
import random
from typing import Dict
import hydra
import jsonlines
import numpy as np
import wandb
from hydra.utils import to_absolute_path
from omegaconf import OmegaConf
from tqdm import tqdm
from conf import MetricsConfig
from src.utils import EvaluationMetrics
logger = logging.getLogger("datasets")
logger.setLevel(logging.ERROR)
random.seed(42)
np.random.seed(42)
def load_predictions(cfg: MetricsConfig) -> str:
"""Load predictions from W&B artifact.
Args:
cfg: Config; all information about artifact should be provided in corresponding fields there.
Returns:
Local path to downloaded predictions.
"""
input_artifact = wandb.use_artifact(
f"{cfg.logger.artifact_config.project}/{cfg.logger.artifact_config.name}:{cfg.logger.artifact_config.version}"
)
input_artifact.get_path(cfg.logger.artifact_config.artifact_path).download(
root=hydra.utils.to_absolute_path(
f"{cfg.logger.artifact_config.local_path}/{cfg.logger.artifact_config.name}/predictions"
)
)
predictions_path = os.path.join(
hydra.utils.to_absolute_path(
f"{cfg.logger.artifact_config.local_path}/{cfg.logger.artifact_config.name}/predictions"
),
cfg.logger.artifact_config.artifact_path,
)
return predictions_path
def add_single_example(
line: Dict[str, str],
full_metrics: EvaluationMetrics,
prefix_metrics: Dict[int, EvaluationMetrics],
include_short: bool,
) -> None:
"""Adds a single example to metrics.
* Compute the usual metrics between full prediction and full target.
* Compute the metrics between all prefixes of prediction and target,
`prefix_metrics` keys are used to determine the numbers of tokens in prefixes.
Args:
line: Current example, expected to include keys `Prediction` and `Target`.
full_metrics: A class for calculating metrics between full prediction and full target.
prefix_metrics: A dictionary where key `i` corresponds to metrics for prefixes of `i` tokens.
include_short: False to only consider messages with >= i tokens when computing metrics for prefixes of i tokens,
True to include all messages.
"""
prediction = line["Prediction"].strip()
target = line["Target"].strip()
if not target:
return
full_metrics.add_batch(
predictions=[prediction],
references=[target],
)
pred_tokens = prediction.split()
target_tokens = target.split()
for i in prefix_metrics:
if not include_short and len(target_tokens) < i:
break
pred_prefix_i = " ".join(pred_tokens[:i])
target_prefix_i = " ".join(target_tokens[:i])
prefix_metrics[i].add_batch(predictions=[pred_prefix_i], references=[target_prefix_i])
@hydra.main(version_base="1.1", config_path="conf", config_name="metrics_config")
def main(cfg: MetricsConfig):
# -----------------------
# init -
# -----------------------
if cfg.logger.use_wandb:
if cfg.logger.use_api_key:
with open(hydra.utils.to_absolute_path("wandb_api_key.txt"), "r") as f:
os.environ["WANDB_API_KEY"] = f.read().strip()
run: wandb.wandb_sdk.wandb_run.Run = wandb.init(
project=cfg.logger.project,
name=cfg.logger.artifact_config.name,
config=OmegaConf.to_container(cfg, resolve=True), # type: ignore[arg-type]
job_type="metrics" if not cfg.filter.use_filtering else "filter_metrics",
tags=(["new_prefix_logic"] if cfg.include_short else [])
+ (["only_filtered" if cfg.filter.fit_filters else "only_unfiltered"] if cfg.filter.use_filtering else [])
+ (["specific_subset"] if cfg.filter.use_pos_in_file_filtering else [])
+ ([f"random_subset_{cfg.filter.subset_num_examples}"] if cfg.filter.use_subset else []),
) # type: ignore[assignment]
cfg.preds_path = load_predictions(cfg)
elif cfg.preds_path:
cfg.preds_path = to_absolute_path(cfg.preds_path)
else:
raise ValueError("Either W&B artifact or local path should be provided to load predictions.")
cfg.filter.path = to_absolute_path(cfg.filter.path)
# ------------------------
# - aggregate metrics -
# ------------------------
full_metrics = EvaluationMetrics(do_tensors=False, do_strings=True, prefix="test", shift=False)
prefix_metrics = {
i: EvaluationMetrics(n=i, do_tensors=False, do_strings=True, prefix="test", shift=False)
for i in range(1, cfg.max_n_tokens + 1)
}
# default: simply compute the metrics for all the examples
if not cfg.filter.use_filtering and not cfg.filter.use_pos_in_file_filtering:
# or for a subset of N examples
if cfg.filter.use_subset:
assert (
cfg.filter.subset_num_examples is not None
), "Configured to use subset, but the desired number of examples is None."
logging.info(f"Will consider random subset of {cfg.filter.subset_num_examples} examples.")
with jsonlines.open(cfg.preds_path, "r") as reader:
num_examples = sum(1 for _ in reader)
subset_ids = set(np.random.choice(num_examples, size=cfg.filter.subset_num_examples, replace=False))
with jsonlines.open(cfg.preds_path, "r") as reader:
for i, line in tqdm(
enumerate(reader),
desc=f"Computing metrics on a random subset of {cfg.filter.subset_num_examples} examples",
):
if i in subset_ids:
add_single_example(
line,
full_metrics=full_metrics,
prefix_metrics=prefix_metrics,
include_short=cfg.include_short,
)
else:
with jsonlines.open(cfg.preds_path, "r") as reader:
for line in tqdm(reader, desc="Computing metrics"):
add_single_example(
line, full_metrics=full_metrics, prefix_metrics=prefix_metrics, include_short=cfg.include_short
)
# or define filters configuration to control what subset will be considered
# option 1: boolean filters
elif cfg.filter.use_filtering and not cfg.filter.use_pos_in_file_filtering:
logging.info("Will compute metrics with given filters.")
def include_example(filters_line: Dict[str, str]) -> bool:
"""Combines all given filters via given logical operations and returns the final
result: should we include the current example when calculating metrics or not."""
if cfg.filter.logic == "and":
result = all(filters_line[filter_col] for filter_col in cfg.filter.filters_to_include)
elif cfg.filter.logic == "or":
result = any(filters_line[filter_col] for filter_col in cfg.filter.filters_to_include)
else:
raise ValueError("`filter.logic` should be one of: `and`, `or`.")
if cfg.filter.fit_filters:
return result
else:
return not result
# dry run: estimate the total number of examples and the number of examples in the filtered subset
with jsonlines.open(cfg.preds_path, "r") as reader:
num_total = sum(1 for _ in reader)
with jsonlines.open(cfg.filter.path, "r") as filters_reader:
num_included = sum(1 for filters_line in filters_reader if include_example(filters_line))
logging.warning(
f"Total number of examples: {num_total}, will consider {num_included} examples ({num_included / num_total * 100 :.2f}%)."
)
# or for a subset of N examples
if cfg.filter.use_subset:
assert (
cfg.filter.subset_num_examples is not None
), "Configured to use subset, but the desired number of examples is None."
assert (
num_included >= cfg.filter.subset_num_examples
), "Configured to use subset, but the desired number of examples is larger than the total sample."
logging.info(f"Will consider random subset of {cfg.filter.subset_num_examples} examples.")
with jsonlines.open(cfg.filter.path, "r") as filters_reader:
included_ids = [i for i, filters_line in enumerate(filters_reader) if include_example(filters_line)]
subset_ids = set(np.random.choice(included_ids, size=cfg.filter.subset_num_examples, replace=False))
with jsonlines.open(cfg.preds_path, "r") as reader:
for i, line in tqdm(
enumerate(reader),
desc=f"Computing metrics with filters on a random subset of {cfg.filter.subset_num_examples} examples",
):
if i in subset_ids:
add_single_example(
line,
full_metrics=full_metrics,
prefix_metrics=prefix_metrics,
include_short=cfg.include_short,
)
else:
with jsonlines.open(cfg.preds_path, "r") as reader:
with jsonlines.open(cfg.filter.path, "r") as filters_reader:
for i, (input_line, filters_line) in tqdm(
enumerate(zip(reader, filters_reader)), desc="Computing metrics with filters"
):
if include_example(filters_line):
add_single_example(
input_line,
full_metrics=full_metrics,
prefix_metrics=prefix_metrics,
include_short=cfg.include_short,
)
# option 2: pos in file-filtering (only include examples that are present in a given file, controlled by `pos_in_file` column)
elif not cfg.filter.use_filtering and cfg.filter.use_pos_in_file_filtering:
logging.info("Will compute metrics on a specific given subset.")
with jsonlines.open(cfg.filter.path, "r") as filters_reader:
ids_to_include = set(line["pos_in_file"] for line in filters_reader)
# dry run: estimate the total number of examples and the number of examples in the subset
with jsonlines.open(cfg.preds_path, "r") as reader:
num_total = sum(1 for _ in reader)
logging.warning(
f"Total number of examples: {num_total}, will consider {len(ids_to_include)} examples ({len(ids_to_include) / num_total * 100 :.2f}%)."
)
with jsonlines.open(cfg.preds_path, "r") as reader:
for i, input_line in tqdm(enumerate(reader), desc="Computing metrics on a specific given subset"):
if i in ids_to_include:
add_single_example(
input_line,
full_metrics=full_metrics,
prefix_metrics=prefix_metrics,
include_short=cfg.include_short,
)
# -----------------------
# - compute results -
# -----------------------
full_metrics_results = full_metrics.compute()
prefix_metrics_results = {}
for i in prefix_metrics:
try:
prefix_metrics_results[i] = prefix_metrics[i].compute()
except ValueError:
logging.warning(f"Prefixes of length {i} did not appear in data")
except ZeroDivisionError:
logging.warning(f"ZeroDivisionError with prefixes of length {i}")
for i in prefix_metrics_results:
# we are using BLEU-4, ignore sequences of less than 4 tokens
if i < 4:
keys_to_drop = [key for key in prefix_metrics_results[i] if "b_norm" in key or "bleu" in key]
for key in keys_to_drop:
del prefix_metrics_results[i][key]
# -----------------------
# - log results -
# -----------------------
logging.info("Metrics for full sequences")
logging.info(f"{full_metrics_results}")
logging.info("Metrics for prefixes")
logging.info(f"{prefix_metrics_results}")
if cfg.logger.use_wandb:
for i in prefix_metrics_results:
wandb.log(prefix_metrics_results[i], step=i)
wandb.log({f"{metric_name}_full": full_metrics_results[metric_name] for metric_name in full_metrics_results})
if __name__ == "__main__":
main()