-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy patheval.py
138 lines (116 loc) · 5.1 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import logging
import os
import hydra
import nltk
import pytorch_lightning as pl
import wandb
from omegaconf import OmegaConf
from conf import EvalConfig
from src.data_utils import CMCDataModule
from src.model import CMCModule
from src.utils import WandbOrganizer
nltk.download("omw-1.4")
nltk.download("wordnet")
@hydra.main(version_base="1.1", config_path="conf", config_name="eval_config")
def main(cfg: EvalConfig) -> None:
# -----------------------
# init -
# -----------------------
pl.seed_everything(42)
if cfg.model.diff_tokenizer_name_or_path == cfg.model.msg_tokenizer_name_or_path:
os.environ["TOKENIZERS_PARALLELISM"] = "false"
dm = CMCDataModule(
dataset_cfg=cfg.dataset,
model_cfg=cfg.model,
input_cfg=cfg.input,
local_rank=int(os.environ.get("LOCAL_RANK", 0)),
world_size=1,
shift_labels=cfg.model.configuration != "decoder",
process_retrieved=cfg.model.configuration == "race",
)
if cfg.logger.use_wandb:
if cfg.logger.use_api_key:
with open(hydra.utils.to_absolute_path("wandb_api_key.txt"), "r") as f:
os.environ["WANDB_API_KEY"] = f.read().strip()
trainer_logger = pl.loggers.WandbLogger(
name=f"context_ratio_{cfg.input.context_ratio}_{('with-history' if cfg.input.generate_with_history else 'without-history')}",
project=cfg.logger.project,
config=OmegaConf.to_container(cfg, resolve=True),
job_type="eval",
)
if cfg.model.configuration == "race":
# download retrieved examples
artifact = wandb.use_artifact(
"codet5"
+ ("_with-history" if cfg.input.train_with_history else "_without-history")
+ "_retrieval:latest",
type="retrieval",
)
for part in ["train", "val", "test"]:
artifact.get_path(f"{part}_predictions.jsonl").download(
root=os.path.join(
hydra.utils.to_absolute_path(dm.get_root_dir_for_part(cfg.dataset.dataset_root, part)),
"retrieval" + ("_with_history" if cfg.input.train_with_history else "_without_history"),
)
)
dm.prepare_data(stage="test")
dm.setup(stage=cfg.stage)
run_name = WandbOrganizer.get_run_name(
cfg.model,
encoder_input_type=cfg.input.encoder_input_type,
train_with_history=cfg.input.train_with_history,
)
if cfg.logger.use_wandb and cfg.logger.load_artifact:
artifact_name = f"{cfg.logger.artifact_config.project}/{run_name}:{cfg.logger.artifact_config.version}"
artifact = trainer_logger.experiment.use_artifact(artifact_name)
if "tags" in artifact.metadata:
trainer_logger.experiment.tags = artifact.metadata["tags"] + WandbOrganizer.get_tags_generate(
generate_with_history=cfg.input.generate_with_history, context_ratio=cfg.input.context_ratio
)
artifact.get_path(cfg.logger.artifact_config.artifact_path).download(
root=hydra.utils.to_absolute_path(f"{cfg.logger.artifact_config.local_path}/{run_name}")
)
cfg.ckpt_path = os.path.join(
hydra.utils.to_absolute_path(f"{cfg.logger.artifact_config.local_path}/{run_name}"),
cfg.logger.artifact_config.artifact_path,
)
preds_table_tags = [f"context-ratio_{cfg.input.context_ratio}"]
if cfg.input.encoder_input_type == "diff":
if cfg.input.generate_with_history:
preds_table_tags.append("with-history")
else:
preds_table_tags.append("without-history")
preds_table_name = "_".join(preds_table_tags)
if cfg.ckpt_path:
# initialize from fine-tuned checkpoint
PATH = os.path.join(hydra.utils.get_original_cwd(), cfg.ckpt_path)
print("Checkpoint path\n", PATH, "\n")
model = CMCModule.load_from_checkpoint(
PATH,
model_cfg=cfg.model,
diff_tokenizer=dm.diff_tokenizer,
msg_tokenizer=dm.msg_tokenizer,
generation_kwargs=cfg.generation, # type: ignore[arg-type]
preds_artifact_name=f"{run_name}_preds",
preds_artifact_type="multilang preds",
preds_table_name=preds_table_name,
)
else:
logging.info("Using zero-shot model")
# use zero-shot pretrained model or even random model
model = CMCModule(
model_cfg=cfg.model,
diff_tokenizer=dm.diff_tokenizer,
msg_tokenizer=dm.msg_tokenizer,
generation_kwargs=cfg.generation, # type: ignore[arg-type]
preds_artifact_name=f"{run_name}_preds",
preds_artifact_type="multilang preds",
preds_table_name=preds_table_name,
)
trainer = pl.Trainer(**cfg.trainer, logger=trainer_logger if cfg.logger.use_wandb else True) # type: ignore[arg-type]
# -----------------------
# test -
# -----------------------
trainer.test(datamodule=dm, model=model)
if __name__ == "__main__":
main()