-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathretrieve.py
202 lines (165 loc) · 7.28 KB
/
retrieve.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import logging
import os
from typing import List, Optional
import hydra
import jsonlines
import wandb
from omegaconf import OmegaConf
from tqdm import tqdm
from conf import RetrievalConfig
from src.data_utils import CMCDataModule
from src.model import CMCModule
from src.retrieval import DiffSearch, TransformerEmbedder
from src.retrieval.utils import CommitEmbeddingExample, RetrievalPrediction
from src.utils import WandbOrganizer
def download_artifact(cfg: RetrievalConfig, run: wandb.wandb_sdk.wandb_run.Run, artifact_name: str) -> str:
"""Helper function to download relevant artifact from W&B.
Args:
cfg: Current configuration, necessary to find relevant artifact.
run: Current W&B run.
Returns:
A local path to the artifact.
"""
full_artifact_name = f"{cfg.logger.input_artifact.project}/{artifact_name}:{cfg.logger.input_artifact.version}"
artifact = run.use_artifact(full_artifact_name)
if "tags" in artifact.metadata:
run.tags = artifact.metadata["tags"]
artifact.get_path(cfg.logger.input_artifact.artifact_path).download(
root=hydra.utils.to_absolute_path(f"{cfg.logger.input_artifact.local_path}/{artifact_name}")
)
return os.path.join(
hydra.utils.to_absolute_path(f"{cfg.logger.input_artifact.local_path}/{artifact_name}"),
cfg.logger.input_artifact.artifact_path,
)
def export_model_checkpoint(cfg: RetrievalConfig) -> str:
"""Helper function to export model weights in a Transformers format from Lightning checkpoint.
Returns:
A local path to directory with checkpoint in a Transformers format.
"""
logging.info(f"Checkpoint path: {cfg.ckpt_path}")
module = CMCModule.load_from_checkpoint(
cfg.ckpt_path,
model_cfg=cfg.model,
)
transformers_ckpt_path = os.path.join(cfg.ckpt_path.split("/")[-1], "transformers_format")
os.makedirs(transformers_ckpt_path, exist_ok=True)
module.save_pretrained(transformers_ckpt_path)
return transformers_ckpt_path
@hydra.main(version_base="1.1", config_path="conf", config_name="retrieval_config")
def main(cfg: RetrievalConfig) -> None:
run_name = WandbOrganizer.get_run_name(
cfg.model,
encoder_input_type=cfg.input.encoder_input_type,
train_with_history=cfg.input.train_with_history,
)
# --------------------
# - init W&B -
# --------------------
run: Optional[wandb.wandb_sdk.wandb_run.Run]
if cfg.logger.use_wandb:
if cfg.logger.use_api_key:
with open(hydra.utils.to_absolute_path("wandb_api_key.txt"), "r") as f:
os.environ["WANDB_API_KEY"] = f.read().strip()
run = wandb.init( # type: ignore[assignment]
project=cfg.logger.project,
name=f"{run_name}_retrieval",
config=OmegaConf.to_container(cfg, resolve=True), # type: ignore[arg-type]
job_type="retrieval",
)
assert run is not None
if cfg.logger.download_artifact:
logging.info("Downloading artifact from W&B")
cfg.ckpt_path = download_artifact(run=run, cfg=cfg, artifact_name=run_name)
else:
run = None
# ------------------------------
# - extract model weights -
# ------------------------------
assert cfg.ckpt_path
cfg.ckpt_path = hydra.utils.to_absolute_path(cfg.ckpt_path)
transformers_ckpt_path = export_model_checkpoint(cfg)
# ----------------------------
# - preprocess data -
# ----------------------------
dm = CMCDataModule(
dataset_cfg=cfg.dataset,
model_cfg=cfg.model,
input_cfg=cfg.input,
local_rank=int(os.environ.get("LOCAL_RANK", 0)),
world_size=1,
shift_labels=False,
process_retrieved=False,
)
dm.prepare_data(stage="retrieve")
dm.setup()
# -----------------------------
# - build embeddings index -
# -----------------------------
embedder = TransformerEmbedder(
name_or_path=transformers_ckpt_path,
device=cfg.embedder.device,
precision=cfg.embedder.precision,
normalize_embeddings=cfg.embedder.normalize_embeddings,
)
os.makedirs(hydra.utils.to_absolute_path(cfg.search.index_root_dir), exist_ok=True)
search = DiffSearch(
num_trees=cfg.search.num_trees,
embeddings_dim=embedder.embeddings_dim,
load_index=cfg.search.load_index,
index_root_dir=hydra.utils.to_absolute_path(cfg.search.index_root_dir),
load_index_path=hydra.utils.to_absolute_path(cfg.search.load_index_path),
)
if not cfg.search.load_index:
for batch in tqdm(dm.retrieval_dataloader(part="train"), desc="Building embeddings index"):
search.add_batch(embedder.transform(batch))
search.finalize()
# ------------------------------
# - retrieve NNs -
# ------------------------------
logging.info(f"Start processing train")
open(f"train_predictions.jsonl", "w").close()
predictions: List[RetrievalPrediction] = []
for batch in tqdm(dm.retrieval_dataloader(part="train"), desc="Retrieving predictions for train"):
if len(predictions) > 10000:
with jsonlines.open("train_predictions.jsonl", "a") as writer:
writer.write_all(
[{"pos_in_file": pred["pos_in_file"], "distance": pred["distance"]} for pred in predictions]
)
predictions = []
predictions.extend(search.predict_batch_train([idx for idx in batch.pos_in_file]))
if len(predictions) > 0:
with jsonlines.open("train_predictions.jsonl", "a") as writer:
writer.write_all(
[{"pos_in_file": pred["pos_in_file"], "distance": pred["distance"]} for pred in predictions]
)
logging.info(f"Finish processing train")
for part in ["val", "test"]:
logging.info(f"Start processing {part}")
open(f"{part}_predictions.jsonl", "w").close()
predictions: List[RetrievalPrediction] = [] # type: ignore[no-redef]
for batch in tqdm(dm.retrieval_dataloader(part=part), desc=f"Retrieving predictions for {part}"):
if len(predictions) > 10000:
with jsonlines.open(f"{part}_predictions.jsonl", "a") as writer:
writer.write_all(
[{"pos_in_file": pred["pos_in_file"], "distance": pred["distance"]} for pred in predictions]
)
predictions = []
predictions.extend(search.predict_batch(embedder.transform(batch)))
if len(predictions) > 0:
with jsonlines.open(f"{part}_predictions.jsonl", "a") as writer:
writer.write_all(
[{"pos_in_file": pred["pos_in_file"], "distance": pred["distance"]} for pred in predictions]
)
logging.info(f"Finish processing {part}")
# -------------------
# - log predictions -
# -------------------
if run and cfg.logger.upload_artifact:
logging.info("Uploading artifact to W&B")
artifact = wandb.Artifact(f"{run_name}_retrieval", type="retrieval")
artifact.add_file("train_predictions.jsonl")
artifact.add_file("val_predictions.jsonl")
artifact.add_file("test_predictions.jsonl")
run.log_artifact(artifact)
if __name__ == "__main__":
main()