-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
248 lines (199 loc) · 7.55 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import torch
import networkx as nx
import numpy as np
from parser import parameter_parser
import random
import copy
from tqdm import tqdm
parser = parameter_parser()
def get_device():
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
return device
def get_edge_list(parser):
edge_list = []
with open("data/" + parser.dataset_name + "/edges", 'r') as f:
for line in f:
elems = line.rstrip().split(' ')
src, dst = int(elems[0]), int(elems[1])
if src == dst:
continue
edge_list.append((src, dst))
num_nodes = 1 + max(max([u[0] for u in edge_list]), max([u[1] for u in edge_list]))
return edge_list, num_nodes
def edge_list2nx(edge_list, num_nodes):
g = nx.Graph()
for i in range(num_nodes):
g.add_node(i)
for i, j in edge_list:
g.add_edge(i, j)
return g
def to_anonym_walk(walk):
num_app = 0
apped = dict()
anonym = []
for node in walk:
if node not in apped:
num_app += 1
apped[node] = num_app
anonym.append(apped[node])
return anonym
def generate_node_walks_and_radius(num_nodes, node_walks):
node_anonymous_walks = [[] for i in range(num_nodes)]
node_walk_radius = [[] for i in range(num_nodes)]
for ws in range(num_nodes):
for w in node_walks[ws]: #
node_anonymous_walks[ws].append(to_anonym_walk(w))
node_walk_radius[ws].append(int(2*parser.anonym_walk_len/len(np.unique(w[:10]))))
return node_anonymous_walks, node_walk_radius
def preprocess_transition_prob(g, num_nodes):
degree_seq_dict = dict(g.degree)
degree_seq = [degree_seq_dict[i] for i in range(num_nodes)]
alias_nodes = {}
for node in g.nodes():
normalized_probs = [1/degree_seq[node] for i in range(degree_seq[node])]
alias_nodes[node] = alias_setup(normalized_probs)
alias_edges = {}
for edge in g.edges():
alias_edges[edge] = get_alias_edge(g,edge[0], edge[1])
alias_edges[(edge[1], edge[0])] = get_alias_edge(g, edge[1], edge[0])
alias_nodes = alias_nodes
alias_edges = alias_edges
return alias_nodes, alias_edges
def get_alias_edge(g,src, dst):
unnormalized_probs = []
for dst_nbr in sorted(g.neighbors(dst)):
if dst_nbr == src:
unnormalized_probs.append(1/parser.p)
elif g.has_edge(dst_nbr, src):
unnormalized_probs.append(1)
else:
unnormalized_probs.append(1/parser.q)
normalize_const = np.sum(unnormalized_probs)
normalized_probs = [prob/normalize_const for prob in unnormalized_probs]
return alias_setup(normalized_probs)
def generate_node2vec_walks(g, num_nodes,alias_nodes, alias_edges):
random_walks = []
nodes = list(range(num_nodes))
for _ in tqdm(range(parser.num_paths)):
random.shuffle(nodes)
for node in nodes:
walk = node2vec_walk(g, node,alias_nodes, alias_edges)
random_walks.append(walk)
node_walks = [[] for i in range(num_nodes)]
for w in random_walks:
node_walks[w[0]].append(w)
return node_walks, random_walks
def node2vec_walk(g, begin_node,alias_nodes, alias_edges):
walk = [begin_node]
while(len(walk) < parser.path_length):
cur = walk[-1]
cur_neighbors = get_neighbor(g, cur)
cur_neighbors = sorted(cur_neighbors)
if len(cur_neighbors):
if len(walk) == 1:
abc = alias_draw(alias_nodes[cur][0], alias_nodes[cur][1])
walk.append(cur_neighbors[abc])
else:
prev = walk[-2]
nextnode = cur_neighbors[alias_draw(alias_edges[(prev, cur)][0],
alias_edges[(prev, cur)][1])]
walk.append(nextnode)
else:
break
return walk
def get_neighbor(g, node):
neighbor = [n for n in g.neighbors(node)]
return neighbor
def alias_setup(probs):
"""
https://www.cnblogs.com/shenxiaolin/p/9097478.html
"""
K = len(probs)
q = np.zeros(K)
J = np.zeros(K).astype(int)
smaller = []
larger = []
for kk, prob in enumerate(probs):
q[kk] = K * prob
if q[kk] < 1.0:
smaller.append(kk)
else:
larger.append(kk)
while len(smaller) >0 and len(larger) > 0:
small = smaller.pop()
large = larger.pop()
J[small] = large
q[large] = q[large] + q[small] - 1.0
if q[large] < 1.0:
smaller.append(large)
else:
larger.append(large)
return J, q
def alias_draw(J, q):
K = len(J)
kk = int(np.floor(np.random.rand()*K))
if np.random.rand()<q[kk]:
return kk
else:
return J[kk]
def generate_anonym_walks(length):
anonymous_walks = []
def generate_anonymous_walk(totlen, pre):
if len(pre) == totlen:
anonymous_walks.append(pre)
return
else:
candidate = max(pre) + 1 # 2
for i in range(1, candidate+1): # 1,2
if i!= pre[-1]:
npre = copy.deepcopy(pre)
npre.append(i) # 1,2
generate_anonymous_walk(totlen, npre) # [1,2], [1,2,1],[1,2,3],[1,2,3,1],[1,2,3,2],.....
generate_anonymous_walk(length, [1])
return anonymous_walks
def generate_walk2num_dict(length):
anonym_walks = generate_anonym_walks(length)
anonym_dict = dict()
curid = 0
for walk in anonym_walks:
swalk = intlist_to_str(walk)
anonym_dict[swalk] = curid
curid += 1
return anonym_dict
def intlist_to_str(lst):
slst = [str(x) for x in lst]
strlst = "".join(slst)
return strlst
def process_anonym_distr(num_nodes, length, node_anonymous_walks):
node_anonym_walktypes = np.zeros((num_nodes, parser.num_paths))
anonym_walk_dict = generate_walk2num_dict(length)
node_anonym_distr = np.zeros((num_nodes, len(anonym_walk_dict)))
for n in range(num_nodes):
for idxw in range(len(node_anonymous_walks[n])):
w = node_anonymous_walks[n][idxw]
strw = intlist_to_str(w[:length])
wtype = anonym_walk_dict[strw]
node_anonym_walktypes[n][idxw] = wtype
node_anonym_distr[n][wtype] += 1
node_anonym_distr /= parser.num_paths
graph_anonym_distr = np.mean(node_anonym_distr, axis = 0)
graph_anonym_std = np.std(node_anonym_distr, axis = 0)
graph_anonym_std[np.where(graph_anonym_std == 0)] = 0.001
return (node_anonym_distr - graph_anonym_distr)/graph_anonym_std, node_anonym_walktypes
def generate_types_and_nodes(num_nodes, node_anonym_walktypes, node_walks, node_walk_radius):
types_and_nodes = [[] for i in range(num_nodes)]
for ws in range(num_nodes):
for _ in range(parser.num_paths * parser.num_skips):
wk = random.randint(0, parser.num_paths-1)
types_and_nodes[ws].append([node_anonym_walktypes[ws][wk].astype(int), random.choice(node_walks[ws][wk][:node_walk_radius[ws][wk]])])
types_and_nodes = np.array(types_and_nodes).astype(int)
return types_and_nodes
def get_node2label(num_nodes):
node2label = np.zeros((num_nodes))
with open("data/" + parser.dataset_name + "/node2label") as infile:
for line in infile:
elems = line.rstrip().split(" ")
node, label = int(elems[0]), int(elems[1])
node2label[node] = label
node2label = node2label.astype(int)
return node2label