-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathverify_model_checkpoint.py
46 lines (31 loc) · 1.48 KB
/
verify_model_checkpoint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
"""Verify a given checkpoint."""
import torch
import hydra
import time
import logging
import fullbatch
import os
os.environ["HYDRA_FULL_ERROR"] = "1"
log = logging.getLogger(__name__)
@hydra.main(config_path="config", config_name="cfg")
def main_launcher(cfg):
fullbatch.utils.job_startup(main_process, cfg, log, 'evaluation')
def main_process(process_idx, local_group_size, cfg):
local_time = time.time()
setup = fullbatch.utils.system_startup(process_idx, local_group_size, cfg)
trainloader, validloader = fullbatch.data.construct_dataloader(cfg.data, cfg.impl, cfg.hyp, cfg.dryrun)
model = fullbatch.models.construct_model(cfg.model, cfg.data.channels, cfg.data.classes)
model = fullbatch.models.prepare_model(model, cfg, process_idx, setup)
if cfg.impl.checkpoint.name is not None:
file = os.path.join(cfg.original_cwd, 'checkpoints', cfg.impl.checkpoint.name)
_, model_state, _, _, step = torch.load(file, map_location=setup['device'])
model.load_state_dict(model_state)
log.info(f'Loaded model checkpoint from step {step} successfully.')
else:
raise ValueError('Could not load checkpoint')
stats = fullbatch.training.evaluate(model, validloader, None, setup, cfg.impl, cfg.hyp, dryrun=cfg.dryrun)
log.info(f'VAL loss {stats["valid_loss"][-1]:7.4f} | VAL Acc: {stats["valid_acc"][-1]:7.2%} |')
if cfg.impl.setup.dist:
torch.distributed.destroy_process_group()
if __name__ == "__main__":
main_launcher()