|
| 1 | +using ApproxFun, LinearAlgebra, DualNumbers |
| 2 | +import ApproxFun: bandwidth |
| 3 | + |
| 4 | +# |
| 5 | +# Consider the following Sturm--Liouville problem with polynomial p, q, and w. |
| 6 | +# |
| 7 | +# [(-𝒟)(p𝒟) + q] u = λ w u, (u±bu')(±1) = 0. |
| 8 | +# |
| 9 | +# For which value of b, the Neumann part of the Robin boundary conditions, |
| 10 | +# is λ₀ equal to 1? |
| 11 | +# |
| 12 | +# To answer this question, we use a dual number to observe the sensitivity in λ₀ |
| 13 | +# with respect to perturbations in b. The `realpart` of the objective function |
| 14 | +# |
| 15 | +# f(λ) = λ - 1, |
| 16 | +# |
| 17 | +# extracts the difference, whereas the `dualpart` evaluates to f'(λ). |
| 18 | +# |
| 19 | + |
| 20 | +n = 100 |
| 21 | +λ = dual(0.0,0.0) |
| 22 | +b = dual(eps(), 1.0) |
| 23 | +v = zeros(Dual{Float64}, n) |
| 24 | +v[1] = 1 |
| 25 | +v .+= 0.003.*randn(Float64, n) |
| 26 | +for _ in 1:8 |
| 27 | + d = Segment(-1..1) |
| 28 | + S = Ultraspherical(0.5, d) |
| 29 | + NS = NormalizedPolynomialSpace(S) |
| 30 | + D = Derivative(S) |
| 31 | + p = Fun(x->1+x^2, S) |
| 32 | + q = Fun(x->x^3, S) |
| 33 | + L = -D*(p*D)+q |
| 34 | + w = Fun(x->1+x/4, S) |
| 35 | + M = Multiplication(w, S) |
| 36 | + C = Conversion(domainspace(L), rangespace(L)) |
| 37 | + B = [Evaluation(S, -1, 0) - b*Evaluation(S, -1, 1); Evaluation(S, 1, 0) + b*Evaluation(S, 1, 1)] |
| 38 | + QS = QuotientSpace(B) |
| 39 | + Q = Conversion(QS, S) |
| 40 | + D1 = Conversion(S, NS) |
| 41 | + D2 = Conversion(NS, S) |
| 42 | + R = D1*Q |
| 43 | + P = cache(PartialInverseOperator(C, (0, bandwidth(L, 1) + bandwidth(R, 1) + bandwidth(C, 2)))) |
| 44 | + A = R'D1*P*L*D2*R |
| 45 | + B = R'D1*M*D2*R |
| 46 | + SA = Symmetric(A[1:n,1:n], :L) |
| 47 | + SB = Symmetric(B[1:n,1:n], :L) |
| 48 | + for _ = 1:7 |
| 49 | + global λ = dot(v, SA*v)/dot(v, SB*v) |
| 50 | + ldiv!(ldlt!(SA-λ*SB), v) |
| 51 | + global v = v/norm(v) |
| 52 | + println("\tThis is λ: ", λ) |
| 53 | + end |
| 54 | + global b -= (realpart(λ)-1)/dualpart(λ) |
| 55 | + println("This is b: ", b) |
| 56 | +end |
0 commit comments