diff --git a/dev/404.html b/dev/404.html index 6f6ef44..89f408b 100644 --- a/dev/404.html +++ b/dev/404.html @@ -8,14 +8,14 @@ - +
Skip to content

404

PAGE NOT FOUND

But if you don't change your direction, and if you keep looking, you may end up where you are heading.
- + \ No newline at end of file diff --git a/dev/assets/app.B3QwzOrq.js b/dev/assets/app.1eOZa5Hk.js similarity index 68% rename from dev/assets/app.B3QwzOrq.js rename to dev/assets/app.1eOZa5Hk.js index 565f828..37ac48c 100644 --- a/dev/assets/app.B3QwzOrq.js +++ b/dev/assets/app.1eOZa5Hk.js @@ -1,7 +1 @@ -function __vite__mapDeps(indexes) { - if (!__vite__mapDeps.viteFileDeps) { - __vite__mapDeps.viteFileDeps = [] - } - return indexes.map((i) => __vite__mapDeps.viteFileDeps[i]) -} -import{j as o,a8 as p,a9 as u,aa as l,ab as c,ac as f,ad as d,ae as m,af as h,ag as g,ah as A,Y as P,d as _,u as v,l as R,z as w,ai as y,aj as C,ak as E,a6 as b}from"./chunks/framework.RTxADYK2.js";import{R as T}from"./chunks/theme.CyrMDs54.js";function i(e){if(e.extends){const a=i(e.extends);return{...a,...e,async enhanceApp(t){a.enhanceApp&&await a.enhanceApp(t),e.enhanceApp&&await e.enhanceApp(t)}}}return e}const s=i(T),S=_({name:"VitePressApp",setup(){const{site:e,lang:a,dir:t}=v();return R(()=>{w(()=>{document.documentElement.lang=a.value,document.documentElement.dir=t.value})}),e.value.router.prefetchLinks&&y(),C(),E(),s.setup&&s.setup(),()=>b(s.Layout)}});async function j(){globalThis.__VITEPRESS__=!0;const e=L(),a=D();a.provide(u,e);const t=l(e.route);return a.provide(c,t),a.component("Content",f),a.component("ClientOnly",d),Object.defineProperties(a.config.globalProperties,{$frontmatter:{get(){return t.frontmatter.value}},$params:{get(){return t.page.value.params}}}),s.enhanceApp&&await s.enhanceApp({app:a,router:e,siteData:m}),{app:a,router:e,data:t}}function D(){return h(S)}function L(){let e=o,a;return g(t=>{let n=A(t),r=null;return n&&(e&&(a=n),(e||a===n)&&(n=n.replace(/\.js$/,".lean.js")),r=P(()=>import(n),__vite__mapDeps([]))),o&&(e=!1),r},s.NotFound)}o&&j().then(({app:e,router:a,data:t})=>{a.go().then(()=>{p(a.route,t.site),e.mount("#app")})});export{j as createApp}; +import{j as o,a8 as p,a9 as u,aa as l,ab as c,ac as f,ad as d,ae as m,af as h,ag as g,ah as A,Y as P,d as _,u as v,l as R,z as w,ai as y,aj as C,ak as E,a6 as b}from"./chunks/framework.aA95Gx5L.js";import{R as T}from"./chunks/theme.CIqXObSN.js";function i(e){if(e.extends){const a=i(e.extends);return{...a,...e,async enhanceApp(t){a.enhanceApp&&await a.enhanceApp(t),e.enhanceApp&&await e.enhanceApp(t)}}}return e}const s=i(T),S=_({name:"VitePressApp",setup(){const{site:e,lang:a,dir:t}=v();return R(()=>{w(()=>{document.documentElement.lang=a.value,document.documentElement.dir=t.value})}),e.value.router.prefetchLinks&&y(),C(),E(),s.setup&&s.setup(),()=>b(s.Layout)}});async function j(){globalThis.__VITEPRESS__=!0;const e=L(),a=D();a.provide(u,e);const t=l(e.route);return a.provide(c,t),a.component("Content",f),a.component("ClientOnly",d),Object.defineProperties(a.config.globalProperties,{$frontmatter:{get(){return t.frontmatter.value}},$params:{get(){return t.page.value.params}}}),s.enhanceApp&&await s.enhanceApp({app:a,router:e,siteData:m}),{app:a,router:e,data:t}}function D(){return h(S)}function L(){let e=o,a;return g(t=>{let n=A(t),r=null;return n&&(e&&(a=n),(e||a===n)&&(n=n.replace(/\.js$/,".lean.js")),r=P(()=>import(n),[])),o&&(e=!1),r},s.NotFound)}o&&j().then(({app:e,router:a,data:t})=>{a.go().then(()=>{p(a.route,t.site),e.mount("#app")})});export{j as createApp}; diff --git a/dev/assets/chunks/@localSearchIndexroot.C2gAf8Gk.js b/dev/assets/chunks/@localSearchIndexroot.C2gAf8Gk.js deleted file mode 100644 index a258e66..0000000 --- a/dev/assets/chunks/@localSearchIndexroot.C2gAf8Gk.js +++ /dev/null @@ -1 +0,0 @@ -const i='{"documentCount":128,"nextId":128,"documentIds":{"0":"/dev/constraints/comparison_constraints#Constraints.jl:-Streamlining-Constraint-Definition-and-Integration-in-Julia","1":"/dev/constraints/comparison_constraints#Comparison-based-Constraints","2":"/dev/constraints/connection_constraints#Constraints.jl:-Streamlining-Constraint-Definition-and-Integration-in-Julia","3":"/dev/constraints/connection_constraints#Connection-Constraints","4":"/dev/constraints/constraint_commons#ConstraintCommons.jl","5":"/dev/constraints/constraint_commons#Key-Features-and-Functionalities","6":"/dev/constraints/constraint_commons#Parameters","7":"/dev/constraints/constraint_commons#Performances-–-TODO","8":"/dev/constraints/constraint_commons#Languages","9":"/dev/constraints/constraint_commons#Performances-–-TODO-2","10":"/dev/constraints/constraint_commons#Extensions","11":"/dev/constraints/constraint_commons#Performances-–-TODO-3","12":"/dev/constraints/constraint_commons#Sampling","13":"/dev/constraints/constraint_commons#Performances-–-TODO-4","14":"/dev/constraints/constraint_commons#Extrema","15":"/dev/constraints/constraint_commons#Performances-–-TODO-5","16":"/dev/constraints/constraint_commons#Dictionaries","17":"/dev/constraints/constraint_commons#Performances-–-TODO-6","18":"/dev/constraints/constraint_domains#ConstraintDomains.jl:-Defining-and-Exploring-Variable-Domains-within-JuliaConstraints","19":"/dev/constraints/constraint_domains#Key-Features-and-Functionalities","20":"/dev/constraints/constraint_domains#Empowering-Constraint-Programming-in-Julia","21":"/dev/constraints/constraint_domains#Commons","22":"/dev/constraints/constraint_domains#Extension-to-Base-module","23":"/dev/constraints/constraint_domains#Performances","24":"/dev/constraints/constraint_domains#Continuous","25":"/dev/constraints/constraint_domains#Extension-to-Base-module-2","26":"/dev/constraints/constraint_domains#Discrete","27":"/dev/constraints/constraint_domains#Extension-to-Base-module-3","28":"/dev/constraints/constraint_domains#General","29":"/dev/constraints/constraint_domains#Exploration","30":"/dev/constraints/constraint_domains#Parameters","31":"/dev/constraints/constraint_models#ConstraintModels.jl","32":"/dev/constraints/constraints#Constraints.jl:-Streamlining-Constraint-Definition-and-Integration-in-Julia","33":"/dev/constraints/constraints#Key-Features-and-Functionalities","34":"/dev/constraints/constraints#Enabling-Advanced-Modeling-in-Constraint-Programming","35":"/dev/constraints/constraints#Basic-tools","36":"/dev/constraints/constraints#Usual-constraints-(based-on-and-including-XCSP3-core-categories)","37":"/dev/constraints/counting_summing_constraints#Constraints.jl:-Streamlining-Constraint-Definition-and-Integration-in-Julia","38":"/dev/constraints/counting_summing_constraints#Counting-and-Summing-Constraints","39":"/dev/constraints/elementary_constraints#Constraints.jl:-Streamlining-Constraint-Definition-and-Integration-in-Julia","40":"/dev/constraints/elementary_constraints#Elementary-Constraints","41":"/dev/constraints/generic_constraints#Generic-Constraints","42":"/dev/constraints/generic_constraints#Intention-Constraints","43":"/dev/constraints/generic_constraints#Defining-an-intention-constraint-in-JC-API","44":"/dev/constraints/generic_constraints#APIs","45":"/dev/constraints/generic_constraints#Test-for-DocumenterVitePress-Issue","46":"/dev/constraints/generic_constraints#Specific-documentation","47":"/dev/constraints/generic_constraints#Extension-Constraints","48":"/dev/constraints/graph_constraints#Constraints.jl:-Streamlining-Constraint-Definition-and-Integration-in-Julia","49":"/dev/constraints/graph_constraints#Constraints-on-Graphs","50":"/dev/constraints/intro#Introduction-to-basics-cosntraints-related-tools","51":"/dev/constraints/language_constraints#Constraints.jl:-Streamlining-Constraint-Definition-and-Integration-in-Julia","52":"/dev/constraints/language_constraints#Constraints-defined-from-Languages","53":"/dev/cp/advanced#Advanced-Constraint-Programming-Techniques","54":"/dev/cp/advanced#Global-Constraints-and-Their-Uses","55":"/dev/cp/advanced#Search-Strategies-and-Optimization","56":"/dev/constraints/packing_scheduling_constraints#Constraints.jl:-Streamlining-Constraint-Definition-and-Integration-in-Julia","57":"/dev/constraints/packing_scheduling_constraints#Packing-and-Scheduling-Constraints","58":"/dev/cp/applications#Applying-Optimization-Methods","59":"/dev/cp/applications#Case-Studies-and-Real-World-Applications","60":"/dev/cp/applications#From-Theory-to-Practice","61":"/dev/cp/contribution#Community-and-Contribution","62":"/dev/cp/contribution#Joining-the-JuliaConstraint-Community","63":"/dev/cp/contribution#Future-Directions","64":"/dev/cp/ecosystem#Exploring-JuliaConstraint-Packages","65":"/dev/cp/ecosystem#Package-Overviews","66":"/dev/cp/ecosystem#Installation-and-Getting-Started-Guides","67":"/dev/cp/cp101#Constraint-Programming-101","68":"/dev/cp/cp101#What-is-Constraint-Programming?","69":"/dev/cp/cp101#Basic-Concepts-and-Terminology","70":"/dev/cp/cp101#How-CP-differs-from-other-optimization-techniques","71":"/dev/cp/getting_started#Getting-Started-with-Julia-for-CP-and-Optimization","72":"/dev/cp/getting_started#Why-Julia?","73":"/dev/cp/getting_started#Setting-Up-Your-Julia-Environment","74":"/dev/cp/getting_started#Your-First-Julia-CP-Model","75":"/dev/cp/intro#Welcome-to-Julia-Constraints","76":"/dev/cp/models#Building-and-Analyzing-Models","77":"/dev/cp/models#Modeling-Best-Practices","78":"/dev/cp/models#Performance-Analysis-and-Improvement","79":"/dev/cp/opt#Dive-into-Optimization","80":"/dev/cp/opt#Understanding-Optimization","81":"/dev/cp/opt#Metaheuristics-Overview","82":"/dev/cp/opt#Mathematical-Programming-Basics","83":"/dev/cp/tuto_xp#Tutorials-and-Experiments","84":"/dev/cp/tuto_xp#Hands-On-Tutorials","85":"/dev/cp/tuto_xp#Experimental-Analysis","86":"/dev/index-old#JuliaConstraints","87":"/dev/index-old#Operational-Research-vs-Constraint-Programming","88":"/dev/index-old#Constraint-Based-Local-Search","89":"/dev/full_api#Full-API","90":"/dev/learning/aggregation#Aggregation-Layer","91":"/dev/learning/aggregation#List-of-aggregations","92":"/dev/learning/aggregation#Layer-generation","93":"/dev/learning/arithmetic#Arithmetic-Layer","94":"/dev/learning/arithmetic#List-of-arithmetic-operations","95":"/dev/learning/arithmetic#Layer-generation","96":"/dev/learning/comparison#Comparison-Layer","97":"/dev/learning/comparison#List-of-comparisons","98":"/dev/learning/comparison#Non-parametric","99":"/dev/learning/comparison#Param:-:val","100":"/dev/learning/comparison#Layer-generation","101":"/dev/learning/compositional_networks#CompositionalNetworks.jl","102":"/dev/learning/compositional_networks#Utilities","103":"/dev/learning/compositional_networks#Metrics","104":"/dev/learning/constraint_learning#ConstraintLearning.jl","105":"/dev/learning/intro#Learning-about-Constraints","106":"/dev/learning/layers#A-layer-structure-for-any-ICN","107":"/dev/learning/qubo_constraints#Introduction-to-QUBOConstraints.jl","108":"/dev/learning/qubo_constraints#Basic-features","109":"/dev/learning/qubo_encoding#Encoding-for-QUBO-programs","110":"/dev/learning/qubo_learning#Learning-QUBO-matrices","111":"/dev/learning/qubo_learning#Interface","112":"/dev/learning/qubo_learning#Examples-with-various-optimizers","113":"/dev/learning/qubo_learning#Gradient-Descent","114":"/dev/learning/qubo_learning#Constraint-based-Local-Search","115":"/dev/learning/transformation#Transformations-Layer","116":"/dev/learning/transformation#List-of-transformations","117":"/dev/learning/transformation#Non-parametric","118":"/dev/learning/transformation#Param:-:val","119":"/dev/learning/transformation#Layer-generation","120":"/dev/meta/meta_strategist#MetaStrategist.jl","121":"/dev/perf/benchmark_ext#BenchmarkTools-Extension","122":"/dev/perf/perf_checker#PerfChecker.jl","123":"/dev/perf/perf_interface#Interfacing-PerfChecker","124":"/dev/solvers/intro#Solvers","125":"/dev/public_api#Public-API","126":"/dev/solvers/cbls#CBLS.jl","127":"/dev/solvers/local_search_solvers#LocalSearchSolvers.jl"},"fieldIds":{"title":0,"titles":1,"text":2},"fieldLength":{"0":[9,1,1],"1":[3,10,75],"2":[9,1,1],"3":[2,10,98],"4":[2,1,46],"5":[4,2,162],"6":[1,2,80],"7":[2,3,1],"8":[1,2,93],"9":[2,3,1],"10":[1,2,41],"11":[2,3,1],"12":[1,2,42],"13":[2,3,1],"14":[1,2,31],"15":[2,3,1],"16":[1,2,36],"17":[2,3,1],"18":[9,1,42],"19":[4,9,167],"20":[5,9,54],"21":[1,9,136],"22":[4,10,92],"23":[1,10,1],"24":[1,9,127],"25":[4,10,99],"26":[1,9,138],"27":[4,10,103],"28":[1,9,19],"29":[1,9,96],"30":[1,9,115],"31":[2,1,297],"32":[9,1,39],"33":[4,9,169],"34":[6,9,56],"35":[2,9,184],"36":[10,9,207],"37":[9,1,1],"38":[4,10,134],"39":[9,1,1],"40":[2,10,57],"41":[2,1,17],"42":[2,2,77],"43":[7,3,69],"44":[1,3,75],"45":[4,3,13],"46":[2,3,77],"47":[2,2,55],"48":[9,1,1],"49":[3,10,71],"50":[6,1,3],"51":[9,1,1],"52":[4,10,126],"53":[4,1,1],"54":[5,4,12],"55":[4,4,12],"56":[9,1,1],"57":[4,10,106],"58":[3,1,1],"59":[6,3,11],"60":[4,3,18],"61":[3,1,1],"62":[4,3,14],"63":[2,3,13],"64":[3,1,1],"65":[2,3,13],"66":[5,1,13],"67":[3,1,1],"68":[5,3,10],"69":[4,3,10],"70":[7,3,10],"71":[8,1,1],"72":[3,8,16],"73":[5,8,12],"74":[5,8,14],"75":[4,1,35],"76":[4,1,1],"77":[3,4,12],"78":[4,4,11],"79":[3,1,1],"80":[2,3,12],"81":[2,3,11],"82":[3,3,12],"83":[3,1,1],"84":[3,3,11],"85":[2,3,15],"86":[1,1,122],"87":[5,2,93],"88":[4,2,80],"89":[2,1,1149],"90":[2,1,11],"91":[3,2,26],"92":[2,2,26],"93":[2,1,11],"94":[4,2,22],"95":[2,2,25],"96":[2,1,11],"97":[3,2,10],"98":[2,5,54],"99":[2,5,37],"100":[2,5,49],"101":[2,1,5],"102":[1,2,93],"103":[1,2,49],"104":[2,1,232],"105":[3,1,6],"106":[6,1,139],"107":[4,1,5],"108":[2,4,35],"109":[4,1,64],"110":[3,1,1],"111":[1,3,31],"112":[4,3,1],"113":[2,7,102],"114":[4,7,1],"115":[2,1,30],"116":[3,2,10],"117":[2,5,66],"118":[2,5,58],"119":[2,5,157],"120":[2,1,5],"121":[2,1,26],"122":[2,1,64],"123":[2,1,18],"124":[1,1,3],"125":[2,1,590],"126":[2,1,251],"127":[2,1,506]},"averageFieldLength":[3.328125,3.6249999999999982,64.984375],"storedFields":{"0":{"title":"Constraints.jl: Streamlining Constraint Definition and Integration in Julia","titles":[]},"1":{"title":"Comparison-based Constraints","titles":["Constraints.jl: Streamlining Constraint Definition and Integration in Julia",null]},"2":{"title":"Constraints.jl: Streamlining Constraint Definition and Integration in Julia","titles":[]},"3":{"title":"Connection Constraints","titles":["Constraints.jl: Streamlining Constraint Definition and Integration in Julia",null]},"4":{"title":"ConstraintCommons.jl","titles":[]},"5":{"title":"Key Features and Functionalities","titles":["ConstraintCommons.jl"]},"6":{"title":"Parameters","titles":["ConstraintCommons.jl"]},"7":{"title":"Performances – TODO","titles":["ConstraintCommons.jl","Parameters"]},"8":{"title":"Languages","titles":["ConstraintCommons.jl"]},"9":{"title":"Performances – TODO","titles":["ConstraintCommons.jl","Languages"]},"10":{"title":"Extensions","titles":["ConstraintCommons.jl"]},"11":{"title":"Performances – TODO","titles":["ConstraintCommons.jl","Extensions"]},"12":{"title":"Sampling","titles":["ConstraintCommons.jl"]},"13":{"title":"Performances – TODO","titles":["ConstraintCommons.jl","Sampling"]},"14":{"title":"Extrema","titles":["ConstraintCommons.jl"]},"15":{"title":"Performances – TODO","titles":["ConstraintCommons.jl","Extrema"]},"16":{"title":"Dictionaries","titles":["ConstraintCommons.jl"]},"17":{"title":"Performances – TODO","titles":["ConstraintCommons.jl","Dictionaries"]},"18":{"title":"ConstraintDomains.jl: Defining and Exploring Variable Domains within JuliaConstraints","titles":[]},"19":{"title":"Key Features and Functionalities","titles":["ConstraintDomains.jl: Defining and Exploring Variable Domains within JuliaConstraints"]},"20":{"title":"Empowering Constraint Programming in Julia","titles":["ConstraintDomains.jl: Defining and Exploring Variable Domains within JuliaConstraints"]},"21":{"title":"Commons","titles":["ConstraintDomains.jl: Defining and Exploring Variable Domains within JuliaConstraints"]},"22":{"title":"Extension to Base module","titles":["ConstraintDomains.jl: Defining and Exploring Variable Domains within JuliaConstraints","Commons"]},"23":{"title":"Performances","titles":["ConstraintDomains.jl: Defining and Exploring Variable Domains within JuliaConstraints","Commons"]},"24":{"title":"Continuous","titles":["ConstraintDomains.jl: Defining and Exploring Variable Domains within JuliaConstraints"]},"25":{"title":"Extension to Base module","titles":["ConstraintDomains.jl: Defining and Exploring Variable Domains within JuliaConstraints","Continuous"]},"26":{"title":"Discrete","titles":["ConstraintDomains.jl: Defining and Exploring Variable Domains within JuliaConstraints"]},"27":{"title":"Extension to Base module","titles":["ConstraintDomains.jl: Defining and Exploring Variable Domains within JuliaConstraints","Discrete"]},"28":{"title":"General","titles":["ConstraintDomains.jl: Defining and Exploring Variable Domains within JuliaConstraints"]},"29":{"title":"Exploration","titles":["ConstraintDomains.jl: Defining and Exploring Variable Domains within JuliaConstraints"]},"30":{"title":"Parameters","titles":["ConstraintDomains.jl: Defining and Exploring Variable Domains within JuliaConstraints"]},"31":{"title":"ConstraintModels.jl","titles":[]},"32":{"title":"Constraints.jl: Streamlining Constraint Definition and Integration in Julia","titles":[]},"33":{"title":"Key Features and Functionalities","titles":["Constraints.jl: Streamlining Constraint Definition and Integration in Julia"]},"34":{"title":"Enabling Advanced Modeling in Constraint Programming","titles":["Constraints.jl: Streamlining Constraint Definition and Integration in Julia"]},"35":{"title":"Basic tools","titles":["Constraints.jl: Streamlining Constraint Definition and Integration in Julia"]},"36":{"title":"Usual constraints (based on and including XCSP3-core categories)","titles":["Constraints.jl: Streamlining Constraint Definition and Integration in Julia"]},"37":{"title":"Constraints.jl: Streamlining Constraint Definition and Integration in Julia","titles":[]},"38":{"title":"Counting and Summing Constraints","titles":["Constraints.jl: Streamlining Constraint Definition and Integration in Julia",null]},"39":{"title":"Constraints.jl: Streamlining Constraint Definition and Integration in Julia","titles":[]},"40":{"title":"Elementary Constraints","titles":["Constraints.jl: Streamlining Constraint Definition and Integration in Julia",null]},"41":{"title":"Generic Constraints","titles":[]},"42":{"title":"Intention Constraints","titles":["Generic Constraints"]},"43":{"title":"Defining an intention constraint in JC-API","titles":["Generic Constraints","Intention Constraints"]},"44":{"title":"APIs","titles":["Generic Constraints","Intention Constraints"]},"45":{"title":"Test for DocumenterVitePress Issue","titles":["Generic Constraints","Intention Constraints"]},"46":{"title":"Specific documentation","titles":["Generic Constraints","Intention Constraints"]},"47":{"title":"Extension Constraints","titles":["Generic Constraints"]},"48":{"title":"Constraints.jl: Streamlining Constraint Definition and Integration in Julia","titles":[]},"49":{"title":"Constraints on Graphs","titles":["Constraints.jl: Streamlining Constraint Definition and Integration in Julia",null]},"50":{"title":"Introduction to basics cosntraints related tools","titles":[]},"51":{"title":"Constraints.jl: Streamlining Constraint Definition and Integration in Julia","titles":[]},"52":{"title":"Constraints defined from Languages","titles":["Constraints.jl: Streamlining Constraint Definition and Integration in Julia",null]},"53":{"title":"Advanced Constraint Programming Techniques","titles":[]},"54":{"title":"Global Constraints and Their Uses","titles":["Advanced Constraint Programming Techniques"]},"55":{"title":"Search Strategies and Optimization","titles":["Advanced Constraint Programming Techniques"]},"56":{"title":"Constraints.jl: Streamlining Constraint Definition and Integration in Julia","titles":[]},"57":{"title":"Packing and Scheduling Constraints","titles":["Constraints.jl: Streamlining Constraint Definition and Integration in Julia",null]},"58":{"title":"Applying Optimization Methods","titles":[]},"59":{"title":"Case Studies and Real-World Applications","titles":["Applying Optimization Methods"]},"60":{"title":"From Theory to Practice","titles":["Applying Optimization Methods"]},"61":{"title":"Community and Contribution","titles":[]},"62":{"title":"Joining the JuliaConstraint Community","titles":["Community and Contribution"]},"63":{"title":"Future Directions","titles":["Community and Contribution"]},"64":{"title":"Exploring JuliaConstraint Packages","titles":[]},"65":{"title":"Package Overviews","titles":["Exploring JuliaConstraint Packages"]},"66":{"title":"Installation and Getting Started Guides","titles":[]},"67":{"title":"Constraint Programming 101","titles":[]},"68":{"title":"What is Constraint Programming?","titles":["Constraint Programming 101"]},"69":{"title":"Basic Concepts and Terminology","titles":["Constraint Programming 101"]},"70":{"title":"How CP differs from other optimization techniques","titles":["Constraint Programming 101"]},"71":{"title":"Getting Started with Julia for CP and Optimization","titles":[]},"72":{"title":"Why Julia?","titles":["Getting Started with Julia for CP and Optimization"]},"73":{"title":"Setting Up Your Julia Environment","titles":["Getting Started with Julia for CP and Optimization"]},"74":{"title":"Your First Julia CP Model","titles":["Getting Started with Julia for CP and Optimization"]},"75":{"title":"Welcome to Julia Constraints","titles":[]},"76":{"title":"Building and Analyzing Models","titles":[]},"77":{"title":"Modeling Best Practices","titles":["Building and Analyzing Models"]},"78":{"title":"Performance Analysis and Improvement","titles":["Building and Analyzing Models"]},"79":{"title":"Dive into Optimization","titles":[]},"80":{"title":"Understanding Optimization","titles":["Dive into Optimization"]},"81":{"title":"Metaheuristics Overview","titles":["Dive into Optimization"]},"82":{"title":"Mathematical Programming Basics","titles":["Dive into Optimization"]},"83":{"title":"Tutorials and Experiments","titles":[]},"84":{"title":"Hands-On Tutorials","titles":["Tutorials and Experiments"]},"85":{"title":"Experimental Analysis","titles":["Tutorials and Experiments"]},"86":{"title":"JuliaConstraints","titles":[null]},"87":{"title":"Operational Research vs Constraint Programming","titles":[null,"JuliaConstraints"]},"88":{"title":"Constraint-Based Local Search","titles":[null,"JuliaConstraints"]},"89":{"title":"Full API","titles":[]},"90":{"title":"Aggregation Layer","titles":[]},"91":{"title":"List of aggregations","titles":["Aggregation Layer"]},"92":{"title":"Layer generation","titles":["Aggregation Layer"]},"93":{"title":"Arithmetic Layer","titles":[]},"94":{"title":"List of arithmetic operations","titles":["Arithmetic Layer"]},"95":{"title":"Layer generation","titles":["Arithmetic Layer"]},"96":{"title":"Comparison Layer","titles":[]},"97":{"title":"List of comparisons","titles":["Comparison Layer"]},"98":{"title":"Non-parametric","titles":["Comparison Layer","List of comparisons"]},"99":{"title":"Param: :val","titles":["Comparison Layer","List of comparisons"]},"100":{"title":"Layer generation","titles":["Comparison Layer","List of comparisons"]},"101":{"title":"CompositionalNetworks.jl","titles":[]},"102":{"title":"Utilities","titles":["CompositionalNetworks.jl"]},"103":{"title":"Metrics","titles":["CompositionalNetworks.jl"]},"104":{"title":"ConstraintLearning.jl","titles":[]},"105":{"title":"Learning about Constraints","titles":[]},"106":{"title":"A layer structure for any ICN","titles":[]},"107":{"title":"Introduction to QUBOConstraints.jl","titles":[]},"108":{"title":"Basic features","titles":["Introduction to QUBOConstraints.jl"]},"109":{"title":"Encoding for QUBO programs","titles":[]},"110":{"title":"Learning QUBO matrices","titles":[]},"111":{"title":"Interface","titles":["Learning QUBO matrices"]},"112":{"title":"Examples with various optimizers","titles":["Learning QUBO matrices"]},"113":{"title":"Gradient Descent","titles":["Learning QUBO matrices","Examples with various optimizers"]},"114":{"title":"Constraint-based Local Search","titles":["Learning QUBO matrices","Examples with various optimizers"]},"115":{"title":"Transformations Layer","titles":[]},"116":{"title":"List of transformations","titles":["Transformations Layer"]},"117":{"title":"Non-parametric","titles":["Transformations Layer","List of transformations"]},"118":{"title":"Param: :val","titles":["Transformations Layer","List of transformations"]},"119":{"title":"Layer generation","titles":["Transformations Layer","List of transformations"]},"120":{"title":"MetaStrategist.jl","titles":[]},"121":{"title":"BenchmarkTools Extension","titles":[]},"122":{"title":"PerfChecker.jl","titles":[]},"123":{"title":"Interfacing PerfChecker","titles":[]},"124":{"title":"Solvers","titles":[]},"125":{"title":"Public API","titles":[]},"126":{"title":"CBLS.jl","titles":[]},"127":{"title":"LocalSearchSolvers.jl","titles":[]}},"dirtCount":0,"index":[["θ",{"2":{"113":2}}],["≥",{"2":{"113":1}}],["^2",{"2":{"113":1}}],["η",{"2":{"104":1,"113":6}}],["σ",{"2":{"89":2,"108":2,"125":2}}],["∉",{"2":{"89":3}}],["+",{"2":{"46":2,"86":1,"89":9,"91":1,"117":2,"118":4}}],[">",{"2":{"44":2,"49":1,"89":1,"113":8}}],["≠",{"2":{"43":1,"44":1,"126":2}}],["|",{"2":{"126":4}}],["||",{"2":{"89":2}}],["|the",{"2":{"43":1}}],["|≠|x",{"2":{"43":1}}],["|x",{"2":{"43":1,"126":4}}],["−x",{"2":{"43":2}}],["yes",{"2":{"127":1}}],["yet",{"2":{"19":1,"21":1,"24":1,"31":1,"33":1,"89":2}}],["you",{"2":{"86":1}}],["your",{"0":{"73":1,"74":1}}],["y",{"2":{"42":2,"44":5,"47":1,"86":1,"104":4,"113":7,"127":2}}],["y=1",{"2":{"36":1,"89":1}}],["7",{"2":{"31":3,"38":2,"57":3,"89":5,"122":1}}],["`function",{"2":{"127":1}}],["`struct",{"2":{"127":1}}],["``",{"2":{"126":6}}],["`",{"2":{"52":1,"89":1,"104":1}}],["`automaton`",{"2":{"52":1,"89":1}}],["`x`",{"2":{"52":2,"89":2}}],["`grid`",{"2":{"31":1}}],["`m`",{"2":{"31":1}}],["`rangedomain``",{"2":{"21":1,"24":1,"26":1,"89":1,"125":1}}],["q",{"2":{"104":7,"113":18}}],["qap",{"2":{"31":1}}],["qubooptimizer",{"2":{"104":2}}],["qubogradientoptimizer",{"2":{"104":4}}],["qubo",{"0":{"109":1,"110":1},"1":{"111":1,"112":1,"113":1,"114":1},"2":{"89":5,"104":4,"108":4,"111":1,"125":2}}],["quboconstraints",{"0":{"107":1},"1":{"108":1},"2":{"5":1,"89":7,"104":1,"107":1,"108":2,"109":3,"111":2,"113":1,"125":5}}],["quot",{"2":{"35":6,"57":4,"86":4,"89":10}}],["quadractic",{"2":{"31":1}}],["queens",{"2":{"31":6}}],["zeros",{"2":{"113":3}}],["zero",{"2":{"31":1,"57":11,"89":11}}],["≤",{"2":{"22":4,"25":4,"27":4,"57":1,"89":5}}],["9×9",{"2":{"31":4}}],["9",{"2":{"21":1,"24":1,"26":1,"31":4,"89":1,"122":1,"125":1}}],["8",{"2":{"31":3,"38":5,"57":1,"89":6}}],["86",{"2":{"21":1,"24":1,"26":1,"89":1,"125":1}}],["89",{"2":{"21":2,"24":2,"26":2,"89":2,"125":2,"127":1}}],["δ",{"2":{"14":1,"89":1,"104":1,"113":1,"125":1}}],["heavily",{"2":{"115":1}}],["heuristic",{"2":{"88":2}}],["helps",{"2":{"86":1}}],["help",{"2":{"86":2,"87":1}}],["heights",{"2":{"57":5,"89":5}}],["here",{"2":{"36":1,"44":1,"89":1}}],["highly",{"2":{"106":1}}],["highlight",{"2":{"75":1}}],["highlighting",{"2":{"62":1,"72":1}}],["high",{"2":{"86":1}}],["higher",{"2":{"42":1,"44":1}}],["highest",{"2":{"21":1,"24":1,"26":1,"89":1,"125":1,"127":1}}],["hide",{"2":{"46":2,"89":2}}],["https",{"2":{"36":1,"89":1,"125":1}}],["hot",{"2":{"89":3,"109":3,"113":1,"125":3}}],["hosts",{"2":{"86":1}}],["how",{"0":{"70":1},"2":{"33":1,"42":1,"43":1,"44":2,"54":1,"62":1,"78":1,"85":1,"97":1,"116":1}}],["holds",{"2":{"86":1}}],["hold",{"2":{"3":4,"89":4,"104":1}}],["hamming",{"2":{"89":4,"103":2,"104":3,"125":4}}],["hand",{"2":{"87":1}}],["hands",{"0":{"84":1}}],["handling",{"2":{"32":1,"33":2}}],["handled",{"2":{"24":1,"89":1}}],["handle",{"2":{"21":1,"44":2,"89":1,"127":2}}],["handles",{"2":{"19":1}}],["have",{"2":{"31":2,"36":1,"46":1,"59":1,"88":1,"89":6,"102":2,"125":4}}],["half",{"2":{"29":1,"89":1,"125":1}}],["has",{"2":{"12":1,"36":3,"89":6,"106":1,"109":1,"121":1,"125":2,"127":10}}],["∈",{"2":{"10":1,"19":1,"21":1,"22":8,"25":8,"27":8,"89":9,"125":1,"127":3}}],["keep",{"2":{"89":1,"108":1}}],["keywords",{"2":{"89":1,"125":1}}],["keyword",{"2":{"35":2,"36":8,"89":9,"125":1,"127":1}}],["key",{"0":{"5":1,"19":1,"33":1},"2":{"36":2,"69":1,"89":2}}],["k",{"2":{"89":2,"94":2,"127":1}}],["known",{"2":{"31":1,"38":3,"89":5,"125":2,"127":1}}],["kind=",{"2":{"127":1}}],["kind",{"2":{"14":1,"29":1,"30":1,"89":2,"125":1,"127":6}}],["kinds",{"2":{"8":1}}],["kargs",{"2":{"6":1,"35":6,"36":5,"89":7,"104":6,"125":5}}],["write",{"2":{"86":1,"89":2,"125":2}}],["wrappers",{"2":{"86":1}}],["wrapping",{"2":{"86":1}}],["was",{"2":{"123":1,"127":1}}],["way",{"2":{"36":1,"42":1,"44":1,"47":1,"89":3}}],["warning",{"2":{"31":2,"35":1,"89":1}}],["would",{"2":{"36":1,"89":1}}],["worse",{"2":{"127":3}}],["world",{"0":{"59":1},"2":{"60":1,"75":1}}],["works",{"2":{"35":1,"89":1,"125":1}}],["work",{"2":{"33":2}}],["working",{"2":{"32":1,"34":1}}],["workflows",{"2":{"5":1}}],["workflow",{"2":{"5":1}}],["word",{"2":{"8":6,"30":2,"52":2,"89":8,"125":1}}],["why",{"0":{"72":1}}],["what",{"0":{"68":1},"2":{"36":1,"75":1,"89":1}}],["whole",{"2":{"35":1,"89":1,"125":1,"127":1}}],["which",{"2":{"22":1,"31":8,"36":1,"52":2,"89":6,"102":1,"106":1,"125":1}}],["while",{"2":{"19":1,"87":2,"88":1,"127":5}}],["whether",{"2":{"20":1,"34":1,"35":1,"36":1,"38":1,"57":1,"89":4}}],["where",{"2":{"19":1,"21":5,"22":5,"24":5,"25":4,"26":5,"27":4,"30":2,"31":1,"38":1,"46":1,"49":2,"52":1,"59":1,"87":1,"88":2,"89":18,"98":2,"113":1,"125":6,"126":2,"127":69}}],["when",{"2":{"10":2,"22":2,"25":1,"27":1,"31":1,"89":21,"104":2,"117":10,"118":6,"119":2,"126":1,"127":2}}],["welcome",{"0":{"75":1}}],["weigthing",{"2":{"104":1}}],["weigth",{"2":{"89":1,"125":1}}],["weigthed",{"2":{"89":1,"99":1}}],["weigths=nothing",{"2":{"89":1,"125":1}}],["weigths",{"2":{"31":1,"89":18,"103":1,"104":5,"106":10,"125":8}}],["weight",{"2":{"31":1,"89":1,"108":1}}],["weights",{"2":{"31":3}}],["we",{"2":{"10":1,"12":1,"14":1,"16":1,"42":1,"43":1,"44":1,"126":1}}],["w",{"2":{"8":2,"30":2,"89":4,"104":2,"106":2,"125":2}}],["width",{"2":{"36":2,"89":2,"125":2}}],["width=150",{"2":{"36":1,"89":1,"125":1}}],["wide",{"2":{"33":1,"52":1,"89":1}}],["wikipedia",{"2":{"31":2}}],["will",{"2":{"6":1,"29":1,"36":1,"89":9,"92":1,"95":1,"100":1,"104":1,"106":1,"109":1,"121":1,"123":1,"125":8,"126":2}}],["with",{"0":{"71":1,"112":1},"1":{"72":1,"73":1,"74":1,"113":1,"114":1},"2":{"5":3,"8":1,"19":1,"24":1,"30":1,"31":9,"33":4,"34":1,"35":7,"36":7,"52":4,"57":3,"66":1,"70":1,"86":3,"87":3,"88":1,"89":56,"98":1,"99":1,"100":1,"102":2,"103":1,"104":3,"106":4,"117":10,"118":6,"119":3,"121":1,"125":10,"126":2,"127":8}}],["without",{"2":{"5":1,"89":17,"117":10,"118":6}}],["within",{"0":{"18":1},"1":{"19":1,"20":1,"21":1,"22":1,"23":1,"24":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1},"2":{"4":1,"18":1,"19":1,"32":1,"33":3,"52":2,"65":1,"89":8,"90":1,"93":1,"96":1,"115":1,"127":1}}],["right",{"2":{"89":18,"117":15,"119":3}}],["rich",{"2":{"20":1}}],["rules",{"2":{"52":2,"89":2}}],["ruler",{"2":{"31":1,"43":4,"46":2,"89":2}}],["runtime",{"2":{"127":1}}],["run",{"2":{"31":1,"104":1,"126":1,"127":5}}],["rawoptimizerattribute",{"2":{"126":2}}],["raw",{"2":{"31":2}}],["rates",{"2":{"31":1}}],["rate",{"2":{"31":1}}],["rand",{"2":{"19":1,"21":1,"22":16,"25":9,"27":9,"30":8,"89":13,"125":1,"127":2}}],["randomly",{"2":{"22":2,"25":1,"27":1,"30":1,"89":1,"127":1}}],["random",{"2":{"19":2,"22":2,"25":1,"27":1,"30":10,"89":10,"125":1,"127":2}}],["rangedomain",{"2":{"19":1,"26":2,"28":2,"89":4,"125":2}}],["ranges",{"2":{"19":3,"26":1,"89":1,"125":1}}],["range",{"2":{"18":1,"19":1,"21":1,"24":1,"26":3,"33":2,"52":1,"89":4,"125":3}}],["round",{"2":{"113":1,"127":1}}],["routing",{"2":{"49":2,"87":1,"89":2}}],["robust",{"2":{"34":1}}],["row",{"2":{"31":1}}],["role",{"2":{"5":1,"82":1}}],["roles",{"2":{"5":1}}],["r",{"2":{"21":2,"24":2,"26":2,"31":2,"52":3,"89":5,"113":8,"125":2}}],["remote",{"2":{"127":2}}],["remotely",{"2":{"127":1}}],["re",{"2":{"127":1}}],["recommended",{"2":{"126":1,"127":1}}],["recognize",{"2":{"8":1}}],["registries",{"2":{"122":1}}],["regularization",{"2":{"89":2,"125":2}}],["regular",{"2":{"52":9,"89":9}}],["ref",{"2":{"115":1,"127":6}}],["refer",{"2":{"31":5}}],["rev",{"2":{"89":5,"117":4,"119":1}}],["reverse",{"2":{"31":1,"89":1,"119":1}}],["replace",{"2":{"127":1}}],["repositories",{"2":{"86":1}}],["represented",{"2":{"52":2,"89":2}}],["represents",{"2":{"36":1,"89":1}}],["represent",{"2":{"19":1}}],["representing",{"2":{"19":1,"52":1,"89":1}}],["relies",{"2":{"115":1}}],["relate",{"2":{"89":1,"119":1}}],["related",{"0":{"50":1},"2":{"104":1,"105":1,"121":1}}],["relatively",{"2":{"89":1,"102":1,"127":1}}],["relationships",{"2":{"47":1}}],["relying",{"2":{"5":1}}],["retrieve",{"2":{"31":1}}],["returned",{"2":{"35":1,"89":1}}],["returns",{"2":{"10":2,"22":5,"25":3,"27":3,"29":1,"30":1,"35":13,"89":19,"119":1,"122":1,"125":1,"127":1}}],["return",{"2":{"1":3,"3":4,"6":1,"8":3,"21":3,"22":5,"24":3,"25":8,"26":3,"27":8,"30":2,"31":1,"35":7,"36":6,"38":4,"40":1,"49":1,"52":1,"57":2,"89":63,"98":3,"99":3,"102":1,"104":4,"106":5,"113":8,"117":2,"118":2,"125":20,"126":2,"127":21}}],["reach",{"2":{"89":1,"103":1,"125":1}}],["reactants",{"2":{"31":2}}],["reactions",{"2":{"31":1}}],["reaction",{"2":{"31":4}}],["readers",{"2":{"60":1,"62":1,"75":1}}],["realm",{"2":{"20":1}}],["real",{"0":{"59":1},"2":{"19":1,"21":3,"24":5,"26":4,"35":1,"60":1,"75":1,"89":7,"125":6,"126":2}}],["reinforcement",{"2":{"29":1,"86":1,"89":1,"125":1}}],["resume",{"2":{"127":1}}],["result",{"2":{"35":3,"89":23,"102":1,"117":10,"118":6,"119":2}}],["results",{"2":{"24":2,"31":1,"33":1,"35":1,"89":3}}],["resulting",{"2":{"5":1}}],["restart",{"2":{"127":6}}],["restricting",{"2":{"127":2}}],["restriction",{"2":{"35":2,"89":2,"125":2}}],["restricts",{"2":{"38":3,"89":3}}],["restricted",{"2":{"22":1,"25":1,"27":1,"127":4}}],["respect",{"2":{"89":1,"119":1}}],["respectively",{"2":{"19":1,"31":2}}],["researchers",{"2":{"32":1}}],["research",{"0":{"87":1},"2":{"20":1,"34":1,"63":1,"86":1,"87":1}}],["resources",{"2":{"19":1}}],["required",{"2":{"29":1,"89":2,"111":1,"123":1,"125":1}}],["requirements",{"2":{"8":2,"89":2}}],["requiring",{"2":{"5":1}}],["reduce",{"2":{"87":1,"89":3,"94":2,"102":1}}],["reduced",{"2":{"29":1,"89":1,"125":1}}],["reducing",{"2":{"5":1}}],["redundant",{"2":{"5":1,"33":1}}],["give",{"2":{"89":1,"125":1}}],["given",{"2":{"31":2,"35":1,"38":7,"52":2,"89":18,"104":6,"106":2,"108":1,"109":1,"125":7,"126":8}}],["guides",{"0":{"66":1}}],["guide",{"2":{"60":1,"73":1}}],["gt",{"2":{"43":1,"86":1}}],["gcc",{"2":{"38":3,"89":3}}],["good",{"2":{"88":1}}],["goes",{"2":{"33":1}}],["goal",{"2":{"31":1,"86":1}}],["golomb",{"2":{"31":2,"43":2,"46":1,"89":1}}],["grads",{"2":{"113":2}}],["gradientdescentoptimizer",{"2":{"113":5}}],["gradient",{"0":{"113":1},"2":{"104":1,"113":1}}],["graphs",{"0":{"49":1}}],["graph",{"2":{"31":4,"52":1,"89":1,"127":1}}],["greater",{"2":{"35":1,"89":12,"117":7,"118":1,"119":3}}],["grid",{"2":{"31":5}}],["groundwork",{"2":{"20":1}}],["genetic",{"2":{"81":1,"89":4,"104":3,"125":4}}],["generalstate",{"2":{"127":2}}],["generally",{"2":{"31":1}}],["general",{"0":{"28":1},"2":{"127":1}}],["generated",{"2":{"89":18,"117":10,"118":6,"125":1}}],["generates",{"2":{"30":1,"89":5,"106":2,"119":1,"125":1}}],["generate",{"2":{"19":1,"30":10,"36":1,"89":25,"92":1,"95":1,"100":1,"102":2,"104":2,"106":5,"119":2,"125":7}}],["generation",{"0":{"92":1,"95":1,"100":1,"119":1},"2":{"19":1,"89":2,"125":2}}],["generating",{"2":{"19":2}}],["generic",{"0":{"41":1},"1":{"42":1,"43":1,"44":1,"45":1,"46":1,"47":1},"2":{"4":1,"5":2,"41":1,"46":1,"86":1,"89":1,"126":1,"127":2}}],["getting",{"0":{"66":1,"71":1},"1":{"72":1,"73":1,"74":1},"2":{"66":1}}],["get",{"2":{"19":1,"21":1,"31":2,"36":2,"89":5,"119":2,"122":2,"125":1,"126":2,"127":17}}],["g",{"2":{"5":1,"31":1,"80":1,"89":15,"117":8,"118":4,"119":3}}],["gap",{"2":{"5":1}}],["global",{"0":{"54":1},"2":{"1":7,"3":6,"33":1,"38":4,"40":2,"49":2,"54":1,"57":6,"89":36,"104":2,"125":5,"126":5}}],["binarization==",{"2":{"113":1}}],["binarization",{"2":{"89":4,"104":2,"109":4,"113":13,"125":4}}],["binarize",{"2":{"89":2,"109":2,"113":3,"125":2}}],["binarized",{"2":{"89":1,"108":1}}],["binary",{"2":{"47":1,"89":1,"109":1,"125":1}}],["bias",{"2":{"89":3,"103":3,"125":3}}],["bit",{"2":{"89":2,"103":1,"109":1,"125":2}}],["bits",{"2":{"89":3,"106":2,"125":1}}],["bitvector",{"2":{"89":5,"102":4,"125":1}}],["bijective",{"2":{"3":2,"89":2}}],["but",{"2":{"31":1}}],["building",{"0":{"76":1},"1":{"77":1,"78":1},"2":{"77":1}}],["build",{"2":{"8":1,"74":1,"86":1,"100":1,"102":1,"123":1,"126":2}}],["bariable",{"2":{"127":1}}],["back",{"2":{"49":2,"89":2}}],["backward",{"2":{"31":1}}],["base",{"0":{"22":1,"25":1,"27":1},"2":{"10":5,"21":3,"22":14,"25":9,"27":10,"28":3,"30":4,"31":9,"89":32,"106":1,"108":2,"125":4,"126":2,"127":4}}],["based",{"0":{"1":1,"36":1,"88":1,"114":1},"2":{"5":1,"6":2,"16":1,"19":1,"30":1,"35":1,"36":1,"88":1,"89":8,"104":2,"106":1,"109":1,"119":2,"121":1,"125":4,"126":2}}],["basics",{"0":{"50":1,"82":1}}],["basic",{"0":{"35":1,"69":1,"108":1},"2":{"4":1,"5":3,"19":1,"74":1,"89":5,"104":1,"108":1,"119":4}}],["blank",{"2":{"31":2}}],["b",{"2":{"21":1,"22":8,"24":1,"25":8,"26":1,"27":8,"52":2,"89":11,"125":1}}],["breaking",{"2":{"122":3}}],["broad",{"2":{"18":1}}],["bridges",{"2":{"5":1}}],["bounded",{"2":{"89":1,"118":1}}],["bounding",{"2":{"89":6,"118":4,"119":2}}],["bounds",{"2":{"21":1,"89":1,"125":1}}],["bool=true",{"2":{"38":1,"89":1}}],["bool=false",{"2":{"38":3,"89":3}}],["boolparameterdomain",{"2":{"30":1,"89":1}}],["boolean",{"2":{"12":1,"30":1,"33":1,"35":2,"89":4,"125":2,"126":1}}],["bool",{"2":{"6":1,"21":4,"24":4,"26":4,"38":1,"57":3,"89":9,"113":1,"125":4,"126":2,"127":4}}],["both",{"2":{"4":1,"14":1,"18":1,"29":1,"31":2,"32":1,"35":2,"87":1,"89":6,"122":3,"125":2}}],["by",{"2":{"3":2,"4":1,"5":2,"8":1,"10":2,"19":1,"20":1,"22":1,"25":1,"26":1,"27":1,"29":1,"31":1,"33":3,"34":1,"35":1,"36":1,"38":1,"42":2,"47":3,"52":4,"66":1,"84":1,"88":1,"89":21,"99":1,"102":1,"104":4,"106":1,"118":1,"125":4,"127":10}}],["begin",{"2":{"126":14,"127":23}}],["benchmarking",{"2":{"121":1}}],["benchmarktools",{"0":{"121":1},"2":{"121":1}}],["better",{"2":{"87":1,"127":2}}],["between",{"2":{"3":2,"5":2,"6":1,"14":2,"19":1,"21":3,"24":2,"26":2,"31":2,"36":1,"43":2,"46":4,"47":1,"89":15,"98":1,"99":1,"125":7,"126":1,"127":1}}],["best",{"0":{"77":1},"2":{"77":1,"104":1,"127":1}}],["been",{"2":{"59":1,"121":1,"127":7}}],["before",{"2":{"57":8,"89":8}}],["because",{"2":{"42":1,"47":1}}],["behave",{"2":{"33":1}}],["behaviors",{"2":{"33":1,"34":1}}],["behavior",{"2":{"19":1,"29":1,"33":1,"89":1}}],["beware",{"2":{"29":1,"89":1,"125":1}}],["belongs",{"2":{"22":1,"25":1,"27":1,"127":2}}],["beyond",{"2":{"19":1,"33":1}}],["be",{"2":{"3":2,"5":1,"19":1,"21":1,"29":2,"31":3,"35":3,"36":2,"38":2,"42":2,"47":3,"52":3,"87":2,"88":2,"89":27,"92":1,"95":1,"100":1,"104":2,"106":5,"109":1,"119":1,"125":8,"126":2,"127":3}}],["69",{"2":{"21":1,"24":1,"26":1,"89":1,"125":1}}],["6",{"2":{"3":1,"31":2,"40":1,"57":3,"89":5,"122":1}}],["up",{"0":{"73":1},"2":{"73":1,"127":1}}],["upcoming",{"2":{"63":1}}],["update",{"2":{"36":2,"89":2}}],["undefkeyworderror",{"2":{"113":1}}],["under",{"2":{"89":1,"119":1}}],["understanding",{"0":{"80":1},"2":{"87":1}}],["underpin",{"2":{"18":1}}],["unrolled",{"2":{"89":1}}],["unacceptable",{"2":{"89":2}}],["unordered",{"2":{"26":1,"89":1}}],["until",{"2":{"12":1,"89":1,"125":1}}],["unique",{"2":{"3":2,"43":2,"46":1,"89":3,"126":1}}],["union",{"2":{"3":4,"6":1,"8":2,"16":1,"22":2,"25":1,"27":1,"28":2,"30":2,"36":1,"38":1,"89":12,"125":4,"126":2,"127":69}}],["utility",{"2":{"33":1}}],["utilities",{"0":{"102":1},"2":{"12":1}}],["utilized",{"2":{"4":1,"5":1,"89":1}}],["us",{"2":{"126":1}}],["usage",{"2":{"44":1,"121":1}}],["usability",{"2":{"5":1}}],["using",{"2":{"36":1,"74":1,"86":1,"89":1,"104":1,"125":1}}],["usually",{"2":{"46":1,"89":1,"127":1}}],["usual",{"0":{"36":1},"2":{"6":8,"33":5,"35":2,"36":19,"42":1,"43":3,"44":1,"89":24,"90":1,"93":1,"96":1,"115":1,"125":14}}],["useful",{"2":{"88":2,"89":1,"106":1,"127":1}}],["uses",{"0":{"54":1},"2":{"87":2,"88":2,"89":1,"104":1,"119":1}}],["user",{"2":{"5":1,"34":1,"127":2}}],["users",{"2":{"5":3,"20":1,"33":2}}],["used",{"2":{"3":6,"8":3,"21":1,"30":8,"35":2,"36":2,"40":2,"49":2,"52":1,"57":8,"87":1,"89":38,"102":1,"104":2,"106":2,"111":1,"125":1,"126":2,"127":1}}],["use",{"2":{"1":2,"5":1,"12":1,"26":1,"33":1,"38":1,"43":2,"72":1,"88":2,"89":5,"115":1,"125":2,"126":1,"127":2}}],["pkg",{"2":{"122":2}}],["public",{"0":{"125":1}}],["push",{"2":{"113":1}}],["pure",{"2":{"86":3}}],["purely",{"2":{"86":1}}],["purpose",{"2":{"65":1,"126":1}}],["purposes",{"2":{"20":1,"34":1,"35":1,"89":1,"104":1}}],["penalty",{"2":{"104":9,"113":20}}],["perform",{"2":{"127":1}}],["performance",{"0":{"78":1},"2":{"33":1,"72":1,"78":1,"127":1}}],["performances",{"0":{"7":1,"9":1,"11":1,"13":1,"15":1,"17":1,"23":1}}],["perfchecker",{"0":{"122":1,"123":1},"2":{"121":1,"122":5,"123":1}}],["per",{"2":{"89":1,"109":1,"125":1}}],["pôpulation",{"2":{"104":1}}],["please",{"2":{"43":1}}],["platform",{"2":{"34":1}}],["plays",{"2":{"5":1}}],["p",{"2":{"31":2,"89":1,"103":1,"125":1,"126":1}}],["pool",{"2":{"127":1}}],["pop",{"2":{"104":2}}],["population",{"2":{"89":2,"104":2,"125":2}}],["popsize=100",{"2":{"104":1}}],["popsize=200",{"2":{"89":1,"125":1}}],["popsize",{"2":{"89":4,"125":4}}],["possible",{"2":{"87":1,"97":1,"116":1,"126":1,"127":2}}],["possibly",{"2":{"26":1,"36":1,"89":2}}],["post",{"2":{"75":1,"127":1}}],["positional",{"2":{"35":1,"89":1}}],["positive",{"2":{"35":4,"89":15,"91":3,"98":2,"99":2,"117":2,"118":2,"125":4}}],["pos",{"2":{"31":2}}],["point",{"2":{"22":3,"25":2,"27":2,"30":1,"57":2,"89":4}}],["points",{"2":{"21":1,"24":1,"25":1,"26":3,"27":2,"89":5,"125":3}}],["powerful",{"2":{"33":1}}],["power",{"2":{"20":1}}],["pseudo",{"2":{"19":1,"30":1,"89":1}}],["printing",{"2":{"127":2}}],["print",{"2":{"127":8}}],["primary",{"2":{"65":1}}],["practices",{"0":{"77":1},"2":{"77":1}}],["practice",{"0":{"60":1}}],["practical",{"2":{"5":1,"20":1,"34":1}}],["practitioners",{"2":{"34":1}}],["precision",{"2":{"104":1,"113":6}}],["preliminaries",{"2":{"104":2,"113":3}}],["predict",{"2":{"104":1,"113":9}}],["predictions",{"2":{"104":1}}],["prediction",{"2":{"104":1}}],["predicate",{"2":{"35":4,"42":1,"43":4,"44":2,"46":4,"89":9,"106":1,"126":2}}],["predicates",{"2":{"33":1}}],["previously",{"2":{"44":1}}],["pretty",{"2":{"36":3,"89":3,"113":1,"125":3,"127":2}}],["prefix",{"2":{"35":3,"89":3}}],["preferences",{"2":{"35":1,"89":1,"125":1}}],["preference",{"2":{"33":1}}],["present",{"2":{"31":1,"36":1,"89":1}}],["programs",{"0":{"109":1}}],["programming",{"0":{"20":1,"34":1,"53":1,"67":1,"68":1,"82":1,"87":1},"1":{"54":1,"55":1,"68":1,"69":1,"70":1},"2":{"3":6,"4":1,"5":2,"18":2,"20":2,"32":1,"34":1,"38":3,"40":2,"47":1,"49":2,"57":6,"70":1,"75":1,"80":1,"82":1,"86":3,"87":2,"88":4,"89":20,"119":1}}],["proportional",{"2":{"89":1,"125":1}}],["property",{"2":{"42":1}}],["properties",{"2":{"19":1,"31":1,"33":1}}],["properly",{"2":{"21":1,"89":1,"125":1}}],["produce",{"2":{"89":1,"102":1}}],["product",{"2":{"89":1,"94":1}}],["products",{"2":{"31":2}}],["productivity",{"2":{"5":1}}],["prod",{"2":{"89":2,"94":2}}],["providing",{"2":{"5":1,"19":1,"20":1,"33":1,"34":1,"89":2}}],["provided",{"2":{"35":1,"89":18,"117":10,"118":6}}],["provide",{"2":{"5":1,"16":1,"19":1,"42":2,"44":2,"47":1,"66":1,"84":1,"86":1,"126":1}}],["provides",{"2":{"4":1,"18":1,"19":1,"33":1,"75":1,"86":1,"121":1}}],["projects",{"2":{"5":1,"63":1}}],["proceeds",{"2":{"31":1}}],["proceed",{"2":{"5":1}}],["processing",{"2":{"31":1,"89":1,"119":1}}],["processes",{"2":{"12":1,"87":1}}],["process",{"2":{"5":2,"19":2,"29":1,"60":1,"87":1,"89":2,"104":1,"119":1,"125":1,"127":3}}],["problems",{"2":{"18":1,"19":1,"20":1,"31":2,"33":2,"34":1,"49":2,"52":1,"54":1,"55":1,"57":6,"68":1,"75":1,"80":1,"86":4,"87":3,"88":6,"89":11,"127":1}}],["problem",{"2":{"5":1,"19":2,"20":1,"31":7,"43":1,"60":1,"87":2,"88":1,"127":3}}],["phase",{"2":{"5":1,"89":1,"106":2}}],["pivotal",{"2":{"5":1,"19":1,"32":1}}],["packing",{"0":{"57":1}}],["packages",{"0":{"64":1},"1":{"65":1},"2":{"4":2,"5":7,"8":2,"33":1,"73":1,"86":4,"89":2}}],["package",{"0":{"65":1},"2":{"4":1,"5":3,"6":1,"18":2,"19":3,"20":1,"32":2,"33":4,"65":1,"66":1,"122":1}}],["patch",{"2":{"122":3}}],["patches",{"2":{"122":1}}],["pattern",{"2":{"89":1,"106":1}}],["patternfolds",{"2":{"24":1,"89":1}}],["path",{"2":{"52":1,"89":6,"125":5,"127":5}}],["passed",{"2":{"35":2,"89":2}}],["paradigm",{"2":{"87":1}}],["param=nothing",{"2":{"89":1,"125":1}}],["paramater",{"2":{"89":1,"125":1}}],["parametric",{"0":{"98":1,"117":1},"2":{"35":1,"89":4,"100":1,"104":1,"119":2,"125":3}}],["parameterization",{"2":{"89":1,"119":1}}],["parameter",{"2":{"19":2,"29":1,"30":1,"52":2,"89":15,"102":2,"104":1,"108":1,"119":6,"125":4,"126":4}}],["parameters=constraintcommons",{"2":{"6":1,"36":1,"89":1,"125":1}}],["parameters",{"0":{"6":1,"30":1},"1":{"7":1},"2":{"6":17,"19":3,"30":12,"33":1,"35":2,"36":18,"89":39,"97":1,"104":5,"116":1,"119":2,"125":22}}],["params",{"2":{"33":1,"35":2,"89":2,"113":1,"125":1}}],["param",{"0":{"99":1,"118":1},"2":{"29":2,"30":2,"35":4,"36":2,"89":109,"99":16,"100":2,"102":5,"118":54,"119":16,"125":22,"126":24}}],["parse",{"2":{"36":1,"89":1}}],["particularly",{"2":{"106":1}}],["partially",{"2":{"89":1,"125":1}}],["partial",{"2":{"12":1,"29":1,"89":3,"125":2,"127":1}}],["part",{"2":{"29":1,"35":1,"86":1,"89":2,"125":1}}],["pairs",{"2":{"31":2,"46":1,"89":1}}],["paired",{"2":{"30":1,"89":1}}],["pairvarsparameterdomain",{"2":{"30":1,"89":1}}],["pair",{"2":{"1":16,"6":1,"29":1,"31":5,"38":2,"40":4,"57":15,"89":63,"104":3,"106":1,"125":1}}],["mts",{"2":{"127":7}}],["move",{"2":{"127":3}}],["most",{"2":{"38":4,"89":5,"109":1,"125":1}}],["more",{"2":{"36":1,"89":2}}],["moisumequalparam",{"2":{"126":2}}],["moisequentialtasks",{"2":{"126":1}}],["moipredicate",{"2":{"126":2}}],["moiordered",{"2":{"126":1}}],["moiminusequalparam",{"2":{"126":2}}],["moilessthanparam",{"2":{"126":2}}],["moierror",{"2":{"126":5}}],["moieq",{"2":{"126":1}}],["moidistdifferent",{"2":{"126":1}}],["moialwaystrue",{"2":{"126":1}}],["moiallequalparam",{"2":{"126":2}}],["moiallequal",{"2":{"126":1}}],["moialldifferent",{"2":{"126":1}}],["moi",{"2":{"31":1,"44":2,"126":22}}],["module",{"0":{"22":1,"25":1,"27":1},"2":{"35":1,"89":1}}],["modeled",{"2":{"127":1}}],["modeler=",{"2":{"31":1}}],["modeler",{"2":{"31":14}}],["modelize",{"2":{"31":1}}],["modeling",{"0":{"34":1,"77":1},"2":{"5":1,"19":1,"20":1,"34":1,"42":1,"44":1,"86":1}}],["model",{"0":{"74":1},"2":{"31":17,"33":1,"52":1,"74":1,"89":3,"126":25,"127":75}}],["models",{"0":{"76":1},"1":{"77":1,"78":1},"2":{"5":1,"19":1,"77":1,"78":1,"86":2,"87":2,"89":1,"119":1}}],["mutable",{"2":{"127":2}}],["mutually",{"2":{"89":4,"92":1,"95":1,"100":1,"104":1,"106":1,"125":3}}],["much",{"2":{"88":1}}],["must",{"2":{"19":1,"21":1,"26":1,"31":2,"38":2,"42":1,"47":2,"52":2,"87":1,"89":8,"125":2,"126":1}}],["multithreading",{"2":{"127":1}}],["multithreaded",{"2":{"127":1}}],["multi",{"2":{"52":1,"89":1}}],["multimedia",{"2":{"31":4}}],["multiplied",{"2":{"31":1}}],["multiplication",{"2":{"10":1,"89":1}}],["multiple",{"2":{"5":1}}],["multivalued",{"2":{"8":3,"89":2,"125":1}}],["mixed",{"2":{"86":1}}],["mission",{"2":{"75":1}}],["missing",{"2":{"8":2,"100":2,"102":2}}],["min",{"2":{"113":2,"126":1}}],["minkowski",{"2":{"89":1,"103":1,"125":1}}],["minusequalparam",{"2":{"126":2}}],["minus",{"2":{"89":28,"98":4,"99":4,"117":8,"118":8,"119":4}}],["mincut",{"2":{"31":1,"127":2}}],["minimization",{"2":{"126":1}}],["minimizing",{"2":{"31":1}}],["minimizes",{"2":{"5":1}}],["minimal",{"2":{"8":2,"89":4,"102":1,"103":1,"125":3,"127":3}}],["minimum",{"2":{"3":11,"14":1,"31":1,"89":12,"113":2,"125":1}}],["mdd",{"2":{"8":4,"30":1,"52":12,"89":15,"125":2}}],["mdash",{"2":{"1":3,"3":4,"6":2,"8":6,"10":3,"12":1,"14":1,"16":1,"21":6,"22":5,"24":8,"25":4,"26":10,"27":5,"28":2,"29":3,"30":13,"31":19,"35":10,"36":7,"38":4,"40":1,"46":1,"49":1,"52":2,"57":2,"89":187,"91":2,"92":1,"94":2,"95":1,"98":5,"99":4,"100":1,"102":6,"103":4,"104":28,"106":12,"108":2,"109":3,"111":2,"117":11,"118":6,"119":2,"122":4,"125":70,"126":45,"127":142}}],["mmds",{"2":{"8":1}}],["m",{"2":{"6":2,"31":6,"36":2,"89":2,"125":2,"127":139}}],["major",{"2":{"122":2}}],["map",{"2":{"89":1,"102":1,"113":5}}],["mapping",{"2":{"89":1,"119":1}}],["may",{"2":{"88":1}}],["mainsolver",{"2":{"127":7}}],["main",{"2":{"41":1,"89":1,"103":1,"125":1,"127":5}}],["mainly",{"2":{"35":1,"89":1,"126":1}}],["macro",{"2":{"36":6,"89":6,"115":1,"125":2,"126":1}}],["making",{"2":{"32":1,"88":1}}],["makes",{"2":{"86":1}}],["make",{"2":{"12":1,"35":3,"36":2,"86":1,"87":1,"89":8,"100":1,"104":3,"113":2,"115":2,"119":3,"127":1}}],["matter",{"2":{"126":1}}],["matters",{"2":{"105":1}}],["matrices",{"0":{"110":1},"1":{"111":1,"112":1,"113":1,"114":1},"2":{"89":1,"104":1,"111":1}}],["matrix",{"2":{"31":4,"89":2,"104":2,"108":2,"125":1}}],["match",{"2":{"89":3}}],["matches",{"2":{"89":3}}],["maths",{"2":{"89":1,"125":1}}],["mathematical",{"0":{"82":1},"2":{"82":1,"87":2,"88":1}}],["mathoptinterface",{"2":{"31":2,"126":12}}],["magic",{"2":{"31":2}}],["marks",{"2":{"31":1,"43":2,"46":2,"89":2}}],["max",{"2":{"29":2,"89":5,"102":2,"106":1,"125":2,"126":1,"127":10}}],["maximum",{"2":{"3":11,"14":1,"19":1,"21":1,"24":1,"26":1,"89":14,"125":3,"127":6}}],["manipulating",{"2":{"106":1}}],["manipulations",{"2":{"20":1}}],["manipulation",{"2":{"18":1,"19":2,"32":1,"33":1,"89":1,"119":1}}],["manhattan",{"2":{"89":1,"103":1,"125":1}}],["manufacturing",{"2":{"87":1}}],["managing",{"2":{"33":1}}],["manages",{"2":{"127":1}}],["managed",{"2":{"127":1}}],["manage",{"2":{"5":1,"127":1}}],["many",{"2":{"12":1,"89":1,"125":1}}],["metrics",{"0":{"103":1}}],["metric=hamming",{"2":{"89":1,"104":1,"125":1}}],["metric",{"2":{"89":8,"103":2,"104":6,"125":8}}],["metasolver",{"2":{"127":4}}],["metastrategist",{"0":{"120":1},"2":{"120":1}}],["metadata",{"2":{"86":1}}],["metaheuristics",{"0":{"81":1},"2":{"70":1}}],["method",{"2":{"6":1,"8":1,"10":2,"21":1,"22":3,"24":1,"25":3,"26":1,"27":3,"31":17,"36":1,"89":171,"104":26,"106":1,"111":2,"117":10,"118":6,"122":3,"123":1,"125":53,"126":14,"127":128}}],["methods",{"0":{"58":1},"1":{"59":1,"60":1},"2":{"4":1,"5":2,"8":1,"19":2,"21":1,"30":1,"33":2,"70":1,"89":4,"102":2,"125":3,"127":3}}],["meaningful",{"2":{"85":1}}],["meaning",{"2":{"38":2,"89":2,"106":1}}],["means",{"2":{"3":2,"36":3,"89":5}}],["measurement",{"2":{"127":1}}],["measure",{"2":{"33":1,"89":2,"125":2}}],["merge",{"2":{"19":1,"24":2,"26":2,"89":2,"125":2,"127":1}}],["merging",{"2":{"19":1}}],["membership",{"2":{"19":1}}],["56",{"2":{"127":1}}],["53",{"2":{"21":1,"24":1,"26":1,"89":1,"125":1}}],["5",{"2":{"1":1,"3":11,"21":1,"24":1,"26":1,"31":2,"38":29,"40":3,"57":13,"86":1,"89":75,"113":1,"122":1,"125":1,"126":6,"127":1}}],["nbits",{"2":{"89":2,"106":1,"125":1}}],["nbsp",{"2":{"1":3,"3":4,"6":2,"8":6,"10":3,"12":1,"14":1,"16":1,"21":6,"22":5,"24":8,"25":4,"26":10,"27":5,"28":2,"29":3,"30":13,"31":19,"35":10,"36":7,"38":4,"40":1,"46":1,"49":1,"52":2,"57":2,"89":187,"91":2,"92":1,"94":2,"95":1,"98":5,"99":4,"100":1,"102":6,"103":4,"104":28,"106":12,"108":2,"109":3,"111":2,"117":11,"118":6,"119":2,"122":4,"125":70,"126":45,"127":142}}],["nvars",{"2":{"89":12,"98":8,"125":4}}],["nvalues",{"2":{"38":8,"89":8}}],["n5",{"2":{"52":2,"89":2}}],["n4",{"2":{"52":3,"89":3}}],["n3",{"2":{"52":2,"89":2}}],["n2",{"2":{"52":2,"89":2}}],["n1",{"2":{"52":2,"89":2}}],["n²",{"2":{"31":1}}],["n×n",{"2":{"31":1}}],["n",{"2":{"31":18,"89":7,"102":4,"108":3,"113":9,"125":2}}],["numeric",{"2":{"26":1,"89":1}}],["number",{"2":{"21":1,"25":3,"26":2,"27":3,"29":3,"31":2,"35":3,"38":11,"89":52,"91":1,"98":1,"103":1,"104":2,"106":4,"109":3,"117":8,"118":4,"125":18,"126":6,"127":12}}],["numbers",{"2":{"19":2,"89":2,"98":2}}],["normalized",{"2":{"89":1,"125":1}}],["normal",{"2":{"89":1,"119":1}}],["norm",{"2":{"89":2,"98":1,"99":1}}],["now",{"2":{"31":1}}],["node",{"2":{"31":2,"52":3,"89":3}}],["no",{"2":{"31":4,"46":1,"57":20,"89":24,"102":1,"104":1,"106":1,"119":1}}],["nonnegative",{"2":{"126":1}}],["none",{"2":{"89":4,"109":1,"113":2,"119":3,"125":1,"126":6}}],["nonlinear",{"2":{"80":1}}],["non",{"0":{"98":1,"117":1},"2":{"26":1,"29":2,"89":3,"104":4,"125":2,"127":1}}],["not",{"2":{"24":1,"31":2,"35":1,"36":2,"38":1,"42":1,"44":1,"57":6,"89":18,"103":1,"109":1,"118":1,"119":1,"125":2,"126":1,"127":1}}],["notebooks",{"2":{"121":1}}],["note",{"2":{"6":1,"42":1,"44":1,"126":1}}],["nothing",{"2":{"1":1,"10":5,"22":4,"25":2,"27":2,"29":1,"35":4,"36":1,"38":2,"89":18,"102":1,"104":2,"113":1,"125":8,"126":2}}],["natural",{"2":{"42":1,"44":1}}],["nature",{"2":{"24":1,"26":1,"89":1,"125":1}}],["names",{"2":{"89":1,"119":1}}],["name=",{"2":{"89":1,"125":1}}],["name",{"2":{"6":1,"35":1,"36":3,"89":9,"125":8,"127":8}}],["neighbours",{"2":{"127":2}}],["neighbourhood",{"2":{"127":2}}],["neither",{"2":{"35":1,"89":1}}],["never",{"2":{"127":1}}],["next",{"2":{"49":2,"89":2,"122":2}}],["negation",{"2":{"35":1,"89":1}}],["network",{"2":{"89":1,"106":1,"125":1}}],["networks",{"2":{"87":1}}],["net",{"2":{"31":1}}],["new",{"2":{"24":3,"33":2,"36":5,"86":1,"89":8,"125":3,"126":6,"127":2}}],["necessary",{"2":{"18":1,"127":3}}],["needs",{"2":{"19":1,"29":1,"31":1,"89":3,"119":1,"125":2}}],["need",{"2":{"5":1,"14":1}}],["lst",{"2":{"127":5}}],["l",{"2":{"31":1,"89":15,"117":4,"118":4,"119":3}}],["l=n²",{"2":{"31":1}}],["loop",{"2":{"127":8}}],["loops",{"2":{"36":1,"49":2,"89":3}}],["loss",{"2":{"104":2,"113":2}}],["local",{"0":{"88":1,"114":1},"2":{"88":1,"89":5,"104":1,"106":1,"125":5,"126":2,"127":7}}],["localsearchsolvers",{"0":{"127":1},"2":{"86":1,"104":1,"127":139}}],["locations",{"2":{"31":5}}],["lower",{"2":{"89":1,"103":1,"125":1}}],["lowest",{"2":{"21":1,"24":1,"26":1,"89":1,"125":1}}],["low",{"2":{"29":1,"86":1,"89":1,"125":1}}],["loggingextra",{"2":{"127":1}}],["logging",{"2":{"127":1}}],["logic",{"2":{"89":2}}],["logical",{"2":{"42":1}}],["log",{"2":{"8":1,"100":1,"102":1,"127":1}}],["littledict",{"2":{"89":2,"106":2,"119":1}}],["like",{"2":{"70":1,"81":1}}],["links",{"2":{"31":1,"121":1,"127":1}}],["linear",{"2":{"70":1,"80":1,"89":3,"108":3,"125":3}}],["line",{"2":{"31":9}}],["limited",{"2":{"29":1,"89":1,"125":1}}],["limit",{"2":{"29":7,"57":2,"89":11,"125":9,"126":1,"127":10}}],["limits",{"2":{"19":1}}],["listed",{"2":{"89":2}}],["listing",{"2":{"47":1}}],["list=x",{"2":{"36":2,"89":2,"125":1}}],["list",{"0":{"91":1,"94":1,"97":1,"116":1},"1":{"98":1,"99":1,"100":1,"117":1,"118":1,"119":1},"2":{"1":13,"3":16,"6":2,"26":1,"27":1,"35":1,"38":24,"40":6,"43":1,"44":1,"46":5,"49":5,"52":8,"57":5,"89":89,"97":1,"116":1,"125":3,"127":11}}],["lt",{"2":{"8":2,"21":1,"22":4,"25":4,"26":1,"27":4,"31":1,"42":1,"43":1,"52":2,"89":10,"125":2,"127":3}}],["launch",{"2":{"127":1}}],["lazy",{"2":{"89":2,"102":2,"115":2,"125":2}}],["lang",{"2":{"89":3,"125":1}}],["lang=",{"2":{"89":1,"125":1}}],["language=",{"2":{"89":1,"125":1}}],["languageparameterdomain",{"2":{"30":1,"89":1}}],["languages",{"0":{"8":1,"52":1},"1":{"9":1},"2":{"8":1,"30":1,"89":1}}],["language",{"2":{"6":1,"42":1,"44":1,"52":17,"89":24,"125":5}}],["large",{"2":{"87":1,"88":1}}],["labels",{"2":{"52":2,"89":2}}],["labeled",{"2":{"52":2,"89":2}}],["last",{"2":{"52":1,"89":1,"122":3,"127":1}}],["lays",{"2":{"20":1}}],["layered",{"2":{"89":1,"125":1}}],["layers",{"2":{"89":9,"106":2,"119":1,"125":4}}],["layer",{"0":{"90":1,"92":1,"93":1,"95":1,"96":1,"100":1,"106":1,"115":1,"119":1},"1":{"91":1,"92":1,"94":1,"95":1,"97":1,"98":1,"99":1,"100":1,"116":1,"117":1,"118":1,"119":1},"2":{"4":1,"25":2,"27":2,"89":42,"90":1,"92":3,"93":1,"95":3,"96":1,"98":1,"100":3,"104":4,"106":28,"115":1,"119":3,"125":16}}],["left",{"2":{"89":18,"117":10,"119":3}}],["levels",{"2":{"84":1}}],["level",{"2":{"42":1,"44":1,"52":3,"86":2,"89":3,"127":9}}],["lessthanparam",{"2":{"126":2}}],["lesser",{"2":{"89":11,"117":6,"118":1,"119":3}}],["less",{"2":{"42":1,"126":2}}],["leadsolvers",{"2":{"127":3}}],["leadsolver",{"2":{"127":1}}],["least",{"2":{"38":4,"89":4,"104":2}}],["learn",{"2":{"75":1,"89":7,"104":5,"106":1,"111":1,"125":6}}],["learned",{"2":{"33":1,"34":1,"89":1,"104":1,"125":1}}],["learning",{"0":{"105":1,"110":1},"1":{"111":1,"112":1,"113":1,"114":1},"2":{"4":1,"5":6,"12":1,"19":1,"29":1,"33":2,"86":1,"89":4,"104":1,"105":1,"106":2,"125":3}}],["length",{"2":{"19":1,"21":2,"22":1,"24":1,"25":6,"26":1,"27":6,"33":1,"35":4,"57":3,"89":23,"94":2,"106":2,"113":4,"125":6,"127":12}}],["lengths",{"2":{"1":3,"57":6,"89":9}}],["swap",{"2":{"127":2}}],["switch",{"2":{"89":1,"103":1,"125":1}}],["sltns",{"2":{"104":2}}],["smaller",{"2":{"88":1}}],["small",{"2":{"88":1}}],["scalarfunction",{"2":{"126":3}}],["scalars",{"2":{"89":1,"98":1}}],["scalar",{"2":{"89":3,"91":1,"98":1,"99":1}}],["science",{"2":{"72":1}}],["scenario",{"2":{"60":1}}],["scheduling",{"0":{"57":1},"2":{"31":1,"57":6,"87":1,"89":6}}],["square",{"2":{"31":3}}],["sqrt",{"2":{"29":1,"89":1,"125":1}}],["syntax",{"2":{"33":1,"126":2,"127":1}}],["symb",{"2":{"35":2,"89":2}}],["symbols",{"2":{"10":2,"89":11,"102":4,"106":1,"125":4}}],["symbol",{"2":{"6":4,"10":3,"35":7,"36":19,"89":32,"106":1,"109":1,"113":1,"119":4,"125":11,"127":3}}],["symmetries",{"2":{"33":3,"35":4,"89":4,"125":4}}],["symmetry",{"2":{"33":1,"35":1,"89":1,"125":1}}],["systems",{"2":{"87":2}}],["system",{"2":{"31":1}}],["subs",{"2":{"127":3}}],["subsolvers",{"2":{"127":4}}],["subsolver",{"2":{"127":6}}],["subset",{"2":{"126":1}}],["sub",{"2":{"104":1,"127":1}}],["subtract",{"2":{"89":1,"119":1}}],["subtraction",{"2":{"89":1,"119":1}}],["subtype",{"2":{"31":1}}],["successfully",{"2":{"59":1}}],["such",{"2":{"5":1,"31":2,"33":2,"42":3,"44":2,"46":1,"52":1,"69":1,"86":1,"87":2,"89":3,"106":1,"119":1,"127":4}}],["sudoku",{"2":{"31":17,"127":1}}],["sudokuinstances",{"2":{"31":1}}],["sudokuinstance",{"2":{"31":19}}],["sumequalparam",{"2":{"126":2}}],["summary",{"2":{"88":1}}],["summing",{"0":{"38":1}}],["sum",{"2":{"25":1,"27":1,"29":1,"31":1,"38":8,"57":2,"89":20,"91":2,"94":3,"108":3,"125":4,"126":1}}],["supply",{"2":{"87":1}}],["supplies",{"2":{"31":1,"86":1}}],["supported",{"2":{"89":4}}],["support",{"2":{"19":1,"89":1}}],["supports=nothing",{"2":{"89":1}}],["supports",{"2":{"19":1,"33":1,"89":7,"126":3}}],["supertype",{"2":{"19":3,"24":1,"26":1,"89":2,"125":2}}],["super",{"2":{"19":1,"21":1,"89":1,"125":1}}],["silent",{"2":{"126":1,"127":1}}],["sig",{"2":{"89":17,"117":10,"118":6}}],["signature",{"2":{"89":2,"102":2,"125":2}}],["significance",{"2":{"68":1}}],["significantly",{"2":{"33":1,"34":1}}],["single",{"2":{"89":3,"91":1,"94":2}}],["since",{"2":{"42":1,"44":1,"127":1}}],["sink",{"2":{"31":3}}],["simulated",{"2":{"81":1}}],["simple",{"2":{"29":1,"33":1,"36":1,"74":1,"89":2,"125":2}}],["simply",{"2":{"22":2,"25":1,"27":1,"30":1,"35":1,"89":2}}],["simplify",{"2":{"54":1}}],["simplifying",{"2":{"5":1}}],["simplified",{"2":{"36":3,"89":3}}],["simplifies",{"2":{"5":1,"33":1}}],["similar",{"2":{"21":1,"89":1,"125":1}}],["size",{"2":{"19":1,"21":5,"24":8,"26":8,"29":2,"31":3,"49":3,"89":31,"98":3,"99":3,"102":1,"104":7,"106":2,"113":2,"125":16,"126":2,"127":4}}],["situations",{"2":{"14":1}}],["split",{"2":{"104":1}}],["specialize",{"2":{"127":10}}],["specialized",{"2":{"89":2,"98":1,"117":1,"127":10}}],["specializing",{"2":{"127":1}}],["specifying",{"2":{"18":1,"89":2}}],["specific",{"0":{"46":1},"2":{"33":1,"40":4,"89":6,"104":2,"119":1}}],["specifically",{"2":{"22":2,"25":1,"27":1,"30":1,"46":1,"89":2}}],["specification",{"2":{"6":1,"19":1}}],["specifications",{"2":{"6":1,"33":1,"36":1,"89":1,"125":1}}],["specified",{"2":{"22":2,"25":1,"27":1,"30":1,"31":2,"89":2,"119":1}}],["specifies",{"2":{"3":6,"38":1,"42":1,"47":1,"89":8,"119":1}}],["space",{"2":{"29":4,"35":1,"87":1,"89":11,"125":9,"127":1}}],["spaces",{"2":{"12":1,"18":1,"19":1,"33":1}}],["span",{"2":{"24":1,"26":1,"89":1}}],["sat",{"2":{"127":3}}],["satisfying",{"2":{"127":2}}],["satisfy",{"2":{"38":3,"42":1,"47":1,"86":1,"87":1,"88":1,"89":3}}],["satisfies",{"2":{"35":1,"38":6,"52":1,"88":1,"89":8,"125":1}}],["satisfied",{"2":{"3":4,"35":1,"40":1,"49":1,"52":1,"57":2,"87":1,"89":10,"125":1,"127":1}}],["satisfaction",{"2":{"33":1,"86":1,"89":2,"127":3}}],["say",{"2":{"89":1,"109":1,"125":1}}],["same",{"2":{"24":1,"26":1,"31":2,"35":1,"36":1,"46":1,"89":4,"125":2}}],["samplings",{"2":{"19":1,"29":2,"89":2,"125":2}}],["sampling",{"0":{"12":1},"1":{"13":1},"2":{"12":2}}],["s2",{"2":{"10":1,"89":1}}],["s1",{"2":{"10":1,"89":1}}],["s",{"2":{"6":3,"8":7,"19":2,"21":2,"24":1,"26":1,"31":5,"33":1,"34":1,"35":6,"36":8,"89":18,"100":1,"102":1,"125":14,"127":109}}],["stop",{"2":{"127":5}}],["storing",{"2":{"86":1}}],["stores",{"2":{"26":2,"89":2}}],["store",{"2":{"24":3,"30":8,"36":1,"89":15,"102":1,"106":2,"125":1,"127":3}}],["stipulates",{"2":{"89":1}}],["stuff",{"2":{"113":2}}],["studies",{"0":{"59":1},"2":{"59":1}}],["stucture",{"2":{"35":1,"89":1,"125":1}}],["step",{"2":{"36":2,"66":2,"84":2,"89":2,"127":3}}],["stamp",{"2":{"127":4}}],["static",{"2":{"127":1}}],["statistical",{"2":{"87":1}}],["status",{"2":{"126":1,"127":4}}],["states",{"2":{"52":4,"89":4}}],["state",{"2":{"31":3,"127":36}}],["started",{"0":{"66":1,"71":1},"1":{"72":1,"73":1,"74":1},"2":{"66":1}}],["starts",{"2":{"35":1,"57":8,"88":1,"89":9,"127":2}}],["start",{"2":{"31":1,"49":2,"52":2,"89":4}}],["starting",{"2":{"31":2,"35":1,"89":1,"127":1}}],["start=",{"2":{"31":1}}],["standout",{"2":{"33":1}}],["standard",{"2":{"31":3,"32":1,"33":1,"34":1,"41":1,"86":1}}],["standardization",{"2":{"5":1}}],["stands",{"2":{"18":1}}],["stdout",{"2":{"31":1}}],["str",{"2":{"127":1}}],["straightforward",{"2":{"33":1,"42":1,"126":1}}],["strategies",{"0":{"55":1},"2":{"20":1,"55":1}}],["string",{"2":{"22":4,"25":4,"27":4,"31":1,"35":1,"89":8,"102":1,"106":1,"125":1,"127":1}}],["strictly",{"2":{"1":8,"35":3,"89":13,"91":1,"118":1,"125":3}}],["struct",{"2":{"21":1,"31":3,"89":1,"127":4}}],["structure",{"0":{"106":1},"2":{"8":3,"21":2,"30":1,"31":1,"88":1,"89":6,"104":1,"106":4,"125":4,"127":5}}],["structures",{"2":{"4":1,"5":2}}],["streamlining",{"0":{"0":1,"2":1,"32":1,"37":1,"39":1,"48":1,"51":1,"56":1},"1":{"1":1,"3":1,"33":1,"34":1,"35":1,"36":1,"38":1,"40":1,"49":1,"52":1,"57":1},"2":{"5":1}}],["shifted",{"2":{"113":3}}],["share",{"2":{"63":1,"77":1}}],["shared",{"2":{"4":1,"5":3}}],["shrink",{"2":{"35":1,"36":1,"89":2}}],["show",{"2":{"89":4,"102":1,"106":1,"125":1}}],["showcase",{"2":{"59":1}}],["shortcut",{"2":{"35":1,"36":1,"89":1,"125":1}}],["should",{"2":{"3":6,"42":1,"44":1,"46":1,"89":11,"102":2,"125":2,"127":3}}],["soon",{"2":{"126":1}}],["sophisticated",{"2":{"34":1}}],["so",{"2":{"31":1,"36":2,"87":1,"89":2}}],["something",{"2":{"35":1,"89":1}}],["some",{"2":{"10":1,"12":1,"86":1,"89":1,"90":1,"93":1,"96":1,"104":1,"115":1,"121":1,"125":1,"126":1}}],["sols",{"2":{"89":1,"104":4,"125":1}}],["solve",{"2":{"31":1,"74":1,"86":2,"87":1,"127":3}}],["solvername",{"2":{"126":1}}],["solvers",{"0":{"124":1},"2":{"86":10,"88":3,"106":1,"124":1,"127":2}}],["solver",{"2":{"31":6,"86":1,"88":2,"104":1,"126":4,"127":29}}],["solving",{"2":{"20":1,"34":1,"55":1,"60":1,"68":1,"75":1,"87":4,"127":4}}],["sol",{"2":{"29":1,"89":1,"125":1}}],["solution",{"2":{"19":1,"31":2,"87":1,"88":4,"89":3,"103":1,"125":1,"127":4}}],["solutions",{"2":{"4":1,"5":2,"29":10,"86":1,"87":2,"88":4,"89":14,"103":1,"104":8,"125":14,"127":9}}],["solely",{"2":{"5":1}}],["source",{"2":{"1":3,"3":4,"6":3,"8":7,"10":3,"12":1,"14":1,"16":1,"21":10,"22":17,"24":12,"25":16,"26":14,"27":17,"28":2,"29":3,"30":17,"31":22,"35":11,"36":9,"38":4,"40":1,"46":1,"49":1,"52":2,"57":2,"89":187,"91":2,"92":1,"94":2,"95":1,"98":5,"99":4,"100":1,"102":6,"103":4,"104":28,"106":12,"108":2,"109":3,"111":2,"117":11,"118":6,"119":2,"122":4,"125":70,"126":45,"127":142}}],["serie",{"2":{"127":1}}],["serves",{"2":{"4":1,"19":1}}],["sequentialtasks",{"2":{"126":2}}],["sequence",{"2":{"49":6,"52":4,"89":10}}],["select",{"2":{"127":4}}],["selection",{"2":{"89":1,"119":1}}],["selected",{"2":{"89":8,"92":1,"95":1,"100":1,"104":2,"106":6,"125":4,"127":1}}],["see",{"2":{"43":1,"127":1}}],["seems",{"2":{"31":1}}],["separates",{"2":{"89":1,"102":1}}],["separator",{"2":{"31":1}}],["sep",{"2":{"31":2,"89":2,"102":2}}],["segment",{"2":{"31":3}}],["several",{"2":{"14":1,"86":1,"106":1}}],["seaperl",{"2":{"86":1}}],["searching",{"2":{"35":1,"89":1,"125":1}}],["searches",{"2":{"19":1}}],["search",{"0":{"55":1,"88":1,"114":1},"2":{"12":1,"18":1,"19":3,"29":9,"33":1,"55":1,"81":1,"87":1,"88":3,"89":20,"106":1,"125":20,"127":1}}],["seamless",{"2":{"5":1}}],["seamlessly",{"2":{"5":1}}],["sec",{"2":{"127":1}}],["section",{"2":{"6":1,"43":1,"121":1,"123":1}}],["seconds",{"2":{"127":1}}],["second",{"2":{"3":2,"57":8,"89":10}}],["setting",{"0":{"73":1},"2":{"73":1,"127":1}}],["settings",{"2":{"19":1,"29":1,"89":1,"125":1,"127":1}}],["setdomain",{"2":{"21":1,"24":1,"26":3,"27":2,"89":5,"125":4}}],["set",{"2":{"3":4,"5":1,"8":1,"10":2,"20":1,"22":4,"25":2,"26":3,"27":2,"30":1,"31":4,"38":3,"40":2,"47":2,"87":1,"89":31,"100":1,"102":1,"104":11,"109":2,"119":1,"125":8,"126":16,"127":22}}],["sets",{"2":{"3":2,"19":1,"89":2,"104":3}}],["001",{"2":{"113":1}}],["00514",{"2":{"36":1,"89":1,"125":1}}],["0",{"2":{"1":14,"3":1,"21":1,"22":2,"24":1,"25":1,"26":1,"27":1,"31":54,"35":7,"38":8,"49":1,"52":22,"89":73,"98":4,"99":4,"113":1,"117":4,"118":4,"122":11,"125":3,"126":6,"127":9}}],["42",{"2":{"21":1,"24":1,"26":1,"38":2,"89":3,"125":1}}],["4",{"2":{"1":12,"3":15,"21":1,"24":1,"26":1,"31":3,"38":14,"40":4,"43":2,"44":2,"45":2,"46":3,"47":3,"49":4,"57":18,"89":82,"122":1,"125":1,"126":4,"127":1}}],["3",{"2":{"1":17,"3":15,"21":2,"24":2,"26":2,"31":6,"35":4,"36":1,"38":33,"40":4,"43":2,"44":4,"45":6,"46":7,"47":3,"49":6,"57":26,"89":125,"122":4,"125":3,"126":2,"127":1}}],["28",{"2":{"127":1}}],["225",{"2":{"89":1}}],["200",{"2":{"89":2,"104":1,"125":2}}],["2009",{"2":{"36":1,"89":1,"125":1}}],["2",{"2":{"1":15,"3":16,"21":2,"24":2,"26":2,"31":5,"35":3,"36":1,"38":40,"40":4,"43":2,"44":3,"45":4,"46":7,"47":3,"49":3,"52":10,"57":28,"89":146,"122":6,"125":3,"126":2,"127":1}}],["101",{"0":{"67":1},"1":{"68":1,"69":1,"70":1}}],["10",{"2":{"38":27,"86":1,"89":29,"125":2,"127":2}}],["100",{"2":{"29":2,"89":4,"125":4,"127":1}}],["10000",{"2":{"127":1}}],["1000",{"2":{"29":1,"89":1,"125":1}}],["10^6",{"2":{"29":1,"89":1,"125":1}}],["123",{"2":{"21":1,"24":1,"26":1,"89":1,"125":1}}],["12",{"2":{"21":1,"24":1,"26":1,"57":1,"89":2,"125":1}}],["1",{"2":{"1":19,"3":17,"16":2,"21":2,"24":2,"26":2,"31":3,"35":6,"36":1,"38":34,"40":4,"43":2,"44":3,"45":4,"46":5,"47":3,"49":4,"52":15,"57":41,"89":174,"108":1,"109":1,"113":4,"117":2,"122":14,"125":6,"126":2,"127":4}}],["=>",{"2":{"52":15,"89":15,"113":1}}],["=usual",{"2":{"36":1,"89":1,"125":1}}],["=0",{"2":{"31":1}}],["==",{"2":{"3":4,"22":1,"38":2,"49":1,"89":9,"109":1,"113":2,"125":1}}],["=",{"2":{"1":3,"3":12,"6":1,"16":2,"21":5,"22":4,"24":5,"25":4,"26":5,"27":4,"29":7,"31":11,"35":3,"36":3,"38":16,"40":1,"43":5,"44":3,"45":2,"46":2,"49":5,"52":16,"57":17,"86":1,"89":126,"94":2,"100":1,"102":1,"104":12,"108":1,"109":3,"113":34,"119":5,"125":36,"126":35,"127":49}}],["epoch",{"2":{"127":1}}],["err",{"2":{"126":3}}],["error",{"2":{"33":2,"35":20,"36":3,"89":24,"104":1,"125":6,"126":4,"127":4}}],["eq",{"2":{"89":22,"117":12,"118":4,"119":6,"126":2}}],["equiped",{"2":{"31":1}}],["equilibrium",{"2":{"31":4}}],["equivalent",{"2":{"22":1,"25":1,"27":1,"89":1}}],["equality",{"2":{"126":1}}],["equalities",{"2":{"89":2,"119":2}}],["equal",{"2":{"1":8,"3":2,"31":1,"35":1,"38":1,"89":17,"117":3,"118":1,"119":1,"126":3}}],["euclidian",{"2":{"89":6,"98":3,"99":3}}],["edge",{"2":{"52":2,"89":2}}],["educational",{"2":{"20":1,"34":1}}],["either",{"2":{"21":1,"24":1,"26":1,"47":2,"57":4,"86":1,"89":8,"125":4}}],["efficiency",{"2":{"20":1,"87":1}}],["efficiently",{"2":{"12":1,"31":1,"126":1}}],["efficient",{"2":{"5":1,"77":1,"89":1}}],["embodies",{"2":{"20":1,"34":1,"89":2}}],["empty",{"2":{"104":2,"126":4,"127":11}}],["emptydomain",{"2":{"19":1,"21":2,"24":1,"26":1,"89":2,"125":1}}],["empowering",{"0":{"20":1}}],["emphasizes",{"2":{"5":1}}],["evaluation",{"2":{"104":1}}],["evaluates",{"2":{"35":1,"36":1,"89":2}}],["evaluated",{"2":{"33":1,"127":1}}],["eventually",{"2":{"49":2,"89":2}}],["even",{"2":{"31":1}}],["everuseful",{"2":{"16":1}}],["evolves",{"2":{"127":1}}],["evolve",{"2":{"19":1}}],["earlier",{"2":{"122":1}}],["easy",{"2":{"86":1,"123":1}}],["easier",{"2":{"36":1,"89":1}}],["ease",{"2":{"5":1,"20":1,"72":1}}],["eachrow",{"2":{"113":4}}],["each",{"2":{"3":2,"25":1,"27":1,"31":3,"35":1,"36":1,"49":2,"52":2,"65":1,"66":1,"89":10,"106":1,"115":1,"125":2,"127":1}}],["else",{"2":{"113":4}}],["eltype",{"2":{"28":3,"89":3,"104":2}}],["eliminating",{"2":{"5":1}}],["elementary",{"0":{"40":1}}],["elements",{"2":{"5":1,"12":1,"19":2,"21":1,"31":1,"33":1,"89":18,"91":1,"102":1,"106":1,"117":8,"118":4,"125":2}}],["element",{"2":{"3":9,"89":9,"104":2,"122":1,"127":1}}],["e",{"2":{"5":1,"31":1,"35":4,"49":2,"52":4,"57":4,"80":1,"89":15,"103":1,"113":3,"125":1,"127":1}}],["exclu",{"2":{"89":3,"106":3}}],["exclusive",{"2":{"89":9,"92":1,"95":1,"100":1,"104":3,"106":7,"125":3}}],["excluded",{"2":{"89":1}}],["exclude",{"2":{"38":1,"89":1}}],["exceed",{"2":{"57":2,"89":2}}],["except",{"2":{"38":2,"89":2}}],["except=vals",{"2":{"36":2,"89":2,"125":1}}],["exact",{"2":{"88":4}}],["exactly",{"2":{"38":4,"89":4}}],["examine",{"2":{"33":1}}],["exampleusing",{"2":{"46":2,"89":2}}],["example2",{"2":{"46":2,"89":2}}],["example",{"2":{"6":1,"35":1,"36":8,"42":2,"44":1,"47":1,"89":8,"122":1,"125":6}}],["examples",{"0":{"112":1},"1":{"113":1,"114":1},"2":{"1":3,"3":4,"35":2,"38":4,"40":1,"46":1,"49":1,"52":2,"57":2,"89":22,"119":1,"121":1}}],["exist",{"2":{"122":2}}],["existing",{"2":{"36":2,"86":1,"87":1,"89":2}}],["exists",{"2":{"35":3,"89":3}}],["ex",{"2":{"36":3,"89":3}}],["expansion",{"2":{"89":1}}],["export",{"2":{"89":1,"125":1,"127":1}}],["explicit",{"2":{"89":2}}],["explicitly",{"2":{"47":1,"89":2}}],["explanation",{"2":{"36":1,"80":1,"89":1}}],["explored",{"2":{"89":1,"125":1}}],["explore",{"2":{"29":4,"89":7,"125":4}}],["exploresettings",{"2":{"19":1,"29":1,"89":1,"125":1}}],["exploring",{"0":{"18":1,"64":1},"1":{"19":1,"20":1,"21":1,"22":1,"23":1,"24":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"65":1},"2":{"20":1}}],["explorations",{"2":{"33":1}}],["exploration",{"0":{"29":1},"2":{"12":1,"19":4,"29":2,"30":1,"89":3,"125":1}}],["express",{"2":{"126":1}}],["expressions",{"2":{"106":1}}],["expression",{"2":{"36":7,"38":1,"42":1,"89":8}}],["expr",{"2":{"36":2,"89":2}}],["experimental",{"0":{"85":1},"2":{"85":1}}],["experiments",{"0":{"83":1},"1":{"84":1,"85":1},"2":{"85":1}}],["experience",{"2":{"5":1}}],["expect",{"2":{"75":1}}],["expected",{"2":{"35":2,"36":1,"89":4,"125":3}}],["externally",{"2":{"127":1}}],["external",{"2":{"19":1,"89":1,"119":1}}],["extend",{"2":{"21":1,"28":1,"89":2,"123":1,"125":1}}],["extends",{"2":{"10":3,"22":7,"25":4,"27":4,"28":1,"30":2,"31":4,"89":7,"104":3}}],["extended",{"2":{"10":1,"89":19,"102":2,"117":10,"118":6,"125":2}}],["extensionally",{"2":{"47":1}}],["extensional",{"2":{"47":1}}],["extensions",{"0":{"10":1},"1":{"11":1}}],["extension",{"0":{"22":1,"25":1,"27":1,"47":1,"121":1},"2":{"5":1,"41":1,"89":8,"121":1}}],["extrema",{"0":{"14":1},"1":{"15":1},"2":{"14":3,"89":2,"104":1,"113":1,"125":2,"127":3}}],["extracts",{"2":{"6":1,"36":2,"89":2,"125":1}}],["extract",{"2":{"6":2,"36":1,"89":2,"125":2}}],["enumerate",{"2":{"113":1}}],["enforcing",{"2":{"89":2}}],["encode",{"2":{"104":1}}],["encoded",{"2":{"52":2,"89":2}}],["encoding",{"0":{"109":1},"2":{"89":5,"108":1,"109":4,"125":4}}],["encourage",{"2":{"62":1}}],["encompass",{"2":{"46":1,"89":1}}],["encapsulate",{"2":{"89":1,"119":1,"127":2}}],["encapsulating",{"2":{"33":1}}],["encapsuler",{"2":{"24":1,"89":1}}],["entry",{"2":{"36":3,"89":3,"127":1}}],["energy",{"2":{"31":1}}],["enough",{"2":{"30":1,"89":1}}],["enhancement",{"2":{"33":1}}],["enhances",{"2":{"20":1,"34":1}}],["enhancing",{"2":{"5":2,"33":1}}],["enabling",{"0":{"34":1},"2":{"18":1}}],["enabled",{"2":{"127":1}}],["enable",{"2":{"5":1}}],["end``",{"2":{"127":1}}],["end",{"2":{"5":1,"8":2,"89":2,"113":15,"126":6,"127":4}}],["ensure",{"2":{"89":1,"108":1}}],["ensures",{"2":{"5":1,"33":1,"40":2,"43":2,"49":2,"52":2,"57":6,"89":12}}],["ensuring",{"2":{"1":7,"5":2,"38":5,"46":2,"89":17,"104":3,"119":1,"126":9}}],["environment",{"0":{"73":1},"2":{"5":1}}],["etc",{"2":{"5":1}}],["ecosystem",{"2":{"4":1,"5":3,"18":1,"20":1,"32":1,"34":1,"86":1}}],["especially",{"2":{"88":1}}],["essential",{"2":{"4":1,"19":1,"33":1,"73":1}}],["establishes",{"2":{"3":2,"89":2}}],["x``or",{"2":{"104":1}}],["x̅",{"2":{"104":4}}],["xto",{"2":{"89":1,"103":1,"125":1}}],["x3",{"2":{"52":1,"89":1}}],["x3c",{"2":{"1":4,"8":3,"21":6,"22":9,"24":11,"25":8,"26":12,"27":8,"30":12,"31":3,"38":2,"52":1,"57":1,"89":48,"104":1,"113":2,"125":16,"126":29,"127":91}}],["x2",{"2":{"52":1,"89":1,"127":2}}],["x26",{"2":{"45":4,"46":4,"89":4}}],["x1",{"2":{"52":1,"89":1,"127":2}}],["x",{"2":{"1":23,"3":8,"12":2,"14":2,"22":10,"25":10,"27":10,"31":4,"35":7,"36":5,"38":28,"40":2,"42":2,"43":8,"44":4,"46":6,"47":1,"49":2,"52":6,"57":8,"86":2,"89":298,"91":3,"94":4,"98":8,"99":7,"102":6,"103":10,"104":33,"109":8,"113":42,"117":76,"118":43,"125":33,"126":31,"127":68}}],["xcsp³",{"2":{"41":1}}],["xcsp3",{"0":{"36":1},"2":{"6":3,"8":1,"33":3,"36":1,"89":2,"125":1}}],["xcsp",{"2":{"1":3,"3":4,"33":1,"36":2,"38":4,"40":1,"43":1,"44":1,"46":1,"49":1,"52":2,"57":2,"89":21,"125":1}}],["clear",{"2":{"88":1}}],["closed",{"2":{"38":9,"89":9}}],["cbls",{"0":{"126":1},"2":{"86":3,"88":3,"104":1,"126":31,"127":1}}],["csps",{"2":{"86":1}}],["circuit",{"2":{"49":12,"89":12}}],["cc",{"2":{"38":2,"89":2}}],["c=usual",{"2":{"36":2,"89":2,"125":2}}],["central",{"2":{"32":1}}],["certain",{"2":{"3":4,"57":2,"89":6}}],["cplex",{"2":{"86":1}}],["cp",{"0":{"70":1,"71":1,"74":1},"1":{"72":1,"73":1,"74":1},"2":{"32":2,"33":2,"34":2,"55":1,"59":1,"68":1,"73":1,"74":1,"75":1,"77":1,"85":1,"86":9,"87":4}}],["current",{"2":{"89":2,"106":1,"125":1,"127":1}}],["currently",{"2":{"22":2,"25":1,"27":1,"30":1,"89":1,"126":1}}],["cumulative",{"2":{"57":9,"89":9}}],["cut",{"2":{"31":1,"127":1}}],["case",{"0":{"59":1}}],["cast",{"2":{"35":1,"89":1}}],["called",{"2":{"42":1,"47":1,"89":1,"127":2}}],["calls",{"2":{"36":2,"89":2}}],["cardinality",{"2":{"38":20,"89":20}}],["care",{"2":{"36":1,"89":1,"125":1}}],["catch",{"2":{"113":1}}],["categorized",{"2":{"41":1}}],["categories",{"0":{"36":1}}],["cater",{"2":{"19":1}}],["catalog",{"2":{"33":1}}],["capacited",{"2":{"127":1}}],["capacity",{"2":{"127":1}}],["capacities",{"2":{"31":1}}],["capabilities",{"2":{"34":1}}],["capability",{"2":{"33":1}}],["can",{"2":{"5":3,"21":1,"33":1,"38":3,"52":1,"62":1,"75":1,"88":1,"89":10,"106":5,"109":1,"119":1,"125":3,"126":2,"127":1}}],["creation",{"2":{"33":1,"89":1,"119":1}}],["created",{"2":{"127":1}}],["creates",{"2":{"36":1,"89":1}}],["create",{"2":{"31":4,"35":1,"89":2,"125":1,"126":1}}],["critical",{"2":{"5":1,"18":1}}],["crucial",{"2":{"5":1,"19":1,"33":1}}],["choose",{"2":{"127":1}}],["chuffed",{"2":{"86":1}}],["chemical",{"2":{"31":3}}],["checks",{"2":{"35":2,"36":2,"46":1,"52":1,"89":6}}],["checking",{"2":{"19":1}}],["check",{"2":{"1":3,"3":8,"8":1,"22":1,"25":1,"27":1,"35":1,"38":7,"40":2,"43":1,"49":1,"52":2,"57":1,"89":27,"100":1,"102":1,"106":1,"109":1,"125":1,"127":10}}],["chains",{"2":{"87":1}}],["chapter",{"2":{"75":1}}],["characteristics",{"2":{"19":1}}],["change",{"2":{"31":2}}],["changes",{"2":{"19":1,"24":1,"26":1,"31":1,"88":1,"89":2,"125":1}}],["channel",{"2":{"3":9,"89":9}}],["c",{"2":{"1":14,"3":15,"22":1,"25":1,"27":1,"35":16,"36":8,"38":19,"40":2,"44":3,"45":4,"46":6,"49":4,"52":10,"57":11,"89":116,"125":24,"127":31}}],["copy",{"2":{"126":5}}],["cops",{"2":{"86":1}}],["cosntriction",{"2":{"127":1}}],["cosntraints",{"0":{"50":1},"2":{"127":1}}],["cost",{"2":{"127":19}}],["costs",{"2":{"87":1,"127":20}}],["covering",{"2":{"84":1}}],["cover",{"2":{"82":1,"123":1}}],["could",{"2":{"42":1,"47":1}}],["count",{"2":{"38":6,"89":95,"91":3,"117":40,"118":20,"119":21}}],["counting",{"0":{"38":1},"2":{"89":1,"119":1}}],["counter",{"2":{"16":2,"89":2,"125":2,"127":1}}],["co",{"2":{"38":2,"89":11,"98":5,"99":4}}],["coefficients",{"2":{"38":1,"89":1}}],["coeffs",{"2":{"38":2,"89":2}}],["collect",{"2":{"113":1}}],["collections",{"2":{"14":2,"89":1,"125":1}}],["collection",{"2":{"5":1,"16":1,"22":2,"24":1,"25":1,"27":1,"29":2,"30":1,"42":1,"43":1,"44":1,"86":1,"89":8,"103":1,"104":3,"106":1,"125":5,"126":2,"127":5}}],["collaborate",{"2":{"62":1}}],["col",{"2":{"31":1}}],["coordinates",{"2":{"31":1}}],["core",{"0":{"36":1},"2":{"6":2,"8":1,"33":4,"36":1,"41":1,"89":2,"125":1}}],["corresponding",{"2":{"31":1,"89":1,"119":1}}],["corresponds",{"2":{"3":2,"89":2}}],["correspondence",{"2":{"3":2,"89":2}}],["code",{"2":{"5":1,"89":5,"125":3}}],["come",{"2":{"126":1}}],["combinatorial",{"2":{"68":1,"87":1,"106":1}}],["community",{"0":{"61":1,"62":1},"1":{"62":1,"63":1},"2":{"62":1}}],["commitment",{"2":{"34":1}}],["commons",{"0":{"21":1},"1":{"22":1,"23":1}}],["common",{"2":{"5":1,"86":1}}],["compile",{"2":{"89":1,"119":1}}],["compliance",{"2":{"52":2,"89":2}}],["complex",{"2":{"20":1,"32":1,"33":1,"47":1,"54":1,"87":2,"88":1}}],["complexity",{"2":{"5":1,"84":1}}],["completely",{"2":{"89":1,"125":1}}],["completed",{"2":{"5":1}}],["complete",{"2":{"5":1,"19":1,"29":2,"89":6,"125":5}}],["components",{"2":{"33":1,"89":2,"102":2,"125":2}}],["compounds",{"2":{"31":1}}],["compose",{"2":{"89":12,"106":1,"125":8}}],["composed",{"2":{"29":1,"89":3,"125":3}}],["compositions",{"2":{"89":1}}],["compositionalneworks",{"2":{"102":1}}],["compositionalnetworks",{"0":{"101":1},"1":{"102":1,"103":1},"2":{"5":1,"89":77,"91":2,"92":1,"94":2,"95":1,"98":5,"99":4,"100":1,"101":1,"102":6,"103":4,"104":3,"106":11,"117":11,"118":6,"119":2,"125":26}}],["compositional",{"2":{"89":1,"106":1,"125":1}}],["composition",{"2":{"89":24,"102":1,"125":21}}],["comprehensive",{"2":{"20":1,"34":1,"89":2}}],["computational",{"2":{"19":1,"72":1}}],["computes",{"2":{"127":1}}],["computed",{"2":{"89":17,"117":10,"118":6}}],["compute",{"2":{"14":2,"24":2,"26":1,"31":1,"89":7,"98":1,"99":1,"103":1,"104":1,"109":1,"125":4,"126":1,"127":17}}],["compatible",{"2":{"5":1}}],["compare",{"2":{"1":1,"35":1,"89":2}}],["comparisons",{"0":{"97":1},"1":{"98":1,"99":1,"100":1},"2":{"89":2,"100":1,"119":2}}],["comparison",{"0":{"1":1,"96":1},"1":{"97":1,"98":1,"99":1,"100":1},"2":{"1":1,"38":1,"89":9,"96":1,"97":1,"98":1,"100":2,"119":1,"125":5}}],["cohesive",{"2":{"5":1}}],["conflict",{"2":{"89":1}}],["conflicted",{"2":{"89":3}}],["conflicts",{"2":{"89":8}}],["conflicts=nothing",{"2":{"89":1}}],["configuration",{"2":{"31":2,"89":8,"104":4,"125":2,"126":1,"127":3}}],["configurations",{"2":{"12":1,"29":2,"89":7,"104":1,"125":3,"127":1}}],["configure",{"2":{"19":1}}],["conduct",{"2":{"85":1}}],["conditions",{"2":{"87":1,"89":1,"119":1,"127":1}}],["condition",{"2":{"3":13,"38":15,"57":3,"89":31}}],["concerned",{"2":{"87":2}}],["concentrations",{"2":{"31":2}}],["concepts",{"0":{"69":1},"2":{"69":1,"81":1}}],["concept",{"2":{"1":10,"3":8,"29":3,"33":2,"35":19,"36":18,"38":15,"40":2,"43":1,"44":1,"45":2,"46":3,"49":2,"52":4,"57":6,"89":95,"125":20,"126":5}}],["convert",{"2":{"21":1,"28":3,"89":7,"102":2,"106":1,"125":1}}],["containing",{"2":{"127":1}}],["container",{"2":{"89":1,"106":1,"126":1}}],["contains",{"2":{"35":1,"36":2,"89":4,"106":1,"125":2}}],["content",{"2":{"75":1}}],["contexts",{"2":{"33":1}}],["context",{"2":{"21":1,"89":1,"106":2,"125":1}}],["contraints",{"2":{"127":2}}],["contrast",{"2":{"70":1,"88":1}}],["contribute",{"2":{"62":1}}],["contribution",{"0":{"61":1},"1":{"62":1,"63":1}}],["contiguous",{"2":{"89":12,"117":8,"119":4}}],["contiuous",{"2":{"24":1,"26":1,"89":1,"125":1}}],["continuousdomain",{"2":{"19":1,"24":2,"89":2,"125":1}}],["continuous",{"0":{"24":1},"1":{"25":1},"2":{"18":1,"19":2,"21":2,"24":2,"26":1,"31":1,"89":3,"125":3}}],["connecting",{"2":{"10":1,"89":1}}],["connection",{"0":{"3":1}}],["connector",{"2":{"10":1,"89":1}}],["cons=dictionary",{"2":{"127":1}}],["cons",{"2":{"127":31}}],["considered",{"2":{"38":2,"89":2,"127":1}}],["considers",{"2":{"8":1}}],["consistent",{"2":{"36":1,"89":1}}],["constriction",{"2":{"127":4}}],["constrained",{"2":{"127":2}}],["constrains",{"2":{"127":1}}],["constraintprogrammingextensions",{"2":{"86":1}}],["constraintmodels",{"0":{"31":1},"2":{"31":15,"86":1}}],["constrainttranslator",{"2":{"5":1}}],["constraintlearning",{"0":{"104":1},"2":{"5":1,"104":27,"122":1}}],["constraintdomains",{"0":{"18":1},"1":{"19":1,"20":1,"21":1,"22":1,"23":1,"24":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1},"2":{"5":1,"18":1,"19":3,"20":2,"21":6,"24":8,"26":10,"29":3,"30":11,"86":1,"89":35,"125":18}}],["constraintcommons",{"0":{"4":1},"1":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1},"2":{"4":1,"5":4,"6":3,"8":6,"12":1,"14":1,"16":1,"30":2,"36":2,"89":15,"125":9}}],["constraint",{"0":{"0":1,"2":1,"20":1,"32":1,"34":1,"37":1,"39":1,"43":1,"48":1,"51":1,"53":1,"56":1,"67":1,"68":1,"87":1,"88":1,"114":1},"1":{"1":1,"3":1,"33":1,"34":1,"35":1,"36":1,"38":1,"40":1,"49":1,"52":1,"54":1,"55":1,"57":1,"68":1,"69":1,"70":1},"2":{"1":7,"3":24,"4":1,"5":3,"6":9,"12":1,"18":2,"19":1,"20":2,"22":3,"25":3,"27":3,"29":2,"32":1,"33":10,"34":2,"35":17,"36":24,"38":20,"40":7,"42":5,"43":5,"44":4,"46":4,"47":3,"49":7,"52":6,"57":20,"75":1,"86":5,"87":1,"88":5,"89":156,"104":4,"106":1,"108":1,"119":3,"125":39,"126":29,"127":33}}],["constraintsolver",{"2":{"86":1}}],["constraints",{"0":{"0":1,"1":1,"2":1,"3":1,"32":1,"36":1,"37":1,"38":1,"39":1,"40":1,"41":1,"42":1,"47":1,"48":1,"49":1,"51":1,"52":1,"54":1,"56":1,"57":1,"75":1,"105":1},"1":{"1":1,"3":1,"33":1,"34":1,"35":1,"36":1,"38":1,"40":1,"42":1,"43":2,"44":2,"45":2,"46":2,"47":1,"49":1,"52":1,"57":1},"2":{"1":3,"3":4,"4":1,"5":1,"6":9,"8":3,"18":1,"32":3,"33":17,"34":5,"35":12,"36":38,"38":4,"40":1,"41":2,"42":3,"43":3,"44":2,"46":3,"47":2,"49":1,"50":1,"52":2,"54":1,"57":2,"69":1,"86":4,"87":3,"88":2,"89":75,"104":1,"105":1,"111":1,"125":40,"127":20}}],["constructor",{"2":{"31":1,"104":3,"126":1,"127":1}}],["constructing",{"2":{"31":1}}],["construct",{"2":{"21":3,"24":3,"26":3,"30":1,"31":3,"89":6,"125":5,"127":3}}],["constant",{"2":{"6":1,"35":1,"36":1,"89":3,"125":2}}],["own",{"2":{"127":1}}],["objs=dictionary",{"2":{"127":1}}],["objs",{"2":{"127":7}}],["objectives",{"2":{"127":10}}],["objective",{"2":{"126":4,"127":24}}],["observable",{"2":{"31":1}}],["o",{"2":{"104":1,"127":16}}],["occurs",{"2":{"38":2,"89":2}}],["occurrences",{"2":{"38":7,"89":7}}],["others",{"2":{"86":1}}],["other",{"0":{"70":1},"2":{"31":1,"70":1,"86":1,"87":1,"88":2,"127":2}}],["otherwise",{"2":{"1":3,"3":4,"8":1,"22":1,"25":1,"27":1,"30":1,"35":3,"38":4,"40":1,"49":1,"57":2,"89":28,"98":2,"99":2,"117":2,"118":2,"125":3,"127":1}}],["oversampling",{"2":{"104":1,"113":6}}],["oversample",{"2":{"12":2,"89":2,"113":1,"125":2}}],["overview",{"0":{"81":1},"2":{"75":1}}],["overviews",{"0":{"65":1}}],["overlap",{"2":{"57":21,"89":21}}],["over",{"2":{"14":1,"29":1,"33":1,"35":1,"36":1,"46":2,"89":7,"103":1,"104":1,"125":4,"126":1,"127":1}}],["ouput",{"2":{"104":1}}],["output",{"2":{"89":2,"122":2,"125":2}}],["outputs",{"2":{"35":1,"89":1,"122":3,"125":1}}],["outlined",{"2":{"33":1}}],["outcomes",{"2":{"5":1}}],["our",{"2":{"12":1}}],["ongoing",{"2":{"57":2,"89":2}}],["only",{"2":{"38":1,"89":6,"92":1,"95":1,"100":1,"106":2,"111":1,"125":3,"126":2,"127":1}}],["on",{"0":{"36":1,"49":1,"84":1},"2":{"5":2,"6":2,"18":1,"19":1,"21":1,"29":1,"30":1,"31":1,"35":1,"36":3,"40":2,"42":1,"43":2,"46":1,"55":1,"73":1,"86":1,"87":3,"89":14,"104":3,"109":1,"115":1,"119":2,"121":1,"125":4,"126":2,"127":2}}],["once",{"2":{"5":2}}],["one",{"2":{"5":1,"30":1,"33":1,"36":1,"89":14,"92":1,"95":1,"100":1,"102":2,"104":2,"106":2,"108":1,"109":4,"113":1,"125":10,"127":3}}],["originating",{"2":{"89":1}}],["origins",{"2":{"57":6,"89":6}}],["oriented",{"2":{"4":1}}],["org",{"2":{"36":1,"89":1,"125":1}}],["organizations",{"2":{"87":1}}],["organization",{"2":{"33":1,"65":1,"75":1}}],["or",{"2":{"5":1,"6":1,"10":1,"16":1,"19":4,"20":1,"21":2,"22":2,"24":1,"25":2,"26":1,"27":2,"31":1,"34":1,"35":1,"36":2,"38":1,"42":1,"47":2,"57":4,"63":1,"86":2,"87":4,"88":2,"89":25,"106":1,"109":1,"119":5,"122":5,"125":8,"127":6}}],["order",{"2":{"1":6,"31":1,"40":2,"89":9,"119":1,"126":2}}],["ordered",{"2":{"1":6,"89":8,"106":1,"126":3,"127":1}}],["opt",{"2":{"126":1}}],["optmizers",{"2":{"104":1}}],["optimisation",{"2":{"86":1}}],["optimizing",{"2":{"87":1,"127":7}}],["optimization",{"0":{"55":1,"58":1,"70":1,"71":1,"79":1,"80":1},"1":{"59":1,"60":1,"72":1,"73":1,"74":1,"80":1,"81":1,"82":1},"2":{"33":1,"59":1,"60":1,"72":1,"73":1,"75":1,"77":1,"80":2,"82":1,"87":2,"127":2}}],["optimizers",{"0":{"112":1},"1":{"113":1,"114":1},"2":{"104":1}}],["optimizer",{"2":{"86":1,"104":6,"113":8,"126":17,"127":3}}],["optimize",{"2":{"31":1,"87":1,"89":1,"104":11,"125":1,"126":3}}],["optionally",{"2":{"35":2,"36":1,"89":2,"125":2}}],["optional",{"2":{"29":1,"31":1,"89":10,"104":1,"109":1,"125":10,"127":2}}],["options",{"2":{"19":1,"104":2,"126":4,"127":32}}],["open",{"2":{"38":6,"89":6,"115":1}}],["operate",{"2":{"89":1,"119":1}}],["operation",{"2":{"89":4,"104":2,"106":4}}],["operational",{"0":{"87":1},"2":{"87":1}}],["operations",{"0":{"94":1},"2":{"10":1,"25":2,"27":2,"89":21,"92":1,"95":2,"100":1,"103":1,"104":3,"106":13,"119":1,"125":7}}],["operators",{"2":{"30":1,"89":1}}],["operator",{"2":{"1":3,"38":1,"89":4}}],["opparameterdomain",{"2":{"30":1,"89":1}}],["op",{"2":{"3":8,"6":1,"38":10,"49":4,"57":4,"89":28,"106":1}}],["op==",{"2":{"38":1,"89":1}}],["op===",{"2":{"3":2,"38":4,"89":6}}],["op=>",{"2":{"1":2,"89":2}}],["op=≥",{"2":{"1":2,"38":1,"89":3}}],["op=≤",{"2":{"1":6,"38":3,"89":9}}],["op=",{"2":{"1":6,"89":6}}],["op=+",{"2":{"1":2,"89":2}}],["often",{"2":{"49":2,"57":6,"87":1,"89":8}}],["offer",{"2":{"33":1}}],["offering",{"2":{"20":1,"33":1,"34":1}}],["offers",{"2":{"5":1,"19":1,"34":1}}],["of",{"0":{"91":1,"94":1,"97":1,"116":1},"1":{"98":1,"99":1,"100":1,"117":1,"118":1,"119":1},"2":{"1":14,"3":17,"4":1,"5":9,"6":6,"8":3,"12":2,"14":4,"18":3,"19":8,"20":4,"21":3,"22":5,"24":7,"25":10,"26":7,"27":11,"29":14,"30":2,"31":33,"32":1,"33":13,"34":1,"35":18,"36":23,"38":35,"40":6,"46":3,"47":4,"49":8,"52":10,"57":14,"60":1,"63":1,"72":2,"75":2,"78":1,"80":2,"82":1,"85":1,"86":7,"87":2,"88":4,"89":292,"91":2,"92":2,"95":2,"98":4,"99":1,"100":2,"102":6,"103":3,"104":14,"106":18,"109":3,"115":3,"117":13,"118":4,"119":8,"122":3,"125":96,"126":16,"127":78}}],["f2",{"2":{"127":2}}],["fetch",{"2":{"127":1}}],["few",{"2":{"123":1}}],["feasible",{"2":{"88":1}}],["features",{"0":{"5":1,"19":1,"33":1,"108":1},"2":{"33":1,"65":1}}],["feature",{"2":{"4":1,"19":1,"33":1}}],["front",{"2":{"115":1}}],["from",{"0":{"52":1,"60":1,"70":1},"2":{"22":4,"25":2,"27":3,"30":2,"31":2,"33":2,"36":1,"46":1,"52":1,"60":1,"75":1,"87":1,"89":14,"104":1,"111":1,"119":2,"125":2,"127":17}}],["framework",{"2":{"86":1}}],["friendly",{"2":{"34":1}}],["free",{"2":{"31":1}}],["filter",{"2":{"113":1}}],["file",{"2":{"89":7,"106":1,"125":7}}],["fill",{"2":{"31":4}}],["finds",{"2":{"122":1}}],["find",{"2":{"88":5,"127":2}}],["finding",{"2":{"86":1,"87":1,"88":2}}],["finishes",{"2":{"57":8,"89":8}}],["finish",{"2":{"52":2,"89":2}}],["fields",{"2":{"35":1,"89":1,"125":1}}],["first",{"0":{"74":1},"2":{"3":2,"35":1,"36":3,"52":1,"57":8,"89":15,"104":1,"113":4,"122":2,"127":1}}],["flatten",{"2":{"113":1}}],["flaw",{"2":{"31":1}}],["flexibility",{"2":{"33":2}}],["flexible",{"2":{"19":1,"29":2,"33":1,"34":1,"47":1,"89":5,"119":1,"125":3}}],["float64",{"2":{"35":2,"89":2,"113":1,"126":1,"127":5}}],["flows",{"2":{"31":1}}],["flow",{"2":{"31":1}}],["floor",{"2":{"29":1,"89":1,"125":1}}],["f",{"2":{"8":1,"12":2,"33":1,"35":3,"89":16,"102":6,"125":14,"126":20,"127":7}}],["full",{"0":{"89":1}}],["further",{"2":{"31":1}}],["future",{"0":{"63":1},"2":{"6":1,"29":1,"89":1,"125":1}}],["func",{"2":{"127":6}}],["funcs",{"2":{"89":2,"102":2,"125":2}}],["functionality",{"2":{"5":1}}],["functionalities",{"0":{"5":1,"19":1,"33":1},"2":{"5":1,"19":1,"20":1,"33":1}}],["functions",{"2":{"4":1,"5":2,"19":1,"31":1,"35":2,"89":8,"100":1,"106":3,"119":4,"125":2}}],["function",{"2":{"1":3,"3":4,"6":2,"8":2,"10":1,"12":2,"14":1,"16":2,"21":4,"22":5,"24":6,"25":4,"26":7,"27":5,"28":2,"29":3,"30":4,"31":1,"33":2,"35":29,"36":14,"38":4,"40":1,"42":1,"46":2,"49":1,"52":3,"57":2,"89":67,"91":2,"92":1,"94":2,"95":1,"98":6,"99":4,"100":1,"102":12,"103":4,"104":4,"106":10,"108":2,"109":3,"111":1,"113":7,"115":1,"117":12,"118":6,"119":6,"122":1,"125":30,"126":14,"127":16}}],["fundamentals",{"2":{"82":1}}],["fundamental",{"2":{"5":1,"46":1,"89":1}}],["found",{"2":{"106":1}}],["foundation",{"2":{"19":1}}],["foundational",{"2":{"4":1,"5":1}}],["fold",{"2":{"86":1}}],["following",{"2":{"21":1,"33":1,"35":1,"38":1,"89":8,"102":2,"109":1,"119":1,"125":6,"127":1}}],["follows",{"2":{"12":1,"126":2}}],["follow",{"2":{"6":1}}],["focuses",{"2":{"86":1,"87":2}}],["focusing",{"2":{"18":1}}],["fostering",{"2":{"5":1}}],["forbidden",{"2":{"31":1,"89":1}}],["forwarded",{"2":{"127":1}}],["forward",{"2":{"31":2}}],["formal",{"2":{"127":1}}],["formated",{"2":{"89":1,"125":1}}],["formatted",{"2":{"89":1,"102":1}}],["format",{"2":{"6":1,"21":1,"31":9,"89":2,"109":1,"125":2}}],["formulating",{"2":{"60":1}}],["formulation",{"2":{"19":1}}],["form",{"2":{"49":2,"89":2}}],["forseeable",{"2":{"6":1}}],["for",{"0":{"45":1,"71":1,"106":1,"109":1},"1":{"72":1,"73":1,"74":1},"2":{"3":4,"5":5,"6":1,"8":5,"10":1,"16":1,"18":1,"19":13,"20":3,"21":3,"22":3,"24":2,"25":3,"26":2,"27":3,"28":2,"29":1,"30":2,"31":13,"32":1,"33":6,"34":4,"35":5,"36":4,"42":1,"43":1,"44":1,"47":1,"57":6,"63":1,"66":1,"72":1,"73":1,"77":1,"86":5,"87":1,"88":3,"89":53,"98":1,"100":2,"101":1,"102":4,"104":8,"106":2,"108":1,"109":2,"111":1,"113":2,"117":1,"119":5,"120":1,"122":1,"125":12,"126":4,"127":18}}],["faster",{"2":{"127":1}}],["facilities",{"2":{"31":6}}],["facilitating",{"2":{"19":1,"34":1}}],["facilitates",{"2":{"5":1,"19":1,"89":1,"119":1}}],["facilitate",{"2":{"4":1,"32":1}}],["fake",{"2":{"30":1,"89":1}}],["fakeautomaton",{"2":{"8":2,"19":1,"22":2,"25":1,"27":1,"30":5,"89":5}}],["fallback",{"2":{"21":1,"22":2,"24":1,"25":2,"26":1,"27":2,"89":4,"125":1}}],["false",{"2":{"1":3,"3":10,"8":1,"10":1,"12":1,"22":3,"25":3,"27":3,"30":1,"35":3,"36":1,"38":4,"40":1,"44":1,"49":1,"57":2,"89":32,"100":1,"113":3,"119":1,"125":5,"127":2}}],["fa",{"2":{"8":1,"22":4,"25":2,"27":2,"30":3,"89":3}}],["vov",{"2":{"126":2}}],["v",{"2":{"89":3,"102":3,"122":7,"125":2,"126":4,"127":3}}],["vs",{"0":{"87":1},"2":{"35":3,"89":3}}],["vi",{"2":{"126":1}}],["viable",{"2":{"89":6,"106":5,"125":1}}],["vision",{"2":{"63":1}}],["vital",{"2":{"33":1}}],["vice",{"2":{"3":2,"89":3,"119":1}}],["verbose",{"2":{"127":4}}],["verbosity",{"2":{"127":1}}],["very",{"2":{"87":1}}],["verifies",{"2":{"52":2,"89":2}}],["versionnumber",{"2":{"122":1}}],["versions",{"2":{"122":3}}],["version",{"2":{"36":1,"89":2,"119":1,"122":4}}],["versatile",{"2":{"89":2}}],["versatility",{"2":{"20":1}}],["versa",{"2":{"3":2,"89":3,"119":1}}],["vectorofvariables",{"2":{"126":1}}],["vectors",{"2":{"89":3,"94":2,"117":1}}],["vector",{"2":{"1":6,"6":2,"8":1,"21":1,"22":4,"24":4,"25":3,"26":1,"27":3,"29":1,"30":1,"36":2,"38":9,"46":1,"52":2,"89":59,"91":1,"94":2,"102":2,"109":2,"113":5,"117":10,"118":6,"122":2,"125":10,"126":2,"127":1}}],["var",{"2":{"127":12}}],["variety",{"2":{"88":1}}],["various",{"0":{"112":1},"1":{"113":1,"114":1},"2":{"14":1,"19":1,"21":1,"33":1,"55":1,"84":1,"88":1,"89":2,"119":1,"125":1}}],["variant",{"2":{"57":2,"89":2}}],["variants",{"2":{"1":3,"3":4,"38":4,"40":1,"46":1,"49":1,"52":2,"57":2,"89":19}}],["variableinfo",{"2":{"126":1}}],["variable",{"0":{"18":1},"1":{"19":1,"20":1,"21":1,"22":1,"23":1,"24":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1},"2":{"3":6,"18":1,"19":1,"20":1,"22":3,"25":3,"27":3,"33":1,"35":1,"42":2,"47":2,"89":9,"125":2,"126":4,"127":40}}],["variables",{"2":{"3":8,"30":1,"38":8,"40":2,"46":1,"47":1,"49":2,"52":1,"69":1,"86":1,"89":32,"98":3,"103":1,"108":2,"125":4,"126":5,"127":26}}],["vars",{"2":{"6":1,"40":2,"57":15,"89":42,"98":6,"126":2,"127":24}}],["vars=dictionary",{"2":{"127":1}}],["vars=ones",{"2":{"38":2,"89":2}}],["vars=nothing",{"2":{"1":10,"89":10}}],["vars=",{"2":{"1":4,"40":2,"89":11}}],["vars=zeros",{"2":{"1":2,"89":2}}],["valparameterdomain",{"2":{"30":1,"89":1}}],["validity",{"2":{"46":1,"89":1}}],["valid",{"2":{"21":1,"52":1,"87":2,"89":10,"108":2,"109":3,"125":5}}],["val=3",{"2":{"38":1,"89":1}}],["val=2",{"2":{"3":1,"38":3,"89":4}}],["val=15",{"2":{"38":2,"89":2}}],["val=1",{"2":{"1":2,"3":1,"38":1,"89":4}}],["val=nothing",{"2":{"1":2,"3":2,"89":4}}],["valued",{"2":{"52":1,"89":1}}],["value",{"2":{"1":1,"3":13,"22":8,"25":7,"26":2,"27":10,"30":2,"31":1,"35":3,"36":5,"38":5,"49":4,"52":3,"89":58,"100":2,"106":1,"109":1,"119":8,"125":13,"126":6,"127":20}}],["values",{"2":{"1":13,"3":4,"21":2,"24":2,"26":4,"30":3,"31":4,"35":2,"36":1,"38":24,"40":6,"47":2,"49":3,"52":2,"89":66,"119":5,"125":4,"126":6,"127":11}}],["val",{"0":{"99":1,"118":1},"2":{"1":3,"3":8,"6":1,"16":2,"21":1,"31":4,"38":21,"49":4,"57":6,"89":74,"98":6,"99":6,"118":8,"119":8,"125":3,"127":8}}],["valsparameterdomain",{"2":{"30":1,"89":1}}],["vals=nothing",{"2":{"36":2,"89":2,"125":1}}],["vals=",{"2":{"1":2,"38":13,"89":15}}],["vals",{"2":{"1":2,"6":1,"38":18,"89":31,"117":8,"119":2}}],["tbw",{"2":{"104":4}}],["typically",{"2":{"87":1}}],["typeof",{"2":{"126":6}}],["typemax",{"2":{"113":1,"127":1}}],["type",{"2":{"8":4,"19":2,"21":6,"24":2,"26":5,"28":1,"29":1,"30":9,"31":7,"33":1,"35":1,"88":2,"89":34,"104":7,"106":1,"111":2,"119":1,"125":13,"126":32,"127":17}}],["types",{"2":{"4":1,"5":2,"19":3,"41":1,"47":1,"80":1,"89":2,"119":2,"127":8}}],["tips",{"2":{"77":1}}],["timelimitsec",{"2":{"126":1}}],["timestamps",{"2":{"127":1}}],["times",{"2":{"38":3,"89":3}}],["time",{"2":{"31":2,"57":8,"88":1,"89":10,"106":2,"119":1,"126":1,"127":27}}],["tutorials",{"0":{"83":1,"84":1},"1":{"84":1,"85":1},"2":{"84":1}}],["tutorial",{"2":{"74":1}}],["tuples",{"2":{"47":2,"89":6}}],["tuple",{"2":{"3":7,"21":5,"24":5,"26":5,"31":2,"57":1,"89":17,"125":5}}],["temporary",{"2":{"127":1}}],["terminationstatuscode",{"2":{"126":1}}],["terminology",{"0":{"69":1}}],["text",{"2":{"90":1,"93":1,"96":1,"115":1}}],["teach",{"2":{"78":1}}],["techniques",{"0":{"53":1,"70":1},"1":{"54":1,"55":1},"2":{"87":2,"88":2}}],["test",{"0":{"45":1},"2":{"104":2,"113":6}}],["testing",{"2":{"35":1,"89":1,"104":1,"126":1}}],["tendency",{"2":{"31":1}}],["tabu",{"2":{"81":1,"127":46}}],["table",{"2":{"36":4,"89":4,"113":1,"125":4}}],["task",{"2":{"57":16,"89":16}}],["tasks",{"2":{"57":18,"89":18,"127":1}}],["take",{"2":{"36":1,"88":1,"89":1,"125":1}}],["takes",{"2":{"35":1,"36":1,"40":2,"89":4}}],["targeted",{"2":{"29":1,"89":2,"125":2,"127":3}}],["tailoring",{"2":{"19":1,"33":1}}],["t",{"2":{"8":2,"21":8,"24":11,"26":14,"30":5,"31":10,"35":1,"36":2,"52":2,"89":29,"125":12,"126":12,"127":7}}],["tr",{"2":{"89":58,"102":3,"117":33,"118":18}}],["try",{"2":{"88":1,"113":1}}],["tries",{"2":{"88":1}}],["train",{"2":{"89":3,"104":2,"111":3,"113":5,"125":2}}],["training",{"2":{"89":1,"104":7,"125":1}}],["traditional",{"2":{"33":1}}],["transpose",{"2":{"113":3}}],["transportation",{"2":{"87":1}}],["transported",{"2":{"31":1}}],["transform",{"2":{"89":1,"109":1,"125":1}}],["transforms",{"2":{"89":4,"119":4}}],["transformations",{"0":{"115":1,"116":1},"1":{"116":1,"117":2,"118":2,"119":2},"2":{"89":16,"100":1,"116":1,"119":15,"125":3}}],["transformation",{"2":{"89":12,"115":3,"119":8,"125":4}}],["transition",{"2":{"5":2}}],["true",{"2":{"1":3,"3":6,"8":3,"10":1,"12":1,"22":3,"25":2,"27":2,"30":1,"35":2,"36":1,"38":4,"40":1,"44":1,"45":2,"49":1,"57":2,"89":29,"104":1,"106":1,"119":1,"125":4,"126":2,"127":3}}],["two",{"2":{"3":2,"8":1,"21":1,"24":3,"26":3,"31":1,"36":1,"41":1,"46":1,"47":1,"57":4,"86":1,"89":11,"125":3,"126":1}}],["th",{"2":{"89":1,"106":1}}],["threads",{"2":{"127":8}}],["threshold",{"2":{"89":1,"119":1}}],["throw",{"2":{"113":1}}],["through",{"2":{"33":1,"42":3,"44":2,"60":1,"89":3,"91":1,"94":2,"104":2}}],["than",{"2":{"35":1,"36":1,"42":1,"89":11,"117":5,"118":2,"119":1,"126":2}}],["that",{"2":{"1":7,"3":14,"4":1,"5":6,"6":1,"18":1,"21":2,"22":2,"24":1,"25":2,"26":3,"27":2,"29":1,"31":2,"33":1,"35":11,"36":2,"38":11,"40":4,"42":4,"43":2,"44":1,"46":2,"47":4,"49":2,"52":5,"57":12,"75":1,"86":3,"87":4,"88":5,"89":101,"92":1,"95":1,"100":2,"102":2,"103":1,"104":3,"106":3,"108":1,"119":3,"125":16,"126":11,"127":10}}],["those",{"2":{"33":1,"106":1}}],["thus",{"2":{"31":1}}],["this",{"2":{"3":2,"5":3,"6":1,"18":1,"19":1,"20":1,"29":1,"31":1,"32":1,"33":3,"35":1,"36":4,"43":1,"46":1,"52":2,"57":2,"89":17,"106":2,"119":1,"121":1,"123":1,"125":2,"127":3}}],["third",{"2":{"3":2,"89":2}}],["theory",{"0":{"60":1}}],["them",{"2":{"46":1,"86":1,"89":1,"127":1}}],["they",{"2":{"31":1,"42":3,"47":3,"54":1,"62":1,"86":1,"87":1,"88":1}}],["there",{"2":{"31":3,"36":1,"52":1,"89":2}}],["thereby",{"2":{"5":1,"18":1}}],["then",{"2":{"29":1,"36":2,"43":1,"89":3,"122":2,"125":1,"127":2}}],["these",{"2":{"19":1,"33":3,"36":1,"42":1,"47":2,"88":1,"89":1}}],["their",{"0":{"54":1},"2":{"5":1,"33":1,"55":1,"89":1,"119":1}}],["the",{"0":{"62":1},"2":{"1":10,"3":25,"4":2,"5":19,"6":10,"8":2,"10":3,"12":1,"14":5,"16":2,"18":4,"19":14,"20":5,"21":8,"22":6,"24":8,"25":9,"26":6,"27":10,"29":13,"30":5,"31":54,"32":2,"33":19,"34":3,"35":46,"36":67,"38":41,"40":3,"41":1,"42":6,"43":9,"44":6,"46":6,"47":4,"49":16,"52":17,"57":33,"60":1,"62":1,"63":1,"65":1,"72":1,"75":3,"78":1,"82":1,"85":1,"86":4,"87":3,"88":3,"89":466,"90":1,"91":1,"92":3,"93":1,"95":3,"96":1,"97":2,"98":7,"99":3,"100":4,"102":4,"103":3,"104":17,"106":20,"108":1,"109":1,"115":5,"116":2,"117":25,"118":12,"119":12,"122":10,"123":1,"125":136,"126":17,"127":120}}],["towards",{"2":{"89":1,"103":1,"125":1}}],["too",{"2":{"88":1}}],["tool",{"2":{"32":1}}],["toolkit",{"2":{"20":1}}],["tools",{"0":{"35":1,"50":1},"2":{"19":1,"34":2}}],["topics",{"2":{"84":1}}],["total",{"2":{"25":1,"27":1,"89":1}}],["todo",{"0":{"7":1,"9":1,"11":1,"13":1,"15":1,"17":1},"2":{"35":1,"43":1,"44":2,"89":1,"127":1}}],["to",{"0":{"22":1,"25":1,"27":1,"50":1,"60":1,"75":1,"107":1},"1":{"108":1},"2":{"1":9,"3":12,"4":1,"5":2,"6":1,"8":1,"10":1,"12":1,"14":1,"16":1,"19":6,"21":4,"22":6,"24":3,"25":4,"26":1,"27":4,"29":3,"30":18,"31":19,"32":2,"33":4,"34":2,"35":17,"36":23,"38":13,"40":2,"42":1,"43":6,"44":3,"47":1,"49":3,"52":4,"57":2,"62":1,"74":1,"75":1,"78":1,"85":1,"86":3,"87":5,"88":9,"89":187,"90":1,"93":1,"94":2,"96":1,"102":6,"103":1,"104":12,"106":3,"107":1,"108":1,"109":1,"111":1,"113":1,"115":2,"117":18,"118":7,"119":7,"121":1,"123":1,"125":45,"126":10,"127":49}}],["ignores",{"2":{"57":1,"89":1}}],["ignore",{"2":{"57":1,"89":1}}],["ignored",{"2":{"57":2,"89":2}}],["illustrate",{"2":{"43":1}}],["io",{"2":{"31":2}}],["immutable",{"2":{"26":1,"89":1,"125":1}}],["impossible",{"2":{"88":1}}],["importance",{"2":{"75":1,"85":1}}],["improve",{"2":{"78":1,"87":1,"88":1}}],["improvement",{"0":{"78":1},"2":{"127":1}}],["improving",{"2":{"33":1,"127":1}}],["implemented",{"2":{"86":1}}],["implement",{"2":{"8":1,"21":1,"30":1,"89":2,"125":1}}],["implementations",{"2":{"19":1}}],["implementation",{"2":{"8":2,"89":2,"115":1,"125":2}}],["impact",{"2":{"5":1,"55":1}}],["icnlocalsearchoptimizer",{"2":{"104":3}}],["icngeneticoptimizer",{"2":{"104":4}}],["icnoptimizer",{"2":{"104":3}}],["icnconfig",{"2":{"104":4}}],["icns",{"2":{"90":1,"93":1,"96":1,"104":1,"106":1,"115":1}}],["icn=icn",{"2":{"89":1,"125":1}}],["icn",{"0":{"106":1},"2":{"25":2,"27":2,"35":1,"89":36,"92":1,"95":1,"100":1,"104":12,"106":9,"119":1,"125":23}}],["i`",{"2":{"22":1,"25":1,"27":1,"89":1}}],["i",{"2":{"22":10,"24":7,"25":8,"26":3,"27":8,"30":2,"49":2,"57":4,"89":64,"102":2,"103":1,"106":2,"113":2,"117":23,"118":13,"125":3,"127":1}}],["identity",{"2":{"89":14,"98":4,"117":6,"119":4}}],["identified",{"2":{"35":1,"89":1}}],["ids",{"2":{"30":1,"89":1}}],["idparameterdomain",{"2":{"30":1,"89":1}}],["id",{"2":{"6":1,"31":2,"89":1,"127":13}}],["id=3",{"2":{"3":1,"89":1}}],["id=1",{"2":{"3":3,"89":3}}],["id=nothing",{"2":{"3":4,"89":4}}],["iterate",{"2":{"127":1}}],["iterators",{"2":{"113":1}}],["iterations",{"2":{"127":3}}],["iteration",{"2":{"89":2,"125":2,"127":8}}],["iter=100",{"2":{"89":2,"125":2}}],["iter",{"2":{"89":8,"104":3,"125":8,"127":1}}],["ith",{"2":{"22":2,"25":1,"27":1,"30":1,"89":1}}],["itvls",{"2":{"24":3,"89":3}}],["itv",{"2":{"21":2,"22":8,"24":2,"25":7,"26":2,"27":7,"30":3,"89":9,"125":2}}],["itself",{"2":{"89":1,"125":1}}],["its",{"2":{"5":1,"24":1,"26":1,"31":1,"33":2,"35":1,"65":1,"68":1,"72":1,"75":1,"82":1,"89":5,"102":2,"125":3,"127":2}}],["it",{"2":{"4":1,"21":1,"30":8,"32":1,"35":9,"36":25,"38":2,"42":1,"43":1,"44":1,"46":2,"49":2,"52":1,"57":6,"86":2,"88":2,"89":65,"97":1,"104":1,"106":1,"109":1,"116":1,"119":1,"122":1,"125":6,"126":1,"127":6}}],["isa",{"2":{"113":1}}],["issue",{"0":{"45":1},"2":{"115":1}}],["isempty",{"2":{"10":3,"22":5,"89":6}}],["is",{"0":{"68":1},"2":{"3":10,"4":1,"5":4,"6":2,"10":2,"19":2,"21":2,"22":7,"24":3,"25":5,"27":5,"29":3,"30":9,"31":9,"32":2,"33":3,"35":7,"36":14,"38":15,"40":3,"42":3,"43":1,"44":3,"46":2,"49":5,"52":9,"57":10,"86":5,"87":5,"88":4,"89":156,"92":1,"95":1,"100":2,"102":1,"104":5,"106":7,"109":4,"111":1,"117":20,"118":13,"119":4,"122":4,"125":26,"126":8,"127":17}}],["iff",{"2":{"89":2,"100":1,"119":1,"125":2}}],["if",{"2":{"1":3,"3":4,"8":3,"21":1,"22":10,"25":9,"27":9,"29":2,"30":2,"35":9,"36":8,"38":4,"40":1,"49":1,"52":2,"57":2,"89":65,"98":2,"99":2,"104":1,"106":4,"109":4,"113":4,"117":2,"118":2,"122":2,"125":12,"127":14}}],["init",{"2":{"113":1}}],["initial",{"2":{"88":1}}],["initializes",{"2":{"36":1,"89":1}}],["inner",{"2":{"104":1,"127":1}}],["inf",{"2":{"127":1}}],["info",{"2":{"126":2,"127":6}}],["information",{"2":{"89":1,"104":1,"125":1,"127":1}}],["infrastructure",{"2":{"18":1}}],["involving",{"2":{"89":1,"119":1}}],["involves",{"2":{"86":1}}],["invalid",{"2":{"33":1,"35":1,"89":3,"125":1}}],["investigated",{"2":{"31":1}}],["input",{"2":{"31":1,"36":3,"89":3,"122":2}}],["inputs",{"2":{"19":1,"35":1,"89":1}}],["instead",{"2":{"89":3,"102":2,"109":1,"125":3,"126":1,"127":1}}],["instructions",{"2":{"66":1}}],["installed",{"2":{"122":1}}],["installing",{"2":{"66":1}}],["installation",{"0":{"66":1}}],["instantiation",{"2":{"40":9,"89":9}}],["instance",{"2":{"19":1,"31":4,"52":2,"89":3,"109":1,"125":1,"127":2}}],["insertion",{"2":{"16":1,"89":1,"125":1,"126":1}}],["insert",{"2":{"16":1,"89":1,"125":1,"127":3}}],["independent",{"2":{"127":1}}],["independently",{"2":{"127":1}}],["indexed",{"2":{"3":2,"89":2}}],["index",{"2":{"3":3,"49":2,"89":5,"127":1}}],["industry",{"2":{"86":1}}],["indice",{"2":{"127":1}}],["indices",{"2":{"127":6}}],["indicate",{"2":{"127":2}}],["indicates",{"2":{"31":1,"35":2,"89":2,"125":2}}],["individuals",{"2":{"104":1}}],["indispensable",{"2":{"32":1}}],["ind",{"2":{"16":1,"89":1,"125":1,"127":2}}],["inc",{"2":{"127":6}}],["increment",{"2":{"127":3}}],["incremental",{"2":{"126":1}}],["increase",{"2":{"16":1,"89":1,"125":1}}],["increasing",{"2":{"1":10,"89":10}}],["inclusive",{"2":{"89":3,"106":3}}],["included",{"2":{"89":1}}],["include",{"2":{"33":1,"86":1}}],["includes",{"2":{"5":1,"57":1,"89":3,"100":1,"119":1,"125":2}}],["including",{"0":{"36":1},"2":{"19":1,"33":1}}],["incorporation",{"2":{"33":1,"34":1}}],["incsert",{"2":{"16":2,"89":1,"125":1}}],["introductory",{"2":{"75":1}}],["introduction",{"0":{"50":1,"107":1},"1":{"108":1},"2":{"107":1}}],["introduce",{"2":{"65":1,"69":1,"81":1,"127":1}}],["into",{"0":{"79":1},"1":{"80":1,"81":1,"82":1},"2":{"21":1,"31":1,"41":1,"54":1,"89":6,"91":1,"102":1,"104":1,"106":1,"109":1,"125":3,"127":1}}],["intend",{"2":{"127":1}}],["intentionally",{"2":{"42":1}}],["intentional",{"2":{"42":1}}],["intention",{"0":{"42":1,"43":1},"1":{"43":1,"44":1,"45":1,"46":1},"2":{"41":1,"42":2,"43":1,"44":2}}],["intensional",{"2":{"33":1,"46":1,"89":1}}],["intension",{"2":{"33":1,"43":1,"44":3,"46":2,"89":2}}],["integer",{"2":{"31":3,"38":1,"80":1,"86":1,"89":1}}],["integrating",{"2":{"34":1}}],["integration",{"0":{"0":1,"2":1,"32":1,"37":1,"39":1,"48":1,"51":1,"56":1},"1":{"1":1,"3":1,"33":1,"34":1,"35":1,"36":1,"38":1,"40":1,"49":1,"52":1,"57":1},"2":{"33":3}}],["integrates",{"2":{"19":1}}],["integrate",{"2":{"5":1}}],["interfacing",{"0":{"123":1}}],["interfaced",{"2":{"121":1}}],["interface",{"0":{"111":1},"2":{"5":3,"8":2,"21":1,"42":1,"44":1,"86":3,"89":4,"111":1,"123":1,"125":1,"126":1}}],["interpretable",{"2":{"89":1,"106":1,"125":1}}],["interpreted",{"2":{"52":2,"89":2}}],["interdiction",{"2":{"31":2,"127":2}}],["interval",{"2":{"21":1,"22":2,"24":6,"25":2,"26":3,"27":2,"30":1,"89":8,"125":1}}],["intervals",{"2":{"19":2,"21":2,"22":5,"24":5,"25":4,"26":2,"27":4,"28":2,"30":2,"89":11,"125":2}}],["intersect",{"2":{"19":1,"24":2,"26":1,"89":2,"125":1}}],["intersecting",{"2":{"19":1}}],["intersections",{"2":{"24":2,"26":1,"89":2,"125":1}}],["intersection",{"2":{"6":1,"36":1,"89":1,"125":1}}],["internally",{"2":{"89":1,"102":1}}],["internals",{"2":{"19":1,"29":1,"89":1}}],["internal",{"2":{"8":1,"21":1,"31":2,"89":4,"106":1,"125":1,"127":4}}],["interacting",{"2":{"33":1,"106":1}}],["interact",{"2":{"5":1}}],["interoperability",{"2":{"4":1,"5":1}}],["int",{"2":{"1":8,"3":1,"22":2,"25":2,"27":2,"29":1,"31":11,"36":1,"38":9,"46":1,"49":1,"52":2,"89":35,"102":8,"113":2,"125":4,"126":6,"127":30}}],["in",{"0":{"0":1,"2":1,"20":1,"32":1,"34":1,"37":1,"39":1,"43":1,"48":1,"51":1,"56":1},"1":{"1":1,"3":1,"33":1,"34":1,"35":1,"36":1,"38":1,"40":1,"49":1,"52":1,"57":1},"2":{"1":6,"3":14,"4":1,"5":1,"6":1,"8":2,"10":3,"14":1,"16":1,"20":1,"21":4,"22":8,"24":3,"25":10,"26":5,"27":11,"29":2,"30":1,"31":9,"32":2,"33":3,"34":1,"35":4,"36":7,"38":24,"40":4,"41":1,"42":2,"43":1,"44":3,"46":1,"47":1,"49":6,"57":18,"68":1,"75":1,"82":1,"85":1,"86":7,"88":3,"89":134,"98":2,"102":2,"103":1,"104":3,"106":7,"113":2,"115":1,"117":1,"119":1,"122":1,"125":29,"126":16,"127":16}}],["df",{"2":{"104":2,"113":24}}],["ds",{"2":{"104":2}}],["date",{"2":{"31":1}}],["datatype",{"2":{"127":1}}],["dataframe",{"2":{"104":1,"113":2}}],["data",{"2":{"5":1,"89":2,"119":2,"127":1}}],["d₂",{"2":{"24":2,"26":2,"89":2,"125":2}}],["d₁",{"2":{"24":2,"26":2,"89":2,"125":2}}],["draw",{"2":{"22":2,"25":1,"27":1,"30":1,"89":1,"127":5}}],["d5",{"2":{"21":1,"24":1,"26":1,"89":1,"125":1}}],["d4",{"2":{"21":1,"24":1,"26":1,"89":1,"125":1}}],["d3",{"2":{"21":1,"24":1,"26":1,"89":1,"125":1}}],["d2",{"2":{"21":1,"24":1,"26":1,"89":1,"125":1}}],["dynamic",{"2":{"19":3,"21":1,"24":1,"31":1,"89":3,"119":1,"125":1,"127":11}}],["dom",{"2":{"89":8,"98":2,"99":2,"104":2,"113":4,"125":4}}],["domain",{"2":{"19":10,"20":1,"21":19,"22":1,"24":12,"25":1,"26":15,"27":1,"29":1,"30":9,"31":1,"38":1,"86":1,"89":46,"98":1,"99":1,"104":3,"109":4,"125":32,"127":20}}],["domains",{"0":{"18":1},"1":{"19":1,"20":1,"21":1,"22":1,"23":1,"24":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1},"2":{"18":2,"19":8,"20":1,"21":4,"22":3,"24":9,"25":2,"26":7,"27":2,"28":2,"29":6,"30":1,"31":1,"69":1,"89":30,"104":2,"113":11,"125":23,"127":3}}],["do",{"2":{"57":4,"89":6,"103":1,"119":1,"125":1}}],["doesn",{"2":{"35":1,"36":2,"89":3}}],["does",{"2":{"35":1,"36":3,"57":2,"89":9,"126":1}}],["documentation",{"0":{"46":1},"2":{"31":1,"101":1,"104":1,"120":1,"121":1,"122":1,"126":1,"127":1}}],["documentervitepress",{"0":{"45":1}}],["documenter",{"2":{"8":1,"100":1,"102":1}}],["docstring",{"2":{"8":2,"100":2,"102":2,"126":26,"127":29}}],["d",{"2":{"16":1,"21":14,"22":29,"24":7,"25":23,"26":9,"27":26,"28":1,"30":12,"52":4,"89":54,"104":2,"113":2,"125":22,"127":9}}],["due",{"2":{"31":1}}],["during",{"2":{"12":1,"89":1,"106":2}}],["duplication",{"2":{"5":1}}],["diff",{"2":{"89":4,"98":2,"99":2}}],["differs",{"0":{"70":1}}],["difference",{"2":{"14":2,"21":1,"24":1,"26":1,"89":12,"98":3,"99":3,"117":2,"118":2,"125":2}}],["different",{"2":{"1":8,"5":1,"6":1,"19":1,"31":1,"35":5,"36":8,"42":1,"43":6,"44":3,"45":2,"46":6,"87":1,"89":29,"119":3,"125":4,"127":1}}],["dive",{"0":{"79":1},"1":{"80":1,"81":1,"82":1},"2":{"54":1}}],["directions",{"0":{"63":1},"2":{"89":1,"119":1}}],["directed",{"2":{"52":1,"89":1}}],["directly",{"2":{"5":1,"33":1,"42":1,"44":1,"89":1}}],["dispatch",{"2":{"89":1,"104":1,"119":1,"127":2}}],["displays",{"2":{"31":1}}],["display",{"2":{"31":13}}],["discuss",{"2":{"55":1,"72":1,"85":1}}],["discreteset",{"2":{"126":3}}],["discretedomain",{"2":{"19":1,"21":1,"22":3,"24":1,"25":3,"26":4,"27":3,"30":1,"89":7,"113":1,"125":2}}],["discrete",{"0":{"26":1},"1":{"27":1},"2":{"18":1,"19":2,"21":1,"24":1,"26":4,"89":5,"104":1,"125":4,"127":1}}],["distributed",{"2":{"127":1}}],["distdifferent",{"2":{"44":1,"126":2}}],["dist",{"2":{"42":1,"43":6,"44":3,"45":2,"46":5,"89":5,"127":1}}],["distinct",{"2":{"38":2,"89":2}}],["distinguishes",{"2":{"19":1}}],["distances",{"2":{"31":4,"43":2,"46":1,"89":1}}],["distance",{"2":{"21":2,"24":1,"26":1,"31":1,"46":3,"89":8,"103":1,"125":5,"127":1}}],["diagram",{"2":{"8":1,"52":4,"89":5,"125":1}}],["diagrams",{"2":{"8":2,"89":1}}],["dictionaries",{"0":{"16":1},"1":{"17":1},"2":{"16":1}}],["dictionaryview",{"2":{"127":1}}],["dictionary",{"2":{"6":1,"16":1,"31":3,"33":2,"35":1,"36":14,"89":18,"119":2,"125":8,"127":6}}],["dict",{"2":{"6":3,"36":8,"52":4,"89":12,"125":8}}],["dict=usual",{"2":{"6":1,"36":1,"89":1,"125":1}}],["dimension",{"2":{"126":6,"127":1}}],["dimensions",{"2":{"30":1,"89":1}}],["dimparameterdomain",{"2":{"30":1,"89":1}}],["dim",{"2":{"6":1,"57":2,"89":3,"113":3,"126":12,"127":4}}],["dim=2",{"2":{"3":2,"89":2}}],["dim=1",{"2":{"3":2,"89":2}}],["deepcopy",{"2":{"127":1}}],["deeper",{"2":{"54":1}}],["debugging",{"2":{"127":1}}],["debinarize",{"2":{"89":1,"109":1,"125":1}}],["denotes",{"2":{"89":2,"98":2}}],["density",{"2":{"29":1,"89":1,"125":1}}],["derived",{"2":{"89":1}}],["delta",{"2":{"127":6}}],["delegates",{"2":{"89":1,"119":1}}],["delete",{"2":{"19":1,"21":1,"27":3,"35":1,"89":5,"125":4,"127":13}}],["deletion",{"2":{"19":1}}],["delineation",{"2":{"89":2}}],["dedicated",{"2":{"43":1}}],["descent",{"0":{"113":1},"2":{"104":1}}],["descriptions",{"2":{"36":4,"89":4,"125":4}}],["description",{"2":{"36":2,"43":1,"89":3,"125":2,"126":36,"127":10}}],["describe",{"2":{"36":2,"89":2,"90":1,"93":1,"96":1,"113":1,"115":1,"125":2,"127":3}}],["describes",{"2":{"31":1}}],["design",{"2":{"5":1}}],["designed",{"2":{"4":1,"32":1,"42":1,"44":1}}],["depend",{"2":{"89":1,"119":1}}],["depends",{"2":{"21":1,"89":1,"125":1,"127":1}}],["dependencies",{"2":{"5":1}}],["determined",{"2":{"127":1}}],["determine",{"2":{"35":1,"89":2,"125":1}}],["determining",{"2":{"19":1,"33":1}}],["deterministic",{"2":{"8":1,"89":1,"125":1}}],["details",{"2":{"8":1,"100":1,"102":1}}],["decrement",{"2":{"127":1}}],["decrease",{"2":{"127":2}}],["decreasing",{"2":{"1":8,"89":8}}],["decay",{"2":{"127":3}}],["declare",{"2":{"89":1}}],["decisions",{"2":{"87":1}}],["decision",{"2":{"8":3,"52":1,"89":3,"125":1}}],["developers",{"2":{"32":1}}],["developing",{"2":{"5":1}}],["development",{"2":{"4":1,"5":3}}],["define",{"2":{"33":1,"36":3,"42":1,"43":2,"47":1,"68":1,"89":6,"125":2}}],["defines",{"2":{"24":1,"26":1,"44":1,"89":2,"106":1,"125":1}}],["defined",{"0":{"52":1},"2":{"19":2,"21":1,"26":1,"33":1,"36":1,"38":1,"42":3,"46":1,"47":3,"89":9,"98":1,"104":2,"117":1,"125":2,"126":2,"127":1}}],["defining",{"0":{"18":1,"43":1},"1":{"19":1,"20":1,"21":1,"22":1,"23":1,"24":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1},"2":{"19":1,"20":1,"33":2,"36":1,"42":1,"44":1,"89":1,"125":1}}],["definitions",{"2":{"19":1}}],["definition",{"0":{"0":1,"2":1,"32":1,"37":1,"39":1,"48":1,"51":1,"56":1},"1":{"1":1,"3":1,"33":1,"34":1,"35":1,"36":1,"38":1,"40":1,"49":1,"52":1,"57":1},"2":{"18":1,"19":1,"32":1,"33":1,"34":1,"36":1,"89":1}}],["default",{"2":{"6":3,"22":1,"29":1,"31":10,"36":8,"38":1,"89":17,"104":4,"109":1,"111":1,"125":10,"127":2}}],["defaults",{"2":{"1":1,"6":1,"16":1,"36":6,"89":8,"104":2,"125":2}}],["auto",{"2":{"113":1}}],["automated",{"2":{"36":1,"89":1}}],["automatic",{"2":{"29":1,"89":1,"125":1}}],["automatically",{"2":{"29":1,"89":1}}],["automaton",{"2":{"8":6,"30":4,"52":7,"89":15,"125":3}}],["automata",{"2":{"8":2,"19":1,"89":1}}],["among",{"2":{"104":1,"127":1}}],["amount",{"2":{"31":1}}],["affects",{"2":{"97":1,"116":1}}],["affect",{"2":{"89":1,"103":1,"125":1}}],["aggragation",{"2":{"90":1}}],["aggregate",{"2":{"89":1,"91":1}}],["aggregations",{"0":{"91":1},"2":{"89":1,"92":1,"125":1}}],["aggregation",{"0":{"90":1},"1":{"91":1,"92":1},"2":{"89":4,"92":1,"125":4}}],["ag",{"2":{"89":2,"91":2}}],["against",{"2":{"40":1,"89":2,"119":1}}],["again",{"2":{"31":1}}],["apixcspjumpmoi",{"2":{"44":1}}],["apis",{"0":{"44":1}}],["api",{"0":{"43":1,"89":1,"125":1},"2":{"42":1,"44":1}}],["appropriate",{"2":{"89":1,"119":1}}],["approach",{"2":{"5":1,"33":1,"87":2}}],["appear",{"2":{"38":3,"89":3}}],["applies",{"2":{"89":1,"102":1,"126":1}}],["applied",{"2":{"35":1,"36":1,"59":1,"89":3,"119":1,"125":2,"126":1,"127":2}}],["applicability",{"2":{"33":1}}],["applications",{"0":{"59":1},"2":{"18":1,"20":1}}],["application",{"2":{"5":2,"32":1,"33":1,"34":1,"89":1}}],["applying",{"0":{"58":1},"1":{"59":1,"60":1}}],["apply",{"2":{"33":1,"35":5,"36":3,"89":7,"119":2,"125":5}}],["about",{"0":{"105":1},"2":{"50":1,"86":1,"105":1,"124":1,"127":1}}],["absolute",{"2":{"89":2,"98":1,"99":1}}],["abs",{"2":{"36":1,"43":2,"44":2,"89":5,"98":2,"99":2,"125":1}}],["abstractstring",{"2":{"127":2}}],["abstractstring=",{"2":{"10":1,"89":1}}],["abstractstate",{"2":{"127":1}}],["abstractsolver",{"2":{"127":70}}],["abstractscalarset",{"2":{"126":1}}],["abstractscalarfunction",{"2":{"126":1}}],["abstractoptimizer",{"2":{"89":2,"104":2,"111":2,"113":1,"125":1,"126":1}}],["abstractmatrix",{"2":{"31":4}}],["abstractmultivalueddecisiondiagram",{"2":{"8":3,"89":3,"125":1}}],["abstractrange",{"2":{"21":1,"24":1,"26":2,"89":2,"125":2}}],["abstracting",{"2":{"20":1}}],["abstractdomain",{"2":{"19":3,"21":5,"22":6,"24":4,"25":5,"26":4,"27":5,"28":1,"30":10,"89":25,"125":10,"127":6}}],["abstractdictionary",{"2":{"16":1,"89":1,"125":1}}],["abstractdict",{"2":{"16":1,"89":1,"125":1}}],["abstractautomaton`",{"2":{"52":1,"89":1}}],["abstractautomaton",{"2":{"8":3,"30":1,"52":2,"89":6,"125":1}}],["abstract",{"2":{"4":1,"5":2,"8":2,"19":1,"21":1,"24":1,"26":1,"89":6,"104":2,"111":1,"125":3,"127":2}}],["abstractvectorset",{"2":{"126":15}}],["abstractvector",{"2":{"3":4,"40":2,"49":1,"57":5,"89":31,"102":1,"117":11,"118":6,"127":1}}],["ability",{"2":{"33":1}}],["avoid",{"2":{"35":1,"89":2,"125":1,"127":1}}],["avoiding",{"2":{"33":1}}],["available",{"2":{"19":1,"31":2,"34":1,"36":1,"42":1,"44":1,"86":1,"89":2,"119":1,"125":1,"127":1}}],["always",{"2":{"126":1}}],["alwaystrue",{"2":{"126":2}}],["alternative",{"2":{"106":1}}],["algorithm",{"2":{"88":2,"89":4,"104":3,"125":4}}],["algorithms",{"2":{"81":1,"88":1}}],["already",{"2":{"36":1,"89":3,"98":1,"104":1,"117":1,"127":1}}],["also",{"2":{"19":1,"38":3,"89":5,"100":1,"119":1,"125":2}}],["allequalparam",{"2":{"126":2}}],["allequal",{"2":{"126":2}}],["alldifferent",{"2":{"126":2}}],["allocations",{"2":{"89":17,"117":10,"118":6}}],["allocation",{"2":{"87":1}}],["allow",{"2":{"47":1}}],["allows",{"2":{"33":2}}],["allowing",{"2":{"19":1,"89":3,"119":1}}],["all",{"2":{"1":24,"6":1,"14":1,"19":1,"24":1,"31":1,"35":4,"36":9,"38":1,"47":1,"86":1,"88":1,"89":45,"100":1,"102":1,"119":1,"122":2,"125":10,"126":7,"127":4}}],["advantages",{"2":{"72":1}}],["advanced",{"0":{"34":1,"53":1},"1":{"54":1,"55":1},"2":{"19":1,"20":1,"33":1}}],["adjusted",{"2":{"29":1,"89":1}}],["added",{"2":{"43":1,"44":1,"126":1}}],["adds",{"2":{"36":4,"89":4}}],["adding",{"2":{"36":2,"89":2,"125":2}}],["addition",{"2":{"19":1,"33":1}}],["addtionally",{"2":{"21":1,"89":1,"125":1}}],["add",{"2":{"19":1,"21":1,"26":2,"35":1,"42":1,"43":1,"89":4,"125":3,"126":6,"127":20}}],["attribution",{"2":{"127":1}}],["attributed",{"2":{"127":6}}],["attribute",{"2":{"127":2}}],["attached",{"2":{"127":1}}],["atoms",{"2":{"31":1}}],["at",{"2":{"8":1,"19":1,"31":1,"33":1,"36":1,"38":8,"57":2,"89":15,"104":2,"106":2,"109":1,"125":3,"127":1}}],["accurate",{"2":{"113":2}}],["according",{"2":{"89":1,"119":1}}],["access",{"2":{"21":1,"89":5,"106":1,"125":4,"127":20}}],["accessing",{"2":{"19":1}}],["acceptable",{"2":{"89":2}}],["accepted",{"2":{"35":2,"52":2,"89":4,"125":2}}],["accepts",{"2":{"8":3,"30":1,"31":5,"89":3,"125":1}}],["accept",{"2":{"8":6,"30":3,"89":7,"125":1}}],["action",{"2":{"89":2,"125":2}}],["actively",{"2":{"5":1}}],["actual",{"2":{"89":1,"125":1}}],["across",{"2":{"5":2}}],["assuming",{"2":{"122":2,"126":1}}],["assert",{"2":{"89":1,"106":1}}],["associated",{"2":{"31":1,"106":1}}],["assignements",{"2":{"35":1,"89":1,"125":1}}],["assign",{"2":{"31":1,"89":1,"125":1,"127":1}}],["assignments",{"2":{"33":2}}],["assignment",{"2":{"31":1,"35":1,"89":1,"125":1}}],["aspect",{"2":{"5":1}}],["as",{"2":{"4":1,"5":1,"8":1,"12":1,"18":1,"19":1,"24":1,"26":3,"31":3,"33":2,"35":1,"36":9,"38":3,"42":3,"44":2,"46":1,"52":2,"69":1,"86":1,"87":2,"89":27,"98":1,"102":2,"104":1,"106":1,"117":1,"119":1,"122":1,"123":1,"125":7,"126":2,"127":6}}],["a",{"0":{"106":1},"2":{"1":3,"3":22,"4":1,"5":6,"8":12,"16":2,"18":2,"19":2,"20":2,"21":9,"22":19,"24":8,"25":17,"26":8,"27":17,"29":6,"30":15,"31":28,"32":1,"33":7,"34":1,"35":18,"36":21,"38":13,"40":8,"42":10,"43":2,"44":3,"46":5,"47":4,"49":8,"52":29,"57":8,"60":1,"74":2,"86":7,"87":4,"88":7,"89":277,"91":2,"94":2,"98":1,"99":1,"102":8,"103":4,"104":23,"106":17,"108":2,"109":7,"111":1,"115":1,"119":10,"121":1,"122":3,"125":75,"126":17,"127":51}}],["anonymous",{"2":{"89":1,"102":1}}],["another",{"2":{"3":2,"86":1,"89":2}}],["angles",{"2":{"87":1}}],["annealing",{"2":{"81":1}}],["analyze",{"2":{"78":1,"87":1}}],["analyzing",{"0":{"76":1},"1":{"77":1,"78":1}}],["analysis",{"0":{"78":1,"85":1},"2":{"85":1,"87":1}}],["any",{"0":{"106":1},"2":{"10":1,"21":2,"22":2,"25":2,"27":2,"31":1,"35":2,"46":1,"57":6,"89":19,"111":1,"125":7,"126":1,"127":1}}],["an",{"0":{"43":1},"2":{"1":3,"4":1,"8":2,"10":1,"19":1,"21":2,"24":6,"25":1,"26":3,"27":1,"29":1,"31":3,"32":1,"33":1,"35":4,"36":6,"38":1,"43":1,"44":1,"46":1,"52":3,"60":1,"75":2,"88":3,"89":57,"98":1,"99":1,"102":3,"104":7,"106":6,"111":1,"115":1,"118":1,"119":1,"123":1,"125":18,"126":2,"127":11}}],["and",{"0":{"0":1,"2":1,"5":1,"18":1,"19":1,"32":1,"33":1,"36":1,"37":1,"38":1,"39":1,"48":1,"51":1,"54":1,"55":1,"56":1,"57":1,"59":1,"61":1,"66":1,"69":1,"71":1,"76":1,"78":1,"83":1},"1":{"1":1,"3":1,"19":1,"20":1,"21":1,"22":1,"23":1,"24":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"33":1,"34":1,"35":1,"36":1,"38":1,"40":1,"49":1,"52":1,"57":1,"62":1,"63":1,"72":1,"73":1,"74":1,"77":1,"78":1,"84":1,"85":1},"2":{"3":2,"4":3,"5":14,"6":1,"8":1,"10":1,"12":1,"14":1,"18":2,"19":11,"20":4,"21":2,"24":2,"26":1,"29":2,"30":2,"31":13,"32":3,"33":14,"34":2,"35":10,"36":10,"38":1,"41":1,"42":1,"46":3,"47":1,"49":2,"52":1,"54":1,"55":1,"59":1,"60":1,"62":1,"63":1,"65":1,"66":1,"68":1,"69":1,"70":1,"72":2,"73":2,"74":1,"75":2,"77":2,"78":1,"81":1,"82":1,"84":1,"85":1,"86":3,"87":8,"88":3,"89":66,"97":1,"98":1,"99":1,"102":1,"104":10,"106":3,"108":1,"109":1,"116":1,"117":5,"118":1,"119":3,"121":1,"122":3,"125":24,"126":2,"127":11}}],["arrange",{"2":{"122":3}}],["arrangement",{"2":{"104":1}}],["ar",{"2":{"89":2,"94":2}}],["arithmetic",{"0":{"93":1,"94":1},"1":{"94":1,"95":1},"2":{"89":5,"93":1,"95":2,"125":5}}],["arxiv",{"2":{"36":1,"89":1,"125":1}}],["arbitrary",{"2":{"26":1,"35":1,"89":2}}],["arbitrarydomain",{"2":{"26":1,"89":1}}],["argmax",{"2":{"127":3}}],["argument",{"2":{"31":5,"36":7,"89":7,"126":1}}],["arguments",{"2":{"1":3,"3":4,"6":1,"21":1,"24":1,"29":1,"31":1,"35":9,"36":11,"38":4,"40":1,"46":1,"49":1,"52":2,"57":2,"89":43,"125":15,"126":13,"127":8}}],["args",{"2":{"21":4,"29":1,"33":1,"35":7,"36":4,"89":13,"104":3,"111":1,"125":10}}],["areas",{"2":{"63":1}}],["are",{"2":{"1":10,"5":2,"19":1,"24":1,"26":1,"29":1,"31":5,"33":2,"36":1,"41":1,"42":4,"43":2,"46":2,"47":4,"57":2,"86":2,"87":2,"89":42,"92":1,"95":1,"100":1,"106":2,"117":10,"118":5,"119":1,"122":1,"125":6,"126":4,"127":2}}],["jacop",{"2":{"86":1}}],["join",{"2":{"62":1}}],["joining",{"0":{"62":1}}],["jc",{"0":{"43":1},"2":{"42":1,"44":2}}],["jump",{"2":{"31":20,"42":1,"44":3,"86":1,"126":6,"127":1}}],["juliajump",{"2":{"126":1}}],["juliajulia>",{"2":{"122":1}}],["juliapost",{"2":{"127":1}}],["juliapredicate",{"2":{"126":1}}],["juliapredict",{"2":{"104":1}}],["juliapreliminaries",{"2":{"104":1}}],["juliaparameter",{"2":{"104":1}}],["juliaparams",{"2":{"35":1,"89":1,"125":1}}],["juliapairvarsparameterdomain",{"2":{"30":1,"89":1}}],["juliaqubogradientoptimizer",{"2":{"104":1}}],["juliaqubo",{"2":{"89":2,"104":1,"108":2,"125":1}}],["juliaqap",{"2":{"31":1}}],["juliaweigths",{"2":{"89":3,"103":1,"125":3}}],["juliatrain",{"2":{"89":1,"104":2,"111":1,"125":1}}],["juliatransformation",{"2":{"89":1,"119":1,"125":1}}],["juliatr",{"2":{"89":19,"117":11,"118":6}}],["juliato",{"2":{"21":1,"89":1,"125":1}}],["juliaremote",{"2":{"127":2}}],["juliaregularization",{"2":{"89":1,"125":1}}],["juliareduce",{"2":{"89":1,"102":1}}],["juliarangedomain",{"2":{"26":1,"89":1,"125":1}}],["juliahamming",{"2":{"89":1,"103":1,"125":1}}],["juliafunctions",{"2":{"89":1,"106":1}}],["juliafake",{"2":{"30":1,"89":1}}],["juliafakeautomaton",{"2":{"30":1,"89":1}}],["juliausual",{"2":{"35":1,"36":2,"89":3,"125":2}}],["juliano",{"2":{"104":1}}],["julianbits",{"2":{"89":2,"106":1,"125":1}}],["julian",{"2":{"31":1}}],["juliagolomb",{"2":{"31":1}}],["juliageneralstate",{"2":{"127":1}}],["juliagenerate",{"2":{"30":1,"89":5,"104":1,"106":3,"125":1}}],["juliaget",{"2":{"21":1,"89":1,"125":1,"127":12}}],["juliastop",{"2":{"127":1}}],["juliastatus",{"2":{"127":1}}],["juliastruct",{"2":{"89":1,"104":1,"113":1,"125":1}}],["juliaspecialize",{"2":{"127":2}}],["juliasolve",{"2":{"127":2}}],["juliasolution",{"2":{"127":1}}],["juliascalarfunction",{"2":{"126":1}}],["juliascheduling",{"2":{"31":1}}],["juliasub",{"2":{"104":1}}],["juliasudoku",{"2":{"31":1}}],["juliasudokuinstance",{"2":{"31":2}}],["juliasymbols",{"2":{"89":1,"125":1}}],["juliasymbol",{"2":{"89":1,"106":1}}],["juliasymmetries",{"2":{"35":1,"89":1,"125":1}}],["juliashow",{"2":{"89":2,"106":1,"125":1}}],["juliashrink",{"2":{"35":1,"89":1}}],["juliaselected",{"2":{"89":1,"106":1}}],["juliasetdomain",{"2":{"26":1,"89":1}}],["juliavalsparameterdomain",{"2":{"30":1,"89":1}}],["juliavalparameterdomain",{"2":{"30":1,"89":1}}],["juliavariable",{"2":{"127":3}}],["juliavar",{"2":{"22":1,"25":1,"27":1,"127":1}}],["juliao",{"2":{"127":1}}],["juliaobjective",{"2":{"127":4}}],["juliaoptions",{"2":{"127":1}}],["juliaoptimizer",{"2":{"126":2}}],["juliaoptimize",{"2":{"104":1}}],["juliaopparameterdomain",{"2":{"30":1,"89":1}}],["juliaoversample",{"2":{"12":1,"89":1,"125":1}}],["julialoss",{"2":{"104":1}}],["julialeadsolver",{"2":{"127":1}}],["julialearn",{"2":{"89":1,"125":1}}],["julialength",{"2":{"25":1,"27":1,"89":1,"106":1,"127":5}}],["julialazy",{"2":{"89":2,"102":2,"125":2}}],["julialayers",{"2":{"89":1}}],["julialayer",{"2":{"89":1,"106":1}}],["julialanguageparameterdomain",{"2":{"30":1,"89":1}}],["juliais",{"2":{"89":2,"106":1,"109":1,"125":1,"127":2}}],["juliaicnlocalsearchoptimizer",{"2":{"104":1}}],["juliaicngeneticoptimizer",{"2":{"104":1}}],["juliaicnconfig",{"2":{"104":1}}],["juliaicn",{"2":{"89":1,"104":1,"125":1}}],["juliaidparameterdomain",{"2":{"30":1,"89":1}}],["juliaintersect",{"2":{"24":2,"26":1,"89":2,"125":1}}],["juliaintervals",{"2":{"24":1,"89":1}}],["juliaincsert",{"2":{"16":1,"89":1,"125":1}}],["juliabinarize",{"2":{"89":1,"109":1,"125":1}}],["juliaboolparameterdomain",{"2":{"30":1,"89":1}}],["juliabase",{"2":{"10":3,"22":15,"24":1,"25":13,"26":1,"27":14,"28":2,"30":4,"31":4,"89":20,"125":1,"126":2}}],["juliamodel",{"2":{"127":1}}],["juliamoi",{"2":{"126":11}}],["juliamoisumequalparam",{"2":{"126":1}}],["juliamoisequentialtasks",{"2":{"126":1}}],["juliamoipredicate",{"2":{"126":1}}],["juliamoiordered",{"2":{"126":1}}],["juliamoiminusequalparam",{"2":{"126":1}}],["juliamoilessthanparam",{"2":{"126":1}}],["juliamoierror",{"2":{"126":1}}],["juliamoieq",{"2":{"126":1}}],["juliamoidistdifferent",{"2":{"126":1}}],["juliamoialwaystrue",{"2":{"126":1}}],["juliamoiallequalparam",{"2":{"126":1}}],["juliamoiallequal",{"2":{"126":1}}],["juliamoialldifferent",{"2":{"126":1}}],["juliamts",{"2":{"127":1}}],["juliamutually",{"2":{"104":1}}],["juliamutable",{"2":{"31":1}}],["juliaminkowski",{"2":{"89":1,"103":1,"125":1}}],["juliamincut",{"2":{"31":1}}],["juliamax",{"2":{"127":1}}],["juliamainsolver",{"2":{"127":1}}],["juliamap",{"2":{"89":1,"102":1}}],["juliamanhattan",{"2":{"89":1,"103":1,"125":1}}],["juliamake",{"2":{"35":1,"89":2,"104":3,"119":1}}],["juliamagic",{"2":{"31":1}}],["juliamerge",{"2":{"24":1,"26":1,"89":1,"125":1}}],["juliamdd",{"2":{"8":1,"89":1,"125":1}}],["juliax",{"2":{"22":1,"25":1,"27":1,"127":1}}],["juliaxcsp",{"2":{"1":3,"3":4,"38":4,"40":1,"46":1,"49":1,"52":2,"57":2,"89":19}}],["juliad",{"2":{"127":1}}],["juliadraw",{"2":{"127":1}}],["juliadelete",{"2":{"127":2}}],["juliadebinarize",{"2":{"89":1,"109":1,"125":1}}],["juliadescribe",{"2":{"36":2,"89":2,"125":2,"127":1}}],["juliadist",{"2":{"127":1}}],["juliadiscreteset",{"2":{"126":1}}],["juliadiscretedomain",{"2":{"26":1,"89":1,"125":1}}],["juliadisplay",{"2":{"31":1}}],["juliadimparameterdomain",{"2":{"30":1,"89":1}}],["juliad1",{"2":{"21":1,"24":1,"26":1,"89":1,"125":1}}],["juliadomain",{"2":{"21":6,"24":6,"26":6,"89":6,"104":1,"125":6,"127":1}}],["juliaempty",{"2":{"127":2}}],["juliaemptydomain",{"2":{"21":1,"89":1}}],["juliae",{"2":{"35":1,"89":1}}],["juliaerror",{"2":{"35":1,"89":1,"125":1,"126":1}}],["juliaexclu",{"2":{"89":1,"106":1}}],["juliaexplore",{"2":{"29":1,"89":2,"125":2}}],["juliaexploresettings",{"2":{"29":1,"89":1,"125":1}}],["juliaextract",{"2":{"6":3,"36":3,"89":3,"125":3}}],["juliaδ",{"2":{"14":1,"89":1,"104":1,"125":1}}],["juliaas",{"2":{"89":2,"102":2}}],["juliaaggregation",{"2":{"89":1,"92":1,"125":1}}],["juliaag",{"2":{"89":2,"91":2}}],["juliaarithmetic",{"2":{"89":1,"95":1,"125":1}}],["juliaar",{"2":{"89":2,"94":2}}],["juliaargs",{"2":{"35":1,"89":1,"125":1}}],["juliaarbitrarydomain",{"2":{"26":1,"89":1}}],["juliaadd",{"2":{"26":1,"89":1,"125":1,"127":2}}],["juliaat",{"2":{"8":1,"89":1}}],["juliaaccept",{"2":{"8":1,"30":1,"89":1,"125":1}}],["juliaautomaton",{"2":{"8":1,"89":1,"125":1}}],["juliaabstractsolver",{"2":{"127":1}}],["juliaabstractoptimizer",{"2":{"89":1,"111":1}}],["juliaabstractdomain",{"2":{"21":1,"89":1,"125":1}}],["juliaabstractautomaton",{"2":{"8":1,"89":1}}],["juliaabstractmultivalueddecisiondiagram",{"2":{"8":1,"89":1}}],["juliacompose",{"2":{"89":2,"125":2}}],["juliacompositionalnetworks",{"2":{"104":2}}],["juliacomposition",{"2":{"89":3,"125":3}}],["juliacomparison",{"2":{"89":1,"100":1,"125":1}}],["juliacode",{"2":{"89":1,"125":1}}],["juliaco",{"2":{"89":9,"98":5,"99":4}}],["juliacontinuousdomain",{"2":{"24":1,"89":1,"125":1}}],["juliaconstriction",{"2":{"127":1}}],["juliaconstraint",{"0":{"62":1,"64":1},"1":{"65":1},"2":{"35":1,"63":1,"65":1,"75":1,"89":1,"125":1,"127":3}}],["juliaconstraintcommons",{"2":{"8":1,"30":1,"89":1}}],["juliaconstraints",{"0":{"18":1,"86":1},"1":{"19":1,"20":1,"21":1,"22":1,"23":1,"24":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"87":1,"88":1},"2":{"5":3,"20":1,"32":1,"33":1,"34":1,"36":4,"86":6,"89":4,"125":4}}],["juliaconst",{"2":{"6":2,"43":1,"89":2,"104":2}}],["juliaconcept",{"2":{"1":7,"3":4,"35":5,"36":3,"38":9,"40":1,"44":1,"46":1,"49":1,"52":2,"57":4,"89":37,"125":3}}],["juliachemical",{"2":{"31":1}}],["juliac",{"2":{"1":3,"3":4,"38":4,"40":1,"45":2,"49":1,"52":2,"57":2,"89":18}}],["julia",{"0":{"0":1,"2":1,"20":1,"32":1,"37":1,"39":1,"48":1,"51":1,"56":1,"71":1,"72":1,"73":1,"74":1,"75":1},"1":{"1":1,"3":1,"33":1,"34":1,"35":1,"36":1,"38":1,"40":1,"49":1,"52":1,"57":1,"72":1,"73":1,"74":1},"2":{"4":2,"8":2,"18":1,"26":1,"29":1,"31":5,"33":2,"34":1,"36":2,"44":3,"72":1,"73":1,"74":1,"86":8,"89":13,"98":1,"104":1,"117":1,"119":1,"125":5,"126":14,"127":81}}],["jl",{"0":{"0":1,"2":1,"4":1,"18":1,"31":1,"32":1,"37":1,"39":1,"48":1,"51":1,"56":1,"101":1,"104":1,"107":1,"120":1,"122":1,"126":1,"127":1},"1":{"1":1,"3":1,"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"19":1,"20":1,"21":1,"22":1,"23":1,"24":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"33":1,"34":1,"35":1,"36":1,"38":1,"40":1,"49":1,"52":1,"57":1,"102":1,"103":1,"108":1},"2":{"4":1,"5":4,"18":1,"19":3,"20":2,"31":1,"32":1,"33":3,"34":3,"36":1,"42":1,"43":1,"44":1,"86":8,"89":1,"101":1,"104":1,"106":1,"107":1,"120":1,"121":2,"122":1,"125":1,"126":1,"127":2}}]],"serializationVersion":2}';export{i as default}; diff --git a/dev/assets/chunks/@localSearchIndexroot.aRRNdGdD.js b/dev/assets/chunks/@localSearchIndexroot.aRRNdGdD.js new file mode 100644 index 0000000..d82f66c --- /dev/null +++ b/dev/assets/chunks/@localSearchIndexroot.aRRNdGdD.js @@ -0,0 +1 @@ +const i='{"documentCount":128,"nextId":128,"documentIds":{"0":"/dev/constraints/comparison_constraints#Constraints.jl:-Streamlining-Constraint-Definition-and-Integration-in-Julia","1":"/dev/constraints/comparison_constraints#Comparison-based-Constraints","2":"/dev/constraints/connection_constraints#Constraints.jl:-Streamlining-Constraint-Definition-and-Integration-in-Julia","3":"/dev/constraints/connection_constraints#Connection-Constraints","4":"/dev/constraints/constraint_commons#ConstraintCommons.jl","5":"/dev/constraints/constraint_commons#Key-Features-and-Functionalities","6":"/dev/constraints/constraint_commons#Parameters","7":"/dev/constraints/constraint_commons#Performances-–-TODO","8":"/dev/constraints/constraint_commons#Languages","9":"/dev/constraints/constraint_commons#Performances-–-TODO-2","10":"/dev/constraints/constraint_commons#Extensions","11":"/dev/constraints/constraint_commons#Performances-–-TODO-3","12":"/dev/constraints/constraint_commons#Sampling","13":"/dev/constraints/constraint_commons#Performances-–-TODO-4","14":"/dev/constraints/constraint_commons#Extrema","15":"/dev/constraints/constraint_commons#Performances-–-TODO-5","16":"/dev/constraints/constraint_commons#Dictionaries","17":"/dev/constraints/constraint_commons#Performances-–-TODO-6","18":"/dev/constraints/constraint_domains#ConstraintDomains.jl:-Defining-and-Exploring-Variable-Domains-within-JuliaConstraints","19":"/dev/constraints/constraint_domains#Key-Features-and-Functionalities","20":"/dev/constraints/constraint_domains#Empowering-Constraint-Programming-in-Julia","21":"/dev/constraints/constraint_domains#Commons","22":"/dev/constraints/constraint_domains#Extension-to-Base-module","23":"/dev/constraints/constraint_domains#Performances","24":"/dev/constraints/constraint_domains#Continuous","25":"/dev/constraints/constraint_domains#Extension-to-Base-module-2","26":"/dev/constraints/constraint_domains#Discrete","27":"/dev/constraints/constraint_domains#Extension-to-Base-module-3","28":"/dev/constraints/constraint_domains#General","29":"/dev/constraints/constraint_domains#Exploration","30":"/dev/constraints/constraint_domains#Parameters","31":"/dev/constraints/constraint_models#ConstraintModels.jl","32":"/dev/constraints/constraints#Constraints.jl:-Streamlining-Constraint-Definition-and-Integration-in-Julia","33":"/dev/constraints/constraints#Key-Features-and-Functionalities","34":"/dev/constraints/constraints#Enabling-Advanced-Modeling-in-Constraint-Programming","35":"/dev/constraints/constraints#Basic-tools","36":"/dev/constraints/constraints#Usual-constraints-(based-on-and-including-XCSP3-core-categories)","37":"/dev/constraints/counting_summing_constraints#Constraints.jl:-Streamlining-Constraint-Definition-and-Integration-in-Julia","38":"/dev/constraints/counting_summing_constraints#Counting-and-Summing-Constraints","39":"/dev/constraints/elementary_constraints#Constraints.jl:-Streamlining-Constraint-Definition-and-Integration-in-Julia","40":"/dev/constraints/elementary_constraints#Elementary-Constraints","41":"/dev/constraints/generic_constraints#Generic-Constraints","42":"/dev/constraints/generic_constraints#Intention-Constraints","43":"/dev/constraints/generic_constraints#Defining-an-intention-constraint-in-JC-API","44":"/dev/constraints/generic_constraints#APIs","45":"/dev/constraints/generic_constraints#Test-for-DocumenterVitePress-Issue","46":"/dev/constraints/generic_constraints#Specific-documentation","47":"/dev/constraints/generic_constraints#Extension-Constraints","48":"/dev/constraints/graph_constraints#Constraints.jl:-Streamlining-Constraint-Definition-and-Integration-in-Julia","49":"/dev/constraints/graph_constraints#Constraints-on-Graphs","50":"/dev/constraints/intro#Introduction-to-basics-cosntraints-related-tools","51":"/dev/constraints/language_constraints#Constraints.jl:-Streamlining-Constraint-Definition-and-Integration-in-Julia","52":"/dev/constraints/language_constraints#Constraints-defined-from-Languages","53":"/dev/constraints/packing_scheduling_constraints#Constraints.jl:-Streamlining-Constraint-Definition-and-Integration-in-Julia","54":"/dev/constraints/packing_scheduling_constraints#Packing-and-Scheduling-Constraints","55":"/dev/cp/advanced#Advanced-Constraint-Programming-Techniques","56":"/dev/cp/advanced#Global-Constraints-and-Their-Uses","57":"/dev/cp/advanced#Search-Strategies-and-Optimization","58":"/dev/cp/applications#Applying-Optimization-Methods","59":"/dev/cp/applications#Case-Studies-and-Real-World-Applications","60":"/dev/cp/applications#From-Theory-to-Practice","61":"/dev/cp/contribution#Community-and-Contribution","62":"/dev/cp/contribution#Joining-the-JuliaConstraint-Community","63":"/dev/cp/contribution#Future-Directions","64":"/dev/cp/cp101#Constraint-Programming-101","65":"/dev/cp/cp101#What-is-Constraint-Programming?","66":"/dev/cp/cp101#Basic-Concepts-and-Terminology","67":"/dev/cp/cp101#How-CP-differs-from-other-optimization-techniques","68":"/dev/cp/ecosystem#Exploring-JuliaConstraint-Packages","69":"/dev/cp/ecosystem#Package-Overviews","70":"/dev/cp/ecosystem#Installation-and-Getting-Started-Guides","71":"/dev/cp/getting_started#Getting-Started-with-Julia-for-CP-and-Optimization","72":"/dev/cp/getting_started#Why-Julia?","73":"/dev/cp/getting_started#Setting-Up-Your-Julia-Environment","74":"/dev/cp/getting_started#Your-First-Julia-CP-Model","75":"/dev/cp/intro#Welcome-to-Julia-Constraints","76":"/dev/cp/models#Building-and-Analyzing-Models","77":"/dev/cp/models#Modeling-Best-Practices","78":"/dev/cp/models#Performance-Analysis-and-Improvement","79":"/dev/cp/opt#Dive-into-Optimization","80":"/dev/cp/opt#Understanding-Optimization","81":"/dev/cp/opt#Metaheuristics-Overview","82":"/dev/cp/opt#Mathematical-Programming-Basics","83":"/dev/cp/tuto_xp#Tutorials-and-Experiments","84":"/dev/cp/tuto_xp#Hands-On-Tutorials","85":"/dev/cp/tuto_xp#Experimental-Analysis","86":"/dev/full_api#Full-API","87":"/dev/index-old#JuliaConstraints","88":"/dev/index-old#Operational-Research-vs-Constraint-Programming","89":"/dev/index-old#Constraint-Based-Local-Search","90":"/dev/learning/aggregation#Aggregation-Layer","91":"/dev/learning/aggregation#List-of-aggregations","92":"/dev/learning/aggregation#Layer-generation","93":"/dev/learning/arithmetic#Arithmetic-Layer","94":"/dev/learning/arithmetic#List-of-arithmetic-operations","95":"/dev/learning/arithmetic#Layer-generation","96":"/dev/learning/comparison#Comparison-Layer","97":"/dev/learning/comparison#List-of-comparisons","98":"/dev/learning/comparison#Non-parametric","99":"/dev/learning/comparison#Param:-:val","100":"/dev/learning/comparison#Layer-generation","101":"/dev/learning/compositional_networks#CompositionalNetworks.jl","102":"/dev/learning/compositional_networks#Utilities","103":"/dev/learning/compositional_networks#Metrics","104":"/dev/learning/constraint_learning#ConstraintLearning.jl","105":"/dev/learning/intro#Learning-about-Constraints","106":"/dev/learning/layers#A-layer-structure-for-any-ICN","107":"/dev/learning/qubo_constraints#Introduction-to-QUBOConstraints.jl","108":"/dev/learning/qubo_constraints#Basic-features","109":"/dev/learning/qubo_encoding#Encoding-for-QUBO-programs","110":"/dev/learning/qubo_learning#Learning-QUBO-matrices","111":"/dev/learning/qubo_learning#Interface","112":"/dev/learning/qubo_learning#Examples-with-various-optimizers","113":"/dev/learning/qubo_learning#Gradient-Descent","114":"/dev/learning/qubo_learning#Constraint-based-Local-Search","115":"/dev/learning/transformation#Transformations-Layer","116":"/dev/learning/transformation#List-of-transformations","117":"/dev/learning/transformation#Non-parametric","118":"/dev/learning/transformation#Param:-:val","119":"/dev/learning/transformation#Layer-generation","120":"/dev/meta/meta_strategist#MetaStrategist.jl","121":"/dev/perf/benchmark_ext#BenchmarkTools-Extension","122":"/dev/perf/perf_checker#PerfChecker.jl","123":"/dev/perf/perf_interface#Interfacing-PerfChecker","124":"/dev/public_api#Public-API","125":"/dev/solvers/cbls#CBLS.jl","126":"/dev/solvers/intro#Solvers","127":"/dev/solvers/local_search_solvers#LocalSearchSolvers.jl"},"fieldIds":{"title":0,"titles":1,"text":2},"fieldLength":{"0":[9,1,1],"1":[3,10,75],"2":[9,1,1],"3":[2,10,98],"4":[2,1,46],"5":[4,2,162],"6":[1,2,80],"7":[2,3,1],"8":[1,2,93],"9":[2,3,1],"10":[1,2,41],"11":[2,3,1],"12":[1,2,42],"13":[2,3,1],"14":[1,2,31],"15":[2,3,1],"16":[1,2,36],"17":[2,3,1],"18":[9,1,42],"19":[4,9,167],"20":[5,9,54],"21":[1,9,136],"22":[4,10,92],"23":[1,10,1],"24":[1,9,127],"25":[4,10,99],"26":[1,9,138],"27":[4,10,103],"28":[1,9,19],"29":[1,9,96],"30":[1,9,115],"31":[2,1,297],"32":[9,1,39],"33":[4,9,169],"34":[6,9,56],"35":[2,9,184],"36":[10,9,207],"37":[9,1,1],"38":[4,10,134],"39":[9,1,1],"40":[2,10,57],"41":[2,1,17],"42":[2,2,77],"43":[7,3,69],"44":[1,3,75],"45":[4,3,13],"46":[2,3,77],"47":[2,2,55],"48":[9,1,1],"49":[3,10,71],"50":[6,1,3],"51":[9,1,1],"52":[4,10,126],"53":[9,1,1],"54":[4,10,106],"55":[4,1,1],"56":[5,4,12],"57":[4,4,12],"58":[3,1,1],"59":[6,3,11],"60":[4,3,18],"61":[3,1,1],"62":[4,3,14],"63":[2,3,13],"64":[3,1,1],"65":[5,3,10],"66":[4,3,10],"67":[7,3,10],"68":[3,1,1],"69":[2,3,13],"70":[5,1,13],"71":[8,1,1],"72":[3,8,16],"73":[5,8,103],"74":[5,8,190],"75":[4,1,35],"76":[4,1,1],"77":[3,4,12],"78":[4,4,11],"79":[3,1,1],"80":[2,3,12],"81":[2,3,11],"82":[3,3,12],"83":[3,1,1],"84":[3,3,11],"85":[2,3,15],"86":[2,1,1149],"87":[1,1,122],"88":[5,2,93],"89":[4,2,80],"90":[2,1,11],"91":[3,2,26],"92":[2,2,26],"93":[2,1,11],"94":[4,2,22],"95":[2,2,25],"96":[2,1,11],"97":[3,2,10],"98":[2,5,54],"99":[2,5,37],"100":[2,5,49],"101":[2,1,5],"102":[1,2,93],"103":[1,2,49],"104":[2,1,232],"105":[3,1,6],"106":[6,1,139],"107":[4,1,5],"108":[2,4,35],"109":[4,1,64],"110":[3,1,1],"111":[1,3,31],"112":[4,3,1],"113":[2,7,102],"114":[4,7,1],"115":[2,1,30],"116":[3,2,10],"117":[2,5,66],"118":[2,5,58],"119":[2,5,157],"120":[2,1,5],"121":[2,1,26],"122":[2,1,54],"123":[2,1,18],"124":[2,1,590],"125":[2,1,251],"126":[1,1,3],"127":[2,1,506]},"averageFieldLength":[3.328125,3.6249999999999982,66.9921875],"storedFields":{"0":{"title":"Constraints.jl: Streamlining Constraint Definition and Integration in Julia","titles":[]},"1":{"title":"Comparison-based Constraints","titles":["Constraints.jl: Streamlining Constraint Definition and Integration in Julia",null]},"2":{"title":"Constraints.jl: Streamlining Constraint Definition and Integration in Julia","titles":[]},"3":{"title":"Connection Constraints","titles":["Constraints.jl: Streamlining Constraint Definition and Integration in Julia",null]},"4":{"title":"ConstraintCommons.jl","titles":[]},"5":{"title":"Key Features and Functionalities","titles":["ConstraintCommons.jl"]},"6":{"title":"Parameters","titles":["ConstraintCommons.jl"]},"7":{"title":"Performances – TODO","titles":["ConstraintCommons.jl","Parameters"]},"8":{"title":"Languages","titles":["ConstraintCommons.jl"]},"9":{"title":"Performances – TODO","titles":["ConstraintCommons.jl","Languages"]},"10":{"title":"Extensions","titles":["ConstraintCommons.jl"]},"11":{"title":"Performances – TODO","titles":["ConstraintCommons.jl","Extensions"]},"12":{"title":"Sampling","titles":["ConstraintCommons.jl"]},"13":{"title":"Performances – TODO","titles":["ConstraintCommons.jl","Sampling"]},"14":{"title":"Extrema","titles":["ConstraintCommons.jl"]},"15":{"title":"Performances – TODO","titles":["ConstraintCommons.jl","Extrema"]},"16":{"title":"Dictionaries","titles":["ConstraintCommons.jl"]},"17":{"title":"Performances – TODO","titles":["ConstraintCommons.jl","Dictionaries"]},"18":{"title":"ConstraintDomains.jl: Defining and Exploring Variable Domains within JuliaConstraints","titles":[]},"19":{"title":"Key Features and Functionalities","titles":["ConstraintDomains.jl: Defining and Exploring Variable Domains within JuliaConstraints"]},"20":{"title":"Empowering Constraint Programming in Julia","titles":["ConstraintDomains.jl: Defining and Exploring Variable Domains within JuliaConstraints"]},"21":{"title":"Commons","titles":["ConstraintDomains.jl: Defining and Exploring Variable Domains within JuliaConstraints"]},"22":{"title":"Extension to Base module","titles":["ConstraintDomains.jl: Defining and Exploring Variable Domains within JuliaConstraints","Commons"]},"23":{"title":"Performances","titles":["ConstraintDomains.jl: Defining and Exploring Variable Domains within JuliaConstraints","Commons"]},"24":{"title":"Continuous","titles":["ConstraintDomains.jl: Defining and Exploring Variable Domains within JuliaConstraints"]},"25":{"title":"Extension to Base module","titles":["ConstraintDomains.jl: Defining and Exploring Variable Domains within JuliaConstraints","Continuous"]},"26":{"title":"Discrete","titles":["ConstraintDomains.jl: Defining and Exploring Variable Domains within JuliaConstraints"]},"27":{"title":"Extension to Base module","titles":["ConstraintDomains.jl: Defining and Exploring Variable Domains within JuliaConstraints","Discrete"]},"28":{"title":"General","titles":["ConstraintDomains.jl: Defining and Exploring Variable Domains within JuliaConstraints"]},"29":{"title":"Exploration","titles":["ConstraintDomains.jl: Defining and Exploring Variable Domains within JuliaConstraints"]},"30":{"title":"Parameters","titles":["ConstraintDomains.jl: Defining and Exploring Variable Domains within JuliaConstraints"]},"31":{"title":"ConstraintModels.jl","titles":[]},"32":{"title":"Constraints.jl: Streamlining Constraint Definition and Integration in Julia","titles":[]},"33":{"title":"Key Features and Functionalities","titles":["Constraints.jl: Streamlining Constraint Definition and Integration in Julia"]},"34":{"title":"Enabling Advanced Modeling in Constraint Programming","titles":["Constraints.jl: Streamlining Constraint Definition and Integration in Julia"]},"35":{"title":"Basic tools","titles":["Constraints.jl: Streamlining Constraint Definition and Integration in Julia"]},"36":{"title":"Usual constraints (based on and including XCSP3-core categories)","titles":["Constraints.jl: Streamlining Constraint Definition and Integration in Julia"]},"37":{"title":"Constraints.jl: Streamlining Constraint Definition and Integration in Julia","titles":[]},"38":{"title":"Counting and Summing Constraints","titles":["Constraints.jl: Streamlining Constraint Definition and Integration in Julia",null]},"39":{"title":"Constraints.jl: Streamlining Constraint Definition and Integration in Julia","titles":[]},"40":{"title":"Elementary Constraints","titles":["Constraints.jl: Streamlining Constraint Definition and Integration in Julia",null]},"41":{"title":"Generic Constraints","titles":[]},"42":{"title":"Intention Constraints","titles":["Generic Constraints"]},"43":{"title":"Defining an intention constraint in JC-API","titles":["Generic Constraints","Intention Constraints"]},"44":{"title":"APIs","titles":["Generic Constraints","Intention Constraints"]},"45":{"title":"Test for DocumenterVitePress Issue","titles":["Generic Constraints","Intention Constraints"]},"46":{"title":"Specific documentation","titles":["Generic Constraints","Intention Constraints"]},"47":{"title":"Extension Constraints","titles":["Generic Constraints"]},"48":{"title":"Constraints.jl: Streamlining Constraint Definition and Integration in Julia","titles":[]},"49":{"title":"Constraints on Graphs","titles":["Constraints.jl: Streamlining Constraint Definition and Integration in Julia",null]},"50":{"title":"Introduction to basics cosntraints related tools","titles":[]},"51":{"title":"Constraints.jl: Streamlining Constraint Definition and Integration in Julia","titles":[]},"52":{"title":"Constraints defined from Languages","titles":["Constraints.jl: Streamlining Constraint Definition and Integration in Julia",null]},"53":{"title":"Constraints.jl: Streamlining Constraint Definition and Integration in Julia","titles":[]},"54":{"title":"Packing and Scheduling Constraints","titles":["Constraints.jl: Streamlining Constraint Definition and Integration in Julia",null]},"55":{"title":"Advanced Constraint Programming Techniques","titles":[]},"56":{"title":"Global Constraints and Their Uses","titles":["Advanced Constraint Programming Techniques"]},"57":{"title":"Search Strategies and Optimization","titles":["Advanced Constraint Programming Techniques"]},"58":{"title":"Applying Optimization Methods","titles":[]},"59":{"title":"Case Studies and Real-World Applications","titles":["Applying Optimization Methods"]},"60":{"title":"From Theory to Practice","titles":["Applying Optimization Methods"]},"61":{"title":"Community and Contribution","titles":[]},"62":{"title":"Joining the JuliaConstraint Community","titles":["Community and Contribution"]},"63":{"title":"Future Directions","titles":["Community and Contribution"]},"64":{"title":"Constraint Programming 101","titles":[]},"65":{"title":"What is Constraint Programming?","titles":["Constraint Programming 101"]},"66":{"title":"Basic Concepts and Terminology","titles":["Constraint Programming 101"]},"67":{"title":"How CP differs from other optimization techniques","titles":["Constraint Programming 101"]},"68":{"title":"Exploring JuliaConstraint Packages","titles":[]},"69":{"title":"Package Overviews","titles":["Exploring JuliaConstraint Packages"]},"70":{"title":"Installation and Getting Started Guides","titles":[]},"71":{"title":"Getting Started with Julia for CP and Optimization","titles":[]},"72":{"title":"Why Julia?","titles":["Getting Started with Julia for CP and Optimization"]},"73":{"title":"Setting Up Your Julia Environment","titles":["Getting Started with Julia for CP and Optimization"]},"74":{"title":"Your First Julia CP Model","titles":["Getting Started with Julia for CP and Optimization"]},"75":{"title":"Welcome to Julia Constraints","titles":[]},"76":{"title":"Building and Analyzing Models","titles":[]},"77":{"title":"Modeling Best Practices","titles":["Building and Analyzing Models"]},"78":{"title":"Performance Analysis and Improvement","titles":["Building and Analyzing Models"]},"79":{"title":"Dive into Optimization","titles":[]},"80":{"title":"Understanding Optimization","titles":["Dive into Optimization"]},"81":{"title":"Metaheuristics Overview","titles":["Dive into Optimization"]},"82":{"title":"Mathematical Programming Basics","titles":["Dive into Optimization"]},"83":{"title":"Tutorials and Experiments","titles":[]},"84":{"title":"Hands-On Tutorials","titles":["Tutorials and Experiments"]},"85":{"title":"Experimental Analysis","titles":["Tutorials and Experiments"]},"86":{"title":"Full API","titles":[]},"87":{"title":"JuliaConstraints","titles":[null]},"88":{"title":"Operational Research vs Constraint Programming","titles":[null,"JuliaConstraints"]},"89":{"title":"Constraint-Based Local Search","titles":[null,"JuliaConstraints"]},"90":{"title":"Aggregation Layer","titles":[]},"91":{"title":"List of aggregations","titles":["Aggregation Layer"]},"92":{"title":"Layer generation","titles":["Aggregation Layer"]},"93":{"title":"Arithmetic Layer","titles":[]},"94":{"title":"List of arithmetic operations","titles":["Arithmetic Layer"]},"95":{"title":"Layer generation","titles":["Arithmetic Layer"]},"96":{"title":"Comparison Layer","titles":[]},"97":{"title":"List of comparisons","titles":["Comparison Layer"]},"98":{"title":"Non-parametric","titles":["Comparison Layer","List of comparisons"]},"99":{"title":"Param: :val","titles":["Comparison Layer","List of comparisons"]},"100":{"title":"Layer generation","titles":["Comparison Layer","List of comparisons"]},"101":{"title":"CompositionalNetworks.jl","titles":[]},"102":{"title":"Utilities","titles":["CompositionalNetworks.jl"]},"103":{"title":"Metrics","titles":["CompositionalNetworks.jl"]},"104":{"title":"ConstraintLearning.jl","titles":[]},"105":{"title":"Learning about Constraints","titles":[]},"106":{"title":"A layer structure for any ICN","titles":[]},"107":{"title":"Introduction to QUBOConstraints.jl","titles":[]},"108":{"title":"Basic features","titles":["Introduction to QUBOConstraints.jl"]},"109":{"title":"Encoding for QUBO programs","titles":[]},"110":{"title":"Learning QUBO matrices","titles":[]},"111":{"title":"Interface","titles":["Learning QUBO matrices"]},"112":{"title":"Examples with various optimizers","titles":["Learning QUBO matrices"]},"113":{"title":"Gradient Descent","titles":["Learning QUBO matrices","Examples with various optimizers"]},"114":{"title":"Constraint-based Local Search","titles":["Learning QUBO matrices","Examples with various optimizers"]},"115":{"title":"Transformations Layer","titles":[]},"116":{"title":"List of transformations","titles":["Transformations Layer"]},"117":{"title":"Non-parametric","titles":["Transformations Layer","List of transformations"]},"118":{"title":"Param: :val","titles":["Transformations Layer","List of transformations"]},"119":{"title":"Layer generation","titles":["Transformations Layer","List of transformations"]},"120":{"title":"MetaStrategist.jl","titles":[]},"121":{"title":"BenchmarkTools Extension","titles":[]},"122":{"title":"PerfChecker.jl","titles":[]},"123":{"title":"Interfacing PerfChecker","titles":[]},"124":{"title":"Public API","titles":[]},"125":{"title":"CBLS.jl","titles":[]},"126":{"title":"Solvers","titles":[]},"127":{"title":"LocalSearchSolvers.jl","titles":[]}},"dirtCount":0,"index":[["θ",{"2":{"113":2}}],["≥",{"2":{"113":1}}],["^2",{"2":{"113":1}}],["η",{"2":{"104":1,"113":6}}],["σ",{"2":{"86":2,"108":2,"124":2}}],["∉",{"2":{"86":3}}],["⋯",{"2":{"74":2}}],["×",{"2":{"74":3}}],["+",{"2":{"46":2,"86":9,"87":1,"91":1,"117":2,"118":4}}],[">",{"2":{"44":2,"49":1,"86":1,"113":8}}],["≠",{"2":{"43":1,"44":1,"125":2}}],["|",{"2":{"125":4}}],["||",{"2":{"86":2}}],["|the",{"2":{"43":1}}],["|≠|x",{"2":{"43":1}}],["|x",{"2":{"43":1,"125":4}}],["−x",{"2":{"43":2}}],["yes",{"2":{"127":1}}],["yet",{"2":{"19":1,"21":1,"24":1,"31":1,"33":1,"86":2}}],["you",{"2":{"87":1}}],["your",{"0":{"73":1,"74":1}}],["y",{"2":{"42":2,"44":5,"47":1,"87":1,"104":4,"113":7,"127":2}}],["y=1",{"2":{"36":1,"86":1}}],["7",{"2":{"31":3,"38":2,"54":3,"86":5,"122":1}}],["`function",{"2":{"127":1}}],["`struct",{"2":{"127":1}}],["``",{"2":{"125":6}}],["`",{"2":{"52":1,"86":1,"104":1}}],["`automaton`",{"2":{"52":1,"86":1}}],["`x`",{"2":{"52":2,"86":2}}],["`grid`",{"2":{"31":1}}],["`m`",{"2":{"31":1}}],["`rangedomain``",{"2":{"21":1,"24":1,"26":1,"86":1,"124":1}}],["q",{"2":{"104":7,"113":18}}],["qap",{"2":{"31":1}}],["qubooptimizer",{"2":{"104":2}}],["qubogradientoptimizer",{"2":{"104":4}}],["qubo",{"0":{"109":1,"110":1},"1":{"111":1,"112":1,"113":1,"114":1},"2":{"86":5,"104":4,"108":4,"111":1,"124":2}}],["quboconstraints",{"0":{"107":1},"1":{"108":1},"2":{"5":1,"86":7,"104":1,"107":1,"108":2,"109":3,"111":2,"113":1,"124":5}}],["quite",{"2":{"74":1}}],["quot",{"2":{"35":6,"54":4,"74":6,"86":10,"87":4}}],["quadractic",{"2":{"31":1}}],["queens",{"2":{"31":6}}],["zeros",{"2":{"113":3}}],["zero",{"2":{"31":1,"54":11,"86":11}}],["≤",{"2":{"22":4,"25":4,"27":4,"54":1,"74":2,"86":5}}],["9×9",{"2":{"31":4}}],["9",{"2":{"21":1,"24":1,"26":1,"31":4,"74":7,"86":1,"124":1}}],["8",{"2":{"31":3,"38":5,"54":1,"86":6}}],["86",{"2":{"21":1,"24":1,"26":1,"86":1,"124":1}}],["89",{"2":{"21":2,"24":2,"26":2,"86":2,"124":2,"127":1}}],["δ",{"2":{"14":1,"86":1,"104":1,"113":1,"124":1}}],["heavily",{"2":{"115":1}}],["helps",{"2":{"87":1}}],["help",{"2":{"87":2,"88":1}}],["heuristic",{"2":{"74":1,"89":2}}],["heights",{"2":{"54":5,"86":5}}],["here",{"2":{"36":1,"44":1,"86":1}}],["highly",{"2":{"106":1}}],["highlight",{"2":{"75":1}}],["highlighting",{"2":{"62":1,"72":1}}],["high",{"2":{"87":1}}],["higher",{"2":{"42":1,"44":1}}],["highest",{"2":{"21":1,"24":1,"26":1,"86":1,"124":1,"127":1}}],["hide",{"2":{"46":2,"86":2}}],["https",{"2":{"36":1,"86":1,"124":1}}],["hot",{"2":{"86":3,"109":3,"113":1,"124":3}}],["hosts",{"2":{"87":1}}],["host",{"2":{"73":1}}],["however",{"2":{"74":1}}],["how",{"0":{"67":1},"2":{"33":1,"42":1,"43":1,"44":2,"56":1,"62":1,"78":1,"85":1,"97":1,"116":1}}],["holds",{"2":{"87":1}}],["hold",{"2":{"3":4,"86":4,"104":1}}],["hamming",{"2":{"86":4,"103":2,"104":3,"124":4}}],["hand",{"2":{"88":1}}],["hands",{"0":{"84":1}}],["handling",{"2":{"32":1,"33":2}}],["handled",{"2":{"24":1,"86":1}}],["handle",{"2":{"21":1,"44":2,"86":1,"127":2}}],["handles",{"2":{"19":1}}],["hardware",{"2":{"73":1}}],["have",{"2":{"31":2,"36":1,"46":1,"59":1,"73":1,"86":6,"89":1,"102":2,"124":4}}],["half",{"2":{"29":1,"86":1,"124":1}}],["has",{"2":{"12":1,"36":3,"74":1,"86":6,"106":1,"109":1,"121":1,"124":2,"127":10}}],["∈",{"2":{"10":1,"19":1,"21":1,"22":8,"25":8,"27":8,"86":9,"124":1,"127":3}}],["keep",{"2":{"86":1,"108":1}}],["keywords",{"2":{"86":1,"124":1}}],["keyword",{"2":{"35":2,"36":8,"86":9,"124":1,"127":1}}],["key",{"0":{"5":1,"19":1,"33":1},"2":{"36":2,"66":1,"86":2}}],["k",{"2":{"86":2,"94":2,"127":1}}],["known",{"2":{"31":1,"38":3,"86":5,"124":2,"127":1}}],["kind=",{"2":{"127":1}}],["kind",{"2":{"14":1,"29":1,"30":1,"86":2,"124":1,"127":6}}],["kinds",{"2":{"8":1}}],["kargs",{"2":{"6":1,"35":6,"36":5,"86":7,"104":6,"124":5}}],["wrappers",{"2":{"87":1}}],["wrapping",{"2":{"87":1}}],["write",{"2":{"86":2,"87":1,"124":2}}],["was",{"2":{"123":1,"127":1}}],["way",{"2":{"36":1,"42":1,"44":1,"47":1,"86":3}}],["warning",{"2":{"31":2,"35":1,"86":1}}],["would",{"2":{"36":1,"86":1}}],["worse",{"2":{"127":3}}],["world",{"0":{"59":1},"2":{"60":1,"75":1}}],["works",{"2":{"35":1,"86":1,"124":1}}],["work",{"2":{"33":2}}],["working",{"2":{"32":1,"34":1}}],["workflows",{"2":{"5":1}}],["workflow",{"2":{"5":1}}],["word",{"2":{"8":6,"30":2,"52":2,"86":8,"124":1}}],["why",{"0":{"72":1}}],["what",{"0":{"65":1},"2":{"36":1,"74":1,"75":1,"86":1}}],["whole",{"2":{"35":1,"86":1,"124":1,"127":1}}],["which",{"2":{"22":1,"31":8,"36":1,"52":2,"74":1,"86":6,"102":1,"106":1,"124":1}}],["while",{"2":{"19":1,"88":2,"89":1,"127":5}}],["whether",{"2":{"20":1,"34":1,"35":1,"36":1,"38":1,"54":1,"86":4}}],["where",{"2":{"19":1,"21":5,"22":5,"24":5,"25":4,"26":5,"27":4,"30":2,"31":1,"38":1,"46":1,"49":2,"52":1,"59":1,"86":18,"88":1,"89":2,"98":2,"113":1,"124":6,"125":2,"127":69}}],["when",{"2":{"10":2,"22":2,"25":1,"27":1,"31":1,"74":1,"86":21,"104":2,"117":10,"118":6,"119":2,"125":1,"127":2}}],["welcome",{"0":{"75":1}}],["well",{"2":{"74":1}}],["weigthing",{"2":{"104":1}}],["weigth",{"2":{"86":1,"124":1}}],["weigthed",{"2":{"86":1,"99":1}}],["weigths=nothing",{"2":{"86":1,"124":1}}],["weigths",{"2":{"31":1,"86":18,"103":1,"104":5,"106":10,"124":8}}],["weight",{"2":{"31":1,"86":1,"108":1}}],["weights",{"2":{"31":3}}],["we",{"2":{"10":1,"12":1,"14":1,"16":1,"42":1,"43":1,"44":1,"73":4,"74":6,"125":1}}],["w",{"2":{"8":2,"30":2,"86":4,"104":2,"106":2,"124":2}}],["width",{"2":{"36":2,"86":2,"124":2}}],["width=150",{"2":{"36":1,"86":1,"124":1}}],["wide",{"2":{"33":1,"52":1,"86":1}}],["wikipedia",{"2":{"31":2,"74":1}}],["will",{"2":{"6":1,"29":1,"36":1,"73":2,"74":1,"86":9,"92":1,"95":1,"100":1,"104":1,"106":1,"109":1,"121":1,"123":1,"124":8,"125":2}}],["with",{"0":{"71":1,"112":1},"1":{"72":1,"73":1,"74":1,"113":1,"114":1},"2":{"5":3,"8":1,"19":1,"24":1,"30":1,"31":9,"33":4,"34":1,"35":7,"36":7,"52":4,"54":3,"67":1,"70":1,"74":5,"86":56,"87":3,"88":3,"89":1,"98":1,"99":1,"100":1,"102":2,"103":1,"104":3,"106":4,"117":10,"118":6,"119":3,"121":1,"124":10,"125":2,"127":8}}],["without",{"2":{"5":1,"86":17,"117":10,"118":6}}],["within",{"0":{"18":1},"1":{"19":1,"20":1,"21":1,"22":1,"23":1,"24":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1},"2":{"4":1,"18":1,"19":1,"32":1,"33":3,"52":2,"69":1,"73":1,"86":8,"90":1,"93":1,"96":1,"115":1,"127":1}}],["right",{"2":{"86":18,"117":15,"119":3}}],["rich",{"2":{"20":1}}],["rules",{"2":{"52":2,"86":2}}],["ruler",{"2":{"31":1,"43":4,"46":2,"86":2}}],["runtime",{"2":{"127":1}}],["run",{"2":{"31":1,"74":1,"104":1,"125":1,"127":5}}],["rawoptimizerattribute",{"2":{"125":2}}],["raw",{"2":{"31":2}}],["rates",{"2":{"31":1}}],["rate",{"2":{"31":1}}],["rand",{"2":{"19":1,"21":1,"22":16,"25":9,"27":9,"30":8,"86":13,"124":1,"127":2}}],["randomly",{"2":{"22":2,"25":1,"27":1,"30":1,"86":1,"127":1}}],["random",{"2":{"19":2,"22":2,"25":1,"27":1,"30":10,"86":10,"124":1,"127":2}}],["rangedomain",{"2":{"19":1,"26":2,"28":2,"86":4,"124":2}}],["ranges",{"2":{"19":3,"26":1,"86":1,"124":1}}],["range",{"2":{"18":1,"19":1,"21":1,"24":1,"26":3,"33":2,"52":1,"86":4,"124":3}}],["round",{"2":{"113":1,"127":1}}],["routing",{"2":{"49":2,"86":2,"88":1}}],["robust",{"2":{"34":1}}],["rows",{"2":{"74":1}}],["row",{"2":{"31":1,"74":1}}],["role",{"2":{"5":1,"82":1}}],["roles",{"2":{"5":1}}],["r",{"2":{"21":2,"24":2,"26":2,"31":2,"52":3,"86":5,"113":8,"124":2}}],["remote",{"2":{"127":2}}],["remotely",{"2":{"127":1}}],["re",{"2":{"127":1}}],["recommended",{"2":{"125":1,"127":1}}],["recognize",{"2":{"8":1}}],["ref",{"2":{"115":1,"127":6}}],["refer",{"2":{"31":5}}],["rev",{"2":{"86":5,"117":4,"119":1}}],["reverse",{"2":{"31":1,"86":1,"119":1}}],["registries",{"2":{"122":1}}],["regions",{"2":{"74":1}}],["regularization",{"2":{"86":2,"124":2}}],["regular",{"2":{"52":9,"86":9}}],["repositories",{"2":{"87":1}}],["replace",{"2":{"127":1}}],["repl",{"2":{"73":1}}],["represented",{"2":{"52":2,"86":2}}],["represents",{"2":{"36":1,"86":1}}],["represent",{"2":{"19":1}}],["representing",{"2":{"19":1,"52":1,"86":1}}],["relies",{"2":{"115":1}}],["relate",{"2":{"86":1,"119":1}}],["related",{"0":{"50":1},"2":{"104":1,"105":1,"121":1}}],["relatively",{"2":{"86":1,"102":1,"127":1}}],["relationships",{"2":{"47":1}}],["relying",{"2":{"5":1}}],["retrieve",{"2":{"31":1}}],["returned",{"2":{"35":1,"86":1}}],["returns",{"2":{"10":2,"22":5,"25":3,"27":3,"29":1,"30":1,"35":13,"86":19,"119":1,"122":1,"124":1,"127":1}}],["return",{"2":{"1":3,"3":4,"6":1,"8":3,"21":3,"22":5,"24":3,"25":8,"26":3,"27":8,"30":2,"31":1,"35":7,"36":6,"38":4,"40":1,"49":1,"52":1,"54":2,"86":63,"98":3,"99":3,"102":1,"104":4,"106":5,"113":8,"117":2,"118":2,"124":20,"125":2,"127":21}}],["reach",{"2":{"86":1,"103":1,"124":1}}],["reactants",{"2":{"31":2}}],["reactions",{"2":{"31":1}}],["reaction",{"2":{"31":4}}],["readers",{"2":{"60":1,"62":1,"75":1}}],["realm",{"2":{"20":1}}],["real",{"0":{"59":1},"2":{"19":1,"21":3,"24":5,"26":4,"35":1,"60":1,"75":1,"86":7,"124":6,"125":2}}],["reinforcement",{"2":{"29":1,"86":1,"87":1,"124":1}}],["resume",{"2":{"127":1}}],["result",{"2":{"35":3,"86":23,"102":1,"117":10,"118":6,"119":2}}],["results",{"2":{"24":2,"31":1,"33":1,"35":1,"86":3}}],["resulting",{"2":{"5":1}}],["restart",{"2":{"127":6}}],["restricting",{"2":{"127":2}}],["restriction",{"2":{"35":2,"86":2,"124":2}}],["restricts",{"2":{"38":3,"86":3}}],["restricted",{"2":{"22":1,"25":1,"27":1,"127":4}}],["respect",{"2":{"86":1,"119":1}}],["respectively",{"2":{"19":1,"31":2}}],["researchers",{"2":{"32":1}}],["research",{"0":{"88":1},"2":{"20":1,"34":1,"63":1,"87":1,"88":1}}],["resources",{"2":{"19":1}}],["required",{"2":{"29":1,"86":2,"111":1,"123":1,"124":1}}],["requirements",{"2":{"8":2,"86":2}}],["requiring",{"2":{"5":1}}],["reduce",{"2":{"86":3,"88":1,"94":2,"102":1}}],["reduced",{"2":{"29":1,"86":1,"124":1}}],["reducing",{"2":{"5":1}}],["redundant",{"2":{"5":1,"33":1}}],["give",{"2":{"86":1,"124":1}}],["given",{"2":{"31":2,"35":1,"38":7,"52":2,"86":18,"104":6,"106":2,"108":1,"109":1,"124":7,"125":8}}],["game",{"2":{"74":1}}],["gap",{"2":{"5":1}}],["guides",{"0":{"70":1}}],["guide",{"2":{"60":1}}],["gt",{"2":{"43":1,"87":1}}],["gcc",{"2":{"38":3,"86":3}}],["good",{"2":{"89":1}}],["goes",{"2":{"33":1}}],["goal",{"2":{"31":1,"87":1}}],["golomb",{"2":{"31":2,"43":2,"46":1,"86":1}}],["grads",{"2":{"113":2}}],["gradientdescentoptimizer",{"2":{"113":5}}],["gradient",{"0":{"113":1},"2":{"104":1,"113":1}}],["graphs",{"0":{"49":1}}],["graph",{"2":{"31":4,"52":1,"86":1,"127":1}}],["greater",{"2":{"35":1,"86":12,"117":7,"118":1,"119":3}}],["grid",{"2":{"31":5,"74":3}}],["groundwork",{"2":{"20":1}}],["genetic",{"2":{"81":1,"86":4,"104":3,"124":4}}],["generalstate",{"2":{"127":2}}],["generally",{"2":{"31":1}}],["general",{"0":{"28":1},"2":{"127":1}}],["generated",{"2":{"86":18,"117":10,"118":6,"124":1}}],["generates",{"2":{"30":1,"86":5,"106":2,"119":1,"124":1}}],["generate",{"2":{"19":1,"30":10,"36":1,"86":25,"92":1,"95":1,"100":1,"102":2,"104":2,"106":5,"119":2,"124":7}}],["generation",{"0":{"92":1,"95":1,"100":1,"119":1},"2":{"19":1,"86":2,"124":2}}],["generating",{"2":{"19":2}}],["generic",{"0":{"41":1},"1":{"42":1,"43":1,"44":1,"45":1,"46":1,"47":1},"2":{"4":1,"5":2,"41":1,"46":1,"86":1,"87":1,"125":1,"127":2}}],["getting",{"0":{"70":1,"71":1},"1":{"72":1,"73":1,"74":1},"2":{"70":1}}],["get",{"2":{"19":1,"21":1,"31":2,"36":2,"74":1,"86":5,"119":2,"122":2,"124":1,"125":2,"127":17}}],["g",{"2":{"5":1,"31":1,"80":1,"86":15,"117":8,"118":4,"119":3}}],["global",{"0":{"56":1},"2":{"1":7,"3":6,"33":1,"38":4,"40":2,"49":2,"54":6,"56":1,"74":1,"86":36,"104":2,"124":5,"125":5}}],["block",{"2":{"74":1}}],["blocks",{"2":{"74":2}}],["blank",{"2":{"31":2}}],["binarization==",{"2":{"113":1}}],["binarization",{"2":{"86":4,"104":2,"109":4,"113":13,"124":4}}],["binarize",{"2":{"86":2,"109":2,"113":3,"124":2}}],["binarized",{"2":{"86":1,"108":1}}],["binary",{"2":{"47":1,"86":1,"109":1,"124":1}}],["bias",{"2":{"86":3,"103":3,"124":3}}],["bit",{"2":{"86":2,"103":1,"109":1,"124":2}}],["bits",{"2":{"86":3,"106":2,"124":1}}],["bitvector",{"2":{"86":5,"102":4,"124":1}}],["bijective",{"2":{"3":2,"86":2}}],["but",{"2":{"31":1,"74":1}}],["building",{"0":{"76":1},"1":{"77":1,"78":1},"2":{"77":1}}],["build",{"2":{"8":1,"87":1,"100":1,"102":1,"123":1,"125":2}}],["bariable",{"2":{"127":1}}],["back",{"2":{"49":2,"86":2}}],["backward",{"2":{"31":1}}],["basis",{"2":{"74":1}}],["basics",{"0":{"50":1,"82":1}}],["basic",{"0":{"35":1,"66":1,"108":1},"2":{"4":1,"5":3,"19":1,"73":1,"86":5,"104":1,"108":1,"119":4}}],["base",{"0":{"22":1,"25":1,"27":1},"2":{"10":5,"21":3,"22":14,"25":9,"27":10,"28":3,"30":4,"31":9,"86":32,"106":1,"108":2,"124":4,"125":2,"127":4}}],["based",{"0":{"1":1,"36":1,"89":1,"114":1},"2":{"5":1,"6":2,"16":1,"19":1,"30":1,"35":1,"36":1,"86":8,"89":1,"104":2,"106":1,"109":1,"119":2,"121":1,"124":4,"125":2}}],["b",{"2":{"21":1,"22":8,"24":1,"25":8,"26":1,"27":8,"52":2,"86":11,"124":1}}],["breaking",{"2":{"122":3}}],["broad",{"2":{"18":1}}],["bridges",{"2":{"5":1}}],["bounded",{"2":{"86":1,"118":1}}],["bounding",{"2":{"86":6,"118":4,"119":2}}],["bounds",{"2":{"21":1,"86":1,"124":1}}],["boxes",{"2":{"74":1}}],["bool=true",{"2":{"38":1,"86":1}}],["bool=false",{"2":{"38":3,"86":3}}],["boolparameterdomain",{"2":{"30":1,"86":1}}],["boolean",{"2":{"12":1,"30":1,"33":1,"35":2,"86":4,"124":2,"125":1}}],["bool",{"2":{"6":1,"21":4,"24":4,"26":4,"38":1,"54":3,"86":9,"113":1,"124":4,"125":2,"127":4}}],["both",{"2":{"4":1,"14":1,"18":1,"29":1,"31":2,"32":1,"35":2,"86":6,"88":1,"124":2}}],["by",{"2":{"3":2,"4":1,"5":2,"8":1,"10":2,"19":1,"20":1,"22":1,"25":1,"26":1,"27":1,"29":1,"31":1,"33":3,"34":1,"35":1,"36":1,"38":1,"42":2,"47":3,"52":4,"70":1,"84":1,"86":21,"89":1,"99":1,"102":1,"104":4,"106":1,"118":1,"124":4,"127":10}}],["begin",{"2":{"125":14,"127":23}}],["benchmarking",{"2":{"121":1}}],["benchmarktools",{"0":{"121":1},"2":{"121":1}}],["better",{"2":{"88":1,"127":2}}],["between",{"2":{"3":2,"5":2,"6":1,"14":2,"19":1,"21":3,"24":2,"26":2,"31":2,"36":1,"43":2,"46":4,"47":1,"86":15,"98":1,"99":1,"124":7,"125":1,"127":1}}],["best",{"0":{"77":1},"2":{"73":1,"77":1,"104":1,"127":1}}],["been",{"2":{"59":1,"121":1,"127":7}}],["before",{"2":{"54":8,"86":8}}],["because",{"2":{"42":1,"47":1}}],["behave",{"2":{"33":1}}],["behaviors",{"2":{"33":1,"34":1}}],["behavior",{"2":{"19":1,"29":1,"33":1,"86":1}}],["beware",{"2":{"29":1,"86":1,"124":1}}],["belongs",{"2":{"22":1,"25":1,"27":1,"127":2}}],["beyond",{"2":{"19":1,"33":1}}],["be",{"2":{"3":2,"5":1,"19":1,"21":1,"29":2,"31":3,"35":3,"36":2,"38":2,"42":2,"47":3,"52":3,"73":1,"74":1,"86":27,"88":2,"89":2,"92":1,"95":1,"100":1,"104":2,"106":5,"109":1,"119":1,"124":8,"125":2,"127":3}}],["69",{"2":{"21":1,"24":1,"26":1,"86":1,"124":1}}],["6",{"2":{"3":1,"31":2,"40":1,"54":3,"86":5,"122":1}}],["up",{"0":{"73":1},"2":{"127":1}}],["upcoming",{"2":{"63":1}}],["update",{"2":{"36":2,"86":2}}],["undefkeyworderror",{"2":{"113":1}}],["under",{"2":{"86":1,"119":1}}],["understanding",{"0":{"80":1},"2":{"88":1}}],["underpin",{"2":{"18":1}}],["unrolled",{"2":{"86":1}}],["unacceptable",{"2":{"86":2}}],["unordered",{"2":{"26":1,"86":1}}],["until",{"2":{"12":1,"86":1,"124":1}}],["unique",{"2":{"3":2,"43":2,"46":1,"86":3,"125":1}}],["union",{"2":{"3":4,"6":1,"8":2,"16":1,"22":2,"25":1,"27":1,"28":2,"30":2,"36":1,"38":1,"86":12,"124":4,"125":2,"127":69}}],["utility",{"2":{"33":1}}],["utilities",{"0":{"102":1},"2":{"12":1}}],["utilized",{"2":{"4":1,"5":1,"86":1}}],["us",{"2":{"125":1}}],["usage",{"2":{"44":1,"121":1}}],["usability",{"2":{"5":1}}],["using",{"2":{"36":1,"74":1,"86":1,"87":1,"104":1,"124":1}}],["usually",{"2":{"46":1,"86":1,"127":1}}],["usual",{"0":{"36":1},"2":{"6":8,"33":5,"35":2,"36":19,"42":1,"43":3,"44":1,"86":24,"90":1,"93":1,"96":1,"115":1,"124":14}}],["useful",{"2":{"86":1,"89":2,"106":1,"127":1}}],["uses",{"0":{"56":1},"2":{"86":1,"88":2,"89":2,"104":1,"119":1}}],["user",{"2":{"5":1,"34":1,"127":2}}],["users",{"2":{"5":3,"20":1,"33":2,"73":2}}],["used",{"2":{"3":6,"8":3,"21":1,"30":8,"35":2,"36":2,"40":2,"49":2,"52":1,"54":8,"73":1,"86":38,"88":1,"102":1,"104":2,"106":2,"111":1,"124":1,"125":2,"127":1}}],["use",{"2":{"1":2,"5":1,"12":1,"26":1,"33":1,"38":1,"43":2,"72":1,"73":2,"74":1,"86":5,"89":2,"115":1,"124":2,"125":1,"127":2}}],["pkg",{"2":{"122":2}}],["penalty",{"2":{"104":9,"113":20}}],["perform",{"2":{"127":1}}],["performance",{"0":{"78":1},"2":{"33":1,"72":1,"78":1,"127":1}}],["performances",{"0":{"7":1,"9":1,"11":1,"13":1,"15":1,"17":1,"23":1}}],["perfchecker",{"0":{"122":1,"123":1},"2":{"121":1,"122":5,"123":1}}],["per",{"2":{"86":1,"109":1,"124":1}}],["pôpulation",{"2":{"104":1}}],["public",{"0":{"124":1}}],["push",{"2":{"113":1}}],["pure",{"2":{"87":3}}],["purely",{"2":{"87":1}}],["purpose",{"2":{"69":1,"125":1}}],["purposes",{"2":{"20":1,"34":1,"35":1,"86":1,"104":1}}],["puzzles",{"2":{"74":1}}],["puzzle",{"2":{"74":3}}],["pluto",{"2":{"73":1}}],["please",{"2":{"43":1,"73":1}}],["platform",{"2":{"34":1}}],["plays",{"2":{"5":1}}],["p",{"2":{"31":2,"86":1,"103":1,"124":1,"125":1}}],["pool",{"2":{"127":1}}],["pop",{"2":{"104":2}}],["population",{"2":{"86":2,"104":2,"124":2}}],["popsize=100",{"2":{"104":1}}],["popsize=200",{"2":{"86":1,"124":1}}],["popsize",{"2":{"86":4,"124":4}}],["post",{"2":{"75":1,"127":1}}],["posed",{"2":{"74":1}}],["possible",{"2":{"73":1,"88":1,"97":1,"116":1,"125":1,"127":2}}],["possibly",{"2":{"26":1,"36":1,"86":2}}],["positional",{"2":{"35":1,"86":1}}],["positive",{"2":{"35":4,"86":15,"91":3,"98":2,"99":2,"117":2,"118":2,"124":4}}],["pos",{"2":{"31":2}}],["point",{"2":{"22":3,"25":2,"27":2,"30":1,"54":2,"86":4}}],["points",{"2":{"21":1,"24":1,"25":1,"26":3,"27":2,"86":5,"124":3}}],["powerful",{"2":{"33":1}}],["power",{"2":{"20":1}}],["pseudo",{"2":{"19":1,"30":1,"86":1}}],["printing",{"2":{"127":2}}],["print",{"2":{"74":1,"127":8}}],["primary",{"2":{"69":1}}],["practices",{"0":{"77":1},"2":{"77":1}}],["practice",{"0":{"60":1}}],["practical",{"2":{"5":1,"20":1,"34":1}}],["practitioners",{"2":{"34":1}}],["precision",{"2":{"104":1,"113":6}}],["preliminaries",{"2":{"104":2,"113":3}}],["predict",{"2":{"104":1,"113":9}}],["predictions",{"2":{"104":1}}],["prediction",{"2":{"104":1}}],["predicate",{"2":{"35":4,"42":1,"43":4,"44":2,"46":4,"86":9,"106":1,"125":2}}],["predicates",{"2":{"33":1,"74":2}}],["previously",{"2":{"44":1}}],["pretty",{"2":{"36":3,"86":3,"113":1,"124":3,"127":2}}],["prefix",{"2":{"35":3,"86":3}}],["preferences",{"2":{"35":1,"86":1,"124":1}}],["preference",{"2":{"33":1}}],["present",{"2":{"31":1,"36":1,"86":1}}],["programs",{"0":{"109":1}}],["programming",{"0":{"20":1,"34":1,"55":1,"64":1,"65":1,"82":1,"88":1},"1":{"56":1,"57":1,"65":1,"66":1,"67":1},"2":{"3":6,"4":1,"5":2,"18":2,"20":2,"32":1,"34":1,"38":3,"40":2,"47":1,"49":2,"54":6,"67":1,"74":1,"75":1,"80":1,"82":1,"86":20,"87":3,"88":2,"89":4,"119":1}}],["proportional",{"2":{"86":1,"124":1}}],["property",{"2":{"42":1}}],["properties",{"2":{"19":1,"31":1,"33":1}}],["properly",{"2":{"21":1,"86":1,"124":1}}],["produce",{"2":{"86":1,"102":1}}],["product",{"2":{"86":1,"94":1}}],["products",{"2":{"31":2}}],["productivity",{"2":{"5":1}}],["prod",{"2":{"86":2,"94":2}}],["providing",{"2":{"5":1,"19":1,"20":1,"33":1,"34":1,"86":2}}],["provided",{"2":{"35":1,"86":18,"117":10,"118":6}}],["provide",{"2":{"5":1,"16":1,"19":1,"42":2,"44":2,"47":1,"70":1,"73":1,"84":1,"87":1,"125":1}}],["provides",{"2":{"4":1,"18":1,"19":1,"33":1,"74":1,"75":1,"87":1,"121":1}}],["projects",{"2":{"5":1,"63":1}}],["proceeds",{"2":{"31":1}}],["proceed",{"2":{"5":1}}],["processing",{"2":{"31":1,"86":1,"119":1}}],["processes",{"2":{"12":1,"88":1}}],["process",{"2":{"5":2,"19":2,"29":1,"60":1,"86":2,"88":1,"104":1,"119":1,"124":1,"127":3}}],["problems",{"2":{"18":1,"19":1,"20":1,"31":2,"33":2,"34":1,"49":2,"52":1,"54":6,"56":1,"57":1,"65":1,"74":1,"75":1,"80":1,"86":11,"87":4,"88":3,"89":6,"127":1}}],["problem",{"2":{"5":1,"19":2,"20":1,"31":7,"43":1,"60":1,"74":1,"88":2,"89":1,"127":3}}],["phase",{"2":{"5":1,"86":1,"106":2}}],["pivotal",{"2":{"5":1,"19":1,"32":1}}],["page",{"2":{"73":1}}],["packing",{"0":{"54":1}}],["packages",{"0":{"68":1},"1":{"69":1},"2":{"4":2,"5":7,"8":2,"33":1,"86":2,"87":4}}],["package",{"0":{"69":1},"2":{"4":1,"5":3,"6":1,"18":2,"19":3,"20":1,"32":2,"33":4,"69":1,"70":1,"122":1}}],["patch",{"2":{"122":2}}],["patches",{"2":{"122":1}}],["pattern",{"2":{"86":1,"106":1}}],["patternfolds",{"2":{"24":1,"86":1}}],["path",{"2":{"52":1,"86":6,"124":5,"127":5}}],["passed",{"2":{"35":2,"86":2}}],["paradigm",{"2":{"88":1}}],["param=nothing",{"2":{"86":1,"124":1}}],["paramater",{"2":{"86":1,"124":1}}],["parametric",{"0":{"98":1,"117":1},"2":{"35":1,"86":4,"100":1,"104":1,"119":2,"124":3}}],["parameterization",{"2":{"86":1,"119":1}}],["parameter",{"2":{"19":2,"29":1,"30":1,"52":2,"86":15,"102":2,"104":1,"108":1,"119":6,"124":4,"125":4}}],["parameters=constraintcommons",{"2":{"6":1,"36":1,"86":1,"124":1}}],["parameters",{"0":{"6":1,"30":1},"1":{"7":1},"2":{"6":17,"19":3,"30":12,"33":1,"35":2,"36":18,"86":39,"97":1,"104":5,"116":1,"119":2,"124":22}}],["params",{"2":{"33":1,"35":2,"86":2,"113":1,"124":1}}],["param",{"0":{"99":1,"118":1},"2":{"29":2,"30":2,"35":4,"36":2,"86":109,"99":16,"100":2,"102":5,"118":54,"119":16,"124":22,"125":24}}],["parse",{"2":{"36":1,"86":1}}],["particularly",{"2":{"106":1}}],["partially",{"2":{"74":1,"86":1,"124":1}}],["partial",{"2":{"12":1,"29":1,"86":3,"124":2,"127":1}}],["part",{"2":{"29":1,"35":1,"73":1,"86":2,"87":1,"124":1}}],["pairs",{"2":{"31":2,"46":1,"86":1}}],["paired",{"2":{"30":1,"86":1}}],["pairvarsparameterdomain",{"2":{"30":1,"86":1}}],["pair",{"2":{"1":16,"6":1,"29":1,"31":5,"38":2,"40":4,"54":15,"86":63,"104":3,"106":1,"124":1}}],["mts",{"2":{"127":7}}],["move",{"2":{"127":3}}],["most",{"2":{"38":4,"74":1,"86":5,"109":1,"124":1}}],["more",{"2":{"36":1,"86":2}}],["moisumequalparam",{"2":{"125":2}}],["moisequentialtasks",{"2":{"125":1}}],["moipredicate",{"2":{"125":2}}],["moiordered",{"2":{"125":1}}],["moiminusequalparam",{"2":{"125":2}}],["moilessthanparam",{"2":{"125":2}}],["moierror",{"2":{"125":5}}],["moieq",{"2":{"125":1}}],["moidistdifferent",{"2":{"125":1}}],["moialwaystrue",{"2":{"125":1}}],["moiallequalparam",{"2":{"125":2}}],["moiallequal",{"2":{"125":1}}],["moialldifferent",{"2":{"125":1}}],["moi",{"2":{"31":1,"44":2,"125":22}}],["module",{"0":{"22":1,"25":1,"27":1},"2":{"35":1,"86":1}}],["modeled",{"2":{"127":1}}],["modeler=",{"2":{"31":1}}],["modeler",{"2":{"31":14}}],["modelize",{"2":{"31":1}}],["modeling",{"0":{"34":1,"77":1},"2":{"5":1,"19":1,"20":1,"34":1,"42":1,"44":1,"73":2,"74":1,"87":1}}],["model",{"0":{"74":1},"2":{"31":17,"33":1,"52":1,"74":3,"86":3,"125":25,"127":75}}],["models",{"0":{"76":1},"1":{"77":1,"78":1},"2":{"5":1,"19":1,"74":1,"77":1,"78":1,"86":1,"87":2,"88":2,"119":1}}],["mutable",{"2":{"127":2}}],["mutually",{"2":{"86":4,"92":1,"95":1,"100":1,"104":1,"106":1,"124":3}}],["much",{"2":{"89":1}}],["must",{"2":{"19":1,"21":1,"26":1,"31":2,"38":2,"42":1,"47":2,"52":2,"86":8,"88":1,"124":2,"125":1}}],["multithreading",{"2":{"127":1}}],["multithreaded",{"2":{"127":1}}],["multi",{"2":{"52":1,"86":1}}],["multimedia",{"2":{"31":4}}],["multiplied",{"2":{"31":1}}],["multiplication",{"2":{"10":1,"86":1}}],["multiple",{"2":{"5":1}}],["multivalued",{"2":{"8":3,"86":2,"124":1}}],["mixed",{"2":{"87":1}}],["mission",{"2":{"75":1}}],["missing",{"2":{"8":2,"100":2,"102":2}}],["might",{"2":{"74":2}}],["min",{"2":{"113":2,"125":1}}],["minkowski",{"2":{"86":1,"103":1,"124":1}}],["minusequalparam",{"2":{"125":2}}],["minus",{"2":{"86":28,"98":4,"99":4,"117":8,"118":8,"119":4}}],["mincut",{"2":{"31":1,"127":2}}],["minimization",{"2":{"125":1}}],["minimizing",{"2":{"31":1}}],["minimizes",{"2":{"5":1}}],["minimal",{"2":{"8":2,"86":4,"102":1,"103":1,"124":3,"127":3}}],["minimum",{"2":{"3":11,"14":1,"31":1,"86":12,"113":2,"124":1}}],["mdd",{"2":{"8":4,"30":1,"52":12,"86":15,"124":2}}],["mdash",{"2":{"1":3,"3":4,"6":2,"8":6,"10":3,"12":1,"14":1,"16":1,"21":6,"22":5,"24":8,"25":4,"26":10,"27":5,"28":2,"29":3,"30":13,"31":19,"35":10,"36":7,"38":4,"40":1,"46":1,"49":1,"52":2,"54":2,"86":187,"91":2,"92":1,"94":2,"95":1,"98":5,"99":4,"100":1,"102":6,"103":4,"104":28,"106":12,"108":2,"109":3,"111":2,"117":11,"118":6,"119":2,"122":4,"124":70,"125":45,"127":142}}],["mmds",{"2":{"8":1}}],["m",{"2":{"6":2,"31":6,"36":2,"74":5,"86":2,"124":2,"127":139}}],["major",{"2":{"122":2}}],["may",{"2":{"89":1}}],["map",{"2":{"86":1,"102":1,"113":5}}],["mapping",{"2":{"86":1,"119":1}}],["mainsolver",{"2":{"127":7}}],["main",{"2":{"41":1,"86":1,"103":1,"124":1,"127":5}}],["mainly",{"2":{"35":1,"86":1,"125":1}}],["macro",{"2":{"36":6,"86":6,"115":1,"124":2,"125":1}}],["making",{"2":{"32":1,"89":1}}],["makes",{"2":{"87":1}}],["make",{"2":{"12":1,"35":3,"36":2,"86":8,"87":1,"88":1,"100":1,"104":3,"113":2,"115":2,"119":3,"127":1}}],["matter",{"2":{"125":1}}],["matters",{"2":{"105":1}}],["matrices",{"0":{"110":1},"1":{"111":1,"112":1,"113":1,"114":1},"2":{"86":1,"104":1,"111":1}}],["matrix",{"2":{"31":4,"86":2,"104":2,"108":2,"124":1}}],["match",{"2":{"86":3}}],["matches",{"2":{"86":3}}],["maths",{"2":{"86":1,"124":1}}],["mathematical",{"0":{"82":1},"2":{"82":1,"88":2,"89":1}}],["mathoptinterface",{"2":{"31":2,"125":12}}],["magic",{"2":{"31":2}}],["marks",{"2":{"31":1,"43":2,"46":2,"86":2}}],["max",{"2":{"29":2,"86":5,"102":2,"106":1,"124":2,"125":1,"127":10}}],["maximum",{"2":{"3":11,"14":1,"19":1,"21":1,"24":1,"26":1,"86":14,"124":3,"127":6}}],["manipulating",{"2":{"106":1}}],["manipulations",{"2":{"20":1}}],["manipulation",{"2":{"18":1,"19":2,"32":1,"33":1,"86":1,"119":1}}],["manufacturing",{"2":{"88":1}}],["manhattan",{"2":{"86":1,"103":1,"124":1}}],["managing",{"2":{"33":1}}],["manages",{"2":{"127":1}}],["managed",{"2":{"127":1}}],["manager",{"2":{"73":1}}],["manage",{"2":{"5":1,"127":1}}],["many",{"2":{"12":1,"86":1,"124":1}}],["metasolver",{"2":{"127":4}}],["metastrategist",{"0":{"120":1},"2":{"120":1}}],["metadata",{"2":{"87":1}}],["metaheuristics",{"0":{"81":1},"2":{"67":1}}],["metrics",{"0":{"103":1}}],["metric=hamming",{"2":{"86":1,"104":1,"124":1}}],["metric",{"2":{"86":8,"103":2,"104":6,"124":8}}],["method",{"2":{"6":1,"8":1,"10":2,"21":1,"22":3,"24":1,"25":3,"26":1,"27":3,"31":17,"36":1,"86":171,"104":26,"106":1,"111":2,"117":10,"118":6,"122":3,"123":1,"124":53,"125":14,"127":128}}],["methods",{"0":{"58":1},"1":{"59":1,"60":1},"2":{"4":1,"5":2,"8":1,"19":2,"21":1,"30":1,"33":2,"67":1,"86":4,"102":2,"124":3,"127":3}}],["meaningful",{"2":{"85":1}}],["meaning",{"2":{"38":2,"86":2,"106":1}}],["means",{"2":{"3":2,"36":3,"86":5}}],["measurement",{"2":{"127":1}}],["measure",{"2":{"33":1,"86":2,"124":2}}],["merge",{"2":{"19":1,"24":2,"26":2,"86":2,"124":2,"127":1}}],["merging",{"2":{"19":1}}],["membership",{"2":{"19":1}}],["56",{"2":{"127":1}}],["53",{"2":{"21":1,"24":1,"26":1,"86":1,"124":1}}],["5",{"2":{"1":1,"3":11,"21":1,"24":1,"26":1,"31":2,"38":29,"40":3,"54":13,"86":75,"87":1,"113":1,"122":1,"124":1,"125":6,"127":1}}],["nbits",{"2":{"86":2,"106":1,"124":1}}],["nbsp",{"2":{"1":3,"3":4,"6":2,"8":6,"10":3,"12":1,"14":1,"16":1,"21":6,"22":5,"24":8,"25":4,"26":10,"27":5,"28":2,"29":3,"30":13,"31":19,"35":10,"36":7,"38":4,"40":1,"46":1,"49":1,"52":2,"54":2,"86":187,"91":2,"92":1,"94":2,"95":1,"98":5,"99":4,"100":1,"102":6,"103":4,"104":28,"106":12,"108":2,"109":3,"111":2,"117":11,"118":6,"119":2,"122":4,"124":70,"125":45,"127":142}}],["nvars",{"2":{"86":12,"98":8,"124":4}}],["nvalues",{"2":{"38":8,"86":8}}],["nine",{"2":{"74":1}}],["n5",{"2":{"52":2,"86":2}}],["n4",{"2":{"52":3,"86":3}}],["n3",{"2":{"52":2,"86":2}}],["n2",{"2":{"52":2,"86":2}}],["n1",{"2":{"52":2,"86":2}}],["n²",{"2":{"31":1}}],["n×n",{"2":{"31":1}}],["n",{"2":{"31":18,"86":7,"102":4,"108":3,"113":9,"124":2}}],["numeric",{"2":{"26":1,"86":1}}],["number",{"2":{"21":1,"25":3,"26":2,"27":3,"29":3,"31":2,"35":3,"38":11,"86":52,"91":1,"98":1,"103":1,"104":2,"106":4,"109":3,"117":8,"118":4,"124":18,"125":6,"127":12}}],["numbers",{"2":{"19":2,"86":2,"98":2}}],["normalized",{"2":{"86":1,"124":1}}],["normal",{"2":{"86":1,"119":1}}],["norm",{"2":{"86":2,"98":1,"99":1}}],["now",{"2":{"31":1,"74":1}}],["node",{"2":{"31":2,"52":3,"86":3}}],["no",{"2":{"31":4,"46":1,"54":20,"86":24,"102":1,"104":1,"106":1,"119":1}}],["nonnegative",{"2":{"125":1}}],["none",{"2":{"86":4,"109":1,"113":2,"119":3,"124":1,"125":6}}],["nonlinear",{"2":{"80":1}}],["non",{"0":{"98":1,"117":1},"2":{"26":1,"29":2,"86":3,"104":4,"124":2,"127":1}}],["not",{"2":{"24":1,"31":2,"35":1,"36":2,"38":1,"42":1,"44":1,"54":6,"73":1,"74":3,"86":18,"103":1,"109":1,"118":1,"119":1,"124":2,"125":1,"127":1}}],["notebooks",{"2":{"73":1,"121":1}}],["note",{"2":{"6":1,"42":1,"44":1,"73":1,"74":1,"125":1}}],["nothing",{"2":{"1":1,"10":5,"22":4,"25":2,"27":2,"29":1,"35":4,"36":1,"38":2,"86":18,"102":1,"104":2,"113":1,"124":8,"125":2}}],["natural",{"2":{"42":1,"44":1}}],["nature",{"2":{"24":1,"26":1,"86":1,"124":1}}],["names",{"2":{"86":1,"119":1}}],["name=",{"2":{"86":1,"124":1}}],["name",{"2":{"6":1,"35":1,"36":3,"86":9,"124":8,"127":8}}],["neighbours",{"2":{"127":2}}],["neighbourhood",{"2":{"127":2}}],["neither",{"2":{"35":1,"86":1}}],["never",{"2":{"127":1}}],["necessarily",{"2":{"73":1}}],["necessary",{"2":{"18":1,"127":3}}],["next",{"2":{"49":2,"86":2,"122":2}}],["negation",{"2":{"35":1,"86":1}}],["networks",{"2":{"88":1}}],["network",{"2":{"86":1,"106":1,"124":1}}],["net",{"2":{"31":1}}],["new",{"2":{"24":3,"33":2,"36":5,"86":8,"87":1,"124":3,"125":6,"127":2}}],["needs",{"2":{"19":1,"29":1,"31":1,"86":3,"119":1,"124":2}}],["need",{"2":{"5":1,"14":1,"74":2}}],["lst",{"2":{"127":5}}],["l",{"2":{"31":1,"86":15,"117":4,"118":4,"119":3}}],["l=n²",{"2":{"31":1}}],["loss",{"2":{"104":2,"113":2}}],["local",{"0":{"89":1,"114":1},"2":{"86":5,"89":1,"104":1,"106":1,"124":5,"125":2,"127":7}}],["localsearchsolverscblstodo",{"2":{"73":1}}],["localsearchsolvers",{"0":{"127":1},"2":{"73":2,"87":1,"104":1,"127":139}}],["locations",{"2":{"31":5}}],["loop",{"2":{"127":8}}],["loops",{"2":{"36":1,"49":2,"86":3}}],["look",{"2":{"73":1,"74":1}}],["lower",{"2":{"86":1,"103":1,"124":1}}],["lowest",{"2":{"21":1,"24":1,"26":1,"86":1,"124":1}}],["low",{"2":{"29":1,"86":1,"87":1,"124":1}}],["loggingextra",{"2":{"127":1}}],["logging",{"2":{"127":1}}],["logic",{"2":{"86":2}}],["logical",{"2":{"42":1}}],["log",{"2":{"8":1,"100":1,"102":1,"127":1}}],["littledict",{"2":{"86":2,"106":2,"119":1}}],["like",{"2":{"67":1,"81":1}}],["links",{"2":{"31":1,"121":1,"127":1}}],["linear",{"2":{"67":1,"80":1,"86":3,"108":3,"124":3}}],["line",{"2":{"31":9,"73":1}}],["limited",{"2":{"29":1,"86":1,"124":1}}],["limit",{"2":{"29":7,"54":2,"86":11,"124":9,"125":1,"127":10}}],["limits",{"2":{"19":1}}],["listed",{"2":{"86":2}}],["listing",{"2":{"47":1}}],["list=x",{"2":{"36":2,"86":2,"124":1}}],["list",{"0":{"91":1,"94":1,"97":1,"116":1},"1":{"98":1,"99":1,"100":1,"117":1,"118":1,"119":1},"2":{"1":13,"3":16,"6":2,"26":1,"27":1,"35":1,"38":24,"40":6,"43":1,"44":1,"46":5,"49":5,"52":8,"54":5,"86":89,"97":1,"116":1,"124":3,"127":11}}],["lt",{"2":{"8":2,"21":1,"22":4,"25":4,"26":1,"27":4,"31":1,"42":1,"43":1,"52":2,"86":10,"124":2,"127":3}}],["launch",{"2":{"127":1}}],["lazy",{"2":{"86":2,"102":2,"115":2,"124":2}}],["lang",{"2":{"86":3,"124":1}}],["lang=",{"2":{"86":1,"124":1}}],["language=",{"2":{"86":1,"124":1}}],["languageparameterdomain",{"2":{"30":1,"86":1}}],["languages",{"0":{"8":1,"52":1},"1":{"9":1},"2":{"8":1,"30":1,"86":1}}],["language",{"2":{"6":1,"42":1,"44":1,"52":17,"73":3,"86":24,"124":5}}],["large",{"2":{"74":1,"88":1,"89":1}}],["labels",{"2":{"52":2,"86":2}}],["labeled",{"2":{"52":2,"86":2}}],["last",{"2":{"52":1,"74":1,"86":1,"122":2,"127":1}}],["lays",{"2":{"20":1}}],["layered",{"2":{"86":1,"124":1}}],["layers",{"2":{"86":9,"106":2,"119":1,"124":4}}],["layer",{"0":{"90":1,"92":1,"93":1,"95":1,"96":1,"100":1,"106":1,"115":1,"119":1},"1":{"91":1,"92":1,"94":1,"95":1,"97":1,"98":1,"99":1,"100":1,"116":1,"117":1,"118":1,"119":1},"2":{"4":1,"25":2,"27":2,"86":42,"90":1,"92":3,"93":1,"95":3,"96":1,"98":1,"100":3,"104":4,"106":28,"115":1,"119":3,"124":16}}],["left",{"2":{"86":18,"117":10,"119":3}}],["let",{"2":{"74":1}}],["levels",{"2":{"84":1}}],["level",{"2":{"42":1,"44":1,"52":3,"86":3,"87":2,"127":9}}],["lessthanparam",{"2":{"125":2}}],["lesser",{"2":{"86":11,"117":6,"118":1,"119":3}}],["less",{"2":{"42":1,"74":1,"125":2}}],["leadsolvers",{"2":{"127":3}}],["leadsolver",{"2":{"127":1}}],["least",{"2":{"38":4,"86":4,"104":2}}],["learn",{"2":{"75":1,"86":7,"104":5,"106":1,"111":1,"124":6}}],["learned",{"2":{"33":1,"34":1,"86":1,"104":1,"124":1}}],["learning",{"0":{"105":1,"110":1},"1":{"111":1,"112":1,"113":1,"114":1},"2":{"4":1,"5":6,"12":1,"19":1,"29":1,"33":2,"86":4,"87":1,"104":1,"105":1,"106":2,"124":3}}],["length",{"2":{"19":1,"21":2,"22":1,"24":1,"25":6,"26":1,"27":6,"33":1,"35":4,"54":3,"86":23,"94":2,"106":2,"113":4,"124":6,"127":12}}],["lengths",{"2":{"1":3,"54":6,"86":9}}],["swap",{"2":{"127":2}}],["switch",{"2":{"86":1,"103":1,"124":1}}],["sltns",{"2":{"104":2}}],["smaller",{"2":{"89":1}}],["small",{"2":{"89":1}}],["scalarfunction",{"2":{"125":3}}],["scalars",{"2":{"86":1,"98":1}}],["scalar",{"2":{"86":3,"91":1,"98":1,"99":1}}],["science",{"2":{"72":1}}],["scenario",{"2":{"60":1}}],["scheduling",{"0":{"54":1},"2":{"31":1,"54":6,"86":6,"88":1}}],["square",{"2":{"31":3}}],["sqrt",{"2":{"29":1,"86":1,"124":1}}],["syntax",{"2":{"33":1,"73":1,"74":1,"125":2,"127":1}}],["symb",{"2":{"35":2,"86":2}}],["symbols",{"2":{"10":2,"86":11,"102":4,"106":1,"124":4}}],["symbol",{"2":{"6":4,"10":3,"35":7,"36":19,"86":32,"106":1,"109":1,"113":1,"119":4,"124":11,"127":3}}],["symmetries",{"2":{"33":3,"35":4,"86":4,"124":4}}],["symmetry",{"2":{"33":1,"35":1,"86":1,"124":1}}],["systems",{"2":{"88":2}}],["system",{"2":{"31":1}}],["subs",{"2":{"127":3}}],["subsolvers",{"2":{"127":4}}],["subsolver",{"2":{"127":6}}],["subset",{"2":{"125":1}}],["subsets",{"2":{"74":2}}],["sub",{"2":{"104":1,"127":1}}],["subtract",{"2":{"86":1,"119":1}}],["subtraction",{"2":{"86":1,"119":1}}],["subtype",{"2":{"31":1}}],["subgrid",{"2":{"74":1}}],["subgrids",{"2":{"74":1}}],["successfully",{"2":{"59":1}}],["such",{"2":{"5":1,"31":2,"33":2,"42":3,"44":2,"46":1,"52":1,"66":1,"86":3,"87":1,"88":2,"106":1,"119":1,"127":4}}],["sudoku",{"2":{"31":17,"74":4,"127":1}}],["sudokuinstances",{"2":{"31":1}}],["sudokuinstance",{"2":{"31":19}}],["sumequalparam",{"2":{"125":2}}],["summary",{"2":{"89":1}}],["summing",{"0":{"38":1}}],["sum",{"2":{"25":1,"27":1,"29":1,"31":1,"38":8,"54":2,"86":20,"91":2,"94":3,"108":3,"124":4,"125":1}}],["supply",{"2":{"88":1}}],["supplies",{"2":{"31":1,"87":1}}],["supported",{"2":{"86":4}}],["support",{"2":{"19":1,"86":1}}],["supports=nothing",{"2":{"86":1}}],["supports",{"2":{"19":1,"33":1,"86":7,"125":3}}],["supertype",{"2":{"19":3,"24":1,"26":1,"86":2,"124":2}}],["super",{"2":{"19":1,"21":1,"86":1,"124":1}}],["silent",{"2":{"125":1,"127":1}}],["sig",{"2":{"86":17,"117":10,"118":6}}],["signature",{"2":{"86":2,"102":2,"124":2}}],["significance",{"2":{"65":1}}],["significantly",{"2":{"33":1,"34":1}}],["single",{"2":{"74":1,"86":3,"91":1,"94":2}}],["since",{"2":{"42":1,"44":1,"127":1}}],["sink",{"2":{"31":3}}],["simulated",{"2":{"81":1}}],["simple",{"2":{"29":1,"33":1,"36":1,"74":2,"86":2,"124":2}}],["simply",{"2":{"22":2,"25":1,"27":1,"30":1,"35":1,"74":1,"86":2}}],["simplify",{"2":{"56":1}}],["simplifying",{"2":{"5":1}}],["simplified",{"2":{"36":3,"86":3}}],["simplifies",{"2":{"5":1,"33":1}}],["similar",{"2":{"21":1,"86":1,"124":1}}],["size",{"2":{"19":1,"21":5,"24":8,"26":8,"29":2,"31":3,"49":3,"86":31,"98":3,"99":3,"102":1,"104":7,"106":2,"113":2,"124":16,"125":2,"127":4}}],["situations",{"2":{"14":1}}],["split",{"2":{"104":1}}],["specialize",{"2":{"127":10}}],["specialized",{"2":{"86":2,"98":1,"117":1,"127":10}}],["specializing",{"2":{"127":1}}],["specifying",{"2":{"18":1,"86":2}}],["specific",{"0":{"46":1},"2":{"33":1,"40":4,"86":6,"104":2,"119":1}}],["specifically",{"2":{"22":2,"25":1,"27":1,"30":1,"46":1,"86":2}}],["specification",{"2":{"6":1,"19":1}}],["specifications",{"2":{"6":1,"33":1,"36":1,"86":1,"124":1}}],["specified",{"2":{"22":2,"25":1,"27":1,"30":1,"31":2,"86":2,"119":1}}],["specifies",{"2":{"3":6,"38":1,"42":1,"47":1,"86":8,"119":1}}],["space",{"2":{"29":4,"35":1,"86":11,"88":1,"124":9,"127":1}}],["spaces",{"2":{"12":1,"18":1,"19":1,"33":1}}],["span",{"2":{"24":1,"26":1,"86":1}}],["sat",{"2":{"127":3}}],["satisfying",{"2":{"127":2}}],["satisfy",{"2":{"38":3,"42":1,"47":1,"86":3,"87":1,"88":1,"89":1}}],["satisfies",{"2":{"35":1,"38":6,"52":1,"86":8,"89":1,"124":1}}],["satisfied",{"2":{"3":4,"35":1,"40":1,"49":1,"52":1,"54":2,"86":10,"88":1,"124":1,"127":1}}],["satisfaction",{"2":{"33":1,"86":2,"87":1,"127":3}}],["say",{"2":{"86":1,"109":1,"124":1}}],["same",{"2":{"24":1,"26":1,"31":2,"35":1,"36":1,"46":1,"86":4,"124":2}}],["samplings",{"2":{"19":1,"29":2,"86":2,"124":2}}],["sampling",{"0":{"12":1},"1":{"13":1},"2":{"12":2}}],["s2",{"2":{"10":1,"86":1}}],["s1",{"2":{"10":1,"86":1}}],["s",{"2":{"6":3,"8":7,"19":2,"21":2,"24":1,"26":1,"31":5,"33":1,"34":1,"35":6,"36":8,"74":1,"86":18,"100":1,"102":1,"124":14,"127":109}}],["stop",{"2":{"127":5}}],["storing",{"2":{"87":1}}],["stores",{"2":{"26":2,"86":2}}],["store",{"2":{"24":3,"30":8,"36":1,"86":15,"102":1,"106":2,"124":1,"127":3}}],["stipulates",{"2":{"86":1}}],["stuff",{"2":{"113":2}}],["studio",{"2":{"73":1}}],["studies",{"0":{"59":1},"2":{"59":1}}],["stucture",{"2":{"35":1,"86":1,"124":1}}],["step",{"2":{"36":2,"70":2,"84":2,"86":2,"127":3}}],["stamp",{"2":{"127":4}}],["static",{"2":{"127":1}}],["statistical",{"2":{"88":1}}],["status",{"2":{"125":1,"127":4}}],["states",{"2":{"52":4,"86":4}}],["state",{"2":{"31":3,"127":36}}],["started",{"0":{"70":1,"71":1},"1":{"72":1,"73":1,"74":1},"2":{"70":1}}],["starts",{"2":{"35":1,"54":8,"86":9,"89":1,"127":2}}],["start",{"2":{"31":1,"49":2,"52":2,"74":1,"86":4}}],["starting",{"2":{"31":2,"35":1,"86":1,"127":1}}],["start=",{"2":{"31":1}}],["standout",{"2":{"33":1}}],["standard",{"2":{"31":3,"32":1,"33":1,"34":1,"41":1,"87":1}}],["standardization",{"2":{"5":1}}],["stands",{"2":{"18":1}}],["stdout",{"2":{"31":1}}],["str",{"2":{"127":1}}],["straight",{"2":{"74":1}}],["straightforward",{"2":{"33":1,"42":1,"125":1}}],["strategies",{"0":{"57":1},"2":{"20":1,"57":1}}],["string",{"2":{"22":4,"25":4,"27":4,"31":1,"35":1,"86":8,"102":1,"106":1,"124":1,"127":1}}],["strictly",{"2":{"1":8,"35":3,"86":13,"91":1,"118":1,"124":3}}],["struct",{"2":{"21":1,"31":3,"86":1,"127":4}}],["structure",{"0":{"106":1},"2":{"8":3,"21":2,"30":1,"31":1,"86":6,"89":1,"104":1,"106":4,"124":4,"127":5}}],["structures",{"2":{"4":1,"5":2}}],["streamlining",{"0":{"0":1,"2":1,"32":1,"37":1,"39":1,"48":1,"51":1,"53":1},"1":{"1":1,"3":1,"33":1,"34":1,"35":1,"36":1,"38":1,"40":1,"49":1,"52":1,"54":1},"2":{"5":1}}],["shifted",{"2":{"113":3}}],["share",{"2":{"63":1,"77":1}}],["shared",{"2":{"4":1,"5":3}}],["shrink",{"2":{"35":1,"36":1,"86":2}}],["show",{"2":{"86":4,"102":1,"106":1,"124":1}}],["showcase",{"2":{"59":1}}],["shortcut",{"2":{"35":1,"36":1,"86":1,"124":1}}],["should",{"2":{"3":6,"42":1,"44":1,"46":1,"86":11,"102":2,"124":2,"127":3}}],["soon",{"2":{"125":1}}],["sophisticated",{"2":{"34":1}}],["so",{"2":{"31":1,"36":2,"74":1,"86":2,"88":1}}],["something",{"2":{"35":1,"86":1}}],["some",{"2":{"10":1,"12":1,"74":1,"86":1,"87":1,"90":1,"93":1,"96":1,"104":1,"115":1,"121":1,"124":1,"125":1}}],["sols",{"2":{"86":1,"104":4,"124":1}}],["solve",{"2":{"31":1,"74":1,"87":2,"88":1,"127":3}}],["solvername",{"2":{"125":1}}],["solvers",{"0":{"126":1},"2":{"73":3,"74":4,"87":10,"89":3,"106":1,"126":1,"127":2}}],["solver",{"2":{"31":6,"74":2,"87":1,"89":2,"104":1,"125":4,"127":29}}],["solving",{"2":{"20":1,"34":1,"57":1,"60":1,"65":1,"73":1,"75":1,"88":4,"127":4}}],["sol",{"2":{"29":1,"86":1,"124":1}}],["solution",{"2":{"19":1,"31":2,"74":3,"86":3,"88":1,"89":4,"103":1,"124":1,"127":4}}],["solutions",{"2":{"4":1,"5":2,"29":10,"86":14,"87":1,"88":2,"89":4,"103":1,"104":8,"124":14,"127":9}}],["solely",{"2":{"5":1}}],["source",{"2":{"1":3,"3":4,"6":3,"8":7,"10":3,"12":1,"14":1,"16":1,"21":10,"22":17,"24":12,"25":16,"26":14,"27":17,"28":2,"29":3,"30":17,"31":22,"35":11,"36":9,"38":4,"40":1,"46":1,"49":1,"52":2,"54":2,"86":187,"91":2,"92":1,"94":2,"95":1,"98":5,"99":4,"100":1,"102":6,"103":4,"104":28,"106":12,"108":2,"109":3,"111":2,"117":11,"118":6,"119":2,"122":4,"124":70,"125":45,"127":142}}],["sequentialtasks",{"2":{"125":2}}],["sequence",{"2":{"49":6,"52":4,"86":10}}],["select",{"2":{"127":4}}],["selection",{"2":{"86":1,"119":1}}],["selected",{"2":{"86":8,"92":1,"95":1,"100":1,"104":2,"106":6,"124":4,"127":1}}],["serie",{"2":{"127":1}}],["series",{"2":{"74":1}}],["serves",{"2":{"4":1,"19":1}}],["see",{"2":{"43":1,"127":1}}],["seems",{"2":{"31":1}}],["separates",{"2":{"86":1,"102":1}}],["separator",{"2":{"31":1}}],["sep",{"2":{"31":2,"86":2,"102":2}}],["segment",{"2":{"31":3}}],["several",{"2":{"14":1,"73":1,"87":1,"106":1}}],["seaperl",{"2":{"87":1}}],["searching",{"2":{"35":1,"86":1,"124":1}}],["searches",{"2":{"19":1}}],["search",{"0":{"57":1,"89":1,"114":1},"2":{"12":1,"18":1,"19":3,"29":9,"33":1,"57":1,"81":1,"86":20,"88":1,"89":3,"106":1,"124":20,"127":1}}],["seamless",{"2":{"5":1}}],["seamlessly",{"2":{"5":1}}],["sec",{"2":{"127":1}}],["section",{"2":{"6":1,"43":1,"121":1,"123":1}}],["seconds",{"2":{"127":1}}],["second",{"2":{"3":2,"54":8,"86":10}}],["setter",{"2":{"74":1}}],["setting",{"0":{"73":1},"2":{"127":1}}],["settings",{"2":{"19":1,"29":1,"86":1,"124":1,"127":1}}],["setup",{"2":{"73":1}}],["setdomain",{"2":{"21":1,"24":1,"26":3,"27":2,"86":5,"124":4}}],["set",{"2":{"3":4,"5":1,"8":1,"10":2,"20":1,"22":4,"25":2,"26":3,"27":2,"30":1,"31":4,"38":3,"40":2,"47":2,"86":31,"88":1,"100":1,"102":1,"104":11,"109":2,"119":1,"124":8,"125":16,"127":22}}],["sets",{"2":{"3":2,"19":1,"86":2,"104":3}}],["001",{"2":{"113":1}}],["00514",{"2":{"36":1,"86":1,"124":1}}],["0",{"2":{"1":14,"3":1,"21":1,"22":2,"24":1,"25":1,"26":1,"27":1,"31":54,"35":7,"38":8,"49":1,"52":22,"74":2,"86":73,"98":4,"99":4,"113":1,"117":4,"118":4,"122":8,"124":3,"125":6,"127":9}}],["42",{"2":{"21":1,"24":1,"26":1,"38":2,"86":3,"124":1}}],["4",{"2":{"1":12,"3":15,"21":1,"24":1,"26":1,"31":3,"38":14,"40":4,"43":2,"44":2,"45":2,"46":3,"47":3,"49":4,"54":18,"86":82,"122":1,"124":1,"125":4,"127":1}}],["3j+1",{"2":{"74":1}}],["3i+1",{"2":{"74":1}}],["3",{"2":{"1":17,"3":15,"21":2,"24":2,"26":2,"31":6,"35":4,"36":1,"38":33,"40":4,"43":2,"44":4,"45":6,"46":7,"47":3,"49":6,"54":26,"74":6,"86":125,"122":1,"124":3,"125":2,"127":1}}],["28",{"2":{"127":1}}],["225",{"2":{"86":1}}],["200",{"2":{"86":2,"104":1,"124":2}}],["2009",{"2":{"36":1,"86":1,"124":1}}],["2",{"2":{"1":15,"3":16,"21":2,"24":2,"26":2,"31":5,"35":3,"36":1,"38":40,"40":4,"43":2,"44":3,"45":4,"46":7,"47":3,"49":3,"52":10,"54":28,"74":2,"86":146,"122":1,"124":3,"125":2,"127":1}}],["101",{"0":{"64":1},"1":{"65":1,"66":1,"67":1}}],["10",{"2":{"38":27,"86":29,"87":1,"124":2,"127":2}}],["100",{"2":{"29":2,"86":4,"124":4,"127":1}}],["10000",{"2":{"127":1}}],["1000",{"2":{"29":1,"86":1,"124":1}}],["10^6",{"2":{"29":1,"86":1,"124":1}}],["123",{"2":{"21":1,"24":1,"26":1,"86":1,"124":1}}],["12",{"2":{"21":1,"24":1,"26":1,"54":1,"86":2,"124":1}}],["1",{"2":{"1":19,"3":17,"16":2,"21":2,"24":2,"26":2,"31":3,"35":6,"36":1,"38":34,"40":4,"43":2,"44":3,"45":4,"46":5,"47":3,"49":4,"52":15,"54":41,"74":5,"86":174,"108":1,"109":1,"113":4,"117":2,"122":8,"124":6,"125":2,"127":4}}],["=>",{"2":{"52":15,"86":15,"113":1}}],["=usual",{"2":{"36":1,"86":1,"124":1}}],["=0",{"2":{"31":1}}],["==",{"2":{"3":4,"22":1,"38":2,"49":1,"86":9,"109":1,"113":2,"124":1}}],["=",{"2":{"1":3,"3":12,"6":1,"16":2,"21":5,"22":4,"24":5,"25":4,"26":5,"27":4,"29":7,"31":11,"35":3,"36":3,"38":16,"40":1,"43":5,"44":3,"45":2,"46":2,"49":5,"52":16,"54":17,"74":1,"86":126,"87":1,"94":2,"100":1,"102":1,"104":12,"108":1,"109":3,"113":34,"119":5,"124":36,"125":35,"127":49}}],["epoch",{"2":{"127":1}}],["err",{"2":{"125":3}}],["error",{"2":{"33":2,"35":20,"36":3,"86":24,"104":1,"124":6,"125":4,"127":4}}],["eq",{"2":{"86":22,"117":12,"118":4,"119":6,"125":2}}],["equiped",{"2":{"31":1}}],["equilibrium",{"2":{"31":4}}],["equivalent",{"2":{"22":1,"25":1,"27":1,"86":1}}],["equality",{"2":{"125":1}}],["equalities",{"2":{"86":2,"119":2}}],["equal",{"2":{"1":8,"3":2,"31":1,"35":1,"38":1,"86":17,"117":3,"118":1,"119":1,"125":3}}],["euclidian",{"2":{"86":6,"98":3,"99":3}}],["editors",{"2":{"73":1}}],["edge",{"2":{"52":2,"86":2}}],["educational",{"2":{"20":1,"34":1}}],["either",{"2":{"21":1,"24":1,"26":1,"47":2,"54":4,"86":8,"87":1,"124":4}}],["efficiency",{"2":{"20":1,"88":1}}],["efficiently",{"2":{"12":1,"31":1,"125":1}}],["efficient",{"2":{"5":1,"77":1,"86":1}}],["embodies",{"2":{"20":1,"34":1,"86":2}}],["empty",{"2":{"104":2,"125":4,"127":11}}],["emptydomain",{"2":{"19":1,"21":2,"24":1,"26":1,"86":2,"124":1}}],["empowering",{"0":{"20":1}}],["emphasizes",{"2":{"5":1}}],["evaluation",{"2":{"104":1}}],["evaluates",{"2":{"35":1,"36":1,"86":2}}],["evaluated",{"2":{"33":1,"127":1}}],["eventually",{"2":{"49":2,"86":2}}],["even",{"2":{"31":1}}],["everuseful",{"2":{"16":1}}],["evolves",{"2":{"127":1}}],["evolve",{"2":{"19":1}}],["earlier",{"2":{"122":1}}],["easy",{"2":{"87":1,"123":1}}],["easier",{"2":{"36":1,"86":1}}],["ease",{"2":{"5":1,"20":1,"72":1}}],["eachrow",{"2":{"113":4}}],["each",{"2":{"3":2,"25":1,"27":1,"31":3,"35":1,"36":1,"49":2,"52":2,"69":1,"70":1,"74":5,"86":10,"106":1,"115":1,"124":2,"127":1}}],["else",{"2":{"113":4}}],["eltype",{"2":{"28":3,"86":3,"104":2}}],["eliminating",{"2":{"5":1}}],["elementary",{"0":{"40":1}}],["elements",{"2":{"5":1,"12":1,"19":2,"21":1,"31":1,"33":1,"86":18,"91":1,"102":1,"106":1,"117":8,"118":4,"124":2}}],["element",{"2":{"3":9,"86":9,"104":2,"122":1,"127":1}}],["e",{"2":{"5":1,"31":1,"35":4,"49":2,"52":4,"54":4,"80":1,"86":15,"103":1,"113":3,"124":1,"127":1}}],["exclu",{"2":{"86":3,"106":3}}],["exclusive",{"2":{"86":9,"92":1,"95":1,"100":1,"104":3,"106":7,"124":3}}],["excluded",{"2":{"86":1}}],["exclude",{"2":{"38":1,"86":1}}],["exceed",{"2":{"54":2,"86":2}}],["except",{"2":{"38":2,"86":2}}],["except=vals",{"2":{"36":2,"86":2,"124":1}}],["exact",{"2":{"89":4}}],["exactly",{"2":{"38":4,"86":4}}],["examine",{"2":{"33":1}}],["exampleusing",{"2":{"46":2,"86":2}}],["example2",{"2":{"46":2,"86":2}}],["example",{"2":{"6":1,"35":1,"36":8,"42":2,"44":1,"47":1,"73":1,"86":8,"122":1,"124":6}}],["examples",{"0":{"112":1},"1":{"113":1,"114":1},"2":{"1":3,"3":4,"35":2,"38":4,"40":1,"46":1,"49":1,"52":2,"54":2,"73":1,"86":22,"119":1,"121":1}}],["existing",{"2":{"36":2,"86":2,"87":1,"88":1}}],["exists",{"2":{"35":3,"74":1,"86":3}}],["ex",{"2":{"36":3,"86":3}}],["expansion",{"2":{"86":1}}],["export",{"2":{"86":1,"124":1,"127":1}}],["explicit",{"2":{"86":2}}],["explicitly",{"2":{"47":1,"86":2}}],["explanation",{"2":{"36":1,"80":1,"86":1}}],["explored",{"2":{"86":1,"124":1}}],["explore",{"2":{"29":4,"86":7,"124":4}}],["exploresettings",{"2":{"19":1,"29":1,"86":1,"124":1}}],["exploring",{"0":{"18":1,"68":1},"1":{"19":1,"20":1,"21":1,"22":1,"23":1,"24":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"69":1},"2":{"20":1}}],["explorations",{"2":{"33":1}}],["exploration",{"0":{"29":1},"2":{"12":1,"19":4,"29":2,"30":1,"86":3,"124":1}}],["express",{"2":{"125":1}}],["expressions",{"2":{"106":1}}],["expression",{"2":{"36":7,"38":1,"42":1,"86":8}}],["expr",{"2":{"36":2,"86":2}}],["experimental",{"0":{"85":1},"2":{"85":1}}],["experiments",{"0":{"83":1},"1":{"84":1,"85":1},"2":{"85":1}}],["experience",{"2":{"5":1}}],["expect",{"2":{"75":1}}],["expectations",{"2":{"73":1}}],["expected",{"2":{"35":2,"36":1,"86":4,"124":3}}],["externally",{"2":{"127":1}}],["external",{"2":{"19":1,"86":1,"119":1}}],["extend",{"2":{"21":1,"28":1,"86":2,"123":1,"124":1}}],["extends",{"2":{"10":3,"22":7,"25":4,"27":4,"28":1,"30":2,"31":4,"86":7,"104":3}}],["extended",{"2":{"10":1,"86":19,"102":2,"117":10,"118":6,"124":2}}],["extensionally",{"2":{"47":1}}],["extensional",{"2":{"47":1}}],["extensions",{"0":{"10":1},"1":{"11":1}}],["extension",{"0":{"22":1,"25":1,"27":1,"47":1,"121":1},"2":{"5":1,"41":1,"86":8,"121":1}}],["extrema",{"0":{"14":1},"1":{"15":1},"2":{"14":3,"86":2,"104":1,"113":1,"124":2,"127":3}}],["extracts",{"2":{"6":1,"36":2,"86":2,"124":1}}],["extract",{"2":{"6":2,"36":1,"86":2,"124":2}}],["enumerate",{"2":{"113":1}}],["enforcing",{"2":{"86":2}}],["encode",{"2":{"104":1}}],["encoded",{"2":{"52":2,"86":2}}],["encoding",{"0":{"109":1},"2":{"86":5,"108":1,"109":4,"124":4}}],["encourage",{"2":{"62":1,"73":2}}],["encompass",{"2":{"46":1,"86":1}}],["encapsulate",{"2":{"86":1,"119":1,"127":2}}],["encapsulating",{"2":{"33":1}}],["encapsuler",{"2":{"24":1,"86":1}}],["entry",{"2":{"36":3,"86":3,"127":1}}],["energy",{"2":{"31":1}}],["enough",{"2":{"30":1,"86":1}}],["enhancement",{"2":{"33":1}}],["enhances",{"2":{"20":1,"34":1}}],["enhancing",{"2":{"5":2,"33":1}}],["enabling",{"0":{"34":1},"2":{"18":1}}],["enabled",{"2":{"127":1}}],["enable",{"2":{"5":1}}],["end``",{"2":{"127":1}}],["end",{"2":{"5":1,"8":2,"74":2,"86":2,"113":15,"125":6,"127":4}}],["ensure",{"2":{"74":1,"86":1,"108":1}}],["ensures",{"2":{"5":1,"33":1,"40":2,"43":2,"49":2,"52":2,"54":6,"74":1,"86":12}}],["ensuring",{"2":{"1":7,"5":2,"38":5,"46":2,"86":17,"104":3,"119":1,"125":9}}],["environment",{"0":{"73":1},"2":{"5":1}}],["etc",{"2":{"5":1}}],["ecosystem",{"2":{"4":1,"5":3,"18":1,"20":1,"32":1,"34":1,"73":1,"87":1}}],["especially",{"2":{"89":1}}],["essential",{"2":{"4":1,"19":1,"33":1}}],["establishes",{"2":{"3":2,"86":2}}],["x``or",{"2":{"104":1}}],["x̅",{"2":{"104":4}}],["xto",{"2":{"86":1,"103":1,"124":1}}],["xn",{"2":{"74":1}}],["x=x1",{"2":{"74":1}}],["x3",{"2":{"52":1,"86":1}}],["x3c",{"2":{"1":4,"8":3,"21":6,"22":9,"24":11,"25":8,"26":12,"27":8,"30":12,"31":3,"38":2,"52":1,"54":1,"86":48,"104":1,"113":2,"124":16,"125":29,"127":91}}],["x2",{"2":{"52":1,"86":1,"127":2}}],["x26",{"2":{"45":4,"46":4,"86":4}}],["x1",{"2":{"52":1,"86":1,"127":2}}],["x",{"2":{"1":23,"3":8,"12":2,"14":2,"22":10,"25":10,"27":10,"31":4,"35":7,"36":5,"38":28,"40":2,"42":2,"43":8,"44":4,"46":6,"47":1,"49":2,"52":6,"54":8,"74":6,"86":298,"87":2,"91":3,"94":4,"98":8,"99":7,"102":6,"103":10,"104":33,"109":8,"113":42,"117":76,"118":43,"124":33,"125":31,"127":68}}],["xcsp³",{"2":{"41":1}}],["xcsp3",{"0":{"36":1},"2":{"6":3,"8":1,"33":3,"36":1,"86":2,"124":1}}],["xcsp",{"2":{"1":3,"3":4,"33":1,"36":2,"38":4,"40":1,"43":1,"44":1,"46":1,"49":1,"52":2,"54":2,"86":21,"124":1}}],["csps",{"2":{"87":1}}],["cn",{"2":{"74":1}}],["c=c1",{"2":{"74":1}}],["c=usual",{"2":{"36":2,"86":2,"124":2}}],["clear",{"2":{"89":1}}],["classic",{"2":{"74":2}}],["closed",{"2":{"38":9,"86":9}}],["cblstodo",{"2":{"74":4}}],["cbls",{"0":{"125":1},"2":{"73":2,"74":3,"87":3,"89":3,"104":1,"125":31,"127":1}}],["circuit",{"2":{"49":12,"86":12}}],["cc",{"2":{"38":2,"86":2}}],["central",{"2":{"32":1}}],["certain",{"2":{"3":4,"54":2,"86":6}}],["cplex",{"2":{"87":1}}],["cp",{"0":{"67":1,"71":1,"74":1},"1":{"72":1,"73":1,"74":1},"2":{"32":2,"33":2,"34":2,"57":1,"59":1,"65":1,"73":1,"74":2,"75":1,"77":1,"85":1,"87":9,"88":4}}],["current",{"2":{"86":2,"106":1,"124":1,"127":1}}],["currently",{"2":{"22":2,"25":1,"27":1,"30":1,"86":1,"125":1}}],["cumulative",{"2":{"54":9,"86":9}}],["cut",{"2":{"31":1,"127":1}}],["case",{"0":{"59":1}}],["cast",{"2":{"35":1,"74":1,"86":1}}],["called",{"2":{"42":1,"47":1,"74":3,"86":1,"127":2}}],["calls",{"2":{"36":2,"86":2}}],["cardinality",{"2":{"38":20,"86":20}}],["care",{"2":{"36":1,"86":1,"124":1}}],["catch",{"2":{"113":1}}],["categorized",{"2":{"41":1}}],["categories",{"0":{"36":1}}],["cater",{"2":{"19":1}}],["catalog",{"2":{"33":1}}],["capacited",{"2":{"127":1}}],["capacity",{"2":{"127":1}}],["capacities",{"2":{"31":1}}],["capabilities",{"2":{"34":1}}],["capability",{"2":{"33":1}}],["can",{"2":{"5":3,"21":1,"33":1,"38":3,"52":1,"62":1,"73":1,"74":3,"75":1,"86":10,"89":1,"106":5,"109":1,"119":1,"124":3,"125":2,"127":1}}],["creation",{"2":{"33":1,"86":1,"119":1}}],["created",{"2":{"127":1}}],["creates",{"2":{"36":1,"86":1}}],["create",{"2":{"31":4,"35":1,"86":2,"124":1,"125":1}}],["critical",{"2":{"5":1,"18":1}}],["crucial",{"2":{"5":1,"19":1,"33":1}}],["choose",{"2":{"127":1}}],["choice",{"2":{"73":1}}],["chuffed",{"2":{"87":1}}],["chemical",{"2":{"31":3}}],["checks",{"2":{"35":2,"36":2,"46":1,"52":1,"86":6}}],["checking",{"2":{"19":1}}],["check",{"2":{"1":3,"3":8,"8":1,"22":1,"25":1,"27":1,"35":1,"38":7,"40":2,"43":1,"49":1,"52":2,"54":1,"74":1,"86":27,"100":1,"102":1,"106":1,"109":1,"124":1,"127":10}}],["chains",{"2":{"88":1}}],["chapter",{"2":{"75":1}}],["characteristics",{"2":{"19":1}}],["change",{"2":{"31":2}}],["changes",{"2":{"19":1,"24":1,"26":1,"31":1,"86":2,"89":1,"124":1}}],["channel",{"2":{"3":9,"86":9}}],["c",{"2":{"1":14,"3":15,"22":1,"25":1,"27":1,"35":16,"36":8,"38":19,"40":2,"44":3,"45":4,"46":6,"49":4,"52":10,"54":11,"86":116,"124":24,"127":31}}],["copy",{"2":{"125":5}}],["cops",{"2":{"87":1}}],["cosntriction",{"2":{"127":1}}],["cosntraints",{"0":{"50":1},"2":{"127":1}}],["cost",{"2":{"127":19}}],["costs",{"2":{"88":1,"127":20}}],["covering",{"2":{"84":1}}],["cover",{"2":{"82":1,"123":1}}],["could",{"2":{"42":1,"47":1}}],["count",{"2":{"38":6,"86":95,"91":3,"117":40,"118":20,"119":21}}],["counting",{"0":{"38":1},"2":{"86":1,"119":1}}],["counter",{"2":{"16":2,"86":2,"124":2,"127":1}}],["co",{"2":{"38":2,"86":11,"98":5,"99":4}}],["coefficients",{"2":{"38":1,"86":1}}],["coeffs",{"2":{"38":2,"86":2}}],["columns",{"2":{"74":1}}],["column",{"2":{"74":1}}],["collect",{"2":{"113":1}}],["collections",{"2":{"14":2,"86":1,"124":1}}],["collection",{"2":{"5":1,"16":1,"22":2,"24":1,"25":1,"27":1,"29":2,"30":1,"42":1,"43":1,"44":1,"74":4,"86":8,"87":1,"103":1,"104":3,"106":1,"124":5,"125":2,"127":5}}],["collaborate",{"2":{"62":1}}],["col",{"2":{"31":1}}],["coordinates",{"2":{"31":1}}],["core",{"0":{"36":1},"2":{"6":2,"8":1,"33":4,"36":1,"41":1,"86":2,"124":1}}],["corresponding",{"2":{"31":1,"86":1,"119":1}}],["corresponds",{"2":{"3":2,"86":2}}],["correspondence",{"2":{"3":2,"86":2}}],["code",{"2":{"5":1,"73":1,"86":5,"124":3}}],["come",{"2":{"125":1}}],["combinatorial",{"2":{"65":1,"88":1,"106":1}}],["command",{"2":{"73":1}}],["community",{"0":{"61":1,"62":1},"1":{"62":1,"63":1},"2":{"62":1}}],["commitment",{"2":{"34":1}}],["commons",{"0":{"21":1},"1":{"22":1,"23":1}}],["common",{"2":{"5":1,"87":1}}],["compile",{"2":{"86":1,"119":1}}],["compliance",{"2":{"52":2,"86":2}}],["complex",{"2":{"20":1,"32":1,"33":1,"47":1,"56":1,"88":2,"89":1}}],["complexity",{"2":{"5":1,"84":1}}],["completely",{"2":{"86":1,"124":1}}],["completed",{"2":{"5":1,"74":1}}],["complete",{"2":{"5":1,"19":1,"29":2,"86":6,"124":5}}],["components",{"2":{"33":1,"86":2,"102":2,"124":2}}],["compounds",{"2":{"31":1}}],["compositions",{"2":{"86":1}}],["compositionalneworks",{"2":{"102":1}}],["compositionalnetworks",{"0":{"101":1},"1":{"102":1,"103":1},"2":{"5":1,"86":77,"91":2,"92":1,"94":2,"95":1,"98":5,"99":4,"100":1,"101":1,"102":6,"103":4,"104":3,"106":11,"117":11,"118":6,"119":2,"124":26}}],["compositional",{"2":{"86":1,"106":1,"124":1}}],["composition",{"2":{"86":24,"102":1,"124":21}}],["compose",{"2":{"74":1,"86":12,"106":1,"124":8}}],["composed",{"2":{"29":1,"86":3,"124":3}}],["comprehensive",{"2":{"20":1,"34":1,"86":2}}],["computational",{"2":{"19":1,"72":1}}],["computes",{"2":{"127":1}}],["computed",{"2":{"86":17,"117":10,"118":6}}],["compute",{"2":{"14":2,"24":2,"26":1,"31":1,"86":7,"98":1,"99":1,"103":1,"104":1,"109":1,"124":4,"125":1,"127":17}}],["compatible",{"2":{"5":1}}],["compare",{"2":{"1":1,"35":1,"86":2}}],["comparisons",{"0":{"97":1},"1":{"98":1,"99":1,"100":1},"2":{"86":2,"100":1,"119":2}}],["comparison",{"0":{"1":1,"96":1},"1":{"97":1,"98":1,"99":1,"100":1},"2":{"1":1,"38":1,"86":9,"96":1,"97":1,"98":1,"100":2,"119":1,"124":5}}],["cohesive",{"2":{"5":1}}],["conflict",{"2":{"86":1}}],["conflicted",{"2":{"86":3}}],["conflicts",{"2":{"86":8}}],["conflicts=nothing",{"2":{"86":1}}],["configuration",{"2":{"31":2,"86":8,"104":4,"124":2,"125":1,"127":3}}],["configurations",{"2":{"12":1,"29":2,"86":7,"104":1,"124":3,"127":1}}],["configure",{"2":{"19":1}}],["conduct",{"2":{"85":1}}],["conditions",{"2":{"86":1,"88":1,"119":1,"127":1}}],["condition",{"2":{"3":13,"38":15,"54":3,"86":31}}],["concerned",{"2":{"88":2}}],["concentrations",{"2":{"31":2}}],["concepts",{"0":{"66":1},"2":{"66":1,"81":1}}],["concept",{"2":{"1":10,"3":8,"29":3,"33":2,"35":19,"36":18,"38":15,"40":2,"43":1,"44":1,"45":2,"46":3,"49":2,"52":4,"54":6,"86":95,"124":20,"125":5}}],["convert",{"2":{"21":1,"28":3,"86":7,"102":2,"106":1,"124":1}}],["containing",{"2":{"127":1}}],["container",{"2":{"86":1,"106":1,"125":1}}],["contains",{"2":{"35":1,"36":2,"74":1,"86":4,"106":1,"124":2}}],["content",{"2":{"75":1}}],["contexts",{"2":{"33":1}}],["context",{"2":{"21":1,"86":1,"106":2,"124":1}}],["contraints",{"2":{"127":2}}],["contrast",{"2":{"67":1,"89":1}}],["contribute",{"2":{"62":1}}],["contribution",{"0":{"61":1},"1":{"62":1,"63":1}}],["contiguous",{"2":{"86":12,"117":8,"119":4}}],["contiuous",{"2":{"24":1,"26":1,"86":1,"124":1}}],["continuousdomain",{"2":{"19":1,"24":2,"86":2,"124":1}}],["continuous",{"0":{"24":1},"1":{"25":1},"2":{"18":1,"19":2,"21":2,"24":2,"26":1,"31":1,"86":3,"124":3}}],["connecting",{"2":{"10":1,"86":1}}],["connection",{"0":{"3":1}}],["connector",{"2":{"10":1,"86":1}}],["cons=dictionary",{"2":{"127":1}}],["cons",{"2":{"127":31}}],["considered",{"2":{"38":2,"86":2,"127":1}}],["considers",{"2":{"8":1}}],["consistent",{"2":{"36":1,"86":1}}],["constriction",{"2":{"127":4}}],["constrained",{"2":{"127":2}}],["constrains",{"2":{"127":1}}],["constraintprogrammingextensions",{"2":{"87":1}}],["constraintmodels",{"0":{"31":1},"2":{"31":15,"87":1}}],["constrainttranslator",{"2":{"5":1}}],["constraintlearning",{"0":{"104":1},"2":{"5":1,"104":27,"122":1}}],["constraintdomains",{"0":{"18":1},"1":{"19":1,"20":1,"21":1,"22":1,"23":1,"24":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1},"2":{"5":1,"18":1,"19":3,"20":2,"21":6,"24":8,"26":10,"29":3,"30":11,"86":35,"87":1,"124":18}}],["constraintcommons",{"0":{"4":1},"1":{"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1},"2":{"4":1,"5":4,"6":3,"8":6,"12":1,"14":1,"16":1,"30":2,"36":2,"86":15,"124":9}}],["constraint",{"0":{"0":1,"2":1,"20":1,"32":1,"34":1,"37":1,"39":1,"43":1,"48":1,"51":1,"53":1,"55":1,"64":1,"65":1,"88":1,"89":1,"114":1},"1":{"1":1,"3":1,"33":1,"34":1,"35":1,"36":1,"38":1,"40":1,"49":1,"52":1,"54":1,"56":1,"57":1,"65":1,"66":1,"67":1},"2":{"1":7,"3":24,"4":1,"5":3,"6":9,"12":1,"18":2,"19":1,"20":2,"22":3,"25":3,"27":3,"29":2,"32":1,"33":10,"34":2,"35":17,"36":24,"38":20,"40":7,"42":5,"43":5,"44":4,"46":4,"47":3,"49":7,"52":6,"54":20,"74":7,"75":1,"86":156,"87":5,"88":1,"89":5,"104":4,"106":1,"108":1,"119":3,"124":39,"125":29,"127":33}}],["constraintsolver",{"2":{"87":1}}],["constraints",{"0":{"0":1,"1":1,"2":1,"3":1,"32":1,"36":1,"37":1,"38":1,"39":1,"40":1,"41":1,"42":1,"47":1,"48":1,"49":1,"51":1,"52":1,"53":1,"54":1,"56":1,"75":1,"105":1},"1":{"1":1,"3":1,"33":1,"34":1,"35":1,"36":1,"38":1,"40":1,"42":1,"43":2,"44":2,"45":2,"46":2,"47":1,"49":1,"52":1,"54":1},"2":{"1":3,"3":4,"4":1,"5":1,"6":9,"8":3,"18":1,"32":3,"33":17,"34":5,"35":12,"36":38,"38":4,"40":1,"41":2,"42":3,"43":3,"44":2,"46":3,"47":2,"49":1,"50":1,"52":2,"54":2,"56":1,"66":1,"73":1,"74":2,"86":75,"87":4,"88":3,"89":2,"104":1,"105":1,"111":1,"124":40,"127":20}}],["constructor",{"2":{"31":1,"104":3,"125":1,"127":1}}],["constructing",{"2":{"31":1}}],["construct",{"2":{"21":3,"24":3,"26":3,"30":1,"31":3,"86":6,"124":5,"127":3}}],["constant",{"2":{"6":1,"35":1,"36":1,"86":3,"124":2}}],["o",{"2":{"104":1,"127":16}}],["objs=dictionary",{"2":{"127":1}}],["objs",{"2":{"127":7}}],["objectives",{"2":{"127":10}}],["objective",{"2":{"74":1,"125":4,"127":24}}],["observable",{"2":{"31":1}}],["own",{"2":{"73":1,"74":1,"127":1}}],["occurs",{"2":{"38":2,"86":2}}],["occurrences",{"2":{"38":7,"86":7}}],["others",{"2":{"87":1}}],["other",{"0":{"67":1},"2":{"31":1,"67":1,"73":1,"74":4,"87":1,"88":1,"89":2,"127":2}}],["otherwise",{"2":{"1":3,"3":4,"8":1,"22":1,"25":1,"27":1,"30":1,"35":3,"38":4,"40":1,"49":1,"54":2,"86":28,"98":2,"99":2,"117":2,"118":2,"124":3,"127":1}}],["oversampling",{"2":{"104":1,"113":6}}],["oversample",{"2":{"12":2,"86":2,"113":1,"124":2}}],["overview",{"0":{"81":1},"2":{"75":1}}],["overviews",{"0":{"69":1}}],["overlap",{"2":{"54":21,"86":21}}],["over",{"2":{"14":1,"29":1,"33":1,"35":1,"36":1,"46":2,"74":2,"86":7,"103":1,"104":1,"124":4,"125":1,"127":1}}],["ouput",{"2":{"104":1}}],["output",{"2":{"86":2,"124":2}}],["outputs",{"2":{"35":1,"86":1,"122":3,"124":1}}],["out",{"2":{"74":1}}],["outlined",{"2":{"33":1}}],["outcomes",{"2":{"5":1}}],["our",{"2":{"12":1,"74":2}}],["ongoing",{"2":{"54":2,"86":2}}],["only",{"2":{"38":1,"74":1,"86":6,"92":1,"95":1,"100":1,"106":2,"111":1,"124":3,"125":2,"127":1}}],["on",{"0":{"36":1,"49":1,"84":1},"2":{"5":2,"6":2,"18":1,"19":1,"21":1,"29":1,"30":1,"31":1,"35":1,"36":3,"40":2,"42":1,"43":2,"46":1,"57":1,"73":1,"86":14,"87":1,"88":3,"104":3,"109":1,"115":1,"119":2,"121":1,"124":4,"125":2,"127":2}}],["once",{"2":{"5":2,"73":1}}],["one",{"2":{"5":1,"30":1,"33":1,"36":1,"74":3,"86":14,"92":1,"95":1,"100":1,"102":2,"104":2,"106":2,"108":1,"109":4,"113":1,"124":10,"127":3}}],["originating",{"2":{"86":1}}],["origins",{"2":{"54":6,"86":6}}],["oriented",{"2":{"4":1}}],["org",{"2":{"36":1,"86":1,"124":1}}],["organizations",{"2":{"88":1}}],["organization",{"2":{"33":1,"69":1,"75":1}}],["or",{"2":{"5":1,"6":1,"10":1,"16":1,"19":4,"20":1,"21":2,"22":2,"24":1,"25":2,"26":1,"27":2,"31":1,"34":1,"35":1,"36":2,"38":1,"42":1,"47":2,"54":4,"63":1,"73":1,"74":1,"86":25,"87":2,"88":4,"89":2,"106":1,"109":1,"119":5,"122":3,"124":8,"127":6}}],["order",{"2":{"1":6,"31":1,"40":2,"86":9,"119":1,"125":2}}],["ordered",{"2":{"1":6,"86":8,"106":1,"125":3,"127":1}}],["opt",{"2":{"125":1}}],["optmizers",{"2":{"104":1}}],["optimisation",{"2":{"87":1}}],["optimizing",{"2":{"88":1,"127":7}}],["optimization",{"0":{"57":1,"58":1,"67":1,"71":1,"79":1,"80":1},"1":{"59":1,"60":1,"72":1,"73":1,"74":1,"80":1,"81":1,"82":1},"2":{"33":1,"59":1,"60":1,"72":1,"75":1,"77":1,"80":2,"82":1,"88":2,"127":2}}],["optimizers",{"0":{"112":1},"1":{"113":1,"114":1},"2":{"104":1}}],["optimizer",{"2":{"74":1,"87":1,"104":6,"113":8,"125":17,"127":3}}],["optimize",{"2":{"31":1,"86":1,"88":1,"104":11,"124":1,"125":3}}],["optionally",{"2":{"35":2,"36":1,"86":2,"124":2}}],["optional",{"2":{"29":1,"31":1,"86":10,"104":1,"109":1,"124":10,"127":2}}],["options",{"2":{"19":1,"104":2,"125":4,"127":32}}],["open",{"2":{"38":6,"86":6,"115":1}}],["operate",{"2":{"86":1,"119":1}}],["operational",{"0":{"88":1},"2":{"88":1}}],["operation",{"2":{"86":4,"104":2,"106":4}}],["operations",{"0":{"94":1},"2":{"10":1,"25":2,"27":2,"86":21,"92":1,"95":2,"100":1,"103":1,"104":3,"106":13,"119":1,"124":7}}],["operators",{"2":{"30":1,"86":1}}],["operator",{"2":{"1":3,"38":1,"86":4}}],["opparameterdomain",{"2":{"30":1,"86":1}}],["op",{"2":{"3":8,"6":1,"38":10,"49":4,"54":4,"86":28,"106":1}}],["op==",{"2":{"38":1,"86":1}}],["op===",{"2":{"3":2,"38":4,"86":6}}],["op=>",{"2":{"1":2,"86":2}}],["op=≥",{"2":{"1":2,"38":1,"86":3}}],["op=≤",{"2":{"1":6,"38":3,"86":9}}],["op=",{"2":{"1":6,"86":6}}],["op=+",{"2":{"1":2,"86":2}}],["official",{"2":{"73":1}}],["offer",{"2":{"33":1}}],["offering",{"2":{"20":1,"33":1,"34":1}}],["offers",{"2":{"5":1,"19":1,"34":1}}],["often",{"2":{"49":2,"54":6,"86":8,"88":1}}],["of",{"0":{"91":1,"94":1,"97":1,"116":1},"1":{"98":1,"99":1,"100":1,"117":1,"118":1,"119":1},"2":{"1":14,"3":17,"4":1,"5":9,"6":6,"8":3,"12":2,"14":4,"18":3,"19":8,"20":4,"21":3,"22":5,"24":7,"25":10,"26":7,"27":11,"29":14,"30":2,"31":33,"32":1,"33":13,"34":1,"35":18,"36":23,"38":35,"40":6,"46":3,"47":4,"49":8,"52":10,"54":14,"60":1,"63":1,"72":2,"73":1,"74":11,"75":2,"78":1,"80":2,"82":1,"85":1,"86":292,"87":7,"88":2,"89":4,"91":2,"92":2,"95":2,"98":4,"99":1,"100":2,"102":6,"103":3,"104":14,"106":18,"109":3,"115":3,"117":13,"118":4,"119":8,"122":2,"124":96,"125":16,"127":78}}],["f2",{"2":{"127":2}}],["fetch",{"2":{"127":1}}],["few",{"2":{"123":1}}],["feasible",{"2":{"74":2,"89":1}}],["features",{"0":{"5":1,"19":1,"33":1,"108":1},"2":{"33":1,"69":1}}],["feature",{"2":{"4":1,"19":1,"33":1}}],["front",{"2":{"115":1}}],["from",{"0":{"52":1,"60":1,"67":1},"2":{"22":4,"25":2,"27":3,"30":2,"31":2,"33":2,"36":1,"46":1,"52":1,"60":1,"74":2,"75":1,"86":14,"88":1,"104":1,"111":1,"119":2,"124":2,"127":17}}],["framework",{"2":{"87":1}}],["friendly",{"2":{"34":1}}],["free",{"2":{"31":1}}],["finds",{"2":{"122":1}}],["find",{"2":{"89":5,"127":2}}],["finding",{"2":{"87":1,"88":1,"89":2}}],["finishes",{"2":{"54":8,"86":8}}],["finish",{"2":{"52":2,"86":2}}],["filter",{"2":{"113":1}}],["file",{"2":{"86":7,"106":1,"124":7}}],["filled",{"2":{"74":1}}],["fill",{"2":{"31":4,"74":1}}],["fields",{"2":{"35":1,"86":1,"124":1}}],["first",{"0":{"74":1},"2":{"3":2,"35":1,"36":3,"52":1,"54":8,"74":1,"86":15,"104":1,"113":4,"122":1,"127":1}}],["flatten",{"2":{"113":1}}],["flaw",{"2":{"31":1}}],["flexibility",{"2":{"33":2,"73":1}}],["flexible",{"2":{"19":1,"29":2,"33":1,"34":1,"47":1,"86":5,"119":1,"124":3}}],["float64",{"2":{"35":2,"86":2,"113":1,"125":1,"127":5}}],["flows",{"2":{"31":1}}],["flow",{"2":{"31":1}}],["floor",{"2":{"29":1,"86":1,"124":1}}],["f",{"2":{"8":1,"12":2,"33":1,"35":3,"86":16,"102":6,"124":14,"125":20,"127":7}}],["full",{"0":{"86":1}}],["further",{"2":{"31":1,"73":1}}],["future",{"0":{"63":1},"2":{"6":1,"29":1,"86":1,"124":1}}],["func",{"2":{"127":6}}],["funcs",{"2":{"86":2,"102":2,"124":2}}],["functionality",{"2":{"5":1}}],["functionalities",{"0":{"5":1,"19":1,"33":1},"2":{"5":1,"19":1,"20":1,"33":1}}],["functions",{"2":{"4":1,"5":2,"19":1,"31":1,"35":2,"86":8,"100":1,"106":3,"119":4,"124":2}}],["function",{"2":{"1":3,"3":4,"6":2,"8":2,"10":1,"12":2,"14":1,"16":2,"21":4,"22":5,"24":6,"25":4,"26":7,"27":5,"28":2,"29":3,"30":4,"31":1,"33":2,"35":29,"36":14,"38":4,"40":1,"42":1,"46":2,"49":1,"52":3,"54":2,"74":1,"86":67,"91":2,"92":1,"94":2,"95":1,"98":6,"99":4,"100":1,"102":12,"103":4,"104":4,"106":10,"108":2,"109":3,"111":1,"113":7,"115":1,"117":12,"118":6,"119":6,"122":1,"124":30,"125":14,"127":16}}],["fundamentals",{"2":{"82":1}}],["fundamental",{"2":{"5":1,"46":1,"86":1}}],["found",{"2":{"106":1}}],["foundation",{"2":{"19":1}}],["foundational",{"2":{"4":1,"5":1}}],["fold",{"2":{"87":1}}],["following",{"2":{"21":1,"33":1,"35":1,"38":1,"86":8,"102":2,"109":1,"119":1,"124":6,"127":1}}],["follows",{"2":{"12":1,"74":1,"125":2}}],["follow",{"2":{"6":1}}],["focuses",{"2":{"87":1,"88":2}}],["focusing",{"2":{"18":1}}],["fostering",{"2":{"5":1}}],["forbidden",{"2":{"31":1,"86":1}}],["forwarded",{"2":{"127":1}}],["forward",{"2":{"31":2,"74":1}}],["formal",{"2":{"127":1}}],["formated",{"2":{"86":1,"124":1}}],["formatted",{"2":{"86":1,"102":1}}],["format",{"2":{"6":1,"21":1,"31":9,"86":2,"109":1,"124":2}}],["formulating",{"2":{"60":1}}],["formulation",{"2":{"19":1}}],["form",{"2":{"49":2,"86":2}}],["forseeable",{"2":{"6":1}}],["for",{"0":{"45":1,"71":1,"106":1,"109":1},"1":{"72":1,"73":1,"74":1},"2":{"3":4,"5":5,"6":1,"8":5,"10":1,"16":1,"18":1,"19":13,"20":3,"21":3,"22":3,"24":2,"25":3,"26":2,"27":3,"28":2,"29":1,"30":2,"31":13,"32":1,"33":6,"34":4,"35":5,"36":4,"42":1,"43":1,"44":1,"47":1,"54":6,"63":1,"70":1,"72":1,"73":3,"74":2,"77":1,"86":53,"87":5,"88":1,"89":3,"98":1,"100":2,"101":1,"102":4,"104":8,"106":2,"108":1,"109":2,"111":1,"113":2,"117":1,"119":5,"120":1,"122":1,"124":12,"125":4,"127":18}}],["faster",{"2":{"127":1}}],["facilities",{"2":{"31":6}}],["facilitating",{"2":{"19":1,"34":1}}],["facilitates",{"2":{"5":1,"19":1,"86":1,"119":1}}],["facilitate",{"2":{"4":1,"32":1}}],["fake",{"2":{"30":1,"86":1}}],["fakeautomaton",{"2":{"8":2,"19":1,"22":2,"25":1,"27":1,"30":5,"86":5}}],["fallback",{"2":{"21":1,"22":2,"24":1,"25":2,"26":1,"27":2,"86":4,"124":1}}],["false",{"2":{"1":3,"3":10,"8":1,"10":1,"12":1,"22":3,"25":3,"27":3,"30":1,"35":3,"36":1,"38":4,"40":1,"44":1,"49":1,"54":2,"86":32,"100":1,"113":3,"119":1,"124":5,"127":2}}],["fa",{"2":{"8":1,"22":4,"25":2,"27":2,"30":3,"86":3}}],["vov",{"2":{"125":2}}],["v",{"2":{"86":3,"102":3,"122":7,"124":2,"125":4,"127":3}}],["vs",{"0":{"88":1},"2":{"35":3,"86":3}}],["vi",{"2":{"125":1}}],["viable",{"2":{"86":6,"106":5,"124":1}}],["visual",{"2":{"73":1}}],["vision",{"2":{"63":1}}],["vital",{"2":{"33":1}}],["vice",{"2":{"3":2,"86":3,"119":1}}],["vec",{"2":{"74":1}}],["vectorofvariables",{"2":{"125":1}}],["vectors",{"2":{"86":3,"94":2,"117":1}}],["vector",{"2":{"1":6,"6":2,"8":1,"21":1,"22":4,"24":4,"25":3,"26":1,"27":3,"29":1,"30":1,"36":2,"38":9,"46":1,"52":2,"86":59,"91":1,"94":2,"102":2,"109":2,"113":5,"117":10,"118":6,"122":2,"124":10,"125":2,"127":1}}],["verbose",{"2":{"127":4}}],["verbosity",{"2":{"127":1}}],["very",{"2":{"88":1}}],["verifies",{"2":{"52":2,"86":2}}],["versionnumber",{"2":{"122":1}}],["versions",{"2":{"122":3}}],["version",{"2":{"36":1,"73":1,"86":2,"119":1,"122":3}}],["versatile",{"2":{"86":2}}],["versatility",{"2":{"20":1}}],["versa",{"2":{"3":2,"86":3,"119":1}}],["var",{"2":{"127":12}}],["variety",{"2":{"89":1}}],["various",{"0":{"112":1},"1":{"113":1,"114":1},"2":{"14":1,"19":1,"21":1,"33":1,"57":1,"73":1,"84":1,"86":2,"89":1,"119":1,"124":1}}],["variant",{"2":{"54":2,"86":2}}],["variants",{"2":{"1":3,"3":4,"38":4,"40":1,"46":1,"49":1,"52":2,"54":2,"74":1,"86":19}}],["variableinfo",{"2":{"125":1}}],["variable",{"0":{"18":1},"1":{"19":1,"20":1,"21":1,"22":1,"23":1,"24":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1},"2":{"3":6,"18":1,"19":1,"20":1,"22":3,"25":3,"27":3,"33":1,"35":1,"42":2,"47":2,"74":2,"86":9,"124":2,"125":4,"127":40}}],["variables",{"2":{"3":8,"30":1,"38":8,"40":2,"46":1,"47":1,"49":2,"52":1,"66":1,"74":3,"86":32,"87":1,"98":3,"103":1,"108":2,"124":4,"125":5,"127":26}}],["vars",{"2":{"6":1,"40":2,"54":15,"86":42,"98":6,"125":2,"127":24}}],["vars=dictionary",{"2":{"127":1}}],["vars=ones",{"2":{"38":2,"86":2}}],["vars=nothing",{"2":{"1":10,"86":10}}],["vars=",{"2":{"1":4,"40":2,"86":11}}],["vars=zeros",{"2":{"1":2,"86":2}}],["valparameterdomain",{"2":{"30":1,"86":1}}],["validity",{"2":{"46":1,"86":1}}],["valid",{"2":{"21":1,"52":1,"86":10,"88":2,"108":2,"109":3,"124":5}}],["val=3",{"2":{"38":1,"86":1}}],["val=2",{"2":{"3":1,"38":3,"86":4}}],["val=15",{"2":{"38":2,"86":2}}],["val=1",{"2":{"1":2,"3":1,"38":1,"86":4}}],["val=nothing",{"2":{"1":2,"3":2,"86":4}}],["valued",{"2":{"52":1,"86":1}}],["value",{"2":{"1":1,"3":13,"22":8,"25":7,"26":2,"27":10,"30":2,"31":1,"35":3,"36":5,"38":5,"49":4,"52":3,"74":3,"86":58,"100":2,"106":1,"109":1,"119":8,"124":13,"125":6,"127":20}}],["values",{"2":{"1":13,"3":4,"21":2,"24":2,"26":4,"30":3,"31":4,"35":2,"36":1,"38":24,"40":6,"47":2,"49":3,"52":2,"74":2,"86":66,"119":5,"124":4,"125":6,"127":11}}],["val",{"0":{"99":1,"118":1},"2":{"1":3,"3":8,"6":1,"16":2,"21":1,"31":4,"38":21,"49":4,"54":6,"86":74,"98":6,"99":6,"118":8,"119":8,"124":3,"127":8}}],["valsparameterdomain",{"2":{"30":1,"86":1}}],["vals=nothing",{"2":{"36":2,"86":2,"124":1}}],["vals=",{"2":{"1":2,"38":13,"86":15}}],["vals",{"2":{"1":2,"6":1,"38":18,"86":31,"117":8,"119":2}}],["tbw",{"2":{"104":4}}],["typically",{"2":{"88":1}}],["typeof",{"2":{"125":6}}],["typemax",{"2":{"113":1,"127":1}}],["type",{"2":{"8":4,"19":2,"21":6,"24":2,"26":5,"28":1,"29":1,"30":9,"31":7,"33":1,"35":1,"86":34,"89":2,"104":7,"106":1,"111":2,"119":1,"124":13,"125":32,"127":17}}],["types",{"2":{"4":1,"5":2,"19":3,"41":1,"47":1,"80":1,"86":2,"119":2,"127":8}}],["tutorials",{"0":{"83":1,"84":1},"1":{"84":1,"85":1},"2":{"84":1}}],["tuples",{"2":{"47":2,"86":6}}],["tuple",{"2":{"3":7,"21":5,"24":5,"26":5,"31":2,"54":1,"86":17,"124":5}}],["tips",{"2":{"77":1}}],["timelimitsec",{"2":{"125":1}}],["timestamps",{"2":{"127":1}}],["times",{"2":{"38":3,"86":3}}],["time",{"2":{"31":2,"54":8,"86":10,"89":1,"106":2,"119":1,"125":1,"127":27}}],["temporary",{"2":{"127":1}}],["terminationstatuscode",{"2":{"125":1}}],["terminology",{"0":{"66":1}}],["text",{"2":{"90":1,"93":1,"96":1,"115":1}}],["teach",{"2":{"78":1}}],["techniques",{"0":{"55":1,"67":1},"1":{"56":1,"57":1},"2":{"88":2,"89":2}}],["test",{"0":{"45":1},"2":{"104":2,"113":6}}],["testing",{"2":{"35":1,"86":1,"104":1,"125":1}}],["tendency",{"2":{"31":1}}],["tabu",{"2":{"81":1,"127":46}}],["table",{"2":{"36":4,"86":4,"113":1,"124":4}}],["task",{"2":{"54":16,"86":16}}],["tasks",{"2":{"54":18,"86":18,"127":1}}],["take",{"2":{"36":1,"74":1,"86":1,"89":1,"124":1}}],["takes",{"2":{"35":1,"36":1,"40":2,"86":4}}],["targeted",{"2":{"29":1,"73":1,"86":2,"124":2,"127":3}}],["tailoring",{"2":{"19":1,"33":1}}],["t",{"2":{"8":2,"21":8,"24":11,"26":14,"30":5,"31":10,"35":1,"36":2,"52":2,"86":29,"124":12,"125":12,"127":7}}],["tries",{"2":{"89":1}}],["tr",{"2":{"86":58,"102":3,"117":33,"118":18}}],["try",{"2":{"73":1,"89":1,"113":1}}],["train",{"2":{"86":3,"104":2,"111":3,"113":5,"124":2}}],["training",{"2":{"86":1,"104":7,"124":1}}],["traditional",{"2":{"33":1}}],["transpose",{"2":{"113":3}}],["transportation",{"2":{"88":1}}],["transported",{"2":{"31":1}}],["transform",{"2":{"86":1,"109":1,"124":1}}],["transforms",{"2":{"86":4,"119":4}}],["transformations",{"0":{"115":1,"116":1},"1":{"116":1,"117":2,"118":2,"119":2},"2":{"86":16,"100":1,"116":1,"119":15,"124":3}}],["transformation",{"2":{"86":12,"115":3,"119":8,"124":4}}],["transition",{"2":{"5":2}}],["true",{"2":{"1":3,"3":6,"8":3,"10":1,"12":1,"22":3,"25":2,"27":2,"30":1,"35":2,"36":1,"38":4,"40":1,"44":1,"45":2,"49":1,"54":2,"86":29,"104":1,"106":1,"119":1,"124":4,"125":2,"127":3}}],["two",{"2":{"3":2,"8":1,"21":1,"24":3,"26":3,"31":1,"36":1,"41":1,"46":1,"47":1,"54":4,"86":11,"87":1,"124":3,"125":1}}],["th",{"2":{"86":1,"106":1}}],["threads",{"2":{"127":8}}],["threshold",{"2":{"86":1,"119":1}}],["throw",{"2":{"113":1}}],["through",{"2":{"33":1,"42":3,"44":2,"60":1,"73":3,"86":3,"91":1,"94":2,"104":2}}],["than",{"2":{"35":1,"36":1,"42":1,"86":11,"117":5,"118":2,"119":1,"125":2}}],["that",{"2":{"1":7,"3":14,"4":1,"5":6,"6":1,"18":1,"21":2,"22":2,"24":1,"25":2,"26":3,"27":2,"29":1,"31":2,"33":1,"35":11,"36":2,"38":11,"40":4,"42":4,"43":2,"44":1,"46":2,"47":4,"49":2,"52":5,"54":12,"73":1,"74":6,"75":1,"86":101,"87":3,"88":4,"89":5,"92":1,"95":1,"100":2,"102":2,"103":1,"104":3,"106":3,"108":1,"119":3,"124":16,"125":11,"127":10}}],["those",{"2":{"33":1,"106":1}}],["thus",{"2":{"31":1}}],["this",{"2":{"3":2,"5":3,"6":1,"18":1,"19":1,"20":1,"29":1,"31":1,"32":1,"33":3,"35":1,"36":4,"43":1,"46":1,"52":2,"54":2,"74":2,"86":17,"106":2,"119":1,"121":1,"123":1,"124":2,"127":3}}],["third",{"2":{"3":2,"86":2}}],["theory",{"0":{"60":1}}],["them",{"2":{"46":1,"86":1,"87":1,"127":1}}],["they",{"2":{"31":1,"42":3,"47":3,"56":1,"62":1,"87":1,"88":1,"89":1}}],["there",{"2":{"31":3,"36":1,"52":1,"86":2}}],["thereby",{"2":{"5":1,"18":1}}],["then",{"2":{"29":1,"36":2,"43":1,"86":3,"124":1,"127":2}}],["these",{"2":{"19":1,"33":3,"36":1,"42":1,"47":2,"86":1,"89":1}}],["their",{"0":{"56":1},"2":{"5":1,"33":1,"57":1,"73":1,"74":1,"86":1,"119":1}}],["the",{"0":{"62":1},"2":{"1":10,"3":25,"4":2,"5":19,"6":10,"8":2,"10":3,"12":1,"14":5,"16":2,"18":4,"19":14,"20":5,"21":8,"22":6,"24":8,"25":9,"26":6,"27":10,"29":13,"30":5,"31":54,"32":2,"33":19,"34":3,"35":46,"36":67,"38":41,"40":3,"41":1,"42":6,"43":9,"44":6,"46":6,"47":4,"49":16,"52":17,"54":33,"60":1,"62":1,"63":1,"69":1,"72":1,"73":9,"74":13,"75":3,"78":1,"82":1,"85":1,"86":466,"87":4,"88":3,"89":3,"90":1,"91":1,"92":3,"93":1,"95":3,"96":1,"97":2,"98":7,"99":3,"100":4,"102":4,"103":3,"104":17,"106":20,"108":1,"109":1,"115":5,"116":2,"117":25,"118":12,"119":12,"122":4,"123":1,"124":136,"125":17,"127":120}}],["too",{"2":{"89":1}}],["tool",{"2":{"32":1}}],["toolkit",{"2":{"20":1}}],["tools",{"0":{"35":1,"50":1},"2":{"19":1,"34":2}}],["towards",{"2":{"86":1,"103":1,"124":1}}],["topics",{"2":{"84":1}}],["total",{"2":{"25":1,"27":1,"86":1}}],["todo",{"0":{"7":1,"9":1,"11":1,"13":1,"15":1,"17":1},"2":{"35":1,"43":1,"44":2,"73":1,"74":4,"86":1,"127":1}}],["to",{"0":{"22":1,"25":1,"27":1,"50":1,"60":1,"75":1,"107":1},"1":{"108":1},"2":{"1":9,"3":12,"4":1,"5":2,"6":1,"8":1,"10":1,"12":1,"14":1,"16":1,"19":6,"21":4,"22":6,"24":3,"25":4,"26":1,"27":4,"29":3,"30":18,"31":19,"32":2,"33":4,"34":2,"35":17,"36":23,"38":13,"40":2,"42":1,"43":6,"44":3,"47":1,"49":3,"52":4,"54":2,"62":1,"73":4,"74":6,"75":1,"78":1,"85":1,"86":187,"87":3,"88":5,"89":9,"90":1,"93":1,"94":2,"96":1,"102":6,"103":1,"104":12,"106":3,"107":1,"108":1,"109":1,"111":1,"113":1,"115":2,"117":18,"118":7,"119":7,"121":1,"123":1,"124":45,"125":10,"127":49}}],["i+1",{"2":{"74":1}}],["iconic",{"2":{"74":1}}],["icnlocalsearchoptimizer",{"2":{"104":3}}],["icngeneticoptimizer",{"2":{"104":4}}],["icnoptimizer",{"2":{"104":3}}],["icnconfig",{"2":{"104":4}}],["icns",{"2":{"90":1,"93":1,"96":1,"104":1,"106":1,"115":1}}],["icn=icn",{"2":{"86":1,"124":1}}],["icn",{"0":{"106":1},"2":{"25":2,"27":2,"35":1,"86":36,"92":1,"95":1,"100":1,"104":12,"106":9,"119":1,"124":23}}],["ignores",{"2":{"54":1,"86":1}}],["ignore",{"2":{"54":1,"86":1}}],["ignored",{"2":{"54":2,"86":2}}],["illustrate",{"2":{"43":1}}],["io",{"2":{"31":2}}],["immutable",{"2":{"26":1,"86":1,"124":1}}],["impossible",{"2":{"89":1}}],["importance",{"2":{"75":1,"85":1}}],["improve",{"2":{"78":1,"88":1,"89":1}}],["improvement",{"0":{"78":1},"2":{"127":1}}],["improving",{"2":{"33":1,"127":1}}],["implemented",{"2":{"87":1}}],["implement",{"2":{"8":1,"21":1,"30":1,"86":2,"124":1}}],["implementations",{"2":{"19":1}}],["implementation",{"2":{"8":2,"86":2,"115":1,"124":2}}],["impact",{"2":{"5":1,"57":1}}],["i`",{"2":{"22":1,"25":1,"27":1,"86":1}}],["i",{"2":{"22":10,"24":7,"25":8,"26":3,"27":8,"30":2,"49":2,"54":4,"74":4,"86":64,"102":2,"103":1,"106":2,"113":2,"117":23,"118":13,"124":3,"127":1}}],["identity",{"2":{"86":14,"98":4,"117":6,"119":4}}],["identified",{"2":{"35":1,"86":1}}],["ids",{"2":{"30":1,"86":1}}],["idparameterdomain",{"2":{"30":1,"86":1}}],["id",{"2":{"6":1,"31":2,"86":1,"127":13}}],["id=3",{"2":{"3":1,"86":1}}],["id=1",{"2":{"3":3,"86":3}}],["id=nothing",{"2":{"3":4,"86":4}}],["iterate",{"2":{"127":1}}],["iterators",{"2":{"113":1}}],["iterations",{"2":{"127":3}}],["iteration",{"2":{"86":2,"124":2,"127":8}}],["iter=100",{"2":{"86":2,"124":2}}],["iter",{"2":{"86":8,"104":3,"124":8,"127":1}}],["ith",{"2":{"22":2,"25":1,"27":1,"30":1,"86":1}}],["itvls",{"2":{"24":3,"86":3}}],["itv",{"2":{"21":2,"22":8,"24":2,"25":7,"26":2,"27":7,"30":3,"86":9,"124":2}}],["itself",{"2":{"86":1,"124":1}}],["its",{"2":{"5":1,"24":1,"26":1,"31":1,"33":2,"35":1,"65":1,"69":1,"72":1,"73":2,"74":1,"75":1,"82":1,"86":5,"102":2,"124":3,"127":2}}],["it",{"2":{"4":1,"21":1,"30":8,"32":1,"35":9,"36":25,"38":2,"42":1,"43":1,"44":1,"46":2,"49":2,"52":1,"54":6,"73":1,"74":4,"86":65,"87":2,"89":2,"97":1,"104":1,"106":1,"109":1,"116":1,"119":1,"122":1,"124":6,"125":1,"127":6}}],["isa",{"2":{"113":1}}],["issue",{"0":{"45":1},"2":{"115":1}}],["isempty",{"2":{"10":3,"22":5,"86":6}}],["is",{"0":{"65":1},"2":{"3":10,"4":1,"5":4,"6":2,"10":2,"19":2,"21":2,"22":7,"24":3,"25":5,"27":5,"29":3,"30":9,"31":9,"32":2,"33":3,"35":7,"36":14,"38":15,"40":3,"42":3,"43":1,"44":3,"46":2,"49":5,"52":9,"54":10,"73":1,"74":6,"86":156,"87":5,"88":5,"89":4,"92":1,"95":1,"100":2,"102":1,"104":5,"106":7,"109":4,"111":1,"117":20,"118":13,"119":4,"124":26,"125":8,"127":17}}],["iff",{"2":{"86":2,"100":1,"119":1,"124":2}}],["if",{"2":{"1":3,"3":4,"8":3,"21":1,"22":10,"25":9,"27":9,"29":2,"30":2,"35":9,"36":8,"38":4,"40":1,"49":1,"52":2,"54":2,"73":1,"74":1,"86":65,"98":2,"99":2,"104":1,"106":4,"109":4,"113":4,"117":2,"118":2,"124":12,"127":14}}],["init",{"2":{"113":1}}],["initial",{"2":{"89":1}}],["initializes",{"2":{"36":1,"86":1}}],["inner",{"2":{"104":1,"127":1}}],["inf",{"2":{"127":1}}],["info",{"2":{"125":2,"127":6}}],["information",{"2":{"73":1,"86":1,"104":1,"124":1,"127":1}}],["infrastructure",{"2":{"18":1}}],["involves",{"2":{"87":1}}],["involving",{"2":{"86":1,"119":1}}],["invalid",{"2":{"33":1,"35":1,"86":3,"124":1}}],["investigated",{"2":{"31":1}}],["input",{"2":{"31":1,"36":3,"86":3}}],["inputs",{"2":{"19":1,"35":1,"86":1}}],["instead",{"2":{"86":3,"102":2,"109":1,"124":3,"125":1,"127":1}}],["instructions",{"2":{"70":1}}],["installed",{"2":{"73":1,"122":1}}],["install",{"2":{"73":1}}],["installing",{"2":{"70":1}}],["installation",{"0":{"70":1}}],["instantiation",{"2":{"40":9,"86":9}}],["instances",{"2":{"73":1}}],["instance",{"2":{"19":1,"31":4,"52":2,"86":3,"109":1,"124":1,"127":2}}],["insertion",{"2":{"16":1,"86":1,"124":1,"125":1}}],["insert",{"2":{"16":1,"86":1,"124":1,"127":3}}],["independent",{"2":{"127":1}}],["independently",{"2":{"127":1}}],["indexed",{"2":{"3":2,"86":2}}],["index",{"2":{"3":3,"49":2,"86":5,"127":1}}],["industry",{"2":{"87":1}}],["indice",{"2":{"127":1}}],["indices",{"2":{"127":6}}],["indicate",{"2":{"127":2}}],["indicates",{"2":{"31":1,"35":2,"86":2,"124":2}}],["individuals",{"2":{"104":1}}],["indispensable",{"2":{"32":1}}],["ind",{"2":{"16":1,"86":1,"124":1,"127":2}}],["inc",{"2":{"127":6}}],["increment",{"2":{"127":3}}],["incremental",{"2":{"125":1}}],["increase",{"2":{"16":1,"86":1,"124":1}}],["increasing",{"2":{"1":10,"86":10}}],["inclusive",{"2":{"86":3,"106":3}}],["included",{"2":{"86":1}}],["include",{"2":{"33":1,"87":1}}],["includes",{"2":{"5":1,"54":1,"86":3,"100":1,"119":1,"124":2}}],["including",{"0":{"36":1},"2":{"19":1,"33":1}}],["incorporation",{"2":{"33":1,"34":1}}],["incsert",{"2":{"16":2,"86":1,"124":1}}],["introductory",{"2":{"75":1}}],["introduction",{"0":{"50":1,"107":1},"1":{"108":1},"2":{"107":1}}],["introduce",{"2":{"66":1,"69":1,"81":1,"127":1}}],["into",{"0":{"79":1},"1":{"80":1,"81":1,"82":1},"2":{"21":1,"31":1,"41":1,"56":1,"86":6,"91":1,"102":1,"104":1,"106":1,"109":1,"124":3,"127":1}}],["intend",{"2":{"127":1}}],["intentionally",{"2":{"42":1}}],["intentional",{"2":{"42":1}}],["intention",{"0":{"42":1,"43":1},"1":{"43":1,"44":1,"45":1,"46":1},"2":{"41":1,"42":2,"43":1,"44":2}}],["intensional",{"2":{"33":1,"46":1,"86":1}}],["intension",{"2":{"33":1,"43":1,"44":3,"46":2,"86":2}}],["integer",{"2":{"31":3,"38":1,"80":1,"86":1,"87":1}}],["integrating",{"2":{"34":1}}],["integration",{"0":{"0":1,"2":1,"32":1,"37":1,"39":1,"48":1,"51":1,"53":1},"1":{"1":1,"3":1,"33":1,"34":1,"35":1,"36":1,"38":1,"40":1,"49":1,"52":1,"54":1},"2":{"33":3}}],["integrates",{"2":{"19":1}}],["integrate",{"2":{"5":1}}],["interfacing",{"0":{"123":1}}],["interfaced",{"2":{"121":1}}],["interfaces",{"2":{"73":1}}],["interface",{"0":{"111":1},"2":{"5":3,"8":2,"21":1,"42":1,"44":1,"73":2,"86":4,"87":3,"111":1,"123":1,"124":1,"125":1}}],["interpretable",{"2":{"86":1,"106":1,"124":1}}],["interpreted",{"2":{"52":2,"86":2}}],["interdiction",{"2":{"31":2,"127":2}}],["interval",{"2":{"21":1,"22":2,"24":6,"25":2,"26":3,"27":2,"30":1,"86":8,"124":1}}],["intervals",{"2":{"19":2,"21":2,"22":5,"24":5,"25":4,"26":2,"27":4,"28":2,"30":2,"86":11,"124":2}}],["intersect",{"2":{"19":1,"24":2,"26":1,"86":2,"124":1}}],["intersecting",{"2":{"19":1}}],["intersections",{"2":{"24":2,"26":1,"86":2,"124":1}}],["intersection",{"2":{"6":1,"36":1,"86":1,"124":1}}],["internally",{"2":{"86":1,"102":1}}],["internals",{"2":{"19":1,"29":1,"86":1}}],["internal",{"2":{"8":1,"21":1,"31":2,"86":4,"106":1,"124":1,"127":4}}],["interacting",{"2":{"33":1,"106":1}}],["interact",{"2":{"5":1}}],["interoperability",{"2":{"4":1,"5":1}}],["int",{"2":{"1":8,"3":1,"22":2,"25":2,"27":2,"29":1,"31":11,"36":1,"38":9,"46":1,"49":1,"52":2,"74":1,"86":35,"102":8,"113":2,"124":4,"125":6,"127":30}}],["in",{"0":{"0":1,"2":1,"20":1,"32":1,"34":1,"37":1,"39":1,"43":1,"48":1,"51":1,"53":1},"1":{"1":1,"3":1,"33":1,"34":1,"35":1,"36":1,"38":1,"40":1,"49":1,"52":1,"54":1},"2":{"1":6,"3":14,"4":1,"5":1,"6":1,"8":2,"10":3,"14":1,"16":1,"20":1,"21":4,"22":8,"24":3,"25":10,"26":5,"27":11,"29":2,"30":1,"31":9,"32":2,"33":3,"34":1,"35":4,"36":7,"38":24,"40":4,"41":1,"42":2,"43":1,"44":3,"46":1,"47":1,"49":6,"54":18,"65":1,"73":1,"74":7,"75":1,"82":1,"85":1,"86":134,"87":7,"89":3,"98":2,"102":2,"103":1,"104":3,"106":7,"113":2,"115":1,"117":1,"119":1,"122":1,"124":29,"125":16,"127":16}}],["df",{"2":{"104":2,"113":24}}],["ds",{"2":{"104":2}}],["date",{"2":{"31":1}}],["datatype",{"2":{"127":1}}],["dataframe",{"2":{"104":1,"113":2}}],["data",{"2":{"5":1,"86":2,"119":2,"127":1}}],["d₂",{"2":{"24":2,"26":2,"86":2,"124":2}}],["d₁",{"2":{"24":2,"26":2,"86":2,"124":2}}],["draw",{"2":{"22":2,"25":1,"27":1,"30":1,"86":1,"127":5}}],["d5",{"2":{"21":1,"24":1,"26":1,"86":1,"124":1}}],["d4",{"2":{"21":1,"24":1,"26":1,"86":1,"124":1}}],["d3",{"2":{"21":1,"24":1,"26":1,"86":1,"124":1}}],["d2",{"2":{"21":1,"24":1,"26":1,"86":1,"124":1}}],["dynamic",{"2":{"19":3,"21":1,"24":1,"31":1,"86":3,"119":1,"124":1,"127":11}}],["dom",{"2":{"86":8,"98":2,"99":2,"104":2,"113":4,"124":4}}],["domain",{"2":{"19":10,"20":1,"21":19,"22":1,"24":12,"25":1,"26":15,"27":1,"29":1,"30":9,"31":1,"38":1,"74":1,"86":46,"87":1,"98":1,"99":1,"104":3,"109":4,"124":32,"127":20}}],["domains",{"0":{"18":1},"1":{"19":1,"20":1,"21":1,"22":1,"23":1,"24":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1},"2":{"18":2,"19":8,"20":1,"21":4,"22":3,"24":9,"25":2,"26":7,"27":2,"28":2,"29":6,"30":1,"31":1,"66":1,"86":30,"104":2,"113":11,"124":23,"127":3}}],["download",{"2":{"73":1}}],["do",{"2":{"54":4,"86":6,"103":1,"119":1,"124":1}}],["doesn",{"2":{"35":1,"36":2,"86":3}}],["does",{"2":{"35":1,"36":3,"54":2,"86":9,"125":1}}],["documentation",{"0":{"46":1},"2":{"31":1,"73":1,"101":1,"104":1,"120":1,"121":1,"122":1,"125":1,"127":1}}],["documentervitepress",{"0":{"45":1}}],["documenter",{"2":{"8":1,"100":1,"102":1}}],["docstring",{"2":{"8":2,"100":2,"102":2,"125":26,"127":29}}],["d",{"2":{"16":1,"21":14,"22":29,"24":7,"25":23,"26":9,"27":26,"28":1,"30":12,"52":4,"86":54,"104":2,"113":2,"124":22,"127":9}}],["due",{"2":{"31":1,"73":1}}],["during",{"2":{"12":1,"86":1,"106":2}}],["duplication",{"2":{"5":1}}],["diff",{"2":{"86":4,"98":2,"99":2}}],["differs",{"0":{"67":1}}],["difference",{"2":{"14":2,"21":1,"24":1,"26":1,"86":12,"98":3,"99":3,"117":2,"118":2,"124":2}}],["different",{"2":{"1":8,"5":1,"6":1,"19":1,"31":1,"35":5,"36":8,"42":1,"43":6,"44":3,"45":2,"46":6,"73":1,"74":1,"86":29,"88":1,"119":3,"124":4,"127":1}}],["digits",{"2":{"74":2}}],["dive",{"0":{"79":1},"1":{"80":1,"81":1,"82":1},"2":{"56":1}}],["directions",{"0":{"63":1},"2":{"86":1,"119":1}}],["directed",{"2":{"52":1,"86":1}}],["directly",{"2":{"5":1,"33":1,"42":1,"44":1,"86":1}}],["dispatch",{"2":{"86":1,"104":1,"119":1,"127":2}}],["displays",{"2":{"31":1}}],["display",{"2":{"31":13}}],["discuss",{"2":{"57":1,"72":1,"85":1}}],["discreteset",{"2":{"125":3}}],["discretedomain",{"2":{"19":1,"21":1,"22":3,"24":1,"25":3,"26":4,"27":3,"30":1,"86":7,"113":1,"124":2}}],["discrete",{"0":{"26":1},"1":{"27":1},"2":{"18":1,"19":2,"21":1,"24":1,"26":4,"86":5,"104":1,"124":4,"127":1}}],["distributed",{"2":{"127":1}}],["distdifferent",{"2":{"44":1,"125":2}}],["dist",{"2":{"42":1,"43":6,"44":3,"45":2,"46":5,"86":5,"127":1}}],["distinct",{"2":{"38":2,"74":2,"86":2}}],["distinguishes",{"2":{"19":1}}],["distances",{"2":{"31":4,"43":2,"46":1,"86":1}}],["distance",{"2":{"21":2,"24":1,"26":1,"31":1,"46":3,"86":8,"103":1,"124":5,"127":1}}],["diagram",{"2":{"8":1,"52":4,"86":5,"124":1}}],["diagrams",{"2":{"8":2,"86":1}}],["dictionaries",{"0":{"16":1},"1":{"17":1},"2":{"16":1}}],["dictionaryview",{"2":{"127":1}}],["dictionary",{"2":{"6":1,"16":1,"31":3,"33":2,"35":1,"36":14,"86":18,"119":2,"124":8,"127":6}}],["dict",{"2":{"6":3,"36":8,"52":4,"86":12,"124":8}}],["dict=usual",{"2":{"6":1,"36":1,"86":1,"124":1}}],["dimension",{"2":{"125":6,"127":1}}],["dimensions",{"2":{"30":1,"86":1}}],["dimparameterdomain",{"2":{"30":1,"86":1}}],["dim",{"2":{"6":1,"54":2,"86":3,"113":3,"125":12,"127":4}}],["dim=2",{"2":{"3":2,"86":2}}],["dim=1",{"2":{"3":2,"86":2}}],["deepcopy",{"2":{"127":1}}],["deeper",{"2":{"56":1}}],["debugging",{"2":{"127":1}}],["debinarize",{"2":{"86":1,"109":1,"124":1}}],["denotes",{"2":{"86":2,"98":2}}],["density",{"2":{"29":1,"86":1,"124":1}}],["derived",{"2":{"86":1}}],["delta",{"2":{"127":6}}],["delegates",{"2":{"86":1,"119":1}}],["delete",{"2":{"19":1,"21":1,"27":3,"35":1,"86":5,"124":4,"127":13}}],["deletion",{"2":{"19":1}}],["delineation",{"2":{"86":2}}],["dedicated",{"2":{"43":1}}],["descent",{"0":{"113":1},"2":{"104":1}}],["descriptions",{"2":{"36":4,"86":4,"124":4}}],["description",{"2":{"36":2,"43":1,"86":3,"124":2,"125":36,"127":10}}],["describe",{"2":{"36":2,"86":2,"90":1,"93":1,"96":1,"113":1,"115":1,"124":2,"127":3}}],["describes",{"2":{"31":1}}],["design",{"2":{"5":1}}],["designed",{"2":{"4":1,"32":1,"42":1,"44":1}}],["depend",{"2":{"86":1,"119":1}}],["depending",{"2":{"73":1}}],["depends",{"2":{"21":1,"86":1,"124":1,"127":1}}],["dependencies",{"2":{"5":1}}],["determined",{"2":{"127":1}}],["determine",{"2":{"35":1,"86":2,"124":1}}],["determining",{"2":{"19":1,"33":1}}],["deterministic",{"2":{"8":1,"86":1,"124":1}}],["details",{"2":{"8":1,"100":1,"102":1}}],["decrement",{"2":{"127":1}}],["decrease",{"2":{"127":2}}],["decreasing",{"2":{"1":8,"86":8}}],["decay",{"2":{"127":3}}],["declare",{"2":{"86":1}}],["decisions",{"2":{"88":1}}],["decision",{"2":{"8":3,"52":1,"86":3,"124":1}}],["developers",{"2":{"32":1}}],["developing",{"2":{"5":1}}],["development",{"2":{"4":1,"5":3}}],["define",{"2":{"33":1,"36":3,"42":1,"43":2,"47":1,"65":1,"74":1,"86":6,"124":2}}],["defines",{"2":{"24":1,"26":1,"44":1,"86":2,"106":1,"124":1}}],["defined",{"0":{"52":1},"2":{"19":2,"21":1,"26":1,"33":1,"36":1,"38":1,"42":3,"46":1,"47":3,"74":2,"86":9,"98":1,"104":2,"117":1,"124":2,"125":2,"127":1}}],["defining",{"0":{"18":1,"43":1},"1":{"19":1,"20":1,"21":1,"22":1,"23":1,"24":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1},"2":{"19":1,"20":1,"33":2,"36":1,"42":1,"44":1,"86":1,"124":1}}],["definitions",{"2":{"19":1}}],["definition",{"0":{"0":1,"2":1,"32":1,"37":1,"39":1,"48":1,"51":1,"53":1},"1":{"1":1,"3":1,"33":1,"34":1,"35":1,"36":1,"38":1,"40":1,"49":1,"52":1,"54":1},"2":{"18":1,"19":1,"32":1,"33":1,"34":1,"36":1,"86":1}}],["default",{"2":{"6":3,"22":1,"29":1,"31":10,"36":8,"38":1,"86":17,"104":4,"109":1,"111":1,"124":10,"127":2}}],["defaults",{"2":{"1":1,"6":1,"16":1,"36":6,"86":8,"104":2,"124":2}}],["auto",{"2":{"113":1}}],["automated",{"2":{"36":1,"86":1}}],["automatic",{"2":{"29":1,"86":1,"124":1}}],["automatically",{"2":{"29":1,"86":1}}],["automaton",{"2":{"8":6,"30":4,"52":7,"86":15,"124":3}}],["automata",{"2":{"8":2,"19":1,"86":1}}],["among",{"2":{"104":1,"127":1}}],["amount",{"2":{"31":1}}],["affects",{"2":{"97":1,"116":1}}],["affect",{"2":{"86":1,"103":1,"124":1}}],["aggragation",{"2":{"90":1}}],["aggregate",{"2":{"86":1,"91":1}}],["aggregations",{"0":{"91":1},"2":{"86":1,"92":1,"124":1}}],["aggregation",{"0":{"90":1},"1":{"91":1,"92":1},"2":{"86":4,"92":1,"124":4}}],["ag",{"2":{"86":2,"91":2}}],["against",{"2":{"40":1,"86":2,"119":1}}],["again",{"2":{"31":1}}],["apixcspjumpmoi",{"2":{"44":1}}],["apis",{"0":{"44":1}}],["api",{"0":{"43":1,"86":1,"124":1},"2":{"42":1,"44":1}}],["appropriate",{"2":{"86":1,"119":1}}],["approach",{"2":{"5":1,"33":1,"74":1,"88":2}}],["appear",{"2":{"38":3,"86":3}}],["applies",{"2":{"86":1,"102":1,"125":1}}],["applied",{"2":{"35":1,"36":1,"59":1,"74":1,"86":3,"119":1,"124":2,"125":1,"127":2}}],["applicability",{"2":{"33":1}}],["applications",{"0":{"59":1},"2":{"18":1,"20":1}}],["application",{"2":{"5":2,"32":1,"33":1,"34":1,"86":1}}],["applying",{"0":{"58":1},"1":{"59":1,"60":1}}],["apply",{"2":{"33":1,"35":5,"36":3,"86":7,"119":2,"124":5}}],["about",{"0":{"105":1},"2":{"50":1,"87":1,"105":1,"126":1,"127":1}}],["absolute",{"2":{"86":2,"98":1,"99":1}}],["abs",{"2":{"36":1,"43":2,"44":2,"86":5,"98":2,"99":2,"124":1}}],["abstractstring",{"2":{"127":2}}],["abstractstring=",{"2":{"10":1,"86":1}}],["abstractstate",{"2":{"127":1}}],["abstractsolver",{"2":{"127":70}}],["abstractscalarset",{"2":{"125":1}}],["abstractscalarfunction",{"2":{"125":1}}],["abstractoptimizer",{"2":{"86":2,"104":2,"111":2,"113":1,"124":1,"125":1}}],["abstractmatrix",{"2":{"31":4}}],["abstractmultivalueddecisiondiagram",{"2":{"8":3,"86":3,"124":1}}],["abstractrange",{"2":{"21":1,"24":1,"26":2,"86":2,"124":2}}],["abstracting",{"2":{"20":1}}],["abstractdomain",{"2":{"19":3,"21":5,"22":6,"24":4,"25":5,"26":4,"27":5,"28":1,"30":10,"86":25,"124":10,"127":6}}],["abstractdictionary",{"2":{"16":1,"86":1,"124":1}}],["abstractdict",{"2":{"16":1,"86":1,"124":1}}],["abstractautomaton`",{"2":{"52":1,"86":1}}],["abstractautomaton",{"2":{"8":3,"30":1,"52":2,"86":6,"124":1}}],["abstract",{"2":{"4":1,"5":2,"8":2,"19":1,"21":1,"24":1,"26":1,"86":6,"104":2,"111":1,"124":3,"127":2}}],["abstractvectorset",{"2":{"125":15}}],["abstractvector",{"2":{"3":4,"40":2,"49":1,"54":5,"86":31,"102":1,"117":11,"118":6,"127":1}}],["ability",{"2":{"33":1}}],["avoid",{"2":{"35":1,"86":2,"124":1,"127":1}}],["avoiding",{"2":{"33":1}}],["available",{"2":{"19":1,"31":2,"34":1,"36":1,"42":1,"44":1,"73":2,"86":2,"87":1,"119":1,"124":1,"127":1}}],["always",{"2":{"125":1}}],["alwaystrue",{"2":{"125":2}}],["alternative",{"2":{"106":1}}],["although",{"2":{"73":1}}],["algorithm",{"2":{"86":4,"89":2,"104":3,"124":4}}],["algorithms",{"2":{"81":1,"89":1}}],["along",{"2":{"73":1}}],["already",{"2":{"36":1,"74":1,"86":3,"98":1,"104":1,"117":1,"127":1}}],["also",{"2":{"19":1,"38":3,"74":1,"86":5,"100":1,"119":1,"124":2}}],["allequalparam",{"2":{"125":2}}],["allequal",{"2":{"125":2}}],["allocation",{"2":{"88":1}}],["allocations",{"2":{"86":17,"117":10,"118":6}}],["allow",{"2":{"47":1}}],["allows",{"2":{"33":2}}],["allowing",{"2":{"19":1,"86":3,"119":1}}],["alldifferent",{"2":{"74":5,"125":2}}],["all",{"2":{"1":24,"6":1,"14":1,"19":1,"24":1,"31":1,"35":4,"36":9,"38":1,"47":1,"73":1,"74":2,"86":45,"87":1,"89":1,"100":1,"102":1,"119":1,"122":2,"124":10,"125":7,"127":4}}],["advantages",{"2":{"72":1}}],["advanced",{"0":{"34":1,"55":1},"1":{"56":1,"57":1},"2":{"19":1,"20":1,"33":1}}],["adjusted",{"2":{"29":1,"86":1}}],["added",{"2":{"43":1,"44":1,"125":1}}],["adds",{"2":{"36":4,"86":4}}],["adding",{"2":{"36":2,"86":2,"124":2}}],["addition",{"2":{"19":1,"33":1}}],["addtionally",{"2":{"21":1,"86":1,"124":1}}],["add",{"2":{"19":1,"21":1,"26":2,"35":1,"42":1,"43":1,"73":1,"74":4,"86":4,"124":3,"125":6,"127":20}}],["attribution",{"2":{"127":1}}],["attributed",{"2":{"127":6}}],["attribute",{"2":{"127":2}}],["attached",{"2":{"127":1}}],["atoms",{"2":{"31":1}}],["at",{"2":{"8":1,"19":1,"31":1,"33":1,"36":1,"38":8,"54":2,"73":1,"86":15,"104":2,"106":2,"109":1,"124":3,"127":1}}],["accurate",{"2":{"113":2}}],["according",{"2":{"86":1,"119":1}}],["access",{"2":{"21":1,"86":5,"106":1,"124":4,"127":20}}],["accessing",{"2":{"19":1}}],["acceptable",{"2":{"86":2}}],["accepted",{"2":{"35":2,"52":2,"86":4,"124":2}}],["accepts",{"2":{"8":3,"30":1,"31":5,"86":3,"124":1}}],["accept",{"2":{"8":6,"30":3,"86":7,"124":1}}],["action",{"2":{"86":2,"124":2}}],["actively",{"2":{"5":1}}],["actual",{"2":{"86":1,"124":1}}],["across",{"2":{"5":2}}],["assuming",{"2":{"125":1}}],["assert",{"2":{"86":1,"106":1}}],["associated",{"2":{"31":1,"74":1,"106":1}}],["assignements",{"2":{"35":1,"86":1,"124":1}}],["assign",{"2":{"31":1,"86":1,"124":1,"127":1}}],["assignments",{"2":{"33":2}}],["assignment",{"2":{"31":1,"35":1,"86":1,"124":1}}],["aspect",{"2":{"5":1}}],["as",{"2":{"4":1,"5":1,"8":1,"12":1,"18":1,"19":1,"24":1,"26":3,"31":3,"33":2,"35":1,"36":9,"38":3,"42":3,"44":2,"46":1,"52":2,"66":1,"73":1,"74":1,"86":27,"87":1,"88":2,"98":1,"102":2,"104":1,"106":1,"117":1,"119":1,"122":1,"123":1,"124":7,"125":2,"127":6}}],["a",{"0":{"106":1},"2":{"1":3,"3":22,"4":1,"5":6,"8":12,"16":2,"18":2,"19":2,"20":2,"21":9,"22":19,"24":8,"25":17,"26":8,"27":17,"29":6,"30":15,"31":28,"32":1,"33":7,"34":1,"35":18,"36":21,"38":13,"40":8,"42":10,"43":2,"44":3,"46":5,"47":4,"49":8,"52":29,"54":8,"60":1,"73":2,"74":12,"86":277,"87":7,"88":4,"89":7,"91":2,"94":2,"98":1,"99":1,"102":8,"103":4,"104":23,"106":17,"108":2,"109":7,"111":1,"115":1,"119":10,"121":1,"122":3,"124":75,"125":17,"127":51}}],["angles",{"2":{"88":1}}],["anonymous",{"2":{"86":1,"102":1}}],["another",{"2":{"3":2,"86":2,"87":1}}],["annealing",{"2":{"81":1}}],["analyze",{"2":{"78":1,"88":1}}],["analyzing",{"0":{"76":1},"1":{"77":1,"78":1}}],["analysis",{"0":{"78":1,"85":1},"2":{"85":1,"88":1}}],["any",{"0":{"106":1},"2":{"10":1,"21":2,"22":2,"25":2,"27":2,"31":1,"35":2,"46":1,"54":6,"86":19,"111":1,"124":7,"125":1,"127":1}}],["an",{"0":{"43":1},"2":{"1":3,"4":1,"8":2,"10":1,"19":1,"21":2,"24":6,"25":1,"26":3,"27":1,"29":1,"31":3,"32":1,"33":1,"35":4,"36":6,"38":1,"43":1,"44":1,"46":1,"52":3,"60":1,"74":1,"75":2,"86":57,"89":3,"98":1,"99":1,"102":3,"104":7,"106":6,"111":1,"115":1,"118":1,"119":1,"123":1,"124":18,"125":2,"127":11}}],["and",{"0":{"0":1,"2":1,"5":1,"18":1,"19":1,"32":1,"33":1,"36":1,"37":1,"38":1,"39":1,"48":1,"51":1,"53":1,"54":1,"56":1,"57":1,"59":1,"61":1,"66":1,"70":1,"71":1,"76":1,"78":1,"83":1},"1":{"1":1,"3":1,"19":1,"20":1,"21":1,"22":1,"23":1,"24":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"33":1,"34":1,"35":1,"36":1,"38":1,"40":1,"49":1,"52":1,"54":1,"62":1,"63":1,"72":1,"73":1,"74":1,"77":1,"78":1,"84":1,"85":1},"2":{"3":2,"4":3,"5":14,"6":1,"8":1,"10":1,"12":1,"14":1,"18":2,"19":11,"20":4,"21":2,"24":2,"26":1,"29":2,"30":2,"31":13,"32":3,"33":14,"34":2,"35":10,"36":10,"38":1,"41":1,"42":1,"46":3,"47":1,"49":2,"52":1,"56":1,"57":1,"59":1,"60":1,"62":1,"63":1,"65":1,"66":1,"67":1,"69":1,"70":1,"72":2,"73":2,"74":4,"75":2,"77":2,"78":1,"81":1,"82":1,"84":1,"85":1,"86":66,"87":3,"88":8,"89":3,"97":1,"98":1,"99":1,"102":1,"104":10,"106":3,"108":1,"109":1,"116":1,"117":5,"118":1,"119":3,"121":1,"122":1,"124":24,"125":2,"127":11}}],["arrange",{"2":{"122":3}}],["arrangement",{"2":{"104":1}}],["ar",{"2":{"86":2,"94":2}}],["arithmetic",{"0":{"93":1,"94":1},"1":{"94":1,"95":1},"2":{"86":5,"93":1,"95":2,"124":5}}],["arxiv",{"2":{"36":1,"86":1,"124":1}}],["arbitrary",{"2":{"26":1,"35":1,"86":2}}],["arbitrarydomain",{"2":{"26":1,"86":1}}],["argmax",{"2":{"127":3}}],["argument",{"2":{"31":5,"36":7,"86":7,"125":1}}],["arguments",{"2":{"1":3,"3":4,"6":1,"21":1,"24":1,"29":1,"31":1,"35":9,"36":11,"38":4,"40":1,"46":1,"49":1,"52":2,"54":2,"86":43,"124":15,"125":13,"127":8}}],["args",{"2":{"21":4,"29":1,"33":1,"35":7,"36":4,"86":13,"104":3,"111":1,"124":10}}],["areas",{"2":{"63":1}}],["are",{"2":{"1":10,"5":2,"19":1,"24":1,"26":1,"29":1,"31":5,"33":2,"36":1,"41":1,"42":4,"43":2,"46":2,"47":4,"54":2,"74":1,"86":42,"87":2,"88":2,"92":1,"95":1,"100":1,"106":2,"117":10,"118":5,"119":1,"124":6,"125":4,"127":2}}],["jacop",{"2":{"87":1}}],["j+1",{"2":{"74":1}}],["j",{"2":{"74":1}}],["join",{"2":{"62":1}}],["joining",{"0":{"62":1}}],["jc",{"0":{"43":1},"2":{"42":1,"44":2}}],["jump",{"2":{"31":20,"42":1,"44":3,"73":3,"74":2,"87":1,"125":6,"127":1}}],["juliajump",{"2":{"125":1}}],["juliajulia>",{"2":{"122":1}}],["juliapost",{"2":{"127":1}}],["juliapredicate",{"2":{"125":1}}],["juliapredict",{"2":{"104":1}}],["juliapreliminaries",{"2":{"104":1}}],["juliaparameter",{"2":{"104":1}}],["juliaparams",{"2":{"35":1,"86":1,"124":1}}],["juliapairvarsparameterdomain",{"2":{"30":1,"86":1}}],["juliaqubogradientoptimizer",{"2":{"104":1}}],["juliaqubo",{"2":{"86":2,"104":1,"108":2,"124":1}}],["juliaqap",{"2":{"31":1}}],["juliaweigths",{"2":{"86":3,"103":1,"124":3}}],["juliatrain",{"2":{"86":1,"104":2,"111":1,"124":1}}],["juliatransformation",{"2":{"86":1,"119":1,"124":1}}],["juliatr",{"2":{"86":19,"117":11,"118":6}}],["juliato",{"2":{"21":1,"86":1,"124":1}}],["juliaremote",{"2":{"127":2}}],["juliaregularization",{"2":{"86":1,"124":1}}],["juliareduce",{"2":{"86":1,"102":1}}],["juliarangedomain",{"2":{"26":1,"86":1,"124":1}}],["juliahamming",{"2":{"86":1,"103":1,"124":1}}],["juliafunctions",{"2":{"86":1,"106":1}}],["juliafor",{"2":{"74":2}}],["juliafake",{"2":{"30":1,"86":1}}],["juliafakeautomaton",{"2":{"30":1,"86":1}}],["juliausing",{"2":{"73":2}}],["juliausual",{"2":{"35":1,"36":2,"86":3,"124":2}}],["juliaup",{"2":{"73":1}}],["juliano",{"2":{"104":1}}],["julianbits",{"2":{"86":2,"106":1,"124":1}}],["julian",{"2":{"31":1}}],["juliagolomb",{"2":{"31":1}}],["juliageneralstate",{"2":{"127":1}}],["juliagenerate",{"2":{"30":1,"86":5,"104":1,"106":3,"124":1}}],["juliaget",{"2":{"21":1,"86":1,"124":1,"127":12}}],["juliastop",{"2":{"127":1}}],["juliastatus",{"2":{"127":1}}],["juliastruct",{"2":{"86":1,"104":1,"113":1,"124":1}}],["juliaspecialize",{"2":{"127":2}}],["juliasolve",{"2":{"127":2}}],["juliasolution",{"2":{"127":1}}],["juliascalarfunction",{"2":{"125":1}}],["juliascheduling",{"2":{"31":1}}],["juliasub",{"2":{"104":1}}],["juliasudoku",{"2":{"31":1}}],["juliasudokuinstance",{"2":{"31":2}}],["juliasymbols",{"2":{"86":1,"124":1}}],["juliasymbol",{"2":{"86":1,"106":1}}],["juliasymmetries",{"2":{"35":1,"86":1,"124":1}}],["juliashow",{"2":{"86":2,"106":1,"124":1}}],["juliashrink",{"2":{"35":1,"86":1}}],["juliaselected",{"2":{"86":1,"106":1}}],["juliasetdomain",{"2":{"26":1,"86":1}}],["juliavalue",{"2":{"74":1}}],["juliavalsparameterdomain",{"2":{"30":1,"86":1}}],["juliavalparameterdomain",{"2":{"30":1,"86":1}}],["juliavariable",{"2":{"127":3}}],["juliavar",{"2":{"22":1,"25":1,"27":1,"127":1}}],["juliao",{"2":{"127":1}}],["juliaobjective",{"2":{"127":4}}],["juliaoptions",{"2":{"127":1}}],["juliaoptimizer",{"2":{"125":2}}],["juliaoptimize",{"2":{"74":1,"104":1}}],["juliaopparameterdomain",{"2":{"30":1,"86":1}}],["juliaoversample",{"2":{"12":1,"86":1,"124":1}}],["julialoss",{"2":{"104":1}}],["julialeadsolver",{"2":{"127":1}}],["julialearn",{"2":{"86":1,"124":1}}],["julialength",{"2":{"25":1,"27":1,"86":1,"106":1,"127":5}}],["julialazy",{"2":{"86":2,"102":2,"124":2}}],["julialayers",{"2":{"86":1}}],["julialayer",{"2":{"86":1,"106":1}}],["julialanguageparameterdomain",{"2":{"30":1,"86":1}}],["juliais",{"2":{"86":2,"106":1,"109":1,"124":1,"127":2}}],["juliaicnlocalsearchoptimizer",{"2":{"104":1}}],["juliaicngeneticoptimizer",{"2":{"104":1}}],["juliaicnconfig",{"2":{"104":1}}],["juliaicn",{"2":{"86":1,"104":1,"124":1}}],["juliaidparameterdomain",{"2":{"30":1,"86":1}}],["juliaintersect",{"2":{"24":2,"26":1,"86":2,"124":1}}],["juliaintervals",{"2":{"24":1,"86":1}}],["juliaincsert",{"2":{"16":1,"86":1,"124":1}}],["juliabinarize",{"2":{"86":1,"109":1,"124":1}}],["juliaboolparameterdomain",{"2":{"30":1,"86":1}}],["juliabase",{"2":{"10":3,"22":15,"24":1,"25":13,"26":1,"27":14,"28":2,"30":4,"31":4,"86":20,"124":1,"125":2}}],["juliamodel",{"2":{"127":1}}],["juliamoi",{"2":{"125":11}}],["juliamoisumequalparam",{"2":{"125":1}}],["juliamoisequentialtasks",{"2":{"125":1}}],["juliamoipredicate",{"2":{"125":1}}],["juliamoiordered",{"2":{"125":1}}],["juliamoiminusequalparam",{"2":{"125":1}}],["juliamoilessthanparam",{"2":{"125":1}}],["juliamoierror",{"2":{"125":1}}],["juliamoieq",{"2":{"125":1}}],["juliamoidistdifferent",{"2":{"125":1}}],["juliamoialwaystrue",{"2":{"125":1}}],["juliamoiallequalparam",{"2":{"125":1}}],["juliamoiallequal",{"2":{"125":1}}],["juliamoialldifferent",{"2":{"125":1}}],["juliamts",{"2":{"127":1}}],["juliamutually",{"2":{"104":1}}],["juliamutable",{"2":{"31":1}}],["juliaminkowski",{"2":{"86":1,"103":1,"124":1}}],["juliamincut",{"2":{"31":1}}],["juliam",{"2":{"74":1}}],["juliamax",{"2":{"127":1}}],["juliamainsolver",{"2":{"127":1}}],["juliamap",{"2":{"86":1,"102":1}}],["juliamanhattan",{"2":{"86":1,"103":1,"124":1}}],["juliamake",{"2":{"35":1,"86":2,"104":3,"119":1}}],["juliamagic",{"2":{"31":1}}],["juliamerge",{"2":{"24":1,"26":1,"86":1,"124":1}}],["juliamdd",{"2":{"8":1,"86":1,"124":1}}],["juliax",{"2":{"22":1,"25":1,"27":1,"127":1}}],["juliaxcsp",{"2":{"1":3,"3":4,"38":4,"40":1,"46":1,"49":1,"52":2,"54":2,"86":19}}],["juliad",{"2":{"127":1}}],["juliadraw",{"2":{"127":1}}],["juliadelete",{"2":{"127":2}}],["juliadebinarize",{"2":{"86":1,"109":1,"124":1}}],["juliadescribe",{"2":{"36":2,"86":2,"124":2,"127":1}}],["juliadist",{"2":{"127":1}}],["juliadiscreteset",{"2":{"125":1}}],["juliadiscretedomain",{"2":{"26":1,"86":1,"124":1}}],["juliadisplay",{"2":{"31":1}}],["juliadimparameterdomain",{"2":{"30":1,"86":1}}],["juliad1",{"2":{"21":1,"24":1,"26":1,"86":1,"124":1}}],["juliadomain",{"2":{"21":6,"24":6,"26":6,"86":6,"104":1,"124":6,"127":1}}],["juliaempty",{"2":{"127":2}}],["juliaemptydomain",{"2":{"21":1,"86":1}}],["juliae",{"2":{"35":1,"86":1}}],["juliaerror",{"2":{"35":1,"86":1,"124":1,"125":1}}],["juliaexclu",{"2":{"86":1,"106":1}}],["juliaexplore",{"2":{"29":1,"86":2,"124":2}}],["juliaexploresettings",{"2":{"29":1,"86":1,"124":1}}],["juliaextract",{"2":{"6":3,"36":3,"86":3,"124":3}}],["juliaδ",{"2":{"14":1,"86":1,"104":1,"124":1}}],["juliaas",{"2":{"86":2,"102":2}}],["juliaaggregation",{"2":{"86":1,"92":1,"124":1}}],["juliaag",{"2":{"86":2,"91":2}}],["juliaarithmetic",{"2":{"86":1,"95":1,"124":1}}],["juliaar",{"2":{"86":2,"94":2}}],["juliaargs",{"2":{"35":1,"86":1,"124":1}}],["juliaarbitrarydomain",{"2":{"26":1,"86":1}}],["juliaadd",{"2":{"26":1,"86":1,"124":1,"127":2}}],["juliaat",{"2":{"8":1,"86":1}}],["juliaaccept",{"2":{"8":1,"30":1,"86":1,"124":1}}],["juliaautomaton",{"2":{"8":1,"86":1,"124":1}}],["juliaabstractsolver",{"2":{"127":1}}],["juliaabstractoptimizer",{"2":{"86":1,"111":1}}],["juliaabstractdomain",{"2":{"21":1,"86":1,"124":1}}],["juliaabstractautomaton",{"2":{"8":1,"86":1}}],["juliaabstractmultivalueddecisiondiagram",{"2":{"8":1,"86":1}}],["juliacompose",{"2":{"86":2,"124":2}}],["juliacompositionalnetworks",{"2":{"104":2}}],["juliacomposition",{"2":{"86":3,"124":3}}],["juliacomparison",{"2":{"86":1,"100":1,"124":1}}],["juliacode",{"2":{"86":1,"124":1}}],["juliaco",{"2":{"86":9,"98":5,"99":4}}],["juliacontinuousdomain",{"2":{"24":1,"86":1,"124":1}}],["juliaconstriction",{"2":{"127":1}}],["juliaconstraint",{"0":{"62":1,"68":1},"1":{"69":1},"2":{"35":1,"63":1,"69":1,"75":1,"86":1,"124":1,"127":3}}],["juliaconstraintcommons",{"2":{"8":1,"30":1,"86":1}}],["juliaconstraints",{"0":{"18":1,"87":1},"1":{"19":1,"20":1,"21":1,"22":1,"23":1,"24":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"88":1,"89":1},"2":{"5":3,"20":1,"32":1,"33":1,"34":1,"36":4,"86":4,"87":6,"124":4}}],["juliaconst",{"2":{"6":2,"43":1,"86":2,"104":2}}],["juliaconcept",{"2":{"1":7,"3":4,"35":5,"36":3,"38":9,"40":1,"44":1,"46":1,"49":1,"52":2,"54":4,"86":37,"124":3}}],["juliachemical",{"2":{"31":1}}],["juliac",{"2":{"1":3,"3":4,"38":4,"40":1,"45":2,"49":1,"52":2,"54":2,"86":18}}],["julia",{"0":{"0":1,"2":1,"20":1,"32":1,"37":1,"39":1,"48":1,"51":1,"53":1,"71":1,"72":1,"73":1,"74":1,"75":1},"1":{"1":1,"3":1,"33":1,"34":1,"35":1,"36":1,"38":1,"40":1,"49":1,"52":1,"54":1,"72":1,"73":1,"74":1},"2":{"4":2,"8":2,"18":1,"26":1,"29":1,"31":5,"33":2,"34":1,"36":2,"44":3,"72":1,"73":7,"74":5,"86":13,"87":8,"98":1,"104":1,"117":1,"119":1,"124":5,"125":14,"127":81}}],["jl",{"0":{"0":1,"2":1,"4":1,"18":1,"31":1,"32":1,"37":1,"39":1,"48":1,"51":1,"53":1,"101":1,"104":1,"107":1,"120":1,"122":1,"125":1,"127":1},"1":{"1":1,"3":1,"5":1,"6":1,"7":1,"8":1,"9":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"16":1,"17":1,"19":1,"20":1,"21":1,"22":1,"23":1,"24":1,"25":1,"26":1,"27":1,"28":1,"29":1,"30":1,"33":1,"34":1,"35":1,"36":1,"38":1,"40":1,"49":1,"52":1,"54":1,"102":1,"103":1,"108":1},"2":{"4":1,"5":4,"18":1,"19":3,"20":2,"31":1,"32":1,"33":3,"34":3,"36":1,"42":1,"43":1,"44":1,"73":3,"86":1,"87":8,"101":1,"104":1,"106":1,"107":1,"120":1,"121":2,"122":1,"124":1,"125":1,"127":2}}]],"serializationVersion":2}';export{i as default}; diff --git a/dev/assets/chunks/VPLocalSearchBox.BcD31Tm5.js b/dev/assets/chunks/VPLocalSearchBox.CJhDNAGX.js similarity index 92% rename from dev/assets/chunks/VPLocalSearchBox.BcD31Tm5.js rename to dev/assets/chunks/VPLocalSearchBox.CJhDNAGX.js index 9cdde0a..1698d76 100644 --- a/dev/assets/chunks/VPLocalSearchBox.BcD31Tm5.js +++ b/dev/assets/chunks/VPLocalSearchBox.CJhDNAGX.js @@ -1,13 +1,7 @@ -function __vite__mapDeps(indexes) { - if (!__vite__mapDeps.viteFileDeps) { - __vite__mapDeps.viteFileDeps = [] - } - return indexes.map((i) => __vite__mapDeps.viteFileDeps[i]) -} -var It=Object.defineProperty;var Dt=(o,e,t)=>e in o?It(o,e,{enumerable:!0,configurable:!0,writable:!0,value:t}):o[e]=t;var Oe=(o,e,t)=>(Dt(o,typeof e!="symbol"?e+"":e,t),t);import{Y as yt,h as oe,y as $e,al as kt,am as Ot,d as _t,H as xe,an as tt,k as Fe,ao as Rt,ap as Mt,z as Lt,aq as zt,l as _e,U as de,S as Ee,ar as Pt,as as Vt,Z as Bt,j as $t,at as Wt,o as ee,b as Kt,m as k,a2 as Jt,p as j,au as Ut,av as jt,aw as Gt,c as re,n as rt,e as Se,G as at,F as nt,a as ve,t as pe,ax as qt,q as Ht,s as Qt,ay as it,az as Yt,ab as Zt,ah as Xt,aA as er,_ as tr}from"./framework.RTxADYK2.js";import{u as rr,c as ar}from"./theme.CyrMDs54.js";const nr={root:()=>yt(()=>import("./@localSearchIndexroot.C2gAf8Gk.js"),__vite__mapDeps([]))};/*! +var It=Object.defineProperty;var Dt=(o,e,t)=>e in o?It(o,e,{enumerable:!0,configurable:!0,writable:!0,value:t}):o[e]=t;var Oe=(o,e,t)=>(Dt(o,typeof e!="symbol"?e+"":e,t),t);import{Y as yt,h as oe,y as $e,al as kt,am as Ot,d as _t,H as xe,an as tt,k as Fe,ao as Rt,ap as Mt,z as Lt,aq as zt,l as _e,U as de,S as Ee,ar as Pt,as as Vt,Z as Bt,j as $t,at as Wt,o as ee,b as Kt,m as k,a2 as Jt,p as j,au as Ut,av as jt,aw as Gt,c as re,n as rt,e as Se,G as at,F as nt,a as ve,t as pe,ax as qt,q as Ht,s as Qt,ay as it,az as Yt,ab as Zt,ah as Xt,aA as er,_ as tr}from"./framework.aA95Gx5L.js";import{u as rr,c as ar}from"./theme.CIqXObSN.js";const nr={root:()=>yt(()=>import("./@localSearchIndexroot.aRRNdGdD.js"),[])};/*! * tabbable 6.2.0 * @license MIT, https://github.com/focus-trap/tabbable/blob/master/LICENSE */var mt=["input:not([inert])","select:not([inert])","textarea:not([inert])","a[href]:not([inert])","button:not([inert])","[tabindex]:not(slot):not([inert])","audio[controls]:not([inert])","video[controls]:not([inert])",'[contenteditable]:not([contenteditable="false"]):not([inert])',"details>summary:first-of-type:not([inert])","details:not([inert])"],Ne=mt.join(","),gt=typeof Element>"u",ue=gt?function(){}:Element.prototype.matches||Element.prototype.msMatchesSelector||Element.prototype.webkitMatchesSelector,Ce=!gt&&Element.prototype.getRootNode?function(o){var e;return o==null||(e=o.getRootNode)===null||e===void 0?void 0:e.call(o)}:function(o){return o==null?void 0:o.ownerDocument},Ie=function o(e,t){var r;t===void 0&&(t=!0);var n=e==null||(r=e.getAttribute)===null||r===void 0?void 0:r.call(e,"inert"),a=n===""||n==="true",i=a||t&&e&&o(e.parentNode);return i},ir=function(e){var t,r=e==null||(t=e.getAttribute)===null||t===void 0?void 0:t.call(e,"contenteditable");return r===""||r==="true"},bt=function(e,t,r){if(Ie(e))return[];var n=Array.prototype.slice.apply(e.querySelectorAll(Ne));return t&&ue.call(e,Ne)&&n.unshift(e),n=n.filter(r),n},wt=function o(e,t,r){for(var n=[],a=Array.from(e);a.length;){var i=a.shift();if(!Ie(i,!1))if(i.tagName==="SLOT"){var s=i.assignedElements(),u=s.length?s:i.children,l=o(u,!0,r);r.flatten?n.push.apply(n,l):n.push({scopeParent:i,candidates:l})}else{var h=ue.call(i,Ne);h&&r.filter(i)&&(t||!e.includes(i))&&n.push(i);var d=i.shadowRoot||typeof r.getShadowRoot=="function"&&r.getShadowRoot(i),v=!Ie(d,!1)&&(!r.shadowRootFilter||r.shadowRootFilter(i));if(d&&v){var y=o(d===!0?i.children:d.children,!0,r);r.flatten?n.push.apply(n,y):n.push({scopeParent:i,candidates:y})}else a.unshift.apply(a,i.children)}}return n},xt=function(e){return!isNaN(parseInt(e.getAttribute("tabindex"),10))},se=function(e){if(!e)throw new Error("No node provided");return e.tabIndex<0&&(/^(AUDIO|VIDEO|DETAILS)$/.test(e.tagName)||ir(e))&&!xt(e)?0:e.tabIndex},or=function(e,t){var r=se(e);return r<0&&t&&!xt(e)?0:r},sr=function(e,t){return e.tabIndex===t.tabIndex?e.documentOrder-t.documentOrder:e.tabIndex-t.tabIndex},Ft=function(e){return e.tagName==="INPUT"},ur=function(e){return Ft(e)&&e.type==="hidden"},lr=function(e){var t=e.tagName==="DETAILS"&&Array.prototype.slice.apply(e.children).some(function(r){return r.tagName==="SUMMARY"});return t},cr=function(e,t){for(var r=0;rsummary:first-of-type"),i=a?e.parentElement:e;if(ue.call(i,"details:not([open]) *"))return!0;if(!r||r==="full"||r==="legacy-full"){if(typeof n=="function"){for(var s=e;e;){var u=e.parentElement,l=Ce(e);if(u&&!u.shadowRoot&&n(u)===!0)return ot(e);e.assignedSlot?e=e.assignedSlot:!u&&l!==e.ownerDocument?e=l.host:e=u}e=s}if(vr(e))return!e.getClientRects().length;if(r!=="legacy-full")return!0}else if(r==="non-zero-area")return ot(e);return!1},yr=function(e){if(/^(INPUT|BUTTON|SELECT|TEXTAREA)$/.test(e.tagName))for(var t=e.parentElement;t;){if(t.tagName==="FIELDSET"&&t.disabled){for(var r=0;r=0)},gr=function o(e){var t=[],r=[];return e.forEach(function(n,a){var i=!!n.scopeParent,s=i?n.scopeParent:n,u=or(s,i),l=i?o(n.candidates):s;u===0?i?t.push.apply(t,l):t.push(s):r.push({documentOrder:a,tabIndex:u,item:n,isScope:i,content:l})}),r.sort(sr).reduce(function(n,a){return a.isScope?n.push.apply(n,a.content):n.push(a.content),n},[]).concat(t)},br=function(e,t){t=t||{};var r;return t.getShadowRoot?r=wt([e],t.includeContainer,{filter:We.bind(null,t),flatten:!1,getShadowRoot:t.getShadowRoot,shadowRootFilter:mr}):r=bt(e,t.includeContainer,We.bind(null,t)),gr(r)},wr=function(e,t){t=t||{};var r;return t.getShadowRoot?r=wt([e],t.includeContainer,{filter:De.bind(null,t),flatten:!0,getShadowRoot:t.getShadowRoot}):r=bt(e,t.includeContainer,De.bind(null,t)),r},le=function(e,t){if(t=t||{},!e)throw new Error("No node provided");return ue.call(e,Ne)===!1?!1:We(t,e)},xr=mt.concat("iframe").join(","),Re=function(e,t){if(t=t||{},!e)throw new Error("No node provided");return ue.call(e,xr)===!1?!1:De(t,e)};/*! * focus-trap 7.5.4 * @license MIT, https://github.com/focus-trap/focus-trap/blob/master/LICENSE -*/function st(o,e){var t=Object.keys(o);if(Object.getOwnPropertySymbols){var r=Object.getOwnPropertySymbols(o);e&&(r=r.filter(function(n){return Object.getOwnPropertyDescriptor(o,n).enumerable})),t.push.apply(t,r)}return t}function ut(o){for(var e=1;e0){var r=e[e.length-1];r!==t&&r.pause()}var n=e.indexOf(t);n===-1||e.splice(n,1),e.push(t)},deactivateTrap:function(e,t){var r=e.indexOf(t);r!==-1&&e.splice(r,1),e.length>0&&e[e.length-1].unpause()}},Ar=function(e){return e.tagName&&e.tagName.toLowerCase()==="input"&&typeof e.select=="function"},Tr=function(e){return(e==null?void 0:e.key)==="Escape"||(e==null?void 0:e.key)==="Esc"||(e==null?void 0:e.keyCode)===27},ge=function(e){return(e==null?void 0:e.key)==="Tab"||(e==null?void 0:e.keyCode)===9},Nr=function(e){return ge(e)&&!e.shiftKey},Cr=function(e){return ge(e)&&e.shiftKey},ct=function(e){return setTimeout(e,0)},ft=function(e,t){var r=-1;return e.every(function(n,a){return t(n)?(r=a,!1):!0}),r},ye=function(e){for(var t=arguments.length,r=new Array(t>1?t-1:0),n=1;n1?p-1:0),I=1;I=0)c=r.activeElement;else{var f=i.tabbableGroups[0],p=f&&f.firstTabbableNode;c=p||h("fallbackFocus")}if(!c)throw new Error("Your focus-trap needs to have at least one focusable element");return c},v=function(){if(i.containerGroups=i.containers.map(function(c){var f=br(c,a.tabbableOptions),p=wr(c,a.tabbableOptions),C=f.length>0?f[0]:void 0,I=f.length>0?f[f.length-1]:void 0,M=p.find(function(m){return le(m)}),z=p.slice().reverse().find(function(m){return le(m)}),P=!!f.find(function(m){return se(m)>0});return{container:c,tabbableNodes:f,focusableNodes:p,posTabIndexesFound:P,firstTabbableNode:C,lastTabbableNode:I,firstDomTabbableNode:M,lastDomTabbableNode:z,nextTabbableNode:function(x){var $=arguments.length>1&&arguments[1]!==void 0?arguments[1]:!0,K=f.indexOf(x);return K<0?$?p.slice(p.indexOf(x)+1).find(function(q){return le(q)}):p.slice(0,p.indexOf(x)).reverse().find(function(q){return le(q)}):f[K+($?1:-1)]}}}),i.tabbableGroups=i.containerGroups.filter(function(c){return c.tabbableNodes.length>0}),i.tabbableGroups.length<=0&&!h("fallbackFocus"))throw new Error("Your focus-trap must have at least one container with at least one tabbable node in it at all times");if(i.containerGroups.find(function(c){return c.posTabIndexesFound})&&i.containerGroups.length>1)throw new Error("At least one node with a positive tabindex was found in one of your focus-trap's multiple containers. Positive tabindexes are only supported in single-container focus-traps.")},y=function w(c){var f=c.activeElement;if(f)return f.shadowRoot&&f.shadowRoot.activeElement!==null?w(f.shadowRoot):f},b=function w(c){if(c!==!1&&c!==y(document)){if(!c||!c.focus){w(d());return}c.focus({preventScroll:!!a.preventScroll}),i.mostRecentlyFocusedNode=c,Ar(c)&&c.select()}},E=function(c){var f=h("setReturnFocus",c);return f||(f===!1?!1:c)},g=function(c){var f=c.target,p=c.event,C=c.isBackward,I=C===void 0?!1:C;f=f||Ae(p),v();var M=null;if(i.tabbableGroups.length>0){var z=l(f,p),P=z>=0?i.containerGroups[z]:void 0;if(z<0)I?M=i.tabbableGroups[i.tabbableGroups.length-1].lastTabbableNode:M=i.tabbableGroups[0].firstTabbableNode;else if(I){var m=ft(i.tabbableGroups,function(V){var U=V.firstTabbableNode;return f===U});if(m<0&&(P.container===f||Re(f,a.tabbableOptions)&&!le(f,a.tabbableOptions)&&!P.nextTabbableNode(f,!1))&&(m=z),m>=0){var x=m===0?i.tabbableGroups.length-1:m-1,$=i.tabbableGroups[x];M=se(f)>=0?$.lastTabbableNode:$.lastDomTabbableNode}else ge(p)||(M=P.nextTabbableNode(f,!1))}else{var K=ft(i.tabbableGroups,function(V){var U=V.lastTabbableNode;return f===U});if(K<0&&(P.container===f||Re(f,a.tabbableOptions)&&!le(f,a.tabbableOptions)&&!P.nextTabbableNode(f))&&(K=z),K>=0){var q=K===i.tabbableGroups.length-1?0:K+1,H=i.tabbableGroups[q];M=se(f)>=0?H.firstTabbableNode:H.firstDomTabbableNode}else ge(p)||(M=P.nextTabbableNode(f))}}else M=h("fallbackFocus");return M},S=function(c){var f=Ae(c);if(!(l(f,c)>=0)){if(ye(a.clickOutsideDeactivates,c)){s.deactivate({returnFocus:a.returnFocusOnDeactivate});return}ye(a.allowOutsideClick,c)||c.preventDefault()}},T=function(c){var f=Ae(c),p=l(f,c)>=0;if(p||f instanceof Document)p&&(i.mostRecentlyFocusedNode=f);else{c.stopImmediatePropagation();var C,I=!0;if(i.mostRecentlyFocusedNode)if(se(i.mostRecentlyFocusedNode)>0){var M=l(i.mostRecentlyFocusedNode),z=i.containerGroups[M].tabbableNodes;if(z.length>0){var P=z.findIndex(function(m){return m===i.mostRecentlyFocusedNode});P>=0&&(a.isKeyForward(i.recentNavEvent)?P+1=0&&(C=z[P-1],I=!1))}}else i.containerGroups.some(function(m){return m.tabbableNodes.some(function(x){return se(x)>0})})||(I=!1);else I=!1;I&&(C=g({target:i.mostRecentlyFocusedNode,isBackward:a.isKeyBackward(i.recentNavEvent)})),b(C||i.mostRecentlyFocusedNode||d())}i.recentNavEvent=void 0},F=function(c){var f=arguments.length>1&&arguments[1]!==void 0?arguments[1]:!1;i.recentNavEvent=c;var p=g({event:c,isBackward:f});p&&(ge(c)&&c.preventDefault(),b(p))},L=function(c){if(Tr(c)&&ye(a.escapeDeactivates,c)!==!1){c.preventDefault(),s.deactivate();return}(a.isKeyForward(c)||a.isKeyBackward(c))&&F(c,a.isKeyBackward(c))},R=function(c){var f=Ae(c);l(f,c)>=0||ye(a.clickOutsideDeactivates,c)||ye(a.allowOutsideClick,c)||(c.preventDefault(),c.stopImmediatePropagation())},B=function(){if(i.active)return lt.activateTrap(n,s),i.delayInitialFocusTimer=a.delayInitialFocus?ct(function(){b(d())}):b(d()),r.addEventListener("focusin",T,!0),r.addEventListener("mousedown",S,{capture:!0,passive:!1}),r.addEventListener("touchstart",S,{capture:!0,passive:!1}),r.addEventListener("click",R,{capture:!0,passive:!1}),r.addEventListener("keydown",L,{capture:!0,passive:!1}),s},N=function(){if(i.active)return r.removeEventListener("focusin",T,!0),r.removeEventListener("mousedown",S,!0),r.removeEventListener("touchstart",S,!0),r.removeEventListener("click",R,!0),r.removeEventListener("keydown",L,!0),s},_=function(c){var f=c.some(function(p){var C=Array.from(p.removedNodes);return C.some(function(I){return I===i.mostRecentlyFocusedNode})});f&&b(d())},A=typeof window<"u"&&"MutationObserver"in window?new MutationObserver(_):void 0,O=function(){A&&(A.disconnect(),i.active&&!i.paused&&i.containers.map(function(c){A.observe(c,{subtree:!0,childList:!0})}))};return s={get active(){return i.active},get paused(){return i.paused},activate:function(c){if(i.active)return this;var f=u(c,"onActivate"),p=u(c,"onPostActivate"),C=u(c,"checkCanFocusTrap");C||v(),i.active=!0,i.paused=!1,i.nodeFocusedBeforeActivation=r.activeElement,f==null||f();var I=function(){C&&v(),B(),O(),p==null||p()};return C?(C(i.containers.concat()).then(I,I),this):(I(),this)},deactivate:function(c){if(!i.active)return this;var f=ut({onDeactivate:a.onDeactivate,onPostDeactivate:a.onPostDeactivate,checkCanReturnFocus:a.checkCanReturnFocus},c);clearTimeout(i.delayInitialFocusTimer),i.delayInitialFocusTimer=void 0,N(),i.active=!1,i.paused=!1,O(),lt.deactivateTrap(n,s);var p=u(f,"onDeactivate"),C=u(f,"onPostDeactivate"),I=u(f,"checkCanReturnFocus"),M=u(f,"returnFocus","returnFocusOnDeactivate");p==null||p();var z=function(){ct(function(){M&&b(E(i.nodeFocusedBeforeActivation)),C==null||C()})};return M&&I?(I(E(i.nodeFocusedBeforeActivation)).then(z,z),this):(z(),this)},pause:function(c){if(i.paused||!i.active)return this;var f=u(c,"onPause"),p=u(c,"onPostPause");return i.paused=!0,f==null||f(),N(),O(),p==null||p(),this},unpause:function(c){if(!i.paused||!i.active)return this;var f=u(c,"onUnpause"),p=u(c,"onPostUnpause");return i.paused=!1,f==null||f(),v(),B(),O(),p==null||p(),this},updateContainerElements:function(c){var f=[].concat(c).filter(Boolean);return i.containers=f.map(function(p){return typeof p=="string"?r.querySelector(p):p}),i.active&&v(),O(),this}},s.updateContainerElements(e),s};function kr(o,e={}){let t;const{immediate:r,...n}=e,a=oe(!1),i=oe(!1),s=d=>t&&t.activate(d),u=d=>t&&t.deactivate(d),l=()=>{t&&(t.pause(),i.value=!0)},h=()=>{t&&(t.unpause(),i.value=!1)};return $e(()=>kt(o),d=>{d&&(t=Dr(d,{...n,onActivate(){a.value=!0,e.onActivate&&e.onActivate()},onDeactivate(){a.value=!1,e.onDeactivate&&e.onDeactivate()}}),r&&s())},{flush:"post"}),Ot(()=>u()),{hasFocus:a,isPaused:i,activate:s,deactivate:u,pause:l,unpause:h}}class fe{constructor(e,t=!0,r=[],n=5e3){this.ctx=e,this.iframes=t,this.exclude=r,this.iframesTimeout=n}static matches(e,t){const r=typeof t=="string"?[t]:t,n=e.matches||e.matchesSelector||e.msMatchesSelector||e.mozMatchesSelector||e.oMatchesSelector||e.webkitMatchesSelector;if(n){let a=!1;return r.every(i=>n.call(e,i)?(a=!0,!1):!0),a}else return!1}getContexts(){let e,t=[];return typeof this.ctx>"u"||!this.ctx?e=[]:NodeList.prototype.isPrototypeOf(this.ctx)?e=Array.prototype.slice.call(this.ctx):Array.isArray(this.ctx)?e=this.ctx:typeof this.ctx=="string"?e=Array.prototype.slice.call(document.querySelectorAll(this.ctx)):e=[this.ctx],e.forEach(r=>{const n=t.filter(a=>a.contains(r)).length>0;t.indexOf(r)===-1&&!n&&t.push(r)}),t}getIframeContents(e,t,r=()=>{}){let n;try{const a=e.contentWindow;if(n=a.document,!a||!n)throw new Error("iframe inaccessible")}catch{r()}n&&t(n)}isIframeBlank(e){const t="about:blank",r=e.getAttribute("src").trim();return e.contentWindow.location.href===t&&r!==t&&r}observeIframeLoad(e,t,r){let n=!1,a=null;const i=()=>{if(!n){n=!0,clearTimeout(a);try{this.isIframeBlank(e)||(e.removeEventListener("load",i),this.getIframeContents(e,t,r))}catch{r()}}};e.addEventListener("load",i),a=setTimeout(i,this.iframesTimeout)}onIframeReady(e,t,r){try{e.contentWindow.document.readyState==="complete"?this.isIframeBlank(e)?this.observeIframeLoad(e,t,r):this.getIframeContents(e,t,r):this.observeIframeLoad(e,t,r)}catch{r()}}waitForIframes(e,t){let r=0;this.forEachIframe(e,()=>!0,n=>{r++,this.waitForIframes(n.querySelector("html"),()=>{--r||t()})},n=>{n||t()})}forEachIframe(e,t,r,n=()=>{}){let a=e.querySelectorAll("iframe"),i=a.length,s=0;a=Array.prototype.slice.call(a);const u=()=>{--i<=0&&n(s)};i||u(),a.forEach(l=>{fe.matches(l,this.exclude)?u():this.onIframeReady(l,h=>{t(l)&&(s++,r(h)),u()},u)})}createIterator(e,t,r){return document.createNodeIterator(e,t,r,!1)}createInstanceOnIframe(e){return new fe(e.querySelector("html"),this.iframes)}compareNodeIframe(e,t,r){const n=e.compareDocumentPosition(r),a=Node.DOCUMENT_POSITION_PRECEDING;if(n&a)if(t!==null){const i=t.compareDocumentPosition(r),s=Node.DOCUMENT_POSITION_FOLLOWING;if(i&s)return!0}else return!0;return!1}getIteratorNode(e){const t=e.previousNode();let r;return t===null?r=e.nextNode():r=e.nextNode()&&e.nextNode(),{prevNode:t,node:r}}checkIframeFilter(e,t,r,n){let a=!1,i=!1;return n.forEach((s,u)=>{s.val===r&&(a=u,i=s.handled)}),this.compareNodeIframe(e,t,r)?(a===!1&&!i?n.push({val:r,handled:!0}):a!==!1&&!i&&(n[a].handled=!0),!0):(a===!1&&n.push({val:r,handled:!1}),!1)}handleOpenIframes(e,t,r,n){e.forEach(a=>{a.handled||this.getIframeContents(a.val,i=>{this.createInstanceOnIframe(i).forEachNode(t,r,n)})})}iterateThroughNodes(e,t,r,n,a){const i=this.createIterator(t,e,n);let s=[],u=[],l,h,d=()=>({prevNode:h,node:l}=this.getIteratorNode(i),l);for(;d();)this.iframes&&this.forEachIframe(t,v=>this.checkIframeFilter(l,h,v,s),v=>{this.createInstanceOnIframe(v).forEachNode(e,y=>u.push(y),n)}),u.push(l);u.forEach(v=>{r(v)}),this.iframes&&this.handleOpenIframes(s,e,r,n),a()}forEachNode(e,t,r,n=()=>{}){const a=this.getContexts();let i=a.length;i||n(),a.forEach(s=>{const u=()=>{this.iterateThroughNodes(e,s,t,r,()=>{--i<=0&&n()})};this.iframes?this.waitForIframes(s,u):u()})}}let Or=class{constructor(e){this.ctx=e,this.ie=!1;const t=window.navigator.userAgent;(t.indexOf("MSIE")>-1||t.indexOf("Trident")>-1)&&(this.ie=!0)}set opt(e){this._opt=Object.assign({},{element:"",className:"",exclude:[],iframes:!1,iframesTimeout:5e3,separateWordSearch:!0,diacritics:!0,synonyms:{},accuracy:"partially",acrossElements:!1,caseSensitive:!1,ignoreJoiners:!1,ignoreGroups:0,ignorePunctuation:[],wildcards:"disabled",each:()=>{},noMatch:()=>{},filter:()=>!0,done:()=>{},debug:!1,log:window.console},e)}get opt(){return this._opt}get iterator(){return new fe(this.ctx,this.opt.iframes,this.opt.exclude,this.opt.iframesTimeout)}log(e,t="debug"){const r=this.opt.log;this.opt.debug&&typeof r=="object"&&typeof r[t]=="function"&&r[t](`mark.js: ${e}`)}escapeStr(e){return e.replace(/[\-\[\]\/\{\}\(\)\*\+\?\.\\\^\$\|]/g,"\\$&")}createRegExp(e){return this.opt.wildcards!=="disabled"&&(e=this.setupWildcardsRegExp(e)),e=this.escapeStr(e),Object.keys(this.opt.synonyms).length&&(e=this.createSynonymsRegExp(e)),(this.opt.ignoreJoiners||this.opt.ignorePunctuation.length)&&(e=this.setupIgnoreJoinersRegExp(e)),this.opt.diacritics&&(e=this.createDiacriticsRegExp(e)),e=this.createMergedBlanksRegExp(e),(this.opt.ignoreJoiners||this.opt.ignorePunctuation.length)&&(e=this.createJoinersRegExp(e)),this.opt.wildcards!=="disabled"&&(e=this.createWildcardsRegExp(e)),e=this.createAccuracyRegExp(e),e}createSynonymsRegExp(e){const t=this.opt.synonyms,r=this.opt.caseSensitive?"":"i",n=this.opt.ignoreJoiners||this.opt.ignorePunctuation.length?"\0":"";for(let a in t)if(t.hasOwnProperty(a)){const i=t[a],s=this.opt.wildcards!=="disabled"?this.setupWildcardsRegExp(a):this.escapeStr(a),u=this.opt.wildcards!=="disabled"?this.setupWildcardsRegExp(i):this.escapeStr(i);s!==""&&u!==""&&(e=e.replace(new RegExp(`(${this.escapeStr(s)}|${this.escapeStr(u)})`,`gm${r}`),n+`(${this.processSynomyms(s)}|${this.processSynomyms(u)})`+n))}return e}processSynomyms(e){return(this.opt.ignoreJoiners||this.opt.ignorePunctuation.length)&&(e=this.setupIgnoreJoinersRegExp(e)),e}setupWildcardsRegExp(e){return e=e.replace(/(?:\\)*\?/g,t=>t.charAt(0)==="\\"?"?":""),e.replace(/(?:\\)*\*/g,t=>t.charAt(0)==="\\"?"*":"")}createWildcardsRegExp(e){let t=this.opt.wildcards==="withSpaces";return e.replace(/\u0001/g,t?"[\\S\\s]?":"\\S?").replace(/\u0002/g,t?"[\\S\\s]*?":"\\S*")}setupIgnoreJoinersRegExp(e){return e.replace(/[^(|)\\]/g,(t,r,n)=>{let a=n.charAt(r+1);return/[(|)\\]/.test(a)||a===""?t:t+"\0"})}createJoinersRegExp(e){let t=[];const r=this.opt.ignorePunctuation;return Array.isArray(r)&&r.length&&t.push(this.escapeStr(r.join(""))),this.opt.ignoreJoiners&&t.push("\\u00ad\\u200b\\u200c\\u200d"),t.length?e.split(/\u0000+/).join(`[${t.join("")}]*`):e}createDiacriticsRegExp(e){const t=this.opt.caseSensitive?"":"i",r=this.opt.caseSensitive?["aàáảãạăằắẳẵặâầấẩẫậäåāą","AÀÁẢÃẠĂẰẮẲẴẶÂẦẤẨẪẬÄÅĀĄ","cçćč","CÇĆČ","dđď","DĐĎ","eèéẻẽẹêềếểễệëěēę","EÈÉẺẼẸÊỀẾỂỄỆËĚĒĘ","iìíỉĩịîïī","IÌÍỈĨỊÎÏĪ","lł","LŁ","nñňń","NÑŇŃ","oòóỏõọôồốổỗộơởỡớờợöøō","OÒÓỎÕỌÔỒỐỔỖỘƠỞỠỚỜỢÖØŌ","rř","RŘ","sšśșş","SŠŚȘŞ","tťțţ","TŤȚŢ","uùúủũụưừứửữựûüůū","UÙÚỦŨỤƯỪỨỬỮỰÛÜŮŪ","yýỳỷỹỵÿ","YÝỲỶỸỴŸ","zžżź","ZŽŻŹ"]:["aàáảãạăằắẳẵặâầấẩẫậäåāąAÀÁẢÃẠĂẰẮẲẴẶÂẦẤẨẪẬÄÅĀĄ","cçćčCÇĆČ","dđďDĐĎ","eèéẻẽẹêềếểễệëěēęEÈÉẺẼẸÊỀẾỂỄỆËĚĒĘ","iìíỉĩịîïīIÌÍỈĨỊÎÏĪ","lłLŁ","nñňńNÑŇŃ","oòóỏõọôồốổỗộơởỡớờợöøōOÒÓỎÕỌÔỒỐỔỖỘƠỞỠỚỜỢÖØŌ","rřRŘ","sšśșşSŠŚȘŞ","tťțţTŤȚŢ","uùúủũụưừứửữựûüůūUÙÚỦŨỤƯỪỨỬỮỰÛÜŮŪ","yýỳỷỹỵÿYÝỲỶỸỴŸ","zžżźZŽŻŹ"];let n=[];return e.split("").forEach(a=>{r.every(i=>{if(i.indexOf(a)!==-1){if(n.indexOf(i)>-1)return!1;e=e.replace(new RegExp(`[${i}]`,`gm${t}`),`[${i}]`),n.push(i)}return!0})}),e}createMergedBlanksRegExp(e){return e.replace(/[\s]+/gmi,"[\\s]+")}createAccuracyRegExp(e){const t="!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~¡¿";let r=this.opt.accuracy,n=typeof r=="string"?r:r.value,a=typeof r=="string"?[]:r.limiters,i="";switch(a.forEach(s=>{i+=`|${this.escapeStr(s)}`}),n){case"partially":default:return`()(${e})`;case"complementary":return i="\\s"+(i||this.escapeStr(t)),`()([^${i}]*${e}[^${i}]*)`;case"exactly":return`(^|\\s${i})(${e})(?=$|\\s${i})`}}getSeparatedKeywords(e){let t=[];return e.forEach(r=>{this.opt.separateWordSearch?r.split(" ").forEach(n=>{n.trim()&&t.indexOf(n)===-1&&t.push(n)}):r.trim()&&t.indexOf(r)===-1&&t.push(r)}),{keywords:t.sort((r,n)=>n.length-r.length),length:t.length}}isNumeric(e){return Number(parseFloat(e))==e}checkRanges(e){if(!Array.isArray(e)||Object.prototype.toString.call(e[0])!=="[object Object]")return this.log("markRanges() will only accept an array of objects"),this.opt.noMatch(e),[];const t=[];let r=0;return e.sort((n,a)=>n.start-a.start).forEach(n=>{let{start:a,end:i,valid:s}=this.callNoMatchOnInvalidRanges(n,r);s&&(n.start=a,n.length=i-a,t.push(n),r=i)}),t}callNoMatchOnInvalidRanges(e,t){let r,n,a=!1;return e&&typeof e.start<"u"?(r=parseInt(e.start,10),n=r+parseInt(e.length,10),this.isNumeric(e.start)&&this.isNumeric(e.length)&&n-t>0&&n-r>0?a=!0:(this.log(`Ignoring invalid or overlapping range: ${JSON.stringify(e)}`),this.opt.noMatch(e))):(this.log(`Ignoring invalid range: ${JSON.stringify(e)}`),this.opt.noMatch(e)),{start:r,end:n,valid:a}}checkWhitespaceRanges(e,t,r){let n,a=!0,i=r.length,s=t-i,u=parseInt(e.start,10)-s;return u=u>i?i:u,n=u+parseInt(e.length,10),n>i&&(n=i,this.log(`End range automatically set to the max value of ${i}`)),u<0||n-u<0||u>i||n>i?(a=!1,this.log(`Invalid range: ${JSON.stringify(e)}`),this.opt.noMatch(e)):r.substring(u,n).replace(/\s+/g,"")===""&&(a=!1,this.log("Skipping whitespace only range: "+JSON.stringify(e)),this.opt.noMatch(e)),{start:u,end:n,valid:a}}getTextNodes(e){let t="",r=[];this.iterator.forEachNode(NodeFilter.SHOW_TEXT,n=>{r.push({start:t.length,end:(t+=n.textContent).length,node:n})},n=>this.matchesExclude(n.parentNode)?NodeFilter.FILTER_REJECT:NodeFilter.FILTER_ACCEPT,()=>{e({value:t,nodes:r})})}matchesExclude(e){return fe.matches(e,this.opt.exclude.concat(["script","style","title","head","html"]))}wrapRangeInTextNode(e,t,r){const n=this.opt.element?this.opt.element:"mark",a=e.splitText(t),i=a.splitText(r-t);let s=document.createElement(n);return s.setAttribute("data-markjs","true"),this.opt.className&&s.setAttribute("class",this.opt.className),s.textContent=a.textContent,a.parentNode.replaceChild(s,a),i}wrapRangeInMappedTextNode(e,t,r,n,a){e.nodes.every((i,s)=>{const u=e.nodes[s+1];if(typeof u>"u"||u.start>t){if(!n(i.node))return!1;const l=t-i.start,h=(r>i.end?i.end:r)-i.start,d=e.value.substr(0,i.start),v=e.value.substr(h+i.start);if(i.node=this.wrapRangeInTextNode(i.node,l,h),e.value=d+v,e.nodes.forEach((y,b)=>{b>=s&&(e.nodes[b].start>0&&b!==s&&(e.nodes[b].start-=h),e.nodes[b].end-=h)}),r-=h,a(i.node.previousSibling,i.start),r>i.end)t=i.end;else return!1}return!0})}wrapMatches(e,t,r,n,a){const i=t===0?0:t+1;this.getTextNodes(s=>{s.nodes.forEach(u=>{u=u.node;let l;for(;(l=e.exec(u.textContent))!==null&&l[i]!=="";){if(!r(l[i],u))continue;let h=l.index;if(i!==0)for(let d=1;d{let u;for(;(u=e.exec(s.value))!==null&&u[i]!=="";){let l=u.index;if(i!==0)for(let d=1;dr(u[i],d),(d,v)=>{e.lastIndex=v,n(d)})}a()})}wrapRangeFromIndex(e,t,r,n){this.getTextNodes(a=>{const i=a.value.length;e.forEach((s,u)=>{let{start:l,end:h,valid:d}=this.checkWhitespaceRanges(s,i,a.value);d&&this.wrapRangeInMappedTextNode(a,l,h,v=>t(v,s,a.value.substring(l,h),u),v=>{r(v,s)})}),n()})}unwrapMatches(e){const t=e.parentNode;let r=document.createDocumentFragment();for(;e.firstChild;)r.appendChild(e.removeChild(e.firstChild));t.replaceChild(r,e),this.ie?this.normalizeTextNode(t):t.normalize()}normalizeTextNode(e){if(e){if(e.nodeType===3)for(;e.nextSibling&&e.nextSibling.nodeType===3;)e.nodeValue+=e.nextSibling.nodeValue,e.parentNode.removeChild(e.nextSibling);else this.normalizeTextNode(e.firstChild);this.normalizeTextNode(e.nextSibling)}}markRegExp(e,t){this.opt=t,this.log(`Searching with expression "${e}"`);let r=0,n="wrapMatches";const a=i=>{r++,this.opt.each(i)};this.opt.acrossElements&&(n="wrapMatchesAcrossElements"),this[n](e,this.opt.ignoreGroups,(i,s)=>this.opt.filter(s,i,r),a,()=>{r===0&&this.opt.noMatch(e),this.opt.done(r)})}mark(e,t){this.opt=t;let r=0,n="wrapMatches";const{keywords:a,length:i}=this.getSeparatedKeywords(typeof e=="string"?[e]:e),s=this.opt.caseSensitive?"":"i",u=l=>{let h=new RegExp(this.createRegExp(l),`gm${s}`),d=0;this.log(`Searching with expression "${h}"`),this[n](h,1,(v,y)=>this.opt.filter(y,l,r,d),v=>{d++,r++,this.opt.each(v)},()=>{d===0&&this.opt.noMatch(l),a[i-1]===l?this.opt.done(r):u(a[a.indexOf(l)+1])})};this.opt.acrossElements&&(n="wrapMatchesAcrossElements"),i===0?this.opt.done(r):u(a[0])}markRanges(e,t){this.opt=t;let r=0,n=this.checkRanges(e);n&&n.length?(this.log("Starting to mark with the following ranges: "+JSON.stringify(n)),this.wrapRangeFromIndex(n,(a,i,s,u)=>this.opt.filter(a,i,s,u),(a,i)=>{r++,this.opt.each(a,i)},()=>{this.opt.done(r)})):this.opt.done(r)}unmark(e){this.opt=e;let t=this.opt.element?this.opt.element:"*";t+="[data-markjs]",this.opt.className&&(t+=`.${this.opt.className}`),this.log(`Removal selector "${t}"`),this.iterator.forEachNode(NodeFilter.SHOW_ELEMENT,r=>{this.unwrapMatches(r)},r=>{const n=fe.matches(r,t),a=this.matchesExclude(r);return!n||a?NodeFilter.FILTER_REJECT:NodeFilter.FILTER_ACCEPT},this.opt.done)}};function _r(o){const e=new Or(o);return this.mark=(t,r)=>(e.mark(t,r),this),this.markRegExp=(t,r)=>(e.markRegExp(t,r),this),this.markRanges=(t,r)=>(e.markRanges(t,r),this),this.unmark=t=>(e.unmark(t),this),this}var W=function(){return W=Object.assign||function(e){for(var t,r=1,n=arguments.length;r0&&a[a.length-1])&&(l[0]===6||l[0]===2)){t=0;continue}if(l[0]===3&&(!a||l[1]>a[0]&&l[1]=o.length&&(o=void 0),{value:o&&o[r++],done:!o}}};throw new TypeError(e?"Object is not iterable.":"Symbol.iterator is not defined.")}function J(o,e){var t=typeof Symbol=="function"&&o[Symbol.iterator];if(!t)return o;var r=t.call(o),n,a=[],i;try{for(;(e===void 0||e-- >0)&&!(n=r.next()).done;)a.push(n.value)}catch(s){i={error:s}}finally{try{n&&!n.done&&(t=r.return)&&t.call(r)}finally{if(i)throw i.error}}return a}var Lr="ENTRIES",Et="KEYS",St="VALUES",G="",Me=function(){function o(e,t){var r=e._tree,n=Array.from(r.keys());this.set=e,this._type=t,this._path=n.length>0?[{node:r,keys:n}]:[]}return o.prototype.next=function(){var e=this.dive();return this.backtrack(),e},o.prototype.dive=function(){if(this._path.length===0)return{done:!0,value:void 0};var e=ce(this._path),t=e.node,r=e.keys;if(ce(r)===G)return{done:!1,value:this.result()};var n=t.get(ce(r));return this._path.push({node:n,keys:Array.from(n.keys())}),this.dive()},o.prototype.backtrack=function(){if(this._path.length!==0){var e=ce(this._path).keys;e.pop(),!(e.length>0)&&(this._path.pop(),this.backtrack())}},o.prototype.key=function(){return this.set._prefix+this._path.map(function(e){var t=e.keys;return ce(t)}).filter(function(e){return e!==G}).join("")},o.prototype.value=function(){return ce(this._path).node.get(G)},o.prototype.result=function(){switch(this._type){case St:return this.value();case Et:return this.key();default:return[this.key(),this.value()]}},o.prototype[Symbol.iterator]=function(){return this},o}(),ce=function(o){return o[o.length-1]},zr=function(o,e,t){var r=new Map;if(e===void 0)return r;for(var n=e.length+1,a=n+t,i=new Uint8Array(a*n).fill(t+1),s=0;st)continue e}At(o.get(y),e,t,r,n,E,i,s+y)}}}catch(f){u={error:f}}finally{try{v&&!v.done&&(l=d.return)&&l.call(d)}finally{if(u)throw u.error}}},Le=function(){function o(e,t){e===void 0&&(e=new Map),t===void 0&&(t=""),this._size=void 0,this._tree=e,this._prefix=t}return o.prototype.atPrefix=function(e){var t,r;if(!e.startsWith(this._prefix))throw new Error("Mismatched prefix");var n=J(ke(this._tree,e.slice(this._prefix.length)),2),a=n[0],i=n[1];if(a===void 0){var s=J(je(i),2),u=s[0],l=s[1];try{for(var h=D(u.keys()),d=h.next();!d.done;d=h.next()){var v=d.value;if(v!==G&&v.startsWith(l)){var y=new Map;return y.set(v.slice(l.length),u.get(v)),new o(y,e)}}}catch(b){t={error:b}}finally{try{d&&!d.done&&(r=h.return)&&r.call(h)}finally{if(t)throw t.error}}}return new o(a,e)},o.prototype.clear=function(){this._size=void 0,this._tree.clear()},o.prototype.delete=function(e){return this._size=void 0,Pr(this._tree,e)},o.prototype.entries=function(){return new Me(this,Lr)},o.prototype.forEach=function(e){var t,r;try{for(var n=D(this),a=n.next();!a.done;a=n.next()){var i=J(a.value,2),s=i[0],u=i[1];e(s,u,this)}}catch(l){t={error:l}}finally{try{a&&!a.done&&(r=n.return)&&r.call(n)}finally{if(t)throw t.error}}},o.prototype.fuzzyGet=function(e,t){return zr(this._tree,e,t)},o.prototype.get=function(e){var t=Ke(this._tree,e);return t!==void 0?t.get(G):void 0},o.prototype.has=function(e){var t=Ke(this._tree,e);return t!==void 0&&t.has(G)},o.prototype.keys=function(){return new Me(this,Et)},o.prototype.set=function(e,t){if(typeof e!="string")throw new Error("key must be a string");this._size=void 0;var r=ze(this._tree,e);return r.set(G,t),this},Object.defineProperty(o.prototype,"size",{get:function(){if(this._size)return this._size;this._size=0;for(var e=this.entries();!e.next().done;)this._size+=1;return this._size},enumerable:!1,configurable:!0}),o.prototype.update=function(e,t){if(typeof e!="string")throw new Error("key must be a string");this._size=void 0;var r=ze(this._tree,e);return r.set(G,t(r.get(G))),this},o.prototype.fetch=function(e,t){if(typeof e!="string")throw new Error("key must be a string");this._size=void 0;var r=ze(this._tree,e),n=r.get(G);return n===void 0&&r.set(G,n=t()),n},o.prototype.values=function(){return new Me(this,St)},o.prototype[Symbol.iterator]=function(){return this.entries()},o.from=function(e){var t,r,n=new o;try{for(var a=D(e),i=a.next();!i.done;i=a.next()){var s=J(i.value,2),u=s[0],l=s[1];n.set(u,l)}}catch(h){t={error:h}}finally{try{i&&!i.done&&(r=a.return)&&r.call(a)}finally{if(t)throw t.error}}return n},o.fromObject=function(e){return o.from(Object.entries(e))},o}(),ke=function(o,e,t){var r,n;if(t===void 0&&(t=[]),e.length===0||o==null)return[o,t];try{for(var a=D(o.keys()),i=a.next();!i.done;i=a.next()){var s=i.value;if(s!==G&&e.startsWith(s))return t.push([o,s]),ke(o.get(s),e.slice(s.length),t)}}catch(u){r={error:u}}finally{try{i&&!i.done&&(n=a.return)&&n.call(a)}finally{if(r)throw r.error}}return t.push([o,e]),ke(void 0,"",t)},Ke=function(o,e){var t,r;if(e.length===0||o==null)return o;try{for(var n=D(o.keys()),a=n.next();!a.done;a=n.next()){var i=a.value;if(i!==G&&e.startsWith(i))return Ke(o.get(i),e.slice(i.length))}}catch(s){t={error:s}}finally{try{a&&!a.done&&(r=n.return)&&r.call(n)}finally{if(t)throw t.error}}},ze=function(o,e){var t,r,n=e.length;e:for(var a=0;o&&a0)throw new Error("Expected documents to be present. Omit the argument to remove all documents.");this._index=new Le,this._documentCount=0,this._documentIds=new Map,this._idToShortId=new Map,this._fieldLength=new Map,this._avgFieldLength=[],this._storedFields=new Map,this._nextId=0}},o.prototype.discard=function(e){var t=this,r=this._idToShortId.get(e);if(r==null)throw new Error("MiniSearch: cannot discard document with ID ".concat(e,": it is not in the index"));this._idToShortId.delete(e),this._documentIds.delete(r),this._storedFields.delete(r),(this._fieldLength.get(r)||[]).forEach(function(n,a){t.removeFieldLength(r,a,t._documentCount,n)}),this._fieldLength.delete(r),this._documentCount-=1,this._dirtCount+=1,this.maybeAutoVacuum()},o.prototype.maybeAutoVacuum=function(){if(this._options.autoVacuum!==!1){var e=this._options.autoVacuum,t=e.minDirtFactor,r=e.minDirtCount,n=e.batchSize,a=e.batchWait;this.conditionalVacuum({batchSize:n,batchWait:a},{minDirtCount:r,minDirtFactor:t})}},o.prototype.discardAll=function(e){var t,r,n=this._options.autoVacuum;try{this._options.autoVacuum=!1;try{for(var a=D(e),i=a.next();!i.done;i=a.next()){var s=i.value;this.discard(s)}}catch(u){t={error:u}}finally{try{i&&!i.done&&(r=a.return)&&r.call(a)}finally{if(t)throw t.error}}}finally{this._options.autoVacuum=n}this.maybeAutoVacuum()},o.prototype.replace=function(e){var t=this._options,r=t.idField,n=t.extractField,a=n(e,r);this.discard(a),this.add(e)},o.prototype.vacuum=function(e){return e===void 0&&(e={}),this.conditionalVacuum(e)},o.prototype.conditionalVacuum=function(e,t){var r=this;return this._currentVacuum?(this._enqueuedVacuumConditions=this._enqueuedVacuumConditions&&t,this._enqueuedVacuum!=null?this._enqueuedVacuum:(this._enqueuedVacuum=this._currentVacuum.then(function(){var n=r._enqueuedVacuumConditions;return r._enqueuedVacuumConditions=Ue,r.performVacuuming(e,n)}),this._enqueuedVacuum)):this.vacuumConditionsMet(t)===!1?Promise.resolve():(this._currentVacuum=this.performVacuuming(e),this._currentVacuum)},o.prototype.performVacuuming=function(e,t){return Rr(this,void 0,void 0,function(){var r,n,a,i,s,u,l,h,d,v,y,b,E,g,S,T,F,L,R,B,N,_,A,O,w;return Mr(this,function(c){switch(c.label){case 0:if(r=this._dirtCount,!this.vacuumConditionsMet(t))return[3,10];n=e.batchSize||Je.batchSize,a=e.batchWait||Je.batchWait,i=1,c.label=1;case 1:c.trys.push([1,7,8,9]),s=D(this._index),u=s.next(),c.label=2;case 2:if(u.done)return[3,6];l=J(u.value,2),h=l[0],d=l[1];try{for(v=(_=void 0,D(d)),y=v.next();!y.done;y=v.next()){b=J(y.value,2),E=b[0],g=b[1];try{for(S=(O=void 0,D(g)),T=S.next();!T.done;T=S.next())F=J(T.value,1),L=F[0],!this._documentIds.has(L)&&(g.size<=1?d.delete(E):g.delete(L))}catch(f){O={error:f}}finally{try{T&&!T.done&&(w=S.return)&&w.call(S)}finally{if(O)throw O.error}}}}catch(f){_={error:f}}finally{try{y&&!y.done&&(A=v.return)&&A.call(v)}finally{if(_)throw _.error}}return this._index.get(h).size===0&&this._index.delete(h),i%n!==0?[3,4]:[4,new Promise(function(f){return setTimeout(f,a)})];case 3:c.sent(),c.label=4;case 4:i+=1,c.label=5;case 5:return u=s.next(),[3,2];case 6:return[3,9];case 7:return R=c.sent(),B={error:R},[3,9];case 8:try{u&&!u.done&&(N=s.return)&&N.call(s)}finally{if(B)throw B.error}return[7];case 9:this._dirtCount-=r,c.label=10;case 10:return[4,null];case 11:return c.sent(),this._currentVacuum=this._enqueuedVacuum,this._enqueuedVacuum=null,[2]}})})},o.prototype.vacuumConditionsMet=function(e){if(e==null)return!0;var t=e.minDirtCount,r=e.minDirtFactor;return t=t||Be.minDirtCount,r=r||Be.minDirtFactor,this.dirtCount>=t&&this.dirtFactor>=r},Object.defineProperty(o.prototype,"isVacuuming",{get:function(){return this._currentVacuum!=null},enumerable:!1,configurable:!0}),Object.defineProperty(o.prototype,"dirtCount",{get:function(){return this._dirtCount},enumerable:!1,configurable:!0}),Object.defineProperty(o.prototype,"dirtFactor",{get:function(){return this._dirtCount/(1+this._documentCount+this._dirtCount)},enumerable:!1,configurable:!0}),o.prototype.has=function(e){return this._idToShortId.has(e)},o.prototype.getStoredFields=function(e){var t=this._idToShortId.get(e);if(t!=null)return this._storedFields.get(t)},o.prototype.search=function(e,t){var r,n;t===void 0&&(t={});var a=this.executeQuery(e,t),i=[];try{for(var s=D(a),u=s.next();!u.done;u=s.next()){var l=J(u.value,2),h=l[0],d=l[1],v=d.score,y=d.terms,b=d.match,E=y.length||1,g={id:this._documentIds.get(h),score:v*E,terms:Object.keys(b),queryTerms:y,match:b};Object.assign(g,this._storedFields.get(h)),(t.filter==null||t.filter(g))&&i.push(g)}}catch(S){r={error:S}}finally{try{u&&!u.done&&(n=s.return)&&n.call(s)}finally{if(r)throw r.error}}return e===o.wildcard&&t.boostDocument==null&&this._options.searchOptions.boostDocument==null||i.sort(vt),i},o.prototype.autoSuggest=function(e,t){var r,n,a,i;t===void 0&&(t={}),t=W(W({},this._options.autoSuggestOptions),t);var s=new Map;try{for(var u=D(this.search(e,t)),l=u.next();!l.done;l=u.next()){var h=l.value,d=h.score,v=h.terms,y=v.join(" "),b=s.get(y);b!=null?(b.score+=d,b.count+=1):s.set(y,{score:d,terms:v,count:1})}}catch(R){r={error:R}}finally{try{l&&!l.done&&(n=u.return)&&n.call(u)}finally{if(r)throw r.error}}var E=[];try{for(var g=D(s),S=g.next();!S.done;S=g.next()){var T=J(S.value,2),b=T[0],F=T[1],d=F.score,v=F.terms,L=F.count;E.push({suggestion:b,terms:v,score:d/L})}}catch(R){a={error:R}}finally{try{S&&!S.done&&(i=g.return)&&i.call(g)}finally{if(a)throw a.error}}return E.sort(vt),E},Object.defineProperty(o.prototype,"documentCount",{get:function(){return this._documentCount},enumerable:!1,configurable:!0}),Object.defineProperty(o.prototype,"termCount",{get:function(){return this._index.size},enumerable:!1,configurable:!0}),o.loadJSON=function(e,t){if(t==null)throw new Error("MiniSearch: loadJSON should be given the same options used when serializing the index");return this.loadJS(JSON.parse(e),t)},o.getDefault=function(e){if(Ve.hasOwnProperty(e))return Pe(Ve,e);throw new Error('MiniSearch: unknown option "'.concat(e,'"'))},o.loadJS=function(e,t){var r,n,a,i,s,u,l=e.index,h=e.documentCount,d=e.nextId,v=e.documentIds,y=e.fieldIds,b=e.fieldLength,E=e.averageFieldLength,g=e.storedFields,S=e.dirtCount,T=e.serializationVersion;if(T!==1&&T!==2)throw new Error("MiniSearch: cannot deserialize an index created with an incompatible version");var F=new o(t);F._documentCount=h,F._nextId=d,F._documentIds=Te(v),F._idToShortId=new Map,F._fieldIds=y,F._fieldLength=Te(b),F._avgFieldLength=E,F._storedFields=Te(g),F._dirtCount=S||0,F._index=new Le;try{for(var L=D(F._documentIds),R=L.next();!R.done;R=L.next()){var B=J(R.value,2),N=B[0],_=B[1];F._idToShortId.set(_,N)}}catch(P){r={error:P}}finally{try{R&&!R.done&&(n=L.return)&&n.call(L)}finally{if(r)throw r.error}}try{for(var A=D(l),O=A.next();!O.done;O=A.next()){var w=J(O.value,2),c=w[0],f=w[1],p=new Map;try{for(var C=(s=void 0,D(Object.keys(f))),I=C.next();!I.done;I=C.next()){var M=I.value,z=f[M];T===1&&(z=z.ds),p.set(parseInt(M,10),Te(z))}}catch(P){s={error:P}}finally{try{I&&!I.done&&(u=C.return)&&u.call(C)}finally{if(s)throw s.error}}F._index.set(c,p)}}catch(P){a={error:P}}finally{try{O&&!O.done&&(i=A.return)&&i.call(A)}finally{if(a)throw a.error}}return F},o.prototype.executeQuery=function(e,t){var r=this;if(t===void 0&&(t={}),e===o.wildcard)return this.executeWildcardQuery(t);if(typeof e!="string"){var n=W(W(W({},t),e),{queries:void 0}),a=e.queries.map(function(g){return r.executeQuery(g,n)});return this.combineResults(a,n.combineWith)}var i=this._options,s=i.tokenize,u=i.processTerm,l=i.searchOptions,h=W(W({tokenize:s,processTerm:u},l),t),d=h.tokenize,v=h.processTerm,y=d(e).flatMap(function(g){return v(g)}).filter(function(g){return!!g}),b=y.map(Jr(h)),E=b.map(function(g){return r.executeQuerySpec(g,h)});return this.combineResults(E,h.combineWith)},o.prototype.executeQuerySpec=function(e,t){var r,n,a,i,s=W(W({},this._options.searchOptions),t),u=(s.fields||this._options.fields).reduce(function(M,z){var P;return W(W({},M),(P={},P[z]=Pe(s.boost,z)||1,P))},{}),l=s.boostDocument,h=s.weights,d=s.maxFuzzy,v=s.bm25,y=W(W({},ht.weights),h),b=y.fuzzy,E=y.prefix,g=this._index.get(e.term),S=this.termResults(e.term,e.term,1,g,u,l,v),T,F;if(e.prefix&&(T=this._index.atPrefix(e.term)),e.fuzzy){var L=e.fuzzy===!0?.2:e.fuzzy,R=L<1?Math.min(d,Math.round(e.term.length*L)):L;R&&(F=this._index.fuzzyGet(e.term,R))}if(T)try{for(var B=D(T),N=B.next();!N.done;N=B.next()){var _=J(N.value,2),A=_[0],O=_[1],w=A.length-e.term.length;if(w){F==null||F.delete(A);var c=E*A.length/(A.length+.3*w);this.termResults(e.term,A,c,O,u,l,v,S)}}}catch(M){r={error:M}}finally{try{N&&!N.done&&(n=B.return)&&n.call(B)}finally{if(r)throw r.error}}if(F)try{for(var f=D(F.keys()),p=f.next();!p.done;p=f.next()){var A=p.value,C=J(F.get(A),2),I=C[0],w=C[1];if(w){var c=b*A.length/(A.length+w);this.termResults(e.term,A,c,I,u,l,v,S)}}}catch(M){a={error:M}}finally{try{p&&!p.done&&(i=f.return)&&i.call(f)}finally{if(a)throw a.error}}return S},o.prototype.executeWildcardQuery=function(e){var t,r,n=new Map,a=W(W({},this._options.searchOptions),e);try{for(var i=D(this._documentIds),s=i.next();!s.done;s=i.next()){var u=J(s.value,2),l=u[0],h=u[1],d=a.boostDocument?a.boostDocument(h,"",this._storedFields.get(l)):1;n.set(l,{score:d,terms:[],match:{}})}}catch(v){t={error:v}}finally{try{s&&!s.done&&(r=i.return)&&r.call(i)}finally{if(t)throw t.error}}return n},o.prototype.combineResults=function(e,t){if(t===void 0&&(t=Ge),e.length===0)return new Map;var r=t.toLowerCase();return e.reduce($r[r])||new Map},o.prototype.toJSON=function(){var e,t,r,n,a=[];try{for(var i=D(this._index),s=i.next();!s.done;s=i.next()){var u=J(s.value,2),l=u[0],h=u[1],d={};try{for(var v=(r=void 0,D(h)),y=v.next();!y.done;y=v.next()){var b=J(y.value,2),E=b[0],g=b[1];d[E]=Object.fromEntries(g)}}catch(S){r={error:S}}finally{try{y&&!y.done&&(n=v.return)&&n.call(v)}finally{if(r)throw r.error}}a.push([l,d])}}catch(S){e={error:S}}finally{try{s&&!s.done&&(t=i.return)&&t.call(i)}finally{if(e)throw e.error}}return{documentCount:this._documentCount,nextId:this._nextId,documentIds:Object.fromEntries(this._documentIds),fieldIds:this._fieldIds,fieldLength:Object.fromEntries(this._fieldLength),averageFieldLength:this._avgFieldLength,storedFields:Object.fromEntries(this._storedFields),dirtCount:this._dirtCount,index:a,serializationVersion:2}},o.prototype.termResults=function(e,t,r,n,a,i,s,u){var l,h,d,v,y;if(u===void 0&&(u=new Map),n==null)return u;try{for(var b=D(Object.keys(a)),E=b.next();!E.done;E=b.next()){var g=E.value,S=a[g],T=this._fieldIds[g],F=n.get(T);if(F!=null){var L=F.size,R=this._avgFieldLength[T];try{for(var B=(d=void 0,D(F.keys())),N=B.next();!N.done;N=B.next()){var _=N.value;if(!this._documentIds.has(_)){this.removeTerm(T,_,t),L-=1;continue}var A=i?i(this._documentIds.get(_),t,this._storedFields.get(_)):1;if(A){var O=F.get(_),w=this._fieldLength.get(_)[T],c=Kr(O,L,this._documentCount,w,R,s),f=r*S*A*c,p=u.get(_);if(p){p.score+=f,jr(p.terms,e);var C=Pe(p.match,t);C?C.push(g):p.match[t]=[g]}else u.set(_,{score:f,terms:[e],match:(y={},y[t]=[g],y)})}}}catch(I){d={error:I}}finally{try{N&&!N.done&&(v=B.return)&&v.call(B)}finally{if(d)throw d.error}}}}}catch(I){l={error:I}}finally{try{E&&!E.done&&(h=b.return)&&h.call(b)}finally{if(l)throw l.error}}return u},o.prototype.addTerm=function(e,t,r){var n=this._index.fetch(r,pt),a=n.get(e);if(a==null)a=new Map,a.set(t,1),n.set(e,a);else{var i=a.get(t);a.set(t,(i||0)+1)}},o.prototype.removeTerm=function(e,t,r){if(!this._index.has(r)){this.warnDocumentChanged(t,e,r);return}var n=this._index.fetch(r,pt),a=n.get(e);a==null||a.get(t)==null?this.warnDocumentChanged(t,e,r):a.get(t)<=1?a.size<=1?n.delete(e):a.delete(t):a.set(t,a.get(t)-1),this._index.get(r).size===0&&this._index.delete(r)},o.prototype.warnDocumentChanged=function(e,t,r){var n,a;try{for(var i=D(Object.keys(this._fieldIds)),s=i.next();!s.done;s=i.next()){var u=s.value;if(this._fieldIds[u]===t){this._options.logger("warn","MiniSearch: document with ID ".concat(this._documentIds.get(e),' has changed before removal: term "').concat(r,'" was not present in field "').concat(u,'". Removing a document after it has changed can corrupt the index!'),"version_conflict");return}}}catch(l){n={error:l}}finally{try{s&&!s.done&&(a=i.return)&&a.call(i)}finally{if(n)throw n.error}}},o.prototype.addDocumentId=function(e){var t=this._nextId;return this._idToShortId.set(e,t),this._documentIds.set(t,e),this._documentCount+=1,this._nextId+=1,t},o.prototype.addFields=function(e){for(var t=0;t(Ht("data-v-f5c68218"),o=o(),Qt(),o),Hr=["aria-owns"],Qr={class:"shell"},Yr=["title"],Zr=Y(()=>k("span",{"aria-hidden":"true",class:"vpi-search search-icon local-search-icon"},null,-1)),Xr=[Zr],ea={class:"search-actions before"},ta=["title"],ra=Y(()=>k("span",{class:"vpi-arrow-left local-search-icon"},null,-1)),aa=[ra],na=["placeholder"],ia={class:"search-actions"},oa=["title"],sa=Y(()=>k("span",{class:"vpi-layout-list local-search-icon"},null,-1)),ua=[sa],la=["disabled","title"],ca=Y(()=>k("span",{class:"vpi-delete local-search-icon"},null,-1)),fa=[ca],ha=["id","role","aria-labelledby"],da=["aria-selected"],va=["href","aria-label","onMouseenter","onFocusin"],pa={class:"titles"},ya=Y(()=>k("span",{class:"title-icon"},"#",-1)),ma=["innerHTML"],ga=Y(()=>k("span",{class:"vpi-chevron-right local-search-icon"},null,-1)),ba={class:"title main"},wa=["innerHTML"],xa={key:0,class:"excerpt-wrapper"},Fa={key:0,class:"excerpt",inert:""},Ea=["innerHTML"],Sa=Y(()=>k("div",{class:"excerpt-gradient-bottom"},null,-1)),Aa=Y(()=>k("div",{class:"excerpt-gradient-top"},null,-1)),Ta={key:0,class:"no-results"},Na={class:"search-keyboard-shortcuts"},Ca=["aria-label"],Ia=Y(()=>k("span",{class:"vpi-arrow-up navigate-icon"},null,-1)),Da=[Ia],ka=["aria-label"],Oa=Y(()=>k("span",{class:"vpi-arrow-down navigate-icon"},null,-1)),_a=[Oa],Ra=["aria-label"],Ma=Y(()=>k("span",{class:"vpi-corner-down-left navigate-icon"},null,-1)),La=[Ma],za=["aria-label"],Pa=_t({__name:"VPLocalSearchBox",emits:["close"],setup(o,{emit:e}){var z,P;const t=e,r=xe(),n=xe(),a=xe(nr),i=rr(),{activate:s}=kr(r,{immediate:!0,allowOutsideClick:!0,clickOutsideDeactivates:!0,escapeDeactivates:!0}),{localeIndex:u,theme:l}=i,h=tt(async()=>{var m,x,$,K,q,H,V,U,Z;return it(Br.loadJSON(($=await((x=(m=a.value)[u.value])==null?void 0:x.call(m)))==null?void 0:$.default,{fields:["title","titles","text"],storeFields:["title","titles"],searchOptions:{fuzzy:.2,prefix:!0,boost:{title:4,text:2,titles:1},...((K=l.value.search)==null?void 0:K.provider)==="local"&&((H=(q=l.value.search.options)==null?void 0:q.miniSearch)==null?void 0:H.searchOptions)},...((V=l.value.search)==null?void 0:V.provider)==="local"&&((Z=(U=l.value.search.options)==null?void 0:U.miniSearch)==null?void 0:Z.options)}))}),v=Fe(()=>{var m,x;return((m=l.value.search)==null?void 0:m.provider)==="local"&&((x=l.value.search.options)==null?void 0:x.disableQueryPersistence)===!0}).value?oe(""):Rt("vitepress:local-search-filter",""),y=Mt("vitepress:local-search-detailed-list",((z=l.value.search)==null?void 0:z.provider)==="local"&&((P=l.value.search.options)==null?void 0:P.detailedView)===!0),b=Fe(()=>{var m,x,$;return((m=l.value.search)==null?void 0:m.provider)==="local"&&(((x=l.value.search.options)==null?void 0:x.disableDetailedView)===!0||(($=l.value.search.options)==null?void 0:$.detailedView)===!1)}),E=Fe(()=>{var x,$,K,q,H,V,U;const m=((x=l.value.search)==null?void 0:x.options)??l.value.algolia;return((H=(q=(K=($=m==null?void 0:m.locales)==null?void 0:$[u.value])==null?void 0:K.translations)==null?void 0:q.button)==null?void 0:H.buttonText)||((U=(V=m==null?void 0:m.translations)==null?void 0:V.button)==null?void 0:U.buttonText)||"Search"});Lt(()=>{b.value&&(y.value=!1)});const g=xe([]),S=oe(!1);$e(v,()=>{S.value=!1});const T=tt(async()=>{if(n.value)return it(new _r(n.value))},null),F=new qr(16);zt(()=>[h.value,v.value,y.value],async([m,x,$],K,q)=>{var be,qe,He,Qe;(K==null?void 0:K[0])!==m&&F.clear();let H=!1;if(q(()=>{H=!0}),!m)return;g.value=m.search(x).slice(0,16),S.value=!0;const V=$?await Promise.all(g.value.map(Q=>L(Q.id))):[];if(H)return;for(const{id:Q,mod:ae}of V){const ne=Q.slice(0,Q.indexOf("#"));let te=F.get(ne);if(te)continue;te=new Map,F.set(ne,te);const X=ae.default??ae;if(X!=null&&X.render||X!=null&&X.setup){const ie=Yt(X);ie.config.warnHandler=()=>{},ie.provide(Zt,i),Object.defineProperties(ie.config.globalProperties,{$frontmatter:{get(){return i.frontmatter.value}},$params:{get(){return i.page.value.params}}});const Ye=document.createElement("div");ie.mount(Ye),Ye.querySelectorAll("h1, h2, h3, h4, h5, h6").forEach(he=>{var et;const we=(et=he.querySelector("a"))==null?void 0:et.getAttribute("href"),Ze=(we==null?void 0:we.startsWith("#"))&&we.slice(1);if(!Ze)return;let Xe="";for(;(he=he.nextElementSibling)&&!/^h[1-6]$/i.test(he.tagName);)Xe+=he.outerHTML;te.set(Ze,Xe)}),ie.unmount()}if(H)return}const U=new Set;if(g.value=g.value.map(Q=>{const[ae,ne]=Q.id.split("#"),te=F.get(ae),X=(te==null?void 0:te.get(ne))??"";for(const ie in Q.match)U.add(ie);return{...Q,text:X}}),await de(),H)return;await new Promise(Q=>{var ae;(ae=T.value)==null||ae.unmark({done:()=>{var ne;(ne=T.value)==null||ne.markRegExp(M(U),{done:Q})}})});const Z=((be=r.value)==null?void 0:be.querySelectorAll(".result .excerpt"))??[];for(const Q of Z)(qe=Q.querySelector('mark[data-markjs="true"]'))==null||qe.scrollIntoView({block:"center"});(Qe=(He=n.value)==null?void 0:He.firstElementChild)==null||Qe.scrollIntoView({block:"start"})},{debounce:200,immediate:!0});async function L(m){const x=Xt(m.slice(0,m.indexOf("#")));try{if(!x)throw new Error(`Cannot find file for id: ${m}`);return{id:m,mod:await yt(()=>import(x),__vite__mapDeps([]))}}catch($){return console.error($),{id:m,mod:{}}}}const R=oe(),B=Fe(()=>{var m;return((m=v.value)==null?void 0:m.length)<=0});function N(m=!0){var x,$;(x=R.value)==null||x.focus(),m&&(($=R.value)==null||$.select())}_e(()=>{N()});function _(m){m.pointerType==="mouse"&&N()}const A=oe(-1),O=oe(!1);$e(g,m=>{A.value=m.length?0:-1,w()});function w(){de(()=>{const m=document.querySelector(".result.selected");m&&m.scrollIntoView({block:"nearest"})})}Ee("ArrowUp",m=>{m.preventDefault(),A.value--,A.value<0&&(A.value=g.value.length-1),O.value=!0,w()}),Ee("ArrowDown",m=>{m.preventDefault(),A.value++,A.value>=g.value.length&&(A.value=0),O.value=!0,w()});const c=Pt();Ee("Enter",m=>{if(m.isComposing||m.target instanceof HTMLButtonElement&&m.target.type!=="submit")return;const x=g.value[A.value];if(m.target instanceof HTMLInputElement&&!x){m.preventDefault();return}x&&(c.go(x.id),t("close"))}),Ee("Escape",()=>{t("close")});const p=ar({modal:{displayDetails:"Display detailed list",resetButtonTitle:"Reset search",backButtonTitle:"Close search",noResultsText:"No results for",footer:{selectText:"to select",selectKeyAriaLabel:"enter",navigateText:"to navigate",navigateUpKeyAriaLabel:"up arrow",navigateDownKeyAriaLabel:"down arrow",closeText:"to close",closeKeyAriaLabel:"escape"}}});_e(()=>{window.history.pushState(null,"",null)}),Vt("popstate",m=>{m.preventDefault(),t("close")});const C=Bt($t?document.body:null);_e(()=>{de(()=>{C.value=!0,de().then(()=>s())})}),Wt(()=>{C.value=!1});function I(){v.value="",de().then(()=>N(!1))}function M(m){return new RegExp([...m].sort((x,$)=>$.length-x.length).map(x=>`(${er(x)})`).join("|"),"gi")}return(m,x)=>{var $,K,q,H;return ee(),Kt(qt,{to:"body"},[k("div",{ref_key:"el",ref:r,role:"button","aria-owns":($=g.value)!=null&&$.length?"localsearch-list":void 0,"aria-expanded":"true","aria-haspopup":"listbox","aria-labelledby":"localsearch-label",class:"VPLocalSearchBox"},[k("div",{class:"backdrop",onClick:x[0]||(x[0]=V=>m.$emit("close"))}),k("div",Qr,[k("form",{class:"search-bar",onPointerup:x[4]||(x[4]=V=>_(V)),onSubmit:x[5]||(x[5]=Jt(()=>{},["prevent"]))},[k("label",{title:E.value,id:"localsearch-label",for:"localsearch-input"},Xr,8,Yr),k("div",ea,[k("button",{class:"back-button",title:j(p)("modal.backButtonTitle"),onClick:x[1]||(x[1]=V=>m.$emit("close"))},aa,8,ta)]),Ut(k("input",{ref_key:"searchInput",ref:R,"onUpdate:modelValue":x[2]||(x[2]=V=>Gt(v)?v.value=V:null),placeholder:E.value,id:"localsearch-input","aria-labelledby":"localsearch-label",class:"search-input"},null,8,na),[[jt,j(v)]]),k("div",ia,[b.value?Se("",!0):(ee(),re("button",{key:0,class:rt(["toggle-layout-button",{"detailed-list":j(y)}]),type:"button",title:j(p)("modal.displayDetails"),onClick:x[3]||(x[3]=V=>A.value>-1&&(y.value=!j(y)))},ua,10,oa)),k("button",{class:"clear-button",type:"reset",disabled:B.value,title:j(p)("modal.resetButtonTitle"),onClick:I},fa,8,la)])],32),k("ul",{ref_key:"resultsEl",ref:n,id:(K=g.value)!=null&&K.length?"localsearch-list":void 0,role:(q=g.value)!=null&&q.length?"listbox":void 0,"aria-labelledby":(H=g.value)!=null&&H.length?"localsearch-label":void 0,class:"results",onMousemove:x[7]||(x[7]=V=>O.value=!1)},[(ee(!0),re(nt,null,at(g.value,(V,U)=>(ee(),re("li",{key:V.id,role:"option","aria-selected":A.value===U?"true":"false"},[k("a",{href:V.id,class:rt(["result",{selected:A.value===U}]),"aria-label":[...V.titles,V.title].join(" > "),onMouseenter:Z=>!O.value&&(A.value=U),onFocusin:Z=>A.value=U,onClick:x[6]||(x[6]=Z=>m.$emit("close"))},[k("div",null,[k("div",pa,[ya,(ee(!0),re(nt,null,at(V.titles,(Z,be)=>(ee(),re("span",{key:be,class:"title"},[k("span",{class:"text",innerHTML:Z},null,8,ma),ga]))),128)),k("span",ba,[k("span",{class:"text",innerHTML:V.title},null,8,wa)])]),j(y)?(ee(),re("div",xa,[V.text?(ee(),re("div",Fa,[k("div",{class:"vp-doc",innerHTML:V.text},null,8,Ea)])):Se("",!0),Sa,Aa])):Se("",!0)])],42,va)],8,da))),128)),j(v)&&!g.value.length&&S.value?(ee(),re("li",Ta,[ve(pe(j(p)("modal.noResultsText"))+' "',1),k("strong",null,pe(j(v)),1),ve('" ')])):Se("",!0)],40,ha),k("div",Na,[k("span",null,[k("kbd",{"aria-label":j(p)("modal.footer.navigateUpKeyAriaLabel")},Da,8,Ca),k("kbd",{"aria-label":j(p)("modal.footer.navigateDownKeyAriaLabel")},_a,8,ka),ve(" "+pe(j(p)("modal.footer.navigateText")),1)]),k("span",null,[k("kbd",{"aria-label":j(p)("modal.footer.selectKeyAriaLabel")},La,8,Ra),ve(" "+pe(j(p)("modal.footer.selectText")),1)]),k("span",null,[k("kbd",{"aria-label":j(p)("modal.footer.closeKeyAriaLabel")},"esc",8,za),ve(" "+pe(j(p)("modal.footer.closeText")),1)])])])],8,Hr)])}}}),Ja=tr(Pa,[["__scopeId","data-v-f5c68218"]]);export{Ja as default}; +*/function st(o,e){var t=Object.keys(o);if(Object.getOwnPropertySymbols){var r=Object.getOwnPropertySymbols(o);e&&(r=r.filter(function(n){return Object.getOwnPropertyDescriptor(o,n).enumerable})),t.push.apply(t,r)}return t}function ut(o){for(var e=1;e0){var r=e[e.length-1];r!==t&&r.pause()}var n=e.indexOf(t);n===-1||e.splice(n,1),e.push(t)},deactivateTrap:function(e,t){var r=e.indexOf(t);r!==-1&&e.splice(r,1),e.length>0&&e[e.length-1].unpause()}},Ar=function(e){return e.tagName&&e.tagName.toLowerCase()==="input"&&typeof e.select=="function"},Tr=function(e){return(e==null?void 0:e.key)==="Escape"||(e==null?void 0:e.key)==="Esc"||(e==null?void 0:e.keyCode)===27},ge=function(e){return(e==null?void 0:e.key)==="Tab"||(e==null?void 0:e.keyCode)===9},Nr=function(e){return ge(e)&&!e.shiftKey},Cr=function(e){return ge(e)&&e.shiftKey},ct=function(e){return setTimeout(e,0)},ft=function(e,t){var r=-1;return e.every(function(n,a){return t(n)?(r=a,!1):!0}),r},ye=function(e){for(var t=arguments.length,r=new Array(t>1?t-1:0),n=1;n1?p-1:0),I=1;I=0)c=r.activeElement;else{var f=i.tabbableGroups[0],p=f&&f.firstTabbableNode;c=p||h("fallbackFocus")}if(!c)throw new Error("Your focus-trap needs to have at least one focusable element");return c},v=function(){if(i.containerGroups=i.containers.map(function(c){var f=br(c,a.tabbableOptions),p=wr(c,a.tabbableOptions),C=f.length>0?f[0]:void 0,I=f.length>0?f[f.length-1]:void 0,M=p.find(function(m){return le(m)}),z=p.slice().reverse().find(function(m){return le(m)}),P=!!f.find(function(m){return se(m)>0});return{container:c,tabbableNodes:f,focusableNodes:p,posTabIndexesFound:P,firstTabbableNode:C,lastTabbableNode:I,firstDomTabbableNode:M,lastDomTabbableNode:z,nextTabbableNode:function(x){var $=arguments.length>1&&arguments[1]!==void 0?arguments[1]:!0,K=f.indexOf(x);return K<0?$?p.slice(p.indexOf(x)+1).find(function(q){return le(q)}):p.slice(0,p.indexOf(x)).reverse().find(function(q){return le(q)}):f[K+($?1:-1)]}}}),i.tabbableGroups=i.containerGroups.filter(function(c){return c.tabbableNodes.length>0}),i.tabbableGroups.length<=0&&!h("fallbackFocus"))throw new Error("Your focus-trap must have at least one container with at least one tabbable node in it at all times");if(i.containerGroups.find(function(c){return c.posTabIndexesFound})&&i.containerGroups.length>1)throw new Error("At least one node with a positive tabindex was found in one of your focus-trap's multiple containers. Positive tabindexes are only supported in single-container focus-traps.")},y=function w(c){var f=c.activeElement;if(f)return f.shadowRoot&&f.shadowRoot.activeElement!==null?w(f.shadowRoot):f},b=function w(c){if(c!==!1&&c!==y(document)){if(!c||!c.focus){w(d());return}c.focus({preventScroll:!!a.preventScroll}),i.mostRecentlyFocusedNode=c,Ar(c)&&c.select()}},E=function(c){var f=h("setReturnFocus",c);return f||(f===!1?!1:c)},g=function(c){var f=c.target,p=c.event,C=c.isBackward,I=C===void 0?!1:C;f=f||Ae(p),v();var M=null;if(i.tabbableGroups.length>0){var z=l(f,p),P=z>=0?i.containerGroups[z]:void 0;if(z<0)I?M=i.tabbableGroups[i.tabbableGroups.length-1].lastTabbableNode:M=i.tabbableGroups[0].firstTabbableNode;else if(I){var m=ft(i.tabbableGroups,function(V){var U=V.firstTabbableNode;return f===U});if(m<0&&(P.container===f||Re(f,a.tabbableOptions)&&!le(f,a.tabbableOptions)&&!P.nextTabbableNode(f,!1))&&(m=z),m>=0){var x=m===0?i.tabbableGroups.length-1:m-1,$=i.tabbableGroups[x];M=se(f)>=0?$.lastTabbableNode:$.lastDomTabbableNode}else ge(p)||(M=P.nextTabbableNode(f,!1))}else{var K=ft(i.tabbableGroups,function(V){var U=V.lastTabbableNode;return f===U});if(K<0&&(P.container===f||Re(f,a.tabbableOptions)&&!le(f,a.tabbableOptions)&&!P.nextTabbableNode(f))&&(K=z),K>=0){var q=K===i.tabbableGroups.length-1?0:K+1,H=i.tabbableGroups[q];M=se(f)>=0?H.firstTabbableNode:H.firstDomTabbableNode}else ge(p)||(M=P.nextTabbableNode(f))}}else M=h("fallbackFocus");return M},S=function(c){var f=Ae(c);if(!(l(f,c)>=0)){if(ye(a.clickOutsideDeactivates,c)){s.deactivate({returnFocus:a.returnFocusOnDeactivate});return}ye(a.allowOutsideClick,c)||c.preventDefault()}},T=function(c){var f=Ae(c),p=l(f,c)>=0;if(p||f instanceof Document)p&&(i.mostRecentlyFocusedNode=f);else{c.stopImmediatePropagation();var C,I=!0;if(i.mostRecentlyFocusedNode)if(se(i.mostRecentlyFocusedNode)>0){var M=l(i.mostRecentlyFocusedNode),z=i.containerGroups[M].tabbableNodes;if(z.length>0){var P=z.findIndex(function(m){return m===i.mostRecentlyFocusedNode});P>=0&&(a.isKeyForward(i.recentNavEvent)?P+1=0&&(C=z[P-1],I=!1))}}else i.containerGroups.some(function(m){return m.tabbableNodes.some(function(x){return se(x)>0})})||(I=!1);else I=!1;I&&(C=g({target:i.mostRecentlyFocusedNode,isBackward:a.isKeyBackward(i.recentNavEvent)})),b(C||i.mostRecentlyFocusedNode||d())}i.recentNavEvent=void 0},F=function(c){var f=arguments.length>1&&arguments[1]!==void 0?arguments[1]:!1;i.recentNavEvent=c;var p=g({event:c,isBackward:f});p&&(ge(c)&&c.preventDefault(),b(p))},L=function(c){if(Tr(c)&&ye(a.escapeDeactivates,c)!==!1){c.preventDefault(),s.deactivate();return}(a.isKeyForward(c)||a.isKeyBackward(c))&&F(c,a.isKeyBackward(c))},R=function(c){var f=Ae(c);l(f,c)>=0||ye(a.clickOutsideDeactivates,c)||ye(a.allowOutsideClick,c)||(c.preventDefault(),c.stopImmediatePropagation())},B=function(){if(i.active)return lt.activateTrap(n,s),i.delayInitialFocusTimer=a.delayInitialFocus?ct(function(){b(d())}):b(d()),r.addEventListener("focusin",T,!0),r.addEventListener("mousedown",S,{capture:!0,passive:!1}),r.addEventListener("touchstart",S,{capture:!0,passive:!1}),r.addEventListener("click",R,{capture:!0,passive:!1}),r.addEventListener("keydown",L,{capture:!0,passive:!1}),s},N=function(){if(i.active)return r.removeEventListener("focusin",T,!0),r.removeEventListener("mousedown",S,!0),r.removeEventListener("touchstart",S,!0),r.removeEventListener("click",R,!0),r.removeEventListener("keydown",L,!0),s},_=function(c){var f=c.some(function(p){var C=Array.from(p.removedNodes);return C.some(function(I){return I===i.mostRecentlyFocusedNode})});f&&b(d())},A=typeof window<"u"&&"MutationObserver"in window?new MutationObserver(_):void 0,O=function(){A&&(A.disconnect(),i.active&&!i.paused&&i.containers.map(function(c){A.observe(c,{subtree:!0,childList:!0})}))};return s={get active(){return i.active},get paused(){return i.paused},activate:function(c){if(i.active)return this;var f=u(c,"onActivate"),p=u(c,"onPostActivate"),C=u(c,"checkCanFocusTrap");C||v(),i.active=!0,i.paused=!1,i.nodeFocusedBeforeActivation=r.activeElement,f==null||f();var I=function(){C&&v(),B(),O(),p==null||p()};return C?(C(i.containers.concat()).then(I,I),this):(I(),this)},deactivate:function(c){if(!i.active)return this;var f=ut({onDeactivate:a.onDeactivate,onPostDeactivate:a.onPostDeactivate,checkCanReturnFocus:a.checkCanReturnFocus},c);clearTimeout(i.delayInitialFocusTimer),i.delayInitialFocusTimer=void 0,N(),i.active=!1,i.paused=!1,O(),lt.deactivateTrap(n,s);var p=u(f,"onDeactivate"),C=u(f,"onPostDeactivate"),I=u(f,"checkCanReturnFocus"),M=u(f,"returnFocus","returnFocusOnDeactivate");p==null||p();var z=function(){ct(function(){M&&b(E(i.nodeFocusedBeforeActivation)),C==null||C()})};return M&&I?(I(E(i.nodeFocusedBeforeActivation)).then(z,z),this):(z(),this)},pause:function(c){if(i.paused||!i.active)return this;var f=u(c,"onPause"),p=u(c,"onPostPause");return i.paused=!0,f==null||f(),N(),O(),p==null||p(),this},unpause:function(c){if(!i.paused||!i.active)return this;var f=u(c,"onUnpause"),p=u(c,"onPostUnpause");return i.paused=!1,f==null||f(),v(),B(),O(),p==null||p(),this},updateContainerElements:function(c){var f=[].concat(c).filter(Boolean);return i.containers=f.map(function(p){return typeof p=="string"?r.querySelector(p):p}),i.active&&v(),O(),this}},s.updateContainerElements(e),s};function kr(o,e={}){let t;const{immediate:r,...n}=e,a=oe(!1),i=oe(!1),s=d=>t&&t.activate(d),u=d=>t&&t.deactivate(d),l=()=>{t&&(t.pause(),i.value=!0)},h=()=>{t&&(t.unpause(),i.value=!1)};return $e(()=>kt(o),d=>{d&&(t=Dr(d,{...n,onActivate(){a.value=!0,e.onActivate&&e.onActivate()},onDeactivate(){a.value=!1,e.onDeactivate&&e.onDeactivate()}}),r&&s())},{flush:"post"}),Ot(()=>u()),{hasFocus:a,isPaused:i,activate:s,deactivate:u,pause:l,unpause:h}}class fe{constructor(e,t=!0,r=[],n=5e3){this.ctx=e,this.iframes=t,this.exclude=r,this.iframesTimeout=n}static matches(e,t){const r=typeof t=="string"?[t]:t,n=e.matches||e.matchesSelector||e.msMatchesSelector||e.mozMatchesSelector||e.oMatchesSelector||e.webkitMatchesSelector;if(n){let a=!1;return r.every(i=>n.call(e,i)?(a=!0,!1):!0),a}else return!1}getContexts(){let e,t=[];return typeof this.ctx>"u"||!this.ctx?e=[]:NodeList.prototype.isPrototypeOf(this.ctx)?e=Array.prototype.slice.call(this.ctx):Array.isArray(this.ctx)?e=this.ctx:typeof this.ctx=="string"?e=Array.prototype.slice.call(document.querySelectorAll(this.ctx)):e=[this.ctx],e.forEach(r=>{const n=t.filter(a=>a.contains(r)).length>0;t.indexOf(r)===-1&&!n&&t.push(r)}),t}getIframeContents(e,t,r=()=>{}){let n;try{const a=e.contentWindow;if(n=a.document,!a||!n)throw new Error("iframe inaccessible")}catch{r()}n&&t(n)}isIframeBlank(e){const t="about:blank",r=e.getAttribute("src").trim();return e.contentWindow.location.href===t&&r!==t&&r}observeIframeLoad(e,t,r){let n=!1,a=null;const i=()=>{if(!n){n=!0,clearTimeout(a);try{this.isIframeBlank(e)||(e.removeEventListener("load",i),this.getIframeContents(e,t,r))}catch{r()}}};e.addEventListener("load",i),a=setTimeout(i,this.iframesTimeout)}onIframeReady(e,t,r){try{e.contentWindow.document.readyState==="complete"?this.isIframeBlank(e)?this.observeIframeLoad(e,t,r):this.getIframeContents(e,t,r):this.observeIframeLoad(e,t,r)}catch{r()}}waitForIframes(e,t){let r=0;this.forEachIframe(e,()=>!0,n=>{r++,this.waitForIframes(n.querySelector("html"),()=>{--r||t()})},n=>{n||t()})}forEachIframe(e,t,r,n=()=>{}){let a=e.querySelectorAll("iframe"),i=a.length,s=0;a=Array.prototype.slice.call(a);const u=()=>{--i<=0&&n(s)};i||u(),a.forEach(l=>{fe.matches(l,this.exclude)?u():this.onIframeReady(l,h=>{t(l)&&(s++,r(h)),u()},u)})}createIterator(e,t,r){return document.createNodeIterator(e,t,r,!1)}createInstanceOnIframe(e){return new fe(e.querySelector("html"),this.iframes)}compareNodeIframe(e,t,r){const n=e.compareDocumentPosition(r),a=Node.DOCUMENT_POSITION_PRECEDING;if(n&a)if(t!==null){const i=t.compareDocumentPosition(r),s=Node.DOCUMENT_POSITION_FOLLOWING;if(i&s)return!0}else return!0;return!1}getIteratorNode(e){const t=e.previousNode();let r;return t===null?r=e.nextNode():r=e.nextNode()&&e.nextNode(),{prevNode:t,node:r}}checkIframeFilter(e,t,r,n){let a=!1,i=!1;return n.forEach((s,u)=>{s.val===r&&(a=u,i=s.handled)}),this.compareNodeIframe(e,t,r)?(a===!1&&!i?n.push({val:r,handled:!0}):a!==!1&&!i&&(n[a].handled=!0),!0):(a===!1&&n.push({val:r,handled:!1}),!1)}handleOpenIframes(e,t,r,n){e.forEach(a=>{a.handled||this.getIframeContents(a.val,i=>{this.createInstanceOnIframe(i).forEachNode(t,r,n)})})}iterateThroughNodes(e,t,r,n,a){const i=this.createIterator(t,e,n);let s=[],u=[],l,h,d=()=>({prevNode:h,node:l}=this.getIteratorNode(i),l);for(;d();)this.iframes&&this.forEachIframe(t,v=>this.checkIframeFilter(l,h,v,s),v=>{this.createInstanceOnIframe(v).forEachNode(e,y=>u.push(y),n)}),u.push(l);u.forEach(v=>{r(v)}),this.iframes&&this.handleOpenIframes(s,e,r,n),a()}forEachNode(e,t,r,n=()=>{}){const a=this.getContexts();let i=a.length;i||n(),a.forEach(s=>{const u=()=>{this.iterateThroughNodes(e,s,t,r,()=>{--i<=0&&n()})};this.iframes?this.waitForIframes(s,u):u()})}}let Or=class{constructor(e){this.ctx=e,this.ie=!1;const t=window.navigator.userAgent;(t.indexOf("MSIE")>-1||t.indexOf("Trident")>-1)&&(this.ie=!0)}set opt(e){this._opt=Object.assign({},{element:"",className:"",exclude:[],iframes:!1,iframesTimeout:5e3,separateWordSearch:!0,diacritics:!0,synonyms:{},accuracy:"partially",acrossElements:!1,caseSensitive:!1,ignoreJoiners:!1,ignoreGroups:0,ignorePunctuation:[],wildcards:"disabled",each:()=>{},noMatch:()=>{},filter:()=>!0,done:()=>{},debug:!1,log:window.console},e)}get opt(){return this._opt}get iterator(){return new fe(this.ctx,this.opt.iframes,this.opt.exclude,this.opt.iframesTimeout)}log(e,t="debug"){const r=this.opt.log;this.opt.debug&&typeof r=="object"&&typeof r[t]=="function"&&r[t](`mark.js: ${e}`)}escapeStr(e){return e.replace(/[\-\[\]\/\{\}\(\)\*\+\?\.\\\^\$\|]/g,"\\$&")}createRegExp(e){return this.opt.wildcards!=="disabled"&&(e=this.setupWildcardsRegExp(e)),e=this.escapeStr(e),Object.keys(this.opt.synonyms).length&&(e=this.createSynonymsRegExp(e)),(this.opt.ignoreJoiners||this.opt.ignorePunctuation.length)&&(e=this.setupIgnoreJoinersRegExp(e)),this.opt.diacritics&&(e=this.createDiacriticsRegExp(e)),e=this.createMergedBlanksRegExp(e),(this.opt.ignoreJoiners||this.opt.ignorePunctuation.length)&&(e=this.createJoinersRegExp(e)),this.opt.wildcards!=="disabled"&&(e=this.createWildcardsRegExp(e)),e=this.createAccuracyRegExp(e),e}createSynonymsRegExp(e){const t=this.opt.synonyms,r=this.opt.caseSensitive?"":"i",n=this.opt.ignoreJoiners||this.opt.ignorePunctuation.length?"\0":"";for(let a in t)if(t.hasOwnProperty(a)){const i=t[a],s=this.opt.wildcards!=="disabled"?this.setupWildcardsRegExp(a):this.escapeStr(a),u=this.opt.wildcards!=="disabled"?this.setupWildcardsRegExp(i):this.escapeStr(i);s!==""&&u!==""&&(e=e.replace(new RegExp(`(${this.escapeStr(s)}|${this.escapeStr(u)})`,`gm${r}`),n+`(${this.processSynomyms(s)}|${this.processSynomyms(u)})`+n))}return e}processSynomyms(e){return(this.opt.ignoreJoiners||this.opt.ignorePunctuation.length)&&(e=this.setupIgnoreJoinersRegExp(e)),e}setupWildcardsRegExp(e){return e=e.replace(/(?:\\)*\?/g,t=>t.charAt(0)==="\\"?"?":""),e.replace(/(?:\\)*\*/g,t=>t.charAt(0)==="\\"?"*":"")}createWildcardsRegExp(e){let t=this.opt.wildcards==="withSpaces";return e.replace(/\u0001/g,t?"[\\S\\s]?":"\\S?").replace(/\u0002/g,t?"[\\S\\s]*?":"\\S*")}setupIgnoreJoinersRegExp(e){return e.replace(/[^(|)\\]/g,(t,r,n)=>{let a=n.charAt(r+1);return/[(|)\\]/.test(a)||a===""?t:t+"\0"})}createJoinersRegExp(e){let t=[];const r=this.opt.ignorePunctuation;return Array.isArray(r)&&r.length&&t.push(this.escapeStr(r.join(""))),this.opt.ignoreJoiners&&t.push("\\u00ad\\u200b\\u200c\\u200d"),t.length?e.split(/\u0000+/).join(`[${t.join("")}]*`):e}createDiacriticsRegExp(e){const t=this.opt.caseSensitive?"":"i",r=this.opt.caseSensitive?["aàáảãạăằắẳẵặâầấẩẫậäåāą","AÀÁẢÃẠĂẰẮẲẴẶÂẦẤẨẪẬÄÅĀĄ","cçćč","CÇĆČ","dđď","DĐĎ","eèéẻẽẹêềếểễệëěēę","EÈÉẺẼẸÊỀẾỂỄỆËĚĒĘ","iìíỉĩịîïī","IÌÍỈĨỊÎÏĪ","lł","LŁ","nñňń","NÑŇŃ","oòóỏõọôồốổỗộơởỡớờợöøō","OÒÓỎÕỌÔỒỐỔỖỘƠỞỠỚỜỢÖØŌ","rř","RŘ","sšśșş","SŠŚȘŞ","tťțţ","TŤȚŢ","uùúủũụưừứửữựûüůū","UÙÚỦŨỤƯỪỨỬỮỰÛÜŮŪ","yýỳỷỹỵÿ","YÝỲỶỸỴŸ","zžżź","ZŽŻŹ"]:["aàáảãạăằắẳẵặâầấẩẫậäåāąAÀÁẢÃẠĂẰẮẲẴẶÂẦẤẨẪẬÄÅĀĄ","cçćčCÇĆČ","dđďDĐĎ","eèéẻẽẹêềếểễệëěēęEÈÉẺẼẸÊỀẾỂỄỆËĚĒĘ","iìíỉĩịîïīIÌÍỈĨỊÎÏĪ","lłLŁ","nñňńNÑŇŃ","oòóỏõọôồốổỗộơởỡớờợöøōOÒÓỎÕỌÔỒỐỔỖỘƠỞỠỚỜỢÖØŌ","rřRŘ","sšśșşSŠŚȘŞ","tťțţTŤȚŢ","uùúủũụưừứửữựûüůūUÙÚỦŨỤƯỪỨỬỮỰÛÜŮŪ","yýỳỷỹỵÿYÝỲỶỸỴŸ","zžżźZŽŻŹ"];let n=[];return e.split("").forEach(a=>{r.every(i=>{if(i.indexOf(a)!==-1){if(n.indexOf(i)>-1)return!1;e=e.replace(new RegExp(`[${i}]`,`gm${t}`),`[${i}]`),n.push(i)}return!0})}),e}createMergedBlanksRegExp(e){return e.replace(/[\s]+/gmi,"[\\s]+")}createAccuracyRegExp(e){const t="!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~¡¿";let r=this.opt.accuracy,n=typeof r=="string"?r:r.value,a=typeof r=="string"?[]:r.limiters,i="";switch(a.forEach(s=>{i+=`|${this.escapeStr(s)}`}),n){case"partially":default:return`()(${e})`;case"complementary":return i="\\s"+(i||this.escapeStr(t)),`()([^${i}]*${e}[^${i}]*)`;case"exactly":return`(^|\\s${i})(${e})(?=$|\\s${i})`}}getSeparatedKeywords(e){let t=[];return e.forEach(r=>{this.opt.separateWordSearch?r.split(" ").forEach(n=>{n.trim()&&t.indexOf(n)===-1&&t.push(n)}):r.trim()&&t.indexOf(r)===-1&&t.push(r)}),{keywords:t.sort((r,n)=>n.length-r.length),length:t.length}}isNumeric(e){return Number(parseFloat(e))==e}checkRanges(e){if(!Array.isArray(e)||Object.prototype.toString.call(e[0])!=="[object Object]")return this.log("markRanges() will only accept an array of objects"),this.opt.noMatch(e),[];const t=[];let r=0;return e.sort((n,a)=>n.start-a.start).forEach(n=>{let{start:a,end:i,valid:s}=this.callNoMatchOnInvalidRanges(n,r);s&&(n.start=a,n.length=i-a,t.push(n),r=i)}),t}callNoMatchOnInvalidRanges(e,t){let r,n,a=!1;return e&&typeof e.start<"u"?(r=parseInt(e.start,10),n=r+parseInt(e.length,10),this.isNumeric(e.start)&&this.isNumeric(e.length)&&n-t>0&&n-r>0?a=!0:(this.log(`Ignoring invalid or overlapping range: ${JSON.stringify(e)}`),this.opt.noMatch(e))):(this.log(`Ignoring invalid range: ${JSON.stringify(e)}`),this.opt.noMatch(e)),{start:r,end:n,valid:a}}checkWhitespaceRanges(e,t,r){let n,a=!0,i=r.length,s=t-i,u=parseInt(e.start,10)-s;return u=u>i?i:u,n=u+parseInt(e.length,10),n>i&&(n=i,this.log(`End range automatically set to the max value of ${i}`)),u<0||n-u<0||u>i||n>i?(a=!1,this.log(`Invalid range: ${JSON.stringify(e)}`),this.opt.noMatch(e)):r.substring(u,n).replace(/\s+/g,"")===""&&(a=!1,this.log("Skipping whitespace only range: "+JSON.stringify(e)),this.opt.noMatch(e)),{start:u,end:n,valid:a}}getTextNodes(e){let t="",r=[];this.iterator.forEachNode(NodeFilter.SHOW_TEXT,n=>{r.push({start:t.length,end:(t+=n.textContent).length,node:n})},n=>this.matchesExclude(n.parentNode)?NodeFilter.FILTER_REJECT:NodeFilter.FILTER_ACCEPT,()=>{e({value:t,nodes:r})})}matchesExclude(e){return fe.matches(e,this.opt.exclude.concat(["script","style","title","head","html"]))}wrapRangeInTextNode(e,t,r){const n=this.opt.element?this.opt.element:"mark",a=e.splitText(t),i=a.splitText(r-t);let s=document.createElement(n);return s.setAttribute("data-markjs","true"),this.opt.className&&s.setAttribute("class",this.opt.className),s.textContent=a.textContent,a.parentNode.replaceChild(s,a),i}wrapRangeInMappedTextNode(e,t,r,n,a){e.nodes.every((i,s)=>{const u=e.nodes[s+1];if(typeof u>"u"||u.start>t){if(!n(i.node))return!1;const l=t-i.start,h=(r>i.end?i.end:r)-i.start,d=e.value.substr(0,i.start),v=e.value.substr(h+i.start);if(i.node=this.wrapRangeInTextNode(i.node,l,h),e.value=d+v,e.nodes.forEach((y,b)=>{b>=s&&(e.nodes[b].start>0&&b!==s&&(e.nodes[b].start-=h),e.nodes[b].end-=h)}),r-=h,a(i.node.previousSibling,i.start),r>i.end)t=i.end;else return!1}return!0})}wrapMatches(e,t,r,n,a){const i=t===0?0:t+1;this.getTextNodes(s=>{s.nodes.forEach(u=>{u=u.node;let l;for(;(l=e.exec(u.textContent))!==null&&l[i]!=="";){if(!r(l[i],u))continue;let h=l.index;if(i!==0)for(let d=1;d{let u;for(;(u=e.exec(s.value))!==null&&u[i]!=="";){let l=u.index;if(i!==0)for(let d=1;dr(u[i],d),(d,v)=>{e.lastIndex=v,n(d)})}a()})}wrapRangeFromIndex(e,t,r,n){this.getTextNodes(a=>{const i=a.value.length;e.forEach((s,u)=>{let{start:l,end:h,valid:d}=this.checkWhitespaceRanges(s,i,a.value);d&&this.wrapRangeInMappedTextNode(a,l,h,v=>t(v,s,a.value.substring(l,h),u),v=>{r(v,s)})}),n()})}unwrapMatches(e){const t=e.parentNode;let r=document.createDocumentFragment();for(;e.firstChild;)r.appendChild(e.removeChild(e.firstChild));t.replaceChild(r,e),this.ie?this.normalizeTextNode(t):t.normalize()}normalizeTextNode(e){if(e){if(e.nodeType===3)for(;e.nextSibling&&e.nextSibling.nodeType===3;)e.nodeValue+=e.nextSibling.nodeValue,e.parentNode.removeChild(e.nextSibling);else this.normalizeTextNode(e.firstChild);this.normalizeTextNode(e.nextSibling)}}markRegExp(e,t){this.opt=t,this.log(`Searching with expression "${e}"`);let r=0,n="wrapMatches";const a=i=>{r++,this.opt.each(i)};this.opt.acrossElements&&(n="wrapMatchesAcrossElements"),this[n](e,this.opt.ignoreGroups,(i,s)=>this.opt.filter(s,i,r),a,()=>{r===0&&this.opt.noMatch(e),this.opt.done(r)})}mark(e,t){this.opt=t;let r=0,n="wrapMatches";const{keywords:a,length:i}=this.getSeparatedKeywords(typeof e=="string"?[e]:e),s=this.opt.caseSensitive?"":"i",u=l=>{let h=new RegExp(this.createRegExp(l),`gm${s}`),d=0;this.log(`Searching with expression "${h}"`),this[n](h,1,(v,y)=>this.opt.filter(y,l,r,d),v=>{d++,r++,this.opt.each(v)},()=>{d===0&&this.opt.noMatch(l),a[i-1]===l?this.opt.done(r):u(a[a.indexOf(l)+1])})};this.opt.acrossElements&&(n="wrapMatchesAcrossElements"),i===0?this.opt.done(r):u(a[0])}markRanges(e,t){this.opt=t;let r=0,n=this.checkRanges(e);n&&n.length?(this.log("Starting to mark with the following ranges: "+JSON.stringify(n)),this.wrapRangeFromIndex(n,(a,i,s,u)=>this.opt.filter(a,i,s,u),(a,i)=>{r++,this.opt.each(a,i)},()=>{this.opt.done(r)})):this.opt.done(r)}unmark(e){this.opt=e;let t=this.opt.element?this.opt.element:"*";t+="[data-markjs]",this.opt.className&&(t+=`.${this.opt.className}`),this.log(`Removal selector "${t}"`),this.iterator.forEachNode(NodeFilter.SHOW_ELEMENT,r=>{this.unwrapMatches(r)},r=>{const n=fe.matches(r,t),a=this.matchesExclude(r);return!n||a?NodeFilter.FILTER_REJECT:NodeFilter.FILTER_ACCEPT},this.opt.done)}};function _r(o){const e=new Or(o);return this.mark=(t,r)=>(e.mark(t,r),this),this.markRegExp=(t,r)=>(e.markRegExp(t,r),this),this.markRanges=(t,r)=>(e.markRanges(t,r),this),this.unmark=t=>(e.unmark(t),this),this}var W=function(){return W=Object.assign||function(e){for(var t,r=1,n=arguments.length;r0&&a[a.length-1])&&(l[0]===6||l[0]===2)){t=0;continue}if(l[0]===3&&(!a||l[1]>a[0]&&l[1]=o.length&&(o=void 0),{value:o&&o[r++],done:!o}}};throw new TypeError(e?"Object is not iterable.":"Symbol.iterator is not defined.")}function J(o,e){var t=typeof Symbol=="function"&&o[Symbol.iterator];if(!t)return o;var r=t.call(o),n,a=[],i;try{for(;(e===void 0||e-- >0)&&!(n=r.next()).done;)a.push(n.value)}catch(s){i={error:s}}finally{try{n&&!n.done&&(t=r.return)&&t.call(r)}finally{if(i)throw i.error}}return a}var Lr="ENTRIES",Et="KEYS",St="VALUES",G="",Me=function(){function o(e,t){var r=e._tree,n=Array.from(r.keys());this.set=e,this._type=t,this._path=n.length>0?[{node:r,keys:n}]:[]}return o.prototype.next=function(){var e=this.dive();return this.backtrack(),e},o.prototype.dive=function(){if(this._path.length===0)return{done:!0,value:void 0};var e=ce(this._path),t=e.node,r=e.keys;if(ce(r)===G)return{done:!1,value:this.result()};var n=t.get(ce(r));return this._path.push({node:n,keys:Array.from(n.keys())}),this.dive()},o.prototype.backtrack=function(){if(this._path.length!==0){var e=ce(this._path).keys;e.pop(),!(e.length>0)&&(this._path.pop(),this.backtrack())}},o.prototype.key=function(){return this.set._prefix+this._path.map(function(e){var t=e.keys;return ce(t)}).filter(function(e){return e!==G}).join("")},o.prototype.value=function(){return ce(this._path).node.get(G)},o.prototype.result=function(){switch(this._type){case St:return this.value();case Et:return this.key();default:return[this.key(),this.value()]}},o.prototype[Symbol.iterator]=function(){return this},o}(),ce=function(o){return o[o.length-1]},zr=function(o,e,t){var r=new Map;if(e===void 0)return r;for(var n=e.length+1,a=n+t,i=new Uint8Array(a*n).fill(t+1),s=0;st)continue e}At(o.get(y),e,t,r,n,E,i,s+y)}}}catch(f){u={error:f}}finally{try{v&&!v.done&&(l=d.return)&&l.call(d)}finally{if(u)throw u.error}}},Le=function(){function o(e,t){e===void 0&&(e=new Map),t===void 0&&(t=""),this._size=void 0,this._tree=e,this._prefix=t}return o.prototype.atPrefix=function(e){var t,r;if(!e.startsWith(this._prefix))throw new Error("Mismatched prefix");var n=J(ke(this._tree,e.slice(this._prefix.length)),2),a=n[0],i=n[1];if(a===void 0){var s=J(je(i),2),u=s[0],l=s[1];try{for(var h=D(u.keys()),d=h.next();!d.done;d=h.next()){var v=d.value;if(v!==G&&v.startsWith(l)){var y=new Map;return y.set(v.slice(l.length),u.get(v)),new o(y,e)}}}catch(b){t={error:b}}finally{try{d&&!d.done&&(r=h.return)&&r.call(h)}finally{if(t)throw t.error}}}return new o(a,e)},o.prototype.clear=function(){this._size=void 0,this._tree.clear()},o.prototype.delete=function(e){return this._size=void 0,Pr(this._tree,e)},o.prototype.entries=function(){return new Me(this,Lr)},o.prototype.forEach=function(e){var t,r;try{for(var n=D(this),a=n.next();!a.done;a=n.next()){var i=J(a.value,2),s=i[0],u=i[1];e(s,u,this)}}catch(l){t={error:l}}finally{try{a&&!a.done&&(r=n.return)&&r.call(n)}finally{if(t)throw t.error}}},o.prototype.fuzzyGet=function(e,t){return zr(this._tree,e,t)},o.prototype.get=function(e){var t=Ke(this._tree,e);return t!==void 0?t.get(G):void 0},o.prototype.has=function(e){var t=Ke(this._tree,e);return t!==void 0&&t.has(G)},o.prototype.keys=function(){return new Me(this,Et)},o.prototype.set=function(e,t){if(typeof e!="string")throw new Error("key must be a string");this._size=void 0;var r=ze(this._tree,e);return r.set(G,t),this},Object.defineProperty(o.prototype,"size",{get:function(){if(this._size)return this._size;this._size=0;for(var e=this.entries();!e.next().done;)this._size+=1;return this._size},enumerable:!1,configurable:!0}),o.prototype.update=function(e,t){if(typeof e!="string")throw new Error("key must be a string");this._size=void 0;var r=ze(this._tree,e);return r.set(G,t(r.get(G))),this},o.prototype.fetch=function(e,t){if(typeof e!="string")throw new Error("key must be a string");this._size=void 0;var r=ze(this._tree,e),n=r.get(G);return n===void 0&&r.set(G,n=t()),n},o.prototype.values=function(){return new Me(this,St)},o.prototype[Symbol.iterator]=function(){return this.entries()},o.from=function(e){var t,r,n=new o;try{for(var a=D(e),i=a.next();!i.done;i=a.next()){var s=J(i.value,2),u=s[0],l=s[1];n.set(u,l)}}catch(h){t={error:h}}finally{try{i&&!i.done&&(r=a.return)&&r.call(a)}finally{if(t)throw t.error}}return n},o.fromObject=function(e){return o.from(Object.entries(e))},o}(),ke=function(o,e,t){var r,n;if(t===void 0&&(t=[]),e.length===0||o==null)return[o,t];try{for(var a=D(o.keys()),i=a.next();!i.done;i=a.next()){var s=i.value;if(s!==G&&e.startsWith(s))return t.push([o,s]),ke(o.get(s),e.slice(s.length),t)}}catch(u){r={error:u}}finally{try{i&&!i.done&&(n=a.return)&&n.call(a)}finally{if(r)throw r.error}}return t.push([o,e]),ke(void 0,"",t)},Ke=function(o,e){var t,r;if(e.length===0||o==null)return o;try{for(var n=D(o.keys()),a=n.next();!a.done;a=n.next()){var i=a.value;if(i!==G&&e.startsWith(i))return Ke(o.get(i),e.slice(i.length))}}catch(s){t={error:s}}finally{try{a&&!a.done&&(r=n.return)&&r.call(n)}finally{if(t)throw t.error}}},ze=function(o,e){var t,r,n=e.length;e:for(var a=0;o&&a0)throw new Error("Expected documents to be present. Omit the argument to remove all documents.");this._index=new Le,this._documentCount=0,this._documentIds=new Map,this._idToShortId=new Map,this._fieldLength=new Map,this._avgFieldLength=[],this._storedFields=new Map,this._nextId=0}},o.prototype.discard=function(e){var t=this,r=this._idToShortId.get(e);if(r==null)throw new Error("MiniSearch: cannot discard document with ID ".concat(e,": it is not in the index"));this._idToShortId.delete(e),this._documentIds.delete(r),this._storedFields.delete(r),(this._fieldLength.get(r)||[]).forEach(function(n,a){t.removeFieldLength(r,a,t._documentCount,n)}),this._fieldLength.delete(r),this._documentCount-=1,this._dirtCount+=1,this.maybeAutoVacuum()},o.prototype.maybeAutoVacuum=function(){if(this._options.autoVacuum!==!1){var e=this._options.autoVacuum,t=e.minDirtFactor,r=e.minDirtCount,n=e.batchSize,a=e.batchWait;this.conditionalVacuum({batchSize:n,batchWait:a},{minDirtCount:r,minDirtFactor:t})}},o.prototype.discardAll=function(e){var t,r,n=this._options.autoVacuum;try{this._options.autoVacuum=!1;try{for(var a=D(e),i=a.next();!i.done;i=a.next()){var s=i.value;this.discard(s)}}catch(u){t={error:u}}finally{try{i&&!i.done&&(r=a.return)&&r.call(a)}finally{if(t)throw t.error}}}finally{this._options.autoVacuum=n}this.maybeAutoVacuum()},o.prototype.replace=function(e){var t=this._options,r=t.idField,n=t.extractField,a=n(e,r);this.discard(a),this.add(e)},o.prototype.vacuum=function(e){return e===void 0&&(e={}),this.conditionalVacuum(e)},o.prototype.conditionalVacuum=function(e,t){var r=this;return this._currentVacuum?(this._enqueuedVacuumConditions=this._enqueuedVacuumConditions&&t,this._enqueuedVacuum!=null?this._enqueuedVacuum:(this._enqueuedVacuum=this._currentVacuum.then(function(){var n=r._enqueuedVacuumConditions;return r._enqueuedVacuumConditions=Ue,r.performVacuuming(e,n)}),this._enqueuedVacuum)):this.vacuumConditionsMet(t)===!1?Promise.resolve():(this._currentVacuum=this.performVacuuming(e),this._currentVacuum)},o.prototype.performVacuuming=function(e,t){return Rr(this,void 0,void 0,function(){var r,n,a,i,s,u,l,h,d,v,y,b,E,g,S,T,F,L,R,B,N,_,A,O,w;return Mr(this,function(c){switch(c.label){case 0:if(r=this._dirtCount,!this.vacuumConditionsMet(t))return[3,10];n=e.batchSize||Je.batchSize,a=e.batchWait||Je.batchWait,i=1,c.label=1;case 1:c.trys.push([1,7,8,9]),s=D(this._index),u=s.next(),c.label=2;case 2:if(u.done)return[3,6];l=J(u.value,2),h=l[0],d=l[1];try{for(v=(_=void 0,D(d)),y=v.next();!y.done;y=v.next()){b=J(y.value,2),E=b[0],g=b[1];try{for(S=(O=void 0,D(g)),T=S.next();!T.done;T=S.next())F=J(T.value,1),L=F[0],!this._documentIds.has(L)&&(g.size<=1?d.delete(E):g.delete(L))}catch(f){O={error:f}}finally{try{T&&!T.done&&(w=S.return)&&w.call(S)}finally{if(O)throw O.error}}}}catch(f){_={error:f}}finally{try{y&&!y.done&&(A=v.return)&&A.call(v)}finally{if(_)throw _.error}}return this._index.get(h).size===0&&this._index.delete(h),i%n!==0?[3,4]:[4,new Promise(function(f){return setTimeout(f,a)})];case 3:c.sent(),c.label=4;case 4:i+=1,c.label=5;case 5:return u=s.next(),[3,2];case 6:return[3,9];case 7:return R=c.sent(),B={error:R},[3,9];case 8:try{u&&!u.done&&(N=s.return)&&N.call(s)}finally{if(B)throw B.error}return[7];case 9:this._dirtCount-=r,c.label=10;case 10:return[4,null];case 11:return c.sent(),this._currentVacuum=this._enqueuedVacuum,this._enqueuedVacuum=null,[2]}})})},o.prototype.vacuumConditionsMet=function(e){if(e==null)return!0;var t=e.minDirtCount,r=e.minDirtFactor;return t=t||Be.minDirtCount,r=r||Be.minDirtFactor,this.dirtCount>=t&&this.dirtFactor>=r},Object.defineProperty(o.prototype,"isVacuuming",{get:function(){return this._currentVacuum!=null},enumerable:!1,configurable:!0}),Object.defineProperty(o.prototype,"dirtCount",{get:function(){return this._dirtCount},enumerable:!1,configurable:!0}),Object.defineProperty(o.prototype,"dirtFactor",{get:function(){return this._dirtCount/(1+this._documentCount+this._dirtCount)},enumerable:!1,configurable:!0}),o.prototype.has=function(e){return this._idToShortId.has(e)},o.prototype.getStoredFields=function(e){var t=this._idToShortId.get(e);if(t!=null)return this._storedFields.get(t)},o.prototype.search=function(e,t){var r,n;t===void 0&&(t={});var a=this.executeQuery(e,t),i=[];try{for(var s=D(a),u=s.next();!u.done;u=s.next()){var l=J(u.value,2),h=l[0],d=l[1],v=d.score,y=d.terms,b=d.match,E=y.length||1,g={id:this._documentIds.get(h),score:v*E,terms:Object.keys(b),queryTerms:y,match:b};Object.assign(g,this._storedFields.get(h)),(t.filter==null||t.filter(g))&&i.push(g)}}catch(S){r={error:S}}finally{try{u&&!u.done&&(n=s.return)&&n.call(s)}finally{if(r)throw r.error}}return e===o.wildcard&&t.boostDocument==null&&this._options.searchOptions.boostDocument==null||i.sort(vt),i},o.prototype.autoSuggest=function(e,t){var r,n,a,i;t===void 0&&(t={}),t=W(W({},this._options.autoSuggestOptions),t);var s=new Map;try{for(var u=D(this.search(e,t)),l=u.next();!l.done;l=u.next()){var h=l.value,d=h.score,v=h.terms,y=v.join(" "),b=s.get(y);b!=null?(b.score+=d,b.count+=1):s.set(y,{score:d,terms:v,count:1})}}catch(R){r={error:R}}finally{try{l&&!l.done&&(n=u.return)&&n.call(u)}finally{if(r)throw r.error}}var E=[];try{for(var g=D(s),S=g.next();!S.done;S=g.next()){var T=J(S.value,2),b=T[0],F=T[1],d=F.score,v=F.terms,L=F.count;E.push({suggestion:b,terms:v,score:d/L})}}catch(R){a={error:R}}finally{try{S&&!S.done&&(i=g.return)&&i.call(g)}finally{if(a)throw a.error}}return E.sort(vt),E},Object.defineProperty(o.prototype,"documentCount",{get:function(){return this._documentCount},enumerable:!1,configurable:!0}),Object.defineProperty(o.prototype,"termCount",{get:function(){return this._index.size},enumerable:!1,configurable:!0}),o.loadJSON=function(e,t){if(t==null)throw new Error("MiniSearch: loadJSON should be given the same options used when serializing the index");return this.loadJS(JSON.parse(e),t)},o.getDefault=function(e){if(Ve.hasOwnProperty(e))return Pe(Ve,e);throw new Error('MiniSearch: unknown option "'.concat(e,'"'))},o.loadJS=function(e,t){var r,n,a,i,s,u,l=e.index,h=e.documentCount,d=e.nextId,v=e.documentIds,y=e.fieldIds,b=e.fieldLength,E=e.averageFieldLength,g=e.storedFields,S=e.dirtCount,T=e.serializationVersion;if(T!==1&&T!==2)throw new Error("MiniSearch: cannot deserialize an index created with an incompatible version");var F=new o(t);F._documentCount=h,F._nextId=d,F._documentIds=Te(v),F._idToShortId=new Map,F._fieldIds=y,F._fieldLength=Te(b),F._avgFieldLength=E,F._storedFields=Te(g),F._dirtCount=S||0,F._index=new Le;try{for(var L=D(F._documentIds),R=L.next();!R.done;R=L.next()){var B=J(R.value,2),N=B[0],_=B[1];F._idToShortId.set(_,N)}}catch(P){r={error:P}}finally{try{R&&!R.done&&(n=L.return)&&n.call(L)}finally{if(r)throw r.error}}try{for(var A=D(l),O=A.next();!O.done;O=A.next()){var w=J(O.value,2),c=w[0],f=w[1],p=new Map;try{for(var C=(s=void 0,D(Object.keys(f))),I=C.next();!I.done;I=C.next()){var M=I.value,z=f[M];T===1&&(z=z.ds),p.set(parseInt(M,10),Te(z))}}catch(P){s={error:P}}finally{try{I&&!I.done&&(u=C.return)&&u.call(C)}finally{if(s)throw s.error}}F._index.set(c,p)}}catch(P){a={error:P}}finally{try{O&&!O.done&&(i=A.return)&&i.call(A)}finally{if(a)throw a.error}}return F},o.prototype.executeQuery=function(e,t){var r=this;if(t===void 0&&(t={}),e===o.wildcard)return this.executeWildcardQuery(t);if(typeof e!="string"){var n=W(W(W({},t),e),{queries:void 0}),a=e.queries.map(function(g){return r.executeQuery(g,n)});return this.combineResults(a,n.combineWith)}var i=this._options,s=i.tokenize,u=i.processTerm,l=i.searchOptions,h=W(W({tokenize:s,processTerm:u},l),t),d=h.tokenize,v=h.processTerm,y=d(e).flatMap(function(g){return v(g)}).filter(function(g){return!!g}),b=y.map(Jr(h)),E=b.map(function(g){return r.executeQuerySpec(g,h)});return this.combineResults(E,h.combineWith)},o.prototype.executeQuerySpec=function(e,t){var r,n,a,i,s=W(W({},this._options.searchOptions),t),u=(s.fields||this._options.fields).reduce(function(M,z){var P;return W(W({},M),(P={},P[z]=Pe(s.boost,z)||1,P))},{}),l=s.boostDocument,h=s.weights,d=s.maxFuzzy,v=s.bm25,y=W(W({},ht.weights),h),b=y.fuzzy,E=y.prefix,g=this._index.get(e.term),S=this.termResults(e.term,e.term,1,g,u,l,v),T,F;if(e.prefix&&(T=this._index.atPrefix(e.term)),e.fuzzy){var L=e.fuzzy===!0?.2:e.fuzzy,R=L<1?Math.min(d,Math.round(e.term.length*L)):L;R&&(F=this._index.fuzzyGet(e.term,R))}if(T)try{for(var B=D(T),N=B.next();!N.done;N=B.next()){var _=J(N.value,2),A=_[0],O=_[1],w=A.length-e.term.length;if(w){F==null||F.delete(A);var c=E*A.length/(A.length+.3*w);this.termResults(e.term,A,c,O,u,l,v,S)}}}catch(M){r={error:M}}finally{try{N&&!N.done&&(n=B.return)&&n.call(B)}finally{if(r)throw r.error}}if(F)try{for(var f=D(F.keys()),p=f.next();!p.done;p=f.next()){var A=p.value,C=J(F.get(A),2),I=C[0],w=C[1];if(w){var c=b*A.length/(A.length+w);this.termResults(e.term,A,c,I,u,l,v,S)}}}catch(M){a={error:M}}finally{try{p&&!p.done&&(i=f.return)&&i.call(f)}finally{if(a)throw a.error}}return S},o.prototype.executeWildcardQuery=function(e){var t,r,n=new Map,a=W(W({},this._options.searchOptions),e);try{for(var i=D(this._documentIds),s=i.next();!s.done;s=i.next()){var u=J(s.value,2),l=u[0],h=u[1],d=a.boostDocument?a.boostDocument(h,"",this._storedFields.get(l)):1;n.set(l,{score:d,terms:[],match:{}})}}catch(v){t={error:v}}finally{try{s&&!s.done&&(r=i.return)&&r.call(i)}finally{if(t)throw t.error}}return n},o.prototype.combineResults=function(e,t){if(t===void 0&&(t=Ge),e.length===0)return new Map;var r=t.toLowerCase();return e.reduce($r[r])||new Map},o.prototype.toJSON=function(){var e,t,r,n,a=[];try{for(var i=D(this._index),s=i.next();!s.done;s=i.next()){var u=J(s.value,2),l=u[0],h=u[1],d={};try{for(var v=(r=void 0,D(h)),y=v.next();!y.done;y=v.next()){var b=J(y.value,2),E=b[0],g=b[1];d[E]=Object.fromEntries(g)}}catch(S){r={error:S}}finally{try{y&&!y.done&&(n=v.return)&&n.call(v)}finally{if(r)throw r.error}}a.push([l,d])}}catch(S){e={error:S}}finally{try{s&&!s.done&&(t=i.return)&&t.call(i)}finally{if(e)throw e.error}}return{documentCount:this._documentCount,nextId:this._nextId,documentIds:Object.fromEntries(this._documentIds),fieldIds:this._fieldIds,fieldLength:Object.fromEntries(this._fieldLength),averageFieldLength:this._avgFieldLength,storedFields:Object.fromEntries(this._storedFields),dirtCount:this._dirtCount,index:a,serializationVersion:2}},o.prototype.termResults=function(e,t,r,n,a,i,s,u){var l,h,d,v,y;if(u===void 0&&(u=new Map),n==null)return u;try{for(var b=D(Object.keys(a)),E=b.next();!E.done;E=b.next()){var g=E.value,S=a[g],T=this._fieldIds[g],F=n.get(T);if(F!=null){var L=F.size,R=this._avgFieldLength[T];try{for(var B=(d=void 0,D(F.keys())),N=B.next();!N.done;N=B.next()){var _=N.value;if(!this._documentIds.has(_)){this.removeTerm(T,_,t),L-=1;continue}var A=i?i(this._documentIds.get(_),t,this._storedFields.get(_)):1;if(A){var O=F.get(_),w=this._fieldLength.get(_)[T],c=Kr(O,L,this._documentCount,w,R,s),f=r*S*A*c,p=u.get(_);if(p){p.score+=f,jr(p.terms,e);var C=Pe(p.match,t);C?C.push(g):p.match[t]=[g]}else u.set(_,{score:f,terms:[e],match:(y={},y[t]=[g],y)})}}}catch(I){d={error:I}}finally{try{N&&!N.done&&(v=B.return)&&v.call(B)}finally{if(d)throw d.error}}}}}catch(I){l={error:I}}finally{try{E&&!E.done&&(h=b.return)&&h.call(b)}finally{if(l)throw l.error}}return u},o.prototype.addTerm=function(e,t,r){var n=this._index.fetch(r,pt),a=n.get(e);if(a==null)a=new Map,a.set(t,1),n.set(e,a);else{var i=a.get(t);a.set(t,(i||0)+1)}},o.prototype.removeTerm=function(e,t,r){if(!this._index.has(r)){this.warnDocumentChanged(t,e,r);return}var n=this._index.fetch(r,pt),a=n.get(e);a==null||a.get(t)==null?this.warnDocumentChanged(t,e,r):a.get(t)<=1?a.size<=1?n.delete(e):a.delete(t):a.set(t,a.get(t)-1),this._index.get(r).size===0&&this._index.delete(r)},o.prototype.warnDocumentChanged=function(e,t,r){var n,a;try{for(var i=D(Object.keys(this._fieldIds)),s=i.next();!s.done;s=i.next()){var u=s.value;if(this._fieldIds[u]===t){this._options.logger("warn","MiniSearch: document with ID ".concat(this._documentIds.get(e),' has changed before removal: term "').concat(r,'" was not present in field "').concat(u,'". Removing a document after it has changed can corrupt the index!'),"version_conflict");return}}}catch(l){n={error:l}}finally{try{s&&!s.done&&(a=i.return)&&a.call(i)}finally{if(n)throw n.error}}},o.prototype.addDocumentId=function(e){var t=this._nextId;return this._idToShortId.set(e,t),this._documentIds.set(t,e),this._documentCount+=1,this._nextId+=1,t},o.prototype.addFields=function(e){for(var t=0;t(Ht("data-v-f5c68218"),o=o(),Qt(),o),Hr=["aria-owns"],Qr={class:"shell"},Yr=["title"],Zr=Y(()=>k("span",{"aria-hidden":"true",class:"vpi-search search-icon local-search-icon"},null,-1)),Xr=[Zr],ea={class:"search-actions before"},ta=["title"],ra=Y(()=>k("span",{class:"vpi-arrow-left local-search-icon"},null,-1)),aa=[ra],na=["placeholder"],ia={class:"search-actions"},oa=["title"],sa=Y(()=>k("span",{class:"vpi-layout-list local-search-icon"},null,-1)),ua=[sa],la=["disabled","title"],ca=Y(()=>k("span",{class:"vpi-delete local-search-icon"},null,-1)),fa=[ca],ha=["id","role","aria-labelledby"],da=["aria-selected"],va=["href","aria-label","onMouseenter","onFocusin"],pa={class:"titles"},ya=Y(()=>k("span",{class:"title-icon"},"#",-1)),ma=["innerHTML"],ga=Y(()=>k("span",{class:"vpi-chevron-right local-search-icon"},null,-1)),ba={class:"title main"},wa=["innerHTML"],xa={key:0,class:"excerpt-wrapper"},Fa={key:0,class:"excerpt",inert:""},Ea=["innerHTML"],Sa=Y(()=>k("div",{class:"excerpt-gradient-bottom"},null,-1)),Aa=Y(()=>k("div",{class:"excerpt-gradient-top"},null,-1)),Ta={key:0,class:"no-results"},Na={class:"search-keyboard-shortcuts"},Ca=["aria-label"],Ia=Y(()=>k("span",{class:"vpi-arrow-up navigate-icon"},null,-1)),Da=[Ia],ka=["aria-label"],Oa=Y(()=>k("span",{class:"vpi-arrow-down navigate-icon"},null,-1)),_a=[Oa],Ra=["aria-label"],Ma=Y(()=>k("span",{class:"vpi-corner-down-left navigate-icon"},null,-1)),La=[Ma],za=["aria-label"],Pa=_t({__name:"VPLocalSearchBox",emits:["close"],setup(o,{emit:e}){var z,P;const t=e,r=xe(),n=xe(),a=xe(nr),i=rr(),{activate:s}=kr(r,{immediate:!0,allowOutsideClick:!0,clickOutsideDeactivates:!0,escapeDeactivates:!0}),{localeIndex:u,theme:l}=i,h=tt(async()=>{var m,x,$,K,q,H,V,U,Z;return it(Br.loadJSON(($=await((x=(m=a.value)[u.value])==null?void 0:x.call(m)))==null?void 0:$.default,{fields:["title","titles","text"],storeFields:["title","titles"],searchOptions:{fuzzy:.2,prefix:!0,boost:{title:4,text:2,titles:1},...((K=l.value.search)==null?void 0:K.provider)==="local"&&((H=(q=l.value.search.options)==null?void 0:q.miniSearch)==null?void 0:H.searchOptions)},...((V=l.value.search)==null?void 0:V.provider)==="local"&&((Z=(U=l.value.search.options)==null?void 0:U.miniSearch)==null?void 0:Z.options)}))}),v=Fe(()=>{var m,x;return((m=l.value.search)==null?void 0:m.provider)==="local"&&((x=l.value.search.options)==null?void 0:x.disableQueryPersistence)===!0}).value?oe(""):Rt("vitepress:local-search-filter",""),y=Mt("vitepress:local-search-detailed-list",((z=l.value.search)==null?void 0:z.provider)==="local"&&((P=l.value.search.options)==null?void 0:P.detailedView)===!0),b=Fe(()=>{var m,x,$;return((m=l.value.search)==null?void 0:m.provider)==="local"&&(((x=l.value.search.options)==null?void 0:x.disableDetailedView)===!0||(($=l.value.search.options)==null?void 0:$.detailedView)===!1)}),E=Fe(()=>{var x,$,K,q,H,V,U;const m=((x=l.value.search)==null?void 0:x.options)??l.value.algolia;return((H=(q=(K=($=m==null?void 0:m.locales)==null?void 0:$[u.value])==null?void 0:K.translations)==null?void 0:q.button)==null?void 0:H.buttonText)||((U=(V=m==null?void 0:m.translations)==null?void 0:V.button)==null?void 0:U.buttonText)||"Search"});Lt(()=>{b.value&&(y.value=!1)});const g=xe([]),S=oe(!1);$e(v,()=>{S.value=!1});const T=tt(async()=>{if(n.value)return it(new _r(n.value))},null),F=new qr(16);zt(()=>[h.value,v.value,y.value],async([m,x,$],K,q)=>{var be,qe,He,Qe;(K==null?void 0:K[0])!==m&&F.clear();let H=!1;if(q(()=>{H=!0}),!m)return;g.value=m.search(x).slice(0,16),S.value=!0;const V=$?await Promise.all(g.value.map(Q=>L(Q.id))):[];if(H)return;for(const{id:Q,mod:ae}of V){const ne=Q.slice(0,Q.indexOf("#"));let te=F.get(ne);if(te)continue;te=new Map,F.set(ne,te);const X=ae.default??ae;if(X!=null&&X.render||X!=null&&X.setup){const ie=Yt(X);ie.config.warnHandler=()=>{},ie.provide(Zt,i),Object.defineProperties(ie.config.globalProperties,{$frontmatter:{get(){return i.frontmatter.value}},$params:{get(){return i.page.value.params}}});const Ye=document.createElement("div");ie.mount(Ye),Ye.querySelectorAll("h1, h2, h3, h4, h5, h6").forEach(he=>{var et;const we=(et=he.querySelector("a"))==null?void 0:et.getAttribute("href"),Ze=(we==null?void 0:we.startsWith("#"))&&we.slice(1);if(!Ze)return;let Xe="";for(;(he=he.nextElementSibling)&&!/^h[1-6]$/i.test(he.tagName);)Xe+=he.outerHTML;te.set(Ze,Xe)}),ie.unmount()}if(H)return}const U=new Set;if(g.value=g.value.map(Q=>{const[ae,ne]=Q.id.split("#"),te=F.get(ae),X=(te==null?void 0:te.get(ne))??"";for(const ie in Q.match)U.add(ie);return{...Q,text:X}}),await de(),H)return;await new Promise(Q=>{var ae;(ae=T.value)==null||ae.unmark({done:()=>{var ne;(ne=T.value)==null||ne.markRegExp(M(U),{done:Q})}})});const Z=((be=r.value)==null?void 0:be.querySelectorAll(".result .excerpt"))??[];for(const Q of Z)(qe=Q.querySelector('mark[data-markjs="true"]'))==null||qe.scrollIntoView({block:"center"});(Qe=(He=n.value)==null?void 0:He.firstElementChild)==null||Qe.scrollIntoView({block:"start"})},{debounce:200,immediate:!0});async function L(m){const x=Xt(m.slice(0,m.indexOf("#")));try{if(!x)throw new Error(`Cannot find file for id: ${m}`);return{id:m,mod:await yt(()=>import(x),[])}}catch($){return console.error($),{id:m,mod:{}}}}const R=oe(),B=Fe(()=>{var m;return((m=v.value)==null?void 0:m.length)<=0});function N(m=!0){var x,$;(x=R.value)==null||x.focus(),m&&(($=R.value)==null||$.select())}_e(()=>{N()});function _(m){m.pointerType==="mouse"&&N()}const A=oe(-1),O=oe(!1);$e(g,m=>{A.value=m.length?0:-1,w()});function w(){de(()=>{const m=document.querySelector(".result.selected");m&&m.scrollIntoView({block:"nearest"})})}Ee("ArrowUp",m=>{m.preventDefault(),A.value--,A.value<0&&(A.value=g.value.length-1),O.value=!0,w()}),Ee("ArrowDown",m=>{m.preventDefault(),A.value++,A.value>=g.value.length&&(A.value=0),O.value=!0,w()});const c=Pt();Ee("Enter",m=>{if(m.isComposing||m.target instanceof HTMLButtonElement&&m.target.type!=="submit")return;const x=g.value[A.value];if(m.target instanceof HTMLInputElement&&!x){m.preventDefault();return}x&&(c.go(x.id),t("close"))}),Ee("Escape",()=>{t("close")});const p=ar({modal:{displayDetails:"Display detailed list",resetButtonTitle:"Reset search",backButtonTitle:"Close search",noResultsText:"No results for",footer:{selectText:"to select",selectKeyAriaLabel:"enter",navigateText:"to navigate",navigateUpKeyAriaLabel:"up arrow",navigateDownKeyAriaLabel:"down arrow",closeText:"to close",closeKeyAriaLabel:"escape"}}});_e(()=>{window.history.pushState(null,"",null)}),Vt("popstate",m=>{m.preventDefault(),t("close")});const C=Bt($t?document.body:null);_e(()=>{de(()=>{C.value=!0,de().then(()=>s())})}),Wt(()=>{C.value=!1});function I(){v.value="",de().then(()=>N(!1))}function M(m){return new RegExp([...m].sort((x,$)=>$.length-x.length).map(x=>`(${er(x)})`).join("|"),"gi")}return(m,x)=>{var $,K,q,H;return ee(),Kt(qt,{to:"body"},[k("div",{ref_key:"el",ref:r,role:"button","aria-owns":($=g.value)!=null&&$.length?"localsearch-list":void 0,"aria-expanded":"true","aria-haspopup":"listbox","aria-labelledby":"localsearch-label",class:"VPLocalSearchBox"},[k("div",{class:"backdrop",onClick:x[0]||(x[0]=V=>m.$emit("close"))}),k("div",Qr,[k("form",{class:"search-bar",onPointerup:x[4]||(x[4]=V=>_(V)),onSubmit:x[5]||(x[5]=Jt(()=>{},["prevent"]))},[k("label",{title:E.value,id:"localsearch-label",for:"localsearch-input"},Xr,8,Yr),k("div",ea,[k("button",{class:"back-button",title:j(p)("modal.backButtonTitle"),onClick:x[1]||(x[1]=V=>m.$emit("close"))},aa,8,ta)]),Ut(k("input",{ref_key:"searchInput",ref:R,"onUpdate:modelValue":x[2]||(x[2]=V=>Gt(v)?v.value=V:null),placeholder:E.value,id:"localsearch-input","aria-labelledby":"localsearch-label",class:"search-input"},null,8,na),[[jt,j(v)]]),k("div",ia,[b.value?Se("",!0):(ee(),re("button",{key:0,class:rt(["toggle-layout-button",{"detailed-list":j(y)}]),type:"button",title:j(p)("modal.displayDetails"),onClick:x[3]||(x[3]=V=>A.value>-1&&(y.value=!j(y)))},ua,10,oa)),k("button",{class:"clear-button",type:"reset",disabled:B.value,title:j(p)("modal.resetButtonTitle"),onClick:I},fa,8,la)])],32),k("ul",{ref_key:"resultsEl",ref:n,id:(K=g.value)!=null&&K.length?"localsearch-list":void 0,role:(q=g.value)!=null&&q.length?"listbox":void 0,"aria-labelledby":(H=g.value)!=null&&H.length?"localsearch-label":void 0,class:"results",onMousemove:x[7]||(x[7]=V=>O.value=!1)},[(ee(!0),re(nt,null,at(g.value,(V,U)=>(ee(),re("li",{key:V.id,role:"option","aria-selected":A.value===U?"true":"false"},[k("a",{href:V.id,class:rt(["result",{selected:A.value===U}]),"aria-label":[...V.titles,V.title].join(" > "),onMouseenter:Z=>!O.value&&(A.value=U),onFocusin:Z=>A.value=U,onClick:x[6]||(x[6]=Z=>m.$emit("close"))},[k("div",null,[k("div",pa,[ya,(ee(!0),re(nt,null,at(V.titles,(Z,be)=>(ee(),re("span",{key:be,class:"title"},[k("span",{class:"text",innerHTML:Z},null,8,ma),ga]))),128)),k("span",ba,[k("span",{class:"text",innerHTML:V.title},null,8,wa)])]),j(y)?(ee(),re("div",xa,[V.text?(ee(),re("div",Fa,[k("div",{class:"vp-doc",innerHTML:V.text},null,8,Ea)])):Se("",!0),Sa,Aa])):Se("",!0)])],42,va)],8,da))),128)),j(v)&&!g.value.length&&S.value?(ee(),re("li",Ta,[ve(pe(j(p)("modal.noResultsText"))+' "',1),k("strong",null,pe(j(v)),1),ve('" ')])):Se("",!0)],40,ha),k("div",Na,[k("span",null,[k("kbd",{"aria-label":j(p)("modal.footer.navigateUpKeyAriaLabel")},Da,8,Ca),k("kbd",{"aria-label":j(p)("modal.footer.navigateDownKeyAriaLabel")},_a,8,ka),ve(" "+pe(j(p)("modal.footer.navigateText")),1)]),k("span",null,[k("kbd",{"aria-label":j(p)("modal.footer.selectKeyAriaLabel")},La,8,Ra),ve(" "+pe(j(p)("modal.footer.selectText")),1)]),k("span",null,[k("kbd",{"aria-label":j(p)("modal.footer.closeKeyAriaLabel")},"esc",8,za),ve(" "+pe(j(p)("modal.footer.closeText")),1)])])])],8,Hr)])}}}),Ja=tr(Pa,[["__scopeId","data-v-f5c68218"]]);export{Ja as default}; diff --git a/dev/assets/chunks/framework.RTxADYK2.js b/dev/assets/chunks/framework.aA95Gx5L.js similarity index 65% rename from dev/assets/chunks/framework.RTxADYK2.js rename to dev/assets/chunks/framework.aA95Gx5L.js index 2d6a670..da43fae 100644 --- a/dev/assets/chunks/framework.RTxADYK2.js +++ b/dev/assets/chunks/framework.aA95Gx5L.js @@ -10,8 +10,8 @@ * @vue/runtime-core v3.4.21 * (c) 2018-present Yuxi (Evan) You and Vue contributors * @license MIT -**/function Je(e,t,n,r){try{return r?e(...r):e()}catch(s){qt(s,t,n)}}function Se(e,t,n,r){if(q(e)){const o=Je(e,t,n,r);return o&&to(o)&&o.catch(i=>{qt(i,t,n)}),o}const s=[];for(let o=0;o>>1,s=he[r],o=Bt(s);oPe&&he.splice(t,1)}function bl(e){B(e)?Et.push(...e):(!qe||!qe.includes(e,e.allowRecurse?ot+1:ot))&&Et.push(e),To()}function fs(e,t,n=Ut?Pe+1:0){for(;nBt(n)-Bt(r));if(Et.length=0,qe){qe.push(...t);return}for(qe=t,ot=0;ote.id==null?1/0:e.id,wl=(e,t)=>{const n=Bt(e)-Bt(t);if(n===0){if(e.pre&&!t.pre)return-1;if(t.pre&&!e.pre)return 1}return n};function Ao(e){pr=!1,Ut=!0,he.sort(wl);try{for(Pe=0;Pene(y)?y.trim():y)),h&&(s=n.map(ur))}let l,c=r[l=hn(t)]||r[l=hn(Fe(t))];!c&&o&&(c=r[l=hn(ft(t))]),c&&Se(c,e,6,s);const a=r[l+"Once"];if(a){if(!e.emitted)e.emitted={};else if(e.emitted[l])return;e.emitted[l]=!0,Se(a,e,6,s)}}function Ro(e,t,n=!1){const r=t.emitsCache,s=r.get(e);if(s!==void 0)return s;const o=e.emits;let i={},l=!1;if(!q(e)){const c=a=>{const f=Ro(a,t,!0);f&&(l=!0,ce(i,f))};!n&&t.mixins.length&&t.mixins.forEach(c),e.extends&&c(e.extends),e.mixins&&e.mixins.forEach(c)}return!o&&!l?(Z(e)&&r.set(e,null),null):(B(o)?o.forEach(c=>i[c]=null):ce(i,o),Z(e)&&r.set(e,i),i)}function $n(e,t){return!e||!Wt(t)?!1:(t=t.slice(2).replace(/Once$/,""),Y(e,t[0].toLowerCase()+t.slice(1))||Y(e,ft(t))||Y(e,t))}let le=null,Hn=null;function En(e){const t=le;return le=e,Hn=e&&e.type.__scopeId||null,t}function Za(e){Hn=e}function eu(){Hn=null}function Cl(e,t=le,n){if(!t||e._n)return e;const r=(...s)=>{r._d&&Ss(-1);const o=En(t);let i;try{i=e(...s)}finally{En(o),r._d&&Ss(1)}return i};return r._n=!0,r._c=!0,r._d=!0,r}function zn(e){const{type:t,vnode:n,proxy:r,withProxy:s,props:o,propsOptions:[i],slots:l,attrs:c,emit:a,render:f,renderCache:h,data:p,setupState:y,ctx:w,inheritAttrs:I}=e;let N,K;const k=En(e);try{if(n.shapeFlag&4){const _=s||r,M=_;N=Re(f.call(M,_,h,o,y,p,w)),K=c}else{const _=t;N=Re(_.length>1?_(o,{attrs:c,slots:l,emit:a}):_(o,null)),K=t.props?c:xl(c)}}catch(_){jt.length=0,qt(_,e,1),N=oe(be)}let g=N;if(K&&I!==!1){const _=Object.keys(K),{shapeFlag:M}=g;_.length&&M&7&&(i&&_.some(Tr)&&(K=Sl(K,i)),g=et(g,K))}return n.dirs&&(g=et(g),g.dirs=g.dirs?g.dirs.concat(n.dirs):n.dirs),n.transition&&(g.transition=n.transition),N=g,En(k),N}const xl=e=>{let t;for(const n in e)(n==="class"||n==="style"||Wt(n))&&((t||(t={}))[n]=e[n]);return t},Sl=(e,t)=>{const n={};for(const r in e)(!Tr(r)||!(r.slice(9)in t))&&(n[r]=e[r]);return n};function Tl(e,t,n){const{props:r,children:s,component:o}=e,{props:i,children:l,patchFlag:c}=t,a=o.emitsOptions;if(t.dirs||t.transition)return!0;if(n&&c>=0){if(c&1024)return!0;if(c&16)return r?ds(r,i,a):!!i;if(c&8){const f=t.dynamicProps;for(let h=0;he.__isSuspense;function Io(e,t){t&&t.pendingBranch?B(e)?t.effects.push(...e):t.effects.push(e):bl(e)}const Ll=Symbol.for("v-scx"),Ol=()=>xt(Ll);function Br(e,t){return jn(e,null,t)}function ru(e,t){return jn(e,null,{flush:"post"})}const rn={};function Ve(e,t,n){return jn(e,t,n)}function jn(e,t,{immediate:n,deep:r,flush:s,once:o,onTrack:i,onTrigger:l}=ee){if(t&&o){const L=t;t=(...F)=>{L(...F),M()}}const c=ue,a=L=>r===!0?L:lt(L,r===!1?1:void 0);let f,h=!1,p=!1;if(de(e)?(f=()=>e.value,h=bn(e)):wt(e)?(f=()=>a(e),h=!0):B(e)?(p=!0,h=e.some(L=>wt(L)||bn(L)),f=()=>e.map(L=>{if(de(L))return L.value;if(wt(L))return a(L);if(q(L))return Je(L,c,2)})):q(e)?t?f=()=>Je(e,c,2):f=()=>(y&&y(),Se(e,c,3,[w])):f=xe,t&&r){const L=f;f=()=>lt(L())}let y,w=L=>{y=g.onStop=()=>{Je(L,c,4),y=g.onStop=void 0}},I;if(Xt)if(w=xe,t?n&&Se(t,c,3,[f(),p?[]:void 0,w]):f(),s==="sync"){const L=Ol();I=L.__watcherHandles||(L.__watcherHandles=[])}else return xe;let N=p?new Array(e.length).fill(rn):rn;const K=()=>{if(!(!g.active||!g.dirty))if(t){const L=g.run();(r||h||(p?L.some((F,T)=>Ze(F,N[T])):Ze(L,N)))&&(y&&y(),Se(t,c,3,[L,N===rn?void 0:p&&N[0]===rn?[]:N,w]),N=L)}else g.run()};K.allowRecurse=!!t;let k;s==="sync"?k=K:s==="post"?k=()=>ge(K,c&&c.suspense):(K.pre=!0,c&&(K.id=c.uid),k=()=>Fn(K));const g=new Ir(f,xe,k),_=lo(),M=()=>{g.stop(),_&&Ar(_.effects,g)};return t?n?K():N=g.run():s==="post"?ge(g.run.bind(g),c&&c.suspense):g.run(),I&&I.push(M),M}function Il(e,t,n){const r=this.proxy,s=ne(e)?e.includes(".")?Mo(r,e):()=>r[e]:e.bind(r,r);let o;q(t)?o=t:(o=t.handler,n=t);const i=zt(this),l=jn(s,o.bind(r),n);return i(),l}function Mo(e,t){const n=t.split(".");return()=>{let r=e;for(let s=0;s0){if(n>=t)return e;n++}if(r=r||new Set,r.has(e))return e;if(r.add(e),de(e))lt(e.value,t,n,r);else if(B(e))for(let s=0;s{lt(s,t,n,r)});else if(ro(e))for(const s in e)lt(e[s],t,n,r);return e}function su(e,t){if(le===null)return e;const n=kn(le)||le.proxy,r=e.dirs||(e.dirs=[]);for(let s=0;s{e.isMounted=!0}),Ho(()=>{e.isUnmounting=!0}),e}const we=[Function,Array],Po={mode:String,appear:Boolean,persisted:Boolean,onBeforeEnter:we,onEnter:we,onAfterEnter:we,onEnterCancelled:we,onBeforeLeave:we,onLeave:we,onAfterLeave:we,onLeaveCancelled:we,onBeforeAppear:we,onAppear:we,onAfterAppear:we,onAppearCancelled:we},Pl={name:"BaseTransition",props:Po,setup(e,{slots:t}){const n=Bn(),r=Ml();return()=>{const s=t.default&&Fo(t.default(),!0);if(!s||!s.length)return;let o=s[0];if(s.length>1){for(const p of s)if(p.type!==be){o=p;break}}const i=J(e),{mode:l}=i;if(r.isLeaving)return Xn(o);const c=ps(o);if(!c)return Xn(o);const a=gr(c,i,r,n);mr(c,a);const f=n.subTree,h=f&&ps(f);if(h&&h.type!==be&&!it(c,h)){const p=gr(h,i,r,n);if(mr(h,p),l==="out-in")return r.isLeaving=!0,p.afterLeave=()=>{r.isLeaving=!1,n.update.active!==!1&&(n.effect.dirty=!0,n.update())},Xn(o);l==="in-out"&&c.type!==be&&(p.delayLeave=(y,w,I)=>{const N=No(r,h);N[String(h.key)]=h,y[Ge]=()=>{w(),y[Ge]=void 0,delete a.delayedLeave},a.delayedLeave=I})}return o}}},Nl=Pl;function No(e,t){const{leavingVNodes:n}=e;let r=n.get(t.type);return r||(r=Object.create(null),n.set(t.type,r)),r}function gr(e,t,n,r){const{appear:s,mode:o,persisted:i=!1,onBeforeEnter:l,onEnter:c,onAfterEnter:a,onEnterCancelled:f,onBeforeLeave:h,onLeave:p,onAfterLeave:y,onLeaveCancelled:w,onBeforeAppear:I,onAppear:N,onAfterAppear:K,onAppearCancelled:k}=t,g=String(e.key),_=No(n,e),M=(T,$)=>{T&&Se(T,r,9,$)},L=(T,$)=>{const E=$[1];M(T,$),B(T)?T.every(j=>j.length<=1)&&E():T.length<=1&&E()},F={mode:o,persisted:i,beforeEnter(T){let $=l;if(!n.isMounted)if(s)$=I||l;else return;T[Ge]&&T[Ge](!0);const E=_[g];E&&it(e,E)&&E.el[Ge]&&E.el[Ge](),M($,[T])},enter(T){let $=c,E=a,j=f;if(!n.isMounted)if(s)$=N||c,E=K||a,j=k||f;else return;let A=!1;const G=T[sn]=ie=>{A||(A=!0,ie?M(j,[T]):M(E,[T]),F.delayedLeave&&F.delayedLeave(),T[sn]=void 0)};$?L($,[T,G]):G()},leave(T,$){const E=String(e.key);if(T[sn]&&T[sn](!0),n.isUnmounting)return $();M(h,[T]);let j=!1;const A=T[Ge]=G=>{j||(j=!0,$(),G?M(w,[T]):M(y,[T]),T[Ge]=void 0,_[E]===e&&delete _[E])};_[E]=e,p?L(p,[T,A]):A()},clone(T){return gr(T,t,n,r)}};return F}function Xn(e){if(Gt(e))return e=et(e),e.children=null,e}function ps(e){return Gt(e)?e.children?e.children[0]:void 0:e}function mr(e,t){e.shapeFlag&6&&e.component?mr(e.component.subTree,t):e.shapeFlag&128?(e.ssContent.transition=t.clone(e.ssContent),e.ssFallback.transition=t.clone(e.ssFallback)):e.transition=t}function Fo(e,t=!1,n){let r=[],s=0;for(let o=0;o1)for(let o=0;o!!e.type.__asyncLoader;/*! #__NO_SIDE_EFFECTS__ */function ou(e){q(e)&&(e={loader:e});const{loader:t,loadingComponent:n,errorComponent:r,delay:s=200,timeout:o,suspensible:i=!0,onError:l}=e;let c=null,a,f=0;const h=()=>(f++,c=null,p()),p=()=>{let y;return c||(y=c=t().catch(w=>{if(w=w instanceof Error?w:new Error(String(w)),l)return new Promise((I,N)=>{l(w,()=>I(h()),()=>N(w),f+1)});throw w}).then(w=>y!==c&&c?c:(w&&(w.__esModule||w[Symbol.toStringTag]==="Module")&&(w=w.default),a=w,w)))};return kr({name:"AsyncComponentWrapper",__asyncLoader:p,get __asyncResolved(){return a},setup(){const y=ue;if(a)return()=>Yn(a,y);const w=k=>{c=null,qt(k,y,13,!r)};if(i&&y.suspense||Xt)return p().then(k=>()=>Yn(k,y)).catch(k=>(w(k),()=>r?oe(r,{error:k}):null));const I=se(!1),N=se(),K=se(!!s);return s&&setTimeout(()=>{K.value=!1},s),o!=null&&setTimeout(()=>{if(!I.value&&!N.value){const k=new Error(`Async component timed out after ${o}ms.`);w(k),N.value=k}},o),p().then(()=>{I.value=!0,y.parent&&Gt(y.parent.vnode)&&(y.parent.effect.dirty=!0,Fn(y.parent.update))}).catch(k=>{w(k),N.value=k}),()=>{if(I.value&&a)return Yn(a,y);if(N.value&&r)return oe(r,{error:N.value});if(n&&!K.value)return oe(n)}}})}function Yn(e,t){const{ref:n,props:r,children:s,ce:o}=t.vnode,i=oe(e,r,s);return i.ref=n,i.ce=o,delete t.vnode.ce,i}const Gt=e=>e.type.__isKeepAlive;function Fl(e,t){$o(e,"a",t)}function $l(e,t){$o(e,"da",t)}function $o(e,t,n=ue){const r=e.__wdc||(e.__wdc=()=>{let s=n;for(;s;){if(s.isDeactivated)return;s=s.parent}return e()});if(Vn(t,r,n),n){let s=n.parent;for(;s&&s.parent;)Gt(s.parent.vnode)&&Hl(r,t,n,s),s=s.parent}}function Hl(e,t,n,r){const s=Vn(t,e,r,!0);Dn(()=>{Ar(r[t],s)},n)}function Vn(e,t,n=ue,r=!1){if(n){const s=n[e]||(n[e]=[]),o=t.__weh||(t.__weh=(...i)=>{if(n.isUnmounted)return;dt();const l=zt(n),c=Se(t,n,e,i);return l(),ht(),c});return r?s.unshift(o):s.push(o),o}}const Ue=e=>(t,n=ue)=>(!Xt||e==="sp")&&Vn(e,(...r)=>t(...r),n),jl=Ue("bm"),Rt=Ue("m"),Vl=Ue("bu"),Dl=Ue("u"),Ho=Ue("bum"),Dn=Ue("um"),Ul=Ue("sp"),Bl=Ue("rtg"),kl=Ue("rtc");function Kl(e,t=ue){Vn("ec",e,t)}function iu(e,t,n,r){let s;const o=n&&n[r];if(B(e)||ne(e)){s=new Array(e.length);for(let i=0,l=e.length;it(i,l,void 0,o&&o[l]));else{const i=Object.keys(e);s=new Array(i.length);for(let l=0,c=i.length;lSn(t)?!(t.type===be||t.type===me&&!jo(t.children)):!0)?e:null}function cu(e,t){const n={};for(const r in e)n[t&&/[A-Z]/.test(r)?`on:${r}`:hn(r)]=e[r];return n}const yr=e=>e?ni(e)?kn(e)||e.proxy:yr(e.parent):null,Nt=ce(Object.create(null),{$:e=>e,$el:e=>e.vnode.el,$data:e=>e.data,$props:e=>e.props,$attrs:e=>e.attrs,$slots:e=>e.slots,$refs:e=>e.refs,$parent:e=>yr(e.parent),$root:e=>yr(e.root),$emit:e=>e.emit,$options:e=>Kr(e),$forceUpdate:e=>e.f||(e.f=()=>{e.effect.dirty=!0,Fn(e.update)}),$nextTick:e=>e.n||(e.n=Nn.bind(e.proxy)),$watch:e=>Il.bind(e)}),Jn=(e,t)=>e!==ee&&!e.__isScriptSetup&&Y(e,t),Wl={get({_:e},t){const{ctx:n,setupState:r,data:s,props:o,accessCache:i,type:l,appContext:c}=e;let a;if(t[0]!=="$"){const y=i[t];if(y!==void 0)switch(y){case 1:return r[t];case 2:return s[t];case 4:return n[t];case 3:return o[t]}else{if(Jn(r,t))return i[t]=1,r[t];if(s!==ee&&Y(s,t))return i[t]=2,s[t];if((a=e.propsOptions[0])&&Y(a,t))return i[t]=3,o[t];if(n!==ee&&Y(n,t))return i[t]=4,n[t];_r&&(i[t]=0)}}const f=Nt[t];let h,p;if(f)return t==="$attrs"&&ye(e,"get",t),f(e);if((h=l.__cssModules)&&(h=h[t]))return h;if(n!==ee&&Y(n,t))return i[t]=4,n[t];if(p=c.config.globalProperties,Y(p,t))return p[t]},set({_:e},t,n){const{data:r,setupState:s,ctx:o}=e;return Jn(s,t)?(s[t]=n,!0):r!==ee&&Y(r,t)?(r[t]=n,!0):Y(e.props,t)||t[0]==="$"&&t.slice(1)in e?!1:(o[t]=n,!0)},has({_:{data:e,setupState:t,accessCache:n,ctx:r,appContext:s,propsOptions:o}},i){let l;return!!n[i]||e!==ee&&Y(e,i)||Jn(t,i)||(l=o[0])&&Y(l,i)||Y(r,i)||Y(Nt,i)||Y(s.config.globalProperties,i)},defineProperty(e,t,n){return n.get!=null?e._.accessCache[t]=0:Y(n,"value")&&this.set(e,t,n.value,null),Reflect.defineProperty(e,t,n)}};function au(){return ql().slots}function ql(){const e=Bn();return e.setupContext||(e.setupContext=si(e))}function gs(e){return B(e)?e.reduce((t,n)=>(t[n]=null,t),{}):e}let _r=!0;function Gl(e){const t=Kr(e),n=e.proxy,r=e.ctx;_r=!1,t.beforeCreate&&ms(t.beforeCreate,e,"bc");const{data:s,computed:o,methods:i,watch:l,provide:c,inject:a,created:f,beforeMount:h,mounted:p,beforeUpdate:y,updated:w,activated:I,deactivated:N,beforeDestroy:K,beforeUnmount:k,destroyed:g,unmounted:_,render:M,renderTracked:L,renderTriggered:F,errorCaptured:T,serverPrefetch:$,expose:E,inheritAttrs:j,components:A,directives:G,filters:ie}=t;if(a&&zl(a,r,null),i)for(const X in i){const V=i[X];q(V)&&(r[X]=V.bind(n))}if(s){const X=s.call(n,n);Z(X)&&(e.data=Mn(X))}if(_r=!0,o)for(const X in o){const V=o[X],$e=q(V)?V.bind(n,n):q(V.get)?V.get.bind(n,n):xe,Yt=!q(V)&&q(V.set)?V.set.bind(n):xe,tt=re({get:$e,set:Yt});Object.defineProperty(r,X,{enumerable:!0,configurable:!0,get:()=>tt.value,set:Oe=>tt.value=Oe})}if(l)for(const X in l)Vo(l[X],r,n,X);if(c){const X=q(c)?c.call(n):c;Reflect.ownKeys(X).forEach(V=>{ec(V,X[V])})}f&&ms(f,e,"c");function D(X,V){B(V)?V.forEach($e=>X($e.bind(n))):V&&X(V.bind(n))}if(D(jl,h),D(Rt,p),D(Vl,y),D(Dl,w),D(Fl,I),D($l,N),D(Kl,T),D(kl,L),D(Bl,F),D(Ho,k),D(Dn,_),D(Ul,$),B(E))if(E.length){const X=e.exposed||(e.exposed={});E.forEach(V=>{Object.defineProperty(X,V,{get:()=>n[V],set:$e=>n[V]=$e})})}else e.exposed||(e.exposed={});M&&e.render===xe&&(e.render=M),j!=null&&(e.inheritAttrs=j),A&&(e.components=A),G&&(e.directives=G)}function zl(e,t,n=xe){B(e)&&(e=vr(e));for(const r in e){const s=e[r];let o;Z(s)?"default"in s?o=xt(s.from||r,s.default,!0):o=xt(s.from||r):o=xt(s),de(o)?Object.defineProperty(t,r,{enumerable:!0,configurable:!0,get:()=>o.value,set:i=>o.value=i}):t[r]=o}}function ms(e,t,n){Se(B(e)?e.map(r=>r.bind(t.proxy)):e.bind(t.proxy),t,n)}function Vo(e,t,n,r){const s=r.includes(".")?Mo(n,r):()=>n[r];if(ne(e)){const o=t[e];q(o)&&Ve(s,o)}else if(q(e))Ve(s,e.bind(n));else if(Z(e))if(B(e))e.forEach(o=>Vo(o,t,n,r));else{const o=q(e.handler)?e.handler.bind(n):t[e.handler];q(o)&&Ve(s,o,e)}}function Kr(e){const t=e.type,{mixins:n,extends:r}=t,{mixins:s,optionsCache:o,config:{optionMergeStrategies:i}}=e.appContext,l=o.get(t);let c;return l?c=l:!s.length&&!n&&!r?c=t:(c={},s.length&&s.forEach(a=>Cn(c,a,i,!0)),Cn(c,t,i)),Z(t)&&o.set(t,c),c}function Cn(e,t,n,r=!1){const{mixins:s,extends:o}=t;o&&Cn(e,o,n,!0),s&&s.forEach(i=>Cn(e,i,n,!0));for(const i in t)if(!(r&&i==="expose")){const l=Xl[i]||n&&n[i];e[i]=l?l(e[i],t[i]):t[i]}return e}const Xl={data:ys,props:_s,emits:_s,methods:It,computed:It,beforeCreate:pe,created:pe,beforeMount:pe,mounted:pe,beforeUpdate:pe,updated:pe,beforeDestroy:pe,beforeUnmount:pe,destroyed:pe,unmounted:pe,activated:pe,deactivated:pe,errorCaptured:pe,serverPrefetch:pe,components:It,directives:It,watch:Jl,provide:ys,inject:Yl};function ys(e,t){return t?e?function(){return ce(q(e)?e.call(this,this):e,q(t)?t.call(this,this):t)}:t:e}function Yl(e,t){return It(vr(e),vr(t))}function vr(e){if(B(e)){const t={};for(let n=0;n1)return n&&q(t)?t.call(r&&r.proxy):t}}function tc(e,t,n,r=!1){const s={},o={};_n(o,Un,1),e.propsDefaults=Object.create(null),Uo(e,t,s,o);for(const i in e.propsOptions[0])i in s||(s[i]=void 0);n?e.props=r?s:ll(s):e.type.props?e.props=s:e.props=o,e.attrs=o}function nc(e,t,n,r){const{props:s,attrs:o,vnode:{patchFlag:i}}=e,l=J(s),[c]=e.propsOptions;let a=!1;if((r||i>0)&&!(i&16)){if(i&8){const f=e.vnode.dynamicProps;for(let h=0;h{c=!0;const[p,y]=Bo(h,t,!0);ce(i,p),y&&l.push(...y)};!n&&t.mixins.length&&t.mixins.forEach(f),e.extends&&f(e.extends),e.mixins&&e.mixins.forEach(f)}if(!o&&!c)return Z(e)&&r.set(e,_t),_t;if(B(o))for(let f=0;f-1,y[1]=I<0||w-1||Y(y,"default"))&&l.push(h)}}}const a=[i,l];return Z(e)&&r.set(e,a),a}function vs(e){return e[0]!=="$"&&!bt(e)}function bs(e){return e===null?"null":typeof e=="function"?e.name||"":typeof e=="object"&&e.constructor&&e.constructor.name||""}function ws(e,t){return bs(e)===bs(t)}function Es(e,t){return B(t)?t.findIndex(n=>ws(n,e)):q(t)&&ws(t,e)?0:-1}const ko=e=>e[0]==="_"||e==="$stable",Wr=e=>B(e)?e.map(Re):[Re(e)],rc=(e,t,n)=>{if(t._n)return t;const r=Cl((...s)=>Wr(t(...s)),n);return r._c=!1,r},Ko=(e,t,n)=>{const r=e._ctx;for(const s in e){if(ko(s))continue;const o=e[s];if(q(o))t[s]=rc(s,o,r);else if(o!=null){const i=Wr(o);t[s]=()=>i}}},Wo=(e,t)=>{const n=Wr(t);e.slots.default=()=>n},sc=(e,t)=>{if(e.vnode.shapeFlag&32){const n=t._;n?(e.slots=J(t),_n(t,"_",n)):Ko(t,e.slots={})}else e.slots={},t&&Wo(e,t);_n(e.slots,Un,1)},oc=(e,t,n)=>{const{vnode:r,slots:s}=e;let o=!0,i=ee;if(r.shapeFlag&32){const l=t._;l?n&&l===1?o=!1:(ce(s,t),!n&&l===1&&delete s._):(o=!t.$stable,Ko(t,s)),i=t}else t&&(Wo(e,t),i={default:1});if(o)for(const l in s)!ko(l)&&i[l]==null&&delete s[l]};function xn(e,t,n,r,s=!1){if(B(e)){e.forEach((p,y)=>xn(p,t&&(B(t)?t[y]:t),n,r,s));return}if(Ct(r)&&!s)return;const o=r.shapeFlag&4?kn(r.component)||r.component.proxy:r.el,i=s?null:o,{i:l,r:c}=e,a=t&&t.r,f=l.refs===ee?l.refs={}:l.refs,h=l.setupState;if(a!=null&&a!==c&&(ne(a)?(f[a]=null,Y(h,a)&&(h[a]=null)):de(a)&&(a.value=null)),q(c))Je(c,l,12,[i,f]);else{const p=ne(c),y=de(c);if(p||y){const w=()=>{if(e.f){const I=p?Y(h,c)?h[c]:f[c]:c.value;s?B(I)&&Ar(I,o):B(I)?I.includes(o)||I.push(o):p?(f[c]=[o],Y(h,c)&&(h[c]=f[c])):(c.value=[o],e.k&&(f[e.k]=c.value))}else p?(f[c]=i,Y(h,c)&&(h[c]=i)):y&&(c.value=i,e.k&&(f[e.k]=i))};i?(w.id=-1,ge(w,n)):w()}}}let ke=!1;const ic=e=>e.namespaceURI.includes("svg")&&e.tagName!=="foreignObject",lc=e=>e.namespaceURI.includes("MathML"),on=e=>{if(ic(e))return"svg";if(lc(e))return"mathml"},ln=e=>e.nodeType===8;function cc(e){const{mt:t,p:n,o:{patchProp:r,createText:s,nextSibling:o,parentNode:i,remove:l,insert:c,createComment:a}}=e,f=(g,_)=>{if(!_.hasChildNodes()){n(null,g,_),wn(),_._vnode=g;return}ke=!1,h(_.firstChild,g,null,null,null),wn(),_._vnode=g,ke&&console.error("Hydration completed but contains mismatches.")},h=(g,_,M,L,F,T=!1)=>{const $=ln(g)&&g.data==="[",E=()=>I(g,_,M,L,F,$),{type:j,ref:A,shapeFlag:G,patchFlag:ie}=_;let fe=g.nodeType;_.el=g,ie===-2&&(T=!1,_.dynamicChildren=null);let D=null;switch(j){case Tt:fe!==3?_.children===""?(c(_.el=s(""),i(g),g),D=g):D=E():(g.data!==_.children&&(ke=!0,g.data=_.children),D=o(g));break;case be:k(g)?(D=o(g),K(_.el=g.content.firstChild,g,M)):fe!==8||$?D=E():D=o(g);break;case Ht:if($&&(g=o(g),fe=g.nodeType),fe===1||fe===3){D=g;const X=!_.children.length;for(let V=0;V<_.staticCount;V++)X&&(_.children+=D.nodeType===1?D.outerHTML:D.data),V===_.staticCount-1&&(_.anchor=D),D=o(D);return $?o(D):D}else E();break;case me:$?D=w(g,_,M,L,F,T):D=E();break;default:if(G&1)(fe!==1||_.type.toLowerCase()!==g.tagName.toLowerCase())&&!k(g)?D=E():D=p(g,_,M,L,F,T);else if(G&6){_.slotScopeIds=F;const X=i(g);if($?D=N(g):ln(g)&&g.data==="teleport start"?D=N(g,g.data,"teleport end"):D=o(g),t(_,X,null,M,L,on(X),T),Ct(_)){let V;$?(V=oe(me),V.anchor=D?D.previousSibling:X.lastChild):V=g.nodeType===3?ti(""):oe("div"),V.el=g,_.component.subTree=V}}else G&64?fe!==8?D=E():D=_.type.hydrate(g,_,M,L,F,T,e,y):G&128&&(D=_.type.hydrate(g,_,M,L,on(i(g)),F,T,e,h))}return A!=null&&xn(A,null,L,_),D},p=(g,_,M,L,F,T)=>{T=T||!!_.dynamicChildren;const{type:$,props:E,patchFlag:j,shapeFlag:A,dirs:G,transition:ie}=_,fe=$==="input"||$==="option";if(fe||j!==-1){G&&Me(_,null,M,"created");let D=!1;if(k(g)){D=Go(L,ie)&&M&&M.vnode.props&&M.vnode.props.appear;const V=g.content.firstChild;D&&ie.beforeEnter(V),K(V,g,M),_.el=g=V}if(A&16&&!(E&&(E.innerHTML||E.textContent))){let V=y(g.firstChild,_,g,M,L,F,T);for(;V;){ke=!0;const $e=V;V=V.nextSibling,l($e)}}else A&8&&g.textContent!==_.children&&(ke=!0,g.textContent=_.children);if(E)if(fe||!T||j&48)for(const V in E)(fe&&(V.endsWith("value")||V==="indeterminate")||Wt(V)&&!bt(V)||V[0]===".")&&r(g,V,null,E[V],void 0,void 0,M);else E.onClick&&r(g,"onClick",null,E.onClick,void 0,void 0,M);let X;(X=E&&E.onVnodeBeforeMount)&&Ee(X,M,_),G&&Me(_,null,M,"beforeMount"),((X=E&&E.onVnodeMounted)||G||D)&&Io(()=>{X&&Ee(X,M,_),D&&ie.enter(g),G&&Me(_,null,M,"mounted")},L)}return g.nextSibling},y=(g,_,M,L,F,T,$)=>{$=$||!!_.dynamicChildren;const E=_.children,j=E.length;for(let A=0;A{const{slotScopeIds:$}=_;$&&(F=F?F.concat($):$);const E=i(g),j=y(o(g),_,E,M,L,F,T);return j&&ln(j)&&j.data==="]"?o(_.anchor=j):(ke=!0,c(_.anchor=a("]"),E,j),j)},I=(g,_,M,L,F,T)=>{if(ke=!0,_.el=null,T){const j=N(g);for(;;){const A=o(g);if(A&&A!==j)l(A);else break}}const $=o(g),E=i(g);return l(g),n(null,_,E,$,M,L,on(E),F),$},N=(g,_="[",M="]")=>{let L=0;for(;g;)if(g=o(g),g&&ln(g)&&(g.data===_&&L++,g.data===M)){if(L===0)return o(g);L--}return g},K=(g,_,M)=>{const L=_.parentNode;L&&L.replaceChild(g,_);let F=M;for(;F;)F.vnode.el===_&&(F.vnode.el=F.subTree.el=g),F=F.parent},k=g=>g.nodeType===1&&g.tagName.toLowerCase()==="template";return[f,h]}const ge=Io;function ac(e){return qo(e)}function uc(e){return qo(e,cc)}function qo(e,t){const n=so();n.__VUE__=!0;const{insert:r,remove:s,patchProp:o,createElement:i,createText:l,createComment:c,setText:a,setElementText:f,parentNode:h,nextSibling:p,setScopeId:y=xe,insertStaticContent:w}=e,I=(u,d,m,v=null,b=null,S=null,O=void 0,x=null,R=!!d.dynamicChildren)=>{if(u===d)return;u&&!it(u,d)&&(v=Jt(u),Oe(u,b,S,!0),u=null),d.patchFlag===-2&&(R=!1,d.dynamicChildren=null);const{type:C,ref:P,shapeFlag:U}=d;switch(C){case Tt:N(u,d,m,v);break;case be:K(u,d,m,v);break;case Ht:u==null&&k(d,m,v,O);break;case me:A(u,d,m,v,b,S,O,x,R);break;default:U&1?M(u,d,m,v,b,S,O,x,R):U&6?G(u,d,m,v,b,S,O,x,R):(U&64||U&128)&&C.process(u,d,m,v,b,S,O,x,R,pt)}P!=null&&b&&xn(P,u&&u.ref,S,d||u,!d)},N=(u,d,m,v)=>{if(u==null)r(d.el=l(d.children),m,v);else{const b=d.el=u.el;d.children!==u.children&&a(b,d.children)}},K=(u,d,m,v)=>{u==null?r(d.el=c(d.children||""),m,v):d.el=u.el},k=(u,d,m,v)=>{[u.el,u.anchor]=w(u.children,d,m,v,u.el,u.anchor)},g=({el:u,anchor:d},m,v)=>{let b;for(;u&&u!==d;)b=p(u),r(u,m,v),u=b;r(d,m,v)},_=({el:u,anchor:d})=>{let m;for(;u&&u!==d;)m=p(u),s(u),u=m;s(d)},M=(u,d,m,v,b,S,O,x,R)=>{d.type==="svg"?O="svg":d.type==="math"&&(O="mathml"),u==null?L(d,m,v,b,S,O,x,R):$(u,d,b,S,O,x,R)},L=(u,d,m,v,b,S,O,x)=>{let R,C;const{props:P,shapeFlag:U,transition:H,dirs:W}=u;if(R=u.el=i(u.type,S,P&&P.is,P),U&8?f(R,u.children):U&16&&T(u.children,R,null,v,b,Qn(u,S),O,x),W&&Me(u,null,v,"created"),F(R,u,u.scopeId,O,v),P){for(const Q in P)Q!=="value"&&!bt(Q)&&o(R,Q,null,P[Q],S,u.children,v,b,He);"value"in P&&o(R,"value",null,P.value,S),(C=P.onVnodeBeforeMount)&&Ee(C,v,u)}W&&Me(u,null,v,"beforeMount");const z=Go(b,H);z&&H.beforeEnter(R),r(R,d,m),((C=P&&P.onVnodeMounted)||z||W)&&ge(()=>{C&&Ee(C,v,u),z&&H.enter(R),W&&Me(u,null,v,"mounted")},b)},F=(u,d,m,v,b)=>{if(m&&y(u,m),v)for(let S=0;S{for(let C=R;C{const x=d.el=u.el;let{patchFlag:R,dynamicChildren:C,dirs:P}=d;R|=u.patchFlag&16;const U=u.props||ee,H=d.props||ee;let W;if(m&&nt(m,!1),(W=H.onVnodeBeforeUpdate)&&Ee(W,m,d,u),P&&Me(d,u,m,"beforeUpdate"),m&&nt(m,!0),C?E(u.dynamicChildren,C,x,m,v,Qn(d,b),S):O||V(u,d,x,null,m,v,Qn(d,b),S,!1),R>0){if(R&16)j(x,d,U,H,m,v,b);else if(R&2&&U.class!==H.class&&o(x,"class",null,H.class,b),R&4&&o(x,"style",U.style,H.style,b),R&8){const z=d.dynamicProps;for(let Q=0;Q{W&&Ee(W,m,d,u),P&&Me(d,u,m,"updated")},v)},E=(u,d,m,v,b,S,O)=>{for(let x=0;x{if(m!==v){if(m!==ee)for(const x in m)!bt(x)&&!(x in v)&&o(u,x,m[x],null,O,d.children,b,S,He);for(const x in v){if(bt(x))continue;const R=v[x],C=m[x];R!==C&&x!=="value"&&o(u,x,C,R,O,d.children,b,S,He)}"value"in v&&o(u,"value",m.value,v.value,O)}},A=(u,d,m,v,b,S,O,x,R)=>{const C=d.el=u?u.el:l(""),P=d.anchor=u?u.anchor:l("");let{patchFlag:U,dynamicChildren:H,slotScopeIds:W}=d;W&&(x=x?x.concat(W):W),u==null?(r(C,m,v),r(P,m,v),T(d.children||[],m,P,b,S,O,x,R)):U>0&&U&64&&H&&u.dynamicChildren?(E(u.dynamicChildren,H,m,b,S,O,x),(d.key!=null||b&&d===b.subTree)&&qr(u,d,!0)):V(u,d,m,P,b,S,O,x,R)},G=(u,d,m,v,b,S,O,x,R)=>{d.slotScopeIds=x,u==null?d.shapeFlag&512?b.ctx.activate(d,m,v,O,R):ie(d,m,v,b,S,O,R):fe(u,d,R)},ie=(u,d,m,v,b,S,O)=>{const x=u.component=wc(u,v,b);if(Gt(u)&&(x.ctx.renderer=pt),Ec(x),x.asyncDep){if(b&&b.registerDep(x,D),!u.el){const R=x.subTree=oe(be);K(null,R,d,m)}}else D(x,u,d,m,b,S,O)},fe=(u,d,m)=>{const v=d.component=u.component;if(Tl(u,d,m))if(v.asyncDep&&!v.asyncResolved){X(v,d,m);return}else v.next=d,vl(v.update),v.effect.dirty=!0,v.update();else d.el=u.el,v.vnode=d},D=(u,d,m,v,b,S,O)=>{const x=()=>{if(u.isMounted){let{next:P,bu:U,u:H,parent:W,vnode:z}=u;{const gt=zo(u);if(gt){P&&(P.el=z.el,X(u,P,O)),gt.asyncDep.then(()=>{u.isUnmounted||x()});return}}let Q=P,te;nt(u,!1),P?(P.el=z.el,X(u,P,O)):P=z,U&&pn(U),(te=P.props&&P.props.onVnodeBeforeUpdate)&&Ee(te,W,P,z),nt(u,!0);const ae=zn(u),Ae=u.subTree;u.subTree=ae,I(Ae,ae,h(Ae.el),Jt(Ae),u,b,S),P.el=ae.el,Q===null&&Al(u,ae.el),H&&ge(H,b),(te=P.props&&P.props.onVnodeUpdated)&&ge(()=>Ee(te,W,P,z),b)}else{let P;const{el:U,props:H}=d,{bm:W,m:z,parent:Q}=u,te=Ct(d);if(nt(u,!1),W&&pn(W),!te&&(P=H&&H.onVnodeBeforeMount)&&Ee(P,Q,d),nt(u,!0),U&&qn){const ae=()=>{u.subTree=zn(u),qn(U,u.subTree,u,b,null)};te?d.type.__asyncLoader().then(()=>!u.isUnmounted&&ae()):ae()}else{const ae=u.subTree=zn(u);I(null,ae,m,v,u,b,S),d.el=ae.el}if(z&&ge(z,b),!te&&(P=H&&H.onVnodeMounted)){const ae=d;ge(()=>Ee(P,Q,ae),b)}(d.shapeFlag&256||Q&&Ct(Q.vnode)&&Q.vnode.shapeFlag&256)&&u.a&&ge(u.a,b),u.isMounted=!0,d=m=v=null}},R=u.effect=new Ir(x,xe,()=>Fn(C),u.scope),C=u.update=()=>{R.dirty&&R.run()};C.id=u.uid,nt(u,!0),C()},X=(u,d,m)=>{d.component=u;const v=u.vnode.props;u.vnode=d,u.next=null,nc(u,d.props,v,m),oc(u,d.children,m),dt(),fs(u),ht()},V=(u,d,m,v,b,S,O,x,R=!1)=>{const C=u&&u.children,P=u?u.shapeFlag:0,U=d.children,{patchFlag:H,shapeFlag:W}=d;if(H>0){if(H&128){Yt(C,U,m,v,b,S,O,x,R);return}else if(H&256){$e(C,U,m,v,b,S,O,x,R);return}}W&8?(P&16&&He(C,b,S),U!==C&&f(m,U)):P&16?W&16?Yt(C,U,m,v,b,S,O,x,R):He(C,b,S,!0):(P&8&&f(m,""),W&16&&T(U,m,v,b,S,O,x,R))},$e=(u,d,m,v,b,S,O,x,R)=>{u=u||_t,d=d||_t;const C=u.length,P=d.length,U=Math.min(C,P);let H;for(H=0;HP?He(u,b,S,!0,!1,U):T(d,m,v,b,S,O,x,R,U)},Yt=(u,d,m,v,b,S,O,x,R)=>{let C=0;const P=d.length;let U=u.length-1,H=P-1;for(;C<=U&&C<=H;){const W=u[C],z=d[C]=R?ze(d[C]):Re(d[C]);if(it(W,z))I(W,z,m,null,b,S,O,x,R);else break;C++}for(;C<=U&&C<=H;){const W=u[U],z=d[H]=R?ze(d[H]):Re(d[H]);if(it(W,z))I(W,z,m,null,b,S,O,x,R);else break;U--,H--}if(C>U){if(C<=H){const W=H+1,z=WH)for(;C<=U;)Oe(u[C],b,S,!0),C++;else{const W=C,z=C,Q=new Map;for(C=z;C<=H;C++){const _e=d[C]=R?ze(d[C]):Re(d[C]);_e.key!=null&&Q.set(_e.key,C)}let te,ae=0;const Ae=H-z+1;let gt=!1,es=0;const Lt=new Array(Ae);for(C=0;C=Ae){Oe(_e,b,S,!0);continue}let Ie;if(_e.key!=null)Ie=Q.get(_e.key);else for(te=z;te<=H;te++)if(Lt[te-z]===0&&it(_e,d[te])){Ie=te;break}Ie===void 0?Oe(_e,b,S,!0):(Lt[Ie-z]=C+1,Ie>=es?es=Ie:gt=!0,I(_e,d[Ie],m,null,b,S,O,x,R),ae++)}const ts=gt?fc(Lt):_t;for(te=ts.length-1,C=Ae-1;C>=0;C--){const _e=z+C,Ie=d[_e],ns=_e+1{const{el:S,type:O,transition:x,children:R,shapeFlag:C}=u;if(C&6){tt(u.component.subTree,d,m,v);return}if(C&128){u.suspense.move(d,m,v);return}if(C&64){O.move(u,d,m,pt);return}if(O===me){r(S,d,m);for(let U=0;Ux.enter(S),b);else{const{leave:U,delayLeave:H,afterLeave:W}=x,z=()=>r(S,d,m),Q=()=>{U(S,()=>{z(),W&&W()})};H?H(S,z,Q):Q()}else r(S,d,m)},Oe=(u,d,m,v=!1,b=!1)=>{const{type:S,props:O,ref:x,children:R,dynamicChildren:C,shapeFlag:P,patchFlag:U,dirs:H}=u;if(x!=null&&xn(x,null,m,u,!0),P&256){d.ctx.deactivate(u);return}const W=P&1&&H,z=!Ct(u);let Q;if(z&&(Q=O&&O.onVnodeBeforeUnmount)&&Ee(Q,d,u),P&6)Si(u.component,m,v);else{if(P&128){u.suspense.unmount(m,v);return}W&&Me(u,null,d,"beforeUnmount"),P&64?u.type.remove(u,d,m,b,pt,v):C&&(S!==me||U>0&&U&64)?He(C,d,m,!1,!0):(S===me&&U&384||!b&&P&16)&&He(R,d,m),v&&Qr(u)}(z&&(Q=O&&O.onVnodeUnmounted)||W)&&ge(()=>{Q&&Ee(Q,d,u),W&&Me(u,null,d,"unmounted")},m)},Qr=u=>{const{type:d,el:m,anchor:v,transition:b}=u;if(d===me){xi(m,v);return}if(d===Ht){_(u);return}const S=()=>{s(m),b&&!b.persisted&&b.afterLeave&&b.afterLeave()};if(u.shapeFlag&1&&b&&!b.persisted){const{leave:O,delayLeave:x}=b,R=()=>O(m,S);x?x(u.el,S,R):R()}else S()},xi=(u,d)=>{let m;for(;u!==d;)m=p(u),s(u),u=m;s(d)},Si=(u,d,m)=>{const{bum:v,scope:b,update:S,subTree:O,um:x}=u;v&&pn(v),b.stop(),S&&(S.active=!1,Oe(O,u,d,m)),x&&ge(x,d),ge(()=>{u.isUnmounted=!0},d),d&&d.pendingBranch&&!d.isUnmounted&&u.asyncDep&&!u.asyncResolved&&u.suspenseId===d.pendingId&&(d.deps--,d.deps===0&&d.resolve())},He=(u,d,m,v=!1,b=!1,S=0)=>{for(let O=S;Ou.shapeFlag&6?Jt(u.component.subTree):u.shapeFlag&128?u.suspense.next():p(u.anchor||u.el);let Kn=!1;const Zr=(u,d,m)=>{u==null?d._vnode&&Oe(d._vnode,null,null,!0):I(d._vnode||null,u,d,null,null,null,m),Kn||(Kn=!0,fs(),wn(),Kn=!1),d._vnode=u},pt={p:I,um:Oe,m:tt,r:Qr,mt:ie,mc:T,pc:V,pbc:E,n:Jt,o:e};let Wn,qn;return t&&([Wn,qn]=t(pt)),{render:Zr,hydrate:Wn,createApp:Zl(Zr,Wn)}}function Qn({type:e,props:t},n){return n==="svg"&&e==="foreignObject"||n==="mathml"&&e==="annotation-xml"&&t&&t.encoding&&t.encoding.includes("html")?void 0:n}function nt({effect:e,update:t},n){e.allowRecurse=t.allowRecurse=n}function Go(e,t){return(!e||e&&!e.pendingBranch)&&t&&!t.persisted}function qr(e,t,n=!1){const r=e.children,s=t.children;if(B(r)&&B(s))for(let o=0;o>1,e[n[l]]0&&(t[r]=n[o-1]),n[o]=r)}}for(o=n.length,i=n[o-1];o-- >0;)n[o]=i,i=t[i];return n}function zo(e){const t=e.subTree.component;if(t)return t.asyncDep&&!t.asyncResolved?t:zo(t)}const dc=e=>e.__isTeleport,$t=e=>e&&(e.disabled||e.disabled===""),Cs=e=>typeof SVGElement<"u"&&e instanceof SVGElement,xs=e=>typeof MathMLElement=="function"&&e instanceof MathMLElement,wr=(e,t)=>{const n=e&&e.to;return ne(n)?t?t(n):null:n},hc={name:"Teleport",__isTeleport:!0,process(e,t,n,r,s,o,i,l,c,a){const{mc:f,pc:h,pbc:p,o:{insert:y,querySelector:w,createText:I,createComment:N}}=a,K=$t(t.props);let{shapeFlag:k,children:g,dynamicChildren:_}=t;if(e==null){const M=t.el=I(""),L=t.anchor=I("");y(M,n,r),y(L,n,r);const F=t.target=wr(t.props,w),T=t.targetAnchor=I("");F&&(y(T,F),i==="svg"||Cs(F)?i="svg":(i==="mathml"||xs(F))&&(i="mathml"));const $=(E,j)=>{k&16&&f(g,E,j,s,o,i,l,c)};K?$(n,L):F&&$(F,T)}else{t.el=e.el;const M=t.anchor=e.anchor,L=t.target=e.target,F=t.targetAnchor=e.targetAnchor,T=$t(e.props),$=T?n:L,E=T?M:F;if(i==="svg"||Cs(L)?i="svg":(i==="mathml"||xs(L))&&(i="mathml"),_?(p(e.dynamicChildren,_,$,s,o,i,l),qr(e,t,!0)):c||h(e,t,$,E,s,o,i,l,!1),K)T?t.props&&e.props&&t.props.to!==e.props.to&&(t.props.to=e.props.to):cn(t,n,M,a,1);else if((t.props&&t.props.to)!==(e.props&&e.props.to)){const j=t.target=wr(t.props,w);j&&cn(t,j,null,a,0)}else T&&cn(t,L,F,a,1)}Xo(t)},remove(e,t,n,r,{um:s,o:{remove:o}},i){const{shapeFlag:l,children:c,anchor:a,targetAnchor:f,target:h,props:p}=e;if(h&&o(f),i&&o(a),l&16){const y=i||!$t(p);for(let w=0;w0?Le||_t:null,gc(),kt>0&&Le&&Le.push(e),e}function fu(e,t,n,r,s,o){return Jo(ei(e,t,n,r,s,o,!0))}function Qo(e,t,n,r,s){return Jo(oe(e,t,n,r,s,!0))}function Sn(e){return e?e.__v_isVNode===!0:!1}function it(e,t){return e.type===t.type&&e.key===t.key}const Un="__vInternal",Zo=({key:e})=>e??null,gn=({ref:e,ref_key:t,ref_for:n})=>(typeof e=="number"&&(e=""+e),e!=null?ne(e)||de(e)||q(e)?{i:le,r:e,k:t,f:!!n}:e:null);function ei(e,t=null,n=null,r=0,s=null,o=e===me?0:1,i=!1,l=!1){const c={__v_isVNode:!0,__v_skip:!0,type:e,props:t,key:t&&Zo(t),ref:t&&gn(t),scopeId:Hn,slotScopeIds:null,children:n,component:null,suspense:null,ssContent:null,ssFallback:null,dirs:null,transition:null,el:null,anchor:null,target:null,targetAnchor:null,staticCount:0,shapeFlag:o,patchFlag:r,dynamicProps:s,dynamicChildren:null,appContext:null,ctx:le};return l?(Gr(c,n),o&128&&e.normalize(c)):n&&(c.shapeFlag|=ne(n)?8:16),kt>0&&!i&&Le&&(c.patchFlag>0||o&6)&&c.patchFlag!==32&&Le.push(c),c}const oe=mc;function mc(e,t=null,n=null,r=0,s=null,o=!1){if((!e||e===Lo)&&(e=be),Sn(e)){const l=et(e,t,!0);return n&&Gr(l,n),kt>0&&!o&&Le&&(l.shapeFlag&6?Le[Le.indexOf(e)]=l:Le.push(l)),l.patchFlag|=-2,l}if(Tc(e)&&(e=e.__vccOpts),t){t=yc(t);let{class:l,style:c}=t;l&&!ne(l)&&(t.class=Or(l)),Z(c)&&(bo(c)&&!B(c)&&(c=ce({},c)),t.style=Lr(c))}const i=ne(e)?1:Rl(e)?128:dc(e)?64:Z(e)?4:q(e)?2:0;return ei(e,t,n,r,s,i,o,!0)}function yc(e){return e?bo(e)||Un in e?ce({},e):e:null}function et(e,t,n=!1){const{props:r,ref:s,patchFlag:o,children:i}=e,l=t?_c(r||{},t):r;return{__v_isVNode:!0,__v_skip:!0,type:e.type,props:l,key:l&&Zo(l),ref:t&&t.ref?n&&s?B(s)?s.concat(gn(t)):[s,gn(t)]:gn(t):s,scopeId:e.scopeId,slotScopeIds:e.slotScopeIds,children:i,target:e.target,targetAnchor:e.targetAnchor,staticCount:e.staticCount,shapeFlag:e.shapeFlag,patchFlag:t&&e.type!==me?o===-1?16:o|16:o,dynamicProps:e.dynamicProps,dynamicChildren:e.dynamicChildren,appContext:e.appContext,dirs:e.dirs,transition:e.transition,component:e.component,suspense:e.suspense,ssContent:e.ssContent&&et(e.ssContent),ssFallback:e.ssFallback&&et(e.ssFallback),el:e.el,anchor:e.anchor,ctx:e.ctx,ce:e.ce}}function ti(e=" ",t=0){return oe(Tt,null,e,t)}function du(e,t){const n=oe(Ht,null,e);return n.staticCount=t,n}function hu(e="",t=!1){return t?(Yo(),Qo(be,null,e)):oe(be,null,e)}function Re(e){return e==null||typeof e=="boolean"?oe(be):B(e)?oe(me,null,e.slice()):typeof e=="object"?ze(e):oe(Tt,null,String(e))}function ze(e){return e.el===null&&e.patchFlag!==-1||e.memo?e:et(e)}function Gr(e,t){let n=0;const{shapeFlag:r}=e;if(t==null)t=null;else if(B(t))n=16;else if(typeof t=="object")if(r&65){const s=t.default;s&&(s._c&&(s._d=!1),Gr(e,s()),s._c&&(s._d=!0));return}else{n=32;const s=t._;!s&&!(Un in t)?t._ctx=le:s===3&&le&&(le.slots._===1?t._=1:(t._=2,e.patchFlag|=1024))}else q(t)?(t={default:t,_ctx:le},n=32):(t=String(t),r&64?(n=16,t=[ti(t)]):n=8);e.children=t,e.shapeFlag|=n}function _c(...e){const t={};for(let n=0;nue||le;let Tn,Er;{const e=so(),t=(n,r)=>{let s;return(s=e[n])||(s=e[n]=[]),s.push(r),o=>{s.length>1?s.forEach(i=>i(o)):s[0](o)}};Tn=t("__VUE_INSTANCE_SETTERS__",n=>ue=n),Er=t("__VUE_SSR_SETTERS__",n=>Xt=n)}const zt=e=>{const t=ue;return Tn(e),e.scope.on(),()=>{e.scope.off(),Tn(t)}},Ts=()=>{ue&&ue.scope.off(),Tn(null)};function ni(e){return e.vnode.shapeFlag&4}let Xt=!1;function Ec(e,t=!1){t&&Er(t);const{props:n,children:r}=e.vnode,s=ni(e);tc(e,n,s,t),sc(e,r);const o=s?Cc(e,t):void 0;return t&&Er(!1),o}function Cc(e,t){const n=e.type;e.accessCache=Object.create(null),e.proxy=Mt(new Proxy(e.ctx,Wl));const{setup:r}=n;if(r){const s=e.setupContext=r.length>1?si(e):null,o=zt(e);dt();const i=Je(r,e,0,[e.props,s]);if(ht(),o(),to(i)){if(i.then(Ts,Ts),t)return i.then(l=>{As(e,l,t)}).catch(l=>{qt(l,e,0)});e.asyncDep=i}else As(e,i,t)}else ri(e,t)}function As(e,t,n){q(t)?e.type.__ssrInlineRender?e.ssrRender=t:e.render=t:Z(t)&&(e.setupState=xo(t)),ri(e,n)}let Rs;function ri(e,t,n){const r=e.type;if(!e.render){if(!t&&Rs&&!r.render){const s=r.template||Kr(e).template;if(s){const{isCustomElement:o,compilerOptions:i}=e.appContext.config,{delimiters:l,compilerOptions:c}=r,a=ce(ce({isCustomElement:o,delimiters:l},i),c);r.render=Rs(s,a)}}e.render=r.render||xe}{const s=zt(e);dt();try{Gl(e)}finally{ht(),s()}}}function xc(e){return e.attrsProxy||(e.attrsProxy=new Proxy(e.attrs,{get(t,n){return ye(e,"get","$attrs"),t[n]}}))}function si(e){const t=n=>{e.exposed=n||{}};return{get attrs(){return xc(e)},slots:e.slots,emit:e.emit,expose:t}}function kn(e){if(e.exposed)return e.exposeProxy||(e.exposeProxy=new Proxy(xo(Mt(e.exposed)),{get(t,n){if(n in t)return t[n];if(n in Nt)return Nt[n](e)},has(t,n){return n in t||n in Nt}}))}function Sc(e,t=!0){return q(e)?e.displayName||e.name:e.name||t&&e.__name}function Tc(e){return q(e)&&"__vccOpts"in e}const re=(e,t)=>cl(e,t,Xt);function Cr(e,t,n){const r=arguments.length;return r===2?Z(t)&&!B(t)?Sn(t)?oe(e,null,[t]):oe(e,t):oe(e,null,t):(r>3?n=Array.prototype.slice.call(arguments,2):r===3&&Sn(n)&&(n=[n]),oe(e,t,n))}const Ac="3.4.21";/** +**/function Je(e,t,n,r){try{return r?e(...r):e()}catch(s){qt(s,t,n)}}function Se(e,t,n,r){if(q(e)){const o=Je(e,t,n,r);return o&&to(o)&&o.catch(i=>{qt(i,t,n)}),o}const s=[];for(let o=0;o>>1,s=he[r],o=Bt(s);oPe&&he.splice(t,1)}function bl(e){B(e)?Et.push(...e):(!qe||!qe.includes(e,e.allowRecurse?ot+1:ot))&&Et.push(e),To()}function fs(e,t,n=Ut?Pe+1:0){for(;nBt(n)-Bt(r));if(Et.length=0,qe){qe.push(...t);return}for(qe=t,ot=0;ote.id==null?1/0:e.id,wl=(e,t)=>{const n=Bt(e)-Bt(t);if(n===0){if(e.pre&&!t.pre)return-1;if(t.pre&&!e.pre)return 1}return n};function Ao(e){pr=!1,Ut=!0,he.sort(wl);try{for(Pe=0;Pene(y)?y.trim():y)),h&&(s=n.map(ur))}let l,c=r[l=hn(t)]||r[l=hn(Fe(t))];!c&&o&&(c=r[l=hn(ft(t))]),c&&Se(c,e,6,s);const a=r[l+"Once"];if(a){if(!e.emitted)e.emitted={};else if(e.emitted[l])return;e.emitted[l]=!0,Se(a,e,6,s)}}function Ro(e,t,n=!1){const r=t.emitsCache,s=r.get(e);if(s!==void 0)return s;const o=e.emits;let i={},l=!1;if(!q(e)){const c=a=>{const f=Ro(a,t,!0);f&&(l=!0,ce(i,f))};!n&&t.mixins.length&&t.mixins.forEach(c),e.extends&&c(e.extends),e.mixins&&e.mixins.forEach(c)}return!o&&!l?(Z(e)&&r.set(e,null),null):(B(o)?o.forEach(c=>i[c]=null):ce(i,o),Z(e)&&r.set(e,i),i)}function $n(e,t){return!e||!Wt(t)?!1:(t=t.slice(2).replace(/Once$/,""),Y(e,t[0].toLowerCase()+t.slice(1))||Y(e,ft(t))||Y(e,t))}let le=null,Hn=null;function En(e){const t=le;return le=e,Hn=e&&e.type.__scopeId||null,t}function Za(e){Hn=e}function eu(){Hn=null}function Cl(e,t=le,n){if(!t||e._n)return e;const r=(...s)=>{r._d&&Ss(-1);const o=En(t);let i;try{i=e(...s)}finally{En(o),r._d&&Ss(1)}return i};return r._n=!0,r._c=!0,r._d=!0,r}function zn(e){const{type:t,vnode:n,proxy:r,withProxy:s,props:o,propsOptions:[i],slots:l,attrs:c,emit:a,render:f,renderCache:h,data:p,setupState:y,ctx:v,inheritAttrs:I}=e;let N,K;const k=En(e);try{if(n.shapeFlag&4){const _=s||r,M=_;N=Re(f.call(M,_,h,o,y,p,v)),K=c}else{const _=t;N=Re(_.length>1?_(o,{attrs:c,slots:l,emit:a}):_(o,null)),K=t.props?c:xl(c)}}catch(_){jt.length=0,qt(_,e,1),N=oe(be)}let g=N;if(K&&I!==!1){const _=Object.keys(K),{shapeFlag:M}=g;_.length&&M&7&&(i&&_.some(Tr)&&(K=Sl(K,i)),g=et(g,K))}return n.dirs&&(g=et(g),g.dirs=g.dirs?g.dirs.concat(n.dirs):n.dirs),n.transition&&(g.transition=n.transition),N=g,En(k),N}const xl=e=>{let t;for(const n in e)(n==="class"||n==="style"||Wt(n))&&((t||(t={}))[n]=e[n]);return t},Sl=(e,t)=>{const n={};for(const r in e)(!Tr(r)||!(r.slice(9)in t))&&(n[r]=e[r]);return n};function Tl(e,t,n){const{props:r,children:s,component:o}=e,{props:i,children:l,patchFlag:c}=t,a=o.emitsOptions;if(t.dirs||t.transition)return!0;if(n&&c>=0){if(c&1024)return!0;if(c&16)return r?ds(r,i,a):!!i;if(c&8){const f=t.dynamicProps;for(let h=0;he.__isSuspense;function Io(e,t){t&&t.pendingBranch?B(e)?t.effects.push(...e):t.effects.push(e):bl(e)}const Ll=Symbol.for("v-scx"),Ol=()=>xt(Ll);function Br(e,t){return jn(e,null,t)}function ru(e,t){return jn(e,null,{flush:"post"})}const rn={};function Ve(e,t,n){return jn(e,t,n)}function jn(e,t,{immediate:n,deep:r,flush:s,once:o,onTrack:i,onTrigger:l}=ee){if(t&&o){const L=t;t=(...F)=>{L(...F),M()}}const c=ue,a=L=>r===!0?L:lt(L,r===!1?1:void 0);let f,h=!1,p=!1;if(de(e)?(f=()=>e.value,h=bn(e)):wt(e)?(f=()=>a(e),h=!0):B(e)?(p=!0,h=e.some(L=>wt(L)||bn(L)),f=()=>e.map(L=>{if(de(L))return L.value;if(wt(L))return a(L);if(q(L))return Je(L,c,2)})):q(e)?t?f=()=>Je(e,c,2):f=()=>(y&&y(),Se(e,c,3,[v])):f=xe,t&&r){const L=f;f=()=>lt(L())}let y,v=L=>{y=g.onStop=()=>{Je(L,c,4),y=g.onStop=void 0}},I;if(Xt)if(v=xe,t?n&&Se(t,c,3,[f(),p?[]:void 0,v]):f(),s==="sync"){const L=Ol();I=L.__watcherHandles||(L.__watcherHandles=[])}else return xe;let N=p?new Array(e.length).fill(rn):rn;const K=()=>{if(!(!g.active||!g.dirty))if(t){const L=g.run();(r||h||(p?L.some((F,T)=>Ze(F,N[T])):Ze(L,N)))&&(y&&y(),Se(t,c,3,[L,N===rn?void 0:p&&N[0]===rn?[]:N,v]),N=L)}else g.run()};K.allowRecurse=!!t;let k;s==="sync"?k=K:s==="post"?k=()=>ge(K,c&&c.suspense):(K.pre=!0,c&&(K.id=c.uid),k=()=>Fn(K));const g=new Ir(f,xe,k),_=lo(),M=()=>{g.stop(),_&&Ar(_.effects,g)};return t?n?K():N=g.run():s==="post"?ge(g.run.bind(g),c&&c.suspense):g.run(),I&&I.push(M),M}function Il(e,t,n){const r=this.proxy,s=ne(e)?e.includes(".")?Mo(r,e):()=>r[e]:e.bind(r,r);let o;q(t)?o=t:(o=t.handler,n=t);const i=zt(this),l=jn(s,o.bind(r),n);return i(),l}function Mo(e,t){const n=t.split(".");return()=>{let r=e;for(let s=0;s0){if(n>=t)return e;n++}if(r=r||new Set,r.has(e))return e;if(r.add(e),de(e))lt(e.value,t,n,r);else if(B(e))for(let s=0;s{lt(s,t,n,r)});else if(ro(e))for(const s in e)lt(e[s],t,n,r);return e}function su(e,t){if(le===null)return e;const n=kn(le)||le.proxy,r=e.dirs||(e.dirs=[]);for(let s=0;s{e.isMounted=!0}),Ho(()=>{e.isUnmounting=!0}),e}const we=[Function,Array],Po={mode:String,appear:Boolean,persisted:Boolean,onBeforeEnter:we,onEnter:we,onAfterEnter:we,onEnterCancelled:we,onBeforeLeave:we,onLeave:we,onAfterLeave:we,onLeaveCancelled:we,onBeforeAppear:we,onAppear:we,onAfterAppear:we,onAppearCancelled:we},Pl={name:"BaseTransition",props:Po,setup(e,{slots:t}){const n=Bn(),r=Ml();return()=>{const s=t.default&&Fo(t.default(),!0);if(!s||!s.length)return;let o=s[0];if(s.length>1){for(const p of s)if(p.type!==be){o=p;break}}const i=J(e),{mode:l}=i;if(r.isLeaving)return Xn(o);const c=ps(o);if(!c)return Xn(o);const a=gr(c,i,r,n);mr(c,a);const f=n.subTree,h=f&&ps(f);if(h&&h.type!==be&&!it(c,h)){const p=gr(h,i,r,n);if(mr(h,p),l==="out-in")return r.isLeaving=!0,p.afterLeave=()=>{r.isLeaving=!1,n.update.active!==!1&&(n.effect.dirty=!0,n.update())},Xn(o);l==="in-out"&&c.type!==be&&(p.delayLeave=(y,v,I)=>{const N=No(r,h);N[String(h.key)]=h,y[Ge]=()=>{v(),y[Ge]=void 0,delete a.delayedLeave},a.delayedLeave=I})}return o}}},Nl=Pl;function No(e,t){const{leavingVNodes:n}=e;let r=n.get(t.type);return r||(r=Object.create(null),n.set(t.type,r)),r}function gr(e,t,n,r){const{appear:s,mode:o,persisted:i=!1,onBeforeEnter:l,onEnter:c,onAfterEnter:a,onEnterCancelled:f,onBeforeLeave:h,onLeave:p,onAfterLeave:y,onLeaveCancelled:v,onBeforeAppear:I,onAppear:N,onAfterAppear:K,onAppearCancelled:k}=t,g=String(e.key),_=No(n,e),M=(T,$)=>{T&&Se(T,r,9,$)},L=(T,$)=>{const E=$[1];M(T,$),B(T)?T.every(j=>j.length<=1)&&E():T.length<=1&&E()},F={mode:o,persisted:i,beforeEnter(T){let $=l;if(!n.isMounted)if(s)$=I||l;else return;T[Ge]&&T[Ge](!0);const E=_[g];E&&it(e,E)&&E.el[Ge]&&E.el[Ge](),M($,[T])},enter(T){let $=c,E=a,j=f;if(!n.isMounted)if(s)$=N||c,E=K||a,j=k||f;else return;let A=!1;const G=T[sn]=ie=>{A||(A=!0,ie?M(j,[T]):M(E,[T]),F.delayedLeave&&F.delayedLeave(),T[sn]=void 0)};$?L($,[T,G]):G()},leave(T,$){const E=String(e.key);if(T[sn]&&T[sn](!0),n.isUnmounting)return $();M(h,[T]);let j=!1;const A=T[Ge]=G=>{j||(j=!0,$(),G?M(v,[T]):M(y,[T]),T[Ge]=void 0,_[E]===e&&delete _[E])};_[E]=e,p?L(p,[T,A]):A()},clone(T){return gr(T,t,n,r)}};return F}function Xn(e){if(Gt(e))return e=et(e),e.children=null,e}function ps(e){return Gt(e)?e.children?e.children[0]:void 0:e}function mr(e,t){e.shapeFlag&6&&e.component?mr(e.component.subTree,t):e.shapeFlag&128?(e.ssContent.transition=t.clone(e.ssContent),e.ssFallback.transition=t.clone(e.ssFallback)):e.transition=t}function Fo(e,t=!1,n){let r=[],s=0;for(let o=0;o1)for(let o=0;o!!e.type.__asyncLoader;/*! #__NO_SIDE_EFFECTS__ */function ou(e){q(e)&&(e={loader:e});const{loader:t,loadingComponent:n,errorComponent:r,delay:s=200,timeout:o,suspensible:i=!0,onError:l}=e;let c=null,a,f=0;const h=()=>(f++,c=null,p()),p=()=>{let y;return c||(y=c=t().catch(v=>{if(v=v instanceof Error?v:new Error(String(v)),l)return new Promise((I,N)=>{l(v,()=>I(h()),()=>N(v),f+1)});throw v}).then(v=>y!==c&&c?c:(v&&(v.__esModule||v[Symbol.toStringTag]==="Module")&&(v=v.default),a=v,v)))};return kr({name:"AsyncComponentWrapper",__asyncLoader:p,get __asyncResolved(){return a},setup(){const y=ue;if(a)return()=>Yn(a,y);const v=k=>{c=null,qt(k,y,13,!r)};if(i&&y.suspense||Xt)return p().then(k=>()=>Yn(k,y)).catch(k=>(v(k),()=>r?oe(r,{error:k}):null));const I=se(!1),N=se(),K=se(!!s);return s&&setTimeout(()=>{K.value=!1},s),o!=null&&setTimeout(()=>{if(!I.value&&!N.value){const k=new Error(`Async component timed out after ${o}ms.`);v(k),N.value=k}},o),p().then(()=>{I.value=!0,y.parent&&Gt(y.parent.vnode)&&(y.parent.effect.dirty=!0,Fn(y.parent.update))}).catch(k=>{v(k),N.value=k}),()=>{if(I.value&&a)return Yn(a,y);if(N.value&&r)return oe(r,{error:N.value});if(n&&!K.value)return oe(n)}}})}function Yn(e,t){const{ref:n,props:r,children:s,ce:o}=t.vnode,i=oe(e,r,s);return i.ref=n,i.ce=o,delete t.vnode.ce,i}const Gt=e=>e.type.__isKeepAlive;function Fl(e,t){$o(e,"a",t)}function $l(e,t){$o(e,"da",t)}function $o(e,t,n=ue){const r=e.__wdc||(e.__wdc=()=>{let s=n;for(;s;){if(s.isDeactivated)return;s=s.parent}return e()});if(Vn(t,r,n),n){let s=n.parent;for(;s&&s.parent;)Gt(s.parent.vnode)&&Hl(r,t,n,s),s=s.parent}}function Hl(e,t,n,r){const s=Vn(t,e,r,!0);Dn(()=>{Ar(r[t],s)},n)}function Vn(e,t,n=ue,r=!1){if(n){const s=n[e]||(n[e]=[]),o=t.__weh||(t.__weh=(...i)=>{if(n.isUnmounted)return;dt();const l=zt(n),c=Se(t,n,e,i);return l(),ht(),c});return r?s.unshift(o):s.push(o),o}}const Ue=e=>(t,n=ue)=>(!Xt||e==="sp")&&Vn(e,(...r)=>t(...r),n),jl=Ue("bm"),Rt=Ue("m"),Vl=Ue("bu"),Dl=Ue("u"),Ho=Ue("bum"),Dn=Ue("um"),Ul=Ue("sp"),Bl=Ue("rtg"),kl=Ue("rtc");function Kl(e,t=ue){Vn("ec",e,t)}function iu(e,t,n,r){let s;const o=n&&n[r];if(B(e)||ne(e)){s=new Array(e.length);for(let i=0,l=e.length;it(i,l,void 0,o&&o[l]));else{const i=Object.keys(e);s=new Array(i.length);for(let l=0,c=i.length;lSn(t)?!(t.type===be||t.type===me&&!jo(t.children)):!0)?e:null}function cu(e,t){const n={};for(const r in e)n[t&&/[A-Z]/.test(r)?`on:${r}`:hn(r)]=e[r];return n}const yr=e=>e?ni(e)?kn(e)||e.proxy:yr(e.parent):null,Nt=ce(Object.create(null),{$:e=>e,$el:e=>e.vnode.el,$data:e=>e.data,$props:e=>e.props,$attrs:e=>e.attrs,$slots:e=>e.slots,$refs:e=>e.refs,$parent:e=>yr(e.parent),$root:e=>yr(e.root),$emit:e=>e.emit,$options:e=>Kr(e),$forceUpdate:e=>e.f||(e.f=()=>{e.effect.dirty=!0,Fn(e.update)}),$nextTick:e=>e.n||(e.n=Nn.bind(e.proxy)),$watch:e=>Il.bind(e)}),Jn=(e,t)=>e!==ee&&!e.__isScriptSetup&&Y(e,t),Wl={get({_:e},t){const{ctx:n,setupState:r,data:s,props:o,accessCache:i,type:l,appContext:c}=e;let a;if(t[0]!=="$"){const y=i[t];if(y!==void 0)switch(y){case 1:return r[t];case 2:return s[t];case 4:return n[t];case 3:return o[t]}else{if(Jn(r,t))return i[t]=1,r[t];if(s!==ee&&Y(s,t))return i[t]=2,s[t];if((a=e.propsOptions[0])&&Y(a,t))return i[t]=3,o[t];if(n!==ee&&Y(n,t))return i[t]=4,n[t];_r&&(i[t]=0)}}const f=Nt[t];let h,p;if(f)return t==="$attrs"&&ye(e,"get",t),f(e);if((h=l.__cssModules)&&(h=h[t]))return h;if(n!==ee&&Y(n,t))return i[t]=4,n[t];if(p=c.config.globalProperties,Y(p,t))return p[t]},set({_:e},t,n){const{data:r,setupState:s,ctx:o}=e;return Jn(s,t)?(s[t]=n,!0):r!==ee&&Y(r,t)?(r[t]=n,!0):Y(e.props,t)||t[0]==="$"&&t.slice(1)in e?!1:(o[t]=n,!0)},has({_:{data:e,setupState:t,accessCache:n,ctx:r,appContext:s,propsOptions:o}},i){let l;return!!n[i]||e!==ee&&Y(e,i)||Jn(t,i)||(l=o[0])&&Y(l,i)||Y(r,i)||Y(Nt,i)||Y(s.config.globalProperties,i)},defineProperty(e,t,n){return n.get!=null?e._.accessCache[t]=0:Y(n,"value")&&this.set(e,t,n.value,null),Reflect.defineProperty(e,t,n)}};function au(){return ql().slots}function ql(){const e=Bn();return e.setupContext||(e.setupContext=si(e))}function gs(e){return B(e)?e.reduce((t,n)=>(t[n]=null,t),{}):e}let _r=!0;function Gl(e){const t=Kr(e),n=e.proxy,r=e.ctx;_r=!1,t.beforeCreate&&ms(t.beforeCreate,e,"bc");const{data:s,computed:o,methods:i,watch:l,provide:c,inject:a,created:f,beforeMount:h,mounted:p,beforeUpdate:y,updated:v,activated:I,deactivated:N,beforeDestroy:K,beforeUnmount:k,destroyed:g,unmounted:_,render:M,renderTracked:L,renderTriggered:F,errorCaptured:T,serverPrefetch:$,expose:E,inheritAttrs:j,components:A,directives:G,filters:ie}=t;if(a&&zl(a,r,null),i)for(const X in i){const V=i[X];q(V)&&(r[X]=V.bind(n))}if(s){const X=s.call(n,n);Z(X)&&(e.data=Mn(X))}if(_r=!0,o)for(const X in o){const V=o[X],$e=q(V)?V.bind(n,n):q(V.get)?V.get.bind(n,n):xe,Yt=!q(V)&&q(V.set)?V.set.bind(n):xe,tt=re({get:$e,set:Yt});Object.defineProperty(r,X,{enumerable:!0,configurable:!0,get:()=>tt.value,set:Oe=>tt.value=Oe})}if(l)for(const X in l)Vo(l[X],r,n,X);if(c){const X=q(c)?c.call(n):c;Reflect.ownKeys(X).forEach(V=>{ec(V,X[V])})}f&&ms(f,e,"c");function D(X,V){B(V)?V.forEach($e=>X($e.bind(n))):V&&X(V.bind(n))}if(D(jl,h),D(Rt,p),D(Vl,y),D(Dl,v),D(Fl,I),D($l,N),D(Kl,T),D(kl,L),D(Bl,F),D(Ho,k),D(Dn,_),D(Ul,$),B(E))if(E.length){const X=e.exposed||(e.exposed={});E.forEach(V=>{Object.defineProperty(X,V,{get:()=>n[V],set:$e=>n[V]=$e})})}else e.exposed||(e.exposed={});M&&e.render===xe&&(e.render=M),j!=null&&(e.inheritAttrs=j),A&&(e.components=A),G&&(e.directives=G)}function zl(e,t,n=xe){B(e)&&(e=vr(e));for(const r in e){const s=e[r];let o;Z(s)?"default"in s?o=xt(s.from||r,s.default,!0):o=xt(s.from||r):o=xt(s),de(o)?Object.defineProperty(t,r,{enumerable:!0,configurable:!0,get:()=>o.value,set:i=>o.value=i}):t[r]=o}}function ms(e,t,n){Se(B(e)?e.map(r=>r.bind(t.proxy)):e.bind(t.proxy),t,n)}function Vo(e,t,n,r){const s=r.includes(".")?Mo(n,r):()=>n[r];if(ne(e)){const o=t[e];q(o)&&Ve(s,o)}else if(q(e))Ve(s,e.bind(n));else if(Z(e))if(B(e))e.forEach(o=>Vo(o,t,n,r));else{const o=q(e.handler)?e.handler.bind(n):t[e.handler];q(o)&&Ve(s,o,e)}}function Kr(e){const t=e.type,{mixins:n,extends:r}=t,{mixins:s,optionsCache:o,config:{optionMergeStrategies:i}}=e.appContext,l=o.get(t);let c;return l?c=l:!s.length&&!n&&!r?c=t:(c={},s.length&&s.forEach(a=>Cn(c,a,i,!0)),Cn(c,t,i)),Z(t)&&o.set(t,c),c}function Cn(e,t,n,r=!1){const{mixins:s,extends:o}=t;o&&Cn(e,o,n,!0),s&&s.forEach(i=>Cn(e,i,n,!0));for(const i in t)if(!(r&&i==="expose")){const l=Xl[i]||n&&n[i];e[i]=l?l(e[i],t[i]):t[i]}return e}const Xl={data:ys,props:_s,emits:_s,methods:It,computed:It,beforeCreate:pe,created:pe,beforeMount:pe,mounted:pe,beforeUpdate:pe,updated:pe,beforeDestroy:pe,beforeUnmount:pe,destroyed:pe,unmounted:pe,activated:pe,deactivated:pe,errorCaptured:pe,serverPrefetch:pe,components:It,directives:It,watch:Jl,provide:ys,inject:Yl};function ys(e,t){return t?e?function(){return ce(q(e)?e.call(this,this):e,q(t)?t.call(this,this):t)}:t:e}function Yl(e,t){return It(vr(e),vr(t))}function vr(e){if(B(e)){const t={};for(let n=0;n1)return n&&q(t)?t.call(r&&r.proxy):t}}function tc(e,t,n,r=!1){const s={},o={};_n(o,Un,1),e.propsDefaults=Object.create(null),Uo(e,t,s,o);for(const i in e.propsOptions[0])i in s||(s[i]=void 0);n?e.props=r?s:ll(s):e.type.props?e.props=s:e.props=o,e.attrs=o}function nc(e,t,n,r){const{props:s,attrs:o,vnode:{patchFlag:i}}=e,l=J(s),[c]=e.propsOptions;let a=!1;if((r||i>0)&&!(i&16)){if(i&8){const f=e.vnode.dynamicProps;for(let h=0;h{c=!0;const[p,y]=Bo(h,t,!0);ce(i,p),y&&l.push(...y)};!n&&t.mixins.length&&t.mixins.forEach(f),e.extends&&f(e.extends),e.mixins&&e.mixins.forEach(f)}if(!o&&!c)return Z(e)&&r.set(e,_t),_t;if(B(o))for(let f=0;f-1,y[1]=I<0||v-1||Y(y,"default"))&&l.push(h)}}}const a=[i,l];return Z(e)&&r.set(e,a),a}function vs(e){return e[0]!=="$"&&!bt(e)}function bs(e){return e===null?"null":typeof e=="function"?e.name||"":typeof e=="object"&&e.constructor&&e.constructor.name||""}function ws(e,t){return bs(e)===bs(t)}function Es(e,t){return B(t)?t.findIndex(n=>ws(n,e)):q(t)&&ws(t,e)?0:-1}const ko=e=>e[0]==="_"||e==="$stable",Wr=e=>B(e)?e.map(Re):[Re(e)],rc=(e,t,n)=>{if(t._n)return t;const r=Cl((...s)=>Wr(t(...s)),n);return r._c=!1,r},Ko=(e,t,n)=>{const r=e._ctx;for(const s in e){if(ko(s))continue;const o=e[s];if(q(o))t[s]=rc(s,o,r);else if(o!=null){const i=Wr(o);t[s]=()=>i}}},Wo=(e,t)=>{const n=Wr(t);e.slots.default=()=>n},sc=(e,t)=>{if(e.vnode.shapeFlag&32){const n=t._;n?(e.slots=J(t),_n(t,"_",n)):Ko(t,e.slots={})}else e.slots={},t&&Wo(e,t);_n(e.slots,Un,1)},oc=(e,t,n)=>{const{vnode:r,slots:s}=e;let o=!0,i=ee;if(r.shapeFlag&32){const l=t._;l?n&&l===1?o=!1:(ce(s,t),!n&&l===1&&delete s._):(o=!t.$stable,Ko(t,s)),i=t}else t&&(Wo(e,t),i={default:1});if(o)for(const l in s)!ko(l)&&i[l]==null&&delete s[l]};function xn(e,t,n,r,s=!1){if(B(e)){e.forEach((p,y)=>xn(p,t&&(B(t)?t[y]:t),n,r,s));return}if(Ct(r)&&!s)return;const o=r.shapeFlag&4?kn(r.component)||r.component.proxy:r.el,i=s?null:o,{i:l,r:c}=e,a=t&&t.r,f=l.refs===ee?l.refs={}:l.refs,h=l.setupState;if(a!=null&&a!==c&&(ne(a)?(f[a]=null,Y(h,a)&&(h[a]=null)):de(a)&&(a.value=null)),q(c))Je(c,l,12,[i,f]);else{const p=ne(c),y=de(c);if(p||y){const v=()=>{if(e.f){const I=p?Y(h,c)?h[c]:f[c]:c.value;s?B(I)&&Ar(I,o):B(I)?I.includes(o)||I.push(o):p?(f[c]=[o],Y(h,c)&&(h[c]=f[c])):(c.value=[o],e.k&&(f[e.k]=c.value))}else p?(f[c]=i,Y(h,c)&&(h[c]=i)):y&&(c.value=i,e.k&&(f[e.k]=i))};i?(v.id=-1,ge(v,n)):v()}}}let ke=!1;const ic=e=>e.namespaceURI.includes("svg")&&e.tagName!=="foreignObject",lc=e=>e.namespaceURI.includes("MathML"),on=e=>{if(ic(e))return"svg";if(lc(e))return"mathml"},ln=e=>e.nodeType===8;function cc(e){const{mt:t,p:n,o:{patchProp:r,createText:s,nextSibling:o,parentNode:i,remove:l,insert:c,createComment:a}}=e,f=(g,_)=>{if(!_.hasChildNodes()){n(null,g,_),wn(),_._vnode=g;return}ke=!1,h(_.firstChild,g,null,null,null),wn(),_._vnode=g,ke&&console.error("Hydration completed but contains mismatches.")},h=(g,_,M,L,F,T=!1)=>{const $=ln(g)&&g.data==="[",E=()=>I(g,_,M,L,F,$),{type:j,ref:A,shapeFlag:G,patchFlag:ie}=_;let fe=g.nodeType;_.el=g,ie===-2&&(T=!1,_.dynamicChildren=null);let D=null;switch(j){case Tt:fe!==3?_.children===""?(c(_.el=s(""),i(g),g),D=g):D=E():(g.data!==_.children&&(ke=!0,g.data=_.children),D=o(g));break;case be:k(g)?(D=o(g),K(_.el=g.content.firstChild,g,M)):fe!==8||$?D=E():D=o(g);break;case Ht:if($&&(g=o(g),fe=g.nodeType),fe===1||fe===3){D=g;const X=!_.children.length;for(let V=0;V<_.staticCount;V++)X&&(_.children+=D.nodeType===1?D.outerHTML:D.data),V===_.staticCount-1&&(_.anchor=D),D=o(D);return $?o(D):D}else E();break;case me:$?D=v(g,_,M,L,F,T):D=E();break;default:if(G&1)(fe!==1||_.type.toLowerCase()!==g.tagName.toLowerCase())&&!k(g)?D=E():D=p(g,_,M,L,F,T);else if(G&6){_.slotScopeIds=F;const X=i(g);if($?D=N(g):ln(g)&&g.data==="teleport start"?D=N(g,g.data,"teleport end"):D=o(g),t(_,X,null,M,L,on(X),T),Ct(_)){let V;$?(V=oe(me),V.anchor=D?D.previousSibling:X.lastChild):V=g.nodeType===3?ti(""):oe("div"),V.el=g,_.component.subTree=V}}else G&64?fe!==8?D=E():D=_.type.hydrate(g,_,M,L,F,T,e,y):G&128&&(D=_.type.hydrate(g,_,M,L,on(i(g)),F,T,e,h))}return A!=null&&xn(A,null,L,_),D},p=(g,_,M,L,F,T)=>{T=T||!!_.dynamicChildren;const{type:$,props:E,patchFlag:j,shapeFlag:A,dirs:G,transition:ie}=_,fe=$==="input"||$==="option";if(fe||j!==-1){G&&Me(_,null,M,"created");let D=!1;if(k(g)){D=Go(L,ie)&&M&&M.vnode.props&&M.vnode.props.appear;const V=g.content.firstChild;D&&ie.beforeEnter(V),K(V,g,M),_.el=g=V}if(A&16&&!(E&&(E.innerHTML||E.textContent))){let V=y(g.firstChild,_,g,M,L,F,T);for(;V;){ke=!0;const $e=V;V=V.nextSibling,l($e)}}else A&8&&g.textContent!==_.children&&(ke=!0,g.textContent=_.children);if(E)if(fe||!T||j&48)for(const V in E)(fe&&(V.endsWith("value")||V==="indeterminate")||Wt(V)&&!bt(V)||V[0]===".")&&r(g,V,null,E[V],void 0,void 0,M);else E.onClick&&r(g,"onClick",null,E.onClick,void 0,void 0,M);let X;(X=E&&E.onVnodeBeforeMount)&&Ee(X,M,_),G&&Me(_,null,M,"beforeMount"),((X=E&&E.onVnodeMounted)||G||D)&&Io(()=>{X&&Ee(X,M,_),D&&ie.enter(g),G&&Me(_,null,M,"mounted")},L)}return g.nextSibling},y=(g,_,M,L,F,T,$)=>{$=$||!!_.dynamicChildren;const E=_.children,j=E.length;for(let A=0;A{const{slotScopeIds:$}=_;$&&(F=F?F.concat($):$);const E=i(g),j=y(o(g),_,E,M,L,F,T);return j&&ln(j)&&j.data==="]"?o(_.anchor=j):(ke=!0,c(_.anchor=a("]"),E,j),j)},I=(g,_,M,L,F,T)=>{if(ke=!0,_.el=null,T){const j=N(g);for(;;){const A=o(g);if(A&&A!==j)l(A);else break}}const $=o(g),E=i(g);return l(g),n(null,_,E,$,M,L,on(E),F),$},N=(g,_="[",M="]")=>{let L=0;for(;g;)if(g=o(g),g&&ln(g)&&(g.data===_&&L++,g.data===M)){if(L===0)return o(g);L--}return g},K=(g,_,M)=>{const L=_.parentNode;L&&L.replaceChild(g,_);let F=M;for(;F;)F.vnode.el===_&&(F.vnode.el=F.subTree.el=g),F=F.parent},k=g=>g.nodeType===1&&g.tagName.toLowerCase()==="template";return[f,h]}const ge=Io;function ac(e){return qo(e)}function uc(e){return qo(e,cc)}function qo(e,t){const n=so();n.__VUE__=!0;const{insert:r,remove:s,patchProp:o,createElement:i,createText:l,createComment:c,setText:a,setElementText:f,parentNode:h,nextSibling:p,setScopeId:y=xe,insertStaticContent:v}=e,I=(u,d,m,b=null,w=null,S=null,O=void 0,x=null,R=!!d.dynamicChildren)=>{if(u===d)return;u&&!it(u,d)&&(b=Jt(u),Oe(u,w,S,!0),u=null),d.patchFlag===-2&&(R=!1,d.dynamicChildren=null);const{type:C,ref:P,shapeFlag:U}=d;switch(C){case Tt:N(u,d,m,b);break;case be:K(u,d,m,b);break;case Ht:u==null&&k(d,m,b,O);break;case me:A(u,d,m,b,w,S,O,x,R);break;default:U&1?M(u,d,m,b,w,S,O,x,R):U&6?G(u,d,m,b,w,S,O,x,R):(U&64||U&128)&&C.process(u,d,m,b,w,S,O,x,R,pt)}P!=null&&w&&xn(P,u&&u.ref,S,d||u,!d)},N=(u,d,m,b)=>{if(u==null)r(d.el=l(d.children),m,b);else{const w=d.el=u.el;d.children!==u.children&&a(w,d.children)}},K=(u,d,m,b)=>{u==null?r(d.el=c(d.children||""),m,b):d.el=u.el},k=(u,d,m,b)=>{[u.el,u.anchor]=v(u.children,d,m,b,u.el,u.anchor)},g=({el:u,anchor:d},m,b)=>{let w;for(;u&&u!==d;)w=p(u),r(u,m,b),u=w;r(d,m,b)},_=({el:u,anchor:d})=>{let m;for(;u&&u!==d;)m=p(u),s(u),u=m;s(d)},M=(u,d,m,b,w,S,O,x,R)=>{d.type==="svg"?O="svg":d.type==="math"&&(O="mathml"),u==null?L(d,m,b,w,S,O,x,R):$(u,d,w,S,O,x,R)},L=(u,d,m,b,w,S,O,x)=>{let R,C;const{props:P,shapeFlag:U,transition:H,dirs:W}=u;if(R=u.el=i(u.type,S,P&&P.is,P),U&8?f(R,u.children):U&16&&T(u.children,R,null,b,w,Qn(u,S),O,x),W&&Me(u,null,b,"created"),F(R,u,u.scopeId,O,b),P){for(const Q in P)Q!=="value"&&!bt(Q)&&o(R,Q,null,P[Q],S,u.children,b,w,He);"value"in P&&o(R,"value",null,P.value,S),(C=P.onVnodeBeforeMount)&&Ee(C,b,u)}W&&Me(u,null,b,"beforeMount");const z=Go(w,H);z&&H.beforeEnter(R),r(R,d,m),((C=P&&P.onVnodeMounted)||z||W)&&ge(()=>{C&&Ee(C,b,u),z&&H.enter(R),W&&Me(u,null,b,"mounted")},w)},F=(u,d,m,b,w)=>{if(m&&y(u,m),b)for(let S=0;S{for(let C=R;C{const x=d.el=u.el;let{patchFlag:R,dynamicChildren:C,dirs:P}=d;R|=u.patchFlag&16;const U=u.props||ee,H=d.props||ee;let W;if(m&&nt(m,!1),(W=H.onVnodeBeforeUpdate)&&Ee(W,m,d,u),P&&Me(d,u,m,"beforeUpdate"),m&&nt(m,!0),C?E(u.dynamicChildren,C,x,m,b,Qn(d,w),S):O||V(u,d,x,null,m,b,Qn(d,w),S,!1),R>0){if(R&16)j(x,d,U,H,m,b,w);else if(R&2&&U.class!==H.class&&o(x,"class",null,H.class,w),R&4&&o(x,"style",U.style,H.style,w),R&8){const z=d.dynamicProps;for(let Q=0;Q{W&&Ee(W,m,d,u),P&&Me(d,u,m,"updated")},b)},E=(u,d,m,b,w,S,O)=>{for(let x=0;x{if(m!==b){if(m!==ee)for(const x in m)!bt(x)&&!(x in b)&&o(u,x,m[x],null,O,d.children,w,S,He);for(const x in b){if(bt(x))continue;const R=b[x],C=m[x];R!==C&&x!=="value"&&o(u,x,C,R,O,d.children,w,S,He)}"value"in b&&o(u,"value",m.value,b.value,O)}},A=(u,d,m,b,w,S,O,x,R)=>{const C=d.el=u?u.el:l(""),P=d.anchor=u?u.anchor:l("");let{patchFlag:U,dynamicChildren:H,slotScopeIds:W}=d;W&&(x=x?x.concat(W):W),u==null?(r(C,m,b),r(P,m,b),T(d.children||[],m,P,w,S,O,x,R)):U>0&&U&64&&H&&u.dynamicChildren?(E(u.dynamicChildren,H,m,w,S,O,x),(d.key!=null||w&&d===w.subTree)&&qr(u,d,!0)):V(u,d,m,P,w,S,O,x,R)},G=(u,d,m,b,w,S,O,x,R)=>{d.slotScopeIds=x,u==null?d.shapeFlag&512?w.ctx.activate(d,m,b,O,R):ie(d,m,b,w,S,O,R):fe(u,d,R)},ie=(u,d,m,b,w,S,O)=>{const x=u.component=wc(u,b,w);if(Gt(u)&&(x.ctx.renderer=pt),Ec(x),x.asyncDep){if(w&&w.registerDep(x,D),!u.el){const R=x.subTree=oe(be);K(null,R,d,m)}}else D(x,u,d,m,w,S,O)},fe=(u,d,m)=>{const b=d.component=u.component;if(Tl(u,d,m))if(b.asyncDep&&!b.asyncResolved){X(b,d,m);return}else b.next=d,vl(b.update),b.effect.dirty=!0,b.update();else d.el=u.el,b.vnode=d},D=(u,d,m,b,w,S,O)=>{const x=()=>{if(u.isMounted){let{next:P,bu:U,u:H,parent:W,vnode:z}=u;{const gt=zo(u);if(gt){P&&(P.el=z.el,X(u,P,O)),gt.asyncDep.then(()=>{u.isUnmounted||x()});return}}let Q=P,te;nt(u,!1),P?(P.el=z.el,X(u,P,O)):P=z,U&&pn(U),(te=P.props&&P.props.onVnodeBeforeUpdate)&&Ee(te,W,P,z),nt(u,!0);const ae=zn(u),Ae=u.subTree;u.subTree=ae,I(Ae,ae,h(Ae.el),Jt(Ae),u,w,S),P.el=ae.el,Q===null&&Al(u,ae.el),H&&ge(H,w),(te=P.props&&P.props.onVnodeUpdated)&&ge(()=>Ee(te,W,P,z),w)}else{let P;const{el:U,props:H}=d,{bm:W,m:z,parent:Q}=u,te=Ct(d);if(nt(u,!1),W&&pn(W),!te&&(P=H&&H.onVnodeBeforeMount)&&Ee(P,Q,d),nt(u,!0),U&&qn){const ae=()=>{u.subTree=zn(u),qn(U,u.subTree,u,w,null)};te?d.type.__asyncLoader().then(()=>!u.isUnmounted&&ae()):ae()}else{const ae=u.subTree=zn(u);I(null,ae,m,b,u,w,S),d.el=ae.el}if(z&&ge(z,w),!te&&(P=H&&H.onVnodeMounted)){const ae=d;ge(()=>Ee(P,Q,ae),w)}(d.shapeFlag&256||Q&&Ct(Q.vnode)&&Q.vnode.shapeFlag&256)&&u.a&&ge(u.a,w),u.isMounted=!0,d=m=b=null}},R=u.effect=new Ir(x,xe,()=>Fn(C),u.scope),C=u.update=()=>{R.dirty&&R.run()};C.id=u.uid,nt(u,!0),C()},X=(u,d,m)=>{d.component=u;const b=u.vnode.props;u.vnode=d,u.next=null,nc(u,d.props,b,m),oc(u,d.children,m),dt(),fs(u),ht()},V=(u,d,m,b,w,S,O,x,R=!1)=>{const C=u&&u.children,P=u?u.shapeFlag:0,U=d.children,{patchFlag:H,shapeFlag:W}=d;if(H>0){if(H&128){Yt(C,U,m,b,w,S,O,x,R);return}else if(H&256){$e(C,U,m,b,w,S,O,x,R);return}}W&8?(P&16&&He(C,w,S),U!==C&&f(m,U)):P&16?W&16?Yt(C,U,m,b,w,S,O,x,R):He(C,w,S,!0):(P&8&&f(m,""),W&16&&T(U,m,b,w,S,O,x,R))},$e=(u,d,m,b,w,S,O,x,R)=>{u=u||_t,d=d||_t;const C=u.length,P=d.length,U=Math.min(C,P);let H;for(H=0;HP?He(u,w,S,!0,!1,U):T(d,m,b,w,S,O,x,R,U)},Yt=(u,d,m,b,w,S,O,x,R)=>{let C=0;const P=d.length;let U=u.length-1,H=P-1;for(;C<=U&&C<=H;){const W=u[C],z=d[C]=R?ze(d[C]):Re(d[C]);if(it(W,z))I(W,z,m,null,w,S,O,x,R);else break;C++}for(;C<=U&&C<=H;){const W=u[U],z=d[H]=R?ze(d[H]):Re(d[H]);if(it(W,z))I(W,z,m,null,w,S,O,x,R);else break;U--,H--}if(C>U){if(C<=H){const W=H+1,z=WH)for(;C<=U;)Oe(u[C],w,S,!0),C++;else{const W=C,z=C,Q=new Map;for(C=z;C<=H;C++){const _e=d[C]=R?ze(d[C]):Re(d[C]);_e.key!=null&&Q.set(_e.key,C)}let te,ae=0;const Ae=H-z+1;let gt=!1,es=0;const Lt=new Array(Ae);for(C=0;C=Ae){Oe(_e,w,S,!0);continue}let Ie;if(_e.key!=null)Ie=Q.get(_e.key);else for(te=z;te<=H;te++)if(Lt[te-z]===0&&it(_e,d[te])){Ie=te;break}Ie===void 0?Oe(_e,w,S,!0):(Lt[Ie-z]=C+1,Ie>=es?es=Ie:gt=!0,I(_e,d[Ie],m,null,w,S,O,x,R),ae++)}const ts=gt?fc(Lt):_t;for(te=ts.length-1,C=Ae-1;C>=0;C--){const _e=z+C,Ie=d[_e],ns=_e+1{const{el:S,type:O,transition:x,children:R,shapeFlag:C}=u;if(C&6){tt(u.component.subTree,d,m,b);return}if(C&128){u.suspense.move(d,m,b);return}if(C&64){O.move(u,d,m,pt);return}if(O===me){r(S,d,m);for(let U=0;Ux.enter(S),w);else{const{leave:U,delayLeave:H,afterLeave:W}=x,z=()=>r(S,d,m),Q=()=>{U(S,()=>{z(),W&&W()})};H?H(S,z,Q):Q()}else r(S,d,m)},Oe=(u,d,m,b=!1,w=!1)=>{const{type:S,props:O,ref:x,children:R,dynamicChildren:C,shapeFlag:P,patchFlag:U,dirs:H}=u;if(x!=null&&xn(x,null,m,u,!0),P&256){d.ctx.deactivate(u);return}const W=P&1&&H,z=!Ct(u);let Q;if(z&&(Q=O&&O.onVnodeBeforeUnmount)&&Ee(Q,d,u),P&6)Si(u.component,m,b);else{if(P&128){u.suspense.unmount(m,b);return}W&&Me(u,null,d,"beforeUnmount"),P&64?u.type.remove(u,d,m,w,pt,b):C&&(S!==me||U>0&&U&64)?He(C,d,m,!1,!0):(S===me&&U&384||!w&&P&16)&&He(R,d,m),b&&Qr(u)}(z&&(Q=O&&O.onVnodeUnmounted)||W)&&ge(()=>{Q&&Ee(Q,d,u),W&&Me(u,null,d,"unmounted")},m)},Qr=u=>{const{type:d,el:m,anchor:b,transition:w}=u;if(d===me){xi(m,b);return}if(d===Ht){_(u);return}const S=()=>{s(m),w&&!w.persisted&&w.afterLeave&&w.afterLeave()};if(u.shapeFlag&1&&w&&!w.persisted){const{leave:O,delayLeave:x}=w,R=()=>O(m,S);x?x(u.el,S,R):R()}else S()},xi=(u,d)=>{let m;for(;u!==d;)m=p(u),s(u),u=m;s(d)},Si=(u,d,m)=>{const{bum:b,scope:w,update:S,subTree:O,um:x}=u;b&&pn(b),w.stop(),S&&(S.active=!1,Oe(O,u,d,m)),x&&ge(x,d),ge(()=>{u.isUnmounted=!0},d),d&&d.pendingBranch&&!d.isUnmounted&&u.asyncDep&&!u.asyncResolved&&u.suspenseId===d.pendingId&&(d.deps--,d.deps===0&&d.resolve())},He=(u,d,m,b=!1,w=!1,S=0)=>{for(let O=S;Ou.shapeFlag&6?Jt(u.component.subTree):u.shapeFlag&128?u.suspense.next():p(u.anchor||u.el);let Kn=!1;const Zr=(u,d,m)=>{u==null?d._vnode&&Oe(d._vnode,null,null,!0):I(d._vnode||null,u,d,null,null,null,m),Kn||(Kn=!0,fs(),wn(),Kn=!1),d._vnode=u},pt={p:I,um:Oe,m:tt,r:Qr,mt:ie,mc:T,pc:V,pbc:E,n:Jt,o:e};let Wn,qn;return t&&([Wn,qn]=t(pt)),{render:Zr,hydrate:Wn,createApp:Zl(Zr,Wn)}}function Qn({type:e,props:t},n){return n==="svg"&&e==="foreignObject"||n==="mathml"&&e==="annotation-xml"&&t&&t.encoding&&t.encoding.includes("html")?void 0:n}function nt({effect:e,update:t},n){e.allowRecurse=t.allowRecurse=n}function Go(e,t){return(!e||e&&!e.pendingBranch)&&t&&!t.persisted}function qr(e,t,n=!1){const r=e.children,s=t.children;if(B(r)&&B(s))for(let o=0;o>1,e[n[l]]0&&(t[r]=n[o-1]),n[o]=r)}}for(o=n.length,i=n[o-1];o-- >0;)n[o]=i,i=t[i];return n}function zo(e){const t=e.subTree.component;if(t)return t.asyncDep&&!t.asyncResolved?t:zo(t)}const dc=e=>e.__isTeleport,$t=e=>e&&(e.disabled||e.disabled===""),Cs=e=>typeof SVGElement<"u"&&e instanceof SVGElement,xs=e=>typeof MathMLElement=="function"&&e instanceof MathMLElement,wr=(e,t)=>{const n=e&&e.to;return ne(n)?t?t(n):null:n},hc={name:"Teleport",__isTeleport:!0,process(e,t,n,r,s,o,i,l,c,a){const{mc:f,pc:h,pbc:p,o:{insert:y,querySelector:v,createText:I,createComment:N}}=a,K=$t(t.props);let{shapeFlag:k,children:g,dynamicChildren:_}=t;if(e==null){const M=t.el=I(""),L=t.anchor=I("");y(M,n,r),y(L,n,r);const F=t.target=wr(t.props,v),T=t.targetAnchor=I("");F&&(y(T,F),i==="svg"||Cs(F)?i="svg":(i==="mathml"||xs(F))&&(i="mathml"));const $=(E,j)=>{k&16&&f(g,E,j,s,o,i,l,c)};K?$(n,L):F&&$(F,T)}else{t.el=e.el;const M=t.anchor=e.anchor,L=t.target=e.target,F=t.targetAnchor=e.targetAnchor,T=$t(e.props),$=T?n:L,E=T?M:F;if(i==="svg"||Cs(L)?i="svg":(i==="mathml"||xs(L))&&(i="mathml"),_?(p(e.dynamicChildren,_,$,s,o,i,l),qr(e,t,!0)):c||h(e,t,$,E,s,o,i,l,!1),K)T?t.props&&e.props&&t.props.to!==e.props.to&&(t.props.to=e.props.to):cn(t,n,M,a,1);else if((t.props&&t.props.to)!==(e.props&&e.props.to)){const j=t.target=wr(t.props,v);j&&cn(t,j,null,a,0)}else T&&cn(t,L,F,a,1)}Xo(t)},remove(e,t,n,r,{um:s,o:{remove:o}},i){const{shapeFlag:l,children:c,anchor:a,targetAnchor:f,target:h,props:p}=e;if(h&&o(f),i&&o(a),l&16){const y=i||!$t(p);for(let v=0;v0?Le||_t:null,gc(),kt>0&&Le&&Le.push(e),e}function fu(e,t,n,r,s,o){return Jo(ei(e,t,n,r,s,o,!0))}function Qo(e,t,n,r,s){return Jo(oe(e,t,n,r,s,!0))}function Sn(e){return e?e.__v_isVNode===!0:!1}function it(e,t){return e.type===t.type&&e.key===t.key}const Un="__vInternal",Zo=({key:e})=>e??null,gn=({ref:e,ref_key:t,ref_for:n})=>(typeof e=="number"&&(e=""+e),e!=null?ne(e)||de(e)||q(e)?{i:le,r:e,k:t,f:!!n}:e:null);function ei(e,t=null,n=null,r=0,s=null,o=e===me?0:1,i=!1,l=!1){const c={__v_isVNode:!0,__v_skip:!0,type:e,props:t,key:t&&Zo(t),ref:t&&gn(t),scopeId:Hn,slotScopeIds:null,children:n,component:null,suspense:null,ssContent:null,ssFallback:null,dirs:null,transition:null,el:null,anchor:null,target:null,targetAnchor:null,staticCount:0,shapeFlag:o,patchFlag:r,dynamicProps:s,dynamicChildren:null,appContext:null,ctx:le};return l?(Gr(c,n),o&128&&e.normalize(c)):n&&(c.shapeFlag|=ne(n)?8:16),kt>0&&!i&&Le&&(c.patchFlag>0||o&6)&&c.patchFlag!==32&&Le.push(c),c}const oe=mc;function mc(e,t=null,n=null,r=0,s=null,o=!1){if((!e||e===Lo)&&(e=be),Sn(e)){const l=et(e,t,!0);return n&&Gr(l,n),kt>0&&!o&&Le&&(l.shapeFlag&6?Le[Le.indexOf(e)]=l:Le.push(l)),l.patchFlag|=-2,l}if(Tc(e)&&(e=e.__vccOpts),t){t=yc(t);let{class:l,style:c}=t;l&&!ne(l)&&(t.class=Or(l)),Z(c)&&(bo(c)&&!B(c)&&(c=ce({},c)),t.style=Lr(c))}const i=ne(e)?1:Rl(e)?128:dc(e)?64:Z(e)?4:q(e)?2:0;return ei(e,t,n,r,s,i,o,!0)}function yc(e){return e?bo(e)||Un in e?ce({},e):e:null}function et(e,t,n=!1){const{props:r,ref:s,patchFlag:o,children:i}=e,l=t?_c(r||{},t):r;return{__v_isVNode:!0,__v_skip:!0,type:e.type,props:l,key:l&&Zo(l),ref:t&&t.ref?n&&s?B(s)?s.concat(gn(t)):[s,gn(t)]:gn(t):s,scopeId:e.scopeId,slotScopeIds:e.slotScopeIds,children:i,target:e.target,targetAnchor:e.targetAnchor,staticCount:e.staticCount,shapeFlag:e.shapeFlag,patchFlag:t&&e.type!==me?o===-1?16:o|16:o,dynamicProps:e.dynamicProps,dynamicChildren:e.dynamicChildren,appContext:e.appContext,dirs:e.dirs,transition:e.transition,component:e.component,suspense:e.suspense,ssContent:e.ssContent&&et(e.ssContent),ssFallback:e.ssFallback&&et(e.ssFallback),el:e.el,anchor:e.anchor,ctx:e.ctx,ce:e.ce}}function ti(e=" ",t=0){return oe(Tt,null,e,t)}function du(e,t){const n=oe(Ht,null,e);return n.staticCount=t,n}function hu(e="",t=!1){return t?(Yo(),Qo(be,null,e)):oe(be,null,e)}function Re(e){return e==null||typeof e=="boolean"?oe(be):B(e)?oe(me,null,e.slice()):typeof e=="object"?ze(e):oe(Tt,null,String(e))}function ze(e){return e.el===null&&e.patchFlag!==-1||e.memo?e:et(e)}function Gr(e,t){let n=0;const{shapeFlag:r}=e;if(t==null)t=null;else if(B(t))n=16;else if(typeof t=="object")if(r&65){const s=t.default;s&&(s._c&&(s._d=!1),Gr(e,s()),s._c&&(s._d=!0));return}else{n=32;const s=t._;!s&&!(Un in t)?t._ctx=le:s===3&&le&&(le.slots._===1?t._=1:(t._=2,e.patchFlag|=1024))}else q(t)?(t={default:t,_ctx:le},n=32):(t=String(t),r&64?(n=16,t=[ti(t)]):n=8);e.children=t,e.shapeFlag|=n}function _c(...e){const t={};for(let n=0;nue||le;let Tn,Er;{const e=so(),t=(n,r)=>{let s;return(s=e[n])||(s=e[n]=[]),s.push(r),o=>{s.length>1?s.forEach(i=>i(o)):s[0](o)}};Tn=t("__VUE_INSTANCE_SETTERS__",n=>ue=n),Er=t("__VUE_SSR_SETTERS__",n=>Xt=n)}const zt=e=>{const t=ue;return Tn(e),e.scope.on(),()=>{e.scope.off(),Tn(t)}},Ts=()=>{ue&&ue.scope.off(),Tn(null)};function ni(e){return e.vnode.shapeFlag&4}let Xt=!1;function Ec(e,t=!1){t&&Er(t);const{props:n,children:r}=e.vnode,s=ni(e);tc(e,n,s,t),sc(e,r);const o=s?Cc(e,t):void 0;return t&&Er(!1),o}function Cc(e,t){const n=e.type;e.accessCache=Object.create(null),e.proxy=Mt(new Proxy(e.ctx,Wl));const{setup:r}=n;if(r){const s=e.setupContext=r.length>1?si(e):null,o=zt(e);dt();const i=Je(r,e,0,[e.props,s]);if(ht(),o(),to(i)){if(i.then(Ts,Ts),t)return i.then(l=>{As(e,l,t)}).catch(l=>{qt(l,e,0)});e.asyncDep=i}else As(e,i,t)}else ri(e,t)}function As(e,t,n){q(t)?e.type.__ssrInlineRender?e.ssrRender=t:e.render=t:Z(t)&&(e.setupState=xo(t)),ri(e,n)}let Rs;function ri(e,t,n){const r=e.type;if(!e.render){if(!t&&Rs&&!r.render){const s=r.template||Kr(e).template;if(s){const{isCustomElement:o,compilerOptions:i}=e.appContext.config,{delimiters:l,compilerOptions:c}=r,a=ce(ce({isCustomElement:o,delimiters:l},i),c);r.render=Rs(s,a)}}e.render=r.render||xe}{const s=zt(e);dt();try{Gl(e)}finally{ht(),s()}}}function xc(e){return e.attrsProxy||(e.attrsProxy=new Proxy(e.attrs,{get(t,n){return ye(e,"get","$attrs"),t[n]}}))}function si(e){const t=n=>{e.exposed=n||{}};return{get attrs(){return xc(e)},slots:e.slots,emit:e.emit,expose:t}}function kn(e){if(e.exposed)return e.exposeProxy||(e.exposeProxy=new Proxy(xo(Mt(e.exposed)),{get(t,n){if(n in t)return t[n];if(n in Nt)return Nt[n](e)},has(t,n){return n in t||n in Nt}}))}function Sc(e,t=!0){return q(e)?e.displayName||e.name:e.name||t&&e.__name}function Tc(e){return q(e)&&"__vccOpts"in e}const re=(e,t)=>cl(e,t,Xt);function Cr(e,t,n){const r=arguments.length;return r===2?Z(t)&&!B(t)?Sn(t)?oe(e,null,[t]):oe(e,t):oe(e,null,t):(r>3?n=Array.prototype.slice.call(arguments,2):r===3&&Sn(n)&&(n=[n]),oe(e,t,n))}const Ac="3.4.21";/** * @vue/runtime-dom v3.4.21 * (c) 2018-present Yuxi (Evan) You and Vue contributors * @license MIT -**/const Rc="http://www.w3.org/2000/svg",Lc="http://www.w3.org/1998/Math/MathML",Xe=typeof document<"u"?document:null,Ls=Xe&&Xe.createElement("template"),Oc={insert:(e,t,n)=>{t.insertBefore(e,n||null)},remove:e=>{const t=e.parentNode;t&&t.removeChild(e)},createElement:(e,t,n,r)=>{const s=t==="svg"?Xe.createElementNS(Rc,e):t==="mathml"?Xe.createElementNS(Lc,e):Xe.createElement(e,n?{is:n}:void 0);return e==="select"&&r&&r.multiple!=null&&s.setAttribute("multiple",r.multiple),s},createText:e=>Xe.createTextNode(e),createComment:e=>Xe.createComment(e),setText:(e,t)=>{e.nodeValue=t},setElementText:(e,t)=>{e.textContent=t},parentNode:e=>e.parentNode,nextSibling:e=>e.nextSibling,querySelector:e=>Xe.querySelector(e),setScopeId(e,t){e.setAttribute(t,"")},insertStaticContent(e,t,n,r,s,o){const i=n?n.previousSibling:t.lastChild;if(s&&(s===o||s.nextSibling))for(;t.insertBefore(s.cloneNode(!0),n),!(s===o||!(s=s.nextSibling)););else{Ls.innerHTML=r==="svg"?`${e}`:r==="mathml"?`${e}`:e;const l=Ls.content;if(r==="svg"||r==="mathml"){const c=l.firstChild;for(;c.firstChild;)l.appendChild(c.firstChild);l.removeChild(c)}t.insertBefore(l,n)}return[i?i.nextSibling:t.firstChild,n?n.previousSibling:t.lastChild]}},Ke="transition",Ot="animation",Kt=Symbol("_vtc"),oi=(e,{slots:t})=>Cr(Nl,Ic(e),t);oi.displayName="Transition";const ii={name:String,type:String,css:{type:Boolean,default:!0},duration:[String,Number,Object],enterFromClass:String,enterActiveClass:String,enterToClass:String,appearFromClass:String,appearActiveClass:String,appearToClass:String,leaveFromClass:String,leaveActiveClass:String,leaveToClass:String};oi.props=ce({},Po,ii);const rt=(e,t=[])=>{B(e)?e.forEach(n=>n(...t)):e&&e(...t)},Os=e=>e?B(e)?e.some(t=>t.length>1):e.length>1:!1;function Ic(e){const t={};for(const A in e)A in ii||(t[A]=e[A]);if(e.css===!1)return t;const{name:n="v",type:r,duration:s,enterFromClass:o=`${n}-enter-from`,enterActiveClass:i=`${n}-enter-active`,enterToClass:l=`${n}-enter-to`,appearFromClass:c=o,appearActiveClass:a=i,appearToClass:f=l,leaveFromClass:h=`${n}-leave-from`,leaveActiveClass:p=`${n}-leave-active`,leaveToClass:y=`${n}-leave-to`}=e,w=Mc(s),I=w&&w[0],N=w&&w[1],{onBeforeEnter:K,onEnter:k,onEnterCancelled:g,onLeave:_,onLeaveCancelled:M,onBeforeAppear:L=K,onAppear:F=k,onAppearCancelled:T=g}=t,$=(A,G,ie)=>{st(A,G?f:l),st(A,G?a:i),ie&&ie()},E=(A,G)=>{A._isLeaving=!1,st(A,h),st(A,y),st(A,p),G&&G()},j=A=>(G,ie)=>{const fe=A?F:k,D=()=>$(G,A,ie);rt(fe,[G,D]),Is(()=>{st(G,A?c:o),We(G,A?f:l),Os(fe)||Ms(G,r,I,D)})};return ce(t,{onBeforeEnter(A){rt(K,[A]),We(A,o),We(A,i)},onBeforeAppear(A){rt(L,[A]),We(A,c),We(A,a)},onEnter:j(!1),onAppear:j(!0),onLeave(A,G){A._isLeaving=!0;const ie=()=>E(A,G);We(A,h),Fc(),We(A,p),Is(()=>{A._isLeaving&&(st(A,h),We(A,y),Os(_)||Ms(A,r,N,ie))}),rt(_,[A,ie])},onEnterCancelled(A){$(A,!1),rt(g,[A])},onAppearCancelled(A){$(A,!0),rt(T,[A])},onLeaveCancelled(A){E(A),rt(M,[A])}})}function Mc(e){if(e==null)return null;if(Z(e))return[Zn(e.enter),Zn(e.leave)];{const t=Zn(e);return[t,t]}}function Zn(e){return Ii(e)}function We(e,t){t.split(/\s+/).forEach(n=>n&&e.classList.add(n)),(e[Kt]||(e[Kt]=new Set)).add(t)}function st(e,t){t.split(/\s+/).forEach(r=>r&&e.classList.remove(r));const n=e[Kt];n&&(n.delete(t),n.size||(e[Kt]=void 0))}function Is(e){requestAnimationFrame(()=>{requestAnimationFrame(e)})}let Pc=0;function Ms(e,t,n,r){const s=e._endId=++Pc,o=()=>{s===e._endId&&r()};if(n)return setTimeout(o,n);const{type:i,timeout:l,propCount:c}=Nc(e,t);if(!i)return r();const a=i+"end";let f=0;const h=()=>{e.removeEventListener(a,p),o()},p=y=>{y.target===e&&++f>=c&&h()};setTimeout(()=>{f(n[w]||"").split(", "),s=r(`${Ke}Delay`),o=r(`${Ke}Duration`),i=Ps(s,o),l=r(`${Ot}Delay`),c=r(`${Ot}Duration`),a=Ps(l,c);let f=null,h=0,p=0;t===Ke?i>0&&(f=Ke,h=i,p=o.length):t===Ot?a>0&&(f=Ot,h=a,p=c.length):(h=Math.max(i,a),f=h>0?i>a?Ke:Ot:null,p=f?f===Ke?o.length:c.length:0);const y=f===Ke&&/\b(transform|all)(,|$)/.test(r(`${Ke}Property`).toString());return{type:f,timeout:h,propCount:p,hasTransform:y}}function Ps(e,t){for(;e.lengthNs(n)+Ns(e[r])))}function Ns(e){return e==="auto"?0:Number(e.slice(0,-1).replace(",","."))*1e3}function Fc(){return document.body.offsetHeight}function $c(e,t,n){const r=e[Kt];r&&(t=(t?[t,...r]:[...r]).join(" ")),t==null?e.removeAttribute("class"):n?e.setAttribute("class",t):e.className=t}const Fs=Symbol("_vod"),Hc=Symbol("_vsh"),jc=Symbol(""),Vc=/(^|;)\s*display\s*:/;function Dc(e,t,n){const r=e.style,s=ne(n);let o=!1;if(n&&!s){if(t)if(ne(t))for(const i of t.split(";")){const l=i.slice(0,i.indexOf(":")).trim();n[l]==null&&mn(r,l,"")}else for(const i in t)n[i]==null&&mn(r,i,"");for(const i in n)i==="display"&&(o=!0),mn(r,i,n[i])}else if(s){if(t!==n){const i=r[jc];i&&(n+=";"+i),r.cssText=n,o=Vc.test(n)}}else t&&e.removeAttribute("style");Fs in e&&(e[Fs]=o?r.display:"",e[Hc]&&(r.display="none"))}const $s=/\s*!important$/;function mn(e,t,n){if(B(n))n.forEach(r=>mn(e,t,r));else if(n==null&&(n=""),t.startsWith("--"))e.setProperty(t,n);else{const r=Uc(e,t);$s.test(n)?e.setProperty(ft(r),n.replace($s,""),"important"):e[r]=n}}const Hs=["Webkit","Moz","ms"],er={};function Uc(e,t){const n=er[t];if(n)return n;let r=Fe(t);if(r!=="filter"&&r in e)return er[t]=r;r=On(r);for(let s=0;str||(Gc.then(()=>tr=0),tr=Date.now());function Xc(e,t){const n=r=>{if(!r._vts)r._vts=Date.now();else if(r._vts<=n.attached)return;Se(Yc(r,n.value),t,5,[r])};return n.value=e,n.attached=zc(),n}function Yc(e,t){if(B(t)){const n=e.stopImmediatePropagation;return e.stopImmediatePropagation=()=>{n.call(e),e._stopped=!0},t.map(r=>s=>!s._stopped&&r&&r(s))}else return t}const Us=e=>e.charCodeAt(0)===111&&e.charCodeAt(1)===110&&e.charCodeAt(2)>96&&e.charCodeAt(2)<123,Jc=(e,t,n,r,s,o,i,l,c)=>{const a=s==="svg";t==="class"?$c(e,r,a):t==="style"?Dc(e,n,r):Wt(t)?Tr(t)||Wc(e,t,n,r,i):(t[0]==="."?(t=t.slice(1),!0):t[0]==="^"?(t=t.slice(1),!1):Qc(e,t,r,a))?kc(e,t,r,o,i,l,c):(t==="true-value"?e._trueValue=r:t==="false-value"&&(e._falseValue=r),Bc(e,t,r,a))};function Qc(e,t,n,r){if(r)return!!(t==="innerHTML"||t==="textContent"||t in e&&Us(t)&&q(n));if(t==="spellcheck"||t==="draggable"||t==="translate"||t==="form"||t==="list"&&e.tagName==="INPUT"||t==="type"&&e.tagName==="TEXTAREA")return!1;if(t==="width"||t==="height"){const s=e.tagName;if(s==="IMG"||s==="VIDEO"||s==="CANVAS"||s==="SOURCE")return!1}return Us(t)&&ne(n)?!1:t in e}const Bs=e=>{const t=e.props["onUpdate:modelValue"]||!1;return B(t)?n=>pn(t,n):t};function Zc(e){e.target.composing=!0}function ks(e){const t=e.target;t.composing&&(t.composing=!1,t.dispatchEvent(new Event("input")))}const nr=Symbol("_assign"),pu={created(e,{modifiers:{lazy:t,trim:n,number:r}},s){e[nr]=Bs(s);const o=r||s.props&&s.props.type==="number";mt(e,t?"change":"input",i=>{if(i.target.composing)return;let l=e.value;n&&(l=l.trim()),o&&(l=ur(l)),e[nr](l)}),n&&mt(e,"change",()=>{e.value=e.value.trim()}),t||(mt(e,"compositionstart",Zc),mt(e,"compositionend",ks),mt(e,"change",ks))},mounted(e,{value:t}){e.value=t??""},beforeUpdate(e,{value:t,modifiers:{lazy:n,trim:r,number:s}},o){if(e[nr]=Bs(o),e.composing)return;const i=s||e.type==="number"?ur(e.value):e.value,l=t??"";i!==l&&(document.activeElement===e&&e.type!=="range"&&(n||r&&e.value.trim()===l)||(e.value=l))}},ea=["ctrl","shift","alt","meta"],ta={stop:e=>e.stopPropagation(),prevent:e=>e.preventDefault(),self:e=>e.target!==e.currentTarget,ctrl:e=>!e.ctrlKey,shift:e=>!e.shiftKey,alt:e=>!e.altKey,meta:e=>!e.metaKey,left:e=>"button"in e&&e.button!==0,middle:e=>"button"in e&&e.button!==1,right:e=>"button"in e&&e.button!==2,exact:(e,t)=>ea.some(n=>e[`${n}Key`]&&!t.includes(n))},gu=(e,t)=>{const n=e._withMods||(e._withMods={}),r=t.join(".");return n[r]||(n[r]=(s,...o)=>{for(let i=0;i{const n=e._withKeys||(e._withKeys={}),r=t.join(".");return n[r]||(n[r]=s=>{if(!("key"in s))return;const o=ft(s.key);if(t.some(i=>i===o||na[i]===o))return e(s)})},li=ce({patchProp:Jc},Oc);let Vt,Ks=!1;function ra(){return Vt||(Vt=ac(li))}function sa(){return Vt=Ks?Vt:uc(li),Ks=!0,Vt}const yu=(...e)=>{const t=ra().createApp(...e),{mount:n}=t;return t.mount=r=>{const s=ai(r);if(!s)return;const o=t._component;!q(o)&&!o.render&&!o.template&&(o.template=s.innerHTML),s.innerHTML="";const i=n(s,!1,ci(s));return s instanceof Element&&(s.removeAttribute("v-cloak"),s.setAttribute("data-v-app","")),i},t},_u=(...e)=>{const t=sa().createApp(...e),{mount:n}=t;return t.mount=r=>{const s=ai(r);if(s)return n(s,!0,ci(s))},t};function ci(e){if(e instanceof SVGElement)return"svg";if(typeof MathMLElement=="function"&&e instanceof MathMLElement)return"mathml"}function ai(e){return ne(e)?document.querySelector(e):e}const vu=(e,t)=>{const n=e.__vccOpts||e;for(const[r,s]of t)n[r]=s;return n},oa="modulepreload",ia=function(e){return"/dev/"+e},Ws={},bu=function(t,n,r){let s=Promise.resolve();if(n&&n.length>0){const o=document.getElementsByTagName("link");s=Promise.all(n.map(i=>{if(i=ia(i),i in Ws)return;Ws[i]=!0;const l=i.endsWith(".css"),c=l?'[rel="stylesheet"]':"";if(!!r)for(let h=o.length-1;h>=0;h--){const p=o[h];if(p.href===i&&(!l||p.rel==="stylesheet"))return}else if(document.querySelector(`link[href="${i}"]${c}`))return;const f=document.createElement("link");if(f.rel=l?"stylesheet":oa,l||(f.as="script",f.crossOrigin=""),f.href=i,document.head.appendChild(f),l)return new Promise((h,p)=>{f.addEventListener("load",h),f.addEventListener("error",()=>p(new Error(`Unable to preload CSS for ${i}`)))})}))}return s.then(()=>t()).catch(o=>{const i=new Event("vite:preloadError",{cancelable:!0});if(i.payload=o,window.dispatchEvent(i),!i.defaultPrevented)throw o})},la=window.__VP_SITE_DATA__;function zr(e){return lo()?(Di(e),!0):!1}function Ne(e){return typeof e=="function"?e():Co(e)}const ui=typeof window<"u"&&typeof document<"u";typeof WorkerGlobalScope<"u"&&globalThis instanceof WorkerGlobalScope;const ca=Object.prototype.toString,aa=e=>ca.call(e)==="[object Object]",Qe=()=>{},xr=ua();function ua(){var e,t;return ui&&((e=window==null?void 0:window.navigator)==null?void 0:e.userAgent)&&(/iP(ad|hone|od)/.test(window.navigator.userAgent)||((t=window==null?void 0:window.navigator)==null?void 0:t.maxTouchPoints)>2&&/iPad|Macintosh/.test(window==null?void 0:window.navigator.userAgent))}function fa(e,t){function n(...r){return new Promise((s,o)=>{Promise.resolve(e(()=>t.apply(this,r),{fn:t,thisArg:this,args:r})).then(s).catch(o)})}return n}const fi=e=>e();function da(e,t={}){let n,r,s=Qe;const o=l=>{clearTimeout(l),s(),s=Qe};return l=>{const c=Ne(e),a=Ne(t.maxWait);return n&&o(n),c<=0||a!==void 0&&a<=0?(r&&(o(r),r=null),Promise.resolve(l())):new Promise((f,h)=>{s=t.rejectOnCancel?h:f,a&&!r&&(r=setTimeout(()=>{n&&o(n),r=null,f(l())},a)),n=setTimeout(()=>{r&&o(r),r=null,f(l())},c)})}}function ha(e=fi){const t=se(!0);function n(){t.value=!1}function r(){t.value=!0}const s=(...o)=>{t.value&&e(...o)};return{isActive:Pn(t),pause:n,resume:r,eventFilter:s}}function pa(e){return e||Bn()}function di(...e){if(e.length!==1)return gl(...e);const t=e[0];return typeof t=="function"?Pn(dl(()=>({get:t,set:Qe}))):se(t)}function hi(e,t,n={}){const{eventFilter:r=fi,...s}=n;return Ve(e,fa(r,t),s)}function ga(e,t,n={}){const{eventFilter:r,...s}=n,{eventFilter:o,pause:i,resume:l,isActive:c}=ha(r);return{stop:hi(e,t,{...s,eventFilter:o}),pause:i,resume:l,isActive:c}}function Xr(e,t=!0,n){pa()?Rt(e,n):t?e():Nn(e)}function wu(e,t,n={}){const{debounce:r=0,maxWait:s=void 0,...o}=n;return hi(e,t,{...o,eventFilter:da(r,{maxWait:s})})}function Eu(e,t,n){let r;de(n)?r={evaluating:n}:r=n||{};const{lazy:s=!1,evaluating:o=void 0,shallow:i=!0,onError:l=Qe}=r,c=se(!s),a=i?Vr(t):se(t);let f=0;return Br(async h=>{if(!c.value)return;f++;const p=f;let y=!1;o&&Promise.resolve().then(()=>{o.value=!0});try{const w=await e(I=>{h(()=>{o&&(o.value=!1),y||I()})});p===f&&(a.value=w)}catch(w){l(w)}finally{o&&p===f&&(o.value=!1),y=!0}}),s?re(()=>(c.value=!0,a.value)):a}function yt(e){var t;const n=Ne(e);return(t=n==null?void 0:n.$el)!=null?t:n}const Te=ui?window:void 0;function De(...e){let t,n,r,s;if(typeof e[0]=="string"||Array.isArray(e[0])?([n,r,s]=e,t=Te):[t,n,r,s]=e,!t)return Qe;Array.isArray(n)||(n=[n]),Array.isArray(r)||(r=[r]);const o=[],i=()=>{o.forEach(f=>f()),o.length=0},l=(f,h,p,y)=>(f.addEventListener(h,p,y),()=>f.removeEventListener(h,p,y)),c=Ve(()=>[yt(t),Ne(s)],([f,h])=>{if(i(),!f)return;const p=aa(h)?{...h}:h;o.push(...n.flatMap(y=>r.map(w=>l(f,y,w,p))))},{immediate:!0,flush:"post"}),a=()=>{c(),i()};return zr(a),a}let qs=!1;function Cu(e,t,n={}){const{window:r=Te,ignore:s=[],capture:o=!0,detectIframe:i=!1}=n;if(!r)return Qe;xr&&!qs&&(qs=!0,Array.from(r.document.body.children).forEach(p=>p.addEventListener("click",Qe)),r.document.documentElement.addEventListener("click",Qe));let l=!0;const c=p=>s.some(y=>{if(typeof y=="string")return Array.from(r.document.querySelectorAll(y)).some(w=>w===p.target||p.composedPath().includes(w));{const w=yt(y);return w&&(p.target===w||p.composedPath().includes(w))}}),f=[De(r,"click",p=>{const y=yt(e);if(!(!y||y===p.target||p.composedPath().includes(y))){if(p.detail===0&&(l=!c(p)),!l){l=!0;return}t(p)}},{passive:!0,capture:o}),De(r,"pointerdown",p=>{const y=yt(e);l=!c(p)&&!!(y&&!p.composedPath().includes(y))},{passive:!0}),i&&De(r,"blur",p=>{setTimeout(()=>{var y;const w=yt(e);((y=r.document.activeElement)==null?void 0:y.tagName)==="IFRAME"&&!(w!=null&&w.contains(r.document.activeElement))&&t(p)},0)})].filter(Boolean);return()=>f.forEach(p=>p())}function ma(e){return typeof e=="function"?e:typeof e=="string"?t=>t.key===e:Array.isArray(e)?t=>e.includes(t.key):()=>!0}function xu(...e){let t,n,r={};e.length===3?(t=e[0],n=e[1],r=e[2]):e.length===2?typeof e[1]=="object"?(t=!0,n=e[0],r=e[1]):(t=e[0],n=e[1]):(t=!0,n=e[0]);const{target:s=Te,eventName:o="keydown",passive:i=!1,dedupe:l=!1}=r,c=ma(t);return De(s,o,f=>{f.repeat&&Ne(l)||c(f)&&n(f)},i)}function ya(){const e=se(!1),t=Bn();return t&&Rt(()=>{e.value=!0},t),e}function _a(e){const t=ya();return re(()=>(t.value,!!e()))}function pi(e,t={}){const{window:n=Te}=t,r=_a(()=>n&&"matchMedia"in n&&typeof n.matchMedia=="function");let s;const o=se(!1),i=a=>{o.value=a.matches},l=()=>{s&&("removeEventListener"in s?s.removeEventListener("change",i):s.removeListener(i))},c=Br(()=>{r.value&&(l(),s=n.matchMedia(Ne(e)),"addEventListener"in s?s.addEventListener("change",i):s.addListener(i),o.value=s.matches)});return zr(()=>{c(),l(),s=void 0}),o}const an=typeof globalThis<"u"?globalThis:typeof window<"u"?window:typeof global<"u"?global:typeof self<"u"?self:{},un="__vueuse_ssr_handlers__",va=ba();function ba(){return un in an||(an[un]=an[un]||{}),an[un]}function gi(e,t){return va[e]||t}function wa(e){return e==null?"any":e instanceof Set?"set":e instanceof Map?"map":e instanceof Date?"date":typeof e=="boolean"?"boolean":typeof e=="string"?"string":typeof e=="object"?"object":Number.isNaN(e)?"any":"number"}const Ea={boolean:{read:e=>e==="true",write:e=>String(e)},object:{read:e=>JSON.parse(e),write:e=>JSON.stringify(e)},number:{read:e=>Number.parseFloat(e),write:e=>String(e)},any:{read:e=>e,write:e=>String(e)},string:{read:e=>e,write:e=>String(e)},map:{read:e=>new Map(JSON.parse(e)),write:e=>JSON.stringify(Array.from(e.entries()))},set:{read:e=>new Set(JSON.parse(e)),write:e=>JSON.stringify(Array.from(e))},date:{read:e=>new Date(e),write:e=>e.toISOString()}},Gs="vueuse-storage";function Yr(e,t,n,r={}){var s;const{flush:o="pre",deep:i=!0,listenToStorageChanges:l=!0,writeDefaults:c=!0,mergeDefaults:a=!1,shallow:f,window:h=Te,eventFilter:p,onError:y=E=>{console.error(E)},initOnMounted:w}=r,I=(f?Vr:se)(typeof t=="function"?t():t);if(!n)try{n=gi("getDefaultStorage",()=>{var E;return(E=Te)==null?void 0:E.localStorage})()}catch(E){y(E)}if(!n)return I;const N=Ne(t),K=wa(N),k=(s=r.serializer)!=null?s:Ea[K],{pause:g,resume:_}=ga(I,()=>L(I.value),{flush:o,deep:i,eventFilter:p});h&&l&&Xr(()=>{De(h,"storage",T),De(h,Gs,$),w&&T()}),w||T();function M(E,j){h&&h.dispatchEvent(new CustomEvent(Gs,{detail:{key:e,oldValue:E,newValue:j,storageArea:n}}))}function L(E){try{const j=n.getItem(e);if(E==null)M(j,null),n.removeItem(e);else{const A=k.write(E);j!==A&&(n.setItem(e,A),M(j,A))}}catch(j){y(j)}}function F(E){const j=E?E.newValue:n.getItem(e);if(j==null)return c&&N!=null&&n.setItem(e,k.write(N)),N;if(!E&&a){const A=k.read(j);return typeof a=="function"?a(A,N):K==="object"&&!Array.isArray(A)?{...N,...A}:A}else return typeof j!="string"?j:k.read(j)}function T(E){if(!(E&&E.storageArea!==n)){if(E&&E.key==null){I.value=N;return}if(!(E&&E.key!==e)){g();try{(E==null?void 0:E.newValue)!==k.write(I.value)&&(I.value=F(E))}catch(j){y(j)}finally{E?Nn(_):_()}}}}function $(E){T(E.detail)}return I}function mi(e){return pi("(prefers-color-scheme: dark)",e)}function Ca(e={}){const{selector:t="html",attribute:n="class",initialValue:r="auto",window:s=Te,storage:o,storageKey:i="vueuse-color-scheme",listenToStorageChanges:l=!0,storageRef:c,emitAuto:a,disableTransition:f=!0}=e,h={auto:"",light:"light",dark:"dark",...e.modes||{}},p=mi({window:s}),y=re(()=>p.value?"dark":"light"),w=c||(i==null?di(r):Yr(i,r,o,{window:s,listenToStorageChanges:l})),I=re(()=>w.value==="auto"?y.value:w.value),N=gi("updateHTMLAttrs",(_,M,L)=>{const F=typeof _=="string"?s==null?void 0:s.document.querySelector(_):yt(_);if(!F)return;let T;if(f&&(T=s.document.createElement("style"),T.appendChild(document.createTextNode("*,*::before,*::after{-webkit-transition:none!important;-moz-transition:none!important;-o-transition:none!important;-ms-transition:none!important;transition:none!important}")),s.document.head.appendChild(T)),M==="class"){const $=L.split(/\s/g);Object.values(h).flatMap(E=>(E||"").split(/\s/g)).filter(Boolean).forEach(E=>{$.includes(E)?F.classList.add(E):F.classList.remove(E)})}else F.setAttribute(M,L);f&&(s.getComputedStyle(T).opacity,document.head.removeChild(T))});function K(_){var M;N(t,n,(M=h[_])!=null?M:_)}function k(_){e.onChanged?e.onChanged(_,K):K(_)}Ve(I,k,{flush:"post",immediate:!0}),Xr(()=>k(I.value));const g=re({get(){return a?w.value:I.value},set(_){w.value=_}});try{return Object.assign(g,{store:w,system:y,state:I})}catch{return g}}function xa(e={}){const{valueDark:t="dark",valueLight:n="",window:r=Te}=e,s=Ca({...e,onChanged:(l,c)=>{var a;e.onChanged?(a=e.onChanged)==null||a.call(e,l==="dark",c,l):c(l)},modes:{dark:t,light:n}}),o=re(()=>s.system?s.system.value:mi({window:r}).value?"dark":"light");return re({get(){return s.value==="dark"},set(l){const c=l?"dark":"light";o.value===c?s.value="auto":s.value=c}})}function rr(e){return typeof Window<"u"&&e instanceof Window?e.document.documentElement:typeof Document<"u"&&e instanceof Document?e.documentElement:e}function Su(e,t,n={}){const{window:r=Te}=n;return Yr(e,t,r==null?void 0:r.localStorage,n)}function yi(e){const t=window.getComputedStyle(e);if(t.overflowX==="scroll"||t.overflowY==="scroll"||t.overflowX==="auto"&&e.clientWidth1?!0:(t.preventDefault&&t.preventDefault(),!1)}const fn=new WeakMap;function Tu(e,t=!1){const n=se(t);let r=null;Ve(di(e),i=>{const l=rr(Ne(i));if(l){const c=l;fn.get(c)||fn.set(c,c.style.overflow),n.value&&(c.style.overflow="hidden")}},{immediate:!0});const s=()=>{const i=rr(Ne(e));!i||n.value||(xr&&(r=De(i,"touchmove",l=>{Sa(l)},{passive:!1})),i.style.overflow="hidden",n.value=!0)},o=()=>{var i;const l=rr(Ne(e));!l||!n.value||(xr&&(r==null||r()),l.style.overflow=(i=fn.get(l))!=null?i:"",fn.delete(l),n.value=!1)};return zr(o),re({get(){return n.value},set(i){i?s():o()}})}function Au(e,t,n={}){const{window:r=Te}=n;return Yr(e,t,r==null?void 0:r.sessionStorage,n)}function Ru(e={}){const{window:t=Te,behavior:n="auto"}=e;if(!t)return{x:se(0),y:se(0)};const r=se(t.scrollX),s=se(t.scrollY),o=re({get(){return r.value},set(l){scrollTo({left:l,behavior:n})}}),i=re({get(){return s.value},set(l){scrollTo({top:l,behavior:n})}});return De(t,"scroll",()=>{r.value=t.scrollX,s.value=t.scrollY},{capture:!1,passive:!0}),{x:o,y:i}}function Lu(e={}){const{window:t=Te,initialWidth:n=Number.POSITIVE_INFINITY,initialHeight:r=Number.POSITIVE_INFINITY,listenOrientation:s=!0,includeScrollbar:o=!0}=e,i=se(n),l=se(r),c=()=>{t&&(o?(i.value=t.innerWidth,l.value=t.innerHeight):(i.value=t.document.documentElement.clientWidth,l.value=t.document.documentElement.clientHeight))};if(c(),Xr(c),De("resize",c,{passive:!0}),s){const a=pi("(orientation: portrait)");Ve(a,()=>c())}return{width:i,height:l}}var sr={BASE_URL:"/dev/",MODE:"production",DEV:!1,PROD:!0,SSR:!1},or={};const _i=/^(?:[a-z]+:|\/\/)/i,Ta="vitepress-theme-appearance",Aa=/#.*$/,Ra=/[?#].*$/,La=/(?:(^|\/)index)?\.(?:md|html)$/,Ce=typeof document<"u",vi={relativePath:"",filePath:"",title:"404",description:"Not Found",headers:[],frontmatter:{sidebar:!1,layout:"page"},lastUpdated:0,isNotFound:!0};function Oa(e,t,n=!1){if(t===void 0)return!1;if(e=zs(`/${e}`),n)return new RegExp(t).test(e);if(zs(t)!==e)return!1;const r=t.match(Aa);return r?(Ce?location.hash:"")===r[0]:!0}function zs(e){return decodeURI(e).replace(Ra,"").replace(La,"$1")}function Ia(e){return _i.test(e)}function Ma(e,t){var r,s,o,i,l,c,a;const n=Object.keys(e.locales).find(f=>f!=="root"&&!Ia(f)&&Oa(t,`/${f}/`,!0))||"root";return Object.assign({},e,{localeIndex:n,lang:((r=e.locales[n])==null?void 0:r.lang)??e.lang,dir:((s=e.locales[n])==null?void 0:s.dir)??e.dir,title:((o=e.locales[n])==null?void 0:o.title)??e.title,titleTemplate:((i=e.locales[n])==null?void 0:i.titleTemplate)??e.titleTemplate,description:((l=e.locales[n])==null?void 0:l.description)??e.description,head:wi(e.head,((c=e.locales[n])==null?void 0:c.head)??[]),themeConfig:{...e.themeConfig,...(a=e.locales[n])==null?void 0:a.themeConfig}})}function bi(e,t){const n=t.title||e.title,r=t.titleTemplate??e.titleTemplate;if(typeof r=="string"&&r.includes(":title"))return r.replace(/:title/g,n);const s=Pa(e.title,r);return n===s.slice(3)?n:`${n}${s}`}function Pa(e,t){return t===!1?"":t===!0||t===void 0?` | ${e}`:e===t?"":` | ${t}`}function Na(e,t){const[n,r]=t;if(n!=="meta")return!1;const s=Object.entries(r)[0];return s==null?!1:e.some(([o,i])=>o===n&&i[s[0]]===s[1])}function wi(e,t){return[...e.filter(n=>!Na(t,n)),...t]}const Fa=/[\u0000-\u001F"#$&*+,:;<=>?[\]^`{|}\u007F]/g,$a=/^[a-z]:/i;function Xs(e){const t=$a.exec(e),n=t?t[0]:"";return n+e.slice(n.length).replace(Fa,"_").replace(/(^|\/)_+(?=[^/]*$)/,"$1")}const ir=new Set;function Ha(e){if(ir.size===0){const n=typeof process=="object"&&(or==null?void 0:or.VITE_EXTRA_EXTENSIONS)||(sr==null?void 0:sr.VITE_EXTRA_EXTENSIONS)||"";("3g2,3gp,aac,ai,apng,au,avif,bin,bmp,cer,class,conf,crl,css,csv,dll,doc,eps,epub,exe,gif,gz,ics,ief,jar,jpe,jpeg,jpg,js,json,jsonld,m4a,man,mid,midi,mjs,mov,mp2,mp3,mp4,mpe,mpeg,mpg,mpp,oga,ogg,ogv,ogx,opus,otf,p10,p7c,p7m,p7s,pdf,png,ps,qt,roff,rtf,rtx,ser,svg,t,tif,tiff,tr,ts,tsv,ttf,txt,vtt,wav,weba,webm,webp,woff,woff2,xhtml,xml,yaml,yml,zip"+(n&&typeof n=="string"?","+n:"")).split(",").forEach(r=>ir.add(r))}const t=e.split(".").pop();return t==null||!ir.has(t.toLowerCase())}function Ou(e){return e.replace(/[|\\{}()[\]^$+*?.]/g,"\\$&").replace(/-/g,"\\x2d")}const ja=Symbol(),ut=Vr(la);function Iu(e){const t=re(()=>Ma(ut.value,e.data.relativePath)),n=t.value.appearance,r=n==="force-dark"?se(!0):n?xa({storageKey:Ta,initialValue:()=>typeof n=="string"?n:"auto",...typeof n=="object"?n:{}}):se(!1);return{site:t,theme:re(()=>t.value.themeConfig),page:re(()=>e.data),frontmatter:re(()=>e.data.frontmatter),params:re(()=>e.data.params),lang:re(()=>t.value.lang),dir:re(()=>e.data.frontmatter.dir||t.value.dir),localeIndex:re(()=>t.value.localeIndex||"root"),title:re(()=>bi(t.value,e.data)),description:re(()=>e.data.description||t.value.description),isDark:r}}function Va(){const e=xt(ja);if(!e)throw new Error("vitepress data not properly injected in app");return e}function Da(e,t){return`${e}${t}`.replace(/\/+/g,"/")}function Ys(e){return _i.test(e)||!e.startsWith("/")?e:Da(ut.value.base,e)}function Ua(e){let t=e.replace(/\.html$/,"");if(t=decodeURIComponent(t),t=t.replace(/\/$/,"/index"),Ce){const n="/dev/";t=Xs(t.slice(n.length).replace(/\//g,"_")||"index")+".md";let r=__VP_HASH_MAP__[t.toLowerCase()];if(r||(t=t.endsWith("_index.md")?t.slice(0,-9)+".md":t.slice(0,-3)+"_index.md",r=__VP_HASH_MAP__[t.toLowerCase()]),!r)return null;t=`${n}assets/${t}.${r}.js`}else t=`./${Xs(t.slice(1).replace(/\//g,"_"))}.md.js`;return t}let yn=[];function Mu(e){yn.push(e),Dn(()=>{yn=yn.filter(t=>t!==e)})}function Ba(){let e=ut.value.scrollOffset,t=0,n=24;if(typeof e=="object"&&"padding"in e&&(n=e.padding,e=e.selector),typeof e=="number")t=e;else if(typeof e=="string")t=Js(e,n);else if(Array.isArray(e))for(const r of e){const s=Js(r,n);if(s){t=s;break}}return t}function Js(e,t){const n=document.querySelector(e);if(!n)return 0;const r=n.getBoundingClientRect().bottom;return r<0?0:r+t}const ka=Symbol(),Jr="http://a.com",Ka=()=>({path:"/",component:null,data:vi});function Pu(e,t){const n=Mn(Ka()),r={route:n,go:s};async function s(l=Ce?location.href:"/"){var c,a;l=An(l),await((c=r.onBeforeRouteChange)==null?void 0:c.call(r,l))!==!1&&(Zs(l),await i(l),await((a=r.onAfterRouteChanged)==null?void 0:a.call(r,l)))}let o=null;async function i(l,c=0,a=!1){var p;if(await((p=r.onBeforePageLoad)==null?void 0:p.call(r,l))===!1)return;const f=new URL(l,Jr),h=o=f.pathname;try{let y=await e(h);if(!y)throw new Error(`Page not found: ${h}`);if(o===h){o=null;const{default:w,__pageData:I}=y;if(!w)throw new Error(`Invalid route component: ${w}`);n.path=Ce?h:Ys(h),n.component=Mt(w),n.data=Mt(I),Ce&&Nn(()=>{let N=ut.value.base+I.relativePath.replace(/(?:(^|\/)index)?\.md$/,"$1");if(!ut.value.cleanUrls&&!N.endsWith("/")&&(N+=".html"),N!==f.pathname&&(f.pathname=N,l=N+f.search+f.hash,history.replaceState(null,"",l)),f.hash&&!c){let K=null;try{K=document.getElementById(decodeURIComponent(f.hash).slice(1))}catch(k){console.warn(k)}if(K){Qs(K,f.hash);return}}window.scrollTo(0,c)})}}catch(y){if(!/fetch|Page not found/.test(y.message)&&!/^\/404(\.html|\/)?$/.test(l)&&console.error(y),!a)try{const w=await fetch(ut.value.base+"hashmap.json");window.__VP_HASH_MAP__=await w.json(),await i(l,c,!0);return}catch{}o===h&&(o=null,n.path=Ce?h:Ys(h),n.component=t?Mt(t):null,n.data=vi)}}return Ce&&(window.addEventListener("click",l=>{if(l.target.closest("button"))return;const a=l.target.closest("a");if(a&&!a.closest(".vp-raw")&&(a instanceof SVGElement||!a.download)){const{target:f}=a,{href:h,origin:p,pathname:y,hash:w,search:I}=new URL(a.href instanceof SVGAnimatedString?a.href.animVal:a.href,a.baseURI),N=new URL(window.location.href);!l.ctrlKey&&!l.shiftKey&&!l.altKey&&!l.metaKey&&!f&&p===N.origin&&Ha(y)&&(l.preventDefault(),y===N.pathname&&I===N.search?(w!==N.hash&&(history.pushState(null,"",w),window.dispatchEvent(new Event("hashchange"))),w?Qs(a,w,a.classList.contains("header-anchor")):(Zs(h,!1),window.scrollTo(0,0))):s(h))}},{capture:!0}),window.addEventListener("popstate",async l=>{var c;await i(An(location.href),l.state&&l.state.scrollPosition||0),(c=r.onAfterRouteChanged)==null||c.call(r,location.href)}),window.addEventListener("hashchange",l=>{l.preventDefault()})),r}function Wa(){const e=xt(ka);if(!e)throw new Error("useRouter() is called without provider.");return e}function Ei(){return Wa().route}function Qs(e,t,n=!1){let r=null;try{r=e.classList.contains("header-anchor")?e:document.getElementById(decodeURIComponent(t).slice(1))}catch(s){console.warn(s)}if(r){let s=function(){!n||Math.abs(i-window.scrollY)>window.innerHeight?window.scrollTo(0,i):window.scrollTo({left:0,top:i,behavior:"smooth"})};const o=parseInt(window.getComputedStyle(r).paddingTop,10),i=window.scrollY+r.getBoundingClientRect().top-Ba()+o;requestAnimationFrame(s)}}function Zs(e,t=!0){if(Ce&&An(e)!==An(location.href)){const n=location.hash;history.replaceState({scrollPosition:window.scrollY},document.title),history.pushState(null,"",e),t&&new URL(e,Jr).hash!==n&&window.dispatchEvent(new Event("hashchange"))}}function An(e){const t=new URL(e,Jr);return t.pathname=t.pathname.replace(/(^|\/)index(\.html)?$/,"$1"),ut.value.cleanUrls?t.pathname=t.pathname.replace(/\.html$/,""):!t.pathname.endsWith("/")&&!t.pathname.endsWith(".html")&&(t.pathname+=".html"),t.pathname+t.search+t.hash}const lr=()=>yn.forEach(e=>e()),Nu=kr({name:"VitePressContent",props:{as:{type:[Object,String],default:"div"}},setup(e){const t=Ei(),{site:n}=Va();return()=>Cr(e.as,n.value.contentProps??{style:{position:"relative"}},[t.component?Cr(t.component,{onVnodeMounted:lr,onVnodeUpdated:lr,onVnodeUnmounted:lr}):"404 Page Not Found"])}}),Fu=kr({setup(e,{slots:t}){const n=se(!1);return Rt(()=>{n.value=!0}),()=>n.value&&t.default?t.default():null}});function $u(){Ce&&window.addEventListener("click",e=>{var n;const t=e.target;if(t.matches(".vp-code-group input")){const r=(n=t.parentElement)==null?void 0:n.parentElement;if(!r)return;const s=Array.from(r.querySelectorAll("input")).indexOf(t);if(s<0)return;const o=r.querySelector(".blocks");if(!o)return;const i=Array.from(o.children).find(a=>a.classList.contains("active"));if(!i)return;const l=o.children[s];if(!l||i===l)return;i.classList.remove("active"),l.classList.add("active");const c=r==null?void 0:r.querySelector(`label[for="${t.id}"]`);c==null||c.scrollIntoView({block:"nearest"})}})}function Hu(){if(Ce){const e=new WeakMap;window.addEventListener("click",t=>{var r;const n=t.target;if(n.matches('div[class*="language-"] > button.copy')){const s=n.parentElement,o=(r=n.nextElementSibling)==null?void 0:r.nextElementSibling;if(!s||!o)return;const i=/language-(shellscript|shell|bash|sh|zsh)/.test(s.className),l=[".vp-copy-ignore",".diff.remove"],c=o.cloneNode(!0);c.querySelectorAll(l.join(",")).forEach(f=>f.remove());let a=c.textContent||"";i&&(a=a.replace(/^ *(\$|>) /gm,"").trim()),qa(a).then(()=>{n.classList.add("copied"),clearTimeout(e.get(n));const f=setTimeout(()=>{n.classList.remove("copied"),n.blur(),e.delete(n)},2e3);e.set(n,f)})}})}}async function qa(e){try{return navigator.clipboard.writeText(e)}catch{const t=document.createElement("textarea"),n=document.activeElement;t.value=e,t.setAttribute("readonly",""),t.style.contain="strict",t.style.position="absolute",t.style.left="-9999px",t.style.fontSize="12pt";const r=document.getSelection(),s=r?r.rangeCount>0&&r.getRangeAt(0):null;document.body.appendChild(t),t.select(),t.selectionStart=0,t.selectionEnd=e.length,document.execCommand("copy"),document.body.removeChild(t),s&&(r.removeAllRanges(),r.addRange(s)),n&&n.focus()}}function ju(e,t){let n=!0,r=[];const s=o=>{if(n){n=!1,o.forEach(l=>{const c=cr(l);for(const a of document.head.children)if(a.isEqualNode(c)){r.push(a);return}});return}const i=o.map(cr);r.forEach((l,c)=>{const a=i.findIndex(f=>f==null?void 0:f.isEqualNode(l??null));a!==-1?delete i[a]:(l==null||l.remove(),delete r[c])}),i.forEach(l=>l&&document.head.appendChild(l)),r=[...r,...i].filter(Boolean)};Br(()=>{const o=e.data,i=t.value,l=o&&o.description,c=o&&o.frontmatter.head||[],a=bi(i,o);a!==document.title&&(document.title=a);const f=l||i.description;let h=document.querySelector("meta[name=description]");h?h.getAttribute("content")!==f&&h.setAttribute("content",f):cr(["meta",{name:"description",content:f}]),s(wi(i.head,za(c)))})}function cr([e,t,n]){const r=document.createElement(e);for(const s in t)r.setAttribute(s,t[s]);return n&&(r.innerHTML=n),e==="script"&&!t.async&&(r.async=!1),r}function Ga(e){return e[0]==="meta"&&e[1]&&e[1].name==="description"}function za(e){return e.filter(t=>!Ga(t))}const ar=new Set,Ci=()=>document.createElement("link"),Xa=e=>{const t=Ci();t.rel="prefetch",t.href=e,document.head.appendChild(t)},Ya=e=>{const t=new XMLHttpRequest;t.open("GET",e,t.withCredentials=!0),t.send()};let dn;const Ja=Ce&&(dn=Ci())&&dn.relList&&dn.relList.supports&&dn.relList.supports("prefetch")?Xa:Ya;function Vu(){if(!Ce||!window.IntersectionObserver)return;let e;if((e=navigator.connection)&&(e.saveData||/2g/.test(e.effectiveType)))return;const t=window.requestIdleCallback||setTimeout;let n=null;const r=()=>{n&&n.disconnect(),n=new IntersectionObserver(o=>{o.forEach(i=>{if(i.isIntersecting){const l=i.target;n.unobserve(l);const{pathname:c}=l;if(!ar.has(c)){ar.add(c);const a=Ua(c);a&&Ja(a)}}})}),t(()=>{document.querySelectorAll("#app a").forEach(o=>{const{hostname:i,pathname:l}=new URL(o.href instanceof SVGAnimatedString?o.href.animVal:o.href,o.baseURI),c=l.match(/\.\w+$/);c&&c[0]!==".html"||o.target!=="_blank"&&i===location.hostname&&(l!==location.pathname?n.observe(o):ar.add(l))})})};Rt(r);const s=Ei();Ve(()=>s.path,r),Dn(()=>{n&&n.disconnect()})}export{ec as $,Dn as A,ru as B,Dl as C,Ba as D,tu as E,me as F,iu as G,Vr as H,Mu as I,oe as J,nu as K,_i as L,Ei as M,_c as N,xt as O,Lu as P,Lr as Q,Cu as R,xu as S,oi as T,Nn as U,Ru as V,Pn as W,ou as X,bu as Y,Tu as Z,vu as _,ti as a,mu as a0,cu as a1,gu as a2,au as a3,Mn as a4,gl as a5,Cr as a6,du as a7,ju as a8,ka as a9,Ou as aA,Iu as aa,ja as ab,Nu as ac,Fu as ad,ut as ae,_u as af,Pu as ag,Ua as ah,Vu as ai,Hu as aj,$u as ak,yt as al,zr as am,Eu as an,Au as ao,Su as ap,wu as aq,Wa as ar,De as as,Ho as at,su as au,pu as av,de as aw,uu as ax,Mt as ay,yu as az,Qo as b,fu as c,kr as d,hu as e,Ha as f,Ys as g,se as h,Ia as i,Ce as j,re as k,Rt as l,ei as m,Or as n,Yo as o,Co as p,Za as q,lu as r,eu as s,Qa as t,Va as u,Oa as v,Cl as w,pi as x,Ve as y,Br as z}; +**/const Rc="http://www.w3.org/2000/svg",Lc="http://www.w3.org/1998/Math/MathML",Xe=typeof document<"u"?document:null,Ls=Xe&&Xe.createElement("template"),Oc={insert:(e,t,n)=>{t.insertBefore(e,n||null)},remove:e=>{const t=e.parentNode;t&&t.removeChild(e)},createElement:(e,t,n,r)=>{const s=t==="svg"?Xe.createElementNS(Rc,e):t==="mathml"?Xe.createElementNS(Lc,e):Xe.createElement(e,n?{is:n}:void 0);return e==="select"&&r&&r.multiple!=null&&s.setAttribute("multiple",r.multiple),s},createText:e=>Xe.createTextNode(e),createComment:e=>Xe.createComment(e),setText:(e,t)=>{e.nodeValue=t},setElementText:(e,t)=>{e.textContent=t},parentNode:e=>e.parentNode,nextSibling:e=>e.nextSibling,querySelector:e=>Xe.querySelector(e),setScopeId(e,t){e.setAttribute(t,"")},insertStaticContent(e,t,n,r,s,o){const i=n?n.previousSibling:t.lastChild;if(s&&(s===o||s.nextSibling))for(;t.insertBefore(s.cloneNode(!0),n),!(s===o||!(s=s.nextSibling)););else{Ls.innerHTML=r==="svg"?`${e}`:r==="mathml"?`${e}`:e;const l=Ls.content;if(r==="svg"||r==="mathml"){const c=l.firstChild;for(;c.firstChild;)l.appendChild(c.firstChild);l.removeChild(c)}t.insertBefore(l,n)}return[i?i.nextSibling:t.firstChild,n?n.previousSibling:t.lastChild]}},Ke="transition",Ot="animation",Kt=Symbol("_vtc"),oi=(e,{slots:t})=>Cr(Nl,Ic(e),t);oi.displayName="Transition";const ii={name:String,type:String,css:{type:Boolean,default:!0},duration:[String,Number,Object],enterFromClass:String,enterActiveClass:String,enterToClass:String,appearFromClass:String,appearActiveClass:String,appearToClass:String,leaveFromClass:String,leaveActiveClass:String,leaveToClass:String};oi.props=ce({},Po,ii);const rt=(e,t=[])=>{B(e)?e.forEach(n=>n(...t)):e&&e(...t)},Os=e=>e?B(e)?e.some(t=>t.length>1):e.length>1:!1;function Ic(e){const t={};for(const A in e)A in ii||(t[A]=e[A]);if(e.css===!1)return t;const{name:n="v",type:r,duration:s,enterFromClass:o=`${n}-enter-from`,enterActiveClass:i=`${n}-enter-active`,enterToClass:l=`${n}-enter-to`,appearFromClass:c=o,appearActiveClass:a=i,appearToClass:f=l,leaveFromClass:h=`${n}-leave-from`,leaveActiveClass:p=`${n}-leave-active`,leaveToClass:y=`${n}-leave-to`}=e,v=Mc(s),I=v&&v[0],N=v&&v[1],{onBeforeEnter:K,onEnter:k,onEnterCancelled:g,onLeave:_,onLeaveCancelled:M,onBeforeAppear:L=K,onAppear:F=k,onAppearCancelled:T=g}=t,$=(A,G,ie)=>{st(A,G?f:l),st(A,G?a:i),ie&&ie()},E=(A,G)=>{A._isLeaving=!1,st(A,h),st(A,y),st(A,p),G&&G()},j=A=>(G,ie)=>{const fe=A?F:k,D=()=>$(G,A,ie);rt(fe,[G,D]),Is(()=>{st(G,A?c:o),We(G,A?f:l),Os(fe)||Ms(G,r,I,D)})};return ce(t,{onBeforeEnter(A){rt(K,[A]),We(A,o),We(A,i)},onBeforeAppear(A){rt(L,[A]),We(A,c),We(A,a)},onEnter:j(!1),onAppear:j(!0),onLeave(A,G){A._isLeaving=!0;const ie=()=>E(A,G);We(A,h),Fc(),We(A,p),Is(()=>{A._isLeaving&&(st(A,h),We(A,y),Os(_)||Ms(A,r,N,ie))}),rt(_,[A,ie])},onEnterCancelled(A){$(A,!1),rt(g,[A])},onAppearCancelled(A){$(A,!0),rt(T,[A])},onLeaveCancelled(A){E(A),rt(M,[A])}})}function Mc(e){if(e==null)return null;if(Z(e))return[Zn(e.enter),Zn(e.leave)];{const t=Zn(e);return[t,t]}}function Zn(e){return Ii(e)}function We(e,t){t.split(/\s+/).forEach(n=>n&&e.classList.add(n)),(e[Kt]||(e[Kt]=new Set)).add(t)}function st(e,t){t.split(/\s+/).forEach(r=>r&&e.classList.remove(r));const n=e[Kt];n&&(n.delete(t),n.size||(e[Kt]=void 0))}function Is(e){requestAnimationFrame(()=>{requestAnimationFrame(e)})}let Pc=0;function Ms(e,t,n,r){const s=e._endId=++Pc,o=()=>{s===e._endId&&r()};if(n)return setTimeout(o,n);const{type:i,timeout:l,propCount:c}=Nc(e,t);if(!i)return r();const a=i+"end";let f=0;const h=()=>{e.removeEventListener(a,p),o()},p=y=>{y.target===e&&++f>=c&&h()};setTimeout(()=>{f(n[v]||"").split(", "),s=r(`${Ke}Delay`),o=r(`${Ke}Duration`),i=Ps(s,o),l=r(`${Ot}Delay`),c=r(`${Ot}Duration`),a=Ps(l,c);let f=null,h=0,p=0;t===Ke?i>0&&(f=Ke,h=i,p=o.length):t===Ot?a>0&&(f=Ot,h=a,p=c.length):(h=Math.max(i,a),f=h>0?i>a?Ke:Ot:null,p=f?f===Ke?o.length:c.length:0);const y=f===Ke&&/\b(transform|all)(,|$)/.test(r(`${Ke}Property`).toString());return{type:f,timeout:h,propCount:p,hasTransform:y}}function Ps(e,t){for(;e.lengthNs(n)+Ns(e[r])))}function Ns(e){return e==="auto"?0:Number(e.slice(0,-1).replace(",","."))*1e3}function Fc(){return document.body.offsetHeight}function $c(e,t,n){const r=e[Kt];r&&(t=(t?[t,...r]:[...r]).join(" ")),t==null?e.removeAttribute("class"):n?e.setAttribute("class",t):e.className=t}const Fs=Symbol("_vod"),Hc=Symbol("_vsh"),jc=Symbol(""),Vc=/(^|;)\s*display\s*:/;function Dc(e,t,n){const r=e.style,s=ne(n);let o=!1;if(n&&!s){if(t)if(ne(t))for(const i of t.split(";")){const l=i.slice(0,i.indexOf(":")).trim();n[l]==null&&mn(r,l,"")}else for(const i in t)n[i]==null&&mn(r,i,"");for(const i in n)i==="display"&&(o=!0),mn(r,i,n[i])}else if(s){if(t!==n){const i=r[jc];i&&(n+=";"+i),r.cssText=n,o=Vc.test(n)}}else t&&e.removeAttribute("style");Fs in e&&(e[Fs]=o?r.display:"",e[Hc]&&(r.display="none"))}const $s=/\s*!important$/;function mn(e,t,n){if(B(n))n.forEach(r=>mn(e,t,r));else if(n==null&&(n=""),t.startsWith("--"))e.setProperty(t,n);else{const r=Uc(e,t);$s.test(n)?e.setProperty(ft(r),n.replace($s,""),"important"):e[r]=n}}const Hs=["Webkit","Moz","ms"],er={};function Uc(e,t){const n=er[t];if(n)return n;let r=Fe(t);if(r!=="filter"&&r in e)return er[t]=r;r=On(r);for(let s=0;str||(Gc.then(()=>tr=0),tr=Date.now());function Xc(e,t){const n=r=>{if(!r._vts)r._vts=Date.now();else if(r._vts<=n.attached)return;Se(Yc(r,n.value),t,5,[r])};return n.value=e,n.attached=zc(),n}function Yc(e,t){if(B(t)){const n=e.stopImmediatePropagation;return e.stopImmediatePropagation=()=>{n.call(e),e._stopped=!0},t.map(r=>s=>!s._stopped&&r&&r(s))}else return t}const Us=e=>e.charCodeAt(0)===111&&e.charCodeAt(1)===110&&e.charCodeAt(2)>96&&e.charCodeAt(2)<123,Jc=(e,t,n,r,s,o,i,l,c)=>{const a=s==="svg";t==="class"?$c(e,r,a):t==="style"?Dc(e,n,r):Wt(t)?Tr(t)||Wc(e,t,n,r,i):(t[0]==="."?(t=t.slice(1),!0):t[0]==="^"?(t=t.slice(1),!1):Qc(e,t,r,a))?kc(e,t,r,o,i,l,c):(t==="true-value"?e._trueValue=r:t==="false-value"&&(e._falseValue=r),Bc(e,t,r,a))};function Qc(e,t,n,r){if(r)return!!(t==="innerHTML"||t==="textContent"||t in e&&Us(t)&&q(n));if(t==="spellcheck"||t==="draggable"||t==="translate"||t==="form"||t==="list"&&e.tagName==="INPUT"||t==="type"&&e.tagName==="TEXTAREA")return!1;if(t==="width"||t==="height"){const s=e.tagName;if(s==="IMG"||s==="VIDEO"||s==="CANVAS"||s==="SOURCE")return!1}return Us(t)&&ne(n)?!1:t in e}const Bs=e=>{const t=e.props["onUpdate:modelValue"]||!1;return B(t)?n=>pn(t,n):t};function Zc(e){e.target.composing=!0}function ks(e){const t=e.target;t.composing&&(t.composing=!1,t.dispatchEvent(new Event("input")))}const nr=Symbol("_assign"),pu={created(e,{modifiers:{lazy:t,trim:n,number:r}},s){e[nr]=Bs(s);const o=r||s.props&&s.props.type==="number";mt(e,t?"change":"input",i=>{if(i.target.composing)return;let l=e.value;n&&(l=l.trim()),o&&(l=ur(l)),e[nr](l)}),n&&mt(e,"change",()=>{e.value=e.value.trim()}),t||(mt(e,"compositionstart",Zc),mt(e,"compositionend",ks),mt(e,"change",ks))},mounted(e,{value:t}){e.value=t??""},beforeUpdate(e,{value:t,modifiers:{lazy:n,trim:r,number:s}},o){if(e[nr]=Bs(o),e.composing)return;const i=s||e.type==="number"?ur(e.value):e.value,l=t??"";i!==l&&(document.activeElement===e&&e.type!=="range"&&(n||r&&e.value.trim()===l)||(e.value=l))}},ea=["ctrl","shift","alt","meta"],ta={stop:e=>e.stopPropagation(),prevent:e=>e.preventDefault(),self:e=>e.target!==e.currentTarget,ctrl:e=>!e.ctrlKey,shift:e=>!e.shiftKey,alt:e=>!e.altKey,meta:e=>!e.metaKey,left:e=>"button"in e&&e.button!==0,middle:e=>"button"in e&&e.button!==1,right:e=>"button"in e&&e.button!==2,exact:(e,t)=>ea.some(n=>e[`${n}Key`]&&!t.includes(n))},gu=(e,t)=>{const n=e._withMods||(e._withMods={}),r=t.join(".");return n[r]||(n[r]=(s,...o)=>{for(let i=0;i{const n=e._withKeys||(e._withKeys={}),r=t.join(".");return n[r]||(n[r]=s=>{if(!("key"in s))return;const o=ft(s.key);if(t.some(i=>i===o||na[i]===o))return e(s)})},li=ce({patchProp:Jc},Oc);let Vt,Ks=!1;function ra(){return Vt||(Vt=ac(li))}function sa(){return Vt=Ks?Vt:uc(li),Ks=!0,Vt}const yu=(...e)=>{const t=ra().createApp(...e),{mount:n}=t;return t.mount=r=>{const s=ai(r);if(!s)return;const o=t._component;!q(o)&&!o.render&&!o.template&&(o.template=s.innerHTML),s.innerHTML="";const i=n(s,!1,ci(s));return s instanceof Element&&(s.removeAttribute("v-cloak"),s.setAttribute("data-v-app","")),i},t},_u=(...e)=>{const t=sa().createApp(...e),{mount:n}=t;return t.mount=r=>{const s=ai(r);if(s)return n(s,!0,ci(s))},t};function ci(e){if(e instanceof SVGElement)return"svg";if(typeof MathMLElement=="function"&&e instanceof MathMLElement)return"mathml"}function ai(e){return ne(e)?document.querySelector(e):e}const vu=(e,t)=>{const n=e.__vccOpts||e;for(const[r,s]of t)n[r]=s;return n},oa="modulepreload",ia=function(e){return"/dev/"+e},Ws={},bu=function(t,n,r){let s=Promise.resolve();if(n&&n.length>0){const o=document.getElementsByTagName("link"),i=document.querySelector("meta[property=csp-nonce]"),l=(i==null?void 0:i.nonce)||(i==null?void 0:i.getAttribute("nonce"));s=Promise.all(n.map(c=>{if(c=ia(c),c in Ws)return;Ws[c]=!0;const a=c.endsWith(".css"),f=a?'[rel="stylesheet"]':"";if(!!r)for(let y=o.length-1;y>=0;y--){const v=o[y];if(v.href===c&&(!a||v.rel==="stylesheet"))return}else if(document.querySelector(`link[href="${c}"]${f}`))return;const p=document.createElement("link");if(p.rel=a?"stylesheet":oa,a||(p.as="script",p.crossOrigin=""),p.href=c,l&&p.setAttribute("nonce",l),document.head.appendChild(p),a)return new Promise((y,v)=>{p.addEventListener("load",y),p.addEventListener("error",()=>v(new Error(`Unable to preload CSS for ${c}`)))})}))}return s.then(()=>t()).catch(o=>{const i=new Event("vite:preloadError",{cancelable:!0});if(i.payload=o,window.dispatchEvent(i),!i.defaultPrevented)throw o})},la=window.__VP_SITE_DATA__;function zr(e){return lo()?(Di(e),!0):!1}function Ne(e){return typeof e=="function"?e():Co(e)}const ui=typeof window<"u"&&typeof document<"u";typeof WorkerGlobalScope<"u"&&globalThis instanceof WorkerGlobalScope;const ca=Object.prototype.toString,aa=e=>ca.call(e)==="[object Object]",Qe=()=>{},xr=ua();function ua(){var e,t;return ui&&((e=window==null?void 0:window.navigator)==null?void 0:e.userAgent)&&(/iP(ad|hone|od)/.test(window.navigator.userAgent)||((t=window==null?void 0:window.navigator)==null?void 0:t.maxTouchPoints)>2&&/iPad|Macintosh/.test(window==null?void 0:window.navigator.userAgent))}function fa(e,t){function n(...r){return new Promise((s,o)=>{Promise.resolve(e(()=>t.apply(this,r),{fn:t,thisArg:this,args:r})).then(s).catch(o)})}return n}const fi=e=>e();function da(e,t={}){let n,r,s=Qe;const o=l=>{clearTimeout(l),s(),s=Qe};return l=>{const c=Ne(e),a=Ne(t.maxWait);return n&&o(n),c<=0||a!==void 0&&a<=0?(r&&(o(r),r=null),Promise.resolve(l())):new Promise((f,h)=>{s=t.rejectOnCancel?h:f,a&&!r&&(r=setTimeout(()=>{n&&o(n),r=null,f(l())},a)),n=setTimeout(()=>{r&&o(r),r=null,f(l())},c)})}}function ha(e=fi){const t=se(!0);function n(){t.value=!1}function r(){t.value=!0}const s=(...o)=>{t.value&&e(...o)};return{isActive:Pn(t),pause:n,resume:r,eventFilter:s}}function pa(e){return e||Bn()}function di(...e){if(e.length!==1)return gl(...e);const t=e[0];return typeof t=="function"?Pn(dl(()=>({get:t,set:Qe}))):se(t)}function hi(e,t,n={}){const{eventFilter:r=fi,...s}=n;return Ve(e,fa(r,t),s)}function ga(e,t,n={}){const{eventFilter:r,...s}=n,{eventFilter:o,pause:i,resume:l,isActive:c}=ha(r);return{stop:hi(e,t,{...s,eventFilter:o}),pause:i,resume:l,isActive:c}}function Xr(e,t=!0,n){pa()?Rt(e,n):t?e():Nn(e)}function wu(e,t,n={}){const{debounce:r=0,maxWait:s=void 0,...o}=n;return hi(e,t,{...o,eventFilter:da(r,{maxWait:s})})}function Eu(e,t,n){let r;de(n)?r={evaluating:n}:r=n||{};const{lazy:s=!1,evaluating:o=void 0,shallow:i=!0,onError:l=Qe}=r,c=se(!s),a=i?Vr(t):se(t);let f=0;return Br(async h=>{if(!c.value)return;f++;const p=f;let y=!1;o&&Promise.resolve().then(()=>{o.value=!0});try{const v=await e(I=>{h(()=>{o&&(o.value=!1),y||I()})});p===f&&(a.value=v)}catch(v){l(v)}finally{o&&p===f&&(o.value=!1),y=!0}}),s?re(()=>(c.value=!0,a.value)):a}function yt(e){var t;const n=Ne(e);return(t=n==null?void 0:n.$el)!=null?t:n}const Te=ui?window:void 0;function De(...e){let t,n,r,s;if(typeof e[0]=="string"||Array.isArray(e[0])?([n,r,s]=e,t=Te):[t,n,r,s]=e,!t)return Qe;Array.isArray(n)||(n=[n]),Array.isArray(r)||(r=[r]);const o=[],i=()=>{o.forEach(f=>f()),o.length=0},l=(f,h,p,y)=>(f.addEventListener(h,p,y),()=>f.removeEventListener(h,p,y)),c=Ve(()=>[yt(t),Ne(s)],([f,h])=>{if(i(),!f)return;const p=aa(h)?{...h}:h;o.push(...n.flatMap(y=>r.map(v=>l(f,y,v,p))))},{immediate:!0,flush:"post"}),a=()=>{c(),i()};return zr(a),a}let qs=!1;function Cu(e,t,n={}){const{window:r=Te,ignore:s=[],capture:o=!0,detectIframe:i=!1}=n;if(!r)return Qe;xr&&!qs&&(qs=!0,Array.from(r.document.body.children).forEach(p=>p.addEventListener("click",Qe)),r.document.documentElement.addEventListener("click",Qe));let l=!0;const c=p=>s.some(y=>{if(typeof y=="string")return Array.from(r.document.querySelectorAll(y)).some(v=>v===p.target||p.composedPath().includes(v));{const v=yt(y);return v&&(p.target===v||p.composedPath().includes(v))}}),f=[De(r,"click",p=>{const y=yt(e);if(!(!y||y===p.target||p.composedPath().includes(y))){if(p.detail===0&&(l=!c(p)),!l){l=!0;return}t(p)}},{passive:!0,capture:o}),De(r,"pointerdown",p=>{const y=yt(e);l=!c(p)&&!!(y&&!p.composedPath().includes(y))},{passive:!0}),i&&De(r,"blur",p=>{setTimeout(()=>{var y;const v=yt(e);((y=r.document.activeElement)==null?void 0:y.tagName)==="IFRAME"&&!(v!=null&&v.contains(r.document.activeElement))&&t(p)},0)})].filter(Boolean);return()=>f.forEach(p=>p())}function ma(e){return typeof e=="function"?e:typeof e=="string"?t=>t.key===e:Array.isArray(e)?t=>e.includes(t.key):()=>!0}function xu(...e){let t,n,r={};e.length===3?(t=e[0],n=e[1],r=e[2]):e.length===2?typeof e[1]=="object"?(t=!0,n=e[0],r=e[1]):(t=e[0],n=e[1]):(t=!0,n=e[0]);const{target:s=Te,eventName:o="keydown",passive:i=!1,dedupe:l=!1}=r,c=ma(t);return De(s,o,f=>{f.repeat&&Ne(l)||c(f)&&n(f)},i)}function ya(){const e=se(!1),t=Bn();return t&&Rt(()=>{e.value=!0},t),e}function _a(e){const t=ya();return re(()=>(t.value,!!e()))}function pi(e,t={}){const{window:n=Te}=t,r=_a(()=>n&&"matchMedia"in n&&typeof n.matchMedia=="function");let s;const o=se(!1),i=a=>{o.value=a.matches},l=()=>{s&&("removeEventListener"in s?s.removeEventListener("change",i):s.removeListener(i))},c=Br(()=>{r.value&&(l(),s=n.matchMedia(Ne(e)),"addEventListener"in s?s.addEventListener("change",i):s.addListener(i),o.value=s.matches)});return zr(()=>{c(),l(),s=void 0}),o}const an=typeof globalThis<"u"?globalThis:typeof window<"u"?window:typeof global<"u"?global:typeof self<"u"?self:{},un="__vueuse_ssr_handlers__",va=ba();function ba(){return un in an||(an[un]=an[un]||{}),an[un]}function gi(e,t){return va[e]||t}function wa(e){return e==null?"any":e instanceof Set?"set":e instanceof Map?"map":e instanceof Date?"date":typeof e=="boolean"?"boolean":typeof e=="string"?"string":typeof e=="object"?"object":Number.isNaN(e)?"any":"number"}const Ea={boolean:{read:e=>e==="true",write:e=>String(e)},object:{read:e=>JSON.parse(e),write:e=>JSON.stringify(e)},number:{read:e=>Number.parseFloat(e),write:e=>String(e)},any:{read:e=>e,write:e=>String(e)},string:{read:e=>e,write:e=>String(e)},map:{read:e=>new Map(JSON.parse(e)),write:e=>JSON.stringify(Array.from(e.entries()))},set:{read:e=>new Set(JSON.parse(e)),write:e=>JSON.stringify(Array.from(e))},date:{read:e=>new Date(e),write:e=>e.toISOString()}},Gs="vueuse-storage";function Yr(e,t,n,r={}){var s;const{flush:o="pre",deep:i=!0,listenToStorageChanges:l=!0,writeDefaults:c=!0,mergeDefaults:a=!1,shallow:f,window:h=Te,eventFilter:p,onError:y=E=>{console.error(E)},initOnMounted:v}=r,I=(f?Vr:se)(typeof t=="function"?t():t);if(!n)try{n=gi("getDefaultStorage",()=>{var E;return(E=Te)==null?void 0:E.localStorage})()}catch(E){y(E)}if(!n)return I;const N=Ne(t),K=wa(N),k=(s=r.serializer)!=null?s:Ea[K],{pause:g,resume:_}=ga(I,()=>L(I.value),{flush:o,deep:i,eventFilter:p});h&&l&&Xr(()=>{De(h,"storage",T),De(h,Gs,$),v&&T()}),v||T();function M(E,j){h&&h.dispatchEvent(new CustomEvent(Gs,{detail:{key:e,oldValue:E,newValue:j,storageArea:n}}))}function L(E){try{const j=n.getItem(e);if(E==null)M(j,null),n.removeItem(e);else{const A=k.write(E);j!==A&&(n.setItem(e,A),M(j,A))}}catch(j){y(j)}}function F(E){const j=E?E.newValue:n.getItem(e);if(j==null)return c&&N!=null&&n.setItem(e,k.write(N)),N;if(!E&&a){const A=k.read(j);return typeof a=="function"?a(A,N):K==="object"&&!Array.isArray(A)?{...N,...A}:A}else return typeof j!="string"?j:k.read(j)}function T(E){if(!(E&&E.storageArea!==n)){if(E&&E.key==null){I.value=N;return}if(!(E&&E.key!==e)){g();try{(E==null?void 0:E.newValue)!==k.write(I.value)&&(I.value=F(E))}catch(j){y(j)}finally{E?Nn(_):_()}}}}function $(E){T(E.detail)}return I}function mi(e){return pi("(prefers-color-scheme: dark)",e)}function Ca(e={}){const{selector:t="html",attribute:n="class",initialValue:r="auto",window:s=Te,storage:o,storageKey:i="vueuse-color-scheme",listenToStorageChanges:l=!0,storageRef:c,emitAuto:a,disableTransition:f=!0}=e,h={auto:"",light:"light",dark:"dark",...e.modes||{}},p=mi({window:s}),y=re(()=>p.value?"dark":"light"),v=c||(i==null?di(r):Yr(i,r,o,{window:s,listenToStorageChanges:l})),I=re(()=>v.value==="auto"?y.value:v.value),N=gi("updateHTMLAttrs",(_,M,L)=>{const F=typeof _=="string"?s==null?void 0:s.document.querySelector(_):yt(_);if(!F)return;let T;if(f&&(T=s.document.createElement("style"),T.appendChild(document.createTextNode("*,*::before,*::after{-webkit-transition:none!important;-moz-transition:none!important;-o-transition:none!important;-ms-transition:none!important;transition:none!important}")),s.document.head.appendChild(T)),M==="class"){const $=L.split(/\s/g);Object.values(h).flatMap(E=>(E||"").split(/\s/g)).filter(Boolean).forEach(E=>{$.includes(E)?F.classList.add(E):F.classList.remove(E)})}else F.setAttribute(M,L);f&&(s.getComputedStyle(T).opacity,document.head.removeChild(T))});function K(_){var M;N(t,n,(M=h[_])!=null?M:_)}function k(_){e.onChanged?e.onChanged(_,K):K(_)}Ve(I,k,{flush:"post",immediate:!0}),Xr(()=>k(I.value));const g=re({get(){return a?v.value:I.value},set(_){v.value=_}});try{return Object.assign(g,{store:v,system:y,state:I})}catch{return g}}function xa(e={}){const{valueDark:t="dark",valueLight:n="",window:r=Te}=e,s=Ca({...e,onChanged:(l,c)=>{var a;e.onChanged?(a=e.onChanged)==null||a.call(e,l==="dark",c,l):c(l)},modes:{dark:t,light:n}}),o=re(()=>s.system?s.system.value:mi({window:r}).value?"dark":"light");return re({get(){return s.value==="dark"},set(l){const c=l?"dark":"light";o.value===c?s.value="auto":s.value=c}})}function rr(e){return typeof Window<"u"&&e instanceof Window?e.document.documentElement:typeof Document<"u"&&e instanceof Document?e.documentElement:e}function Su(e,t,n={}){const{window:r=Te}=n;return Yr(e,t,r==null?void 0:r.localStorage,n)}function yi(e){const t=window.getComputedStyle(e);if(t.overflowX==="scroll"||t.overflowY==="scroll"||t.overflowX==="auto"&&e.clientWidth1?!0:(t.preventDefault&&t.preventDefault(),!1)}const fn=new WeakMap;function Tu(e,t=!1){const n=se(t);let r=null;Ve(di(e),i=>{const l=rr(Ne(i));if(l){const c=l;fn.get(c)||fn.set(c,c.style.overflow),n.value&&(c.style.overflow="hidden")}},{immediate:!0});const s=()=>{const i=rr(Ne(e));!i||n.value||(xr&&(r=De(i,"touchmove",l=>{Sa(l)},{passive:!1})),i.style.overflow="hidden",n.value=!0)},o=()=>{var i;const l=rr(Ne(e));!l||!n.value||(xr&&(r==null||r()),l.style.overflow=(i=fn.get(l))!=null?i:"",fn.delete(l),n.value=!1)};return zr(o),re({get(){return n.value},set(i){i?s():o()}})}function Au(e,t,n={}){const{window:r=Te}=n;return Yr(e,t,r==null?void 0:r.sessionStorage,n)}function Ru(e={}){const{window:t=Te,behavior:n="auto"}=e;if(!t)return{x:se(0),y:se(0)};const r=se(t.scrollX),s=se(t.scrollY),o=re({get(){return r.value},set(l){scrollTo({left:l,behavior:n})}}),i=re({get(){return s.value},set(l){scrollTo({top:l,behavior:n})}});return De(t,"scroll",()=>{r.value=t.scrollX,s.value=t.scrollY},{capture:!1,passive:!0}),{x:o,y:i}}function Lu(e={}){const{window:t=Te,initialWidth:n=Number.POSITIVE_INFINITY,initialHeight:r=Number.POSITIVE_INFINITY,listenOrientation:s=!0,includeScrollbar:o=!0}=e,i=se(n),l=se(r),c=()=>{t&&(o?(i.value=t.innerWidth,l.value=t.innerHeight):(i.value=t.document.documentElement.clientWidth,l.value=t.document.documentElement.clientHeight))};if(c(),Xr(c),De("resize",c,{passive:!0}),s){const a=pi("(orientation: portrait)");Ve(a,()=>c())}return{width:i,height:l}}var sr={BASE_URL:"/dev/",MODE:"production",DEV:!1,PROD:!0,SSR:!1},or={};const _i=/^(?:[a-z]+:|\/\/)/i,Ta="vitepress-theme-appearance",Aa=/#.*$/,Ra=/[?#].*$/,La=/(?:(^|\/)index)?\.(?:md|html)$/,Ce=typeof document<"u",vi={relativePath:"",filePath:"",title:"404",description:"Not Found",headers:[],frontmatter:{sidebar:!1,layout:"page"},lastUpdated:0,isNotFound:!0};function Oa(e,t,n=!1){if(t===void 0)return!1;if(e=zs(`/${e}`),n)return new RegExp(t).test(e);if(zs(t)!==e)return!1;const r=t.match(Aa);return r?(Ce?location.hash:"")===r[0]:!0}function zs(e){return decodeURI(e).replace(Ra,"").replace(La,"$1")}function Ia(e){return _i.test(e)}function Ma(e,t){var r,s,o,i,l,c,a;const n=Object.keys(e.locales).find(f=>f!=="root"&&!Ia(f)&&Oa(t,`/${f}/`,!0))||"root";return Object.assign({},e,{localeIndex:n,lang:((r=e.locales[n])==null?void 0:r.lang)??e.lang,dir:((s=e.locales[n])==null?void 0:s.dir)??e.dir,title:((o=e.locales[n])==null?void 0:o.title)??e.title,titleTemplate:((i=e.locales[n])==null?void 0:i.titleTemplate)??e.titleTemplate,description:((l=e.locales[n])==null?void 0:l.description)??e.description,head:wi(e.head,((c=e.locales[n])==null?void 0:c.head)??[]),themeConfig:{...e.themeConfig,...(a=e.locales[n])==null?void 0:a.themeConfig}})}function bi(e,t){const n=t.title||e.title,r=t.titleTemplate??e.titleTemplate;if(typeof r=="string"&&r.includes(":title"))return r.replace(/:title/g,n);const s=Pa(e.title,r);return n===s.slice(3)?n:`${n}${s}`}function Pa(e,t){return t===!1?"":t===!0||t===void 0?` | ${e}`:e===t?"":` | ${t}`}function Na(e,t){const[n,r]=t;if(n!=="meta")return!1;const s=Object.entries(r)[0];return s==null?!1:e.some(([o,i])=>o===n&&i[s[0]]===s[1])}function wi(e,t){return[...e.filter(n=>!Na(t,n)),...t]}const Fa=/[\u0000-\u001F"#$&*+,:;<=>?[\]^`{|}\u007F]/g,$a=/^[a-z]:/i;function Xs(e){const t=$a.exec(e),n=t?t[0]:"";return n+e.slice(n.length).replace(Fa,"_").replace(/(^|\/)_+(?=[^/]*$)/,"$1")}const ir=new Set;function Ha(e){if(ir.size===0){const n=typeof process=="object"&&(or==null?void 0:or.VITE_EXTRA_EXTENSIONS)||(sr==null?void 0:sr.VITE_EXTRA_EXTENSIONS)||"";("3g2,3gp,aac,ai,apng,au,avif,bin,bmp,cer,class,conf,crl,css,csv,dll,doc,eps,epub,exe,gif,gz,ics,ief,jar,jpe,jpeg,jpg,js,json,jsonld,m4a,man,mid,midi,mjs,mov,mp2,mp3,mp4,mpe,mpeg,mpg,mpp,oga,ogg,ogv,ogx,opus,otf,p10,p7c,p7m,p7s,pdf,png,ps,qt,roff,rtf,rtx,ser,svg,t,tif,tiff,tr,ts,tsv,ttf,txt,vtt,wav,weba,webm,webp,woff,woff2,xhtml,xml,yaml,yml,zip"+(n&&typeof n=="string"?","+n:"")).split(",").forEach(r=>ir.add(r))}const t=e.split(".").pop();return t==null||!ir.has(t.toLowerCase())}function Ou(e){return e.replace(/[|\\{}()[\]^$+*?.]/g,"\\$&").replace(/-/g,"\\x2d")}const ja=Symbol(),ut=Vr(la);function Iu(e){const t=re(()=>Ma(ut.value,e.data.relativePath)),n=t.value.appearance,r=n==="force-dark"?se(!0):n?xa({storageKey:Ta,initialValue:()=>typeof n=="string"?n:"auto",...typeof n=="object"?n:{}}):se(!1);return{site:t,theme:re(()=>t.value.themeConfig),page:re(()=>e.data),frontmatter:re(()=>e.data.frontmatter),params:re(()=>e.data.params),lang:re(()=>t.value.lang),dir:re(()=>e.data.frontmatter.dir||t.value.dir),localeIndex:re(()=>t.value.localeIndex||"root"),title:re(()=>bi(t.value,e.data)),description:re(()=>e.data.description||t.value.description),isDark:r}}function Va(){const e=xt(ja);if(!e)throw new Error("vitepress data not properly injected in app");return e}function Da(e,t){return`${e}${t}`.replace(/\/+/g,"/")}function Ys(e){return _i.test(e)||!e.startsWith("/")?e:Da(ut.value.base,e)}function Ua(e){let t=e.replace(/\.html$/,"");if(t=decodeURIComponent(t),t=t.replace(/\/$/,"/index"),Ce){const n="/dev/";t=Xs(t.slice(n.length).replace(/\//g,"_")||"index")+".md";let r=__VP_HASH_MAP__[t.toLowerCase()];if(r||(t=t.endsWith("_index.md")?t.slice(0,-9)+".md":t.slice(0,-3)+"_index.md",r=__VP_HASH_MAP__[t.toLowerCase()]),!r)return null;t=`${n}assets/${t}.${r}.js`}else t=`./${Xs(t.slice(1).replace(/\//g,"_"))}.md.js`;return t}let yn=[];function Mu(e){yn.push(e),Dn(()=>{yn=yn.filter(t=>t!==e)})}function Ba(){let e=ut.value.scrollOffset,t=0,n=24;if(typeof e=="object"&&"padding"in e&&(n=e.padding,e=e.selector),typeof e=="number")t=e;else if(typeof e=="string")t=Js(e,n);else if(Array.isArray(e))for(const r of e){const s=Js(r,n);if(s){t=s;break}}return t}function Js(e,t){const n=document.querySelector(e);if(!n)return 0;const r=n.getBoundingClientRect().bottom;return r<0?0:r+t}const ka=Symbol(),Jr="http://a.com",Ka=()=>({path:"/",component:null,data:vi});function Pu(e,t){const n=Mn(Ka()),r={route:n,go:s};async function s(l=Ce?location.href:"/"){var c,a;l=An(l),await((c=r.onBeforeRouteChange)==null?void 0:c.call(r,l))!==!1&&(Zs(l),await i(l),await((a=r.onAfterRouteChanged)==null?void 0:a.call(r,l)))}let o=null;async function i(l,c=0,a=!1){var p;if(await((p=r.onBeforePageLoad)==null?void 0:p.call(r,l))===!1)return;const f=new URL(l,Jr),h=o=f.pathname;try{let y=await e(h);if(!y)throw new Error(`Page not found: ${h}`);if(o===h){o=null;const{default:v,__pageData:I}=y;if(!v)throw new Error(`Invalid route component: ${v}`);n.path=Ce?h:Ys(h),n.component=Mt(v),n.data=Mt(I),Ce&&Nn(()=>{let N=ut.value.base+I.relativePath.replace(/(?:(^|\/)index)?\.md$/,"$1");if(!ut.value.cleanUrls&&!N.endsWith("/")&&(N+=".html"),N!==f.pathname&&(f.pathname=N,l=N+f.search+f.hash,history.replaceState(null,"",l)),f.hash&&!c){let K=null;try{K=document.getElementById(decodeURIComponent(f.hash).slice(1))}catch(k){console.warn(k)}if(K){Qs(K,f.hash);return}}window.scrollTo(0,c)})}}catch(y){if(!/fetch|Page not found/.test(y.message)&&!/^\/404(\.html|\/)?$/.test(l)&&console.error(y),!a)try{const v=await fetch(ut.value.base+"hashmap.json");window.__VP_HASH_MAP__=await v.json(),await i(l,c,!0);return}catch{}o===h&&(o=null,n.path=Ce?h:Ys(h),n.component=t?Mt(t):null,n.data=vi)}}return Ce&&(window.addEventListener("click",l=>{if(l.target.closest("button"))return;const a=l.target.closest("a");if(a&&!a.closest(".vp-raw")&&(a instanceof SVGElement||!a.download)){const{target:f}=a,{href:h,origin:p,pathname:y,hash:v,search:I}=new URL(a.href instanceof SVGAnimatedString?a.href.animVal:a.href,a.baseURI),N=new URL(window.location.href);!l.ctrlKey&&!l.shiftKey&&!l.altKey&&!l.metaKey&&!f&&p===N.origin&&Ha(y)&&(l.preventDefault(),y===N.pathname&&I===N.search?(v!==N.hash&&(history.pushState(null,"",v),window.dispatchEvent(new Event("hashchange"))),v?Qs(a,v,a.classList.contains("header-anchor")):(Zs(h,!1),window.scrollTo(0,0))):s(h))}},{capture:!0}),window.addEventListener("popstate",async l=>{var c;await i(An(location.href),l.state&&l.state.scrollPosition||0),(c=r.onAfterRouteChanged)==null||c.call(r,location.href)}),window.addEventListener("hashchange",l=>{l.preventDefault()})),r}function Wa(){const e=xt(ka);if(!e)throw new Error("useRouter() is called without provider.");return e}function Ei(){return Wa().route}function Qs(e,t,n=!1){let r=null;try{r=e.classList.contains("header-anchor")?e:document.getElementById(decodeURIComponent(t).slice(1))}catch(s){console.warn(s)}if(r){let s=function(){!n||Math.abs(i-window.scrollY)>window.innerHeight?window.scrollTo(0,i):window.scrollTo({left:0,top:i,behavior:"smooth"})};const o=parseInt(window.getComputedStyle(r).paddingTop,10),i=window.scrollY+r.getBoundingClientRect().top-Ba()+o;requestAnimationFrame(s)}}function Zs(e,t=!0){if(Ce&&An(e)!==An(location.href)){const n=location.hash;history.replaceState({scrollPosition:window.scrollY},document.title),history.pushState(null,"",e),t&&new URL(e,Jr).hash!==n&&window.dispatchEvent(new Event("hashchange"))}}function An(e){const t=new URL(e,Jr);return t.pathname=t.pathname.replace(/(^|\/)index(\.html)?$/,"$1"),ut.value.cleanUrls?t.pathname=t.pathname.replace(/\.html$/,""):!t.pathname.endsWith("/")&&!t.pathname.endsWith(".html")&&(t.pathname+=".html"),t.pathname+t.search+t.hash}const lr=()=>yn.forEach(e=>e()),Nu=kr({name:"VitePressContent",props:{as:{type:[Object,String],default:"div"}},setup(e){const t=Ei(),{site:n}=Va();return()=>Cr(e.as,n.value.contentProps??{style:{position:"relative"}},[t.component?Cr(t.component,{onVnodeMounted:lr,onVnodeUpdated:lr,onVnodeUnmounted:lr}):"404 Page Not Found"])}}),Fu=kr({setup(e,{slots:t}){const n=se(!1);return Rt(()=>{n.value=!0}),()=>n.value&&t.default?t.default():null}});function $u(){Ce&&window.addEventListener("click",e=>{var n;const t=e.target;if(t.matches(".vp-code-group input")){const r=(n=t.parentElement)==null?void 0:n.parentElement;if(!r)return;const s=Array.from(r.querySelectorAll("input")).indexOf(t);if(s<0)return;const o=r.querySelector(".blocks");if(!o)return;const i=Array.from(o.children).find(a=>a.classList.contains("active"));if(!i)return;const l=o.children[s];if(!l||i===l)return;i.classList.remove("active"),l.classList.add("active");const c=r==null?void 0:r.querySelector(`label[for="${t.id}"]`);c==null||c.scrollIntoView({block:"nearest"})}})}function Hu(){if(Ce){const e=new WeakMap;window.addEventListener("click",t=>{var r;const n=t.target;if(n.matches('div[class*="language-"] > button.copy')){const s=n.parentElement,o=(r=n.nextElementSibling)==null?void 0:r.nextElementSibling;if(!s||!o)return;const i=/language-(shellscript|shell|bash|sh|zsh)/.test(s.className),l=[".vp-copy-ignore",".diff.remove"],c=o.cloneNode(!0);c.querySelectorAll(l.join(",")).forEach(f=>f.remove());let a=c.textContent||"";i&&(a=a.replace(/^ *(\$|>) /gm,"").trim()),qa(a).then(()=>{n.classList.add("copied"),clearTimeout(e.get(n));const f=setTimeout(()=>{n.classList.remove("copied"),n.blur(),e.delete(n)},2e3);e.set(n,f)})}})}}async function qa(e){try{return navigator.clipboard.writeText(e)}catch{const t=document.createElement("textarea"),n=document.activeElement;t.value=e,t.setAttribute("readonly",""),t.style.contain="strict",t.style.position="absolute",t.style.left="-9999px",t.style.fontSize="12pt";const r=document.getSelection(),s=r?r.rangeCount>0&&r.getRangeAt(0):null;document.body.appendChild(t),t.select(),t.selectionStart=0,t.selectionEnd=e.length,document.execCommand("copy"),document.body.removeChild(t),s&&(r.removeAllRanges(),r.addRange(s)),n&&n.focus()}}function ju(e,t){let n=!0,r=[];const s=o=>{if(n){n=!1,o.forEach(l=>{const c=cr(l);for(const a of document.head.children)if(a.isEqualNode(c)){r.push(a);return}});return}const i=o.map(cr);r.forEach((l,c)=>{const a=i.findIndex(f=>f==null?void 0:f.isEqualNode(l??null));a!==-1?delete i[a]:(l==null||l.remove(),delete r[c])}),i.forEach(l=>l&&document.head.appendChild(l)),r=[...r,...i].filter(Boolean)};Br(()=>{const o=e.data,i=t.value,l=o&&o.description,c=o&&o.frontmatter.head||[],a=bi(i,o);a!==document.title&&(document.title=a);const f=l||i.description;let h=document.querySelector("meta[name=description]");h?h.getAttribute("content")!==f&&h.setAttribute("content",f):cr(["meta",{name:"description",content:f}]),s(wi(i.head,za(c)))})}function cr([e,t,n]){const r=document.createElement(e);for(const s in t)r.setAttribute(s,t[s]);return n&&(r.innerHTML=n),e==="script"&&!t.async&&(r.async=!1),r}function Ga(e){return e[0]==="meta"&&e[1]&&e[1].name==="description"}function za(e){return e.filter(t=>!Ga(t))}const ar=new Set,Ci=()=>document.createElement("link"),Xa=e=>{const t=Ci();t.rel="prefetch",t.href=e,document.head.appendChild(t)},Ya=e=>{const t=new XMLHttpRequest;t.open("GET",e,t.withCredentials=!0),t.send()};let dn;const Ja=Ce&&(dn=Ci())&&dn.relList&&dn.relList.supports&&dn.relList.supports("prefetch")?Xa:Ya;function Vu(){if(!Ce||!window.IntersectionObserver)return;let e;if((e=navigator.connection)&&(e.saveData||/2g/.test(e.effectiveType)))return;const t=window.requestIdleCallback||setTimeout;let n=null;const r=()=>{n&&n.disconnect(),n=new IntersectionObserver(o=>{o.forEach(i=>{if(i.isIntersecting){const l=i.target;n.unobserve(l);const{pathname:c}=l;if(!ar.has(c)){ar.add(c);const a=Ua(c);a&&Ja(a)}}})}),t(()=>{document.querySelectorAll("#app a").forEach(o=>{const{hostname:i,pathname:l}=new URL(o.href instanceof SVGAnimatedString?o.href.animVal:o.href,o.baseURI),c=l.match(/\.\w+$/);c&&c[0]!==".html"||o.target!=="_blank"&&i===location.hostname&&(l!==location.pathname?n.observe(o):ar.add(l))})})};Rt(r);const s=Ei();Ve(()=>s.path,r),Dn(()=>{n&&n.disconnect()})}export{ec as $,Dn as A,ru as B,Dl as C,Ba as D,tu as E,me as F,iu as G,Vr as H,Mu as I,oe as J,nu as K,_i as L,Ei as M,_c as N,xt as O,Lu as P,Lr as Q,Cu as R,xu as S,oi as T,Nn as U,Ru as V,Pn as W,ou as X,bu as Y,Tu as Z,vu as _,ti as a,mu as a0,cu as a1,gu as a2,au as a3,Mn as a4,gl as a5,Cr as a6,du as a7,ju as a8,ka as a9,Ou as aA,Iu as aa,ja as ab,Nu as ac,Fu as ad,ut as ae,_u as af,Pu as ag,Ua as ah,Vu as ai,Hu as aj,$u as ak,yt as al,zr as am,Eu as an,Au as ao,Su as ap,wu as aq,Wa as ar,De as as,Ho as at,su as au,pu as av,de as aw,uu as ax,Mt as ay,yu as az,Qo as b,fu as c,kr as d,hu as e,Ha as f,Ys as g,se as h,Ia as i,Ce as j,re as k,Rt as l,ei as m,Or as n,Yo as o,Co as p,Za as q,lu as r,eu as s,Qa as t,Va as u,Oa as v,Cl as w,pi as x,Ve as y,Br as z}; diff --git a/dev/assets/chunks/theme.CyrMDs54.js b/dev/assets/chunks/theme.CIqXObSN.js similarity index 99% rename from dev/assets/chunks/theme.CyrMDs54.js rename to dev/assets/chunks/theme.CIqXObSN.js index 729cde5..ab15478 100644 --- a/dev/assets/chunks/theme.CyrMDs54.js +++ b/dev/assets/chunks/theme.CIqXObSN.js @@ -1,7 +1,2 @@ -function __vite__mapDeps(indexes) { - if (!__vite__mapDeps.viteFileDeps) { - __vite__mapDeps.viteFileDeps = ["assets/chunks/VPLocalSearchBox.BcD31Tm5.js","assets/chunks/framework.RTxADYK2.js"] - } - return indexes.map((i) => __vite__mapDeps.viteFileDeps[i]) -} -import{d as _,o as a,c as u,r as c,n as N,a as D,t as T,b as y,w as p,T as pe,e as f,_ as $,u as Ye,i as Xe,f as Qe,g as he,h as w,j as q,k as g,l as j,m as h,p as r,q as B,s as H,v as z,x as le,y as G,z as te,A as fe,B as Te,C as Ze,D as xe,E as K,F as M,G as E,H as we,I as se,J as b,K as W,L as Ie,M as oe,N as Z,O as J,P as et,Q as Ne,R as tt,S as ce,U as Me,V as Ae,W as st,X as ot,Y as nt,Z as Ce,$ as _e,a0 as at,a1 as rt,a2 as it,a3 as Be,a4 as lt,a5 as ct,a6 as ut}from"./framework.RTxADYK2.js";const dt=_({__name:"VPBadge",props:{text:{},type:{default:"tip"}},setup(s){return(t,e)=>(a(),u("span",{class:N(["VPBadge",t.type])},[c(t.$slots,"default",{},()=>[D(T(t.text),1)])],2))}}),vt={key:0,class:"VPBackdrop"},pt=_({__name:"VPBackdrop",props:{show:{type:Boolean}},setup(s){return(t,e)=>(a(),y(pe,{name:"fade"},{default:p(()=>[t.show?(a(),u("div",vt)):f("",!0)]),_:1}))}}),ht=$(pt,[["__scopeId","data-v-b06cdb19"]]),L=Ye;function ft(s,t){let e,o=!1;return()=>{e&&clearTimeout(e),o?e=setTimeout(s,t):(s(),(o=!0)&&setTimeout(()=>o=!1,t))}}function ue(s){return/^\//.test(s)?s:`/${s}`}function me(s){const{pathname:t,search:e,hash:o,protocol:n}=new URL(s,"http://a.com");if(Xe(s)||s.startsWith("#")||!n.startsWith("http")||!Qe(t))return s;const{site:i}=L(),l=t.endsWith("/")||t.endsWith(".html")?s:s.replace(/(?:(^\.+)\/)?.*$/,`$1${t.replace(/(\.md)?$/,i.value.cleanUrls?"":".html")}${e}${o}`);return he(l)}const be=w(q?location.hash:"");q&&window.addEventListener("hashchange",()=>{be.value=location.hash});function X({removeCurrent:s=!0,correspondingLink:t=!1}={}){const{site:e,localeIndex:o,page:n,theme:i}=L(),l=g(()=>{var d,m;return{label:(d=e.value.locales[o.value])==null?void 0:d.label,link:((m=e.value.locales[o.value])==null?void 0:m.link)||(o.value==="root"?"/":`/${o.value}/`)}});return{localeLinks:g(()=>Object.entries(e.value.locales).flatMap(([d,m])=>s&&l.value.label===m.label?[]:{text:m.label,link:_t(m.link||(d==="root"?"/":`/${d}/`),i.value.i18nRouting!==!1&&t,n.value.relativePath.slice(l.value.link.length-1),!e.value.cleanUrls)+be.value})),currentLang:l}}function _t(s,t,e,o){return t?s.replace(/\/$/,"")+ue(e.replace(/(^|\/)index\.md$/,"$1").replace(/\.md$/,o?".html":"")):s}const mt=s=>(B("data-v-792811ca"),s=s(),H(),s),bt={class:"NotFound"},kt={class:"code"},$t={class:"title"},gt=mt(()=>h("div",{class:"divider"},null,-1)),yt={class:"quote"},Pt={class:"action"},St=["href","aria-label"],Vt=_({__name:"NotFound",setup(s){const{site:t,theme:e}=L(),{localeLinks:o}=X({removeCurrent:!1}),n=w("/");return j(()=>{var l;const i=window.location.pathname.replace(t.value.base,"").replace(/(^.*?\/).*$/,"/$1");o.value.length&&(n.value=((l=o.value.find(({link:v})=>v.startsWith(i)))==null?void 0:l.link)||o.value[0].link)}),(i,l)=>{var v,d,m,P,k;return a(),u("div",bt,[h("p",kt,T(((v=r(e).notFound)==null?void 0:v.code)??"404"),1),h("h1",$t,T(((d=r(e).notFound)==null?void 0:d.title)??"PAGE NOT FOUND"),1),gt,h("blockquote",yt,T(((m=r(e).notFound)==null?void 0:m.quote)??"But if you don't change your direction, and if you keep looking, you may end up where you are heading."),1),h("div",Pt,[h("a",{class:"link",href:r(he)(n.value),"aria-label":((P=r(e).notFound)==null?void 0:P.linkLabel)??"go to home"},T(((k=r(e).notFound)==null?void 0:k.linkText)??"Take me home"),9,St)])])}}}),Lt=$(Vt,[["__scopeId","data-v-792811ca"]]);function He(s,t){if(Array.isArray(s))return x(s);if(s==null)return[];t=ue(t);const e=Object.keys(s).sort((n,i)=>i.split("/").length-n.split("/").length).find(n=>t.startsWith(ue(n))),o=e?s[e]:[];return Array.isArray(o)?x(o):x(o.items,o.base)}function Tt(s){const t=[];let e=0;for(const o in s){const n=s[o];if(n.items){e=t.push(n);continue}t[e]||t.push({items:[]}),t[e].items.push(n)}return t}function wt(s){const t=[];function e(o){for(const n of o)n.text&&n.link&&t.push({text:n.text,link:n.link,docFooterText:n.docFooterText}),n.items&&e(n.items)}return e(s),t}function de(s,t){return Array.isArray(t)?t.some(e=>de(s,e)):z(s,t.link)?!0:t.items?de(s,t.items):!1}function x(s,t){return[...s].map(e=>{const o={...e},n=o.base||t;return n&&o.link&&(o.link=n+o.link),o.items&&(o.items=x(o.items,n)),o})}function O(){const{frontmatter:s,page:t,theme:e}=L(),o=le("(min-width: 960px)"),n=w(!1),i=g(()=>{const C=e.value.sidebar,I=t.value.relativePath;return C?He(C,I):[]}),l=w(i.value);G(i,(C,I)=>{JSON.stringify(C)!==JSON.stringify(I)&&(l.value=i.value)});const v=g(()=>s.value.sidebar!==!1&&l.value.length>0&&s.value.layout!=="home"),d=g(()=>m?s.value.aside==null?e.value.aside==="left":s.value.aside==="left":!1),m=g(()=>s.value.layout==="home"?!1:s.value.aside!=null?!!s.value.aside:e.value.aside!==!1),P=g(()=>v.value&&o.value),k=g(()=>v.value?Tt(l.value):[]);function V(){n.value=!0}function S(){n.value=!1}function A(){n.value?S():V()}return{isOpen:n,sidebar:l,sidebarGroups:k,hasSidebar:v,hasAside:m,leftAside:d,isSidebarEnabled:P,open:V,close:S,toggle:A}}function It(s,t){let e;te(()=>{e=s.value?document.activeElement:void 0}),j(()=>{window.addEventListener("keyup",o)}),fe(()=>{window.removeEventListener("keyup",o)});function o(n){n.key==="Escape"&&s.value&&(t(),e==null||e.focus())}}function Nt(s){const{page:t}=L(),e=w(!1),o=g(()=>s.value.collapsed!=null),n=g(()=>!!s.value.link),i=w(!1),l=()=>{i.value=z(t.value.relativePath,s.value.link)};G([t,s,be],l),j(l);const v=g(()=>i.value?!0:s.value.items?de(t.value.relativePath,s.value.items):!1),d=g(()=>!!(s.value.items&&s.value.items.length));te(()=>{e.value=!!(o.value&&s.value.collapsed)}),Te(()=>{(i.value||v.value)&&(e.value=!1)});function m(){o.value&&(e.value=!e.value)}return{collapsed:e,collapsible:o,isLink:n,isActiveLink:i,hasActiveLink:v,hasChildren:d,toggle:m}}function Mt(){const{hasSidebar:s}=O(),t=le("(min-width: 960px)"),e=le("(min-width: 1280px)");return{isAsideEnabled:g(()=>!e.value&&!t.value?!1:s.value?e.value:t.value)}}const ve=[];function Ee(s){return typeof s.outline=="object"&&!Array.isArray(s.outline)&&s.outline.label||s.outlineTitle||"On this page"}function ke(s){const t=[...document.querySelectorAll(".VPDoc :where(h1,h2,h3,h4,h5,h6)")].filter(e=>e.id&&e.hasChildNodes()).map(e=>{const o=Number(e.tagName[1]);return{element:e,title:At(e),link:"#"+e.id,level:o}});return Ct(t,s)}function At(s){let t="";for(const e of s.childNodes)if(e.nodeType===1){if(e.classList.contains("VPBadge")||e.classList.contains("header-anchor")||e.classList.contains("ignore-header"))continue;t+=e.textContent}else e.nodeType===3&&(t+=e.textContent);return t.trim()}function Ct(s,t){if(t===!1)return[];const e=(typeof t=="object"&&!Array.isArray(t)?t.level:t)||2,[o,n]=typeof e=="number"?[e,e]:e==="deep"?[2,6]:e;s=s.filter(l=>l.level>=o&&l.level<=n),ve.length=0;for(const{element:l,link:v}of s)ve.push({element:l,link:v});const i=[];e:for(let l=0;l=0;d--){const m=s[d];if(m.level{requestAnimationFrame(i),window.addEventListener("scroll",o)}),Ze(()=>{l(location.hash)}),fe(()=>{window.removeEventListener("scroll",o)});function i(){if(!e.value)return;const v=window.scrollY,d=window.innerHeight,m=document.body.offsetHeight,P=Math.abs(v+d-m)<1,k=ve.map(({element:S,link:A})=>({link:A,top:Ht(S)})).filter(({top:S})=>!Number.isNaN(S)).sort((S,A)=>S.top-A.top);if(!k.length){l(null);return}if(v<1){l(null);return}if(P){l(k[k.length-1].link);return}let V=null;for(const{link:S,top:A}of k){if(A>v+xe()+4)break;V=S}l(V)}function l(v){n&&n.classList.remove("active"),v==null?n=null:n=s.value.querySelector(`a[href="${decodeURIComponent(v)}"]`);const d=n;d?(d.classList.add("active"),t.value.style.top=d.offsetTop+39+"px",t.value.style.opacity="1"):(t.value.style.top="33px",t.value.style.opacity="0")}}function Ht(s){let t=0;for(;s!==document.body;){if(s===null)return NaN;t+=s.offsetTop,s=s.offsetParent}return t}const Et=["href","title"],Dt=_({__name:"VPDocOutlineItem",props:{headers:{},root:{type:Boolean}},setup(s){function t({target:e}){const o=e.href.split("#")[1],n=document.getElementById(decodeURIComponent(o));n==null||n.focus({preventScroll:!0})}return(e,o)=>{const n=K("VPDocOutlineItem",!0);return a(),u("ul",{class:N(["VPDocOutlineItem",e.root?"root":"nested"])},[(a(!0),u(M,null,E(e.headers,({children:i,link:l,title:v})=>(a(),u("li",null,[h("a",{class:"outline-link",href:l,onClick:t,title:v},T(v),9,Et),i!=null&&i.length?(a(),y(n,{key:0,headers:i},null,8,["headers"])):f("",!0)]))),256))],2)}}}),De=$(Dt,[["__scopeId","data-v-3f927ebe"]]),Ft=s=>(B("data-v-c14bfc45"),s=s(),H(),s),Ot={class:"content"},Ut={class:"outline-title",role:"heading","aria-level":"2"},jt={"aria-labelledby":"doc-outline-aria-label"},Gt=Ft(()=>h("span",{class:"visually-hidden",id:"doc-outline-aria-label"}," Table of Contents for current page ",-1)),zt=_({__name:"VPDocAsideOutline",setup(s){const{frontmatter:t,theme:e}=L(),o=we([]);se(()=>{o.value=ke(t.value.outline??e.value.outline)});const n=w(),i=w();return Bt(n,i),(l,v)=>(a(),u("div",{class:N(["VPDocAsideOutline",{"has-outline":o.value.length>0}]),ref_key:"container",ref:n,role:"navigation"},[h("div",Ot,[h("div",{class:"outline-marker",ref_key:"marker",ref:i},null,512),h("div",Ut,T(r(Ee)(r(e))),1),h("nav",jt,[Gt,b(De,{headers:o.value,root:!0},null,8,["headers"])])])],2))}}),Kt=$(zt,[["__scopeId","data-v-c14bfc45"]]),Rt={class:"VPDocAsideCarbonAds"},Wt=_({__name:"VPDocAsideCarbonAds",props:{carbonAds:{}},setup(s){const t=()=>null;return(e,o)=>(a(),u("div",Rt,[b(r(t),{"carbon-ads":e.carbonAds},null,8,["carbon-ads"])]))}}),qt=s=>(B("data-v-6d7b3c46"),s=s(),H(),s),Jt={class:"VPDocAside"},Yt=qt(()=>h("div",{class:"spacer"},null,-1)),Xt=_({__name:"VPDocAside",setup(s){const{theme:t}=L();return(e,o)=>(a(),u("div",Jt,[c(e.$slots,"aside-top",{},void 0,!0),c(e.$slots,"aside-outline-before",{},void 0,!0),b(Kt),c(e.$slots,"aside-outline-after",{},void 0,!0),Yt,c(e.$slots,"aside-ads-before",{},void 0,!0),r(t).carbonAds?(a(),y(Wt,{key:0,"carbon-ads":r(t).carbonAds},null,8,["carbon-ads"])):f("",!0),c(e.$slots,"aside-ads-after",{},void 0,!0),c(e.$slots,"aside-bottom",{},void 0,!0)]))}}),Qt=$(Xt,[["__scopeId","data-v-6d7b3c46"]]);function Zt(){const{theme:s,page:t}=L();return g(()=>{const{text:e="Edit this page",pattern:o=""}=s.value.editLink||{};let n;return typeof o=="function"?n=o(t.value):n=o.replace(/:path/g,t.value.filePath),{url:n,text:e}})}function xt(){const{page:s,theme:t,frontmatter:e}=L();return g(()=>{var d,m,P,k,V,S,A,C;const o=He(t.value.sidebar,s.value.relativePath),n=wt(o),i=n.findIndex(I=>z(s.value.relativePath,I.link)),l=((d=t.value.docFooter)==null?void 0:d.prev)===!1&&!e.value.prev||e.value.prev===!1,v=((m=t.value.docFooter)==null?void 0:m.next)===!1&&!e.value.next||e.value.next===!1;return{prev:l?void 0:{text:(typeof e.value.prev=="string"?e.value.prev:typeof e.value.prev=="object"?e.value.prev.text:void 0)??((P=n[i-1])==null?void 0:P.docFooterText)??((k=n[i-1])==null?void 0:k.text),link:(typeof e.value.prev=="object"?e.value.prev.link:void 0)??((V=n[i-1])==null?void 0:V.link)},next:v?void 0:{text:(typeof e.value.next=="string"?e.value.next:typeof e.value.next=="object"?e.value.next.text:void 0)??((S=n[i+1])==null?void 0:S.docFooterText)??((A=n[i+1])==null?void 0:A.text),link:(typeof e.value.next=="object"?e.value.next.link:void 0)??((C=n[i+1])==null?void 0:C.link)}}})}const F=_({__name:"VPLink",props:{tag:{},href:{},noIcon:{type:Boolean},target:{},rel:{}},setup(s){const t=s,e=g(()=>t.tag??(t.href?"a":"span")),o=g(()=>t.href&&Ie.test(t.href));return(n,i)=>(a(),y(W(e.value),{class:N(["VPLink",{link:n.href,"vp-external-link-icon":o.value,"no-icon":n.noIcon}]),href:n.href?r(me)(n.href):void 0,target:n.target??(o.value?"_blank":void 0),rel:n.rel??(o.value?"noreferrer":void 0)},{default:p(()=>[c(n.$slots,"default")]),_:3},8,["class","href","target","rel"]))}}),es={class:"VPLastUpdated"},ts=["datetime"],ss=_({__name:"VPDocFooterLastUpdated",setup(s){const{theme:t,page:e,frontmatter:o,lang:n}=L(),i=g(()=>new Date(o.value.lastUpdated??e.value.lastUpdated)),l=g(()=>i.value.toISOString()),v=w("");return j(()=>{te(()=>{var d,m,P;v.value=new Intl.DateTimeFormat((m=(d=t.value.lastUpdated)==null?void 0:d.formatOptions)!=null&&m.forceLocale?n.value:void 0,((P=t.value.lastUpdated)==null?void 0:P.formatOptions)??{dateStyle:"short",timeStyle:"short"}).format(i.value)})}),(d,m)=>{var P;return a(),u("p",es,[D(T(((P=r(t).lastUpdated)==null?void 0:P.text)||r(t).lastUpdatedText||"Last updated")+": ",1),h("time",{datetime:l.value},T(v.value),9,ts)])}}}),os=$(ss,[["__scopeId","data-v-9da12f1d"]]),ns=s=>(B("data-v-87be45d1"),s=s(),H(),s),as={key:0,class:"VPDocFooter"},rs={key:0,class:"edit-info"},is={key:0,class:"edit-link"},ls=ns(()=>h("span",{class:"vpi-square-pen edit-link-icon"},null,-1)),cs={key:1,class:"last-updated"},us={key:1,class:"prev-next"},ds={class:"pager"},vs=["innerHTML"],ps=["innerHTML"],hs={class:"pager"},fs=["innerHTML"],_s=["innerHTML"],ms=_({__name:"VPDocFooter",setup(s){const{theme:t,page:e,frontmatter:o}=L(),n=Zt(),i=xt(),l=g(()=>t.value.editLink&&o.value.editLink!==!1),v=g(()=>e.value.lastUpdated&&o.value.lastUpdated!==!1),d=g(()=>l.value||v.value||i.value.prev||i.value.next);return(m,P)=>{var k,V,S,A;return d.value?(a(),u("footer",as,[c(m.$slots,"doc-footer-before",{},void 0,!0),l.value||v.value?(a(),u("div",rs,[l.value?(a(),u("div",is,[b(F,{class:"edit-link-button",href:r(n).url,"no-icon":!0},{default:p(()=>[ls,D(" "+T(r(n).text),1)]),_:1},8,["href"])])):f("",!0),v.value?(a(),u("div",cs,[b(os)])):f("",!0)])):f("",!0),(k=r(i).prev)!=null&&k.link||(V=r(i).next)!=null&&V.link?(a(),u("nav",us,[h("div",ds,[(S=r(i).prev)!=null&&S.link?(a(),y(F,{key:0,class:"pager-link prev",href:r(i).prev.link},{default:p(()=>{var C;return[h("span",{class:"desc",innerHTML:((C=r(t).docFooter)==null?void 0:C.prev)||"Previous page"},null,8,vs),h("span",{class:"title",innerHTML:r(i).prev.text},null,8,ps)]}),_:1},8,["href"])):f("",!0)]),h("div",hs,[(A=r(i).next)!=null&&A.link?(a(),y(F,{key:0,class:"pager-link next",href:r(i).next.link},{default:p(()=>{var C;return[h("span",{class:"desc",innerHTML:((C=r(t).docFooter)==null?void 0:C.next)||"Next page"},null,8,fs),h("span",{class:"title",innerHTML:r(i).next.text},null,8,_s)]}),_:1},8,["href"])):f("",!0)])])):f("",!0)])):f("",!0)}}}),bs=$(ms,[["__scopeId","data-v-87be45d1"]]),ks=s=>(B("data-v-83890dd9"),s=s(),H(),s),$s={class:"container"},gs=ks(()=>h("div",{class:"aside-curtain"},null,-1)),ys={class:"aside-container"},Ps={class:"aside-content"},Ss={class:"content"},Vs={class:"content-container"},Ls={class:"main"},Ts=_({__name:"VPDoc",setup(s){const{theme:t}=L(),e=oe(),{hasSidebar:o,hasAside:n,leftAside:i}=O(),l=g(()=>e.path.replace(/[./]+/g,"_").replace(/_html$/,""));return(v,d)=>{const m=K("Content");return a(),u("div",{class:N(["VPDoc",{"has-sidebar":r(o),"has-aside":r(n)}])},[c(v.$slots,"doc-top",{},void 0,!0),h("div",$s,[r(n)?(a(),u("div",{key:0,class:N(["aside",{"left-aside":r(i)}])},[gs,h("div",ys,[h("div",Ps,[b(Qt,null,{"aside-top":p(()=>[c(v.$slots,"aside-top",{},void 0,!0)]),"aside-bottom":p(()=>[c(v.$slots,"aside-bottom",{},void 0,!0)]),"aside-outline-before":p(()=>[c(v.$slots,"aside-outline-before",{},void 0,!0)]),"aside-outline-after":p(()=>[c(v.$slots,"aside-outline-after",{},void 0,!0)]),"aside-ads-before":p(()=>[c(v.$slots,"aside-ads-before",{},void 0,!0)]),"aside-ads-after":p(()=>[c(v.$slots,"aside-ads-after",{},void 0,!0)]),_:3})])])],2)):f("",!0),h("div",Ss,[h("div",Vs,[c(v.$slots,"doc-before",{},void 0,!0),h("main",Ls,[b(m,{class:N(["vp-doc",[l.value,r(t).externalLinkIcon&&"external-link-icon-enabled"]])},null,8,["class"])]),b(bs,null,{"doc-footer-before":p(()=>[c(v.$slots,"doc-footer-before",{},void 0,!0)]),_:3}),c(v.$slots,"doc-after",{},void 0,!0)])])]),c(v.$slots,"doc-bottom",{},void 0,!0)],2)}}}),ws=$(Ts,[["__scopeId","data-v-83890dd9"]]),Is=_({__name:"VPButton",props:{tag:{},size:{default:"medium"},theme:{default:"brand"},text:{},href:{},target:{},rel:{}},setup(s){const t=s,e=g(()=>t.href&&Ie.test(t.href)),o=g(()=>t.tag||t.href?"a":"button");return(n,i)=>(a(),y(W(o.value),{class:N(["VPButton",[n.size,n.theme]]),href:n.href?r(me)(n.href):void 0,target:t.target??(e.value?"_blank":void 0),rel:t.rel??(e.value?"noreferrer":void 0)},{default:p(()=>[D(T(n.text),1)]),_:1},8,["class","href","target","rel"]))}}),Ns=$(Is,[["__scopeId","data-v-14206e74"]]),Ms=["src","alt"],As=_({inheritAttrs:!1,__name:"VPImage",props:{image:{},alt:{}},setup(s){return(t,e)=>{const o=K("VPImage",!0);return t.image?(a(),u(M,{key:0},[typeof t.image=="string"||"src"in t.image?(a(),u("img",Z({key:0,class:"VPImage"},typeof t.image=="string"?t.$attrs:{...t.image,...t.$attrs},{src:r(he)(typeof t.image=="string"?t.image:t.image.src),alt:t.alt??(typeof t.image=="string"?"":t.image.alt||"")}),null,16,Ms)):(a(),u(M,{key:1},[b(o,Z({class:"dark",image:t.image.dark,alt:t.image.alt},t.$attrs),null,16,["image","alt"]),b(o,Z({class:"light",image:t.image.light,alt:t.image.alt},t.$attrs),null,16,["image","alt"])],64))],64)):f("",!0)}}}),ee=$(As,[["__scopeId","data-v-35a7d0b8"]]),Cs=s=>(B("data-v-955009fc"),s=s(),H(),s),Bs={class:"container"},Hs={class:"main"},Es={key:0,class:"name"},Ds=["innerHTML"],Fs=["innerHTML"],Os=["innerHTML"],Us={key:0,class:"actions"},js={key:0,class:"image"},Gs={class:"image-container"},zs=Cs(()=>h("div",{class:"image-bg"},null,-1)),Ks=_({__name:"VPHero",props:{name:{},text:{},tagline:{},image:{},actions:{}},setup(s){const t=J("hero-image-slot-exists");return(e,o)=>(a(),u("div",{class:N(["VPHero",{"has-image":e.image||r(t)}])},[h("div",Bs,[h("div",Hs,[c(e.$slots,"home-hero-info-before",{},void 0,!0),c(e.$slots,"home-hero-info",{},()=>[e.name?(a(),u("h1",Es,[h("span",{innerHTML:e.name,class:"clip"},null,8,Ds)])):f("",!0),e.text?(a(),u("p",{key:1,innerHTML:e.text,class:"text"},null,8,Fs)):f("",!0),e.tagline?(a(),u("p",{key:2,innerHTML:e.tagline,class:"tagline"},null,8,Os)):f("",!0)],!0),c(e.$slots,"home-hero-info-after",{},void 0,!0),e.actions?(a(),u("div",Us,[(a(!0),u(M,null,E(e.actions,n=>(a(),u("div",{key:n.link,class:"action"},[b(Ns,{tag:"a",size:"medium",theme:n.theme,text:n.text,href:n.link,target:n.target,rel:n.rel},null,8,["theme","text","href","target","rel"])]))),128))])):f("",!0),c(e.$slots,"home-hero-actions-after",{},void 0,!0)]),e.image||r(t)?(a(),u("div",js,[h("div",Gs,[zs,c(e.$slots,"home-hero-image",{},()=>[e.image?(a(),y(ee,{key:0,class:"image-src",image:e.image},null,8,["image"])):f("",!0)],!0)])])):f("",!0)])],2))}}),Rs=$(Ks,[["__scopeId","data-v-955009fc"]]),Ws=_({__name:"VPHomeHero",setup(s){const{frontmatter:t}=L();return(e,o)=>r(t).hero?(a(),y(Rs,{key:0,class:"VPHomeHero",name:r(t).hero.name,text:r(t).hero.text,tagline:r(t).hero.tagline,image:r(t).hero.image,actions:r(t).hero.actions},{"home-hero-info-before":p(()=>[c(e.$slots,"home-hero-info-before")]),"home-hero-info":p(()=>[c(e.$slots,"home-hero-info")]),"home-hero-info-after":p(()=>[c(e.$slots,"home-hero-info-after")]),"home-hero-actions-after":p(()=>[c(e.$slots,"home-hero-actions-after")]),"home-hero-image":p(()=>[c(e.$slots,"home-hero-image")]),_:3},8,["name","text","tagline","image","actions"])):f("",!0)}}),qs=s=>(B("data-v-f5e9645b"),s=s(),H(),s),Js={class:"box"},Ys={key:0,class:"icon"},Xs=["innerHTML"],Qs=["innerHTML"],Zs=["innerHTML"],xs={key:4,class:"link-text"},eo={class:"link-text-value"},to=qs(()=>h("span",{class:"vpi-arrow-right link-text-icon"},null,-1)),so=_({__name:"VPFeature",props:{icon:{},title:{},details:{},link:{},linkText:{},rel:{},target:{}},setup(s){return(t,e)=>(a(),y(F,{class:"VPFeature",href:t.link,rel:t.rel,target:t.target,"no-icon":!0,tag:t.link?"a":"div"},{default:p(()=>[h("article",Js,[typeof t.icon=="object"&&t.icon.wrap?(a(),u("div",Ys,[b(ee,{image:t.icon,alt:t.icon.alt,height:t.icon.height||48,width:t.icon.width||48},null,8,["image","alt","height","width"])])):typeof t.icon=="object"?(a(),y(ee,{key:1,image:t.icon,alt:t.icon.alt,height:t.icon.height||48,width:t.icon.width||48},null,8,["image","alt","height","width"])):t.icon?(a(),u("div",{key:2,class:"icon",innerHTML:t.icon},null,8,Xs)):f("",!0),h("h2",{class:"title",innerHTML:t.title},null,8,Qs),t.details?(a(),u("p",{key:3,class:"details",innerHTML:t.details},null,8,Zs)):f("",!0),t.linkText?(a(),u("div",xs,[h("p",eo,[D(T(t.linkText)+" ",1),to])])):f("",!0)])]),_:1},8,["href","rel","target","tag"]))}}),oo=$(so,[["__scopeId","data-v-f5e9645b"]]),no={key:0,class:"VPFeatures"},ao={class:"container"},ro={class:"items"},io=_({__name:"VPFeatures",props:{features:{}},setup(s){const t=s,e=g(()=>{const o=t.features.length;if(o){if(o===2)return"grid-2";if(o===3)return"grid-3";if(o%3===0)return"grid-6";if(o>3)return"grid-4"}else return});return(o,n)=>o.features?(a(),u("div",no,[h("div",ao,[h("div",ro,[(a(!0),u(M,null,E(o.features,i=>(a(),u("div",{key:i.title,class:N(["item",[e.value]])},[b(oo,{icon:i.icon,title:i.title,details:i.details,link:i.link,"link-text":i.linkText,rel:i.rel,target:i.target},null,8,["icon","title","details","link","link-text","rel","target"])],2))),128))])])])):f("",!0)}}),lo=$(io,[["__scopeId","data-v-d0a190d7"]]),co=_({__name:"VPHomeFeatures",setup(s){const{frontmatter:t}=L();return(e,o)=>r(t).features?(a(),y(lo,{key:0,class:"VPHomeFeatures",features:r(t).features},null,8,["features"])):f("",!0)}}),uo=_({__name:"VPHomeContent",setup(s){const{width:t}=et({includeScrollbar:!1});return(e,o)=>(a(),u("div",{class:"vp-doc container",style:Ne(r(t)?{"--vp-offset":`calc(50% - ${r(t)/2}px)`}:{})},[c(e.$slots,"default",{},void 0,!0)],4))}}),vo=$(uo,[["__scopeId","data-v-c43247eb"]]),po={class:"VPHome"},ho=_({__name:"VPHome",setup(s){const{frontmatter:t}=L();return(e,o)=>{const n=K("Content");return a(),u("div",po,[c(e.$slots,"home-hero-before",{},void 0,!0),b(Ws,null,{"home-hero-info-before":p(()=>[c(e.$slots,"home-hero-info-before",{},void 0,!0)]),"home-hero-info":p(()=>[c(e.$slots,"home-hero-info",{},void 0,!0)]),"home-hero-info-after":p(()=>[c(e.$slots,"home-hero-info-after",{},void 0,!0)]),"home-hero-actions-after":p(()=>[c(e.$slots,"home-hero-actions-after",{},void 0,!0)]),"home-hero-image":p(()=>[c(e.$slots,"home-hero-image",{},void 0,!0)]),_:3}),c(e.$slots,"home-hero-after",{},void 0,!0),c(e.$slots,"home-features-before",{},void 0,!0),b(co),c(e.$slots,"home-features-after",{},void 0,!0),r(t).markdownStyles!==!1?(a(),y(vo,{key:0},{default:p(()=>[b(n)]),_:1})):(a(),y(n,{key:1}))])}}}),fo=$(ho,[["__scopeId","data-v-cbb6ec48"]]),_o={},mo={class:"VPPage"};function bo(s,t){const e=K("Content");return a(),u("div",mo,[c(s.$slots,"page-top"),b(e),c(s.$slots,"page-bottom")])}const ko=$(_o,[["render",bo]]),$o=_({__name:"VPContent",setup(s){const{page:t,frontmatter:e}=L(),{hasSidebar:o}=O();return(n,i)=>(a(),u("div",{class:N(["VPContent",{"has-sidebar":r(o),"is-home":r(e).layout==="home"}]),id:"VPContent"},[r(t).isNotFound?c(n.$slots,"not-found",{key:0},()=>[b(Lt)],!0):r(e).layout==="page"?(a(),y(ko,{key:1},{"page-top":p(()=>[c(n.$slots,"page-top",{},void 0,!0)]),"page-bottom":p(()=>[c(n.$slots,"page-bottom",{},void 0,!0)]),_:3})):r(e).layout==="home"?(a(),y(fo,{key:2},{"home-hero-before":p(()=>[c(n.$slots,"home-hero-before",{},void 0,!0)]),"home-hero-info-before":p(()=>[c(n.$slots,"home-hero-info-before",{},void 0,!0)]),"home-hero-info":p(()=>[c(n.$slots,"home-hero-info",{},void 0,!0)]),"home-hero-info-after":p(()=>[c(n.$slots,"home-hero-info-after",{},void 0,!0)]),"home-hero-actions-after":p(()=>[c(n.$slots,"home-hero-actions-after",{},void 0,!0)]),"home-hero-image":p(()=>[c(n.$slots,"home-hero-image",{},void 0,!0)]),"home-hero-after":p(()=>[c(n.$slots,"home-hero-after",{},void 0,!0)]),"home-features-before":p(()=>[c(n.$slots,"home-features-before",{},void 0,!0)]),"home-features-after":p(()=>[c(n.$slots,"home-features-after",{},void 0,!0)]),_:3})):r(e).layout&&r(e).layout!=="doc"?(a(),y(W(r(e).layout),{key:3})):(a(),y(ws,{key:4},{"doc-top":p(()=>[c(n.$slots,"doc-top",{},void 0,!0)]),"doc-bottom":p(()=>[c(n.$slots,"doc-bottom",{},void 0,!0)]),"doc-footer-before":p(()=>[c(n.$slots,"doc-footer-before",{},void 0,!0)]),"doc-before":p(()=>[c(n.$slots,"doc-before",{},void 0,!0)]),"doc-after":p(()=>[c(n.$slots,"doc-after",{},void 0,!0)]),"aside-top":p(()=>[c(n.$slots,"aside-top",{},void 0,!0)]),"aside-outline-before":p(()=>[c(n.$slots,"aside-outline-before",{},void 0,!0)]),"aside-outline-after":p(()=>[c(n.$slots,"aside-outline-after",{},void 0,!0)]),"aside-ads-before":p(()=>[c(n.$slots,"aside-ads-before",{},void 0,!0)]),"aside-ads-after":p(()=>[c(n.$slots,"aside-ads-after",{},void 0,!0)]),"aside-bottom":p(()=>[c(n.$slots,"aside-bottom",{},void 0,!0)]),_:3}))],2))}}),go=$($o,[["__scopeId","data-v-91765379"]]),yo={class:"container"},Po=["innerHTML"],So=["innerHTML"],Vo=_({__name:"VPFooter",setup(s){const{theme:t,frontmatter:e}=L(),{hasSidebar:o}=O();return(n,i)=>r(t).footer&&r(e).footer!==!1?(a(),u("footer",{key:0,class:N(["VPFooter",{"has-sidebar":r(o)}])},[h("div",yo,[r(t).footer.message?(a(),u("p",{key:0,class:"message",innerHTML:r(t).footer.message},null,8,Po)):f("",!0),r(t).footer.copyright?(a(),u("p",{key:1,class:"copyright",innerHTML:r(t).footer.copyright},null,8,So)):f("",!0)])],2)):f("",!0)}}),Lo=$(Vo,[["__scopeId","data-v-c970a860"]]);function Fe(){const{theme:s,frontmatter:t}=L(),e=we([]),o=g(()=>e.value.length>0);return se(()=>{e.value=ke(t.value.outline??s.value.outline)}),{headers:e,hasLocalNav:o}}const To=s=>(B("data-v-c9ba27ad"),s=s(),H(),s),wo=To(()=>h("span",{class:"vpi-chevron-right icon"},null,-1)),Io={class:"header"},No={class:"outline"},Mo=_({__name:"VPLocalNavOutlineDropdown",props:{headers:{},navHeight:{}},setup(s){const t=s,{theme:e}=L(),o=w(!1),n=w(0),i=w(),l=w();tt(i,()=>{o.value=!1}),ce("Escape",()=>{o.value=!1}),se(()=>{o.value=!1});function v(){o.value=!o.value,n.value=window.innerHeight+Math.min(window.scrollY-t.navHeight,0)}function d(P){P.target.classList.contains("outline-link")&&(l.value&&(l.value.style.transition="none"),Me(()=>{o.value=!1}))}function m(){o.value=!1,window.scrollTo({top:0,left:0,behavior:"smooth"})}return(P,k)=>(a(),u("div",{class:"VPLocalNavOutlineDropdown",style:Ne({"--vp-vh":n.value+"px"}),ref_key:"main",ref:i},[P.headers.length>0?(a(),u("button",{key:0,onClick:v,class:N({open:o.value})},[D(T(r(Ee)(r(e)))+" ",1),wo],2)):(a(),u("button",{key:1,onClick:m},T(r(e).returnToTopLabel||"Return to top"),1)),b(pe,{name:"flyout"},{default:p(()=>[o.value?(a(),u("div",{key:0,ref_key:"items",ref:l,class:"items",onClick:d},[h("div",Io,[h("a",{class:"top-link",href:"#",onClick:m},T(r(e).returnToTopLabel||"Return to top"),1)]),h("div",No,[b(De,{headers:P.headers},null,8,["headers"])])],512)):f("",!0)]),_:1})],4))}}),Ao=$(Mo,[["__scopeId","data-v-c9ba27ad"]]),Co=s=>(B("data-v-070ab83d"),s=s(),H(),s),Bo={class:"container"},Ho=["aria-expanded"],Eo=Co(()=>h("span",{class:"vpi-align-left menu-icon"},null,-1)),Do={class:"menu-text"},Fo=_({__name:"VPLocalNav",props:{open:{type:Boolean}},emits:["open-menu"],setup(s){const{theme:t,frontmatter:e}=L(),{hasSidebar:o}=O(),{headers:n}=Fe(),{y:i}=Ae(),l=w(0);j(()=>{l.value=parseInt(getComputedStyle(document.documentElement).getPropertyValue("--vp-nav-height"))}),se(()=>{n.value=ke(e.value.outline??t.value.outline)});const v=g(()=>n.value.length===0),d=g(()=>v.value&&!o.value),m=g(()=>({VPLocalNav:!0,"has-sidebar":o.value,empty:v.value,fixed:d.value}));return(P,k)=>r(e).layout!=="home"&&(!d.value||r(i)>=l.value)?(a(),u("div",{key:0,class:N(m.value)},[h("div",Bo,[r(o)?(a(),u("button",{key:0,class:"menu","aria-expanded":P.open,"aria-controls":"VPSidebarNav",onClick:k[0]||(k[0]=V=>P.$emit("open-menu"))},[Eo,h("span",Do,T(r(t).sidebarMenuLabel||"Menu"),1)],8,Ho)):f("",!0),b(Ao,{headers:r(n),navHeight:l.value},null,8,["headers","navHeight"])])],2)):f("",!0)}}),Oo=$(Fo,[["__scopeId","data-v-070ab83d"]]);function Uo(){const s=w(!1);function t(){s.value=!0,window.addEventListener("resize",n)}function e(){s.value=!1,window.removeEventListener("resize",n)}function o(){s.value?e():t()}function n(){window.outerWidth>=768&&e()}const i=oe();return G(()=>i.path,e),{isScreenOpen:s,openScreen:t,closeScreen:e,toggleScreen:o}}const jo={},Go={class:"VPSwitch",type:"button",role:"switch"},zo={class:"check"},Ko={key:0,class:"icon"};function Ro(s,t){return a(),u("button",Go,[h("span",zo,[s.$slots.default?(a(),u("span",Ko,[c(s.$slots,"default",{},void 0,!0)])):f("",!0)])])}const Wo=$(jo,[["render",Ro],["__scopeId","data-v-4a1c76db"]]),Oe=s=>(B("data-v-b79b56d4"),s=s(),H(),s),qo=Oe(()=>h("span",{class:"vpi-sun sun"},null,-1)),Jo=Oe(()=>h("span",{class:"vpi-moon moon"},null,-1)),Yo=_({__name:"VPSwitchAppearance",setup(s){const{isDark:t,theme:e}=L(),o=J("toggle-appearance",()=>{t.value=!t.value}),n=g(()=>t.value?e.value.lightModeSwitchTitle||"Switch to light theme":e.value.darkModeSwitchTitle||"Switch to dark theme");return(i,l)=>(a(),y(Wo,{title:n.value,class:"VPSwitchAppearance","aria-checked":r(t),onClick:r(o)},{default:p(()=>[qo,Jo]),_:1},8,["title","aria-checked","onClick"]))}}),$e=$(Yo,[["__scopeId","data-v-b79b56d4"]]),Xo={key:0,class:"VPNavBarAppearance"},Qo=_({__name:"VPNavBarAppearance",setup(s){const{site:t}=L();return(e,o)=>r(t).appearance&&r(t).appearance!=="force-dark"?(a(),u("div",Xo,[b($e)])):f("",!0)}}),Zo=$(Qo,[["__scopeId","data-v-ead91a81"]]),ge=w();let Ue=!1,ie=0;function xo(s){const t=w(!1);if(q){!Ue&&en(),ie++;const e=G(ge,o=>{var n,i,l;o===s.el.value||(n=s.el.value)!=null&&n.contains(o)?(t.value=!0,(i=s.onFocus)==null||i.call(s)):(t.value=!1,(l=s.onBlur)==null||l.call(s))});fe(()=>{e(),ie--,ie||tn()})}return st(t)}function en(){document.addEventListener("focusin",je),Ue=!0,ge.value=document.activeElement}function tn(){document.removeEventListener("focusin",je)}function je(){ge.value=document.activeElement}const sn={class:"VPMenuLink"},on=_({__name:"VPMenuLink",props:{item:{}},setup(s){const{page:t}=L();return(e,o)=>(a(),u("div",sn,[b(F,{class:N({active:r(z)(r(t).relativePath,e.item.activeMatch||e.item.link,!!e.item.activeMatch)}),href:e.item.link,target:e.item.target,rel:e.item.rel},{default:p(()=>[D(T(e.item.text),1)]),_:1},8,["class","href","target","rel"])]))}}),ne=$(on,[["__scopeId","data-v-8b74d055"]]),nn={class:"VPMenuGroup"},an={key:0,class:"title"},rn=_({__name:"VPMenuGroup",props:{text:{},items:{}},setup(s){return(t,e)=>(a(),u("div",nn,[t.text?(a(),u("p",an,T(t.text),1)):f("",!0),(a(!0),u(M,null,E(t.items,o=>(a(),u(M,null,["link"in o?(a(),y(ne,{key:0,item:o},null,8,["item"])):f("",!0)],64))),256))]))}}),ln=$(rn,[["__scopeId","data-v-48c802d0"]]),cn={class:"VPMenu"},un={key:0,class:"items"},dn=_({__name:"VPMenu",props:{items:{}},setup(s){return(t,e)=>(a(),u("div",cn,[t.items?(a(),u("div",un,[(a(!0),u(M,null,E(t.items,o=>(a(),u(M,{key:o.text},["link"in o?(a(),y(ne,{key:0,item:o},null,8,["item"])):(a(),y(ln,{key:1,text:o.text,items:o.items},null,8,["text","items"]))],64))),128))])):f("",!0),c(t.$slots,"default",{},void 0,!0)]))}}),vn=$(dn,[["__scopeId","data-v-97491713"]]),pn=s=>(B("data-v-e5380155"),s=s(),H(),s),hn=["aria-expanded","aria-label"],fn={key:0,class:"text"},_n=["innerHTML"],mn=pn(()=>h("span",{class:"vpi-chevron-down text-icon"},null,-1)),bn={key:1,class:"vpi-more-horizontal icon"},kn={class:"menu"},$n=_({__name:"VPFlyout",props:{icon:{},button:{},label:{},items:{}},setup(s){const t=w(!1),e=w();xo({el:e,onBlur:o});function o(){t.value=!1}return(n,i)=>(a(),u("div",{class:"VPFlyout",ref_key:"el",ref:e,onMouseenter:i[1]||(i[1]=l=>t.value=!0),onMouseleave:i[2]||(i[2]=l=>t.value=!1)},[h("button",{type:"button",class:"button","aria-haspopup":"true","aria-expanded":t.value,"aria-label":n.label,onClick:i[0]||(i[0]=l=>t.value=!t.value)},[n.button||n.icon?(a(),u("span",fn,[n.icon?(a(),u("span",{key:0,class:N([n.icon,"option-icon"])},null,2)):f("",!0),n.button?(a(),u("span",{key:1,innerHTML:n.button},null,8,_n)):f("",!0),mn])):(a(),u("span",bn))],8,hn),h("div",kn,[b(vn,{items:n.items},{default:p(()=>[c(n.$slots,"default",{},void 0,!0)]),_:3},8,["items"])])],544))}}),ye=$($n,[["__scopeId","data-v-e5380155"]]),gn=["href","aria-label","innerHTML"],yn=_({__name:"VPSocialLink",props:{icon:{},link:{},ariaLabel:{}},setup(s){const t=s,e=g(()=>typeof t.icon=="object"?t.icon.svg:``);return(o,n)=>(a(),u("a",{class:"VPSocialLink no-icon",href:o.link,"aria-label":o.ariaLabel??(typeof o.icon=="string"?o.icon:""),target:"_blank",rel:"noopener",innerHTML:e.value},null,8,gn))}}),Pn=$(yn,[["__scopeId","data-v-717b8b75"]]),Sn={class:"VPSocialLinks"},Vn=_({__name:"VPSocialLinks",props:{links:{}},setup(s){return(t,e)=>(a(),u("div",Sn,[(a(!0),u(M,null,E(t.links,({link:o,icon:n,ariaLabel:i})=>(a(),y(Pn,{key:o,icon:n,link:o,ariaLabel:i},null,8,["icon","link","ariaLabel"]))),128))]))}}),Pe=$(Vn,[["__scopeId","data-v-ee7a9424"]]),Ln={key:0,class:"group translations"},Tn={class:"trans-title"},wn={key:1,class:"group"},In={class:"item appearance"},Nn={class:"label"},Mn={class:"appearance-action"},An={key:2,class:"group"},Cn={class:"item social-links"},Bn=_({__name:"VPNavBarExtra",setup(s){const{site:t,theme:e}=L(),{localeLinks:o,currentLang:n}=X({correspondingLink:!0}),i=g(()=>o.value.length&&n.value.label||t.value.appearance||e.value.socialLinks);return(l,v)=>i.value?(a(),y(ye,{key:0,class:"VPNavBarExtra",label:"extra navigation"},{default:p(()=>[r(o).length&&r(n).label?(a(),u("div",Ln,[h("p",Tn,T(r(n).label),1),(a(!0),u(M,null,E(r(o),d=>(a(),y(ne,{key:d.link,item:d},null,8,["item"]))),128))])):f("",!0),r(t).appearance&&r(t).appearance!=="force-dark"?(a(),u("div",wn,[h("div",In,[h("p",Nn,T(r(e).darkModeSwitchLabel||"Appearance"),1),h("div",Mn,[b($e)])])])):f("",!0),r(e).socialLinks?(a(),u("div",An,[h("div",Cn,[b(Pe,{class:"social-links-list",links:r(e).socialLinks},null,8,["links"])])])):f("",!0)]),_:1})):f("",!0)}}),Hn=$(Bn,[["__scopeId","data-v-9b536d0b"]]),En=s=>(B("data-v-5dea55bf"),s=s(),H(),s),Dn=["aria-expanded"],Fn=En(()=>h("span",{class:"container"},[h("span",{class:"top"}),h("span",{class:"middle"}),h("span",{class:"bottom"})],-1)),On=[Fn],Un=_({__name:"VPNavBarHamburger",props:{active:{type:Boolean}},emits:["click"],setup(s){return(t,e)=>(a(),u("button",{type:"button",class:N(["VPNavBarHamburger",{active:t.active}]),"aria-label":"mobile navigation","aria-expanded":t.active,"aria-controls":"VPNavScreen",onClick:e[0]||(e[0]=o=>t.$emit("click"))},On,10,Dn))}}),jn=$(Un,[["__scopeId","data-v-5dea55bf"]]),Gn=["innerHTML"],zn=_({__name:"VPNavBarMenuLink",props:{item:{}},setup(s){const{page:t}=L();return(e,o)=>(a(),y(F,{class:N({VPNavBarMenuLink:!0,active:r(z)(r(t).relativePath,e.item.activeMatch||e.item.link,!!e.item.activeMatch)}),href:e.item.link,target:e.item.target,rel:e.item.rel,tabindex:"0"},{default:p(()=>[h("span",{innerHTML:e.item.text},null,8,Gn)]),_:1},8,["class","href","target","rel"]))}}),Kn=$(zn,[["__scopeId","data-v-2781b5e7"]]),Rn=_({__name:"VPNavBarMenuGroup",props:{item:{}},setup(s){const t=s,{page:e}=L(),o=i=>"link"in i?z(e.value.relativePath,i.link,!!t.item.activeMatch):i.items.some(o),n=g(()=>o(t.item));return(i,l)=>(a(),y(ye,{class:N({VPNavBarMenuGroup:!0,active:r(z)(r(e).relativePath,i.item.activeMatch,!!i.item.activeMatch)||n.value}),button:i.item.text,items:i.item.items},null,8,["class","button","items"]))}}),Wn=s=>(B("data-v-492ea56d"),s=s(),H(),s),qn={key:0,"aria-labelledby":"main-nav-aria-label",class:"VPNavBarMenu"},Jn=Wn(()=>h("span",{id:"main-nav-aria-label",class:"visually-hidden"},"Main Navigation",-1)),Yn=_({__name:"VPNavBarMenu",setup(s){const{theme:t}=L();return(e,o)=>r(t).nav?(a(),u("nav",qn,[Jn,(a(!0),u(M,null,E(r(t).nav,n=>(a(),u(M,{key:n.text},["link"in n?(a(),y(Kn,{key:0,item:n},null,8,["item"])):(a(),y(Rn,{key:1,item:n},null,8,["item"]))],64))),128))])):f("",!0)}}),Xn=$(Yn,[["__scopeId","data-v-492ea56d"]]);function Qn(s){const{localeIndex:t,theme:e}=L();function o(n){var A,C,I;const i=n.split("."),l=(A=e.value.search)==null?void 0:A.options,v=l&&typeof l=="object",d=v&&((I=(C=l.locales)==null?void 0:C[t.value])==null?void 0:I.translations)||null,m=v&&l.translations||null;let P=d,k=m,V=s;const S=i.pop();for(const Q of i){let U=null;const R=V==null?void 0:V[Q];R&&(U=V=R);const ae=k==null?void 0:k[Q];ae&&(U=k=ae);const re=P==null?void 0:P[Q];re&&(U=P=re),R||(V=U),ae||(k=U),re||(P=U)}return(P==null?void 0:P[S])??(k==null?void 0:k[S])??(V==null?void 0:V[S])??""}return o}const Zn=["aria-label"],xn={class:"DocSearch-Button-Container"},ea=h("span",{class:"vp-icon DocSearch-Search-Icon"},null,-1),ta={class:"DocSearch-Button-Placeholder"},sa=h("span",{class:"DocSearch-Button-Keys"},[h("kbd",{class:"DocSearch-Button-Key"}),h("kbd",{class:"DocSearch-Button-Key"},"K")],-1),Se=_({__name:"VPNavBarSearchButton",setup(s){const e=Qn({button:{buttonText:"Search",buttonAriaLabel:"Search"}});return(o,n)=>(a(),u("button",{type:"button",class:"DocSearch DocSearch-Button","aria-label":r(e)("button.buttonAriaLabel")},[h("span",xn,[ea,h("span",ta,T(r(e)("button.buttonText")),1)]),sa],8,Zn))}}),oa={class:"VPNavBarSearch"},na={id:"local-search"},aa={key:1,id:"docsearch"},ra=_({__name:"VPNavBarSearch",setup(s){const t=ot(()=>nt(()=>import("./VPLocalSearchBox.BcD31Tm5.js"),__vite__mapDeps([0,1]))),e=()=>null,{theme:o}=L(),n=w(!1),i=w(!1);j(()=>{});function l(){n.value||(n.value=!0,setTimeout(v,16))}function v(){const k=new Event("keydown");k.key="k",k.metaKey=!0,window.dispatchEvent(k),setTimeout(()=>{document.querySelector(".DocSearch-Modal")||v()},16)}function d(k){const V=k.target,S=V.tagName;return V.isContentEditable||S==="INPUT"||S==="SELECT"||S==="TEXTAREA"}const m=w(!1);ce("k",k=>{(k.ctrlKey||k.metaKey)&&(k.preventDefault(),m.value=!0)}),ce("/",k=>{d(k)||(k.preventDefault(),m.value=!0)});const P="local";return(k,V)=>{var S;return a(),u("div",oa,[r(P)==="local"?(a(),u(M,{key:0},[m.value?(a(),y(r(t),{key:0,onClose:V[0]||(V[0]=A=>m.value=!1)})):f("",!0),h("div",na,[b(Se,{onClick:V[1]||(V[1]=A=>m.value=!0)})])],64)):r(P)==="algolia"?(a(),u(M,{key:1},[n.value?(a(),y(r(e),{key:0,algolia:((S=r(o).search)==null?void 0:S.options)??r(o).algolia,onVnodeBeforeMount:V[2]||(V[2]=A=>i.value=!0)},null,8,["algolia"])):f("",!0),i.value?f("",!0):(a(),u("div",aa,[b(Se,{onClick:l})]))],64)):f("",!0)])}}}),ia=_({__name:"VPNavBarSocialLinks",setup(s){const{theme:t}=L();return(e,o)=>r(t).socialLinks?(a(),y(Pe,{key:0,class:"VPNavBarSocialLinks",links:r(t).socialLinks},null,8,["links"])):f("",!0)}}),la=$(ia,[["__scopeId","data-v-164c457f"]]),ca=["href","rel","target"],ua={key:1},da={key:2},va=_({__name:"VPNavBarTitle",setup(s){const{site:t,theme:e}=L(),{hasSidebar:o}=O(),{currentLang:n}=X(),i=g(()=>{var d;return typeof e.value.logoLink=="string"?e.value.logoLink:(d=e.value.logoLink)==null?void 0:d.link}),l=g(()=>{var d;return typeof e.value.logoLink=="string"||(d=e.value.logoLink)==null?void 0:d.rel}),v=g(()=>{var d;return typeof e.value.logoLink=="string"||(d=e.value.logoLink)==null?void 0:d.target});return(d,m)=>(a(),u("div",{class:N(["VPNavBarTitle",{"has-sidebar":r(o)}])},[h("a",{class:"title",href:i.value??r(me)(r(n).link),rel:l.value,target:v.value},[c(d.$slots,"nav-bar-title-before",{},void 0,!0),r(e).logo?(a(),y(ee,{key:0,class:"logo",image:r(e).logo},null,8,["image"])):f("",!0),r(e).siteTitle?(a(),u("span",ua,T(r(e).siteTitle),1)):r(e).siteTitle===void 0?(a(),u("span",da,T(r(t).title),1)):f("",!0),c(d.$slots,"nav-bar-title-after",{},void 0,!0)],8,ca)],2))}}),pa=$(va,[["__scopeId","data-v-28a961f9"]]),ha={class:"items"},fa={class:"title"},_a=_({__name:"VPNavBarTranslations",setup(s){const{theme:t}=L(),{localeLinks:e,currentLang:o}=X({correspondingLink:!0});return(n,i)=>r(e).length&&r(o).label?(a(),y(ye,{key:0,class:"VPNavBarTranslations",icon:"vpi-languages",label:r(t).langMenuLabel||"Change language"},{default:p(()=>[h("div",ha,[h("p",fa,T(r(o).label),1),(a(!0),u(M,null,E(r(e),l=>(a(),y(ne,{key:l.link,item:l},null,8,["item"]))),128))])]),_:1},8,["label"])):f("",!0)}}),ma=$(_a,[["__scopeId","data-v-c80d9ad0"]]),ba=s=>(B("data-v-b9c8b02d"),s=s(),H(),s),ka={class:"wrapper"},$a={class:"container"},ga={class:"title"},ya={class:"content"},Pa={class:"content-body"},Sa=ba(()=>h("div",{class:"divider"},[h("div",{class:"divider-line"})],-1)),Va=_({__name:"VPNavBar",props:{isScreenOpen:{type:Boolean}},emits:["toggle-screen"],setup(s){const{y:t}=Ae(),{hasSidebar:e}=O(),{hasLocalNav:o}=Fe(),{frontmatter:n}=L(),i=w({});return Te(()=>{i.value={"has-sidebar":e.value,"has-local-nav":o.value,top:n.value.layout==="home"&&t.value===0}}),(l,v)=>(a(),u("div",{class:N(["VPNavBar",i.value])},[h("div",ka,[h("div",$a,[h("div",ga,[b(pa,null,{"nav-bar-title-before":p(()=>[c(l.$slots,"nav-bar-title-before",{},void 0,!0)]),"nav-bar-title-after":p(()=>[c(l.$slots,"nav-bar-title-after",{},void 0,!0)]),_:3})]),h("div",ya,[h("div",Pa,[c(l.$slots,"nav-bar-content-before",{},void 0,!0),b(ra,{class:"search"}),b(Xn,{class:"menu"}),b(ma,{class:"translations"}),b(Zo,{class:"appearance"}),b(la,{class:"social-links"}),b(Hn,{class:"extra"}),c(l.$slots,"nav-bar-content-after",{},void 0,!0),b(jn,{class:"hamburger",active:l.isScreenOpen,onClick:v[0]||(v[0]=d=>l.$emit("toggle-screen"))},null,8,["active"])])])])]),Sa],2))}}),La=$(Va,[["__scopeId","data-v-b9c8b02d"]]),Ta={key:0,class:"VPNavScreenAppearance"},wa={class:"text"},Ia=_({__name:"VPNavScreenAppearance",setup(s){const{site:t,theme:e}=L();return(o,n)=>r(t).appearance&&r(t).appearance!=="force-dark"?(a(),u("div",Ta,[h("p",wa,T(r(e).darkModeSwitchLabel||"Appearance"),1),b($e)])):f("",!0)}}),Na=$(Ia,[["__scopeId","data-v-2b89f08b"]]),Ma=_({__name:"VPNavScreenMenuLink",props:{item:{}},setup(s){const t=J("close-screen");return(e,o)=>(a(),y(F,{class:"VPNavScreenMenuLink",href:e.item.link,target:e.item.target,rel:e.item.rel,onClick:r(t)},{default:p(()=>[D(T(e.item.text),1)]),_:1},8,["href","target","rel","onClick"]))}}),Aa=$(Ma,[["__scopeId","data-v-d45ba3e8"]]),Ca=_({__name:"VPNavScreenMenuGroupLink",props:{item:{}},setup(s){const t=J("close-screen");return(e,o)=>(a(),y(F,{class:"VPNavScreenMenuGroupLink",href:e.item.link,target:e.item.target,rel:e.item.rel,onClick:r(t)},{default:p(()=>[D(T(e.item.text),1)]),_:1},8,["href","target","rel","onClick"]))}}),Ge=$(Ca,[["__scopeId","data-v-7179dbb7"]]),Ba={class:"VPNavScreenMenuGroupSection"},Ha={key:0,class:"title"},Ea=_({__name:"VPNavScreenMenuGroupSection",props:{text:{},items:{}},setup(s){return(t,e)=>(a(),u("div",Ba,[t.text?(a(),u("p",Ha,T(t.text),1)):f("",!0),(a(!0),u(M,null,E(t.items,o=>(a(),y(Ge,{key:o.text,item:o},null,8,["item"]))),128))]))}}),Da=$(Ea,[["__scopeId","data-v-4b8941ac"]]),Fa=s=>(B("data-v-c9df2649"),s=s(),H(),s),Oa=["aria-controls","aria-expanded"],Ua=["innerHTML"],ja=Fa(()=>h("span",{class:"vpi-plus button-icon"},null,-1)),Ga=["id"],za={key:1,class:"group"},Ka=_({__name:"VPNavScreenMenuGroup",props:{text:{},items:{}},setup(s){const t=s,e=w(!1),o=g(()=>`NavScreenGroup-${t.text.replace(" ","-").toLowerCase()}`);function n(){e.value=!e.value}return(i,l)=>(a(),u("div",{class:N(["VPNavScreenMenuGroup",{open:e.value}])},[h("button",{class:"button","aria-controls":o.value,"aria-expanded":e.value,onClick:n},[h("span",{class:"button-text",innerHTML:i.text},null,8,Ua),ja],8,Oa),h("div",{id:o.value,class:"items"},[(a(!0),u(M,null,E(i.items,v=>(a(),u(M,{key:v.text},["link"in v?(a(),u("div",{key:v.text,class:"item"},[b(Ge,{item:v},null,8,["item"])])):(a(),u("div",za,[b(Da,{text:v.text,items:v.items},null,8,["text","items"])]))],64))),128))],8,Ga)],2))}}),Ra=$(Ka,[["__scopeId","data-v-c9df2649"]]),Wa={key:0,class:"VPNavScreenMenu"},qa=_({__name:"VPNavScreenMenu",setup(s){const{theme:t}=L();return(e,o)=>r(t).nav?(a(),u("nav",Wa,[(a(!0),u(M,null,E(r(t).nav,n=>(a(),u(M,{key:n.text},["link"in n?(a(),y(Aa,{key:0,item:n},null,8,["item"])):(a(),y(Ra,{key:1,text:n.text||"",items:n.items},null,8,["text","items"]))],64))),128))])):f("",!0)}}),Ja=_({__name:"VPNavScreenSocialLinks",setup(s){const{theme:t}=L();return(e,o)=>r(t).socialLinks?(a(),y(Pe,{key:0,class:"VPNavScreenSocialLinks",links:r(t).socialLinks},null,8,["links"])):f("",!0)}}),ze=s=>(B("data-v-362991c2"),s=s(),H(),s),Ya=ze(()=>h("span",{class:"vpi-languages icon lang"},null,-1)),Xa=ze(()=>h("span",{class:"vpi-chevron-down icon chevron"},null,-1)),Qa={class:"list"},Za=_({__name:"VPNavScreenTranslations",setup(s){const{localeLinks:t,currentLang:e}=X({correspondingLink:!0}),o=w(!1);function n(){o.value=!o.value}return(i,l)=>r(t).length&&r(e).label?(a(),u("div",{key:0,class:N(["VPNavScreenTranslations",{open:o.value}])},[h("button",{class:"title",onClick:n},[Ya,D(" "+T(r(e).label)+" ",1),Xa]),h("ul",Qa,[(a(!0),u(M,null,E(r(t),v=>(a(),u("li",{key:v.link,class:"item"},[b(F,{class:"link",href:v.link},{default:p(()=>[D(T(v.text),1)]),_:2},1032,["href"])]))),128))])],2)):f("",!0)}}),xa=$(Za,[["__scopeId","data-v-362991c2"]]),er={class:"container"},tr=_({__name:"VPNavScreen",props:{open:{type:Boolean}},setup(s){const t=w(null),e=Ce(q?document.body:null);return(o,n)=>(a(),y(pe,{name:"fade",onEnter:n[0]||(n[0]=i=>e.value=!0),onAfterLeave:n[1]||(n[1]=i=>e.value=!1)},{default:p(()=>[o.open?(a(),u("div",{key:0,class:"VPNavScreen",ref_key:"screen",ref:t,id:"VPNavScreen"},[h("div",er,[c(o.$slots,"nav-screen-content-before",{},void 0,!0),b(qa,{class:"menu"}),b(xa,{class:"translations"}),b(Na,{class:"appearance"}),b(Ja,{class:"social-links"}),c(o.$slots,"nav-screen-content-after",{},void 0,!0)])],512)):f("",!0)]),_:3}))}}),sr=$(tr,[["__scopeId","data-v-382f42e9"]]),or={key:0,class:"VPNav"},nr=_({__name:"VPNav",setup(s){const{isScreenOpen:t,closeScreen:e,toggleScreen:o}=Uo(),{frontmatter:n}=L(),i=g(()=>n.value.navbar!==!1);return _e("close-screen",e),te(()=>{q&&document.documentElement.classList.toggle("hide-nav",!i.value)}),(l,v)=>i.value?(a(),u("header",or,[b(La,{"is-screen-open":r(t),onToggleScreen:r(o)},{"nav-bar-title-before":p(()=>[c(l.$slots,"nav-bar-title-before",{},void 0,!0)]),"nav-bar-title-after":p(()=>[c(l.$slots,"nav-bar-title-after",{},void 0,!0)]),"nav-bar-content-before":p(()=>[c(l.$slots,"nav-bar-content-before",{},void 0,!0)]),"nav-bar-content-after":p(()=>[c(l.$slots,"nav-bar-content-after",{},void 0,!0)]),_:3},8,["is-screen-open","onToggleScreen"]),b(sr,{open:r(t)},{"nav-screen-content-before":p(()=>[c(l.$slots,"nav-screen-content-before",{},void 0,!0)]),"nav-screen-content-after":p(()=>[c(l.$slots,"nav-screen-content-after",{},void 0,!0)]),_:3},8,["open"])])):f("",!0)}}),ar=$(nr,[["__scopeId","data-v-f1e365da"]]),Ke=s=>(B("data-v-f24171a4"),s=s(),H(),s),rr=["role","tabindex"],ir=Ke(()=>h("div",{class:"indicator"},null,-1)),lr=Ke(()=>h("span",{class:"vpi-chevron-right caret-icon"},null,-1)),cr=[lr],ur={key:1,class:"items"},dr=_({__name:"VPSidebarItem",props:{item:{},depth:{}},setup(s){const t=s,{collapsed:e,collapsible:o,isLink:n,isActiveLink:i,hasActiveLink:l,hasChildren:v,toggle:d}=Nt(g(()=>t.item)),m=g(()=>v.value?"section":"div"),P=g(()=>n.value?"a":"div"),k=g(()=>v.value?t.depth+2===7?"p":`h${t.depth+2}`:"p"),V=g(()=>n.value?void 0:"button"),S=g(()=>[[`level-${t.depth}`],{collapsible:o.value},{collapsed:e.value},{"is-link":n.value},{"is-active":i.value},{"has-active":l.value}]);function A(I){"key"in I&&I.key!=="Enter"||!t.item.link&&d()}function C(){t.item.link&&d()}return(I,Q)=>{const U=K("VPSidebarItem",!0);return a(),y(W(m.value),{class:N(["VPSidebarItem",S.value])},{default:p(()=>[I.item.text?(a(),u("div",Z({key:0,class:"item",role:V.value},rt(I.item.items?{click:A,keydown:A}:{},!0),{tabindex:I.item.items&&0}),[ir,I.item.link?(a(),y(F,{key:0,tag:P.value,class:"link",href:I.item.link,rel:I.item.rel,target:I.item.target},{default:p(()=>[(a(),y(W(k.value),{class:"text",innerHTML:I.item.text},null,8,["innerHTML"]))]),_:1},8,["tag","href","rel","target"])):(a(),y(W(k.value),{key:1,class:"text",innerHTML:I.item.text},null,8,["innerHTML"])),I.item.collapsed!=null?(a(),u("div",{key:2,class:"caret",role:"button","aria-label":"toggle section",onClick:C,onKeydown:at(C,["enter"]),tabindex:"0"},cr,32)):f("",!0)],16,rr)):f("",!0),I.item.items&&I.item.items.length?(a(),u("div",ur,[I.depth<5?(a(!0),u(M,{key:0},E(I.item.items,R=>(a(),y(U,{key:R.text,item:R,depth:I.depth+1},null,8,["item","depth"]))),128)):f("",!0)])):f("",!0)]),_:1},8,["class"])}}}),vr=$(dr,[["__scopeId","data-v-f24171a4"]]),Re=s=>(B("data-v-ec846e01"),s=s(),H(),s),pr=Re(()=>h("div",{class:"curtain"},null,-1)),hr={class:"nav",id:"VPSidebarNav","aria-labelledby":"sidebar-aria-label",tabindex:"-1"},fr=Re(()=>h("span",{class:"visually-hidden",id:"sidebar-aria-label"}," Sidebar Navigation ",-1)),_r=_({__name:"VPSidebar",props:{open:{type:Boolean}},setup(s){const{sidebarGroups:t,hasSidebar:e}=O(),o=s,n=w(null),i=Ce(q?document.body:null);return G([o,n],()=>{var l;o.open?(i.value=!0,(l=n.value)==null||l.focus()):i.value=!1},{immediate:!0,flush:"post"}),(l,v)=>r(e)?(a(),u("aside",{key:0,class:N(["VPSidebar",{open:l.open}]),ref_key:"navEl",ref:n,onClick:v[0]||(v[0]=it(()=>{},["stop"]))},[pr,h("nav",hr,[fr,c(l.$slots,"sidebar-nav-before",{},void 0,!0),(a(!0),u(M,null,E(r(t),d=>(a(),u("div",{key:d.text,class:"group"},[b(vr,{item:d,depth:0},null,8,["item"])]))),128)),c(l.$slots,"sidebar-nav-after",{},void 0,!0)])],2)):f("",!0)}}),mr=$(_r,[["__scopeId","data-v-ec846e01"]]),br=_({__name:"VPSkipLink",setup(s){const t=oe(),e=w();G(()=>t.path,()=>e.value.focus());function o({target:n}){const i=document.getElementById(decodeURIComponent(n.hash).slice(1));if(i){const l=()=>{i.removeAttribute("tabindex"),i.removeEventListener("blur",l)};i.setAttribute("tabindex","-1"),i.addEventListener("blur",l),i.focus(),window.scrollTo(0,0)}}return(n,i)=>(a(),u(M,null,[h("span",{ref_key:"backToTop",ref:e,tabindex:"-1"},null,512),h("a",{href:"#VPContent",class:"VPSkipLink visually-hidden",onClick:o}," Skip to content ")],64))}}),kr=$(br,[["__scopeId","data-v-c3508ec8"]]),$r=_({__name:"Layout",setup(s){const{isOpen:t,open:e,close:o}=O(),n=oe();G(()=>n.path,o),It(t,o);const{frontmatter:i}=L(),l=Be(),v=g(()=>!!l["home-hero-image"]);return _e("hero-image-slot-exists",v),(d,m)=>{const P=K("Content");return r(i).layout!==!1?(a(),u("div",{key:0,class:N(["Layout",r(i).pageClass])},[c(d.$slots,"layout-top",{},void 0,!0),b(kr),b(ht,{class:"backdrop",show:r(t),onClick:r(o)},null,8,["show","onClick"]),b(ar,null,{"nav-bar-title-before":p(()=>[c(d.$slots,"nav-bar-title-before",{},void 0,!0)]),"nav-bar-title-after":p(()=>[c(d.$slots,"nav-bar-title-after",{},void 0,!0)]),"nav-bar-content-before":p(()=>[c(d.$slots,"nav-bar-content-before",{},void 0,!0)]),"nav-bar-content-after":p(()=>[c(d.$slots,"nav-bar-content-after",{},void 0,!0)]),"nav-screen-content-before":p(()=>[c(d.$slots,"nav-screen-content-before",{},void 0,!0)]),"nav-screen-content-after":p(()=>[c(d.$slots,"nav-screen-content-after",{},void 0,!0)]),_:3}),b(Oo,{open:r(t),onOpenMenu:r(e)},null,8,["open","onOpenMenu"]),b(mr,{open:r(t)},{"sidebar-nav-before":p(()=>[c(d.$slots,"sidebar-nav-before",{},void 0,!0)]),"sidebar-nav-after":p(()=>[c(d.$slots,"sidebar-nav-after",{},void 0,!0)]),_:3},8,["open"]),b(go,null,{"page-top":p(()=>[c(d.$slots,"page-top",{},void 0,!0)]),"page-bottom":p(()=>[c(d.$slots,"page-bottom",{},void 0,!0)]),"not-found":p(()=>[c(d.$slots,"not-found",{},void 0,!0)]),"home-hero-before":p(()=>[c(d.$slots,"home-hero-before",{},void 0,!0)]),"home-hero-info-before":p(()=>[c(d.$slots,"home-hero-info-before",{},void 0,!0)]),"home-hero-info":p(()=>[c(d.$slots,"home-hero-info",{},void 0,!0)]),"home-hero-info-after":p(()=>[c(d.$slots,"home-hero-info-after",{},void 0,!0)]),"home-hero-actions-after":p(()=>[c(d.$slots,"home-hero-actions-after",{},void 0,!0)]),"home-hero-image":p(()=>[c(d.$slots,"home-hero-image",{},void 0,!0)]),"home-hero-after":p(()=>[c(d.$slots,"home-hero-after",{},void 0,!0)]),"home-features-before":p(()=>[c(d.$slots,"home-features-before",{},void 0,!0)]),"home-features-after":p(()=>[c(d.$slots,"home-features-after",{},void 0,!0)]),"doc-footer-before":p(()=>[c(d.$slots,"doc-footer-before",{},void 0,!0)]),"doc-before":p(()=>[c(d.$slots,"doc-before",{},void 0,!0)]),"doc-after":p(()=>[c(d.$slots,"doc-after",{},void 0,!0)]),"doc-top":p(()=>[c(d.$slots,"doc-top",{},void 0,!0)]),"doc-bottom":p(()=>[c(d.$slots,"doc-bottom",{},void 0,!0)]),"aside-top":p(()=>[c(d.$slots,"aside-top",{},void 0,!0)]),"aside-bottom":p(()=>[c(d.$slots,"aside-bottom",{},void 0,!0)]),"aside-outline-before":p(()=>[c(d.$slots,"aside-outline-before",{},void 0,!0)]),"aside-outline-after":p(()=>[c(d.$slots,"aside-outline-after",{},void 0,!0)]),"aside-ads-before":p(()=>[c(d.$slots,"aside-ads-before",{},void 0,!0)]),"aside-ads-after":p(()=>[c(d.$slots,"aside-ads-after",{},void 0,!0)]),_:3}),b(Lo),c(d.$slots,"layout-bottom",{},void 0,!0)],2)):(a(),y(P,{key:1}))}}}),gr=$($r,[["__scopeId","data-v-a9a9e638"]]),Ve={Layout:gr,enhanceApp:({app:s})=>{s.component("Badge",dt)}},yr=s=>{if(typeof document>"u")return{stabilizeScrollPosition:n=>async(...i)=>n(...i)};const t=document.documentElement;return{stabilizeScrollPosition:o=>async(...n)=>{const i=o(...n),l=s.value;if(!l)return i;const v=l.offsetTop-t.scrollTop;return await Me(),t.scrollTop=l.offsetTop-v,i}}},We="vitepress:tabSharedState",Y=typeof localStorage<"u"?localStorage:null,qe="vitepress:tabsSharedState",Pr=()=>{const s=Y==null?void 0:Y.getItem(qe);if(s)try{return JSON.parse(s)}catch{}return{}},Sr=s=>{Y&&Y.setItem(qe,JSON.stringify(s))},Vr=s=>{const t=lt({});G(()=>t.content,(e,o)=>{e&&o&&Sr(e)},{deep:!0}),s.provide(We,t)},Lr=(s,t)=>{const e=J(We);if(!e)throw new Error("[vitepress-plugin-tabs] TabsSharedState should be injected");j(()=>{e.content||(e.content=Pr())});const o=w(),n=g({get(){var d;const l=t.value,v=s.value;if(l){const m=(d=e.content)==null?void 0:d[l];if(m&&v.includes(m))return m}else{const m=o.value;if(m)return m}return v[0]},set(l){const v=t.value;v?e.content&&(e.content[v]=l):o.value=l}});return{selected:n,select:l=>{n.value=l}}};let Le=0;const Tr=()=>(Le++,""+Le);function wr(){const s=Be();return g(()=>{var o;const e=(o=s.default)==null?void 0:o.call(s);return e?e.filter(n=>typeof n.type=="object"&&"__name"in n.type&&n.type.__name==="PluginTabsTab"&&n.props).map(n=>{var i;return(i=n.props)==null?void 0:i.label}):[]})}const Je="vitepress:tabSingleState",Ir=s=>{_e(Je,s)},Nr=()=>{const s=J(Je);if(!s)throw new Error("[vitepress-plugin-tabs] TabsSingleState should be injected");return s},Mr={class:"plugin-tabs"},Ar=["id","aria-selected","aria-controls","tabindex","onClick"],Cr=_({__name:"PluginTabs",props:{sharedStateKey:{}},setup(s){const t=s,e=wr(),{selected:o,select:n}=Lr(e,ct(t,"sharedStateKey")),i=w(),{stabilizeScrollPosition:l}=yr(i),v=l(n),d=w([]),m=k=>{var A;const V=e.value.indexOf(o.value);let S;k.key==="ArrowLeft"?S=V>=1?V-1:e.value.length-1:k.key==="ArrowRight"&&(S=V(a(),u("div",Mr,[h("div",{ref_key:"tablist",ref:i,class:"plugin-tabs--tab-list",role:"tablist",onKeydown:m},[(a(!0),u(M,null,E(r(e),S=>(a(),u("button",{id:`tab-${S}-${r(P)}`,ref_for:!0,ref_key:"buttonRefs",ref:d,key:S,role:"tab",class:"plugin-tabs--tab","aria-selected":S===r(o),"aria-controls":`panel-${S}-${r(P)}`,tabindex:S===r(o)?0:-1,onClick:()=>r(v)(S)},T(S),9,Ar))),128))],544),c(k.$slots,"default")]))}}),Br=["id","aria-labelledby"],Hr=_({__name:"PluginTabsTab",props:{label:{}},setup(s){const{uid:t,selected:e}=Nr();return(o,n)=>r(e)===o.label?(a(),u("div",{key:0,id:`panel-${o.label}-${r(t)}`,class:"plugin-tabs--content",role:"tabpanel",tabindex:"0","aria-labelledby":`tab-${o.label}-${r(t)}`},[c(o.$slots,"default",{},void 0,!0)],8,Br)):f("",!0)}}),Er=$(Hr,[["__scopeId","data-v-9b0d03d2"]]),Dr=s=>{Vr(s),s.component("PluginTabs",Cr),s.component("PluginTabsTab",Er)},Or={extends:Ve,Layout(){return ut(Ve.Layout,null,{})},enhanceApp({app:s,router:t,siteData:e}){Dr(s)}};export{Or as R,Qn as c,L as u}; +const __vite__fileDeps=["assets/chunks/VPLocalSearchBox.CJhDNAGX.js","assets/chunks/framework.aA95Gx5L.js"],__vite__mapDeps=i=>i.map(i=>__vite__fileDeps[i]); +import{d as _,o as a,c as u,r as c,n as N,a as D,t as T,b as y,w as p,T as pe,e as f,_ as $,u as Ye,i as Xe,f as Qe,g as he,h as w,j as q,k as g,l as j,m as h,p as r,q as B,s as H,v as z,x as le,y as G,z as te,A as fe,B as Te,C as Ze,D as xe,E as K,F as M,G as E,H as we,I as se,J as b,K as W,L as Ie,M as oe,N as Z,O as J,P as et,Q as Ne,R as tt,S as ce,U as Me,V as Ae,W as st,X as ot,Y as nt,Z as Ce,$ as _e,a0 as at,a1 as rt,a2 as it,a3 as Be,a4 as lt,a5 as ct,a6 as ut}from"./framework.aA95Gx5L.js";const dt=_({__name:"VPBadge",props:{text:{},type:{default:"tip"}},setup(s){return(t,e)=>(a(),u("span",{class:N(["VPBadge",t.type])},[c(t.$slots,"default",{},()=>[D(T(t.text),1)])],2))}}),vt={key:0,class:"VPBackdrop"},pt=_({__name:"VPBackdrop",props:{show:{type:Boolean}},setup(s){return(t,e)=>(a(),y(pe,{name:"fade"},{default:p(()=>[t.show?(a(),u("div",vt)):f("",!0)]),_:1}))}}),ht=$(pt,[["__scopeId","data-v-b06cdb19"]]),L=Ye;function ft(s,t){let e,o=!1;return()=>{e&&clearTimeout(e),o?e=setTimeout(s,t):(s(),(o=!0)&&setTimeout(()=>o=!1,t))}}function ue(s){return/^\//.test(s)?s:`/${s}`}function me(s){const{pathname:t,search:e,hash:o,protocol:n}=new URL(s,"http://a.com");if(Xe(s)||s.startsWith("#")||!n.startsWith("http")||!Qe(t))return s;const{site:i}=L(),l=t.endsWith("/")||t.endsWith(".html")?s:s.replace(/(?:(^\.+)\/)?.*$/,`$1${t.replace(/(\.md)?$/,i.value.cleanUrls?"":".html")}${e}${o}`);return he(l)}const be=w(q?location.hash:"");q&&window.addEventListener("hashchange",()=>{be.value=location.hash});function X({removeCurrent:s=!0,correspondingLink:t=!1}={}){const{site:e,localeIndex:o,page:n,theme:i}=L(),l=g(()=>{var d,m;return{label:(d=e.value.locales[o.value])==null?void 0:d.label,link:((m=e.value.locales[o.value])==null?void 0:m.link)||(o.value==="root"?"/":`/${o.value}/`)}});return{localeLinks:g(()=>Object.entries(e.value.locales).flatMap(([d,m])=>s&&l.value.label===m.label?[]:{text:m.label,link:_t(m.link||(d==="root"?"/":`/${d}/`),i.value.i18nRouting!==!1&&t,n.value.relativePath.slice(l.value.link.length-1),!e.value.cleanUrls)+be.value})),currentLang:l}}function _t(s,t,e,o){return t?s.replace(/\/$/,"")+ue(e.replace(/(^|\/)index\.md$/,"$1").replace(/\.md$/,o?".html":"")):s}const mt=s=>(B("data-v-792811ca"),s=s(),H(),s),bt={class:"NotFound"},kt={class:"code"},$t={class:"title"},gt=mt(()=>h("div",{class:"divider"},null,-1)),yt={class:"quote"},Pt={class:"action"},St=["href","aria-label"],Vt=_({__name:"NotFound",setup(s){const{site:t,theme:e}=L(),{localeLinks:o}=X({removeCurrent:!1}),n=w("/");return j(()=>{var l;const i=window.location.pathname.replace(t.value.base,"").replace(/(^.*?\/).*$/,"/$1");o.value.length&&(n.value=((l=o.value.find(({link:v})=>v.startsWith(i)))==null?void 0:l.link)||o.value[0].link)}),(i,l)=>{var v,d,m,P,k;return a(),u("div",bt,[h("p",kt,T(((v=r(e).notFound)==null?void 0:v.code)??"404"),1),h("h1",$t,T(((d=r(e).notFound)==null?void 0:d.title)??"PAGE NOT FOUND"),1),gt,h("blockquote",yt,T(((m=r(e).notFound)==null?void 0:m.quote)??"But if you don't change your direction, and if you keep looking, you may end up where you are heading."),1),h("div",Pt,[h("a",{class:"link",href:r(he)(n.value),"aria-label":((P=r(e).notFound)==null?void 0:P.linkLabel)??"go to home"},T(((k=r(e).notFound)==null?void 0:k.linkText)??"Take me home"),9,St)])])}}}),Lt=$(Vt,[["__scopeId","data-v-792811ca"]]);function He(s,t){if(Array.isArray(s))return x(s);if(s==null)return[];t=ue(t);const e=Object.keys(s).sort((n,i)=>i.split("/").length-n.split("/").length).find(n=>t.startsWith(ue(n))),o=e?s[e]:[];return Array.isArray(o)?x(o):x(o.items,o.base)}function Tt(s){const t=[];let e=0;for(const o in s){const n=s[o];if(n.items){e=t.push(n);continue}t[e]||t.push({items:[]}),t[e].items.push(n)}return t}function wt(s){const t=[];function e(o){for(const n of o)n.text&&n.link&&t.push({text:n.text,link:n.link,docFooterText:n.docFooterText}),n.items&&e(n.items)}return e(s),t}function de(s,t){return Array.isArray(t)?t.some(e=>de(s,e)):z(s,t.link)?!0:t.items?de(s,t.items):!1}function x(s,t){return[...s].map(e=>{const o={...e},n=o.base||t;return n&&o.link&&(o.link=n+o.link),o.items&&(o.items=x(o.items,n)),o})}function O(){const{frontmatter:s,page:t,theme:e}=L(),o=le("(min-width: 960px)"),n=w(!1),i=g(()=>{const C=e.value.sidebar,I=t.value.relativePath;return C?He(C,I):[]}),l=w(i.value);G(i,(C,I)=>{JSON.stringify(C)!==JSON.stringify(I)&&(l.value=i.value)});const v=g(()=>s.value.sidebar!==!1&&l.value.length>0&&s.value.layout!=="home"),d=g(()=>m?s.value.aside==null?e.value.aside==="left":s.value.aside==="left":!1),m=g(()=>s.value.layout==="home"?!1:s.value.aside!=null?!!s.value.aside:e.value.aside!==!1),P=g(()=>v.value&&o.value),k=g(()=>v.value?Tt(l.value):[]);function V(){n.value=!0}function S(){n.value=!1}function A(){n.value?S():V()}return{isOpen:n,sidebar:l,sidebarGroups:k,hasSidebar:v,hasAside:m,leftAside:d,isSidebarEnabled:P,open:V,close:S,toggle:A}}function It(s,t){let e;te(()=>{e=s.value?document.activeElement:void 0}),j(()=>{window.addEventListener("keyup",o)}),fe(()=>{window.removeEventListener("keyup",o)});function o(n){n.key==="Escape"&&s.value&&(t(),e==null||e.focus())}}function Nt(s){const{page:t}=L(),e=w(!1),o=g(()=>s.value.collapsed!=null),n=g(()=>!!s.value.link),i=w(!1),l=()=>{i.value=z(t.value.relativePath,s.value.link)};G([t,s,be],l),j(l);const v=g(()=>i.value?!0:s.value.items?de(t.value.relativePath,s.value.items):!1),d=g(()=>!!(s.value.items&&s.value.items.length));te(()=>{e.value=!!(o.value&&s.value.collapsed)}),Te(()=>{(i.value||v.value)&&(e.value=!1)});function m(){o.value&&(e.value=!e.value)}return{collapsed:e,collapsible:o,isLink:n,isActiveLink:i,hasActiveLink:v,hasChildren:d,toggle:m}}function Mt(){const{hasSidebar:s}=O(),t=le("(min-width: 960px)"),e=le("(min-width: 1280px)");return{isAsideEnabled:g(()=>!e.value&&!t.value?!1:s.value?e.value:t.value)}}const ve=[];function Ee(s){return typeof s.outline=="object"&&!Array.isArray(s.outline)&&s.outline.label||s.outlineTitle||"On this page"}function ke(s){const t=[...document.querySelectorAll(".VPDoc :where(h1,h2,h3,h4,h5,h6)")].filter(e=>e.id&&e.hasChildNodes()).map(e=>{const o=Number(e.tagName[1]);return{element:e,title:At(e),link:"#"+e.id,level:o}});return Ct(t,s)}function At(s){let t="";for(const e of s.childNodes)if(e.nodeType===1){if(e.classList.contains("VPBadge")||e.classList.contains("header-anchor")||e.classList.contains("ignore-header"))continue;t+=e.textContent}else e.nodeType===3&&(t+=e.textContent);return t.trim()}function Ct(s,t){if(t===!1)return[];const e=(typeof t=="object"&&!Array.isArray(t)?t.level:t)||2,[o,n]=typeof e=="number"?[e,e]:e==="deep"?[2,6]:e;s=s.filter(l=>l.level>=o&&l.level<=n),ve.length=0;for(const{element:l,link:v}of s)ve.push({element:l,link:v});const i=[];e:for(let l=0;l=0;d--){const m=s[d];if(m.level{requestAnimationFrame(i),window.addEventListener("scroll",o)}),Ze(()=>{l(location.hash)}),fe(()=>{window.removeEventListener("scroll",o)});function i(){if(!e.value)return;const v=window.scrollY,d=window.innerHeight,m=document.body.offsetHeight,P=Math.abs(v+d-m)<1,k=ve.map(({element:S,link:A})=>({link:A,top:Ht(S)})).filter(({top:S})=>!Number.isNaN(S)).sort((S,A)=>S.top-A.top);if(!k.length){l(null);return}if(v<1){l(null);return}if(P){l(k[k.length-1].link);return}let V=null;for(const{link:S,top:A}of k){if(A>v+xe()+4)break;V=S}l(V)}function l(v){n&&n.classList.remove("active"),v==null?n=null:n=s.value.querySelector(`a[href="${decodeURIComponent(v)}"]`);const d=n;d?(d.classList.add("active"),t.value.style.top=d.offsetTop+39+"px",t.value.style.opacity="1"):(t.value.style.top="33px",t.value.style.opacity="0")}}function Ht(s){let t=0;for(;s!==document.body;){if(s===null)return NaN;t+=s.offsetTop,s=s.offsetParent}return t}const Et=["href","title"],Dt=_({__name:"VPDocOutlineItem",props:{headers:{},root:{type:Boolean}},setup(s){function t({target:e}){const o=e.href.split("#")[1],n=document.getElementById(decodeURIComponent(o));n==null||n.focus({preventScroll:!0})}return(e,o)=>{const n=K("VPDocOutlineItem",!0);return a(),u("ul",{class:N(["VPDocOutlineItem",e.root?"root":"nested"])},[(a(!0),u(M,null,E(e.headers,({children:i,link:l,title:v})=>(a(),u("li",null,[h("a",{class:"outline-link",href:l,onClick:t,title:v},T(v),9,Et),i!=null&&i.length?(a(),y(n,{key:0,headers:i},null,8,["headers"])):f("",!0)]))),256))],2)}}}),De=$(Dt,[["__scopeId","data-v-3f927ebe"]]),Ft=s=>(B("data-v-c14bfc45"),s=s(),H(),s),Ot={class:"content"},Ut={class:"outline-title",role:"heading","aria-level":"2"},jt={"aria-labelledby":"doc-outline-aria-label"},Gt=Ft(()=>h("span",{class:"visually-hidden",id:"doc-outline-aria-label"}," Table of Contents for current page ",-1)),zt=_({__name:"VPDocAsideOutline",setup(s){const{frontmatter:t,theme:e}=L(),o=we([]);se(()=>{o.value=ke(t.value.outline??e.value.outline)});const n=w(),i=w();return Bt(n,i),(l,v)=>(a(),u("div",{class:N(["VPDocAsideOutline",{"has-outline":o.value.length>0}]),ref_key:"container",ref:n,role:"navigation"},[h("div",Ot,[h("div",{class:"outline-marker",ref_key:"marker",ref:i},null,512),h("div",Ut,T(r(Ee)(r(e))),1),h("nav",jt,[Gt,b(De,{headers:o.value,root:!0},null,8,["headers"])])])],2))}}),Kt=$(zt,[["__scopeId","data-v-c14bfc45"]]),Rt={class:"VPDocAsideCarbonAds"},Wt=_({__name:"VPDocAsideCarbonAds",props:{carbonAds:{}},setup(s){const t=()=>null;return(e,o)=>(a(),u("div",Rt,[b(r(t),{"carbon-ads":e.carbonAds},null,8,["carbon-ads"])]))}}),qt=s=>(B("data-v-6d7b3c46"),s=s(),H(),s),Jt={class:"VPDocAside"},Yt=qt(()=>h("div",{class:"spacer"},null,-1)),Xt=_({__name:"VPDocAside",setup(s){const{theme:t}=L();return(e,o)=>(a(),u("div",Jt,[c(e.$slots,"aside-top",{},void 0,!0),c(e.$slots,"aside-outline-before",{},void 0,!0),b(Kt),c(e.$slots,"aside-outline-after",{},void 0,!0),Yt,c(e.$slots,"aside-ads-before",{},void 0,!0),r(t).carbonAds?(a(),y(Wt,{key:0,"carbon-ads":r(t).carbonAds},null,8,["carbon-ads"])):f("",!0),c(e.$slots,"aside-ads-after",{},void 0,!0),c(e.$slots,"aside-bottom",{},void 0,!0)]))}}),Qt=$(Xt,[["__scopeId","data-v-6d7b3c46"]]);function Zt(){const{theme:s,page:t}=L();return g(()=>{const{text:e="Edit this page",pattern:o=""}=s.value.editLink||{};let n;return typeof o=="function"?n=o(t.value):n=o.replace(/:path/g,t.value.filePath),{url:n,text:e}})}function xt(){const{page:s,theme:t,frontmatter:e}=L();return g(()=>{var d,m,P,k,V,S,A,C;const o=He(t.value.sidebar,s.value.relativePath),n=wt(o),i=n.findIndex(I=>z(s.value.relativePath,I.link)),l=((d=t.value.docFooter)==null?void 0:d.prev)===!1&&!e.value.prev||e.value.prev===!1,v=((m=t.value.docFooter)==null?void 0:m.next)===!1&&!e.value.next||e.value.next===!1;return{prev:l?void 0:{text:(typeof e.value.prev=="string"?e.value.prev:typeof e.value.prev=="object"?e.value.prev.text:void 0)??((P=n[i-1])==null?void 0:P.docFooterText)??((k=n[i-1])==null?void 0:k.text),link:(typeof e.value.prev=="object"?e.value.prev.link:void 0)??((V=n[i-1])==null?void 0:V.link)},next:v?void 0:{text:(typeof e.value.next=="string"?e.value.next:typeof e.value.next=="object"?e.value.next.text:void 0)??((S=n[i+1])==null?void 0:S.docFooterText)??((A=n[i+1])==null?void 0:A.text),link:(typeof e.value.next=="object"?e.value.next.link:void 0)??((C=n[i+1])==null?void 0:C.link)}}})}const F=_({__name:"VPLink",props:{tag:{},href:{},noIcon:{type:Boolean},target:{},rel:{}},setup(s){const t=s,e=g(()=>t.tag??(t.href?"a":"span")),o=g(()=>t.href&&Ie.test(t.href));return(n,i)=>(a(),y(W(e.value),{class:N(["VPLink",{link:n.href,"vp-external-link-icon":o.value,"no-icon":n.noIcon}]),href:n.href?r(me)(n.href):void 0,target:n.target??(o.value?"_blank":void 0),rel:n.rel??(o.value?"noreferrer":void 0)},{default:p(()=>[c(n.$slots,"default")]),_:3},8,["class","href","target","rel"]))}}),es={class:"VPLastUpdated"},ts=["datetime"],ss=_({__name:"VPDocFooterLastUpdated",setup(s){const{theme:t,page:e,frontmatter:o,lang:n}=L(),i=g(()=>new Date(o.value.lastUpdated??e.value.lastUpdated)),l=g(()=>i.value.toISOString()),v=w("");return j(()=>{te(()=>{var d,m,P;v.value=new Intl.DateTimeFormat((m=(d=t.value.lastUpdated)==null?void 0:d.formatOptions)!=null&&m.forceLocale?n.value:void 0,((P=t.value.lastUpdated)==null?void 0:P.formatOptions)??{dateStyle:"short",timeStyle:"short"}).format(i.value)})}),(d,m)=>{var P;return a(),u("p",es,[D(T(((P=r(t).lastUpdated)==null?void 0:P.text)||r(t).lastUpdatedText||"Last updated")+": ",1),h("time",{datetime:l.value},T(v.value),9,ts)])}}}),os=$(ss,[["__scopeId","data-v-9da12f1d"]]),ns=s=>(B("data-v-87be45d1"),s=s(),H(),s),as={key:0,class:"VPDocFooter"},rs={key:0,class:"edit-info"},is={key:0,class:"edit-link"},ls=ns(()=>h("span",{class:"vpi-square-pen edit-link-icon"},null,-1)),cs={key:1,class:"last-updated"},us={key:1,class:"prev-next"},ds={class:"pager"},vs=["innerHTML"],ps=["innerHTML"],hs={class:"pager"},fs=["innerHTML"],_s=["innerHTML"],ms=_({__name:"VPDocFooter",setup(s){const{theme:t,page:e,frontmatter:o}=L(),n=Zt(),i=xt(),l=g(()=>t.value.editLink&&o.value.editLink!==!1),v=g(()=>e.value.lastUpdated&&o.value.lastUpdated!==!1),d=g(()=>l.value||v.value||i.value.prev||i.value.next);return(m,P)=>{var k,V,S,A;return d.value?(a(),u("footer",as,[c(m.$slots,"doc-footer-before",{},void 0,!0),l.value||v.value?(a(),u("div",rs,[l.value?(a(),u("div",is,[b(F,{class:"edit-link-button",href:r(n).url,"no-icon":!0},{default:p(()=>[ls,D(" "+T(r(n).text),1)]),_:1},8,["href"])])):f("",!0),v.value?(a(),u("div",cs,[b(os)])):f("",!0)])):f("",!0),(k=r(i).prev)!=null&&k.link||(V=r(i).next)!=null&&V.link?(a(),u("nav",us,[h("div",ds,[(S=r(i).prev)!=null&&S.link?(a(),y(F,{key:0,class:"pager-link prev",href:r(i).prev.link},{default:p(()=>{var C;return[h("span",{class:"desc",innerHTML:((C=r(t).docFooter)==null?void 0:C.prev)||"Previous page"},null,8,vs),h("span",{class:"title",innerHTML:r(i).prev.text},null,8,ps)]}),_:1},8,["href"])):f("",!0)]),h("div",hs,[(A=r(i).next)!=null&&A.link?(a(),y(F,{key:0,class:"pager-link next",href:r(i).next.link},{default:p(()=>{var C;return[h("span",{class:"desc",innerHTML:((C=r(t).docFooter)==null?void 0:C.next)||"Next page"},null,8,fs),h("span",{class:"title",innerHTML:r(i).next.text},null,8,_s)]}),_:1},8,["href"])):f("",!0)])])):f("",!0)])):f("",!0)}}}),bs=$(ms,[["__scopeId","data-v-87be45d1"]]),ks=s=>(B("data-v-83890dd9"),s=s(),H(),s),$s={class:"container"},gs=ks(()=>h("div",{class:"aside-curtain"},null,-1)),ys={class:"aside-container"},Ps={class:"aside-content"},Ss={class:"content"},Vs={class:"content-container"},Ls={class:"main"},Ts=_({__name:"VPDoc",setup(s){const{theme:t}=L(),e=oe(),{hasSidebar:o,hasAside:n,leftAside:i}=O(),l=g(()=>e.path.replace(/[./]+/g,"_").replace(/_html$/,""));return(v,d)=>{const m=K("Content");return a(),u("div",{class:N(["VPDoc",{"has-sidebar":r(o),"has-aside":r(n)}])},[c(v.$slots,"doc-top",{},void 0,!0),h("div",$s,[r(n)?(a(),u("div",{key:0,class:N(["aside",{"left-aside":r(i)}])},[gs,h("div",ys,[h("div",Ps,[b(Qt,null,{"aside-top":p(()=>[c(v.$slots,"aside-top",{},void 0,!0)]),"aside-bottom":p(()=>[c(v.$slots,"aside-bottom",{},void 0,!0)]),"aside-outline-before":p(()=>[c(v.$slots,"aside-outline-before",{},void 0,!0)]),"aside-outline-after":p(()=>[c(v.$slots,"aside-outline-after",{},void 0,!0)]),"aside-ads-before":p(()=>[c(v.$slots,"aside-ads-before",{},void 0,!0)]),"aside-ads-after":p(()=>[c(v.$slots,"aside-ads-after",{},void 0,!0)]),_:3})])])],2)):f("",!0),h("div",Ss,[h("div",Vs,[c(v.$slots,"doc-before",{},void 0,!0),h("main",Ls,[b(m,{class:N(["vp-doc",[l.value,r(t).externalLinkIcon&&"external-link-icon-enabled"]])},null,8,["class"])]),b(bs,null,{"doc-footer-before":p(()=>[c(v.$slots,"doc-footer-before",{},void 0,!0)]),_:3}),c(v.$slots,"doc-after",{},void 0,!0)])])]),c(v.$slots,"doc-bottom",{},void 0,!0)],2)}}}),ws=$(Ts,[["__scopeId","data-v-83890dd9"]]),Is=_({__name:"VPButton",props:{tag:{},size:{default:"medium"},theme:{default:"brand"},text:{},href:{},target:{},rel:{}},setup(s){const t=s,e=g(()=>t.href&&Ie.test(t.href)),o=g(()=>t.tag||t.href?"a":"button");return(n,i)=>(a(),y(W(o.value),{class:N(["VPButton",[n.size,n.theme]]),href:n.href?r(me)(n.href):void 0,target:t.target??(e.value?"_blank":void 0),rel:t.rel??(e.value?"noreferrer":void 0)},{default:p(()=>[D(T(n.text),1)]),_:1},8,["class","href","target","rel"]))}}),Ns=$(Is,[["__scopeId","data-v-14206e74"]]),Ms=["src","alt"],As=_({inheritAttrs:!1,__name:"VPImage",props:{image:{},alt:{}},setup(s){return(t,e)=>{const o=K("VPImage",!0);return t.image?(a(),u(M,{key:0},[typeof t.image=="string"||"src"in t.image?(a(),u("img",Z({key:0,class:"VPImage"},typeof t.image=="string"?t.$attrs:{...t.image,...t.$attrs},{src:r(he)(typeof t.image=="string"?t.image:t.image.src),alt:t.alt??(typeof t.image=="string"?"":t.image.alt||"")}),null,16,Ms)):(a(),u(M,{key:1},[b(o,Z({class:"dark",image:t.image.dark,alt:t.image.alt},t.$attrs),null,16,["image","alt"]),b(o,Z({class:"light",image:t.image.light,alt:t.image.alt},t.$attrs),null,16,["image","alt"])],64))],64)):f("",!0)}}}),ee=$(As,[["__scopeId","data-v-35a7d0b8"]]),Cs=s=>(B("data-v-955009fc"),s=s(),H(),s),Bs={class:"container"},Hs={class:"main"},Es={key:0,class:"name"},Ds=["innerHTML"],Fs=["innerHTML"],Os=["innerHTML"],Us={key:0,class:"actions"},js={key:0,class:"image"},Gs={class:"image-container"},zs=Cs(()=>h("div",{class:"image-bg"},null,-1)),Ks=_({__name:"VPHero",props:{name:{},text:{},tagline:{},image:{},actions:{}},setup(s){const t=J("hero-image-slot-exists");return(e,o)=>(a(),u("div",{class:N(["VPHero",{"has-image":e.image||r(t)}])},[h("div",Bs,[h("div",Hs,[c(e.$slots,"home-hero-info-before",{},void 0,!0),c(e.$slots,"home-hero-info",{},()=>[e.name?(a(),u("h1",Es,[h("span",{innerHTML:e.name,class:"clip"},null,8,Ds)])):f("",!0),e.text?(a(),u("p",{key:1,innerHTML:e.text,class:"text"},null,8,Fs)):f("",!0),e.tagline?(a(),u("p",{key:2,innerHTML:e.tagline,class:"tagline"},null,8,Os)):f("",!0)],!0),c(e.$slots,"home-hero-info-after",{},void 0,!0),e.actions?(a(),u("div",Us,[(a(!0),u(M,null,E(e.actions,n=>(a(),u("div",{key:n.link,class:"action"},[b(Ns,{tag:"a",size:"medium",theme:n.theme,text:n.text,href:n.link,target:n.target,rel:n.rel},null,8,["theme","text","href","target","rel"])]))),128))])):f("",!0),c(e.$slots,"home-hero-actions-after",{},void 0,!0)]),e.image||r(t)?(a(),u("div",js,[h("div",Gs,[zs,c(e.$slots,"home-hero-image",{},()=>[e.image?(a(),y(ee,{key:0,class:"image-src",image:e.image},null,8,["image"])):f("",!0)],!0)])])):f("",!0)])],2))}}),Rs=$(Ks,[["__scopeId","data-v-955009fc"]]),Ws=_({__name:"VPHomeHero",setup(s){const{frontmatter:t}=L();return(e,o)=>r(t).hero?(a(),y(Rs,{key:0,class:"VPHomeHero",name:r(t).hero.name,text:r(t).hero.text,tagline:r(t).hero.tagline,image:r(t).hero.image,actions:r(t).hero.actions},{"home-hero-info-before":p(()=>[c(e.$slots,"home-hero-info-before")]),"home-hero-info":p(()=>[c(e.$slots,"home-hero-info")]),"home-hero-info-after":p(()=>[c(e.$slots,"home-hero-info-after")]),"home-hero-actions-after":p(()=>[c(e.$slots,"home-hero-actions-after")]),"home-hero-image":p(()=>[c(e.$slots,"home-hero-image")]),_:3},8,["name","text","tagline","image","actions"])):f("",!0)}}),qs=s=>(B("data-v-f5e9645b"),s=s(),H(),s),Js={class:"box"},Ys={key:0,class:"icon"},Xs=["innerHTML"],Qs=["innerHTML"],Zs=["innerHTML"],xs={key:4,class:"link-text"},eo={class:"link-text-value"},to=qs(()=>h("span",{class:"vpi-arrow-right link-text-icon"},null,-1)),so=_({__name:"VPFeature",props:{icon:{},title:{},details:{},link:{},linkText:{},rel:{},target:{}},setup(s){return(t,e)=>(a(),y(F,{class:"VPFeature",href:t.link,rel:t.rel,target:t.target,"no-icon":!0,tag:t.link?"a":"div"},{default:p(()=>[h("article",Js,[typeof t.icon=="object"&&t.icon.wrap?(a(),u("div",Ys,[b(ee,{image:t.icon,alt:t.icon.alt,height:t.icon.height||48,width:t.icon.width||48},null,8,["image","alt","height","width"])])):typeof t.icon=="object"?(a(),y(ee,{key:1,image:t.icon,alt:t.icon.alt,height:t.icon.height||48,width:t.icon.width||48},null,8,["image","alt","height","width"])):t.icon?(a(),u("div",{key:2,class:"icon",innerHTML:t.icon},null,8,Xs)):f("",!0),h("h2",{class:"title",innerHTML:t.title},null,8,Qs),t.details?(a(),u("p",{key:3,class:"details",innerHTML:t.details},null,8,Zs)):f("",!0),t.linkText?(a(),u("div",xs,[h("p",eo,[D(T(t.linkText)+" ",1),to])])):f("",!0)])]),_:1},8,["href","rel","target","tag"]))}}),oo=$(so,[["__scopeId","data-v-f5e9645b"]]),no={key:0,class:"VPFeatures"},ao={class:"container"},ro={class:"items"},io=_({__name:"VPFeatures",props:{features:{}},setup(s){const t=s,e=g(()=>{const o=t.features.length;if(o){if(o===2)return"grid-2";if(o===3)return"grid-3";if(o%3===0)return"grid-6";if(o>3)return"grid-4"}else return});return(o,n)=>o.features?(a(),u("div",no,[h("div",ao,[h("div",ro,[(a(!0),u(M,null,E(o.features,i=>(a(),u("div",{key:i.title,class:N(["item",[e.value]])},[b(oo,{icon:i.icon,title:i.title,details:i.details,link:i.link,"link-text":i.linkText,rel:i.rel,target:i.target},null,8,["icon","title","details","link","link-text","rel","target"])],2))),128))])])])):f("",!0)}}),lo=$(io,[["__scopeId","data-v-d0a190d7"]]),co=_({__name:"VPHomeFeatures",setup(s){const{frontmatter:t}=L();return(e,o)=>r(t).features?(a(),y(lo,{key:0,class:"VPHomeFeatures",features:r(t).features},null,8,["features"])):f("",!0)}}),uo=_({__name:"VPHomeContent",setup(s){const{width:t}=et({includeScrollbar:!1});return(e,o)=>(a(),u("div",{class:"vp-doc container",style:Ne(r(t)?{"--vp-offset":`calc(50% - ${r(t)/2}px)`}:{})},[c(e.$slots,"default",{},void 0,!0)],4))}}),vo=$(uo,[["__scopeId","data-v-c43247eb"]]),po={class:"VPHome"},ho=_({__name:"VPHome",setup(s){const{frontmatter:t}=L();return(e,o)=>{const n=K("Content");return a(),u("div",po,[c(e.$slots,"home-hero-before",{},void 0,!0),b(Ws,null,{"home-hero-info-before":p(()=>[c(e.$slots,"home-hero-info-before",{},void 0,!0)]),"home-hero-info":p(()=>[c(e.$slots,"home-hero-info",{},void 0,!0)]),"home-hero-info-after":p(()=>[c(e.$slots,"home-hero-info-after",{},void 0,!0)]),"home-hero-actions-after":p(()=>[c(e.$slots,"home-hero-actions-after",{},void 0,!0)]),"home-hero-image":p(()=>[c(e.$slots,"home-hero-image",{},void 0,!0)]),_:3}),c(e.$slots,"home-hero-after",{},void 0,!0),c(e.$slots,"home-features-before",{},void 0,!0),b(co),c(e.$slots,"home-features-after",{},void 0,!0),r(t).markdownStyles!==!1?(a(),y(vo,{key:0},{default:p(()=>[b(n)]),_:1})):(a(),y(n,{key:1}))])}}}),fo=$(ho,[["__scopeId","data-v-cbb6ec48"]]),_o={},mo={class:"VPPage"};function bo(s,t){const e=K("Content");return a(),u("div",mo,[c(s.$slots,"page-top"),b(e),c(s.$slots,"page-bottom")])}const ko=$(_o,[["render",bo]]),$o=_({__name:"VPContent",setup(s){const{page:t,frontmatter:e}=L(),{hasSidebar:o}=O();return(n,i)=>(a(),u("div",{class:N(["VPContent",{"has-sidebar":r(o),"is-home":r(e).layout==="home"}]),id:"VPContent"},[r(t).isNotFound?c(n.$slots,"not-found",{key:0},()=>[b(Lt)],!0):r(e).layout==="page"?(a(),y(ko,{key:1},{"page-top":p(()=>[c(n.$slots,"page-top",{},void 0,!0)]),"page-bottom":p(()=>[c(n.$slots,"page-bottom",{},void 0,!0)]),_:3})):r(e).layout==="home"?(a(),y(fo,{key:2},{"home-hero-before":p(()=>[c(n.$slots,"home-hero-before",{},void 0,!0)]),"home-hero-info-before":p(()=>[c(n.$slots,"home-hero-info-before",{},void 0,!0)]),"home-hero-info":p(()=>[c(n.$slots,"home-hero-info",{},void 0,!0)]),"home-hero-info-after":p(()=>[c(n.$slots,"home-hero-info-after",{},void 0,!0)]),"home-hero-actions-after":p(()=>[c(n.$slots,"home-hero-actions-after",{},void 0,!0)]),"home-hero-image":p(()=>[c(n.$slots,"home-hero-image",{},void 0,!0)]),"home-hero-after":p(()=>[c(n.$slots,"home-hero-after",{},void 0,!0)]),"home-features-before":p(()=>[c(n.$slots,"home-features-before",{},void 0,!0)]),"home-features-after":p(()=>[c(n.$slots,"home-features-after",{},void 0,!0)]),_:3})):r(e).layout&&r(e).layout!=="doc"?(a(),y(W(r(e).layout),{key:3})):(a(),y(ws,{key:4},{"doc-top":p(()=>[c(n.$slots,"doc-top",{},void 0,!0)]),"doc-bottom":p(()=>[c(n.$slots,"doc-bottom",{},void 0,!0)]),"doc-footer-before":p(()=>[c(n.$slots,"doc-footer-before",{},void 0,!0)]),"doc-before":p(()=>[c(n.$slots,"doc-before",{},void 0,!0)]),"doc-after":p(()=>[c(n.$slots,"doc-after",{},void 0,!0)]),"aside-top":p(()=>[c(n.$slots,"aside-top",{},void 0,!0)]),"aside-outline-before":p(()=>[c(n.$slots,"aside-outline-before",{},void 0,!0)]),"aside-outline-after":p(()=>[c(n.$slots,"aside-outline-after",{},void 0,!0)]),"aside-ads-before":p(()=>[c(n.$slots,"aside-ads-before",{},void 0,!0)]),"aside-ads-after":p(()=>[c(n.$slots,"aside-ads-after",{},void 0,!0)]),"aside-bottom":p(()=>[c(n.$slots,"aside-bottom",{},void 0,!0)]),_:3}))],2))}}),go=$($o,[["__scopeId","data-v-91765379"]]),yo={class:"container"},Po=["innerHTML"],So=["innerHTML"],Vo=_({__name:"VPFooter",setup(s){const{theme:t,frontmatter:e}=L(),{hasSidebar:o}=O();return(n,i)=>r(t).footer&&r(e).footer!==!1?(a(),u("footer",{key:0,class:N(["VPFooter",{"has-sidebar":r(o)}])},[h("div",yo,[r(t).footer.message?(a(),u("p",{key:0,class:"message",innerHTML:r(t).footer.message},null,8,Po)):f("",!0),r(t).footer.copyright?(a(),u("p",{key:1,class:"copyright",innerHTML:r(t).footer.copyright},null,8,So)):f("",!0)])],2)):f("",!0)}}),Lo=$(Vo,[["__scopeId","data-v-c970a860"]]);function Fe(){const{theme:s,frontmatter:t}=L(),e=we([]),o=g(()=>e.value.length>0);return se(()=>{e.value=ke(t.value.outline??s.value.outline)}),{headers:e,hasLocalNav:o}}const To=s=>(B("data-v-c9ba27ad"),s=s(),H(),s),wo=To(()=>h("span",{class:"vpi-chevron-right icon"},null,-1)),Io={class:"header"},No={class:"outline"},Mo=_({__name:"VPLocalNavOutlineDropdown",props:{headers:{},navHeight:{}},setup(s){const t=s,{theme:e}=L(),o=w(!1),n=w(0),i=w(),l=w();tt(i,()=>{o.value=!1}),ce("Escape",()=>{o.value=!1}),se(()=>{o.value=!1});function v(){o.value=!o.value,n.value=window.innerHeight+Math.min(window.scrollY-t.navHeight,0)}function d(P){P.target.classList.contains("outline-link")&&(l.value&&(l.value.style.transition="none"),Me(()=>{o.value=!1}))}function m(){o.value=!1,window.scrollTo({top:0,left:0,behavior:"smooth"})}return(P,k)=>(a(),u("div",{class:"VPLocalNavOutlineDropdown",style:Ne({"--vp-vh":n.value+"px"}),ref_key:"main",ref:i},[P.headers.length>0?(a(),u("button",{key:0,onClick:v,class:N({open:o.value})},[D(T(r(Ee)(r(e)))+" ",1),wo],2)):(a(),u("button",{key:1,onClick:m},T(r(e).returnToTopLabel||"Return to top"),1)),b(pe,{name:"flyout"},{default:p(()=>[o.value?(a(),u("div",{key:0,ref_key:"items",ref:l,class:"items",onClick:d},[h("div",Io,[h("a",{class:"top-link",href:"#",onClick:m},T(r(e).returnToTopLabel||"Return to top"),1)]),h("div",No,[b(De,{headers:P.headers},null,8,["headers"])])],512)):f("",!0)]),_:1})],4))}}),Ao=$(Mo,[["__scopeId","data-v-c9ba27ad"]]),Co=s=>(B("data-v-070ab83d"),s=s(),H(),s),Bo={class:"container"},Ho=["aria-expanded"],Eo=Co(()=>h("span",{class:"vpi-align-left menu-icon"},null,-1)),Do={class:"menu-text"},Fo=_({__name:"VPLocalNav",props:{open:{type:Boolean}},emits:["open-menu"],setup(s){const{theme:t,frontmatter:e}=L(),{hasSidebar:o}=O(),{headers:n}=Fe(),{y:i}=Ae(),l=w(0);j(()=>{l.value=parseInt(getComputedStyle(document.documentElement).getPropertyValue("--vp-nav-height"))}),se(()=>{n.value=ke(e.value.outline??t.value.outline)});const v=g(()=>n.value.length===0),d=g(()=>v.value&&!o.value),m=g(()=>({VPLocalNav:!0,"has-sidebar":o.value,empty:v.value,fixed:d.value}));return(P,k)=>r(e).layout!=="home"&&(!d.value||r(i)>=l.value)?(a(),u("div",{key:0,class:N(m.value)},[h("div",Bo,[r(o)?(a(),u("button",{key:0,class:"menu","aria-expanded":P.open,"aria-controls":"VPSidebarNav",onClick:k[0]||(k[0]=V=>P.$emit("open-menu"))},[Eo,h("span",Do,T(r(t).sidebarMenuLabel||"Menu"),1)],8,Ho)):f("",!0),b(Ao,{headers:r(n),navHeight:l.value},null,8,["headers","navHeight"])])],2)):f("",!0)}}),Oo=$(Fo,[["__scopeId","data-v-070ab83d"]]);function Uo(){const s=w(!1);function t(){s.value=!0,window.addEventListener("resize",n)}function e(){s.value=!1,window.removeEventListener("resize",n)}function o(){s.value?e():t()}function n(){window.outerWidth>=768&&e()}const i=oe();return G(()=>i.path,e),{isScreenOpen:s,openScreen:t,closeScreen:e,toggleScreen:o}}const jo={},Go={class:"VPSwitch",type:"button",role:"switch"},zo={class:"check"},Ko={key:0,class:"icon"};function Ro(s,t){return a(),u("button",Go,[h("span",zo,[s.$slots.default?(a(),u("span",Ko,[c(s.$slots,"default",{},void 0,!0)])):f("",!0)])])}const Wo=$(jo,[["render",Ro],["__scopeId","data-v-4a1c76db"]]),Oe=s=>(B("data-v-b79b56d4"),s=s(),H(),s),qo=Oe(()=>h("span",{class:"vpi-sun sun"},null,-1)),Jo=Oe(()=>h("span",{class:"vpi-moon moon"},null,-1)),Yo=_({__name:"VPSwitchAppearance",setup(s){const{isDark:t,theme:e}=L(),o=J("toggle-appearance",()=>{t.value=!t.value}),n=g(()=>t.value?e.value.lightModeSwitchTitle||"Switch to light theme":e.value.darkModeSwitchTitle||"Switch to dark theme");return(i,l)=>(a(),y(Wo,{title:n.value,class:"VPSwitchAppearance","aria-checked":r(t),onClick:r(o)},{default:p(()=>[qo,Jo]),_:1},8,["title","aria-checked","onClick"]))}}),$e=$(Yo,[["__scopeId","data-v-b79b56d4"]]),Xo={key:0,class:"VPNavBarAppearance"},Qo=_({__name:"VPNavBarAppearance",setup(s){const{site:t}=L();return(e,o)=>r(t).appearance&&r(t).appearance!=="force-dark"?(a(),u("div",Xo,[b($e)])):f("",!0)}}),Zo=$(Qo,[["__scopeId","data-v-ead91a81"]]),ge=w();let Ue=!1,ie=0;function xo(s){const t=w(!1);if(q){!Ue&&en(),ie++;const e=G(ge,o=>{var n,i,l;o===s.el.value||(n=s.el.value)!=null&&n.contains(o)?(t.value=!0,(i=s.onFocus)==null||i.call(s)):(t.value=!1,(l=s.onBlur)==null||l.call(s))});fe(()=>{e(),ie--,ie||tn()})}return st(t)}function en(){document.addEventListener("focusin",je),Ue=!0,ge.value=document.activeElement}function tn(){document.removeEventListener("focusin",je)}function je(){ge.value=document.activeElement}const sn={class:"VPMenuLink"},on=_({__name:"VPMenuLink",props:{item:{}},setup(s){const{page:t}=L();return(e,o)=>(a(),u("div",sn,[b(F,{class:N({active:r(z)(r(t).relativePath,e.item.activeMatch||e.item.link,!!e.item.activeMatch)}),href:e.item.link,target:e.item.target,rel:e.item.rel},{default:p(()=>[D(T(e.item.text),1)]),_:1},8,["class","href","target","rel"])]))}}),ne=$(on,[["__scopeId","data-v-8b74d055"]]),nn={class:"VPMenuGroup"},an={key:0,class:"title"},rn=_({__name:"VPMenuGroup",props:{text:{},items:{}},setup(s){return(t,e)=>(a(),u("div",nn,[t.text?(a(),u("p",an,T(t.text),1)):f("",!0),(a(!0),u(M,null,E(t.items,o=>(a(),u(M,null,["link"in o?(a(),y(ne,{key:0,item:o},null,8,["item"])):f("",!0)],64))),256))]))}}),ln=$(rn,[["__scopeId","data-v-48c802d0"]]),cn={class:"VPMenu"},un={key:0,class:"items"},dn=_({__name:"VPMenu",props:{items:{}},setup(s){return(t,e)=>(a(),u("div",cn,[t.items?(a(),u("div",un,[(a(!0),u(M,null,E(t.items,o=>(a(),u(M,{key:o.text},["link"in o?(a(),y(ne,{key:0,item:o},null,8,["item"])):(a(),y(ln,{key:1,text:o.text,items:o.items},null,8,["text","items"]))],64))),128))])):f("",!0),c(t.$slots,"default",{},void 0,!0)]))}}),vn=$(dn,[["__scopeId","data-v-97491713"]]),pn=s=>(B("data-v-e5380155"),s=s(),H(),s),hn=["aria-expanded","aria-label"],fn={key:0,class:"text"},_n=["innerHTML"],mn=pn(()=>h("span",{class:"vpi-chevron-down text-icon"},null,-1)),bn={key:1,class:"vpi-more-horizontal icon"},kn={class:"menu"},$n=_({__name:"VPFlyout",props:{icon:{},button:{},label:{},items:{}},setup(s){const t=w(!1),e=w();xo({el:e,onBlur:o});function o(){t.value=!1}return(n,i)=>(a(),u("div",{class:"VPFlyout",ref_key:"el",ref:e,onMouseenter:i[1]||(i[1]=l=>t.value=!0),onMouseleave:i[2]||(i[2]=l=>t.value=!1)},[h("button",{type:"button",class:"button","aria-haspopup":"true","aria-expanded":t.value,"aria-label":n.label,onClick:i[0]||(i[0]=l=>t.value=!t.value)},[n.button||n.icon?(a(),u("span",fn,[n.icon?(a(),u("span",{key:0,class:N([n.icon,"option-icon"])},null,2)):f("",!0),n.button?(a(),u("span",{key:1,innerHTML:n.button},null,8,_n)):f("",!0),mn])):(a(),u("span",bn))],8,hn),h("div",kn,[b(vn,{items:n.items},{default:p(()=>[c(n.$slots,"default",{},void 0,!0)]),_:3},8,["items"])])],544))}}),ye=$($n,[["__scopeId","data-v-e5380155"]]),gn=["href","aria-label","innerHTML"],yn=_({__name:"VPSocialLink",props:{icon:{},link:{},ariaLabel:{}},setup(s){const t=s,e=g(()=>typeof t.icon=="object"?t.icon.svg:``);return(o,n)=>(a(),u("a",{class:"VPSocialLink no-icon",href:o.link,"aria-label":o.ariaLabel??(typeof o.icon=="string"?o.icon:""),target:"_blank",rel:"noopener",innerHTML:e.value},null,8,gn))}}),Pn=$(yn,[["__scopeId","data-v-717b8b75"]]),Sn={class:"VPSocialLinks"},Vn=_({__name:"VPSocialLinks",props:{links:{}},setup(s){return(t,e)=>(a(),u("div",Sn,[(a(!0),u(M,null,E(t.links,({link:o,icon:n,ariaLabel:i})=>(a(),y(Pn,{key:o,icon:n,link:o,ariaLabel:i},null,8,["icon","link","ariaLabel"]))),128))]))}}),Pe=$(Vn,[["__scopeId","data-v-ee7a9424"]]),Ln={key:0,class:"group translations"},Tn={class:"trans-title"},wn={key:1,class:"group"},In={class:"item appearance"},Nn={class:"label"},Mn={class:"appearance-action"},An={key:2,class:"group"},Cn={class:"item social-links"},Bn=_({__name:"VPNavBarExtra",setup(s){const{site:t,theme:e}=L(),{localeLinks:o,currentLang:n}=X({correspondingLink:!0}),i=g(()=>o.value.length&&n.value.label||t.value.appearance||e.value.socialLinks);return(l,v)=>i.value?(a(),y(ye,{key:0,class:"VPNavBarExtra",label:"extra navigation"},{default:p(()=>[r(o).length&&r(n).label?(a(),u("div",Ln,[h("p",Tn,T(r(n).label),1),(a(!0),u(M,null,E(r(o),d=>(a(),y(ne,{key:d.link,item:d},null,8,["item"]))),128))])):f("",!0),r(t).appearance&&r(t).appearance!=="force-dark"?(a(),u("div",wn,[h("div",In,[h("p",Nn,T(r(e).darkModeSwitchLabel||"Appearance"),1),h("div",Mn,[b($e)])])])):f("",!0),r(e).socialLinks?(a(),u("div",An,[h("div",Cn,[b(Pe,{class:"social-links-list",links:r(e).socialLinks},null,8,["links"])])])):f("",!0)]),_:1})):f("",!0)}}),Hn=$(Bn,[["__scopeId","data-v-9b536d0b"]]),En=s=>(B("data-v-5dea55bf"),s=s(),H(),s),Dn=["aria-expanded"],Fn=En(()=>h("span",{class:"container"},[h("span",{class:"top"}),h("span",{class:"middle"}),h("span",{class:"bottom"})],-1)),On=[Fn],Un=_({__name:"VPNavBarHamburger",props:{active:{type:Boolean}},emits:["click"],setup(s){return(t,e)=>(a(),u("button",{type:"button",class:N(["VPNavBarHamburger",{active:t.active}]),"aria-label":"mobile navigation","aria-expanded":t.active,"aria-controls":"VPNavScreen",onClick:e[0]||(e[0]=o=>t.$emit("click"))},On,10,Dn))}}),jn=$(Un,[["__scopeId","data-v-5dea55bf"]]),Gn=["innerHTML"],zn=_({__name:"VPNavBarMenuLink",props:{item:{}},setup(s){const{page:t}=L();return(e,o)=>(a(),y(F,{class:N({VPNavBarMenuLink:!0,active:r(z)(r(t).relativePath,e.item.activeMatch||e.item.link,!!e.item.activeMatch)}),href:e.item.link,target:e.item.target,rel:e.item.rel,tabindex:"0"},{default:p(()=>[h("span",{innerHTML:e.item.text},null,8,Gn)]),_:1},8,["class","href","target","rel"]))}}),Kn=$(zn,[["__scopeId","data-v-2781b5e7"]]),Rn=_({__name:"VPNavBarMenuGroup",props:{item:{}},setup(s){const t=s,{page:e}=L(),o=i=>"link"in i?z(e.value.relativePath,i.link,!!t.item.activeMatch):i.items.some(o),n=g(()=>o(t.item));return(i,l)=>(a(),y(ye,{class:N({VPNavBarMenuGroup:!0,active:r(z)(r(e).relativePath,i.item.activeMatch,!!i.item.activeMatch)||n.value}),button:i.item.text,items:i.item.items},null,8,["class","button","items"]))}}),Wn=s=>(B("data-v-492ea56d"),s=s(),H(),s),qn={key:0,"aria-labelledby":"main-nav-aria-label",class:"VPNavBarMenu"},Jn=Wn(()=>h("span",{id:"main-nav-aria-label",class:"visually-hidden"},"Main Navigation",-1)),Yn=_({__name:"VPNavBarMenu",setup(s){const{theme:t}=L();return(e,o)=>r(t).nav?(a(),u("nav",qn,[Jn,(a(!0),u(M,null,E(r(t).nav,n=>(a(),u(M,{key:n.text},["link"in n?(a(),y(Kn,{key:0,item:n},null,8,["item"])):(a(),y(Rn,{key:1,item:n},null,8,["item"]))],64))),128))])):f("",!0)}}),Xn=$(Yn,[["__scopeId","data-v-492ea56d"]]);function Qn(s){const{localeIndex:t,theme:e}=L();function o(n){var A,C,I;const i=n.split("."),l=(A=e.value.search)==null?void 0:A.options,v=l&&typeof l=="object",d=v&&((I=(C=l.locales)==null?void 0:C[t.value])==null?void 0:I.translations)||null,m=v&&l.translations||null;let P=d,k=m,V=s;const S=i.pop();for(const Q of i){let U=null;const R=V==null?void 0:V[Q];R&&(U=V=R);const ae=k==null?void 0:k[Q];ae&&(U=k=ae);const re=P==null?void 0:P[Q];re&&(U=P=re),R||(V=U),ae||(k=U),re||(P=U)}return(P==null?void 0:P[S])??(k==null?void 0:k[S])??(V==null?void 0:V[S])??""}return o}const Zn=["aria-label"],xn={class:"DocSearch-Button-Container"},ea=h("span",{class:"vp-icon DocSearch-Search-Icon"},null,-1),ta={class:"DocSearch-Button-Placeholder"},sa=h("span",{class:"DocSearch-Button-Keys"},[h("kbd",{class:"DocSearch-Button-Key"}),h("kbd",{class:"DocSearch-Button-Key"},"K")],-1),Se=_({__name:"VPNavBarSearchButton",setup(s){const e=Qn({button:{buttonText:"Search",buttonAriaLabel:"Search"}});return(o,n)=>(a(),u("button",{type:"button",class:"DocSearch DocSearch-Button","aria-label":r(e)("button.buttonAriaLabel")},[h("span",xn,[ea,h("span",ta,T(r(e)("button.buttonText")),1)]),sa],8,Zn))}}),oa={class:"VPNavBarSearch"},na={id:"local-search"},aa={key:1,id:"docsearch"},ra=_({__name:"VPNavBarSearch",setup(s){const t=ot(()=>nt(()=>import("./VPLocalSearchBox.CJhDNAGX.js"),__vite__mapDeps([0,1]))),e=()=>null,{theme:o}=L(),n=w(!1),i=w(!1);j(()=>{});function l(){n.value||(n.value=!0,setTimeout(v,16))}function v(){const k=new Event("keydown");k.key="k",k.metaKey=!0,window.dispatchEvent(k),setTimeout(()=>{document.querySelector(".DocSearch-Modal")||v()},16)}function d(k){const V=k.target,S=V.tagName;return V.isContentEditable||S==="INPUT"||S==="SELECT"||S==="TEXTAREA"}const m=w(!1);ce("k",k=>{(k.ctrlKey||k.metaKey)&&(k.preventDefault(),m.value=!0)}),ce("/",k=>{d(k)||(k.preventDefault(),m.value=!0)});const P="local";return(k,V)=>{var S;return a(),u("div",oa,[r(P)==="local"?(a(),u(M,{key:0},[m.value?(a(),y(r(t),{key:0,onClose:V[0]||(V[0]=A=>m.value=!1)})):f("",!0),h("div",na,[b(Se,{onClick:V[1]||(V[1]=A=>m.value=!0)})])],64)):r(P)==="algolia"?(a(),u(M,{key:1},[n.value?(a(),y(r(e),{key:0,algolia:((S=r(o).search)==null?void 0:S.options)??r(o).algolia,onVnodeBeforeMount:V[2]||(V[2]=A=>i.value=!0)},null,8,["algolia"])):f("",!0),i.value?f("",!0):(a(),u("div",aa,[b(Se,{onClick:l})]))],64)):f("",!0)])}}}),ia=_({__name:"VPNavBarSocialLinks",setup(s){const{theme:t}=L();return(e,o)=>r(t).socialLinks?(a(),y(Pe,{key:0,class:"VPNavBarSocialLinks",links:r(t).socialLinks},null,8,["links"])):f("",!0)}}),la=$(ia,[["__scopeId","data-v-164c457f"]]),ca=["href","rel","target"],ua={key:1},da={key:2},va=_({__name:"VPNavBarTitle",setup(s){const{site:t,theme:e}=L(),{hasSidebar:o}=O(),{currentLang:n}=X(),i=g(()=>{var d;return typeof e.value.logoLink=="string"?e.value.logoLink:(d=e.value.logoLink)==null?void 0:d.link}),l=g(()=>{var d;return typeof e.value.logoLink=="string"||(d=e.value.logoLink)==null?void 0:d.rel}),v=g(()=>{var d;return typeof e.value.logoLink=="string"||(d=e.value.logoLink)==null?void 0:d.target});return(d,m)=>(a(),u("div",{class:N(["VPNavBarTitle",{"has-sidebar":r(o)}])},[h("a",{class:"title",href:i.value??r(me)(r(n).link),rel:l.value,target:v.value},[c(d.$slots,"nav-bar-title-before",{},void 0,!0),r(e).logo?(a(),y(ee,{key:0,class:"logo",image:r(e).logo},null,8,["image"])):f("",!0),r(e).siteTitle?(a(),u("span",ua,T(r(e).siteTitle),1)):r(e).siteTitle===void 0?(a(),u("span",da,T(r(t).title),1)):f("",!0),c(d.$slots,"nav-bar-title-after",{},void 0,!0)],8,ca)],2))}}),pa=$(va,[["__scopeId","data-v-28a961f9"]]),ha={class:"items"},fa={class:"title"},_a=_({__name:"VPNavBarTranslations",setup(s){const{theme:t}=L(),{localeLinks:e,currentLang:o}=X({correspondingLink:!0});return(n,i)=>r(e).length&&r(o).label?(a(),y(ye,{key:0,class:"VPNavBarTranslations",icon:"vpi-languages",label:r(t).langMenuLabel||"Change language"},{default:p(()=>[h("div",ha,[h("p",fa,T(r(o).label),1),(a(!0),u(M,null,E(r(e),l=>(a(),y(ne,{key:l.link,item:l},null,8,["item"]))),128))])]),_:1},8,["label"])):f("",!0)}}),ma=$(_a,[["__scopeId","data-v-c80d9ad0"]]),ba=s=>(B("data-v-b9c8b02d"),s=s(),H(),s),ka={class:"wrapper"},$a={class:"container"},ga={class:"title"},ya={class:"content"},Pa={class:"content-body"},Sa=ba(()=>h("div",{class:"divider"},[h("div",{class:"divider-line"})],-1)),Va=_({__name:"VPNavBar",props:{isScreenOpen:{type:Boolean}},emits:["toggle-screen"],setup(s){const{y:t}=Ae(),{hasSidebar:e}=O(),{hasLocalNav:o}=Fe(),{frontmatter:n}=L(),i=w({});return Te(()=>{i.value={"has-sidebar":e.value,"has-local-nav":o.value,top:n.value.layout==="home"&&t.value===0}}),(l,v)=>(a(),u("div",{class:N(["VPNavBar",i.value])},[h("div",ka,[h("div",$a,[h("div",ga,[b(pa,null,{"nav-bar-title-before":p(()=>[c(l.$slots,"nav-bar-title-before",{},void 0,!0)]),"nav-bar-title-after":p(()=>[c(l.$slots,"nav-bar-title-after",{},void 0,!0)]),_:3})]),h("div",ya,[h("div",Pa,[c(l.$slots,"nav-bar-content-before",{},void 0,!0),b(ra,{class:"search"}),b(Xn,{class:"menu"}),b(ma,{class:"translations"}),b(Zo,{class:"appearance"}),b(la,{class:"social-links"}),b(Hn,{class:"extra"}),c(l.$slots,"nav-bar-content-after",{},void 0,!0),b(jn,{class:"hamburger",active:l.isScreenOpen,onClick:v[0]||(v[0]=d=>l.$emit("toggle-screen"))},null,8,["active"])])])])]),Sa],2))}}),La=$(Va,[["__scopeId","data-v-b9c8b02d"]]),Ta={key:0,class:"VPNavScreenAppearance"},wa={class:"text"},Ia=_({__name:"VPNavScreenAppearance",setup(s){const{site:t,theme:e}=L();return(o,n)=>r(t).appearance&&r(t).appearance!=="force-dark"?(a(),u("div",Ta,[h("p",wa,T(r(e).darkModeSwitchLabel||"Appearance"),1),b($e)])):f("",!0)}}),Na=$(Ia,[["__scopeId","data-v-2b89f08b"]]),Ma=_({__name:"VPNavScreenMenuLink",props:{item:{}},setup(s){const t=J("close-screen");return(e,o)=>(a(),y(F,{class:"VPNavScreenMenuLink",href:e.item.link,target:e.item.target,rel:e.item.rel,onClick:r(t)},{default:p(()=>[D(T(e.item.text),1)]),_:1},8,["href","target","rel","onClick"]))}}),Aa=$(Ma,[["__scopeId","data-v-d45ba3e8"]]),Ca=_({__name:"VPNavScreenMenuGroupLink",props:{item:{}},setup(s){const t=J("close-screen");return(e,o)=>(a(),y(F,{class:"VPNavScreenMenuGroupLink",href:e.item.link,target:e.item.target,rel:e.item.rel,onClick:r(t)},{default:p(()=>[D(T(e.item.text),1)]),_:1},8,["href","target","rel","onClick"]))}}),Ge=$(Ca,[["__scopeId","data-v-7179dbb7"]]),Ba={class:"VPNavScreenMenuGroupSection"},Ha={key:0,class:"title"},Ea=_({__name:"VPNavScreenMenuGroupSection",props:{text:{},items:{}},setup(s){return(t,e)=>(a(),u("div",Ba,[t.text?(a(),u("p",Ha,T(t.text),1)):f("",!0),(a(!0),u(M,null,E(t.items,o=>(a(),y(Ge,{key:o.text,item:o},null,8,["item"]))),128))]))}}),Da=$(Ea,[["__scopeId","data-v-4b8941ac"]]),Fa=s=>(B("data-v-c9df2649"),s=s(),H(),s),Oa=["aria-controls","aria-expanded"],Ua=["innerHTML"],ja=Fa(()=>h("span",{class:"vpi-plus button-icon"},null,-1)),Ga=["id"],za={key:1,class:"group"},Ka=_({__name:"VPNavScreenMenuGroup",props:{text:{},items:{}},setup(s){const t=s,e=w(!1),o=g(()=>`NavScreenGroup-${t.text.replace(" ","-").toLowerCase()}`);function n(){e.value=!e.value}return(i,l)=>(a(),u("div",{class:N(["VPNavScreenMenuGroup",{open:e.value}])},[h("button",{class:"button","aria-controls":o.value,"aria-expanded":e.value,onClick:n},[h("span",{class:"button-text",innerHTML:i.text},null,8,Ua),ja],8,Oa),h("div",{id:o.value,class:"items"},[(a(!0),u(M,null,E(i.items,v=>(a(),u(M,{key:v.text},["link"in v?(a(),u("div",{key:v.text,class:"item"},[b(Ge,{item:v},null,8,["item"])])):(a(),u("div",za,[b(Da,{text:v.text,items:v.items},null,8,["text","items"])]))],64))),128))],8,Ga)],2))}}),Ra=$(Ka,[["__scopeId","data-v-c9df2649"]]),Wa={key:0,class:"VPNavScreenMenu"},qa=_({__name:"VPNavScreenMenu",setup(s){const{theme:t}=L();return(e,o)=>r(t).nav?(a(),u("nav",Wa,[(a(!0),u(M,null,E(r(t).nav,n=>(a(),u(M,{key:n.text},["link"in n?(a(),y(Aa,{key:0,item:n},null,8,["item"])):(a(),y(Ra,{key:1,text:n.text||"",items:n.items},null,8,["text","items"]))],64))),128))])):f("",!0)}}),Ja=_({__name:"VPNavScreenSocialLinks",setup(s){const{theme:t}=L();return(e,o)=>r(t).socialLinks?(a(),y(Pe,{key:0,class:"VPNavScreenSocialLinks",links:r(t).socialLinks},null,8,["links"])):f("",!0)}}),ze=s=>(B("data-v-362991c2"),s=s(),H(),s),Ya=ze(()=>h("span",{class:"vpi-languages icon lang"},null,-1)),Xa=ze(()=>h("span",{class:"vpi-chevron-down icon chevron"},null,-1)),Qa={class:"list"},Za=_({__name:"VPNavScreenTranslations",setup(s){const{localeLinks:t,currentLang:e}=X({correspondingLink:!0}),o=w(!1);function n(){o.value=!o.value}return(i,l)=>r(t).length&&r(e).label?(a(),u("div",{key:0,class:N(["VPNavScreenTranslations",{open:o.value}])},[h("button",{class:"title",onClick:n},[Ya,D(" "+T(r(e).label)+" ",1),Xa]),h("ul",Qa,[(a(!0),u(M,null,E(r(t),v=>(a(),u("li",{key:v.link,class:"item"},[b(F,{class:"link",href:v.link},{default:p(()=>[D(T(v.text),1)]),_:2},1032,["href"])]))),128))])],2)):f("",!0)}}),xa=$(Za,[["__scopeId","data-v-362991c2"]]),er={class:"container"},tr=_({__name:"VPNavScreen",props:{open:{type:Boolean}},setup(s){const t=w(null),e=Ce(q?document.body:null);return(o,n)=>(a(),y(pe,{name:"fade",onEnter:n[0]||(n[0]=i=>e.value=!0),onAfterLeave:n[1]||(n[1]=i=>e.value=!1)},{default:p(()=>[o.open?(a(),u("div",{key:0,class:"VPNavScreen",ref_key:"screen",ref:t,id:"VPNavScreen"},[h("div",er,[c(o.$slots,"nav-screen-content-before",{},void 0,!0),b(qa,{class:"menu"}),b(xa,{class:"translations"}),b(Na,{class:"appearance"}),b(Ja,{class:"social-links"}),c(o.$slots,"nav-screen-content-after",{},void 0,!0)])],512)):f("",!0)]),_:3}))}}),sr=$(tr,[["__scopeId","data-v-382f42e9"]]),or={key:0,class:"VPNav"},nr=_({__name:"VPNav",setup(s){const{isScreenOpen:t,closeScreen:e,toggleScreen:o}=Uo(),{frontmatter:n}=L(),i=g(()=>n.value.navbar!==!1);return _e("close-screen",e),te(()=>{q&&document.documentElement.classList.toggle("hide-nav",!i.value)}),(l,v)=>i.value?(a(),u("header",or,[b(La,{"is-screen-open":r(t),onToggleScreen:r(o)},{"nav-bar-title-before":p(()=>[c(l.$slots,"nav-bar-title-before",{},void 0,!0)]),"nav-bar-title-after":p(()=>[c(l.$slots,"nav-bar-title-after",{},void 0,!0)]),"nav-bar-content-before":p(()=>[c(l.$slots,"nav-bar-content-before",{},void 0,!0)]),"nav-bar-content-after":p(()=>[c(l.$slots,"nav-bar-content-after",{},void 0,!0)]),_:3},8,["is-screen-open","onToggleScreen"]),b(sr,{open:r(t)},{"nav-screen-content-before":p(()=>[c(l.$slots,"nav-screen-content-before",{},void 0,!0)]),"nav-screen-content-after":p(()=>[c(l.$slots,"nav-screen-content-after",{},void 0,!0)]),_:3},8,["open"])])):f("",!0)}}),ar=$(nr,[["__scopeId","data-v-f1e365da"]]),Ke=s=>(B("data-v-f24171a4"),s=s(),H(),s),rr=["role","tabindex"],ir=Ke(()=>h("div",{class:"indicator"},null,-1)),lr=Ke(()=>h("span",{class:"vpi-chevron-right caret-icon"},null,-1)),cr=[lr],ur={key:1,class:"items"},dr=_({__name:"VPSidebarItem",props:{item:{},depth:{}},setup(s){const t=s,{collapsed:e,collapsible:o,isLink:n,isActiveLink:i,hasActiveLink:l,hasChildren:v,toggle:d}=Nt(g(()=>t.item)),m=g(()=>v.value?"section":"div"),P=g(()=>n.value?"a":"div"),k=g(()=>v.value?t.depth+2===7?"p":`h${t.depth+2}`:"p"),V=g(()=>n.value?void 0:"button"),S=g(()=>[[`level-${t.depth}`],{collapsible:o.value},{collapsed:e.value},{"is-link":n.value},{"is-active":i.value},{"has-active":l.value}]);function A(I){"key"in I&&I.key!=="Enter"||!t.item.link&&d()}function C(){t.item.link&&d()}return(I,Q)=>{const U=K("VPSidebarItem",!0);return a(),y(W(m.value),{class:N(["VPSidebarItem",S.value])},{default:p(()=>[I.item.text?(a(),u("div",Z({key:0,class:"item",role:V.value},rt(I.item.items?{click:A,keydown:A}:{},!0),{tabindex:I.item.items&&0}),[ir,I.item.link?(a(),y(F,{key:0,tag:P.value,class:"link",href:I.item.link,rel:I.item.rel,target:I.item.target},{default:p(()=>[(a(),y(W(k.value),{class:"text",innerHTML:I.item.text},null,8,["innerHTML"]))]),_:1},8,["tag","href","rel","target"])):(a(),y(W(k.value),{key:1,class:"text",innerHTML:I.item.text},null,8,["innerHTML"])),I.item.collapsed!=null?(a(),u("div",{key:2,class:"caret",role:"button","aria-label":"toggle section",onClick:C,onKeydown:at(C,["enter"]),tabindex:"0"},cr,32)):f("",!0)],16,rr)):f("",!0),I.item.items&&I.item.items.length?(a(),u("div",ur,[I.depth<5?(a(!0),u(M,{key:0},E(I.item.items,R=>(a(),y(U,{key:R.text,item:R,depth:I.depth+1},null,8,["item","depth"]))),128)):f("",!0)])):f("",!0)]),_:1},8,["class"])}}}),vr=$(dr,[["__scopeId","data-v-f24171a4"]]),Re=s=>(B("data-v-ec846e01"),s=s(),H(),s),pr=Re(()=>h("div",{class:"curtain"},null,-1)),hr={class:"nav",id:"VPSidebarNav","aria-labelledby":"sidebar-aria-label",tabindex:"-1"},fr=Re(()=>h("span",{class:"visually-hidden",id:"sidebar-aria-label"}," Sidebar Navigation ",-1)),_r=_({__name:"VPSidebar",props:{open:{type:Boolean}},setup(s){const{sidebarGroups:t,hasSidebar:e}=O(),o=s,n=w(null),i=Ce(q?document.body:null);return G([o,n],()=>{var l;o.open?(i.value=!0,(l=n.value)==null||l.focus()):i.value=!1},{immediate:!0,flush:"post"}),(l,v)=>r(e)?(a(),u("aside",{key:0,class:N(["VPSidebar",{open:l.open}]),ref_key:"navEl",ref:n,onClick:v[0]||(v[0]=it(()=>{},["stop"]))},[pr,h("nav",hr,[fr,c(l.$slots,"sidebar-nav-before",{},void 0,!0),(a(!0),u(M,null,E(r(t),d=>(a(),u("div",{key:d.text,class:"group"},[b(vr,{item:d,depth:0},null,8,["item"])]))),128)),c(l.$slots,"sidebar-nav-after",{},void 0,!0)])],2)):f("",!0)}}),mr=$(_r,[["__scopeId","data-v-ec846e01"]]),br=_({__name:"VPSkipLink",setup(s){const t=oe(),e=w();G(()=>t.path,()=>e.value.focus());function o({target:n}){const i=document.getElementById(decodeURIComponent(n.hash).slice(1));if(i){const l=()=>{i.removeAttribute("tabindex"),i.removeEventListener("blur",l)};i.setAttribute("tabindex","-1"),i.addEventListener("blur",l),i.focus(),window.scrollTo(0,0)}}return(n,i)=>(a(),u(M,null,[h("span",{ref_key:"backToTop",ref:e,tabindex:"-1"},null,512),h("a",{href:"#VPContent",class:"VPSkipLink visually-hidden",onClick:o}," Skip to content ")],64))}}),kr=$(br,[["__scopeId","data-v-c3508ec8"]]),$r=_({__name:"Layout",setup(s){const{isOpen:t,open:e,close:o}=O(),n=oe();G(()=>n.path,o),It(t,o);const{frontmatter:i}=L(),l=Be(),v=g(()=>!!l["home-hero-image"]);return _e("hero-image-slot-exists",v),(d,m)=>{const P=K("Content");return r(i).layout!==!1?(a(),u("div",{key:0,class:N(["Layout",r(i).pageClass])},[c(d.$slots,"layout-top",{},void 0,!0),b(kr),b(ht,{class:"backdrop",show:r(t),onClick:r(o)},null,8,["show","onClick"]),b(ar,null,{"nav-bar-title-before":p(()=>[c(d.$slots,"nav-bar-title-before",{},void 0,!0)]),"nav-bar-title-after":p(()=>[c(d.$slots,"nav-bar-title-after",{},void 0,!0)]),"nav-bar-content-before":p(()=>[c(d.$slots,"nav-bar-content-before",{},void 0,!0)]),"nav-bar-content-after":p(()=>[c(d.$slots,"nav-bar-content-after",{},void 0,!0)]),"nav-screen-content-before":p(()=>[c(d.$slots,"nav-screen-content-before",{},void 0,!0)]),"nav-screen-content-after":p(()=>[c(d.$slots,"nav-screen-content-after",{},void 0,!0)]),_:3}),b(Oo,{open:r(t),onOpenMenu:r(e)},null,8,["open","onOpenMenu"]),b(mr,{open:r(t)},{"sidebar-nav-before":p(()=>[c(d.$slots,"sidebar-nav-before",{},void 0,!0)]),"sidebar-nav-after":p(()=>[c(d.$slots,"sidebar-nav-after",{},void 0,!0)]),_:3},8,["open"]),b(go,null,{"page-top":p(()=>[c(d.$slots,"page-top",{},void 0,!0)]),"page-bottom":p(()=>[c(d.$slots,"page-bottom",{},void 0,!0)]),"not-found":p(()=>[c(d.$slots,"not-found",{},void 0,!0)]),"home-hero-before":p(()=>[c(d.$slots,"home-hero-before",{},void 0,!0)]),"home-hero-info-before":p(()=>[c(d.$slots,"home-hero-info-before",{},void 0,!0)]),"home-hero-info":p(()=>[c(d.$slots,"home-hero-info",{},void 0,!0)]),"home-hero-info-after":p(()=>[c(d.$slots,"home-hero-info-after",{},void 0,!0)]),"home-hero-actions-after":p(()=>[c(d.$slots,"home-hero-actions-after",{},void 0,!0)]),"home-hero-image":p(()=>[c(d.$slots,"home-hero-image",{},void 0,!0)]),"home-hero-after":p(()=>[c(d.$slots,"home-hero-after",{},void 0,!0)]),"home-features-before":p(()=>[c(d.$slots,"home-features-before",{},void 0,!0)]),"home-features-after":p(()=>[c(d.$slots,"home-features-after",{},void 0,!0)]),"doc-footer-before":p(()=>[c(d.$slots,"doc-footer-before",{},void 0,!0)]),"doc-before":p(()=>[c(d.$slots,"doc-before",{},void 0,!0)]),"doc-after":p(()=>[c(d.$slots,"doc-after",{},void 0,!0)]),"doc-top":p(()=>[c(d.$slots,"doc-top",{},void 0,!0)]),"doc-bottom":p(()=>[c(d.$slots,"doc-bottom",{},void 0,!0)]),"aside-top":p(()=>[c(d.$slots,"aside-top",{},void 0,!0)]),"aside-bottom":p(()=>[c(d.$slots,"aside-bottom",{},void 0,!0)]),"aside-outline-before":p(()=>[c(d.$slots,"aside-outline-before",{},void 0,!0)]),"aside-outline-after":p(()=>[c(d.$slots,"aside-outline-after",{},void 0,!0)]),"aside-ads-before":p(()=>[c(d.$slots,"aside-ads-before",{},void 0,!0)]),"aside-ads-after":p(()=>[c(d.$slots,"aside-ads-after",{},void 0,!0)]),_:3}),b(Lo),c(d.$slots,"layout-bottom",{},void 0,!0)],2)):(a(),y(P,{key:1}))}}}),gr=$($r,[["__scopeId","data-v-a9a9e638"]]),Ve={Layout:gr,enhanceApp:({app:s})=>{s.component("Badge",dt)}},yr=s=>{if(typeof document>"u")return{stabilizeScrollPosition:n=>async(...i)=>n(...i)};const t=document.documentElement;return{stabilizeScrollPosition:o=>async(...n)=>{const i=o(...n),l=s.value;if(!l)return i;const v=l.offsetTop-t.scrollTop;return await Me(),t.scrollTop=l.offsetTop-v,i}}},We="vitepress:tabSharedState",Y=typeof localStorage<"u"?localStorage:null,qe="vitepress:tabsSharedState",Pr=()=>{const s=Y==null?void 0:Y.getItem(qe);if(s)try{return JSON.parse(s)}catch{}return{}},Sr=s=>{Y&&Y.setItem(qe,JSON.stringify(s))},Vr=s=>{const t=lt({});G(()=>t.content,(e,o)=>{e&&o&&Sr(e)},{deep:!0}),s.provide(We,t)},Lr=(s,t)=>{const e=J(We);if(!e)throw new Error("[vitepress-plugin-tabs] TabsSharedState should be injected");j(()=>{e.content||(e.content=Pr())});const o=w(),n=g({get(){var d;const l=t.value,v=s.value;if(l){const m=(d=e.content)==null?void 0:d[l];if(m&&v.includes(m))return m}else{const m=o.value;if(m)return m}return v[0]},set(l){const v=t.value;v?e.content&&(e.content[v]=l):o.value=l}});return{selected:n,select:l=>{n.value=l}}};let Le=0;const Tr=()=>(Le++,""+Le);function wr(){const s=Be();return g(()=>{var o;const e=(o=s.default)==null?void 0:o.call(s);return e?e.filter(n=>typeof n.type=="object"&&"__name"in n.type&&n.type.__name==="PluginTabsTab"&&n.props).map(n=>{var i;return(i=n.props)==null?void 0:i.label}):[]})}const Je="vitepress:tabSingleState",Ir=s=>{_e(Je,s)},Nr=()=>{const s=J(Je);if(!s)throw new Error("[vitepress-plugin-tabs] TabsSingleState should be injected");return s},Mr={class:"plugin-tabs"},Ar=["id","aria-selected","aria-controls","tabindex","onClick"],Cr=_({__name:"PluginTabs",props:{sharedStateKey:{}},setup(s){const t=s,e=wr(),{selected:o,select:n}=Lr(e,ct(t,"sharedStateKey")),i=w(),{stabilizeScrollPosition:l}=yr(i),v=l(n),d=w([]),m=k=>{var A;const V=e.value.indexOf(o.value);let S;k.key==="ArrowLeft"?S=V>=1?V-1:e.value.length-1:k.key==="ArrowRight"&&(S=V(a(),u("div",Mr,[h("div",{ref_key:"tablist",ref:i,class:"plugin-tabs--tab-list",role:"tablist",onKeydown:m},[(a(!0),u(M,null,E(r(e),S=>(a(),u("button",{id:`tab-${S}-${r(P)}`,ref_for:!0,ref_key:"buttonRefs",ref:d,key:S,role:"tab",class:"plugin-tabs--tab","aria-selected":S===r(o),"aria-controls":`panel-${S}-${r(P)}`,tabindex:S===r(o)?0:-1,onClick:()=>r(v)(S)},T(S),9,Ar))),128))],544),c(k.$slots,"default")]))}}),Br=["id","aria-labelledby"],Hr=_({__name:"PluginTabsTab",props:{label:{}},setup(s){const{uid:t,selected:e}=Nr();return(o,n)=>r(e)===o.label?(a(),u("div",{key:0,id:`panel-${o.label}-${r(t)}`,class:"plugin-tabs--content",role:"tabpanel",tabindex:"0","aria-labelledby":`tab-${o.label}-${r(t)}`},[c(o.$slots,"default",{},void 0,!0)],8,Br)):f("",!0)}}),Er=$(Hr,[["__scopeId","data-v-9b0d03d2"]]),Dr=s=>{Vr(s),s.component("PluginTabs",Cr),s.component("PluginTabsTab",Er)},Or={extends:Ve,Layout(){return ut(Ve.Layout,null,{})},enhanceApp({app:s,router:t,siteData:e}){Dr(s)}};export{Or as R,Qn as c,L as u}; diff --git a/dev/assets/constraints_comparison_constraints.md.Y4X9jl2E.js b/dev/assets/constraints_comparison_constraints.md.C8bTAbHg.js similarity index 99% rename from dev/assets/constraints_comparison_constraints.md.Y4X9jl2E.js rename to dev/assets/constraints_comparison_constraints.md.C8bTAbHg.js index 6fbbcfb..e3b42a1 100644 --- a/dev/assets/constraints_comparison_constraints.md.Y4X9jl2E.js +++ b/dev/assets/constraints_comparison_constraints.md.C8bTAbHg.js @@ -1,4 +1,4 @@ -import{_ as s,c as i,o as a,a7 as n}from"./chunks/framework.RTxADYK2.js";const y=JSON.parse('{"title":"Constraints.jl: Streamlining Constraint Definition and Integration in Julia","description":"","frontmatter":{},"headers":[],"relativePath":"constraints/comparison_constraints.md","filePath":"constraints/comparison_constraints.md","lastUpdated":null}'),h={name:"constraints/comparison_constraints.md"},t=n(`

Constraints.jl: Streamlining Constraint Definition and Integration in Julia

Comparison-based Constraints

# Constraints.xcsp_all_differentFunction.
julia
xcsp_all_different(list::Vector{Int})

Return true if all the values of list are different, false otherwise.

Arguments

  • list::Vector{Int}: list of values to check.

Variants

  • :all_different: Global constraint ensuring that all the values of x are all different.
julia
concept(:all_different, x; vals)
+import{_ as s,c as i,o as a,a7 as n}from"./chunks/framework.aA95Gx5L.js";const y=JSON.parse('{"title":"Constraints.jl: Streamlining Constraint Definition and Integration in Julia","description":"","frontmatter":{},"headers":[],"relativePath":"constraints/comparison_constraints.md","filePath":"constraints/comparison_constraints.md","lastUpdated":null}'),h={name:"constraints/comparison_constraints.md"},t=n(`

Constraints.jl: Streamlining Constraint Definition and Integration in Julia

Comparison-based Constraints

# Constraints.xcsp_all_differentFunction.
julia
xcsp_all_different(list::Vector{Int})

Return true if all the values of list are different, false otherwise.

Arguments

  • list::Vector{Int}: list of values to check.

Variants

  • :all_different: Global constraint ensuring that all the values of x are all different.
julia
concept(:all_different, x; vals)
 concept(:all_different)(x; vals)

Examples

julia
c = concept(:all_different)
 
 c([1, 2, 3, 4])
diff --git a/dev/assets/constraints_comparison_constraints.md.Y4X9jl2E.lean.js b/dev/assets/constraints_comparison_constraints.md.C8bTAbHg.lean.js
similarity index 76%
rename from dev/assets/constraints_comparison_constraints.md.Y4X9jl2E.lean.js
rename to dev/assets/constraints_comparison_constraints.md.C8bTAbHg.lean.js
index 809b746..cf7b997 100644
--- a/dev/assets/constraints_comparison_constraints.md.Y4X9jl2E.lean.js
+++ b/dev/assets/constraints_comparison_constraints.md.C8bTAbHg.lean.js
@@ -1 +1 @@
-import{_ as s,c as i,o as a,a7 as n}from"./chunks/framework.RTxADYK2.js";const y=JSON.parse('{"title":"Constraints.jl: Streamlining Constraint Definition and Integration in Julia","description":"","frontmatter":{},"headers":[],"relativePath":"constraints/comparison_constraints.md","filePath":"constraints/comparison_constraints.md","lastUpdated":null}'),h={name:"constraints/comparison_constraints.md"},t=n("",8),l=[t];function k(p,e,r,E,d,g){return a(),i("div",null,l)}const c=s(h,[["render",k]]);export{y as __pageData,c as default};
+import{_ as s,c as i,o as a,a7 as n}from"./chunks/framework.aA95Gx5L.js";const y=JSON.parse('{"title":"Constraints.jl: Streamlining Constraint Definition and Integration in Julia","description":"","frontmatter":{},"headers":[],"relativePath":"constraints/comparison_constraints.md","filePath":"constraints/comparison_constraints.md","lastUpdated":null}'),h={name:"constraints/comparison_constraints.md"},t=n("",8),l=[t];function k(p,e,r,E,d,g){return a(),i("div",null,l)}const c=s(h,[["render",k]]);export{y as __pageData,c as default};
diff --git a/dev/assets/constraints_connection_constraints.md.CweAgQcL.js b/dev/assets/constraints_connection_constraints.md.BVUChQGg.js
similarity index 99%
rename from dev/assets/constraints_connection_constraints.md.CweAgQcL.js
rename to dev/assets/constraints_connection_constraints.md.BVUChQGg.js
index 31db22a..0e1a1f3 100644
--- a/dev/assets/constraints_connection_constraints.md.CweAgQcL.js
+++ b/dev/assets/constraints_connection_constraints.md.BVUChQGg.js
@@ -1,4 +1,4 @@
-import{_ as s,c as i,o as a,a7 as n}from"./chunks/framework.RTxADYK2.js";const c=JSON.parse('{"title":"Constraints.jl: Streamlining Constraint Definition and Integration in Julia","description":"","frontmatter":{},"headers":[],"relativePath":"constraints/connection_constraints.md","filePath":"constraints/connection_constraints.md","lastUpdated":null}'),t={name:"constraints/connection_constraints.md"},h=n(`

Constraints.jl: Streamlining Constraint Definition and Integration in Julia

Connection Constraints

# Constraints.xcsp_maximumFunction.
julia
xcsp_maximum(; list, condition)

Return true if the maximum constraint is satisfied, false otherwise. The maximum constraint is a global constraint used in constraint programming that specifies that a certain condition should hold for the maximum value in a list of variables.

Arguments

  • list::Union{AbstractVector, Tuple}: list of values to check.

  • condition::Tuple: condition to check.

Variants

  • :maximum: The maximum constraint is a global constraint used in constraint programming that specifies that a certain condition should hold for the maximum value in a list of variables.
julia
concept(:maximum, x; op, val)
+import{_ as s,c as i,o as a,a7 as n}from"./chunks/framework.aA95Gx5L.js";const c=JSON.parse('{"title":"Constraints.jl: Streamlining Constraint Definition and Integration in Julia","description":"","frontmatter":{},"headers":[],"relativePath":"constraints/connection_constraints.md","filePath":"constraints/connection_constraints.md","lastUpdated":null}'),t={name:"constraints/connection_constraints.md"},h=n(`

Constraints.jl: Streamlining Constraint Definition and Integration in Julia

Connection Constraints

# Constraints.xcsp_maximumFunction.
julia
xcsp_maximum(; list, condition)

Return true if the maximum constraint is satisfied, false otherwise. The maximum constraint is a global constraint used in constraint programming that specifies that a certain condition should hold for the maximum value in a list of variables.

Arguments

  • list::Union{AbstractVector, Tuple}: list of values to check.

  • condition::Tuple: condition to check.

Variants

  • :maximum: The maximum constraint is a global constraint used in constraint programming that specifies that a certain condition should hold for the maximum value in a list of variables.
julia
concept(:maximum, x; op, val)
 concept(:maximum)(x; op, val)

Examples

julia
c = concept(:maximum)
 
 c([1, 2, 3, 4, 5]; op = ==, val = 5)
diff --git a/dev/assets/constraints_connection_constraints.md.CweAgQcL.lean.js b/dev/assets/constraints_connection_constraints.md.BVUChQGg.lean.js
similarity index 76%
rename from dev/assets/constraints_connection_constraints.md.CweAgQcL.lean.js
rename to dev/assets/constraints_connection_constraints.md.BVUChQGg.lean.js
index 35687bc..3774d91 100644
--- a/dev/assets/constraints_connection_constraints.md.CweAgQcL.lean.js
+++ b/dev/assets/constraints_connection_constraints.md.BVUChQGg.lean.js
@@ -1 +1 @@
-import{_ as s,c as i,o as a,a7 as n}from"./chunks/framework.RTxADYK2.js";const c=JSON.parse('{"title":"Constraints.jl: Streamlining Constraint Definition and Integration in Julia","description":"","frontmatter":{},"headers":[],"relativePath":"constraints/connection_constraints.md","filePath":"constraints/connection_constraints.md","lastUpdated":null}'),t={name:"constraints/connection_constraints.md"},h=n("",10),l=[h];function k(p,e,r,E,d,o){return a(),i("div",null,l)}const y=s(t,[["render",k]]);export{c as __pageData,y as default};
+import{_ as s,c as i,o as a,a7 as n}from"./chunks/framework.aA95Gx5L.js";const c=JSON.parse('{"title":"Constraints.jl: Streamlining Constraint Definition and Integration in Julia","description":"","frontmatter":{},"headers":[],"relativePath":"constraints/connection_constraints.md","filePath":"constraints/connection_constraints.md","lastUpdated":null}'),t={name:"constraints/connection_constraints.md"},h=n("",10),l=[h];function k(p,e,r,E,d,o){return a(),i("div",null,l)}const y=s(t,[["render",k]]);export{c as __pageData,y as default};
diff --git a/dev/assets/constraints_constraint_commons.md.HfqPhyQg.js b/dev/assets/constraints_constraint_commons.md.CgCZE1cQ.js
similarity index 99%
rename from dev/assets/constraints_constraint_commons.md.HfqPhyQg.js
rename to dev/assets/constraints_constraint_commons.md.CgCZE1cQ.js
index b6d65cb..01ee67d 100644
--- a/dev/assets/constraints_constraint_commons.md.HfqPhyQg.js
+++ b/dev/assets/constraints_constraint_commons.md.CgCZE1cQ.js
@@ -1,4 +1,4 @@
-import{_ as s,c as a,o as i,a7 as t}from"./chunks/framework.RTxADYK2.js";const u=JSON.parse('{"title":"ConstraintCommons.jl","description":"","frontmatter":{},"headers":[],"relativePath":"constraints/constraint_commons.md","filePath":"constraints/constraint_commons.md","lastUpdated":null}'),e={name:"constraints/constraint_commons.md"},n=t(`

ConstraintCommons.jl

ConstraintCommons.jl is an essential package within the Julia Constraints ecosystem designed to facilitate the development and interoperability of constraint programming solutions in Julia. It serves as a foundational layer that provides shared structures, abstract types, functions, and generic methods utilized by both basic feature packages and learning-oriented packages.

Key Features and Functionalities

  • Shared Structures and Abstract Types: ConstraintCommons.jl offers a collection of shared data structures and abstract types. This standardization is crucial for ensuring that packages such as ConstraintDomains, Constraints, ConstraintLearning, etc. can seamlessly interact and integrate, fostering a cohesive development environment.

  • Generic Functions and Methods: The package includes a set of generic functions and methods that are common across the JuliaConstraints ecosystem. This approach minimizes duplication and facilitates the extension of functionalities across different packages without requiring redundant code.

  • Interface for Learning and Application Transition: One of the pivotal roles of ConstraintCommons.jl is to provide a shared interface that bridges the gap between learning packages (e.g., CompositionalNetworks, QUBOConstraints, and ConstraintTranslator) and basic functionality packages. This interface ensures that once a learning process is complete, the resulting models or solutions can be directly utilized with the basic packages, eliminating the need for users to manage multiple package dependencies actively.

  • Simplifying the User Experience: By ensuring that learning outcomes are compatible with the fundamental packages for constraint programming, ConstraintCommons.jl simplifies the workflow for end-users. Once the learning aspect of problem modeling is completed, users can proceed with their projects relying solely on the basic packages, streamlining the development process and enhancing usability.

  • Impact on the JuliaConstraints Ecosystem: ConstraintCommons.jl plays a critical role in the JuliaConstraints ecosystem by providing the foundational elements that enable package interoperability and efficient development workflows. Its design emphasizes ease of use and seamless transition between the learning phase of constraint programming and practical application, thereby enhancing productivity and reducing the complexity of developing constraint-based solutions.

Parameters

This section of the package list or extract parameters based on the XCSP3-core specifications. Note that, for the forseeable future, the default constraints specification will follow the XCSP3 format.

# ConstraintCommons.USUAL_CONSTRAINT_PARAMETERSConstant.
julia
const USUAL_CONSTRAINT_PARAMETERS

List of usual constraints parameters (based on XCSP3-core constraints).

julia
const USUAL_CONSTRAINT_PARAMETERS = [
+import{_ as s,c as a,o as i,a7 as t}from"./chunks/framework.aA95Gx5L.js";const u=JSON.parse('{"title":"ConstraintCommons.jl","description":"","frontmatter":{},"headers":[],"relativePath":"constraints/constraint_commons.md","filePath":"constraints/constraint_commons.md","lastUpdated":null}'),e={name:"constraints/constraint_commons.md"},n=t(`

ConstraintCommons.jl

ConstraintCommons.jl is an essential package within the Julia Constraints ecosystem designed to facilitate the development and interoperability of constraint programming solutions in Julia. It serves as a foundational layer that provides shared structures, abstract types, functions, and generic methods utilized by both basic feature packages and learning-oriented packages.

Key Features and Functionalities

  • Shared Structures and Abstract Types: ConstraintCommons.jl offers a collection of shared data structures and abstract types. This standardization is crucial for ensuring that packages such as ConstraintDomains, Constraints, ConstraintLearning, etc. can seamlessly interact and integrate, fostering a cohesive development environment.

  • Generic Functions and Methods: The package includes a set of generic functions and methods that are common across the JuliaConstraints ecosystem. This approach minimizes duplication and facilitates the extension of functionalities across different packages without requiring redundant code.

  • Interface for Learning and Application Transition: One of the pivotal roles of ConstraintCommons.jl is to provide a shared interface that bridges the gap between learning packages (e.g., CompositionalNetworks, QUBOConstraints, and ConstraintTranslator) and basic functionality packages. This interface ensures that once a learning process is complete, the resulting models or solutions can be directly utilized with the basic packages, eliminating the need for users to manage multiple package dependencies actively.

  • Simplifying the User Experience: By ensuring that learning outcomes are compatible with the fundamental packages for constraint programming, ConstraintCommons.jl simplifies the workflow for end-users. Once the learning aspect of problem modeling is completed, users can proceed with their projects relying solely on the basic packages, streamlining the development process and enhancing usability.

  • Impact on the JuliaConstraints Ecosystem: ConstraintCommons.jl plays a critical role in the JuliaConstraints ecosystem by providing the foundational elements that enable package interoperability and efficient development workflows. Its design emphasizes ease of use and seamless transition between the learning phase of constraint programming and practical application, thereby enhancing productivity and reducing the complexity of developing constraint-based solutions.

Parameters

This section of the package list or extract parameters based on the XCSP3-core specifications. Note that, for the forseeable future, the default constraints specification will follow the XCSP3 format.

# ConstraintCommons.USUAL_CONSTRAINT_PARAMETERSConstant.
julia
const USUAL_CONSTRAINT_PARAMETERS

List of usual constraints parameters (based on XCSP3-core constraints).

julia
const USUAL_CONSTRAINT_PARAMETERS = [
     :bool,
     :dim,
     :id,
diff --git a/dev/assets/constraints_constraint_commons.md.HfqPhyQg.lean.js b/dev/assets/constraints_constraint_commons.md.CgCZE1cQ.lean.js
similarity index 72%
rename from dev/assets/constraints_constraint_commons.md.HfqPhyQg.lean.js
rename to dev/assets/constraints_constraint_commons.md.CgCZE1cQ.lean.js
index 63f7c62..afb573c 100644
--- a/dev/assets/constraints_constraint_commons.md.HfqPhyQg.lean.js
+++ b/dev/assets/constraints_constraint_commons.md.CgCZE1cQ.lean.js
@@ -1 +1 @@
-import{_ as s,c as a,o as i,a7 as t}from"./chunks/framework.RTxADYK2.js";const u=JSON.parse('{"title":"ConstraintCommons.jl","description":"","frontmatter":{},"headers":[],"relativePath":"constraints/constraint_commons.md","filePath":"constraints/constraint_commons.md","lastUpdated":null}'),e={name:"constraints/constraint_commons.md"},n=t("",51),o=[n];function r(l,c,p,h,d,m){return i(),a("div",null,o)}const g=s(e,[["render",r]]);export{u as __pageData,g as default};
+import{_ as s,c as a,o as i,a7 as t}from"./chunks/framework.aA95Gx5L.js";const u=JSON.parse('{"title":"ConstraintCommons.jl","description":"","frontmatter":{},"headers":[],"relativePath":"constraints/constraint_commons.md","filePath":"constraints/constraint_commons.md","lastUpdated":null}'),e={name:"constraints/constraint_commons.md"},n=t("",51),o=[n];function r(l,c,p,h,d,m){return i(),a("div",null,o)}const g=s(e,[["render",r]]);export{u as __pageData,g as default};
diff --git a/dev/assets/constraints_constraint_domains.md.gmc3DB78.js b/dev/assets/constraints_constraint_domains.md.CJq87aJj.js
similarity index 99%
rename from dev/assets/constraints_constraint_domains.md.gmc3DB78.js
rename to dev/assets/constraints_constraint_domains.md.CJq87aJj.js
index 7d86014..370800b 100644
--- a/dev/assets/constraints_constraint_domains.md.gmc3DB78.js
+++ b/dev/assets/constraints_constraint_domains.md.CJq87aJj.js
@@ -1,4 +1,4 @@
-import{_ as s,c as i,o as a,a7 as t}from"./chunks/framework.RTxADYK2.js";const u=JSON.parse('{"title":"ConstraintDomains.jl: Defining and Exploring Variable Domains within JuliaConstraints","description":"","frontmatter":{},"headers":[],"relativePath":"constraints/constraint_domains.md","filePath":"constraints/constraint_domains.md","lastUpdated":null}'),n={name:"constraints/constraint_domains.md"},e=t(`

ConstraintDomains.jl: Defining and Exploring Variable Domains within JuliaConstraints

ConstraintDomains.jl stands as a critical package within the Julia Constraints ecosystem, focusing on the definition and manipulation of variable domains that underpin the search spaces of constraint programming problems. This package provides the infrastructure necessary for specifying both discrete and continuous domains, thereby enabling a broad range of constraint programming applications.

Key Features and Functionalities

  • AbstractDomain Super Type: At the foundation of ConstraintDomains.jl is the AbstractDomain type, an abstract supertype for all domain types. Implementations of AbstractDomain must provide methods for checking membership (∈), generating random elements (rand), and determining the domain's size or range (length). These functionalities are essential for defining the behavior and properties of variable domains within constraint models.

  • Domain Types: The package distinguishes between various domain types to cater to different needs:

    • ContinuousDomain: A supertype for domains representing continuous ranges of real numbers.

    • DiscreteDomain: Serves as a supertype for domains defined by discrete sets or ranges of numbers.

    • EmptyDomain: Handles yet-to-be-defined domains, facilitating dynamic problem formulation.

    • Intervals and RangeDomain: Represent continuous intervals and discrete ranges, respectively, providing flexible domain specification options.

  • Dynamic Domain Manipulation: ConstraintDomains.jl supports dynamic changes to domains, allowing for the addition (add!) and deletion (delete!) of elements, crucial for problems where domain definitions evolve based on the search process or external inputs.

  • Exploration Settings and Methods: The package offers ExploreSettings to configure the exploration of search spaces, including parameters for complete searches, maximum samplings, and solution limits. This feature is pivotal for tailoring the search process to the problem's characteristics and the computational resources available.

  • Support for Advanced Modeling: Beyond basic domain definition and manipulation, ConstraintDomains.jl integrates with learning and parameter exploration tools. For instance, FakeAutomaton facilitates the generation of pseudo-automata for parameter exploration, while the package also provides functions for generating random parameters (generate_parameters), accessing domain internals (get_domain), and merging or intersecting domains (merge_domains, intersect_domains).

Empowering Constraint Programming in Julia

ConstraintDomains.jl embodies the versatility and power of the JuliaConstraints ecosystem, offering users a comprehensive toolkit for defining and exploring variable domains. By abstracting complex domain manipulations and providing a rich set of functionalities, ConstraintDomains.jl enhances the ease and efficiency of modeling constraint programming problems. Whether for educational purposes, research, or practical applications, this package lays the groundwork for advanced problem-solving strategies in the realm of constraint programming.

Commons

# ConstraintDomains.AbstractDomainType.
julia
AbstractDomain

An abstract super type for any domain type. A domain type D <: AbstractDomain must implement the following methods to properly interface AbstractDomain.

  • Base.∈(val, ::D)

  • Base.rand(::D)

  • Base.length(::D) that is the number of elements in a discrete domain, and the distance between bounds or similar for a continuous domain

Addtionally, if the domain is used in a dynamic context, it can extend

  • add!(::D, args)

  • delete!(::D, args)

where args depends on D's structure

source


# ConstraintDomains.EmptyDomainType.
julia
EmptyDomain

A struct to handle yet to be defined domains.

source


# ConstraintDomains.domainFunction.
julia
domain()

Construct an EmptyDomain.

source

julia
domain(a::Tuple{T, Bool}, b::Tuple{T, Bool}) where {T <: Real}
+import{_ as s,c as i,o as a,a7 as t}from"./chunks/framework.aA95Gx5L.js";const u=JSON.parse('{"title":"ConstraintDomains.jl: Defining and Exploring Variable Domains within JuliaConstraints","description":"","frontmatter":{},"headers":[],"relativePath":"constraints/constraint_domains.md","filePath":"constraints/constraint_domains.md","lastUpdated":null}'),n={name:"constraints/constraint_domains.md"},e=t(`

ConstraintDomains.jl: Defining and Exploring Variable Domains within JuliaConstraints

ConstraintDomains.jl stands as a critical package within the Julia Constraints ecosystem, focusing on the definition and manipulation of variable domains that underpin the search spaces of constraint programming problems. This package provides the infrastructure necessary for specifying both discrete and continuous domains, thereby enabling a broad range of constraint programming applications.

Key Features and Functionalities

  • AbstractDomain Super Type: At the foundation of ConstraintDomains.jl is the AbstractDomain type, an abstract supertype for all domain types. Implementations of AbstractDomain must provide methods for checking membership (∈), generating random elements (rand), and determining the domain's size or range (length). These functionalities are essential for defining the behavior and properties of variable domains within constraint models.

  • Domain Types: The package distinguishes between various domain types to cater to different needs:

    • ContinuousDomain: A supertype for domains representing continuous ranges of real numbers.

    • DiscreteDomain: Serves as a supertype for domains defined by discrete sets or ranges of numbers.

    • EmptyDomain: Handles yet-to-be-defined domains, facilitating dynamic problem formulation.

    • Intervals and RangeDomain: Represent continuous intervals and discrete ranges, respectively, providing flexible domain specification options.

  • Dynamic Domain Manipulation: ConstraintDomains.jl supports dynamic changes to domains, allowing for the addition (add!) and deletion (delete!) of elements, crucial for problems where domain definitions evolve based on the search process or external inputs.

  • Exploration Settings and Methods: The package offers ExploreSettings to configure the exploration of search spaces, including parameters for complete searches, maximum samplings, and solution limits. This feature is pivotal for tailoring the search process to the problem's characteristics and the computational resources available.

  • Support for Advanced Modeling: Beyond basic domain definition and manipulation, ConstraintDomains.jl integrates with learning and parameter exploration tools. For instance, FakeAutomaton facilitates the generation of pseudo-automata for parameter exploration, while the package also provides functions for generating random parameters (generate_parameters), accessing domain internals (get_domain), and merging or intersecting domains (merge_domains, intersect_domains).

Empowering Constraint Programming in Julia

ConstraintDomains.jl embodies the versatility and power of the JuliaConstraints ecosystem, offering users a comprehensive toolkit for defining and exploring variable domains. By abstracting complex domain manipulations and providing a rich set of functionalities, ConstraintDomains.jl enhances the ease and efficiency of modeling constraint programming problems. Whether for educational purposes, research, or practical applications, this package lays the groundwork for advanced problem-solving strategies in the realm of constraint programming.

Commons

# ConstraintDomains.AbstractDomainType.
julia
AbstractDomain

An abstract super type for any domain type. A domain type D <: AbstractDomain must implement the following methods to properly interface AbstractDomain.

  • Base.∈(val, ::D)

  • Base.rand(::D)

  • Base.length(::D) that is the number of elements in a discrete domain, and the distance between bounds or similar for a continuous domain

Addtionally, if the domain is used in a dynamic context, it can extend

  • add!(::D, args)

  • delete!(::D, args)

where args depends on D's structure

source


# ConstraintDomains.EmptyDomainType.
julia
EmptyDomain

A struct to handle yet to be defined domains.

source


# ConstraintDomains.domainFunction.
julia
domain()

Construct an EmptyDomain.

source

julia
domain(a::Tuple{T, Bool}, b::Tuple{T, Bool}) where {T <: Real}
 domain(intervals::Vector{Tuple{Tuple{T, Bool},Tuple{T, Bool}}}) where {T <: Real}

Construct a domain of continuous interval(s).

source

julia
domain(values)
 domain(range::R) where {T <: Real, R <: AbstractRange{T}}

Construct either a SetDomain or a \`RangeDomain\`\`.

julia
d1 = domain(1:5)
 d2 = domain([53.69, 89.2, 0.12])
diff --git a/dev/assets/constraints_constraint_domains.md.gmc3DB78.lean.js b/dev/assets/constraints_constraint_domains.md.CJq87aJj.lean.js
similarity index 76%
rename from dev/assets/constraints_constraint_domains.md.gmc3DB78.lean.js
rename to dev/assets/constraints_constraint_domains.md.CJq87aJj.lean.js
index ecaeba3..ea78b82 100644
--- a/dev/assets/constraints_constraint_domains.md.gmc3DB78.lean.js
+++ b/dev/assets/constraints_constraint_domains.md.CJq87aJj.lean.js
@@ -1 +1 @@
-import{_ as s,c as i,o as a,a7 as t}from"./chunks/framework.RTxADYK2.js";const u=JSON.parse('{"title":"ConstraintDomains.jl: Defining and Exploring Variable Domains within JuliaConstraints","description":"","frontmatter":{},"headers":[],"relativePath":"constraints/constraint_domains.md","filePath":"constraints/constraint_domains.md","lastUpdated":null}'),n={name:"constraints/constraint_domains.md"},e=t("",128),l=[e];function r(h,p,o,d,k,c){return a(),i("div",null,l)}const E=s(n,[["render",r]]);export{u as __pageData,E as default};
+import{_ as s,c as i,o as a,a7 as t}from"./chunks/framework.aA95Gx5L.js";const u=JSON.parse('{"title":"ConstraintDomains.jl: Defining and Exploring Variable Domains within JuliaConstraints","description":"","frontmatter":{},"headers":[],"relativePath":"constraints/constraint_domains.md","filePath":"constraints/constraint_domains.md","lastUpdated":null}'),n={name:"constraints/constraint_domains.md"},e=t("",128),l=[e];function r(h,p,o,d,k,c){return a(),i("div",null,l)}const E=s(n,[["render",r]]);export{u as __pageData,E as default};
diff --git a/dev/assets/constraints_constraint_models.md.lbbeQcb7.js b/dev/assets/constraints_constraint_models.md.DjPMcFlD.js
similarity index 99%
rename from dev/assets/constraints_constraint_models.md.lbbeQcb7.js
rename to dev/assets/constraints_constraint_models.md.DjPMcFlD.js
index ff8f8a5..8db65b7 100644
--- a/dev/assets/constraints_constraint_models.md.lbbeQcb7.js
+++ b/dev/assets/constraints_constraint_models.md.DjPMcFlD.js
@@ -1,4 +1,4 @@
-import{_ as n,c as e,m as s,a as i,a7 as a,o as t}from"./chunks/framework.RTxADYK2.js";const T=JSON.parse('{"title":"ConstraintModels.jl","description":"","frontmatter":{},"headers":[],"relativePath":"constraints/constraint_models.md","filePath":"constraints/constraint_models.md","lastUpdated":null}'),l={name:"constraints/constraint_models.md"},h=a(`

ConstraintModels.jl

Documentation for ConstraintModels.jl.

# ConstraintModels.SudokuInstanceType.
julia
mutable struct SudokuInstance{T <: Integer} <: AbstractMatrix{T}

A struct for SudokuInstances, which is a subtype of AbstractMatrix.

julia
SudokuInstance(A::AbstractMatrix{T})
+import{_ as n,c as e,m as s,a as i,a7 as a,o as t}from"./chunks/framework.aA95Gx5L.js";const T=JSON.parse('{"title":"ConstraintModels.jl","description":"","frontmatter":{},"headers":[],"relativePath":"constraints/constraint_models.md","filePath":"constraints/constraint_models.md","lastUpdated":null}'),l={name:"constraints/constraint_models.md"},h=a(`

ConstraintModels.jl

Documentation for ConstraintModels.jl.

# ConstraintModels.SudokuInstanceType.
julia
mutable struct SudokuInstance{T <: Integer} <: AbstractMatrix{T}

A struct for SudokuInstances, which is a subtype of AbstractMatrix.

julia
SudokuInstance(A::AbstractMatrix{T})
 SudokuInstance(::Type{T}, n::Int) # fill in blank sudoku of type T
 SudokuInstance(n::Int) # fill in blank sudoku of type Int
 SudokuInstance(::Type{T}) # fill in "standard" 9×9 sudoku of type T
diff --git a/dev/assets/constraints_constraint_models.md.lbbeQcb7.lean.js b/dev/assets/constraints_constraint_models.md.DjPMcFlD.lean.js
similarity index 96%
rename from dev/assets/constraints_constraint_models.md.lbbeQcb7.lean.js
rename to dev/assets/constraints_constraint_models.md.DjPMcFlD.lean.js
index 82bc460..f29765d 100644
--- a/dev/assets/constraints_constraint_models.md.lbbeQcb7.lean.js
+++ b/dev/assets/constraints_constraint_models.md.DjPMcFlD.lean.js
@@ -1 +1 @@
-import{_ as n,c as e,m as s,a as i,a7 as a,o as t}from"./chunks/framework.RTxADYK2.js";const T=JSON.parse('{"title":"ConstraintModels.jl","description":"","frontmatter":{},"headers":[],"relativePath":"constraints/constraint_models.md","filePath":"constraints/constraint_models.md","lastUpdated":null}'),l={name:"constraints/constraint_models.md"},h=a("",6),p={style:{"border-width":"1px","border-style":"solid","border-color":"black",padding:"1em","border-radius":"25px"}},r=s("a",{id:"Base.Multimedia.display-Tuple{Any, ConstraintModels.SudokuInstance}",href:"#Base.Multimedia.display-Tuple{Any, ConstraintModels.SudokuInstance}"},"#",-1),d=s("b",null,[s("u",null,"Base.Multimedia.display")],-1),o=s("i",null,"Method",-1),k=a("",1),c={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},u={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"5.481ex",height:"1.136ex",role:"img",focusable:"false",viewBox:"0 -491 2422.4 502","aria-hidden":"true"},g=a("",1),y=[g],C=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"n"),s("mo",null,"×"),s("mi",null,"n")])],-1),b=s("p",null,[s("a",{href:"https://github.com/JuliaConstraints/ConstraintModels.jl/blob/v0.1.9/src/sudoku.jl#L314-L320",target:"_blank",rel:"noreferrer"},"source")],-1),F=a("",33);function E(m,v,f,B,_,M){return t(),e("div",null,[h,s("div",p,[r,i(" "),d,i(" — "),o,i(". "),k,s("p",null,[i("Displays an "),s("mjx-container",c,[(t(),e("svg",u,y)),C]),i(" SudokuInstance.")]),b]),F])}const j=n(l,[["render",E]]);export{T as __pageData,j as default};
+import{_ as n,c as e,m as s,a as i,a7 as a,o as t}from"./chunks/framework.aA95Gx5L.js";const T=JSON.parse('{"title":"ConstraintModels.jl","description":"","frontmatter":{},"headers":[],"relativePath":"constraints/constraint_models.md","filePath":"constraints/constraint_models.md","lastUpdated":null}'),l={name:"constraints/constraint_models.md"},h=a("",6),p={style:{"border-width":"1px","border-style":"solid","border-color":"black",padding:"1em","border-radius":"25px"}},r=s("a",{id:"Base.Multimedia.display-Tuple{Any, ConstraintModels.SudokuInstance}",href:"#Base.Multimedia.display-Tuple{Any, ConstraintModels.SudokuInstance}"},"#",-1),d=s("b",null,[s("u",null,"Base.Multimedia.display")],-1),o=s("i",null,"Method",-1),k=a("",1),c={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},u={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"5.481ex",height:"1.136ex",role:"img",focusable:"false",viewBox:"0 -491 2422.4 502","aria-hidden":"true"},g=a("",1),y=[g],C=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"n"),s("mo",null,"×"),s("mi",null,"n")])],-1),b=s("p",null,[s("a",{href:"https://github.com/JuliaConstraints/ConstraintModels.jl/blob/v0.1.9/src/sudoku.jl#L314-L320",target:"_blank",rel:"noreferrer"},"source")],-1),F=a("",33);function E(m,v,f,B,_,M){return t(),e("div",null,[h,s("div",p,[r,i(" "),d,i(" — "),o,i(". "),k,s("p",null,[i("Displays an "),s("mjx-container",c,[(t(),e("svg",u,y)),C]),i(" SudokuInstance.")]),b]),F])}const j=n(l,[["render",E]]);export{T as __pageData,j as default};
diff --git a/dev/assets/constraints_constraints.md.DMd1BqG8.js b/dev/assets/constraints_constraints.md.bgO76M7m.js
similarity index 99%
rename from dev/assets/constraints_constraints.md.DMd1BqG8.js
rename to dev/assets/constraints_constraints.md.bgO76M7m.js
index f7b925a..cd617bd 100644
--- a/dev/assets/constraints_constraints.md.DMd1BqG8.js
+++ b/dev/assets/constraints_constraints.md.bgO76M7m.js
@@ -1,3 +1,3 @@
-import{_ as s,c as i,o as t,a7 as a}from"./chunks/framework.RTxADYK2.js";const u=JSON.parse('{"title":"Constraints.jl: Streamlining Constraint Definition and Integration in Julia","description":"","frontmatter":{},"headers":[],"relativePath":"constraints/constraints.md","filePath":"constraints/constraints.md","lastUpdated":null}'),n={name:"constraints/constraints.md"},e=a(`

Constraints.jl: Streamlining Constraint Definition and Integration in Julia

Constraints.jl is a pivotal package within the JuliaConstraints ecosystem, designed to facilitate the definition, manipulation, and application of constraints in constraint programming (CP). This package is central to handling both standard and complex constraints, making it an indispensable tool for developers and researchers working in CP.

Key Features and Functionalities

  • Integration of XCSP3-core Constraints: One of the standout features of Constraints.jl is its incorporation of the XCSP3-core constraints as usual constraints within Julia. This integration ensures that users can define and work with a wide range of standard constraints, following the specifications outlined in the XCSP3-core, directly in Julia. The use of USUAL_CONSTRAINTS dictionary allows for straightforward addition and manipulation of these constraints, enhancing the package's utility and flexibility.

  • Learning Package Integration: Constraints.jl goes beyond traditional constraint handling by offering the capability to include results from various learning packages within the JuliaConstraints organization. This feature allows for the enhancement of usual constraints and those from the Global Constraints Catalog with learned parameters and behaviors, significantly improving constraint applicability and performance in complex CP problems.

  • Constraint Definition and Symmetry Handling: The package provides a simple yet powerful syntax for defining new constraints (@usual) and managing their symmetries through the USUAL_SYMMETRIES dictionary. This approach simplifies the creation of new constraints and the optimization of constraint search spaces by avoiding redundant explorations.

  • Advanced Constraint Functionalities: At the core of Constraints.jl is the Constraint type, encapsulating the essential elements of a constraint, including its concept (a Boolean function determining satisfaction) and an error function (providing a preference measure over invalid assignments). These components are crucial for defining how constraints behave and are evaluated within a CP model.

  • Flexible Constraint Application: The package supports a range of methods for interacting with constraints, such as args, concept, error_f, params_length, symmetries, and xcsp_intension. These methods offer users the ability to examine constraint properties, apply constraints to variable assignments, and work with intensional constraints defined by predicates. Such flexibility is vital for tailoring constraint behavior to specific problems and contexts.

Enabling Advanced Modeling in Constraint Programming

Constraints.jl embodies the JuliaConstraints ecosystem's commitment to providing robust, flexible tools for constraint programming. By integrating standard constraints, facilitating the incorporation of learned behaviors, and offering comprehensive tools for constraint definition and application, Constraints.jl significantly enhances the modeling capabilities available to CP practitioners. Whether for educational purposes, research, or solving practical CP problems, Constraints.jl offers a sophisticated, user-friendly platform for working with constraints in Julia.

Basic tools

# Constraints.USUAL_SYMMETRIESConstant.
julia
USUAL_SYMMETRIES

A Dictionary that contains the function to apply for each symmetry to avoid searching a whole space.

source


# Constraints.ConstraintType.
julia
Constraint

Parametric stucture with the following fields.

  • concept: a Boolean function that, given an assignment x, outputs true if x satisfies the constraint, and false otherwise.

  • error: a positive function that works as preferences over invalid assignements. Return 0.0 if the constraint is satisfied, and a strictly positive real otherwise.

source


# Constraints.conceptFunction.
julia
concept(c::Constraint)

Return the concept (function) of constraint c. concept(c::Constraint, x...; param = nothing) Apply the concept of c to values x and optionally param.

source

julia
concept(s::Symbol, args...; kargs...)

Return the concept of the constraint s applied to args and kargs. This is a shortcut for concept(USUAL_CONSTRAINTS[s])(args...; kargs...).

Arguments

  • s::Symbol: the constraint name.

  • args...: the arguments to apply the concept to.

  • kargs...: the keyword arguments to apply the concept to.

Example

julia
concept(:all_different, [1, 2, 3])

source


# Constraints.error_fFunction.
julia
error_f(c::Constraint)

Return the error function of constraint c. error_f(c::Constraint, x; param = nothing) Apply the error function of c to values x and optionally param.

source


# Constraints.argsFunction.
julia
args(c::Constraint)

Return the expected length restriction of the arguments in a constraint c. The value nothing indicates that any strictly positive number of value is accepted.

source


# Constraints.params_lengthFunction.
julia
params_length(c::Constraint)

Return the expected length restriction of the arguments in a constraint c. The value nothing indicates that any strictly positive number of parameters is accepted.

source


# Constraints.symmetriesFunction.
julia
symmetries(c::Constraint)

Return the list of symmetries of c.

source


# Constraints.make_errorFunction.
julia
make_error(symb::Symbol)

Create a function that returns an error based on the predicate of the constraint identified by the symbol provided.

Arguments

  • symb::Symbol: The symbol used to determine the error function to be returned. The function first checks if a predicate with the prefix "icn_" exists in the Constraints module. If it does, it returns that function. If it doesn't, it checks for a predicate with the prefix "error_". If that exists, it returns that function. If neither exists, it returns a function that evaluates the predicate with the prefix "concept_" and returns the negation of its result cast to Float64.

Returns

  • Function: A function that takes in a variable x and an arbitrary number of parameters params. The function returns a Float64.

Examples

julia
e = make_error(:all_different)
+import{_ as s,c as i,o as t,a7 as a}from"./chunks/framework.aA95Gx5L.js";const u=JSON.parse('{"title":"Constraints.jl: Streamlining Constraint Definition and Integration in Julia","description":"","frontmatter":{},"headers":[],"relativePath":"constraints/constraints.md","filePath":"constraints/constraints.md","lastUpdated":null}'),n={name:"constraints/constraints.md"},e=a(`

Constraints.jl: Streamlining Constraint Definition and Integration in Julia

Constraints.jl is a pivotal package within the JuliaConstraints ecosystem, designed to facilitate the definition, manipulation, and application of constraints in constraint programming (CP). This package is central to handling both standard and complex constraints, making it an indispensable tool for developers and researchers working in CP.

Key Features and Functionalities

  • Integration of XCSP3-core Constraints: One of the standout features of Constraints.jl is its incorporation of the XCSP3-core constraints as usual constraints within Julia. This integration ensures that users can define and work with a wide range of standard constraints, following the specifications outlined in the XCSP3-core, directly in Julia. The use of USUAL_CONSTRAINTS dictionary allows for straightforward addition and manipulation of these constraints, enhancing the package's utility and flexibility.

  • Learning Package Integration: Constraints.jl goes beyond traditional constraint handling by offering the capability to include results from various learning packages within the JuliaConstraints organization. This feature allows for the enhancement of usual constraints and those from the Global Constraints Catalog with learned parameters and behaviors, significantly improving constraint applicability and performance in complex CP problems.

  • Constraint Definition and Symmetry Handling: The package provides a simple yet powerful syntax for defining new constraints (@usual) and managing their symmetries through the USUAL_SYMMETRIES dictionary. This approach simplifies the creation of new constraints and the optimization of constraint search spaces by avoiding redundant explorations.

  • Advanced Constraint Functionalities: At the core of Constraints.jl is the Constraint type, encapsulating the essential elements of a constraint, including its concept (a Boolean function determining satisfaction) and an error function (providing a preference measure over invalid assignments). These components are crucial for defining how constraints behave and are evaluated within a CP model.

  • Flexible Constraint Application: The package supports a range of methods for interacting with constraints, such as args, concept, error_f, params_length, symmetries, and xcsp_intension. These methods offer users the ability to examine constraint properties, apply constraints to variable assignments, and work with intensional constraints defined by predicates. Such flexibility is vital for tailoring constraint behavior to specific problems and contexts.

Enabling Advanced Modeling in Constraint Programming

Constraints.jl embodies the JuliaConstraints ecosystem's commitment to providing robust, flexible tools for constraint programming. By integrating standard constraints, facilitating the incorporation of learned behaviors, and offering comprehensive tools for constraint definition and application, Constraints.jl significantly enhances the modeling capabilities available to CP practitioners. Whether for educational purposes, research, or solving practical CP problems, Constraints.jl offers a sophisticated, user-friendly platform for working with constraints in Julia.

Basic tools

# Constraints.USUAL_SYMMETRIESConstant.
julia
USUAL_SYMMETRIES

A Dictionary that contains the function to apply for each symmetry to avoid searching a whole space.

source


# Constraints.ConstraintType.
julia
Constraint

Parametric stucture with the following fields.

  • concept: a Boolean function that, given an assignment x, outputs true if x satisfies the constraint, and false otherwise.

  • error: a positive function that works as preferences over invalid assignements. Return 0.0 if the constraint is satisfied, and a strictly positive real otherwise.

source


# Constraints.conceptFunction.
julia
concept(c::Constraint)

Return the concept (function) of constraint c. concept(c::Constraint, x...; param = nothing) Apply the concept of c to values x and optionally param.

source

julia
concept(s::Symbol, args...; kargs...)

Return the concept of the constraint s applied to args and kargs. This is a shortcut for concept(USUAL_CONSTRAINTS[s])(args...; kargs...).

Arguments

  • s::Symbol: the constraint name.

  • args...: the arguments to apply the concept to.

  • kargs...: the keyword arguments to apply the concept to.

Example

julia
concept(:all_different, [1, 2, 3])

source


# Constraints.error_fFunction.
julia
error_f(c::Constraint)

Return the error function of constraint c. error_f(c::Constraint, x; param = nothing) Apply the error function of c to values x and optionally param.

source


# Constraints.argsFunction.
julia
args(c::Constraint)

Return the expected length restriction of the arguments in a constraint c. The value nothing indicates that any strictly positive number of value is accepted.

source


# Constraints.params_lengthFunction.
julia
params_length(c::Constraint)

Return the expected length restriction of the arguments in a constraint c. The value nothing indicates that any strictly positive number of parameters is accepted.

source


# Constraints.symmetriesFunction.
julia
symmetries(c::Constraint)

Return the list of symmetries of c.

source


# Constraints.make_errorFunction.
julia
make_error(symb::Symbol)

Create a function that returns an error based on the predicate of the constraint identified by the symbol provided.

Arguments

  • symb::Symbol: The symbol used to determine the error function to be returned. The function first checks if a predicate with the prefix "icn_" exists in the Constraints module. If it does, it returns that function. If it doesn't, it checks for a predicate with the prefix "error_". If that exists, it returns that function. If neither exists, it returns a function that evaluates the predicate with the prefix "concept_" and returns the negation of its result cast to Float64.

Returns

  • Function: A function that takes in a variable x and an arbitrary number of parameters params. The function returns a Float64.

Examples

julia
e = make_error(:all_different)
 e([1, 2, 3]) # Returns 0.0
 e([1, 1, 3]) # Returns 1.0

source


# Constraints.shrink_conceptFunction.
julia
shrink_concept(s)

Simply delete the concept_ part of symbol or string starting with it. TODO: add a check with a warning if s starts with something different.

source


# Constraints.concept_vs_errorFunction.
julia
concept_vs_error(c, e, args...; kargs...)

Compare the results of a concept function and an error function for the same inputs. It is mainly used for testing purposes.

Arguments

  • c: The concept function.

  • e: The error function.

  • args...: Positional arguments to be passed to both the concept and error functions.

  • kargs...: Keyword arguments to be passed to both the concept and error functions.

Returns

  • Boolean: Returns true if the result of the concept function is not equal to whether the result of the error function is greater than 0.0. Otherwise, it returns false.

Examples

julia
concept_vs_error(all_different, make_error(:all_different), [1, 2, 3]) # Returns false

source


Usual constraints (based on and including XCSP3-core categories)

# Constraints.USUAL_CONSTRAINTSConstant.
julia
USUAL_CONSTRAINTS::Dict

Dictionary that contains all the usual constraints defined in Constraint.jl. It is based on XCSP3-core specifications available at https://arxiv.org/abs/2009.00514

Adding a new constraint is as simple as defining a new function with the same name as the constraint and using the @usual macro to define it. The macro will take care of adding the new constraint to the USUAL_CONSTRAINTS dictionary.

Example

julia
@usual concept_all_different(x; vals=nothing) = xcsp_all_different(list=x, except=vals)

source


# Constraints.describeFunction.
julia
describe(constraints::Dict{Symbol,Constraint}=USUAL_CONSTRAINTS; width=150)

Return a pretty table with the description of the constraints in constraints.

Arguments

  • constraints::Dict{Symbol,Constraint}: dictionary of constraints to describe. Default is USUAL_CONSTRAINTS.

  • width::Int: width of the table.

Example

julia
describe()

source


# ConstraintCommons.extract_parametersFunction.
julia
extract_parameters(m::Union{Method, Function}; parameters)

Extracts the intersection between the kargs of m and parameters (defaults to USUAL_CONSTRAINT_PARAMETERS).

source

julia
extract_parameters(s::Symbol, constraints_dict=USUAL_CONSTRAINTS; parameters=ConstraintCommons.USUAL_CONSTRAINT_PARAMETERS)

Return the parameters of the constraint s in constraints_dict.

Arguments

  • s::Symbol: the constraint name.

  • constraints_dict::Dict{Symbol,Constraint}: dictionary of constraints. Default is USUAL_CONSTRAINTS.

  • parameters::Vector{Symbol}: vector of parameters. Default is ConstraintCommons.USUAL_CONSTRAINT_PARAMETERS.

Example

julia
extract_parameters(:all_different)

source


# Constraints.@usualMacro.
julia
usual(ex::Expr)

This macro is used to define a new constraint or update an existing one in the USUAL_CONSTRAINTS dictionary. It takes an expression ex as input, which represents the definition of a constraint.

Here's a step-by-step explanation of what the macro does:

  1. It first extracts the symbol of the concept from the input expression. This symbol is expected to be the first argument of the first argument of the expression. For example, if the expression is @usual all_different(x; y=1), the symbol would be :all_different.

  2. It then calls the shrink_concept function on the symbol to get a simplified version of the concept symbol.

  3. It initializes a dictionary defaults to store whether each keyword argument of the concept has a default value or not.

  4. It checks if the expression has more than two arguments. If it does, it means that there are keyword arguments present. It then loops over these keyword arguments. If a keyword argument is a symbol, it means it doesn't have a default value, so it adds an entry to the defaults dictionary with the keyword argument as the key and false as the value. If a keyword argument is not a symbol, it means it has a default value, so it adds an entry to the defaults dictionary with the keyword argument as the key and true as the value.

  5. It calls the make_error function on the simplified concept symbol to generate an error function for the constraint.

  6. It evaluates the input expression to get the concept function.

  7. It checks if the USUAL_CONSTRAINTS dictionary already contains an entry for the simplified concept symbol. If it does, it adds the defaults dictionary to the parameters of the existing constraint. If it doesn't, it creates a new constraint with the concept function, a description, the error function, and the defaults dictionary as the parameters, and adds it to the USUAL_CONSTRAINTS dictionary.

This macro is used to make it easier to define and update constraints in a consistent and possibly automated way.

Arguments

  • ex::Expr: expression to parse.

Example

julia
@usual concept_all_different(x; vals=nothing) = xcsp_all_different(list=x, except=vals)

source


# Constraints.constraints_parametersFunction.
julia
constraints_parameters(C=USUAL_CONSTRAINTS)

Return a pretty table with the parameters of the constraints in C.

Arguments

  • C::Dict{Symbol,Constraint}: dictionary of constraints. Default is USUAL_CONSTRAINTS.

Example

julia
constraints_parameters()

source


# Constraints.constraints_descriptionsFunction.
julia
constraints_descriptions(C=USUAL_CONSTRAINTS)

Return a pretty table with the descriptions of the constraints in C.

Arguments

  • C::Dict{Symbol,Constraint}: dictionary of constraints. Default is USUAL_CONSTRAINTS.

Example

julia
constraints_descriptions()

source


# Constraints.conceptFunction.
julia
concept(c::Constraint)

Return the concept (function) of constraint c. concept(c::Constraint, x...; param = nothing) Apply the concept of c to values x and optionally param.

source

julia
concept(s::Symbol, args...; kargs...)

Return the concept of the constraint s applied to args and kargs. This is a shortcut for concept(USUAL_CONSTRAINTS[s])(args...; kargs...).

Arguments

  • s::Symbol: the constraint name.

  • args...: the arguments to apply the concept to.

  • kargs...: the keyword arguments to apply the concept to.

Example

julia
concept(:all_different, [1, 2, 3])

source


`,42),r=[e];function o(l,p,h,c,d,k){return t(),i("div",null,r)}const b=s(n,[["render",o]]);export{u as __pageData,b as default}; diff --git a/dev/assets/constraints_constraints.md.DMd1BqG8.lean.js b/dev/assets/constraints_constraints.md.bgO76M7m.lean.js similarity index 74% rename from dev/assets/constraints_constraints.md.DMd1BqG8.lean.js rename to dev/assets/constraints_constraints.md.bgO76M7m.lean.js index 3294a4d..61c2f9c 100644 --- a/dev/assets/constraints_constraints.md.DMd1BqG8.lean.js +++ b/dev/assets/constraints_constraints.md.bgO76M7m.lean.js @@ -1 +1 @@ -import{_ as s,c as i,o as t,a7 as a}from"./chunks/framework.RTxADYK2.js";const u=JSON.parse('{"title":"Constraints.jl: Streamlining Constraint Definition and Integration in Julia","description":"","frontmatter":{},"headers":[],"relativePath":"constraints/constraints.md","filePath":"constraints/constraints.md","lastUpdated":null}'),n={name:"constraints/constraints.md"},e=a("",42),r=[e];function o(l,p,h,c,d,k){return t(),i("div",null,r)}const b=s(n,[["render",o]]);export{u as __pageData,b as default}; +import{_ as s,c as i,o as t,a7 as a}from"./chunks/framework.aA95Gx5L.js";const u=JSON.parse('{"title":"Constraints.jl: Streamlining Constraint Definition and Integration in Julia","description":"","frontmatter":{},"headers":[],"relativePath":"constraints/constraints.md","filePath":"constraints/constraints.md","lastUpdated":null}'),n={name:"constraints/constraints.md"},e=a("",42),r=[e];function o(l,p,h,c,d,k){return t(),i("div",null,r)}const b=s(n,[["render",o]]);export{u as __pageData,b as default}; diff --git a/dev/assets/constraints_counting_summing_constraints.md.V8AYmo_9.js b/dev/assets/constraints_counting_summing_constraints.md.BT-OmEMD.js similarity index 99% rename from dev/assets/constraints_counting_summing_constraints.md.V8AYmo_9.js rename to dev/assets/constraints_counting_summing_constraints.md.BT-OmEMD.js index fa577c5..aa0afae 100644 --- a/dev/assets/constraints_counting_summing_constraints.md.V8AYmo_9.js +++ b/dev/assets/constraints_counting_summing_constraints.md.BT-OmEMD.js @@ -1,4 +1,4 @@ -import{_ as s,c as i,o as a,a7 as n}from"./chunks/framework.RTxADYK2.js";const y=JSON.parse('{"title":"Constraints.jl: Streamlining Constraint Definition and Integration in Julia","description":"","frontmatter":{},"headers":[],"relativePath":"constraints/counting_summing_constraints.md","filePath":"constraints/counting_summing_constraints.md","lastUpdated":null}'),h={name:"constraints/counting_summing_constraints.md"},t=n(`

Constraints.jl: Streamlining Constraint Definition and Integration in Julia

Counting and Summing Constraints

# Constraints.xcsp_sumFunction.
julia
xcsp_sum(list, coeffs, condition)

Return true if the sum of the variables in list satisfies the given condition, false otherwise.

Arguments

  • list::Vector{Int}: list of values to check.

  • coeffs::Vector{Int}: list of coefficients to use.

  • condition: condition to satisfy.

Variants

  • :sum: Global constraint ensuring that the sum of the variables in x satisfies a given condition.
julia
concept(:sum, x; op===, pair_vars=ones(x), val)
+import{_ as s,c as i,o as a,a7 as n}from"./chunks/framework.aA95Gx5L.js";const y=JSON.parse('{"title":"Constraints.jl: Streamlining Constraint Definition and Integration in Julia","description":"","frontmatter":{},"headers":[],"relativePath":"constraints/counting_summing_constraints.md","filePath":"constraints/counting_summing_constraints.md","lastUpdated":null}'),h={name:"constraints/counting_summing_constraints.md"},t=n(`

Constraints.jl: Streamlining Constraint Definition and Integration in Julia

Counting and Summing Constraints

# Constraints.xcsp_sumFunction.
julia
xcsp_sum(list, coeffs, condition)

Return true if the sum of the variables in list satisfies the given condition, false otherwise.

Arguments

  • list::Vector{Int}: list of values to check.

  • coeffs::Vector{Int}: list of coefficients to use.

  • condition: condition to satisfy.

Variants

  • :sum: Global constraint ensuring that the sum of the variables in x satisfies a given condition.
julia
concept(:sum, x; op===, pair_vars=ones(x), val)
 concept(:sum)(x; op===, pair_vars=ones(x), val)

Examples

julia
c = concept(:sum)
 
 c([1, 2, 3, 4, 5]; op===, val=15)
diff --git a/dev/assets/constraints_counting_summing_constraints.md.V8AYmo_9.lean.js b/dev/assets/constraints_counting_summing_constraints.md.BT-OmEMD.lean.js
similarity index 76%
rename from dev/assets/constraints_counting_summing_constraints.md.V8AYmo_9.lean.js
rename to dev/assets/constraints_counting_summing_constraints.md.BT-OmEMD.lean.js
index 9e3decc..f9b7043 100644
--- a/dev/assets/constraints_counting_summing_constraints.md.V8AYmo_9.lean.js
+++ b/dev/assets/constraints_counting_summing_constraints.md.BT-OmEMD.lean.js
@@ -1 +1 @@
-import{_ as s,c as i,o as a,a7 as n}from"./chunks/framework.RTxADYK2.js";const y=JSON.parse('{"title":"Constraints.jl: Streamlining Constraint Definition and Integration in Julia","description":"","frontmatter":{},"headers":[],"relativePath":"constraints/counting_summing_constraints.md","filePath":"constraints/counting_summing_constraints.md","lastUpdated":null}'),h={name:"constraints/counting_summing_constraints.md"},t=n("",10),k=[t];function l(p,e,E,r,d,g){return a(),i("div",null,k)}const C=s(h,[["render",l]]);export{y as __pageData,C as default};
+import{_ as s,c as i,o as a,a7 as n}from"./chunks/framework.aA95Gx5L.js";const y=JSON.parse('{"title":"Constraints.jl: Streamlining Constraint Definition and Integration in Julia","description":"","frontmatter":{},"headers":[],"relativePath":"constraints/counting_summing_constraints.md","filePath":"constraints/counting_summing_constraints.md","lastUpdated":null}'),h={name:"constraints/counting_summing_constraints.md"},t=n("",10),k=[t];function l(p,e,E,r,d,g){return a(),i("div",null,k)}const C=s(h,[["render",l]]);export{y as __pageData,C as default};
diff --git a/dev/assets/constraints_elementary_constraints.md.0uLE9TkI.js b/dev/assets/constraints_elementary_constraints.md.b9VNGoNL.js
similarity index 98%
rename from dev/assets/constraints_elementary_constraints.md.0uLE9TkI.js
rename to dev/assets/constraints_elementary_constraints.md.b9VNGoNL.js
index e43d3b8..c713898 100644
--- a/dev/assets/constraints_elementary_constraints.md.0uLE9TkI.js
+++ b/dev/assets/constraints_elementary_constraints.md.b9VNGoNL.js
@@ -1,4 +1,4 @@
-import{_ as i,c as s,o as a,a7 as t}from"./chunks/framework.RTxADYK2.js";const g=JSON.parse('{"title":"Constraints.jl: Streamlining Constraint Definition and Integration in Julia","description":"","frontmatter":{},"headers":[],"relativePath":"constraints/elementary_constraints.md","filePath":"constraints/elementary_constraints.md","lastUpdated":null}'),n={name:"constraints/elementary_constraints.md"},e=t(`

Constraints.jl: Streamlining Constraint Definition and Integration in Julia

Elementary Constraints

# Constraints.xcsp_instantiationFunction.
julia
xcsp_instantiation(; list, values)

Return true if the instantiation constraint is satisfied, false otherwise. The instantiation constraint is a global constraint used in constraint programming that ensures that a list of variables takes on a specific set of values in a specific order.

Arguments

  • list::AbstractVector: list of values to check.

  • values::AbstractVector: list of values to check against.

Variants

  • :instantiation: The instantiation constraint is a global constraint used in constraint programming that ensures that a list of variables takes on a specific set of values in a specific order.
julia
concept(:instantiation, x; pair_vars)
+import{_ as i,c as s,o as a,a7 as t}from"./chunks/framework.aA95Gx5L.js";const g=JSON.parse('{"title":"Constraints.jl: Streamlining Constraint Definition and Integration in Julia","description":"","frontmatter":{},"headers":[],"relativePath":"constraints/elementary_constraints.md","filePath":"constraints/elementary_constraints.md","lastUpdated":null}'),n={name:"constraints/elementary_constraints.md"},e=t(`

Constraints.jl: Streamlining Constraint Definition and Integration in Julia

Elementary Constraints

# Constraints.xcsp_instantiationFunction.
julia
xcsp_instantiation(; list, values)

Return true if the instantiation constraint is satisfied, false otherwise. The instantiation constraint is a global constraint used in constraint programming that ensures that a list of variables takes on a specific set of values in a specific order.

Arguments

  • list::AbstractVector: list of values to check.

  • values::AbstractVector: list of values to check against.

Variants

  • :instantiation: The instantiation constraint is a global constraint used in constraint programming that ensures that a list of variables takes on a specific set of values in a specific order.
julia
concept(:instantiation, x; pair_vars)
 concept(:instantiation)(x; pair_vars)

Examples

julia
c = concept(:instantiation)
 
 c([1, 2, 3, 4, 5]; pair_vars=[1, 2, 3, 4, 5])
diff --git a/dev/assets/constraints_elementary_constraints.md.0uLE9TkI.lean.js b/dev/assets/constraints_elementary_constraints.md.b9VNGoNL.lean.js
similarity index 76%
rename from dev/assets/constraints_elementary_constraints.md.0uLE9TkI.lean.js
rename to dev/assets/constraints_elementary_constraints.md.b9VNGoNL.lean.js
index 24fd90c..0ae1790 100644
--- a/dev/assets/constraints_elementary_constraints.md.0uLE9TkI.lean.js
+++ b/dev/assets/constraints_elementary_constraints.md.b9VNGoNL.lean.js
@@ -1 +1 @@
-import{_ as i,c as s,o as a,a7 as t}from"./chunks/framework.RTxADYK2.js";const g=JSON.parse('{"title":"Constraints.jl: Streamlining Constraint Definition and Integration in Julia","description":"","frontmatter":{},"headers":[],"relativePath":"constraints/elementary_constraints.md","filePath":"constraints/elementary_constraints.md","lastUpdated":null}'),n={name:"constraints/elementary_constraints.md"},e=t("",4),l=[e];function h(r,p,k,o,d,E){return a(),s("div",null,l)}const C=i(n,[["render",h]]);export{g as __pageData,C as default};
+import{_ as i,c as s,o as a,a7 as t}from"./chunks/framework.aA95Gx5L.js";const g=JSON.parse('{"title":"Constraints.jl: Streamlining Constraint Definition and Integration in Julia","description":"","frontmatter":{},"headers":[],"relativePath":"constraints/elementary_constraints.md","filePath":"constraints/elementary_constraints.md","lastUpdated":null}'),n={name:"constraints/elementary_constraints.md"},e=t("",4),l=[e];function h(r,p,k,o,d,E){return a(),s("div",null,l)}const C=i(n,[["render",h]]);export{g as __pageData,C as default};
diff --git a/dev/assets/constraints_generic_constraints.md.Dc4qBSwZ.js b/dev/assets/constraints_generic_constraints.md.COcQcDzW.js
similarity index 98%
rename from dev/assets/constraints_generic_constraints.md.Dc4qBSwZ.js
rename to dev/assets/constraints_generic_constraints.md.COcQcDzW.js
index 5b91ba3..65ff2a9 100644
--- a/dev/assets/constraints_generic_constraints.md.Dc4qBSwZ.js
+++ b/dev/assets/constraints_generic_constraints.md.COcQcDzW.js
@@ -1,4 +1,4 @@
-import{_ as e,c as a,m as s,a as i,a7 as n,o as t}from"./chunks/framework.RTxADYK2.js";const R=JSON.parse('{"title":"Generic Constraints","description":"","frontmatter":{},"headers":[],"relativePath":"constraints/generic_constraints.md","filePath":"constraints/generic_constraints.md","lastUpdated":null}'),l={name:"constraints/generic_constraints.md"},h=n('

Generic Constraints

In the XCSP³-core standard, generic constraints are categorized into two main types: intention and extension constraints.

Intention Constraints

',3),p={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},k={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.294ex",height:"1.025ex",role:"img",focusable:"false",viewBox:"0 -442 572 453","aria-hidden":"true"},r=s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1),d=[r],o=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"x")])],-1),c={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},E={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.464ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.109ex",height:"1.464ex",role:"img",focusable:"false",viewBox:"0 -442 490 647","aria-hidden":"true"},g=s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D466",d:"M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z",style:{"stroke-width":"3"}})])])],-1),y=[g],C=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"y")])],-1),u={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},m={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.464ex"},xmlns:"http://www.w3.org/2000/svg",width:"5.42ex",height:"1.686ex",role:"img",focusable:"false",viewBox:"0 -540 2395.6 745","aria-hidden":"true"},Q=n('',1),F=[Q],T=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"x"),s("mo",null,"<"),s("mi",null,"y")])],-1),b=n('

Note that the intention constraint is not directly available through the JC-API in Constraints.jl. It is designed as such since defining a constraint through a predicate is the natural way.

We provide a straightforward example through the :dist_different constraint on how to define and add such a constraint in the USUAL_CONSTRAINTS collection.

Higher level modeling language such as JuMP should provide a Intention interface.

Defining an intention constraint in JC-API

',4),f=s("code",null,"dist_different",-1),x=s("em",null,"Constraints.jl",-1),v=s("code",null,"dist_different",-1),_={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},B={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.294ex",height:"1.025ex",role:"img",focusable:"false",viewBox:"0 -442 572 453","aria-hidden":"true"},w=s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1),H=[w],D=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"x")])],-1),A={class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},V={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"25.797ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 11402.4 1000","aria-hidden":"true"},j=n('',1),M=[j],I=s("mjx-assistive-mml",{unselectable:"on",display:"block",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",overflow:"hidden",width:"100%"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML",display:"block"},[s("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|"),s("mi",null,"x"),s("mo",{stretchy:"false"},"["),s("mn",null,"1"),s("mo",{stretchy:"false"},"]"),s("mo",null,"−"),s("mi",null,"x"),s("mo",{stretchy:"false"},"["),s("mn",null,"2"),s("mo",{stretchy:"false"},"]"),s("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|"),s("mo",null,"≠"),s("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|"),s("mi",null,"x"),s("mo",{stretchy:"false"},"["),s("mn",null,"3"),s("mo",{stretchy:"false"},"]"),s("mo",null,"−"),s("mi",null,"x"),s("mo",{stretchy:"false"},"["),s("mn",null,"4"),s("mo",{stretchy:"false"},"]"),s("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|")])],-1),P=n(`

The constraint is then added to the usual constraints collection.

julia
const description_dist_different = """
+import{_ as e,c as a,m as s,a as i,a7 as n,o as t}from"./chunks/framework.aA95Gx5L.js";const R=JSON.parse('{"title":"Generic Constraints","description":"","frontmatter":{},"headers":[],"relativePath":"constraints/generic_constraints.md","filePath":"constraints/generic_constraints.md","lastUpdated":null}'),l={name:"constraints/generic_constraints.md"},h=n('

Generic Constraints

In the XCSP³-core standard, generic constraints are categorized into two main types: intention and extension constraints.

Intention Constraints

',3),p={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},k={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.294ex",height:"1.025ex",role:"img",focusable:"false",viewBox:"0 -442 572 453","aria-hidden":"true"},r=s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1),d=[r],o=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"x")])],-1),c={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},E={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.464ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.109ex",height:"1.464ex",role:"img",focusable:"false",viewBox:"0 -442 490 647","aria-hidden":"true"},g=s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D466",d:"M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z",style:{"stroke-width":"3"}})])])],-1),y=[g],C=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"y")])],-1),u={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},m={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.464ex"},xmlns:"http://www.w3.org/2000/svg",width:"5.42ex",height:"1.686ex",role:"img",focusable:"false",viewBox:"0 -540 2395.6 745","aria-hidden":"true"},Q=n('',1),F=[Q],T=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"x"),s("mo",null,"<"),s("mi",null,"y")])],-1),b=n('

Note that the intention constraint is not directly available through the JC-API in Constraints.jl. It is designed as such since defining a constraint through a predicate is the natural way.

We provide a straightforward example through the :dist_different constraint on how to define and add such a constraint in the USUAL_CONSTRAINTS collection.

Higher level modeling language such as JuMP should provide a Intention interface.

Defining an intention constraint in JC-API

',4),f=s("code",null,"dist_different",-1),x=s("em",null,"Constraints.jl",-1),v=s("code",null,"dist_different",-1),_={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},B={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.294ex",height:"1.025ex",role:"img",focusable:"false",viewBox:"0 -442 572 453","aria-hidden":"true"},w=s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1),H=[w],A=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"x")])],-1),D={class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},V={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"25.797ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 11402.4 1000","aria-hidden":"true"},j=n('',1),M=[j],I=s("mjx-assistive-mml",{unselectable:"on",display:"block",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",overflow:"hidden",width:"100%"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML",display:"block"},[s("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|"),s("mi",null,"x"),s("mo",{stretchy:"false"},"["),s("mn",null,"1"),s("mo",{stretchy:"false"},"]"),s("mo",null,"−"),s("mi",null,"x"),s("mo",{stretchy:"false"},"["),s("mn",null,"2"),s("mo",{stretchy:"false"},"]"),s("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|"),s("mo",null,"≠"),s("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|"),s("mi",null,"x"),s("mo",{stretchy:"false"},"["),s("mn",null,"3"),s("mo",{stretchy:"false"},"]"),s("mo",null,"−"),s("mi",null,"x"),s("mo",{stretchy:"false"},"["),s("mn",null,"4"),s("mo",{stretchy:"false"},"]"),s("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|")])],-1),P=n(`

The constraint is then added to the usual constraints collection.

julia
const description_dist_different = """
 Ensures that the distances between marks on the ruler are unique.
 """
 
@@ -9,7 +9,7 @@ import{_ as e,c as a,m as s,a as i,a7 as n,o as t}from"./chunks/framework.RTxADY
 @usual concept_dist_different(x) = xcsp_intension(
     list = x,
     predicate = predicate_dist_different
-)

Please check the section dedicated to the Golomb Ruler problem to see a use for this constraint. <!– TODO: Golomb Ruler –>

APIs

Note that the intension constraint is not directly available through the JC-API in Constraints.jl. It is designed as such since defining a constraint through a predicate is the natural way.

We provide here a usage example for the :dist_different constraint, previously added to the USUAL_CONSTRAINTS collection.

Higher level modeling language such as JuMP should provide an Intension interface.

julia
concept(:dist_different, x)
+)

Please check the section dedicated to the Golomb Ruler problem to see a use for this constraint. <!– TODO: Golomb Ruler –>

APIs

Note that the intension constraint is not directly available through the JC-API in Constraints.jl. It is designed as such since defining a constraint through a predicate is the natural way.

We provide here a usage example for the :dist_different constraint, previously added to the USUAL_CONSTRAINTS collection.

Higher level modeling language such as JuMP should provide an Intension interface.

julia
concept(:dist_different, x)
 concept(:dist_different)(x)
julia
# Defines the DistDifferent constraint
 c = x -> xcsp_intension(
     list = x,
@@ -36,4 +36,4 @@ import{_ as e,c as a,m as s,a as i,a7 as n,o as t}from"./chunks/framework.RTxADY
 c([1, 2, 3, 4, 5]; pair_vars=[[1, 2, 3, 4, 5]])
 
 c = concept(:conflicts)
-c([1, 2, 3, 4, 5]; pair_vars=[[1, 2, 1, 4, 5], [1, 2, 3, 5, 5]])

source


`,22);function L(S,Z,q,J,N,G){return t(),a("div",null,[h,s("p",null,[i("These are constraints that are defined by a logical expression or a function. They are called intentional because they are defined by the property they satisfy. For example, a constraint that specifies that a variable "),s("mjx-container",p,[(t(),a("svg",k,d)),o]),i(" must be less than a variable "),s("mjx-container",c,[(t(),a("svg",E,y)),C]),i(" could be defined intentionally as "),s("mjx-container",u,[(t(),a("svg",m,F)),T]),i(".")]),b,s("p",null,[i("We use the "),f,i(" constraint to illustrate how to define an intention constraint in "),x,i(". The "),v,i(" constraint ensures that the distances between marks "),s("mjx-container",_,[(t(),a("svg",B,H)),D]),i(" on a ruler are unique.")]),s("mjx-container",A,[(t(),a("svg",V,M)),I]),P])}const z=e(l,[["render",L]]);export{R as __pageData,z as default}; +c([1, 2, 3, 4, 5]; pair_vars=[[1, 2, 1, 4, 5], [1, 2, 3, 5, 5]])

source


`,22);function L(S,Z,q,J,G,N){return t(),a("div",null,[h,s("p",null,[i("These are constraints that are defined by a logical expression or a function. They are called intentional because they are defined by the property they satisfy. For example, a constraint that specifies that a variable "),s("mjx-container",p,[(t(),a("svg",k,d)),o]),i(" must be less than a variable "),s("mjx-container",c,[(t(),a("svg",E,y)),C]),i(" could be defined intentionally as "),s("mjx-container",u,[(t(),a("svg",m,F)),T]),i(".")]),b,s("p",null,[i("We use the "),f,i(" constraint to illustrate how to define an intention constraint in "),x,i(". The "),v,i(" constraint ensures that the distances between marks "),s("mjx-container",_,[(t(),a("svg",B,H)),A]),i(" on a ruler are unique.")]),s("mjx-container",D,[(t(),a("svg",V,M)),I]),P])}const z=e(l,[["render",L]]);export{R as __pageData,z as default}; diff --git a/dev/assets/constraints_generic_constraints.md.Dc4qBSwZ.lean.js b/dev/assets/constraints_generic_constraints.md.COcQcDzW.lean.js similarity index 95% rename from dev/assets/constraints_generic_constraints.md.Dc4qBSwZ.lean.js rename to dev/assets/constraints_generic_constraints.md.COcQcDzW.lean.js index 85c88f2..5dac329 100644 --- a/dev/assets/constraints_generic_constraints.md.Dc4qBSwZ.lean.js +++ b/dev/assets/constraints_generic_constraints.md.COcQcDzW.lean.js @@ -1 +1 @@ -import{_ as e,c as a,m as s,a as i,a7 as n,o as t}from"./chunks/framework.RTxADYK2.js";const R=JSON.parse('{"title":"Generic Constraints","description":"","frontmatter":{},"headers":[],"relativePath":"constraints/generic_constraints.md","filePath":"constraints/generic_constraints.md","lastUpdated":null}'),l={name:"constraints/generic_constraints.md"},h=n("",3),p={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},k={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.294ex",height:"1.025ex",role:"img",focusable:"false",viewBox:"0 -442 572 453","aria-hidden":"true"},r=s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1),d=[r],o=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"x")])],-1),c={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},E={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.464ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.109ex",height:"1.464ex",role:"img",focusable:"false",viewBox:"0 -442 490 647","aria-hidden":"true"},g=s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D466",d:"M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z",style:{"stroke-width":"3"}})])])],-1),y=[g],C=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"y")])],-1),u={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},m={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.464ex"},xmlns:"http://www.w3.org/2000/svg",width:"5.42ex",height:"1.686ex",role:"img",focusable:"false",viewBox:"0 -540 2395.6 745","aria-hidden":"true"},Q=n("",1),F=[Q],T=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"x"),s("mo",null,"<"),s("mi",null,"y")])],-1),b=n("",4),f=s("code",null,"dist_different",-1),x=s("em",null,"Constraints.jl",-1),v=s("code",null,"dist_different",-1),_={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},B={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.294ex",height:"1.025ex",role:"img",focusable:"false",viewBox:"0 -442 572 453","aria-hidden":"true"},w=s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1),H=[w],D=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"x")])],-1),A={class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},V={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"25.797ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 11402.4 1000","aria-hidden":"true"},j=n("",1),M=[j],I=s("mjx-assistive-mml",{unselectable:"on",display:"block",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",overflow:"hidden",width:"100%"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML",display:"block"},[s("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|"),s("mi",null,"x"),s("mo",{stretchy:"false"},"["),s("mn",null,"1"),s("mo",{stretchy:"false"},"]"),s("mo",null,"−"),s("mi",null,"x"),s("mo",{stretchy:"false"},"["),s("mn",null,"2"),s("mo",{stretchy:"false"},"]"),s("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|"),s("mo",null,"≠"),s("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|"),s("mi",null,"x"),s("mo",{stretchy:"false"},"["),s("mn",null,"3"),s("mo",{stretchy:"false"},"]"),s("mo",null,"−"),s("mi",null,"x"),s("mo",{stretchy:"false"},"["),s("mn",null,"4"),s("mo",{stretchy:"false"},"]"),s("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|")])],-1),P=n("",22);function L(S,Z,q,J,N,G){return t(),a("div",null,[h,s("p",null,[i("These are constraints that are defined by a logical expression or a function. They are called intentional because they are defined by the property they satisfy. For example, a constraint that specifies that a variable "),s("mjx-container",p,[(t(),a("svg",k,d)),o]),i(" must be less than a variable "),s("mjx-container",c,[(t(),a("svg",E,y)),C]),i(" could be defined intentionally as "),s("mjx-container",u,[(t(),a("svg",m,F)),T]),i(".")]),b,s("p",null,[i("We use the "),f,i(" constraint to illustrate how to define an intention constraint in "),x,i(". The "),v,i(" constraint ensures that the distances between marks "),s("mjx-container",_,[(t(),a("svg",B,H)),D]),i(" on a ruler are unique.")]),s("mjx-container",A,[(t(),a("svg",V,M)),I]),P])}const z=e(l,[["render",L]]);export{R as __pageData,z as default}; +import{_ as e,c as a,m as s,a as i,a7 as n,o as t}from"./chunks/framework.aA95Gx5L.js";const R=JSON.parse('{"title":"Generic Constraints","description":"","frontmatter":{},"headers":[],"relativePath":"constraints/generic_constraints.md","filePath":"constraints/generic_constraints.md","lastUpdated":null}'),l={name:"constraints/generic_constraints.md"},h=n("",3),p={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},k={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.294ex",height:"1.025ex",role:"img",focusable:"false",viewBox:"0 -442 572 453","aria-hidden":"true"},r=s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1),d=[r],o=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"x")])],-1),c={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},E={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.464ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.109ex",height:"1.464ex",role:"img",focusable:"false",viewBox:"0 -442 490 647","aria-hidden":"true"},g=s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D466",d:"M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z",style:{"stroke-width":"3"}})])])],-1),y=[g],C=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"y")])],-1),u={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},m={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.464ex"},xmlns:"http://www.w3.org/2000/svg",width:"5.42ex",height:"1.686ex",role:"img",focusable:"false",viewBox:"0 -540 2395.6 745","aria-hidden":"true"},Q=n("",1),F=[Q],T=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"x"),s("mo",null,"<"),s("mi",null,"y")])],-1),b=n("",4),f=s("code",null,"dist_different",-1),x=s("em",null,"Constraints.jl",-1),v=s("code",null,"dist_different",-1),_={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},B={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.294ex",height:"1.025ex",role:"img",focusable:"false",viewBox:"0 -442 572 453","aria-hidden":"true"},w=s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1),H=[w],A=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"x")])],-1),D={class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},V={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"25.797ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 11402.4 1000","aria-hidden":"true"},j=n("",1),M=[j],I=s("mjx-assistive-mml",{unselectable:"on",display:"block",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",overflow:"hidden",width:"100%"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML",display:"block"},[s("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|"),s("mi",null,"x"),s("mo",{stretchy:"false"},"["),s("mn",null,"1"),s("mo",{stretchy:"false"},"]"),s("mo",null,"−"),s("mi",null,"x"),s("mo",{stretchy:"false"},"["),s("mn",null,"2"),s("mo",{stretchy:"false"},"]"),s("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|"),s("mo",null,"≠"),s("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|"),s("mi",null,"x"),s("mo",{stretchy:"false"},"["),s("mn",null,"3"),s("mo",{stretchy:"false"},"]"),s("mo",null,"−"),s("mi",null,"x"),s("mo",{stretchy:"false"},"["),s("mn",null,"4"),s("mo",{stretchy:"false"},"]"),s("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|")])],-1),P=n("",22);function L(S,Z,q,J,G,N){return t(),a("div",null,[h,s("p",null,[i("These are constraints that are defined by a logical expression or a function. They are called intentional because they are defined by the property they satisfy. For example, a constraint that specifies that a variable "),s("mjx-container",p,[(t(),a("svg",k,d)),o]),i(" must be less than a variable "),s("mjx-container",c,[(t(),a("svg",E,y)),C]),i(" could be defined intentionally as "),s("mjx-container",u,[(t(),a("svg",m,F)),T]),i(".")]),b,s("p",null,[i("We use the "),f,i(" constraint to illustrate how to define an intention constraint in "),x,i(". The "),v,i(" constraint ensures that the distances between marks "),s("mjx-container",_,[(t(),a("svg",B,H)),A]),i(" on a ruler are unique.")]),s("mjx-container",D,[(t(),a("svg",V,M)),I]),P])}const z=e(l,[["render",L]]);export{R as __pageData,z as default}; diff --git a/dev/assets/constraints_graph_constraints.md.CDKqx3uU.js b/dev/assets/constraints_graph_constraints.md.M2y2wALd.js similarity index 98% rename from dev/assets/constraints_graph_constraints.md.CDKqx3uU.js rename to dev/assets/constraints_graph_constraints.md.M2y2wALd.js index faeb947..2ffeb70 100644 --- a/dev/assets/constraints_graph_constraints.md.CDKqx3uU.js +++ b/dev/assets/constraints_graph_constraints.md.M2y2wALd.js @@ -1,4 +1,4 @@ -import{_ as i,c as s,o as a,a7 as t}from"./chunks/framework.RTxADYK2.js";const g=JSON.parse('{"title":"Constraints.jl: Streamlining Constraint Definition and Integration in Julia","description":"","frontmatter":{},"headers":[],"relativePath":"constraints/graph_constraints.md","filePath":"constraints/graph_constraints.md","lastUpdated":null}'),n={name:"constraints/graph_constraints.md"},e=t(`

Constraints.jl: Streamlining Constraint Definition and Integration in Julia

Constraints on Graphs

# Constraints.xcsp_circuitFunction.
julia
xcsp_circuit(; list, size)

Return true if the circuit constraint is satisfied, false otherwise. The circuit constraint is a global constraint used in constraint programming, often in routing problems. It ensures that the values of a list of variables form a circuit, i.e., a sequence where each value is the index of the next value in the sequence, and the sequence eventually loops back to the start.

Arguments

  • list::AbstractVector: list of values to check.

  • size::Int: size of the circuit.

Variants

  • :circuit: The circuit constraint is a global constraint used in constraint programming, often in routing problems. It ensures that the values of a list of variables form a circuit, i.e., a sequence where each value is the index of the next value in the sequence, and the sequence eventually loops back to the start.
julia
concept(:circuit, x; op, val)
+import{_ as i,c as s,o as a,a7 as t}from"./chunks/framework.aA95Gx5L.js";const g=JSON.parse('{"title":"Constraints.jl: Streamlining Constraint Definition and Integration in Julia","description":"","frontmatter":{},"headers":[],"relativePath":"constraints/graph_constraints.md","filePath":"constraints/graph_constraints.md","lastUpdated":null}'),n={name:"constraints/graph_constraints.md"},e=t(`

Constraints.jl: Streamlining Constraint Definition and Integration in Julia

Constraints on Graphs

# Constraints.xcsp_circuitFunction.
julia
xcsp_circuit(; list, size)

Return true if the circuit constraint is satisfied, false otherwise. The circuit constraint is a global constraint used in constraint programming, often in routing problems. It ensures that the values of a list of variables form a circuit, i.e., a sequence where each value is the index of the next value in the sequence, and the sequence eventually loops back to the start.

Arguments

  • list::AbstractVector: list of values to check.

  • size::Int: size of the circuit.

Variants

  • :circuit: The circuit constraint is a global constraint used in constraint programming, often in routing problems. It ensures that the values of a list of variables form a circuit, i.e., a sequence where each value is the index of the next value in the sequence, and the sequence eventually loops back to the start.
julia
concept(:circuit, x; op, val)
 concept(:circuit)(x; op, val)

Examples

julia
c = concept(:circuit)
 
 c([1, 2, 3, 4])
diff --git a/dev/assets/constraints_graph_constraints.md.CDKqx3uU.lean.js b/dev/assets/constraints_graph_constraints.md.M2y2wALd.lean.js
similarity index 75%
rename from dev/assets/constraints_graph_constraints.md.CDKqx3uU.lean.js
rename to dev/assets/constraints_graph_constraints.md.M2y2wALd.lean.js
index a6b6d95..344c8e7 100644
--- a/dev/assets/constraints_graph_constraints.md.CDKqx3uU.lean.js
+++ b/dev/assets/constraints_graph_constraints.md.M2y2wALd.lean.js
@@ -1 +1 @@
-import{_ as i,c as s,o as a,a7 as t}from"./chunks/framework.RTxADYK2.js";const g=JSON.parse('{"title":"Constraints.jl: Streamlining Constraint Definition and Integration in Julia","description":"","frontmatter":{},"headers":[],"relativePath":"constraints/graph_constraints.md","filePath":"constraints/graph_constraints.md","lastUpdated":null}'),n={name:"constraints/graph_constraints.md"},e=t("",4),h=[e];function l(p,r,k,o,c,d){return a(),s("div",null,h)}const C=i(n,[["render",l]]);export{g as __pageData,C as default};
+import{_ as i,c as s,o as a,a7 as t}from"./chunks/framework.aA95Gx5L.js";const g=JSON.parse('{"title":"Constraints.jl: Streamlining Constraint Definition and Integration in Julia","description":"","frontmatter":{},"headers":[],"relativePath":"constraints/graph_constraints.md","filePath":"constraints/graph_constraints.md","lastUpdated":null}'),n={name:"constraints/graph_constraints.md"},e=t("",4),h=[e];function l(p,r,k,o,c,d){return a(),s("div",null,h)}const C=i(n,[["render",l]]);export{g as __pageData,C as default};
diff --git a/dev/assets/constraints_intro.md.CztSn_0F.js b/dev/assets/constraints_intro.md.SiDBJ4N_.js
similarity index 85%
rename from dev/assets/constraints_intro.md.CztSn_0F.js
rename to dev/assets/constraints_intro.md.SiDBJ4N_.js
index 38e8e3d..87a2ef5 100644
--- a/dev/assets/constraints_intro.md.CztSn_0F.js
+++ b/dev/assets/constraints_intro.md.SiDBJ4N_.js
@@ -1 +1 @@
-import{_ as o,c as s,o as n,m as t,a}from"./chunks/framework.RTxADYK2.js";const f=JSON.parse('{"title":"Introduction to basics cosntraints related tools","description":"","frontmatter":{},"headers":[],"relativePath":"constraints/intro.md","filePath":"constraints/intro.md","lastUpdated":null}'),e={name:"constraints/intro.md"},r=t("h1",{id:"Introduction-to-basics-cosntraints-related-tools",tabindex:"-1"},[a("Introduction to basics cosntraints related tools "),t("a",{class:"header-anchor",href:"#Introduction-to-basics-cosntraints-related-tools","aria-label":'Permalink to "Introduction to basics cosntraints related tools {#Introduction-to-basics-cosntraints-related-tools}"'},"​")],-1),c=t("p",null,"About constraints.",-1),i=[r,c];function d(l,_,u,p,h,m){return n(),s("div",null,i)}const I=o(e,[["render",d]]);export{f as __pageData,I as default};
+import{_ as o,c as s,o as n,m as t,a}from"./chunks/framework.aA95Gx5L.js";const f=JSON.parse('{"title":"Introduction to basics cosntraints related tools","description":"","frontmatter":{},"headers":[],"relativePath":"constraints/intro.md","filePath":"constraints/intro.md","lastUpdated":null}'),e={name:"constraints/intro.md"},r=t("h1",{id:"Introduction-to-basics-cosntraints-related-tools",tabindex:"-1"},[a("Introduction to basics cosntraints related tools "),t("a",{class:"header-anchor",href:"#Introduction-to-basics-cosntraints-related-tools","aria-label":'Permalink to "Introduction to basics cosntraints related tools {#Introduction-to-basics-cosntraints-related-tools}"'},"​")],-1),c=t("p",null,"About constraints.",-1),i=[r,c];function d(l,_,u,p,h,m){return n(),s("div",null,i)}const I=o(e,[["render",d]]);export{f as __pageData,I as default};
diff --git a/dev/assets/constraints_intro.md.CztSn_0F.lean.js b/dev/assets/constraints_intro.md.SiDBJ4N_.lean.js
similarity index 85%
rename from dev/assets/constraints_intro.md.CztSn_0F.lean.js
rename to dev/assets/constraints_intro.md.SiDBJ4N_.lean.js
index 38e8e3d..87a2ef5 100644
--- a/dev/assets/constraints_intro.md.CztSn_0F.lean.js
+++ b/dev/assets/constraints_intro.md.SiDBJ4N_.lean.js
@@ -1 +1 @@
-import{_ as o,c as s,o as n,m as t,a}from"./chunks/framework.RTxADYK2.js";const f=JSON.parse('{"title":"Introduction to basics cosntraints related tools","description":"","frontmatter":{},"headers":[],"relativePath":"constraints/intro.md","filePath":"constraints/intro.md","lastUpdated":null}'),e={name:"constraints/intro.md"},r=t("h1",{id:"Introduction-to-basics-cosntraints-related-tools",tabindex:"-1"},[a("Introduction to basics cosntraints related tools "),t("a",{class:"header-anchor",href:"#Introduction-to-basics-cosntraints-related-tools","aria-label":'Permalink to "Introduction to basics cosntraints related tools {#Introduction-to-basics-cosntraints-related-tools}"'},"​")],-1),c=t("p",null,"About constraints.",-1),i=[r,c];function d(l,_,u,p,h,m){return n(),s("div",null,i)}const I=o(e,[["render",d]]);export{f as __pageData,I as default};
+import{_ as o,c as s,o as n,m as t,a}from"./chunks/framework.aA95Gx5L.js";const f=JSON.parse('{"title":"Introduction to basics cosntraints related tools","description":"","frontmatter":{},"headers":[],"relativePath":"constraints/intro.md","filePath":"constraints/intro.md","lastUpdated":null}'),e={name:"constraints/intro.md"},r=t("h1",{id:"Introduction-to-basics-cosntraints-related-tools",tabindex:"-1"},[a("Introduction to basics cosntraints related tools "),t("a",{class:"header-anchor",href:"#Introduction-to-basics-cosntraints-related-tools","aria-label":'Permalink to "Introduction to basics cosntraints related tools {#Introduction-to-basics-cosntraints-related-tools}"'},"​")],-1),c=t("p",null,"About constraints.",-1),i=[r,c];function d(l,_,u,p,h,m){return n(),s("div",null,i)}const I=o(e,[["render",d]]);export{f as __pageData,I as default};
diff --git a/dev/assets/constraints_language_constraints.md.BvxfZMgF.js b/dev/assets/constraints_language_constraints.md.tj54bmg8.js
similarity index 99%
rename from dev/assets/constraints_language_constraints.md.BvxfZMgF.js
rename to dev/assets/constraints_language_constraints.md.tj54bmg8.js
index 73452b6..cc485a5 100644
--- a/dev/assets/constraints_language_constraints.md.BvxfZMgF.js
+++ b/dev/assets/constraints_language_constraints.md.tj54bmg8.js
@@ -1,4 +1,4 @@
-import{_ as s,c as i,o as a,a7 as n}from"./chunks/framework.RTxADYK2.js";const o=JSON.parse('{"title":"Constraints.jl: Streamlining Constraint Definition and Integration in Julia","description":"","frontmatter":{},"headers":[],"relativePath":"constraints/language_constraints.md","filePath":"constraints/language_constraints.md","lastUpdated":null}'),t={name:"constraints/language_constraints.md"},h=n(`

Constraints.jl: Streamlining Constraint Definition and Integration in Julia

Constraints defined from Languages

# Constraints.xcsp_regularFunction.
julia
xcsp_regular(; list, automaton)
+import{_ as s,c as i,o as a,a7 as n}from"./chunks/framework.aA95Gx5L.js";const o=JSON.parse('{"title":"Constraints.jl: Streamlining Constraint Definition and Integration in Julia","description":"","frontmatter":{},"headers":[],"relativePath":"constraints/language_constraints.md","filePath":"constraints/language_constraints.md","lastUpdated":null}'),t={name:"constraints/language_constraints.md"},h=n(`

Constraints.jl: Streamlining Constraint Definition and Integration in Julia

Constraints defined from Languages

# Constraints.xcsp_regularFunction.
julia
xcsp_regular(; list, automaton)
 
 Ensures that a sequence \`x\` (interpreted as a word) is accepted by the regular language represented by a given automaton. This constraint verifies the compliance of \`x\` with the language rules encoded within the \`automaton\` parameter, which must be an instance of \`<:AbstractAutomaton\`.

Arguments

  • list::Vector{Int}: A list of variables

  • automaton<:AbstractAutomaton: An automaton representing the regular language

Variants

  • :regular: Ensures that a sequence x (interpreted as a word) is accepted by the regular language represented by a given automaton. This constraint verifies the compliance of x with the language rules encoded within the automaton parameter, which must be an instance of <:AbstractAutomaton.
julia
concept(:regular, x; language)
 concept(:regular)(x; language)

Examples

julia
c = concept(:regular)
diff --git a/dev/assets/constraints_language_constraints.md.BvxfZMgF.lean.js b/dev/assets/constraints_language_constraints.md.tj54bmg8.lean.js
similarity index 75%
rename from dev/assets/constraints_language_constraints.md.BvxfZMgF.lean.js
rename to dev/assets/constraints_language_constraints.md.tj54bmg8.lean.js
index 8214809..fdce189 100644
--- a/dev/assets/constraints_language_constraints.md.BvxfZMgF.lean.js
+++ b/dev/assets/constraints_language_constraints.md.tj54bmg8.lean.js
@@ -1 +1 @@
-import{_ as s,c as i,o as a,a7 as n}from"./chunks/framework.RTxADYK2.js";const o=JSON.parse('{"title":"Constraints.jl: Streamlining Constraint Definition and Integration in Julia","description":"","frontmatter":{},"headers":[],"relativePath":"constraints/language_constraints.md","filePath":"constraints/language_constraints.md","lastUpdated":null}'),t={name:"constraints/language_constraints.md"},h=n("",6),l=[h];function k(p,e,E,r,d,g){return a(),i("div",null,l)}const F=s(t,[["render",k]]);export{o as __pageData,F as default};
+import{_ as s,c as i,o as a,a7 as n}from"./chunks/framework.aA95Gx5L.js";const o=JSON.parse('{"title":"Constraints.jl: Streamlining Constraint Definition and Integration in Julia","description":"","frontmatter":{},"headers":[],"relativePath":"constraints/language_constraints.md","filePath":"constraints/language_constraints.md","lastUpdated":null}'),t={name:"constraints/language_constraints.md"},h=n("",6),l=[h];function k(p,e,E,r,d,g){return a(),i("div",null,l)}const F=s(t,[["render",k]]);export{o as __pageData,F as default};
diff --git a/dev/assets/constraints_packing_scheduling_constraints.md.D2j-BRwb.js b/dev/assets/constraints_packing_scheduling_constraints.md.CiCQvkg6.js
similarity index 99%
rename from dev/assets/constraints_packing_scheduling_constraints.md.D2j-BRwb.js
rename to dev/assets/constraints_packing_scheduling_constraints.md.CiCQvkg6.js
index b2c6673..a823b93 100644
--- a/dev/assets/constraints_packing_scheduling_constraints.md.D2j-BRwb.js
+++ b/dev/assets/constraints_packing_scheduling_constraints.md.CiCQvkg6.js
@@ -1,4 +1,4 @@
-import{_ as s,c as i,o as a,a7 as t}from"./chunks/framework.RTxADYK2.js";const C=JSON.parse('{"title":"Constraints.jl: Streamlining Constraint Definition and Integration in Julia","description":"","frontmatter":{},"headers":[],"relativePath":"constraints/packing_scheduling_constraints.md","filePath":"constraints/packing_scheduling_constraints.md","lastUpdated":null}'),n={name:"constraints/packing_scheduling_constraints.md"},h=t(`

Constraints.jl: Streamlining Constraint Definition and Integration in Julia

Packing and Scheduling Constraints

# Constraints.xcsp_cumulativeFunction.
julia
xcsp_cumulative(; origins, lengths, heights, condition)

Return true if the cumulative constraint is satisfied, false otherwise. The cumulative constraint is a global constraint used in constraint programming that is often used in scheduling problems. It ensures that for any point in time, the sum of the "heights" of tasks that are ongoing at that time does not exceed a certain limit.

Arguments

  • origins::AbstractVector: list of origins of the tasks.

  • lengths::AbstractVector: list of lengths of the tasks.

  • heights::AbstractVector: list of heights of the tasks.

  • condition::Tuple: condition to check.

Variants

  • :cumulative: The cumulative constraint is a global constraint used in constraint programming that is often used in scheduling problems. It ensures that for any point in time, the sum of the "heights" of tasks that are ongoing at that time does not exceed a certain limit.
julia
concept(:cumulative, x; pair_vars, op, val)
+import{_ as s,c as i,o as a,a7 as t}from"./chunks/framework.aA95Gx5L.js";const C=JSON.parse('{"title":"Constraints.jl: Streamlining Constraint Definition and Integration in Julia","description":"","frontmatter":{},"headers":[],"relativePath":"constraints/packing_scheduling_constraints.md","filePath":"constraints/packing_scheduling_constraints.md","lastUpdated":null}'),n={name:"constraints/packing_scheduling_constraints.md"},h=t(`

Constraints.jl: Streamlining Constraint Definition and Integration in Julia

Packing and Scheduling Constraints

# Constraints.xcsp_cumulativeFunction.
julia
xcsp_cumulative(; origins, lengths, heights, condition)

Return true if the cumulative constraint is satisfied, false otherwise. The cumulative constraint is a global constraint used in constraint programming that is often used in scheduling problems. It ensures that for any point in time, the sum of the "heights" of tasks that are ongoing at that time does not exceed a certain limit.

Arguments

  • origins::AbstractVector: list of origins of the tasks.

  • lengths::AbstractVector: list of lengths of the tasks.

  • heights::AbstractVector: list of heights of the tasks.

  • condition::Tuple: condition to check.

Variants

  • :cumulative: The cumulative constraint is a global constraint used in constraint programming that is often used in scheduling problems. It ensures that for any point in time, the sum of the "heights" of tasks that are ongoing at that time does not exceed a certain limit.
julia
concept(:cumulative, x; pair_vars, op, val)
 concept(:cumulative)(x; pair_vars, op, val)

Examples

julia
c = concept(:cumulative)
 
 c([1, 2, 3, 4, 5]; val = 1)
diff --git a/dev/assets/constraints_packing_scheduling_constraints.md.D2j-BRwb.lean.js b/dev/assets/constraints_packing_scheduling_constraints.md.CiCQvkg6.lean.js
similarity index 77%
rename from dev/assets/constraints_packing_scheduling_constraints.md.D2j-BRwb.lean.js
rename to dev/assets/constraints_packing_scheduling_constraints.md.CiCQvkg6.lean.js
index be16ab5..11f5c85 100644
--- a/dev/assets/constraints_packing_scheduling_constraints.md.D2j-BRwb.lean.js
+++ b/dev/assets/constraints_packing_scheduling_constraints.md.CiCQvkg6.lean.js
@@ -1 +1 @@
-import{_ as s,c as i,o as a,a7 as t}from"./chunks/framework.RTxADYK2.js";const C=JSON.parse('{"title":"Constraints.jl: Streamlining Constraint Definition and Integration in Julia","description":"","frontmatter":{},"headers":[],"relativePath":"constraints/packing_scheduling_constraints.md","filePath":"constraints/packing_scheduling_constraints.md","lastUpdated":null}'),n={name:"constraints/packing_scheduling_constraints.md"},h=t("",6),k=[h];function l(p,e,r,E,d,g){return a(),i("div",null,k)}const y=s(n,[["render",l]]);export{C as __pageData,y as default};
+import{_ as s,c as i,o as a,a7 as t}from"./chunks/framework.aA95Gx5L.js";const C=JSON.parse('{"title":"Constraints.jl: Streamlining Constraint Definition and Integration in Julia","description":"","frontmatter":{},"headers":[],"relativePath":"constraints/packing_scheduling_constraints.md","filePath":"constraints/packing_scheduling_constraints.md","lastUpdated":null}'),n={name:"constraints/packing_scheduling_constraints.md"},h=t("",6),k=[h];function l(p,e,r,E,d,g){return a(),i("div",null,k)}const y=s(n,[["render",l]]);export{C as __pageData,y as default};
diff --git a/dev/assets/cp_advanced.md.BCFqY9Nm.js b/dev/assets/cp_advanced.md.Dsfkdtcs.js
similarity index 91%
rename from dev/assets/cp_advanced.md.BCFqY9Nm.js
rename to dev/assets/cp_advanced.md.Dsfkdtcs.js
index 3d42656..d40d679 100644
--- a/dev/assets/cp_advanced.md.BCFqY9Nm.js
+++ b/dev/assets/cp_advanced.md.Dsfkdtcs.js
@@ -1 +1 @@
-import{_ as a,c as e,o as t,a7 as n}from"./chunks/framework.RTxADYK2.js";const u=JSON.parse('{"title":"Advanced Constraint Programming Techniques","description":"","frontmatter":{},"headers":[],"relativePath":"cp/advanced.md","filePath":"cp/advanced.md","lastUpdated":null}'),i={name:"cp/advanced.md"},r=n('

Advanced Constraint Programming Techniques

Global Constraints and Their Uses

  • Dive deeper into global constraints and how they simplify complex problems.

Search Strategies and Optimization

  • Discuss various search strategies and their impact on solving CP problems.
',5),s=[r];function o(d,c,l,h,m,_){return t(),e("div",null,s)}const g=a(i,[["render",o]]);export{u as __pageData,g as default}; +import{_ as a,c as e,o as t,a7 as n}from"./chunks/framework.aA95Gx5L.js";const u=JSON.parse('{"title":"Advanced Constraint Programming Techniques","description":"","frontmatter":{},"headers":[],"relativePath":"cp/advanced.md","filePath":"cp/advanced.md","lastUpdated":null}'),i={name:"cp/advanced.md"},r=n('

Advanced Constraint Programming Techniques

Global Constraints and Their Uses

  • Dive deeper into global constraints and how they simplify complex problems.

Search Strategies and Optimization

  • Discuss various search strategies and their impact on solving CP problems.
',5),s=[r];function o(d,c,l,h,m,_){return t(),e("div",null,s)}const g=a(i,[["render",o]]);export{u as __pageData,g as default}; diff --git a/dev/assets/cp_advanced.md.BCFqY9Nm.lean.js b/dev/assets/cp_advanced.md.Dsfkdtcs.lean.js similarity index 70% rename from dev/assets/cp_advanced.md.BCFqY9Nm.lean.js rename to dev/assets/cp_advanced.md.Dsfkdtcs.lean.js index 493f9af..72766c7 100644 --- a/dev/assets/cp_advanced.md.BCFqY9Nm.lean.js +++ b/dev/assets/cp_advanced.md.Dsfkdtcs.lean.js @@ -1 +1 @@ -import{_ as a,c as e,o as t,a7 as n}from"./chunks/framework.RTxADYK2.js";const u=JSON.parse('{"title":"Advanced Constraint Programming Techniques","description":"","frontmatter":{},"headers":[],"relativePath":"cp/advanced.md","filePath":"cp/advanced.md","lastUpdated":null}'),i={name:"cp/advanced.md"},r=n("",5),s=[r];function o(d,c,l,h,m,_){return t(),e("div",null,s)}const g=a(i,[["render",o]]);export{u as __pageData,g as default}; +import{_ as a,c as e,o as t,a7 as n}from"./chunks/framework.aA95Gx5L.js";const u=JSON.parse('{"title":"Advanced Constraint Programming Techniques","description":"","frontmatter":{},"headers":[],"relativePath":"cp/advanced.md","filePath":"cp/advanced.md","lastUpdated":null}'),i={name:"cp/advanced.md"},r=n("",5),s=[r];function o(d,c,l,h,m,_){return t(),e("div",null,s)}const g=a(i,[["render",o]]);export{u as __pageData,g as default}; diff --git a/dev/assets/cp_applications.md.C5lZcsAQ.js b/dev/assets/cp_applications.md.-HdwrgYe.js similarity index 91% rename from dev/assets/cp_applications.md.C5lZcsAQ.js rename to dev/assets/cp_applications.md.-HdwrgYe.js index 6fb6ca6..f7b8531 100644 --- a/dev/assets/cp_applications.md.C5lZcsAQ.js +++ b/dev/assets/cp_applications.md.-HdwrgYe.js @@ -1 +1 @@ -import{_ as a,c as e,o as t,a7 as i}from"./chunks/framework.RTxADYK2.js";const _=JSON.parse('{"title":"Applying Optimization Methods","description":"","frontmatter":{},"headers":[],"relativePath":"cp/applications.md","filePath":"cp/applications.md","lastUpdated":null}'),o={name:"cp/applications.md"},l=i('

Applying Optimization Methods

Case Studies and Real-World Applications

  • Showcase studies where CP and optimization have been successfully applied.

From Theory to Practice

  • Guide readers through the process of formulating and solving an optimization problem from a real-world scenario.
',5),r=[l];function s(n,p,c,d,h,m){return t(),e("div",null,r)}const f=a(o,[["render",s]]);export{_ as __pageData,f as default}; +import{_ as a,c as e,o as t,a7 as i}from"./chunks/framework.aA95Gx5L.js";const _=JSON.parse('{"title":"Applying Optimization Methods","description":"","frontmatter":{},"headers":[],"relativePath":"cp/applications.md","filePath":"cp/applications.md","lastUpdated":null}'),o={name:"cp/applications.md"},l=i('

Applying Optimization Methods

Case Studies and Real-World Applications

  • Showcase studies where CP and optimization have been successfully applied.

From Theory to Practice

  • Guide readers through the process of formulating and solving an optimization problem from a real-world scenario.
',5),r=[l];function s(n,p,c,d,h,m){return t(),e("div",null,r)}const f=a(o,[["render",s]]);export{_ as __pageData,f as default}; diff --git a/dev/assets/cp_applications.md.C5lZcsAQ.lean.js b/dev/assets/cp_applications.md.-HdwrgYe.lean.js similarity index 70% rename from dev/assets/cp_applications.md.C5lZcsAQ.lean.js rename to dev/assets/cp_applications.md.-HdwrgYe.lean.js index 2d29bdb..2fc20d0 100644 --- a/dev/assets/cp_applications.md.C5lZcsAQ.lean.js +++ b/dev/assets/cp_applications.md.-HdwrgYe.lean.js @@ -1 +1 @@ -import{_ as a,c as e,o as t,a7 as i}from"./chunks/framework.RTxADYK2.js";const _=JSON.parse('{"title":"Applying Optimization Methods","description":"","frontmatter":{},"headers":[],"relativePath":"cp/applications.md","filePath":"cp/applications.md","lastUpdated":null}'),o={name:"cp/applications.md"},l=i("",5),r=[l];function s(n,p,c,d,h,m){return t(),e("div",null,r)}const f=a(o,[["render",s]]);export{_ as __pageData,f as default}; +import{_ as a,c as e,o as t,a7 as i}from"./chunks/framework.aA95Gx5L.js";const _=JSON.parse('{"title":"Applying Optimization Methods","description":"","frontmatter":{},"headers":[],"relativePath":"cp/applications.md","filePath":"cp/applications.md","lastUpdated":null}'),o={name:"cp/applications.md"},l=i("",5),r=[l];function s(n,p,c,d,h,m){return t(),e("div",null,r)}const f=a(o,[["render",s]]);export{_ as __pageData,f as default}; diff --git a/dev/assets/cp_contribution.md.Djq0vpjb.js b/dev/assets/cp_contribution.md.CvjPxUVA.js similarity index 90% rename from dev/assets/cp_contribution.md.Djq0vpjb.js rename to dev/assets/cp_contribution.md.CvjPxUVA.js index 2f0a262..b2040a2 100644 --- a/dev/assets/cp_contribution.md.Djq0vpjb.js +++ b/dev/assets/cp_contribution.md.CvjPxUVA.js @@ -1 +1 @@ -import{_ as t,c as n,o as i,a7 as o}from"./chunks/framework.RTxADYK2.js";const C=JSON.parse('{"title":"Community and Contribution","description":"","frontmatter":{},"headers":[],"relativePath":"cp/contribution.md","filePath":"cp/contribution.md","lastUpdated":null}'),a={name:"cp/contribution.md"},e=o('

Community and Contribution

Joining the JuliaConstraint Community

  • Encourage readers to join the community, highlighting how they can contribute and collaborate.

Future Directions

  • Share the vision for JuliaConstraint and upcoming projects or areas of research.
',5),r=[e];function u(c,s,l,m,h,d){return i(),n("div",null,r)}const b=t(a,[["render",u]]);export{C as __pageData,b as default}; +import{_ as t,c as n,o as i,a7 as o}from"./chunks/framework.aA95Gx5L.js";const C=JSON.parse('{"title":"Community and Contribution","description":"","frontmatter":{},"headers":[],"relativePath":"cp/contribution.md","filePath":"cp/contribution.md","lastUpdated":null}'),a={name:"cp/contribution.md"},e=o('

Community and Contribution

Joining the JuliaConstraint Community

  • Encourage readers to join the community, highlighting how they can contribute and collaborate.

Future Directions

  • Share the vision for JuliaConstraint and upcoming projects or areas of research.
',5),r=[e];function u(c,s,l,m,h,d){return i(),n("div",null,r)}const b=t(a,[["render",u]]);export{C as __pageData,b as default}; diff --git a/dev/assets/cp_contribution.md.Djq0vpjb.lean.js b/dev/assets/cp_contribution.md.CvjPxUVA.lean.js similarity index 70% rename from dev/assets/cp_contribution.md.Djq0vpjb.lean.js rename to dev/assets/cp_contribution.md.CvjPxUVA.lean.js index 7c506e5..e304956 100644 --- a/dev/assets/cp_contribution.md.Djq0vpjb.lean.js +++ b/dev/assets/cp_contribution.md.CvjPxUVA.lean.js @@ -1 +1 @@ -import{_ as t,c as n,o as i,a7 as o}from"./chunks/framework.RTxADYK2.js";const C=JSON.parse('{"title":"Community and Contribution","description":"","frontmatter":{},"headers":[],"relativePath":"cp/contribution.md","filePath":"cp/contribution.md","lastUpdated":null}'),a={name:"cp/contribution.md"},e=o("",5),r=[e];function u(c,s,l,m,h,d){return i(),n("div",null,r)}const b=t(a,[["render",u]]);export{C as __pageData,b as default}; +import{_ as t,c as n,o as i,a7 as o}from"./chunks/framework.aA95Gx5L.js";const C=JSON.parse('{"title":"Community and Contribution","description":"","frontmatter":{},"headers":[],"relativePath":"cp/contribution.md","filePath":"cp/contribution.md","lastUpdated":null}'),a={name:"cp/contribution.md"},e=o("",5),r=[e];function u(c,s,l,m,h,d){return i(),n("div",null,r)}const b=t(a,[["render",u]]);export{C as __pageData,b as default}; diff --git a/dev/assets/cp_cp101.md.C18sX-iv.js b/dev/assets/cp_cp101.md.CrtqNaW3.js similarity index 92% rename from dev/assets/cp_cp101.md.C18sX-iv.js rename to dev/assets/cp_cp101.md.CrtqNaW3.js index 174ab11..0d502ae 100644 --- a/dev/assets/cp_cp101.md.C18sX-iv.js +++ b/dev/assets/cp_cp101.md.CrtqNaW3.js @@ -1 +1 @@ -import{_ as a,c as i,o as t,a7 as o}from"./chunks/framework.RTxADYK2.js";const f=JSON.parse('{"title":"Constraint Programming 101","description":"","frontmatter":{},"headers":[],"relativePath":"cp/cp101.md","filePath":"cp/cp101.md","lastUpdated":null}'),n={name:"cp/cp101.md"},r=o('

Constraint Programming 101

What is Constraint Programming?

  • Define CP and its significance in solving combinatorial problems.

Basic Concepts and Terminology

  • Introduce key concepts such as constraints, domains, and variables.

How CP differs from other optimization techniques

  • Contrast with other methods like linear programming and metaheuristics.
',7),e=[r];function s(c,m,l,h,d,g){return t(),i("div",null,e)}const u=a(n,[["render",s]]);export{f as __pageData,u as default}; +import{_ as a,c as i,o as t,a7 as o}from"./chunks/framework.aA95Gx5L.js";const f=JSON.parse('{"title":"Constraint Programming 101","description":"","frontmatter":{},"headers":[],"relativePath":"cp/cp101.md","filePath":"cp/cp101.md","lastUpdated":null}'),n={name:"cp/cp101.md"},r=o('

Constraint Programming 101

What is Constraint Programming?

  • Define CP and its significance in solving combinatorial problems.

Basic Concepts and Terminology

  • Introduce key concepts such as constraints, domains, and variables.

How CP differs from other optimization techniques

  • Contrast with other methods like linear programming and metaheuristics.
',7),e=[r];function s(c,m,l,h,d,g){return t(),i("div",null,e)}const u=a(n,[["render",s]]);export{f as __pageData,u as default}; diff --git a/dev/assets/cp_cp101.md.C18sX-iv.lean.js b/dev/assets/cp_cp101.md.CrtqNaW3.lean.js similarity index 68% rename from dev/assets/cp_cp101.md.C18sX-iv.lean.js rename to dev/assets/cp_cp101.md.CrtqNaW3.lean.js index 62c2c5f..68b9a21 100644 --- a/dev/assets/cp_cp101.md.C18sX-iv.lean.js +++ b/dev/assets/cp_cp101.md.CrtqNaW3.lean.js @@ -1 +1 @@ -import{_ as a,c as i,o as t,a7 as o}from"./chunks/framework.RTxADYK2.js";const f=JSON.parse('{"title":"Constraint Programming 101","description":"","frontmatter":{},"headers":[],"relativePath":"cp/cp101.md","filePath":"cp/cp101.md","lastUpdated":null}'),n={name:"cp/cp101.md"},r=o("",7),e=[r];function s(c,m,l,h,d,g){return t(),i("div",null,e)}const u=a(n,[["render",s]]);export{f as __pageData,u as default}; +import{_ as a,c as i,o as t,a7 as o}from"./chunks/framework.aA95Gx5L.js";const f=JSON.parse('{"title":"Constraint Programming 101","description":"","frontmatter":{},"headers":[],"relativePath":"cp/cp101.md","filePath":"cp/cp101.md","lastUpdated":null}'),n={name:"cp/cp101.md"},r=o("",7),e=[r];function s(c,m,l,h,d,g){return t(),i("div",null,e)}const u=a(n,[["render",s]]);export{f as __pageData,u as default}; diff --git a/dev/assets/cp_ecosystem.md.uScYgJUb.js b/dev/assets/cp_ecosystem.md.BROmdRLS.js similarity index 91% rename from dev/assets/cp_ecosystem.md.uScYgJUb.js rename to dev/assets/cp_ecosystem.md.BROmdRLS.js index 4923848..609c9cb 100644 --- a/dev/assets/cp_ecosystem.md.uScYgJUb.js +++ b/dev/assets/cp_ecosystem.md.BROmdRLS.js @@ -1 +1 @@ -import{_ as a,c as t,o as e,a7 as i}from"./chunks/framework.RTxADYK2.js";const h=JSON.parse('{"title":"Exploring JuliaConstraint Packages","description":"","frontmatter":{},"headers":[],"relativePath":"cp/ecosystem.md","filePath":"cp/ecosystem.md","lastUpdated":null}'),n={name:"cp/ecosystem.md"},s=i('

Exploring JuliaConstraint Packages

Package Overviews

  • Introduce each package within the JuliaConstraint organization, its purpose, and primary features.

Installation and Getting Started Guides

  • Provide step-by-step instructions for installing and getting started with each package.
',5),r=[s];function o(l,c,d,u,g,p){return e(),t("div",null,r)}const P=a(n,[["render",o]]);export{h as __pageData,P as default}; +import{_ as a,c as t,o as e,a7 as i}from"./chunks/framework.aA95Gx5L.js";const h=JSON.parse('{"title":"Exploring JuliaConstraint Packages","description":"","frontmatter":{},"headers":[],"relativePath":"cp/ecosystem.md","filePath":"cp/ecosystem.md","lastUpdated":null}'),n={name:"cp/ecosystem.md"},s=i('

Exploring JuliaConstraint Packages

Package Overviews

  • Introduce each package within the JuliaConstraint organization, its purpose, and primary features.

Installation and Getting Started Guides

  • Provide step-by-step instructions for installing and getting started with each package.
',5),r=[s];function o(l,c,d,u,g,p){return e(),t("div",null,r)}const P=a(n,[["render",o]]);export{h as __pageData,P as default}; diff --git a/dev/assets/cp_ecosystem.md.uScYgJUb.lean.js b/dev/assets/cp_ecosystem.md.BROmdRLS.lean.js similarity index 70% rename from dev/assets/cp_ecosystem.md.uScYgJUb.lean.js rename to dev/assets/cp_ecosystem.md.BROmdRLS.lean.js index a240cb3..623e6d3 100644 --- a/dev/assets/cp_ecosystem.md.uScYgJUb.lean.js +++ b/dev/assets/cp_ecosystem.md.BROmdRLS.lean.js @@ -1 +1 @@ -import{_ as a,c as t,o as e,a7 as i}from"./chunks/framework.RTxADYK2.js";const h=JSON.parse('{"title":"Exploring JuliaConstraint Packages","description":"","frontmatter":{},"headers":[],"relativePath":"cp/ecosystem.md","filePath":"cp/ecosystem.md","lastUpdated":null}'),n={name:"cp/ecosystem.md"},s=i("",5),r=[s];function o(l,c,d,u,g,p){return e(),t("div",null,r)}const P=a(n,[["render",o]]);export{h as __pageData,P as default}; +import{_ as a,c as t,o as e,a7 as i}from"./chunks/framework.aA95Gx5L.js";const h=JSON.parse('{"title":"Exploring JuliaConstraint Packages","description":"","frontmatter":{},"headers":[],"relativePath":"cp/ecosystem.md","filePath":"cp/ecosystem.md","lastUpdated":null}'),n={name:"cp/ecosystem.md"},s=i("",5),r=[s];function o(l,c,d,u,g,p){return e(),t("div",null,r)}const P=a(n,[["render",o]]);export{h as __pageData,P as default}; diff --git a/dev/assets/cp_getting_started.md.0uejL3b8.js b/dev/assets/cp_getting_started.md.0uejL3b8.js deleted file mode 100644 index eed4a95..0000000 --- a/dev/assets/cp_getting_started.md.0uejL3b8.js +++ /dev/null @@ -1 +0,0 @@ -import{_ as t,c as a,o as i,a7 as e}from"./chunks/framework.RTxADYK2.js";const m=JSON.parse('{"title":"Getting Started with Julia for CP and Optimization","description":"","frontmatter":{},"headers":[],"relativePath":"cp/getting_started.md","filePath":"cp/getting_started.md","lastUpdated":null}'),n={name:"cp/getting_started.md"},o=e('

Getting Started with Julia for CP and Optimization

Why Julia?

  • Discuss the advantages of Julia for computational science and optimization, highlighting its performance and ease of use.

Setting Up Your Julia Environment

  • Guide on setting up Julia and essential packages for CP and optimization.

Your First Julia CP Model

  • A simple tutorial to build and solve a basic CP model using Julia.
',7),r=[o];function l(u,d,s,h,c,p){return i(),a("div",null,r)}const g=t(n,[["render",l]]);export{m as __pageData,g as default}; diff --git a/dev/assets/cp_getting_started.md.0uejL3b8.lean.js b/dev/assets/cp_getting_started.md.0uejL3b8.lean.js deleted file mode 100644 index e0f2326..0000000 --- a/dev/assets/cp_getting_started.md.0uejL3b8.lean.js +++ /dev/null @@ -1 +0,0 @@ -import{_ as t,c as a,o as i,a7 as e}from"./chunks/framework.RTxADYK2.js";const m=JSON.parse('{"title":"Getting Started with Julia for CP and Optimization","description":"","frontmatter":{},"headers":[],"relativePath":"cp/getting_started.md","filePath":"cp/getting_started.md","lastUpdated":null}'),n={name:"cp/getting_started.md"},o=e("",7),r=[o];function l(u,d,s,h,c,p){return i(),a("div",null,r)}const g=t(n,[["render",l]]);export{m as __pageData,g as default}; diff --git a/dev/assets/cp_getting_started.md.BuWkGTqp.js b/dev/assets/cp_getting_started.md.BuWkGTqp.js new file mode 100644 index 0000000..9af1054 --- /dev/null +++ b/dev/assets/cp_getting_started.md.BuWkGTqp.js @@ -0,0 +1,9 @@ +import{_ as l,c as t,m as s,a as i,a7 as a,o as e}from"./chunks/framework.aA95Gx5L.js";const S=JSON.parse('{"title":"Getting Started with Julia for CP and Optimization","description":"","frontmatter":{},"headers":[],"relativePath":"cp/getting_started.md","filePath":"cp/getting_started.md","lastUpdated":null}'),n={name:"cp/getting_started.md"},h=a('

Getting Started with Julia for CP and Optimization

Why Julia?

  • Discuss the advantages of Julia for computational science and optimization, highlighting its performance and ease of use.

Setting Up Your Julia Environment

We encourage users to install Julia through juliaup, a version manager for the Julia language. Please look at the official Julia language download page for further information. Once installed, Julia can be used through various editors (Visual Studio Code), notebooks (Pluto.jl), or command-line (REPL).

Although a part of the CP solvers available within the Julia ecosystem have their own interface, we encourage users to use the JuMP modeling language if possible.

Julia Constraints host several solvers(' interfaces). Due to its flexibility in modeling and solving, we will use LocalSearchSolvers.jl through its JuMP interface CBLS.jl as the basic example. Note that depending on the targeted instances, available hardware, and expectations, it is not necessarily the best choice.

All along the documentation, we will try to provide syntax examples for different setup.

julia
using LocalSearchSolvers
julia
using JuMP, CBLS
julia
# TODO: Add other solvers

Your First Julia CP Model

We will start with a classic puzzle game and some of its not that simple variants: the Sudoku.

(From Wikipedia) In classic Sudoku, the objective is to fill a 9 × 9 grid with digits so that each column, each row, and each of the nine 3 × 3 subgrids that compose the grid (also called "boxes", "blocks", or "regions") contains all of the digits from 1 to 9. The puzzle setter provides a partially completed grid, which for a well-posed puzzle has a single solution.

Constraint Programming follows the model-and-solve approach. We first need to model our Sudoku problem.

julia
m = JuMP.Model(CBLS.Optimizer)
julia
# TODO: Add other solvers

But what are the basis of CP models? It is quite simple:

',15),o={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},p={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.439ex"},xmlns:"http://www.w3.org/2000/svg",width:"15.867ex",height:"1.984ex",role:"img",focusable:"false",viewBox:"0 -683 7013.4 877","aria-hidden":"true"},d=a('',1),r=[d],k=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"X"),s("mo",null,"="),s("msub",null,[s("mi",null,"X"),s("mn",null,"1")]),s("mo",null,","),s("mo",null,"⋯"),s("mo",null,","),s("msub",null,[s("mi",null,"X"),s("mi",null,"n")])])],-1),c=a('
julia
@variable(m, 1 X[1:9, 1:9]  9, Int)
julia
# TODO: Add other solvers
',1),Q={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},g={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.439ex"},xmlns:"http://www.w3.org/2000/svg",width:"15.148ex",height:"2.034ex",role:"img",focusable:"false",viewBox:"0 -705 6695.4 899","aria-hidden":"true"},T=a('',1),u=[T],m=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"C"),s("mo",null,"="),s("msub",null,[s("mi",null,"C"),s("mn",null,"1")]),s("mo",null,","),s("mo",null,"⋯"),s("mo",null,","),s("msub",null,[s("mi",null,"C"),s("mi",null,"n")])])],-1),v={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},y={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.928ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 852 683","aria-hidden":"true"},b=s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D44B",d:"M42 0H40Q26 0 26 11Q26 15 29 27Q33 41 36 43T55 46Q141 49 190 98Q200 108 306 224T411 342Q302 620 297 625Q288 636 234 637H206Q200 643 200 645T202 664Q206 677 212 683H226Q260 681 347 681Q380 681 408 681T453 682T473 682Q490 682 490 671Q490 670 488 658Q484 643 481 640T465 637Q434 634 411 620L488 426L541 485Q646 598 646 610Q646 628 622 635Q617 635 609 637Q594 637 594 648Q594 650 596 664Q600 677 606 683H618Q619 683 643 683T697 681T738 680Q828 680 837 683H845Q852 676 852 672Q850 647 840 637H824Q790 636 763 628T722 611T698 593L687 584Q687 585 592 480L505 384Q505 383 536 304T601 142T638 56Q648 47 699 46Q734 46 734 37Q734 35 732 23Q728 7 725 4T711 1Q708 1 678 1T589 2Q528 2 496 2T461 1Q444 1 444 10Q444 11 446 25Q448 35 450 39T455 44T464 46T480 47T506 54Q523 62 523 64Q522 64 476 181L429 299Q241 95 236 84Q232 76 232 72Q232 53 261 47Q262 47 267 47T273 46Q276 46 277 46T280 45T283 42T284 35Q284 26 282 19Q279 6 276 4T261 1Q258 1 243 1T201 2T142 2Q64 2 42 0Z",style:{"stroke-width":"3"}})])])],-1),E=[b],C=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"X")])],-1),f=a(`

When modeling problems as CP, one might define and use their own predicates. However, a large collection of already defined constraints exists. One, if not the most, iconic global constraint is called AllDifferent. It ensures that all variables take distinct values.

Sudoku puzzles can be defined using only this one constraint applied to different subsets of variables.

julia
for i in 1:9
+        @constraint(m, X[i,:] in AllDifferent()) # rows
+        @constraint(m, X[:,i] in AllDifferent()) # columns
+end
julia
# TODO: Add other solvers

The last series of AllDifferent constraint is less straight forward. We need to ensure that each 3 × 3 subgrid (block) is filled with distinct values.

julia
for i in 0:2, j in 0:2 # blocks
+    @constraint(
+        m,
+        vec(X[(3i+1):(3(i+1)), (3j+1):(3(j+1))]) in AllDifferent(),
+    )
+end
julia
# TODO: Add other solvers

We can now simply run our solver to look for a feasible solution.

julia
optimize!(m)

Note that this is heuristic solver, we might not get a feasible solution! Let's check it out. The value function print the value of a JuMP variable. We can cast it over a collection with the value. syntax.

julia
value.(X)
`,9);function _(w,F,D,x,A,L){return e(),t("div",null,[h,s("ol",null,[s("li",null,[i("A collection "),s("mjx-container",o,[(e(),t("svg",p,r)),k]),i(" of variables with each an associated domain.")])]),c,s("ol",null,[s("li",null,[i("A collection of predicates (called constraints) "),s("mjx-container",Q,[(e(),t("svg",g,u)),m]),i(" over (subsets of) "),s("mjx-container",v,[(e(),t("svg",y,E)),C]),i(".")])]),f])}const H=l(n,[["render",_]]);export{S as __pageData,H as default}; diff --git a/dev/assets/cp_getting_started.md.BuWkGTqp.lean.js b/dev/assets/cp_getting_started.md.BuWkGTqp.lean.js new file mode 100644 index 0000000..69090e9 --- /dev/null +++ b/dev/assets/cp_getting_started.md.BuWkGTqp.lean.js @@ -0,0 +1 @@ +import{_ as l,c as t,m as s,a as i,a7 as a,o as e}from"./chunks/framework.aA95Gx5L.js";const S=JSON.parse('{"title":"Getting Started with Julia for CP and Optimization","description":"","frontmatter":{},"headers":[],"relativePath":"cp/getting_started.md","filePath":"cp/getting_started.md","lastUpdated":null}'),n={name:"cp/getting_started.md"},h=a("",15),o={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},p={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.439ex"},xmlns:"http://www.w3.org/2000/svg",width:"15.867ex",height:"1.984ex",role:"img",focusable:"false",viewBox:"0 -683 7013.4 877","aria-hidden":"true"},d=a("",1),r=[d],k=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"X"),s("mo",null,"="),s("msub",null,[s("mi",null,"X"),s("mn",null,"1")]),s("mo",null,","),s("mo",null,"⋯"),s("mo",null,","),s("msub",null,[s("mi",null,"X"),s("mi",null,"n")])])],-1),c=a("",1),Q={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},g={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.439ex"},xmlns:"http://www.w3.org/2000/svg",width:"15.148ex",height:"2.034ex",role:"img",focusable:"false",viewBox:"0 -705 6695.4 899","aria-hidden":"true"},T=a("",1),u=[T],m=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"C"),s("mo",null,"="),s("msub",null,[s("mi",null,"C"),s("mn",null,"1")]),s("mo",null,","),s("mo",null,"⋯"),s("mo",null,","),s("msub",null,[s("mi",null,"C"),s("mi",null,"n")])])],-1),v={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},y={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.928ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 852 683","aria-hidden":"true"},b=s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D44B",d:"M42 0H40Q26 0 26 11Q26 15 29 27Q33 41 36 43T55 46Q141 49 190 98Q200 108 306 224T411 342Q302 620 297 625Q288 636 234 637H206Q200 643 200 645T202 664Q206 677 212 683H226Q260 681 347 681Q380 681 408 681T453 682T473 682Q490 682 490 671Q490 670 488 658Q484 643 481 640T465 637Q434 634 411 620L488 426L541 485Q646 598 646 610Q646 628 622 635Q617 635 609 637Q594 637 594 648Q594 650 596 664Q600 677 606 683H618Q619 683 643 683T697 681T738 680Q828 680 837 683H845Q852 676 852 672Q850 647 840 637H824Q790 636 763 628T722 611T698 593L687 584Q687 585 592 480L505 384Q505 383 536 304T601 142T638 56Q648 47 699 46Q734 46 734 37Q734 35 732 23Q728 7 725 4T711 1Q708 1 678 1T589 2Q528 2 496 2T461 1Q444 1 444 10Q444 11 446 25Q448 35 450 39T455 44T464 46T480 47T506 54Q523 62 523 64Q522 64 476 181L429 299Q241 95 236 84Q232 76 232 72Q232 53 261 47Q262 47 267 47T273 46Q276 46 277 46T280 45T283 42T284 35Q284 26 282 19Q279 6 276 4T261 1Q258 1 243 1T201 2T142 2Q64 2 42 0Z",style:{"stroke-width":"3"}})])])],-1),E=[b],C=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"X")])],-1),f=a("",9);function _(w,F,D,x,A,L){return e(),t("div",null,[h,s("ol",null,[s("li",null,[i("A collection "),s("mjx-container",o,[(e(),t("svg",p,r)),k]),i(" of variables with each an associated domain.")])]),c,s("ol",null,[s("li",null,[i("A collection of predicates (called constraints) "),s("mjx-container",Q,[(e(),t("svg",g,u)),m]),i(" over (subsets of) "),s("mjx-container",v,[(e(),t("svg",y,E)),C]),i(".")])]),f])}const H=l(n,[["render",_]]);export{S as __pageData,H as default}; diff --git a/dev/assets/cp_intro.md.BJ225hHJ.js b/dev/assets/cp_intro.md.qCFhsnKE.js similarity index 93% rename from dev/assets/cp_intro.md.BJ225hHJ.js rename to dev/assets/cp_intro.md.qCFhsnKE.js index ed547b3..58971ac 100644 --- a/dev/assets/cp_intro.md.BJ225hHJ.js +++ b/dev/assets/cp_intro.md.qCFhsnKE.js @@ -1 +1 @@ -import{_ as e,c as o,o as a,m as t,a as n}from"./chunks/framework.RTxADYK2.js";const C=JSON.parse('{"title":"Welcome to Julia Constraints","description":"","frontmatter":{},"headers":[],"relativePath":"cp/intro.md","filePath":"cp/intro.md","lastUpdated":null}'),i={name:"cp/intro.md"},r=t("h1",{id:"Welcome-to-Julia-Constraints",tabindex:"-1"},[n("Welcome to Julia Constraints "),t("a",{class:"header-anchor",href:"#Welcome-to-Julia-Constraints","aria-label":'Permalink to "Welcome to Julia Constraints {#Welcome-to-Julia-Constraints}"'},"​")],-1),s=t("p",null,"An introductory post/chapter that provides an overview of the JuliaConstraint organization, its mission, and what readers can expect to learn from the content. Highlight the importance of Constraint Programming (CP) and optimization in solving real-world problems.",-1),c=[r,s];function l(d,m,p,h,_,u){return a(),o("div",null,c)}const J=e(i,[["render",l]]);export{C as __pageData,J as default}; +import{_ as e,c as o,o as a,m as t,a as n}from"./chunks/framework.aA95Gx5L.js";const C=JSON.parse('{"title":"Welcome to Julia Constraints","description":"","frontmatter":{},"headers":[],"relativePath":"cp/intro.md","filePath":"cp/intro.md","lastUpdated":null}'),i={name:"cp/intro.md"},r=t("h1",{id:"Welcome-to-Julia-Constraints",tabindex:"-1"},[n("Welcome to Julia Constraints "),t("a",{class:"header-anchor",href:"#Welcome-to-Julia-Constraints","aria-label":'Permalink to "Welcome to Julia Constraints {#Welcome-to-Julia-Constraints}"'},"​")],-1),s=t("p",null,"An introductory post/chapter that provides an overview of the JuliaConstraint organization, its mission, and what readers can expect to learn from the content. Highlight the importance of Constraint Programming (CP) and optimization in solving real-world problems.",-1),c=[r,s];function l(d,m,p,h,_,u){return a(),o("div",null,c)}const J=e(i,[["render",l]]);export{C as __pageData,J as default}; diff --git a/dev/assets/cp_intro.md.BJ225hHJ.lean.js b/dev/assets/cp_intro.md.qCFhsnKE.lean.js similarity index 93% rename from dev/assets/cp_intro.md.BJ225hHJ.lean.js rename to dev/assets/cp_intro.md.qCFhsnKE.lean.js index ed547b3..58971ac 100644 --- a/dev/assets/cp_intro.md.BJ225hHJ.lean.js +++ b/dev/assets/cp_intro.md.qCFhsnKE.lean.js @@ -1 +1 @@ -import{_ as e,c as o,o as a,m as t,a as n}from"./chunks/framework.RTxADYK2.js";const C=JSON.parse('{"title":"Welcome to Julia Constraints","description":"","frontmatter":{},"headers":[],"relativePath":"cp/intro.md","filePath":"cp/intro.md","lastUpdated":null}'),i={name:"cp/intro.md"},r=t("h1",{id:"Welcome-to-Julia-Constraints",tabindex:"-1"},[n("Welcome to Julia Constraints "),t("a",{class:"header-anchor",href:"#Welcome-to-Julia-Constraints","aria-label":'Permalink to "Welcome to Julia Constraints {#Welcome-to-Julia-Constraints}"'},"​")],-1),s=t("p",null,"An introductory post/chapter that provides an overview of the JuliaConstraint organization, its mission, and what readers can expect to learn from the content. Highlight the importance of Constraint Programming (CP) and optimization in solving real-world problems.",-1),c=[r,s];function l(d,m,p,h,_,u){return a(),o("div",null,c)}const J=e(i,[["render",l]]);export{C as __pageData,J as default}; +import{_ as e,c as o,o as a,m as t,a as n}from"./chunks/framework.aA95Gx5L.js";const C=JSON.parse('{"title":"Welcome to Julia Constraints","description":"","frontmatter":{},"headers":[],"relativePath":"cp/intro.md","filePath":"cp/intro.md","lastUpdated":null}'),i={name:"cp/intro.md"},r=t("h1",{id:"Welcome-to-Julia-Constraints",tabindex:"-1"},[n("Welcome to Julia Constraints "),t("a",{class:"header-anchor",href:"#Welcome-to-Julia-Constraints","aria-label":'Permalink to "Welcome to Julia Constraints {#Welcome-to-Julia-Constraints}"'},"​")],-1),s=t("p",null,"An introductory post/chapter that provides an overview of the JuliaConstraint organization, its mission, and what readers can expect to learn from the content. Highlight the importance of Constraint Programming (CP) and optimization in solving real-world problems.",-1),c=[r,s];function l(d,m,p,h,_,u){return a(),o("div",null,c)}const J=e(i,[["render",l]]);export{C as __pageData,J as default}; diff --git a/dev/assets/cp_models.md.DjZ6pPOZ.js b/dev/assets/cp_models.md.DjhzTYet.js similarity index 90% rename from dev/assets/cp_models.md.DjZ6pPOZ.js rename to dev/assets/cp_models.md.DjhzTYet.js index 81fcee0..ddc0dac 100644 --- a/dev/assets/cp_models.md.DjZ6pPOZ.js +++ b/dev/assets/cp_models.md.DjhzTYet.js @@ -1 +1 @@ -import{_ as e,c as a,o as n,a7 as i}from"./chunks/framework.RTxADYK2.js";const u=JSON.parse('{"title":"Building and Analyzing Models","description":"","frontmatter":{},"headers":[],"relativePath":"cp/models.md","filePath":"cp/models.md","lastUpdated":null}'),o={name:"cp/models.md"},t=i('

Building and Analyzing Models

Modeling Best Practices

  • Share best practices and tips for building efficient CP and optimization models.

Performance Analysis and Improvement

  • Teach how to analyze and improve the performance of models.
',5),l=[t];function s(d,r,c,m,_,h){return n(),a("div",null,l)}const f=e(o,[["render",s]]);export{u as __pageData,f as default}; +import{_ as e,c as a,o as n,a7 as i}from"./chunks/framework.aA95Gx5L.js";const u=JSON.parse('{"title":"Building and Analyzing Models","description":"","frontmatter":{},"headers":[],"relativePath":"cp/models.md","filePath":"cp/models.md","lastUpdated":null}'),o={name:"cp/models.md"},t=i('

Building and Analyzing Models

Modeling Best Practices

  • Share best practices and tips for building efficient CP and optimization models.

Performance Analysis and Improvement

  • Teach how to analyze and improve the performance of models.
',5),l=[t];function s(d,r,c,m,_,h){return n(),a("div",null,l)}const f=e(o,[["render",s]]);export{u as __pageData,f as default}; diff --git a/dev/assets/cp_models.md.DjZ6pPOZ.lean.js b/dev/assets/cp_models.md.DjhzTYet.lean.js similarity index 69% rename from dev/assets/cp_models.md.DjZ6pPOZ.lean.js rename to dev/assets/cp_models.md.DjhzTYet.lean.js index 1529273..0594a23 100644 --- a/dev/assets/cp_models.md.DjZ6pPOZ.lean.js +++ b/dev/assets/cp_models.md.DjhzTYet.lean.js @@ -1 +1 @@ -import{_ as e,c as a,o as n,a7 as i}from"./chunks/framework.RTxADYK2.js";const u=JSON.parse('{"title":"Building and Analyzing Models","description":"","frontmatter":{},"headers":[],"relativePath":"cp/models.md","filePath":"cp/models.md","lastUpdated":null}'),o={name:"cp/models.md"},t=i("",5),l=[t];function s(d,r,c,m,_,h){return n(),a("div",null,l)}const f=e(o,[["render",s]]);export{u as __pageData,f as default}; +import{_ as e,c as a,o as n,a7 as i}from"./chunks/framework.aA95Gx5L.js";const u=JSON.parse('{"title":"Building and Analyzing Models","description":"","frontmatter":{},"headers":[],"relativePath":"cp/models.md","filePath":"cp/models.md","lastUpdated":null}'),o={name:"cp/models.md"},t=i("",5),l=[t];function s(d,r,c,m,_,h){return n(),a("div",null,l)}const f=e(o,[["render",s]]);export{u as __pageData,f as default}; diff --git a/dev/assets/cp_opt.md.D4kdWENj.js b/dev/assets/cp_opt.md.oWksNiMs.js similarity index 92% rename from dev/assets/cp_opt.md.D4kdWENj.js rename to dev/assets/cp_opt.md.oWksNiMs.js index 417fbc6..d97086c 100644 --- a/dev/assets/cp_opt.md.D4kdWENj.js +++ b/dev/assets/cp_opt.md.oWksNiMs.js @@ -1 +1 @@ -import{_ as i,c as a,o as t,a7 as e}from"./chunks/framework.RTxADYK2.js";const _=JSON.parse('{"title":"Dive into Optimization","description":"","frontmatter":{},"headers":[],"relativePath":"cp/opt.md","filePath":"cp/opt.md","lastUpdated":null}'),n={name:"cp/opt.md"},o=e('

Dive into Optimization

Understanding Optimization

  • Explanation of optimization, types of optimization problems (e.g., linear, nonlinear, integer programming).

Metaheuristics Overview

  • Introduce concepts like Genetic Algorithms, Simulated Annealing, and Tabu Search.

Mathematical Programming Basics

  • Cover the fundamentals of mathematical programming and its role in optimization.
',7),r=[o];function s(l,m,c,d,h,p){return t(),a("div",null,r)}const g=i(n,[["render",s]]);export{_ as __pageData,g as default}; +import{_ as i,c as a,o as t,a7 as e}from"./chunks/framework.aA95Gx5L.js";const _=JSON.parse('{"title":"Dive into Optimization","description":"","frontmatter":{},"headers":[],"relativePath":"cp/opt.md","filePath":"cp/opt.md","lastUpdated":null}'),n={name:"cp/opt.md"},o=e('

Dive into Optimization

Understanding Optimization

  • Explanation of optimization, types of optimization problems (e.g., linear, nonlinear, integer programming).

Metaheuristics Overview

  • Introduce concepts like Genetic Algorithms, Simulated Annealing, and Tabu Search.

Mathematical Programming Basics

  • Cover the fundamentals of mathematical programming and its role in optimization.
',7),r=[o];function s(l,m,c,d,h,p){return t(),a("div",null,r)}const g=i(n,[["render",s]]);export{_ as __pageData,g as default}; diff --git a/dev/assets/cp_opt.md.D4kdWENj.lean.js b/dev/assets/cp_opt.md.oWksNiMs.lean.js similarity index 68% rename from dev/assets/cp_opt.md.D4kdWENj.lean.js rename to dev/assets/cp_opt.md.oWksNiMs.lean.js index 4d39566..9050a98 100644 --- a/dev/assets/cp_opt.md.D4kdWENj.lean.js +++ b/dev/assets/cp_opt.md.oWksNiMs.lean.js @@ -1 +1 @@ -import{_ as i,c as a,o as t,a7 as e}from"./chunks/framework.RTxADYK2.js";const _=JSON.parse('{"title":"Dive into Optimization","description":"","frontmatter":{},"headers":[],"relativePath":"cp/opt.md","filePath":"cp/opt.md","lastUpdated":null}'),n={name:"cp/opt.md"},o=e("",7),r=[o];function s(l,m,c,d,h,p){return t(),a("div",null,r)}const g=i(n,[["render",s]]);export{_ as __pageData,g as default}; +import{_ as i,c as a,o as t,a7 as e}from"./chunks/framework.aA95Gx5L.js";const _=JSON.parse('{"title":"Dive into Optimization","description":"","frontmatter":{},"headers":[],"relativePath":"cp/opt.md","filePath":"cp/opt.md","lastUpdated":null}'),n={name:"cp/opt.md"},o=e("",7),r=[o];function s(l,m,c,d,h,p){return t(),a("div",null,r)}const g=i(n,[["render",s]]);export{_ as __pageData,g as default}; diff --git a/dev/assets/cp_tuto_xp.md.c4f42ChT.js b/dev/assets/cp_tuto_xp.md.CLy9H2hK.js similarity index 90% rename from dev/assets/cp_tuto_xp.md.c4f42ChT.js rename to dev/assets/cp_tuto_xp.md.CLy9H2hK.js index 15205bb..ab8b4c4 100644 --- a/dev/assets/cp_tuto_xp.md.c4f42ChT.js +++ b/dev/assets/cp_tuto_xp.md.CLy9H2hK.js @@ -1 +1 @@ -import{_ as a,c as e,o as t,a7 as s}from"./chunks/framework.RTxADYK2.js";const x=JSON.parse('{"title":"Tutorials and Experiments","description":"","frontmatter":{},"headers":[],"relativePath":"cp/tuto_xp.md","filePath":"cp/tuto_xp.md","lastUpdated":null}'),n={name:"cp/tuto_xp.md"},i=s('

Tutorials and Experiments

Hands-On Tutorials

  • Provide step-by-step tutorials covering various topics and complexity levels.

Experimental Analysis

  • Discuss the importance of experimental analysis in CP and how to conduct meaningful experiments.
',5),r=[i];function l(o,d,p,u,c,_){return t(),e("div",null,r)}const h=a(n,[["render",l]]);export{x as __pageData,h as default}; +import{_ as a,c as e,o as t,a7 as s}from"./chunks/framework.aA95Gx5L.js";const x=JSON.parse('{"title":"Tutorials and Experiments","description":"","frontmatter":{},"headers":[],"relativePath":"cp/tuto_xp.md","filePath":"cp/tuto_xp.md","lastUpdated":null}'),n={name:"cp/tuto_xp.md"},i=s('

Tutorials and Experiments

Hands-On Tutorials

  • Provide step-by-step tutorials covering various topics and complexity levels.

Experimental Analysis

  • Discuss the importance of experimental analysis in CP and how to conduct meaningful experiments.
',5),r=[i];function l(o,d,p,u,c,_){return t(),e("div",null,r)}const h=a(n,[["render",l]]);export{x as __pageData,h as default}; diff --git a/dev/assets/cp_tuto_xp.md.c4f42ChT.lean.js b/dev/assets/cp_tuto_xp.md.CLy9H2hK.lean.js similarity index 69% rename from dev/assets/cp_tuto_xp.md.c4f42ChT.lean.js rename to dev/assets/cp_tuto_xp.md.CLy9H2hK.lean.js index ac1d6ad..2008e7a 100644 --- a/dev/assets/cp_tuto_xp.md.c4f42ChT.lean.js +++ b/dev/assets/cp_tuto_xp.md.CLy9H2hK.lean.js @@ -1 +1 @@ -import{_ as a,c as e,o as t,a7 as s}from"./chunks/framework.RTxADYK2.js";const x=JSON.parse('{"title":"Tutorials and Experiments","description":"","frontmatter":{},"headers":[],"relativePath":"cp/tuto_xp.md","filePath":"cp/tuto_xp.md","lastUpdated":null}'),n={name:"cp/tuto_xp.md"},i=s("",5),r=[i];function l(o,d,p,u,c,_){return t(),e("div",null,r)}const h=a(n,[["render",l]]);export{x as __pageData,h as default}; +import{_ as a,c as e,o as t,a7 as s}from"./chunks/framework.aA95Gx5L.js";const x=JSON.parse('{"title":"Tutorials and Experiments","description":"","frontmatter":{},"headers":[],"relativePath":"cp/tuto_xp.md","filePath":"cp/tuto_xp.md","lastUpdated":null}'),n={name:"cp/tuto_xp.md"},i=s("",5),r=[i];function l(o,d,p,u,c,_){return t(),e("div",null,r)}const h=a(n,[["render",l]]);export{x as __pageData,h as default}; diff --git a/dev/assets/full_api.md.DfcIBjEi.js b/dev/assets/full_api.md.BY5e_0Y2.js similarity index 99% rename from dev/assets/full_api.md.DfcIBjEi.js rename to dev/assets/full_api.md.BY5e_0Y2.js index df5d92d..7e8510f 100644 --- a/dev/assets/full_api.md.DfcIBjEi.js +++ b/dev/assets/full_api.md.BY5e_0Y2.js @@ -1,4 +1,4 @@ -import{_ as s,c as i,o as a,a7 as t}from"./chunks/framework.RTxADYK2.js";const E=JSON.parse('{"title":"Full API","description":"","frontmatter":{},"headers":[],"relativePath":"full_api.md","filePath":"full_api.md","lastUpdated":null}'),e={name:"full_api.md"},n=t(`

Full API

# ConstraintCommons.USUAL_CONSTRAINT_PARAMETERSConstant.
julia
const USUAL_CONSTRAINT_PARAMETERS

List of usual constraints parameters (based on XCSP3-core constraints).

julia
const USUAL_CONSTRAINT_PARAMETERS = [
+import{_ as s,c as i,o as a,a7 as t}from"./chunks/framework.aA95Gx5L.js";const E=JSON.parse('{"title":"Full API","description":"","frontmatter":{},"headers":[],"relativePath":"full_api.md","filePath":"full_api.md","lastUpdated":null}'),e={name:"full_api.md"},n=t(`

Full API

# ConstraintCommons.USUAL_CONSTRAINT_PARAMETERSConstant.
julia
const USUAL_CONSTRAINT_PARAMETERS

List of usual constraints parameters (based on XCSP3-core constraints).

julia
const USUAL_CONSTRAINT_PARAMETERS = [
     :bool,
     :dim,
     :id,
diff --git a/dev/assets/full_api.md.DfcIBjEi.lean.js b/dev/assets/full_api.md.BY5e_0Y2.lean.js
similarity index 67%
rename from dev/assets/full_api.md.DfcIBjEi.lean.js
rename to dev/assets/full_api.md.BY5e_0Y2.lean.js
index cc0cefb..c78f59b 100644
--- a/dev/assets/full_api.md.DfcIBjEi.lean.js
+++ b/dev/assets/full_api.md.BY5e_0Y2.lean.js
@@ -1 +1 @@
-import{_ as s,c as i,o as a,a7 as t}from"./chunks/framework.RTxADYK2.js";const E=JSON.parse('{"title":"Full API","description":"","frontmatter":{},"headers":[],"relativePath":"full_api.md","filePath":"full_api.md","lastUpdated":null}'),e={name:"full_api.md"},n=t("",375),l=[n];function h(p,r,k,o,d,c){return a(),i("div",null,l)}const y=s(e,[["render",h]]);export{E as __pageData,y as default};
+import{_ as s,c as i,o as a,a7 as t}from"./chunks/framework.aA95Gx5L.js";const E=JSON.parse('{"title":"Full API","description":"","frontmatter":{},"headers":[],"relativePath":"full_api.md","filePath":"full_api.md","lastUpdated":null}'),e={name:"full_api.md"},n=t("",375),l=[n];function h(p,r,k,o,d,c){return a(),i("div",null,l)}const y=s(e,[["render",h]]);export{E as __pageData,y as default};
diff --git a/dev/assets/index-old.md.D8PnE1wz.js b/dev/assets/index-old.md.BzPVACYs.js
similarity index 97%
rename from dev/assets/index-old.md.D8PnE1wz.js
rename to dev/assets/index-old.md.BzPVACYs.js
index 50b9d8c..a0fdd39 100644
--- a/dev/assets/index-old.md.D8PnE1wz.js
+++ b/dev/assets/index-old.md.BzPVACYs.js
@@ -1 +1 @@
-import{_ as a,c as t,o as e,a7 as s}from"./chunks/framework.RTxADYK2.js";const g=JSON.parse('{"title":"","description":"","frontmatter":{},"headers":[],"relativePath":"index-old.md","filePath":"index-old.md","lastUpdated":null}'),r={name:"index-old.md"},i=s('

JuliaConstraints

JuliaConstraints is a collection of packages that help you solve constraint programming problems in Julia. Constraint programming involves modeling problems with constraints, such as "x > 5" or "x + y = 10", and finding solutions that satisfy all of the constraints. It is a part of the JuMP ecosystem that focuses on constraint programming in Julia.

The goal of packages in JuliaConstraints are two-fold: some of them provide a generic interface, others are solvers for CP models (either purely in Julia or wrapping). They make it easy to solve constraint-satisfaction problems (CSPs) and constraint-optimisation problems (COPs) in Julia using industry-standard solvers and mixed-integer solvers.

Other packages for CP in Julia include:

Operational Research vs Constraint Programming

Operational research (OR) is a problem-solving approach that uses mathematical models, statistical analysis, and optimization techniques to help organizations make better decisions. OR is concerned with understanding and optimizing complex systems, such as supply chains, transportation networks, and manufacturing processes, to improve efficiency and reduce costs.

On the other hand, constraint programming (CP) is a programming paradigm that focuses on solving problems with constraints. Constraints are conditions that must be satisfied for a solution to be valid. CP is often used to solve combinatorial problems, such as scheduling, routing, and allocation, where the search space of possible solutions is very large.

So, while both OR and CP are concerned with solving complex problems, they approach the problem-solving process from different angles. OR typically uses mathematical models and optimization techniques to analyze and optimize existing systems, while CP focuses on finding valid solutions that satisfy a set of constraints.

Constraint-based local search (CBLS) is a type of constraint programming solver that uses a heuristic search algorithm to find solutions to problems. It starts with an initial solution and tries to improve it by making small changes that satisfy the constraints. CBLS is especially useful for large and complex problems where finding an exact solution may take too much time or be impossible.

In contrast, other constraint programming solvers use a variety of algorithms and techniques to find exact solutions to problems. These solvers try to find a solution that satisfies all of the constraints in the problem. They can be useful for smaller problems where finding an exact solution is feasible, or for problems that have a clear mathematical structure.

In summary, CBLS is a type of constraint programming solver that uses a heuristic search algorithm to find good solutions, while other constraint programming solvers use various techniques to find exact solutions to problems.

',14),o=[i];function n(l,h,p,c,m,u){return e(),t("div",null,o)}const f=a(r,[["render",n]]);export{g as __pageData,f as default}; +import{_ as a,c as t,o as e,a7 as s}from"./chunks/framework.aA95Gx5L.js";const g=JSON.parse('{"title":"","description":"","frontmatter":{},"headers":[],"relativePath":"index-old.md","filePath":"index-old.md","lastUpdated":null}'),r={name:"index-old.md"},i=s('

JuliaConstraints

JuliaConstraints is a collection of packages that help you solve constraint programming problems in Julia. Constraint programming involves modeling problems with constraints, such as "x > 5" or "x + y = 10", and finding solutions that satisfy all of the constraints. It is a part of the JuMP ecosystem that focuses on constraint programming in Julia.

The goal of packages in JuliaConstraints are two-fold: some of them provide a generic interface, others are solvers for CP models (either purely in Julia or wrapping). They make it easy to solve constraint-satisfaction problems (CSPs) and constraint-optimisation problems (COPs) in Julia using industry-standard solvers and mixed-integer solvers.

Other packages for CP in Julia include:

Operational Research vs Constraint Programming

Operational research (OR) is a problem-solving approach that uses mathematical models, statistical analysis, and optimization techniques to help organizations make better decisions. OR is concerned with understanding and optimizing complex systems, such as supply chains, transportation networks, and manufacturing processes, to improve efficiency and reduce costs.

On the other hand, constraint programming (CP) is a programming paradigm that focuses on solving problems with constraints. Constraints are conditions that must be satisfied for a solution to be valid. CP is often used to solve combinatorial problems, such as scheduling, routing, and allocation, where the search space of possible solutions is very large.

So, while both OR and CP are concerned with solving complex problems, they approach the problem-solving process from different angles. OR typically uses mathematical models and optimization techniques to analyze and optimize existing systems, while CP focuses on finding valid solutions that satisfy a set of constraints.

Constraint-based local search (CBLS) is a type of constraint programming solver that uses a heuristic search algorithm to find solutions to problems. It starts with an initial solution and tries to improve it by making small changes that satisfy the constraints. CBLS is especially useful for large and complex problems where finding an exact solution may take too much time or be impossible.

In contrast, other constraint programming solvers use a variety of algorithms and techniques to find exact solutions to problems. These solvers try to find a solution that satisfies all of the constraints in the problem. They can be useful for smaller problems where finding an exact solution is feasible, or for problems that have a clear mathematical structure.

In summary, CBLS is a type of constraint programming solver that uses a heuristic search algorithm to find good solutions, while other constraint programming solvers use various techniques to find exact solutions to problems.

',14),o=[i];function n(l,h,p,c,m,u){return e(),t("div",null,o)}const f=a(r,[["render",n]]);export{g as __pageData,f as default}; diff --git a/dev/assets/index-old.md.D8PnE1wz.lean.js b/dev/assets/index-old.md.BzPVACYs.lean.js similarity index 67% rename from dev/assets/index-old.md.D8PnE1wz.lean.js rename to dev/assets/index-old.md.BzPVACYs.lean.js index b13eaca..37fcb53 100644 --- a/dev/assets/index-old.md.D8PnE1wz.lean.js +++ b/dev/assets/index-old.md.BzPVACYs.lean.js @@ -1 +1 @@ -import{_ as a,c as t,o as e,a7 as s}from"./chunks/framework.RTxADYK2.js";const g=JSON.parse('{"title":"","description":"","frontmatter":{},"headers":[],"relativePath":"index-old.md","filePath":"index-old.md","lastUpdated":null}'),r={name:"index-old.md"},i=s("",14),o=[i];function n(l,h,p,c,m,u){return e(),t("div",null,o)}const f=a(r,[["render",n]]);export{g as __pageData,f as default}; +import{_ as a,c as t,o as e,a7 as s}from"./chunks/framework.aA95Gx5L.js";const g=JSON.parse('{"title":"","description":"","frontmatter":{},"headers":[],"relativePath":"index-old.md","filePath":"index-old.md","lastUpdated":null}'),r={name:"index-old.md"},i=s("",14),o=[i];function n(l,h,p,c,m,u){return e(),t("div",null,o)}const f=a(r,[["render",n]]);export{g as __pageData,f as default}; diff --git a/dev/assets/index.md.BcgCFTkL.js b/dev/assets/index.md.BcgCFTkL.js new file mode 100644 index 0000000..d854058 --- /dev/null +++ b/dev/assets/index.md.BcgCFTkL.js @@ -0,0 +1 @@ +import{_ as t,c as e,o,a7 as i}from"./chunks/framework.aA95Gx5L.js";const d=JSON.parse('{"title":"","description":"","frontmatter":{"layout":"home","hero":{"name":"Julia Constraints","text":"Model Smoothly Decide Wisely","tagline":"A Toolkit for Constraint Programming","image":{"src":"/logo.png","alt":"JuliaConstraints"},"actions":[{"theme":"brand","text":"Constraint Programming ?!","link":"/cp/intro"},{"theme":"alt","text":"View on Github","link":"https://github.com/JuliaConstraints/JuliaConstraints.github.io"}]},"features":[{"icon":"\\"JuMP.jl\\"/","title":"JuMP.jl","details":"Model optimization problems via JuMP.jl!","link":"https://jump.dev/"},{"icon":"\\"ToQUBO.jl\\"/","title":"ToQUBO.jl","details":"Convert and send optimization models to QUBO solvers!","link":"https://github.com/psrenergy/ToQUBO.jl"},{"icon":"\\"Pluto.jl\\"/","title":"Pluto.jl","details":"Simple, reactive programming environment via Julia notebooks","link":"https://plutojl.org/"}]},"headers":[],"relativePath":"index.md","filePath":"index.md","lastUpdated":null}'),a={name:"index.md"},n=i("

<p style="margin-bottom:2cm"></p>

<div class="vp-doc" style="width:80%; margin:auto">

<h1>What is Julia Constraints? (chatGPTed atm)</h1>

<p>The Julia Constraints organization is dedicated to advancing Constraint Programming within the Julia ecosystem, serving as a hub for resources that facilitate the creation, understanding, and solution of constraint programming problems. Our goal is to make Constraint Programming accessible and efficient for users at all levels of expertise, by providing a comprehensive suite of tools that integrate seamlessly with JuMP.jl, a popular Julia package for mathematical optimization.</p>

<h2>Our offerings include:</h2>

<h3>Core Packages:</h3> <p>A foundation of common packages (ConstraintCommons, ConstraintDomains, Constraints, ConstraintModels) that supply essential features for constraint programming, ensuring users have the basic tools necessary for their projects.</p>

<h3>Learning and Translation Tools:</h3> <p>Advanced packages like CompositionalNetworks, QUBOConstraints, and ConstraintsTranslator bridge the gap between ease of modeling and computational efficiency. These tools learn from constraints and convert natural language problems into constraint programming solutions, requiring minimal input from the user beyond the model itself.</p>

<h3>Solvers:</h3> <p>We provide a range of solvers, from native Julia solvers (LocalSearchSolvers) to interfaces with JuMP for external CP solvers, catering to various problem-solving needs.</p>

<h3>MetaStrategist (Emerging Technology):</h3> <p>In its formative stages, MetaStrategist embodies our pioneering spirit. As a burgeoning meta-solving package, it aims to harness the strengths of CP and JuMP. Its vision is to formulate tailored strategies that consider the unique hardware and software resources at hand, offering a new horizon in problem-solving efficiency and adaptability.</p>

<h3>Performance Checker (Community Resource):</h3> <p>PerfChecker.jl transcends its role within Julia Constraints, offering its capabilities to the broader Julia package ecosystem. This indispensable tool for cross-version performance checking not only safeguards the high efficiency and reliability of our packages but also serves the wider community. By facilitating clear and simple performance evaluations, PerfChecker.jl enhances both development and maintenance, contributing to the overall health and progress of Julia's growing library of resources.</p>

<p>At Julia Constraints, our mission is to democratize Constraint Programming by providing robust, user-friendly tools that simplify the modeling process, enhance efficiency, and empower users to solve complex problems with ease.</p>

</div>

",12),s=[n];function r(l,g,p,c,m,h){return o(),e("div",null,s)}const f=t(a,[["render",r]]);export{d as __pageData,f as default}; diff --git a/dev/assets/index.md.DIDgK_Eh.lean.js b/dev/assets/index.md.BcgCFTkL.lean.js similarity index 81% rename from dev/assets/index.md.DIDgK_Eh.lean.js rename to dev/assets/index.md.BcgCFTkL.lean.js index 2dd8841..b64f3ad 100644 --- a/dev/assets/index.md.DIDgK_Eh.lean.js +++ b/dev/assets/index.md.BcgCFTkL.lean.js @@ -1 +1 @@ -import{_ as e,c as t,o,a7 as i}from"./chunks/framework.RTxADYK2.js";const u=JSON.parse('{"title":"","description":"","frontmatter":{"layout":"home","hero":{"name":"Julia Constraints","text":"Model Smoothly Decide Wisely","tagline":"A Toolkit for Constraint Programming","image":{"src":"/logo.png","alt":"JuliaConstraints"},"actions":[{"theme":"brand","text":"Constraint Programming ?!","link":"/cp/intro"},{"theme":"alt","text":"View on Github","link":"https://github.com/JuliaConstraints/JuliaConstraints.github.io"}]},"features":[{"icon":"\\"JuMP.jl\\"/","title":"JuMP.jl","details":"Model optimization problems via JuMP.jl!","link":"https://jump.dev/"},{"icon":"\\"ToQUBO.jl\\"/","title":"ToQUBO.jl","details":"Convert and send optimization models to QUBO solvers!","link":"https://github.com/psrenergy/ToQUBO.jl"},{"icon":"\\"Pluto.jl\\"/","title":"Pluto.jl","details":"Simple, reactive programming environment via Julia notebooks","link":"https://plutojl.org/"}]},"headers":[],"relativePath":"index.md","filePath":"index.md","lastUpdated":null}'),a={name:"index.md"},n=i("",2),s=[n];function r(l,c,m,h,g,p){return o(),t("div",null,s)}const f=e(a,[["render",r]]);export{u as __pageData,f as default}; +import{_ as t,c as e,o,a7 as i}from"./chunks/framework.aA95Gx5L.js";const d=JSON.parse('{"title":"","description":"","frontmatter":{"layout":"home","hero":{"name":"Julia Constraints","text":"Model Smoothly Decide Wisely","tagline":"A Toolkit for Constraint Programming","image":{"src":"/logo.png","alt":"JuliaConstraints"},"actions":[{"theme":"brand","text":"Constraint Programming ?!","link":"/cp/intro"},{"theme":"alt","text":"View on Github","link":"https://github.com/JuliaConstraints/JuliaConstraints.github.io"}]},"features":[{"icon":"\\"JuMP.jl\\"/","title":"JuMP.jl","details":"Model optimization problems via JuMP.jl!","link":"https://jump.dev/"},{"icon":"\\"ToQUBO.jl\\"/","title":"ToQUBO.jl","details":"Convert and send optimization models to QUBO solvers!","link":"https://github.com/psrenergy/ToQUBO.jl"},{"icon":"\\"Pluto.jl\\"/","title":"Pluto.jl","details":"Simple, reactive programming environment via Julia notebooks","link":"https://plutojl.org/"}]},"headers":[],"relativePath":"index.md","filePath":"index.md","lastUpdated":null}'),a={name:"index.md"},n=i("",12),s=[n];function r(l,g,p,c,m,h){return o(),e("div",null,s)}const f=t(a,[["render",r]]);export{d as __pageData,f as default}; diff --git a/dev/assets/index.md.DIDgK_Eh.js b/dev/assets/index.md.DIDgK_Eh.js deleted file mode 100644 index eac9746..0000000 --- a/dev/assets/index.md.DIDgK_Eh.js +++ /dev/null @@ -1 +0,0 @@ -import{_ as e,c as t,o,a7 as i}from"./chunks/framework.RTxADYK2.js";const u=JSON.parse('{"title":"","description":"","frontmatter":{"layout":"home","hero":{"name":"Julia Constraints","text":"Model Smoothly Decide Wisely","tagline":"A Toolkit for Constraint Programming","image":{"src":"/logo.png","alt":"JuliaConstraints"},"actions":[{"theme":"brand","text":"Constraint Programming ?!","link":"/cp/intro"},{"theme":"alt","text":"View on Github","link":"https://github.com/JuliaConstraints/JuliaConstraints.github.io"}]},"features":[{"icon":"\\"JuMP.jl\\"/","title":"JuMP.jl","details":"Model optimization problems via JuMP.jl!","link":"https://jump.dev/"},{"icon":"\\"ToQUBO.jl\\"/","title":"ToQUBO.jl","details":"Convert and send optimization models to QUBO solvers!","link":"https://github.com/psrenergy/ToQUBO.jl"},{"icon":"\\"Pluto.jl\\"/","title":"Pluto.jl","details":"Simple, reactive programming environment via Julia notebooks","link":"https://plutojl.org/"}]},"headers":[],"relativePath":"index.md","filePath":"index.md","lastUpdated":null}'),a={name:"index.md"},n=i('

What is Julia Constraints? (chatGPTed atm)

The Julia Constraints organization is dedicated to advancing Constraint Programming within the Julia ecosystem, serving as a hub for resources that facilitate the creation, understanding, and solution of constraint programming problems. Our goal is to make Constraint Programming accessible and efficient for users at all levels of expertise, by providing a comprehensive suite of tools that integrate seamlessly with JuMP.jl, a popular Julia package for mathematical optimization.

Our offerings include:

Core Packages:

A foundation of common packages (ConstraintCommons, ConstraintDomains, Constraints, ConstraintModels) that supply essential features for constraint programming, ensuring users have the basic tools necessary for their projects.

Learning and Translation Tools:

Advanced packages like CompositionalNetworks, QUBOConstraints, and ConstraintsTranslator bridge the gap between ease of modeling and computational efficiency. These tools learn from constraints and convert natural language problems into constraint programming solutions, requiring minimal input from the user beyond the model itself.

Solvers:

We provide a range of solvers, from native Julia solvers (LocalSearchSolvers) to interfaces with JuMP for external CP solvers, catering to various problem-solving needs.

MetaStrategist (Emerging Technology):

In its formative stages, MetaStrategist embodies our pioneering spirit. As a burgeoning meta-solving package, it aims to harness the strengths of CP and JuMP. Its vision is to formulate tailored strategies that consider the unique hardware and software resources at hand, offering a new horizon in problem-solving efficiency and adaptability.

Performance Checker (Community Resource):

PerfChecker.jl transcends its role within Julia Constraints, offering its capabilities to the broader Julia package ecosystem. This indispensable tool for cross-version performance checking not only safeguards the high efficiency and reliability of our packages but also serves the wider community. By facilitating clear and simple performance evaluations, PerfChecker.jl enhances both development and maintenance, contributing to the overall health and progress of Julia's growing library of resources.

At Julia Constraints, our mission is to democratize Constraint Programming by providing robust, user-friendly tools that simplify the modeling process, enhance efficiency, and empower users to solve complex problems with ease.

',2),s=[n];function r(l,c,m,h,g,p){return o(),t("div",null,s)}const f=e(a,[["render",r]]);export{u as __pageData,f as default}; diff --git a/dev/assets/learning_aggregation.md.Sz527FxT.js b/dev/assets/learning_aggregation.md.CLetyme2.js similarity index 96% rename from dev/assets/learning_aggregation.md.Sz527FxT.js rename to dev/assets/learning_aggregation.md.CLetyme2.js index 07d6d94..c13fbf0 100644 --- a/dev/assets/learning_aggregation.md.Sz527FxT.js +++ b/dev/assets/learning_aggregation.md.CLetyme2.js @@ -1 +1 @@ -import{_ as a,c as e,o as i,a7 as t}from"./chunks/framework.RTxADYK2.js";const b=JSON.parse('{"title":"Aggregation Layer","description":"","frontmatter":{},"headers":[],"relativePath":"learning/aggregation.md","filePath":"learning/aggregation.md","lastUpdated":null}'),o={name:"learning/aggregation.md"},r=t('

Aggregation Layer

Some text to describe the aggragation layer within usual ICNs.

List of aggregations

# CompositionalNetworks.ag_sumFunction.
julia
ag_sum(x)

Aggregate through + a vector into a single scalar.

source


# CompositionalNetworks.ag_count_positiveFunction.
julia
ag_count_positive(x)

Count the number of strictly positive elements of x.

source


Layer generation

# CompositionalNetworks.aggregation_layerFunction.
julia
aggregation_layer()

Generate the layer of aggregations of the ICN. The operations are mutually exclusive, that is only one will be selected.

source


',10),s=[r];function n(g,l,p,d,c,h){return i(),e("div",null,s)}const k=a(o,[["render",n]]);export{b as __pageData,k as default}; +import{_ as a,c as e,o as i,a7 as t}from"./chunks/framework.aA95Gx5L.js";const b=JSON.parse('{"title":"Aggregation Layer","description":"","frontmatter":{},"headers":[],"relativePath":"learning/aggregation.md","filePath":"learning/aggregation.md","lastUpdated":null}'),o={name:"learning/aggregation.md"},r=t('

Aggregation Layer

Some text to describe the aggragation layer within usual ICNs.

List of aggregations

# CompositionalNetworks.ag_sumFunction.
julia
ag_sum(x)

Aggregate through + a vector into a single scalar.

source


# CompositionalNetworks.ag_count_positiveFunction.
julia
ag_count_positive(x)

Count the number of strictly positive elements of x.

source


Layer generation

# CompositionalNetworks.aggregation_layerFunction.
julia
aggregation_layer()

Generate the layer of aggregations of the ICN. The operations are mutually exclusive, that is only one will be selected.

source


',10),s=[r];function n(g,l,p,d,c,h){return i(),e("div",null,s)}const k=a(o,[["render",n]]);export{b as __pageData,k as default}; diff --git a/dev/assets/learning_aggregation.md.Sz527FxT.lean.js b/dev/assets/learning_aggregation.md.CLetyme2.lean.js similarity index 70% rename from dev/assets/learning_aggregation.md.Sz527FxT.lean.js rename to dev/assets/learning_aggregation.md.CLetyme2.lean.js index 39e4991..d0fcbcd 100644 --- a/dev/assets/learning_aggregation.md.Sz527FxT.lean.js +++ b/dev/assets/learning_aggregation.md.CLetyme2.lean.js @@ -1 +1 @@ -import{_ as a,c as e,o as i,a7 as t}from"./chunks/framework.RTxADYK2.js";const b=JSON.parse('{"title":"Aggregation Layer","description":"","frontmatter":{},"headers":[],"relativePath":"learning/aggregation.md","filePath":"learning/aggregation.md","lastUpdated":null}'),o={name:"learning/aggregation.md"},r=t("",10),s=[r];function n(g,l,p,d,c,h){return i(),e("div",null,s)}const k=a(o,[["render",n]]);export{b as __pageData,k as default}; +import{_ as a,c as e,o as i,a7 as t}from"./chunks/framework.aA95Gx5L.js";const b=JSON.parse('{"title":"Aggregation Layer","description":"","frontmatter":{},"headers":[],"relativePath":"learning/aggregation.md","filePath":"learning/aggregation.md","lastUpdated":null}'),o={name:"learning/aggregation.md"},r=t("",10),s=[r];function n(g,l,p,d,c,h){return i(),e("div",null,s)}const k=a(o,[["render",n]]);export{b as __pageData,k as default}; diff --git a/dev/assets/learning_arithmetic.md.B4v6W0sx.js b/dev/assets/learning_arithmetic.md.BCOx2iYR.js similarity index 96% rename from dev/assets/learning_arithmetic.md.B4v6W0sx.js rename to dev/assets/learning_arithmetic.md.BCOx2iYR.js index 797237d..5b68c84 100644 --- a/dev/assets/learning_arithmetic.md.B4v6W0sx.js +++ b/dev/assets/learning_arithmetic.md.BCOx2iYR.js @@ -1 +1 @@ -import{_ as e,c as i,o as t,a7 as a}from"./chunks/framework.RTxADYK2.js";const b=JSON.parse('{"title":"Arithmetic Layer","description":"","frontmatter":{},"headers":[],"relativePath":"learning/arithmetic.md","filePath":"learning/arithmetic.md","lastUpdated":null}'),r={name:"learning/arithmetic.md"},o=a('

Arithmetic Layer

Some text to describe the arithmetic layer within usual ICNs.

List of arithmetic operations

# CompositionalNetworks.ar_sumFunction.
julia
ar_sum(x)

Reduce k = length(x) vectors through sum to a single vector.

source


# CompositionalNetworks.ar_prodFunction.
julia
ar_prod(x)

Reduce k = length(x) vectors through product to a single vector.

source


Layer generation

# CompositionalNetworks.arithmetic_layerFunction.
julia
arithmetic_layer()

Generate the layer of arithmetic operations of the ICN. The operations are mutually exclusive, that is only one will be selected.

source


',10),s=[o];function l(n,h,c,p,d,m){return t(),i("div",null,s)}const g=e(r,[["render",l]]);export{b as __pageData,g as default}; +import{_ as e,c as i,o as t,a7 as a}from"./chunks/framework.aA95Gx5L.js";const b=JSON.parse('{"title":"Arithmetic Layer","description":"","frontmatter":{},"headers":[],"relativePath":"learning/arithmetic.md","filePath":"learning/arithmetic.md","lastUpdated":null}'),r={name:"learning/arithmetic.md"},o=a('

Arithmetic Layer

Some text to describe the arithmetic layer within usual ICNs.

List of arithmetic operations

# CompositionalNetworks.ar_sumFunction.
julia
ar_sum(x)

Reduce k = length(x) vectors through sum to a single vector.

source


# CompositionalNetworks.ar_prodFunction.
julia
ar_prod(x)

Reduce k = length(x) vectors through product to a single vector.

source


Layer generation

# CompositionalNetworks.arithmetic_layerFunction.
julia
arithmetic_layer()

Generate the layer of arithmetic operations of the ICN. The operations are mutually exclusive, that is only one will be selected.

source


',10),s=[o];function l(n,h,c,p,d,m){return t(),i("div",null,s)}const g=e(r,[["render",l]]);export{b as __pageData,g as default}; diff --git a/dev/assets/learning_arithmetic.md.B4v6W0sx.lean.js b/dev/assets/learning_arithmetic.md.BCOx2iYR.lean.js similarity index 70% rename from dev/assets/learning_arithmetic.md.B4v6W0sx.lean.js rename to dev/assets/learning_arithmetic.md.BCOx2iYR.lean.js index 787777d..5f32649 100644 --- a/dev/assets/learning_arithmetic.md.B4v6W0sx.lean.js +++ b/dev/assets/learning_arithmetic.md.BCOx2iYR.lean.js @@ -1 +1 @@ -import{_ as e,c as i,o as t,a7 as a}from"./chunks/framework.RTxADYK2.js";const b=JSON.parse('{"title":"Arithmetic Layer","description":"","frontmatter":{},"headers":[],"relativePath":"learning/arithmetic.md","filePath":"learning/arithmetic.md","lastUpdated":null}'),r={name:"learning/arithmetic.md"},o=a("",10),s=[o];function l(n,h,c,p,d,m){return t(),i("div",null,s)}const g=e(r,[["render",l]]);export{b as __pageData,g as default}; +import{_ as e,c as i,o as t,a7 as a}from"./chunks/framework.aA95Gx5L.js";const b=JSON.parse('{"title":"Arithmetic Layer","description":"","frontmatter":{},"headers":[],"relativePath":"learning/arithmetic.md","filePath":"learning/arithmetic.md","lastUpdated":null}'),r={name:"learning/arithmetic.md"},o=a("",10),s=[o];function l(n,h,c,p,d,m){return t(),i("div",null,s)}const g=e(r,[["render",l]]);export{b as __pageData,g as default}; diff --git a/dev/assets/learning_comparison.md.CJVKM76U.js b/dev/assets/learning_comparison.md.hDJrmlrj.js similarity index 98% rename from dev/assets/learning_comparison.md.CJVKM76U.js rename to dev/assets/learning_comparison.md.hDJrmlrj.js index 564db6a..96f7191 100644 --- a/dev/assets/learning_comparison.md.CJVKM76U.js +++ b/dev/assets/learning_comparison.md.hDJrmlrj.js @@ -1 +1 @@ -import{_ as a,c as i,o as s,a7 as o}from"./chunks/framework.RTxADYK2.js";const b=JSON.parse('{"title":"Comparison Layer","description":"","frontmatter":{},"headers":[],"relativePath":"learning/comparison.md","filePath":"learning/comparison.md","lastUpdated":null}'),e={name:"learning/comparison.md"},r=o('

Comparison Layer

Some text to describe the comparison layer within usual ICNs.

List of comparisons

List the possible parameters and how it affects the comparison.

Non-parametric

# CompositionalNetworks.co_identityFunction.
julia
co_identity(x)

Identity function. Already defined in Julia as identity, specialized for scalars in the comparison layer.

source


# CompositionalNetworks.co_euclidianFunction.
julia
co_euclidian(x; dom_size)

Compute an euclidian norm with domain size dom_size of a scalar.

source


# CompositionalNetworks.co_abs_diff_val_varsFunction.
julia
co_abs_diff_val_vars(x; nvars)

Return the absolute difference between x and the number of variables nvars.

source


# CompositionalNetworks.co_val_minus_varsFunction.
julia
co_val_minus_vars(x; nvars)

Return the difference x - nvars if positive, 0.0 otherwise, where nvars denotes the numbers of variables.

source


# CompositionalNetworks.co_vars_minus_valFunction.
julia
co_vars_minus_val(x; nvars)

Return the difference nvars - x if positive, 0.0 otherwise, where nvars denotes the numbers of variables.

source


Param: :val

# CompositionalNetworks.co_abs_diff_val_paramFunction.
julia
co_abs_diff_val_param(x; param)

Return the absolute difference between x and param.

source


# CompositionalNetworks.co_val_minus_paramFunction.
julia
co_val_minus_param(x; param)

Return the difference x - param if positive, 0.0 otherwise.

source


# CompositionalNetworks.co_param_minus_valFunction.
julia
co_param_minus_val(x; param)

Return the difference param - x if positive, 0.0 otherwise.

source


# CompositionalNetworks.co_euclidian_paramFunction.
julia
co_euclidian_param(x; param, dom_size)

Compute an euclidian norm with domain size dom_size, weigthed by param, of a scalar.

source


Layer generation

Missing docstring.

Missing docstring for make_comparisons. Check Documenter's build log for details.

# CompositionalNetworks.comparison_layerFunction.
julia
comparison_layer(param = false)

Generate the layer of transformations functions of the ICN. Iff param value is set, also includes all the parametric comparison with that value. The operations are mutually exclusive, that is only one will be selected.

source


',28),t=[r];function n(l,p,d,c,h,m){return s(),i("div",null,t)}const k=a(e,[["render",n]]);export{b as __pageData,k as default}; +import{_ as a,c as i,o as s,a7 as o}from"./chunks/framework.aA95Gx5L.js";const b=JSON.parse('{"title":"Comparison Layer","description":"","frontmatter":{},"headers":[],"relativePath":"learning/comparison.md","filePath":"learning/comparison.md","lastUpdated":null}'),e={name:"learning/comparison.md"},r=o('

Comparison Layer

Some text to describe the comparison layer within usual ICNs.

List of comparisons

List the possible parameters and how it affects the comparison.

Non-parametric

# CompositionalNetworks.co_identityFunction.
julia
co_identity(x)

Identity function. Already defined in Julia as identity, specialized for scalars in the comparison layer.

source


# CompositionalNetworks.co_euclidianFunction.
julia
co_euclidian(x; dom_size)

Compute an euclidian norm with domain size dom_size of a scalar.

source


# CompositionalNetworks.co_abs_diff_val_varsFunction.
julia
co_abs_diff_val_vars(x; nvars)

Return the absolute difference between x and the number of variables nvars.

source


# CompositionalNetworks.co_val_minus_varsFunction.
julia
co_val_minus_vars(x; nvars)

Return the difference x - nvars if positive, 0.0 otherwise, where nvars denotes the numbers of variables.

source


# CompositionalNetworks.co_vars_minus_valFunction.
julia
co_vars_minus_val(x; nvars)

Return the difference nvars - x if positive, 0.0 otherwise, where nvars denotes the numbers of variables.

source


Param: :val

# CompositionalNetworks.co_abs_diff_val_paramFunction.
julia
co_abs_diff_val_param(x; param)

Return the absolute difference between x and param.

source


# CompositionalNetworks.co_val_minus_paramFunction.
julia
co_val_minus_param(x; param)

Return the difference x - param if positive, 0.0 otherwise.

source


# CompositionalNetworks.co_param_minus_valFunction.
julia
co_param_minus_val(x; param)

Return the difference param - x if positive, 0.0 otherwise.

source


# CompositionalNetworks.co_euclidian_paramFunction.
julia
co_euclidian_param(x; param, dom_size)

Compute an euclidian norm with domain size dom_size, weigthed by param, of a scalar.

source


Layer generation

Missing docstring.

Missing docstring for make_comparisons. Check Documenter's build log for details.

# CompositionalNetworks.comparison_layerFunction.
julia
comparison_layer(param = false)

Generate the layer of transformations functions of the ICN. Iff param value is set, also includes all the parametric comparison with that value. The operations are mutually exclusive, that is only one will be selected.

source


',28),t=[r];function n(l,p,d,c,h,m){return s(),i("div",null,t)}const k=a(e,[["render",n]]);export{b as __pageData,k as default}; diff --git a/dev/assets/learning_comparison.md.CJVKM76U.lean.js b/dev/assets/learning_comparison.md.hDJrmlrj.lean.js similarity index 70% rename from dev/assets/learning_comparison.md.CJVKM76U.lean.js rename to dev/assets/learning_comparison.md.hDJrmlrj.lean.js index a7ef30a..e0d00ac 100644 --- a/dev/assets/learning_comparison.md.CJVKM76U.lean.js +++ b/dev/assets/learning_comparison.md.hDJrmlrj.lean.js @@ -1 +1 @@ -import{_ as a,c as i,o as s,a7 as o}from"./chunks/framework.RTxADYK2.js";const b=JSON.parse('{"title":"Comparison Layer","description":"","frontmatter":{},"headers":[],"relativePath":"learning/comparison.md","filePath":"learning/comparison.md","lastUpdated":null}'),e={name:"learning/comparison.md"},r=o("",28),t=[r];function n(l,p,d,c,h,m){return s(),i("div",null,t)}const k=a(e,[["render",n]]);export{b as __pageData,k as default}; +import{_ as a,c as i,o as s,a7 as o}from"./chunks/framework.aA95Gx5L.js";const b=JSON.parse('{"title":"Comparison Layer","description":"","frontmatter":{},"headers":[],"relativePath":"learning/comparison.md","filePath":"learning/comparison.md","lastUpdated":null}'),e={name:"learning/comparison.md"},r=o("",28),t=[r];function n(l,p,d,c,h,m){return s(),i("div",null,t)}const k=a(e,[["render",n]]);export{b as __pageData,k as default}; diff --git a/dev/assets/learning_compositional_networks.md.CUYeNCXj.js b/dev/assets/learning_compositional_networks.md.QU5A8msL.js similarity index 99% rename from dev/assets/learning_compositional_networks.md.CUYeNCXj.js rename to dev/assets/learning_compositional_networks.md.QU5A8msL.js index 42fd02b..0811184 100644 --- a/dev/assets/learning_compositional_networks.md.CUYeNCXj.js +++ b/dev/assets/learning_compositional_networks.md.QU5A8msL.js @@ -1 +1 @@ -import{_ as i,c as s,o,a7 as a}from"./chunks/framework.RTxADYK2.js";const m=JSON.parse('{"title":"CompositionalNetworks.jl","description":"","frontmatter":{},"headers":[],"relativePath":"learning/compositional_networks.md","filePath":"learning/compositional_networks.md","lastUpdated":null}'),t={name:"learning/compositional_networks.md"},e=a('

CompositionalNetworks.jl

Documentation for CompositionalNetworks.jl.

Utilities

# CompositionalNetworks.map_tr!Function.
julia
map_tr!(f, x, X, param)

Return an anonymous function that applies f to all elements of x and store the result in X, with a parameter param (which is set to nothing for function with no parameter).

source


# CompositionalNetworks.lazyFunction.
julia
lazy(funcs::Function...)

Generate methods extended to a vector instead of one of its components. A function f should have the following signature: f(i::Int, x::V).

source


# CompositionalNetworks.lazy_paramFunction.
julia
lazy_param(funcs::Function...)

Generate methods extended to a vector instead of one of its components. A function f should have the following signature: f(i::Int, x::V; param).

source


# CompositionalNetworks.as_bitvectorFunction.
julia
as_bitvector(n::Int, max_n::Int = n)

Convert an Int to a BitVector of minimal size (relatively to max_n).

source


# CompositionalNetworks.as_intFunction.
julia
as_int(v::AbstractVector)

Convert a BitVector into an Int.

source


# CompositionalNetworks.reduce_symbolsFunction.
julia
reduce_symbols(symbols, sep)

Produce a formatted string that separates the symbols by sep. Used internally for show_composition.

source


Missing docstring.

Missing docstring for CompositionalNeworks.tr_in. Check Documenter's build log for details.

Metrics

# CompositionalNetworks.hammingFunction.
julia
hamming(x, X)

Compute the hamming distance of x over a collection of solutions X, i.e. the minimal number of variables to switch in xto reach a solution.

source


# CompositionalNetworks.minkowskiFunction.
julia
minkowski(x, X, p)

source


# CompositionalNetworks.manhattanFunction.
julia
manhattan(x, X)

source


# CompositionalNetworks.weigths_biasFunction.
julia
weigths_bias(x)

A metric that bias x towards operations with a lower bit. Do not affect the main metric.

source


',25),n=[e];function r(l,p,d,c,h,k){return o(),s("div",null,n)}const u=i(t,[["render",r]]);export{m as __pageData,u as default}; +import{_ as i,c as s,o,a7 as a}from"./chunks/framework.aA95Gx5L.js";const m=JSON.parse('{"title":"CompositionalNetworks.jl","description":"","frontmatter":{},"headers":[],"relativePath":"learning/compositional_networks.md","filePath":"learning/compositional_networks.md","lastUpdated":null}'),t={name:"learning/compositional_networks.md"},e=a('

CompositionalNetworks.jl

Documentation for CompositionalNetworks.jl.

Utilities

# CompositionalNetworks.map_tr!Function.
julia
map_tr!(f, x, X, param)

Return an anonymous function that applies f to all elements of x and store the result in X, with a parameter param (which is set to nothing for function with no parameter).

source


# CompositionalNetworks.lazyFunction.
julia
lazy(funcs::Function...)

Generate methods extended to a vector instead of one of its components. A function f should have the following signature: f(i::Int, x::V).

source


# CompositionalNetworks.lazy_paramFunction.
julia
lazy_param(funcs::Function...)

Generate methods extended to a vector instead of one of its components. A function f should have the following signature: f(i::Int, x::V; param).

source


# CompositionalNetworks.as_bitvectorFunction.
julia
as_bitvector(n::Int, max_n::Int = n)

Convert an Int to a BitVector of minimal size (relatively to max_n).

source


# CompositionalNetworks.as_intFunction.
julia
as_int(v::AbstractVector)

Convert a BitVector into an Int.

source


# CompositionalNetworks.reduce_symbolsFunction.
julia
reduce_symbols(symbols, sep)

Produce a formatted string that separates the symbols by sep. Used internally for show_composition.

source


Missing docstring.

Missing docstring for CompositionalNeworks.tr_in. Check Documenter's build log for details.

Metrics

# CompositionalNetworks.hammingFunction.
julia
hamming(x, X)

Compute the hamming distance of x over a collection of solutions X, i.e. the minimal number of variables to switch in xto reach a solution.

source


# CompositionalNetworks.minkowskiFunction.
julia
minkowski(x, X, p)

source


# CompositionalNetworks.manhattanFunction.
julia
manhattan(x, X)

source


# CompositionalNetworks.weigths_biasFunction.
julia
weigths_bias(x)

A metric that bias x towards operations with a lower bit. Do not affect the main metric.

source


',25),n=[e];function r(l,p,d,c,h,k){return o(),s("div",null,n)}const u=i(t,[["render",r]]);export{m as __pageData,u as default}; diff --git a/dev/assets/learning_compositional_networks.md.CUYeNCXj.lean.js b/dev/assets/learning_compositional_networks.md.QU5A8msL.lean.js similarity index 86% rename from dev/assets/learning_compositional_networks.md.CUYeNCXj.lean.js rename to dev/assets/learning_compositional_networks.md.QU5A8msL.lean.js index 24f00f8..b2a02cb 100644 --- a/dev/assets/learning_compositional_networks.md.CUYeNCXj.lean.js +++ b/dev/assets/learning_compositional_networks.md.QU5A8msL.lean.js @@ -1 +1 @@ -import{_ as i,c as s,o,a7 as a}from"./chunks/framework.RTxADYK2.js";const m=JSON.parse('{"title":"CompositionalNetworks.jl","description":"","frontmatter":{},"headers":[],"relativePath":"learning/compositional_networks.md","filePath":"learning/compositional_networks.md","lastUpdated":null}'),t={name:"learning/compositional_networks.md"},e=a("",25),n=[e];function r(l,p,d,c,h,k){return o(),s("div",null,n)}const u=i(t,[["render",r]]);export{m as __pageData,u as default}; +import{_ as i,c as s,o,a7 as a}from"./chunks/framework.aA95Gx5L.js";const m=JSON.parse('{"title":"CompositionalNetworks.jl","description":"","frontmatter":{},"headers":[],"relativePath":"learning/compositional_networks.md","filePath":"learning/compositional_networks.md","lastUpdated":null}'),t={name:"learning/compositional_networks.md"},e=a("",25),n=[e];function r(l,p,d,c,h,k){return o(),s("div",null,n)}const u=i(t,[["render",r]]);export{m as __pageData,u as default}; diff --git a/dev/assets/learning_constraint_learning.md.C9iaCgb6.js b/dev/assets/learning_constraint_learning.md.B9EYEdfb.js similarity index 99% rename from dev/assets/learning_constraint_learning.md.C9iaCgb6.js rename to dev/assets/learning_constraint_learning.md.B9EYEdfb.js index 73ce532..763bba8 100644 --- a/dev/assets/learning_constraint_learning.md.C9iaCgb6.js +++ b/dev/assets/learning_constraint_learning.md.B9EYEdfb.js @@ -1 +1 @@ -import{_ as i,c as s,o as a,a7 as e}from"./chunks/framework.RTxADYK2.js";const u=JSON.parse('{"title":"ConstraintLearning.jl","description":"","frontmatter":{},"headers":[],"relativePath":"learning/constraint_learning.md","filePath":"learning/constraint_learning.md","lastUpdated":null}'),t={name:"learning/constraint_learning.md"},n=e('

ConstraintLearning.jl

Documentation for ConstraintLearning.jl.

# ConstraintLearning.ICNConfigType.
julia
struct ICNConfig{O <: ICNOptimizer}

A structure to hold the metric and optimizer configurations used in learning the weigths of an ICN.

source


# ConstraintLearning.ICNConfigMethod.
julia
ICNConfig(; metric = :hamming, optimizer = ICNGeneticOptimizer())

Constructor for ICNConfig. Defaults to hamming metric using a genetic algorithm.

source


# ConstraintLearning.ICNGeneticOptimizerMethod.
julia
ICNGeneticOptimizer(; kargs...)

Default constructor to learn an ICN through a Genetic Algorithm. Default kargs TBW.

source


# ConstraintLearning.ICNLocalSearchOptimizerType.
julia
ICNLocalSearchOptimizer(options = LocalSearchSolvers.Options())

Default constructor to learn an ICN through a CBLS solver.

source


# ConstraintLearning.ICNOptimizerType.
julia
const ICNOptimizer = CompositionalNetworks.AbstractOptimizer

An abstract type for optmizers defined to learn ICNs.

source


# ConstraintLearning.QUBOGradientOptimizerMethod.
julia
QUBOGradientOptimizer(; kargs...)

A QUBO optimizer based on gradient descent. Defaults TBW

source


# ConstraintLearning.QUBOOptimizerType.
julia
const QUBOOptimizer = QUBOConstraints.AbstractOptimizer

An abstract type for optimizers used to learn QUBO matrices from constraints.

source


# CompositionalNetworks.optimize!Method.
julia
CompositionalNetworks.optimize!(icn, solutions, non_sltns, dom_size, metric, optimizer::ICNGeneticOptimizer; parameters...)

Extends the optimize! method to ICNGeneticOptimizer.

source


# CompositionalNetworks.optimize!Method.
julia
CompositionalNetworks.optimize!(icn, solutions, non_sltns, dom_size, metric, optimizer::ICNLocalSearchOptimizer; parameters...)

Extends the optimize! method to ICNLocalSearchOptimizer.

source


# ConstraintLearning._optimize!Method.
julia
_optimize!(icn, X, X_sols; metric = hamming, pop_size = 200)

Optimize and set the weigths of an ICN with a given set of configuration X and solutions X_sols.

source


# ConstraintLearning.domain_sizeMethod.
julia
domain_size(ds::Number)

Extends the domain_size function when ds is number (for dispatch purposes).

source


# ConstraintLearning.generate_populationMethod.
julia
generate_population(icn, pop_size

Generate a pôpulation of weigths (individuals) for the genetic algorithm weigthing icn.

source


# ConstraintLearning.icnMethod.
julia
icn(X,X̅; kargs..., parameters...)

TBW

source


# ConstraintLearning.lossMethod.
julia
loss(x, y, Q)

Loss of the prediction given by Q, a training set y, and a given configuration x.

source


# ConstraintLearning.make_dfMethod.
julia
make_df(X, Q, penalty, binarization, domains)

DataFrame arrangement to ouput some basic evaluation of a matrix Q.

source


# ConstraintLearning.make_set_penaltyMethod.
julia
make_set_penalty(X, X̅, args...; kargs)

Return a penalty function when the training set is already split into a pair of solutions X and non solutions .

source


# ConstraintLearning.make_training_setsMethod.
julia
make_training_sets(X, penalty, args...)

Return a pair of solutions and non solutions sets based on X and penalty.

source


# ConstraintLearning.mutually_exclusiveMethod.
julia
mutually_exclusive(layer, w)

Constraint ensuring that w encode exclusive operations in layer.

source


# ConstraintLearning.no_empty_layerMethod.
julia
no_empty_layer(x; X = nothing)

Constraint ensuring that at least one operation is selected.

source


# ConstraintLearning.optimize!Method.
julia
optimize!(icn, X, X_sols, global_iter, local_iter; metric=hamming, popSize=100)

Optimize and set the weigths of an ICN with a given set of configuration X and solutions X_sols. The best weigths among global_iter will be set.

source


# ConstraintLearning.parameter_specific_operationsMethod.
julia
parameter_specific_operations(x; X = nothing)

Constraint ensuring that at least one operation related to parameters is selected if the error function to be learned is parametric.

source


# ConstraintLearning.predictMethod.
julia
predict(x, Q)

Return the predictions given by Q for a given configuration x.

source


# ConstraintLearning.preliminariesMethod.
julia
preliminaries(args)

Preliminaries to the training process in a QUBOGradientOptimizer run.

source


# ConstraintLearning.quboFunction.
julia
qubo(X,X̅; kargs..., parameters...)

TBW

source


# ConstraintLearning.sub_eltypeMethod.
julia
sub_eltype(X)

Return the element type of of the first element of a collection.

source


# ConstraintLearning.train!Method.
julia
train!(Q, X, penalty, η, precision, X_test, oversampling, binarization, domains)

Training inner method.

source


# ConstraintLearning.trainMethod.
julia
train(X, penalty[, d]; optimizer = QUBOGradientOptimizer(), X_test = X)

Learn a QUBO matrix on training set X for a constraint defined by penalty with optional domain information d. By default, it uses a QUBOGradientOptimizer and X as a testing set.

source


# ConstraintLearning.δMethod.
julia
δ(X[, Y]; discrete = true)

Compute the extrema over a collection X``or a pair of collection(X, Y)`.

source


',58),r=[n];function l(o,p,d,h,c,g){return a(),s("div",null,r)}const b=i(t,[["render",l]]);export{u as __pageData,b as default}; +import{_ as i,c as s,o as a,a7 as e}from"./chunks/framework.aA95Gx5L.js";const u=JSON.parse('{"title":"ConstraintLearning.jl","description":"","frontmatter":{},"headers":[],"relativePath":"learning/constraint_learning.md","filePath":"learning/constraint_learning.md","lastUpdated":null}'),t={name:"learning/constraint_learning.md"},n=e('

ConstraintLearning.jl

Documentation for ConstraintLearning.jl.

# ConstraintLearning.ICNConfigType.
julia
struct ICNConfig{O <: ICNOptimizer}

A structure to hold the metric and optimizer configurations used in learning the weigths of an ICN.

source


# ConstraintLearning.ICNConfigMethod.
julia
ICNConfig(; metric = :hamming, optimizer = ICNGeneticOptimizer())

Constructor for ICNConfig. Defaults to hamming metric using a genetic algorithm.

source


# ConstraintLearning.ICNGeneticOptimizerMethod.
julia
ICNGeneticOptimizer(; kargs...)

Default constructor to learn an ICN through a Genetic Algorithm. Default kargs TBW.

source


# ConstraintLearning.ICNLocalSearchOptimizerType.
julia
ICNLocalSearchOptimizer(options = LocalSearchSolvers.Options())

Default constructor to learn an ICN through a CBLS solver.

source


# ConstraintLearning.ICNOptimizerType.
julia
const ICNOptimizer = CompositionalNetworks.AbstractOptimizer

An abstract type for optmizers defined to learn ICNs.

source


# ConstraintLearning.QUBOGradientOptimizerMethod.
julia
QUBOGradientOptimizer(; kargs...)

A QUBO optimizer based on gradient descent. Defaults TBW

source


# ConstraintLearning.QUBOOptimizerType.
julia
const QUBOOptimizer = QUBOConstraints.AbstractOptimizer

An abstract type for optimizers used to learn QUBO matrices from constraints.

source


# CompositionalNetworks.optimize!Method.
julia
CompositionalNetworks.optimize!(icn, solutions, non_sltns, dom_size, metric, optimizer::ICNGeneticOptimizer; parameters...)

Extends the optimize! method to ICNGeneticOptimizer.

source


# CompositionalNetworks.optimize!Method.
julia
CompositionalNetworks.optimize!(icn, solutions, non_sltns, dom_size, metric, optimizer::ICNLocalSearchOptimizer; parameters...)

Extends the optimize! method to ICNLocalSearchOptimizer.

source


# ConstraintLearning._optimize!Method.
julia
_optimize!(icn, X, X_sols; metric = hamming, pop_size = 200)

Optimize and set the weigths of an ICN with a given set of configuration X and solutions X_sols.

source


# ConstraintLearning.domain_sizeMethod.
julia
domain_size(ds::Number)

Extends the domain_size function when ds is number (for dispatch purposes).

source


# ConstraintLearning.generate_populationMethod.
julia
generate_population(icn, pop_size

Generate a pôpulation of weigths (individuals) for the genetic algorithm weigthing icn.

source


# ConstraintLearning.icnMethod.
julia
icn(X,X̅; kargs..., parameters...)

TBW

source


# ConstraintLearning.lossMethod.
julia
loss(x, y, Q)

Loss of the prediction given by Q, a training set y, and a given configuration x.

source


# ConstraintLearning.make_dfMethod.
julia
make_df(X, Q, penalty, binarization, domains)

DataFrame arrangement to ouput some basic evaluation of a matrix Q.

source


# ConstraintLearning.make_set_penaltyMethod.
julia
make_set_penalty(X, X̅, args...; kargs)

Return a penalty function when the training set is already split into a pair of solutions X and non solutions .

source


# ConstraintLearning.make_training_setsMethod.
julia
make_training_sets(X, penalty, args...)

Return a pair of solutions and non solutions sets based on X and penalty.

source


# ConstraintLearning.mutually_exclusiveMethod.
julia
mutually_exclusive(layer, w)

Constraint ensuring that w encode exclusive operations in layer.

source


# ConstraintLearning.no_empty_layerMethod.
julia
no_empty_layer(x; X = nothing)

Constraint ensuring that at least one operation is selected.

source


# ConstraintLearning.optimize!Method.
julia
optimize!(icn, X, X_sols, global_iter, local_iter; metric=hamming, popSize=100)

Optimize and set the weigths of an ICN with a given set of configuration X and solutions X_sols. The best weigths among global_iter will be set.

source


# ConstraintLearning.parameter_specific_operationsMethod.
julia
parameter_specific_operations(x; X = nothing)

Constraint ensuring that at least one operation related to parameters is selected if the error function to be learned is parametric.

source


# ConstraintLearning.predictMethod.
julia
predict(x, Q)

Return the predictions given by Q for a given configuration x.

source


# ConstraintLearning.preliminariesMethod.
julia
preliminaries(args)

Preliminaries to the training process in a QUBOGradientOptimizer run.

source


# ConstraintLearning.quboFunction.
julia
qubo(X,X̅; kargs..., parameters...)

TBW

source


# ConstraintLearning.sub_eltypeMethod.
julia
sub_eltype(X)

Return the element type of of the first element of a collection.

source


# ConstraintLearning.train!Method.
julia
train!(Q, X, penalty, η, precision, X_test, oversampling, binarization, domains)

Training inner method.

source


# ConstraintLearning.trainMethod.
julia
train(X, penalty[, d]; optimizer = QUBOGradientOptimizer(), X_test = X)

Learn a QUBO matrix on training set X for a constraint defined by penalty with optional domain information d. By default, it uses a QUBOGradientOptimizer and X as a testing set.

source


# ConstraintLearning.δMethod.
julia
δ(X[, Y]; discrete = true)

Compute the extrema over a collection X``or a pair of collection(X, Y)`.

source


',58),r=[n];function l(o,p,d,h,c,g){return a(),s("div",null,r)}const b=i(t,[["render",l]]);export{u as __pageData,b as default}; diff --git a/dev/assets/learning_constraint_learning.md.C9iaCgb6.lean.js b/dev/assets/learning_constraint_learning.md.B9EYEdfb.lean.js similarity index 72% rename from dev/assets/learning_constraint_learning.md.C9iaCgb6.lean.js rename to dev/assets/learning_constraint_learning.md.B9EYEdfb.lean.js index 36bade1..8495349 100644 --- a/dev/assets/learning_constraint_learning.md.C9iaCgb6.lean.js +++ b/dev/assets/learning_constraint_learning.md.B9EYEdfb.lean.js @@ -1 +1 @@ -import{_ as i,c as s,o as a,a7 as e}from"./chunks/framework.RTxADYK2.js";const u=JSON.parse('{"title":"ConstraintLearning.jl","description":"","frontmatter":{},"headers":[],"relativePath":"learning/constraint_learning.md","filePath":"learning/constraint_learning.md","lastUpdated":null}'),t={name:"learning/constraint_learning.md"},n=e("",58),r=[n];function l(o,p,d,h,c,g){return a(),s("div",null,r)}const b=i(t,[["render",l]]);export{u as __pageData,b as default}; +import{_ as i,c as s,o as a,a7 as e}from"./chunks/framework.aA95Gx5L.js";const u=JSON.parse('{"title":"ConstraintLearning.jl","description":"","frontmatter":{},"headers":[],"relativePath":"learning/constraint_learning.md","filePath":"learning/constraint_learning.md","lastUpdated":null}'),t={name:"learning/constraint_learning.md"},n=e("",58),r=[n];function l(o,p,d,h,c,g){return a(),s("div",null,r)}const b=i(t,[["render",l]]);export{u as __pageData,b as default}; diff --git a/dev/assets/learning_intro.md.C6sCT3GF.js b/dev/assets/learning_intro.md.497AVcuz.js similarity index 91% rename from dev/assets/learning_intro.md.C6sCT3GF.js rename to dev/assets/learning_intro.md.497AVcuz.js index f1bf11e..3405aca 100644 --- a/dev/assets/learning_intro.md.C6sCT3GF.js +++ b/dev/assets/learning_intro.md.497AVcuz.js @@ -1 +1 @@ -import{_ as a,c as n,o as e,m as t,a as r}from"./chunks/framework.RTxADYK2.js";const b=JSON.parse('{"title":"Learning about Constraints","description":"","frontmatter":{},"headers":[],"relativePath":"learning/intro.md","filePath":"learning/intro.md","lastUpdated":null}'),o={name:"learning/intro.md"},s=t("h1",{id:"Learning-about-Constraints",tabindex:"-1"},[r("Learning about Constraints "),t("a",{class:"header-anchor",href:"#Learning-about-Constraints","aria-label":'Permalink to "Learning about Constraints {#Learning-about-Constraints}"'},"​")],-1),i=t("p",null,"About learning constraints related matters.",-1),c=[s,i];function l(d,_,u,p,m,g){return e(),n("div",null,c)}const f=a(o,[["render",l]]);export{b as __pageData,f as default}; +import{_ as a,c as n,o as e,m as t,a as r}from"./chunks/framework.aA95Gx5L.js";const b=JSON.parse('{"title":"Learning about Constraints","description":"","frontmatter":{},"headers":[],"relativePath":"learning/intro.md","filePath":"learning/intro.md","lastUpdated":null}'),o={name:"learning/intro.md"},s=t("h1",{id:"Learning-about-Constraints",tabindex:"-1"},[r("Learning about Constraints "),t("a",{class:"header-anchor",href:"#Learning-about-Constraints","aria-label":'Permalink to "Learning about Constraints {#Learning-about-Constraints}"'},"​")],-1),i=t("p",null,"About learning constraints related matters.",-1),c=[s,i];function l(d,_,u,p,m,g){return e(),n("div",null,c)}const f=a(o,[["render",l]]);export{b as __pageData,f as default}; diff --git a/dev/assets/learning_intro.md.C6sCT3GF.lean.js b/dev/assets/learning_intro.md.497AVcuz.lean.js similarity index 91% rename from dev/assets/learning_intro.md.C6sCT3GF.lean.js rename to dev/assets/learning_intro.md.497AVcuz.lean.js index f1bf11e..3405aca 100644 --- a/dev/assets/learning_intro.md.C6sCT3GF.lean.js +++ b/dev/assets/learning_intro.md.497AVcuz.lean.js @@ -1 +1 @@ -import{_ as a,c as n,o as e,m as t,a as r}from"./chunks/framework.RTxADYK2.js";const b=JSON.parse('{"title":"Learning about Constraints","description":"","frontmatter":{},"headers":[],"relativePath":"learning/intro.md","filePath":"learning/intro.md","lastUpdated":null}'),o={name:"learning/intro.md"},s=t("h1",{id:"Learning-about-Constraints",tabindex:"-1"},[r("Learning about Constraints "),t("a",{class:"header-anchor",href:"#Learning-about-Constraints","aria-label":'Permalink to "Learning about Constraints {#Learning-about-Constraints}"'},"​")],-1),i=t("p",null,"About learning constraints related matters.",-1),c=[s,i];function l(d,_,u,p,m,g){return e(),n("div",null,c)}const f=a(o,[["render",l]]);export{b as __pageData,f as default}; +import{_ as a,c as n,o as e,m as t,a as r}from"./chunks/framework.aA95Gx5L.js";const b=JSON.parse('{"title":"Learning about Constraints","description":"","frontmatter":{},"headers":[],"relativePath":"learning/intro.md","filePath":"learning/intro.md","lastUpdated":null}'),o={name:"learning/intro.md"},s=t("h1",{id:"Learning-about-Constraints",tabindex:"-1"},[r("Learning about Constraints "),t("a",{class:"header-anchor",href:"#Learning-about-Constraints","aria-label":'Permalink to "Learning about Constraints {#Learning-about-Constraints}"'},"​")],-1),i=t("p",null,"About learning constraints related matters.",-1),c=[s,i];function l(d,_,u,p,m,g){return e(),n("div",null,c)}const f=a(o,[["render",l]]);export{b as __pageData,f as default}; diff --git a/dev/assets/learning_layers.md.BvibaDbE.js b/dev/assets/learning_layers.md.mhwb2QDA.js similarity index 99% rename from dev/assets/learning_layers.md.BvibaDbE.js rename to dev/assets/learning_layers.md.mhwb2QDA.js index 70db005..20cfb2f 100644 --- a/dev/assets/learning_layers.md.BvibaDbE.js +++ b/dev/assets/learning_layers.md.mhwb2QDA.js @@ -1,4 +1,4 @@ -import{_ as e,c as i,o as s,a7 as a}from"./chunks/framework.RTxADYK2.js";const g=JSON.parse('{"title":"A layer structure for any ICN","description":"","frontmatter":{},"headers":[],"relativePath":"learning/layers.md","filePath":"learning/layers.md","lastUpdated":null}'),t={name:"learning/layers.md"},r=a(`

A layer structure for any ICN

The layer.jl file defines a Layer structure and several associated functions for manipulating and interacting with this structure in the context of an Interpretable Compositional Network (ICN).

The Layer structure is used to store a LittleDict of operations that can be selected during the learning phase of an ICN. Each layer can be exclusive, meaning only one operation can be selected at a time. This is particularly useful in the context of ICNs, which are used to learn alternative expressions for highly combinatorial functions, such as those found in Constraint-based Local Search solvers.

# CompositionalNetworks.LayerType.
julia
Layer

A structure to store a LittleDict of operations that can be selected during the learning phase of an ICN. If the layer is exclusive, only one operation can be selected at a time.

source


# CompositionalNetworks.functionsFunction.
julia
functions(layer)

Access the operations of a layer. The container is ordered.

source


# Base.lengthMethod.
julia
length(layer)

Return the number of operations in a layer.

source


# CompositionalNetworks.excluFunction.
julia
exclu(layer)

Return true if the layer has mutually exclusive operations.

source


# CompositionalNetworks.symbolFunction.
julia
symbol(layer, i)

Return the i-th symbols of the operations in a given layer.

source


# CompositionalNetworks.nbits_excluFunction.
julia
nbits_exclu(layer)

Convert the length of an exclusive layer into a number of bits.

source


# CompositionalNetworks.show_layerFunction.
julia
show_layer(layer)

Return a string that contains the elements in a layer.

source


# CompositionalNetworks.selected_sizeFunction.
julia
selected_size(layer, layer_weigths)

Return the number of operations selected by layer_weigths in layer.

source


# CompositionalNetworks.is_viableFunction.
julia
is_viable(layer, w)
+import{_ as e,c as i,o as s,a7 as a}from"./chunks/framework.aA95Gx5L.js";const g=JSON.parse('{"title":"A layer structure for any ICN","description":"","frontmatter":{},"headers":[],"relativePath":"learning/layers.md","filePath":"learning/layers.md","lastUpdated":null}'),t={name:"learning/layers.md"},r=a(`

A layer structure for any ICN

The layer.jl file defines a Layer structure and several associated functions for manipulating and interacting with this structure in the context of an Interpretable Compositional Network (ICN).

The Layer structure is used to store a LittleDict of operations that can be selected during the learning phase of an ICN. Each layer can be exclusive, meaning only one operation can be selected at a time. This is particularly useful in the context of ICNs, which are used to learn alternative expressions for highly combinatorial functions, such as those found in Constraint-based Local Search solvers.

# CompositionalNetworks.LayerType.
julia
Layer

A structure to store a LittleDict of operations that can be selected during the learning phase of an ICN. If the layer is exclusive, only one operation can be selected at a time.

source


# CompositionalNetworks.functionsFunction.
julia
functions(layer)

Access the operations of a layer. The container is ordered.

source


# Base.lengthMethod.
julia
length(layer)

Return the number of operations in a layer.

source


# CompositionalNetworks.excluFunction.
julia
exclu(layer)

Return true if the layer has mutually exclusive operations.

source


# CompositionalNetworks.symbolFunction.
julia
symbol(layer, i)

Return the i-th symbols of the operations in a given layer.

source


# CompositionalNetworks.nbits_excluFunction.
julia
nbits_exclu(layer)

Convert the length of an exclusive layer into a number of bits.

source


# CompositionalNetworks.show_layerFunction.
julia
show_layer(layer)

Return a string that contains the elements in a layer.

source


# CompositionalNetworks.selected_sizeFunction.
julia
selected_size(layer, layer_weigths)

Return the number of operations selected by layer_weigths in layer.

source


# CompositionalNetworks.is_viableFunction.
julia
is_viable(layer, w)
 is_viable(icn)
 is_viable(icn, w)

Assert if a pair of layer/icn and weigths compose a viable pattern. If no weigths are given with an icn, it will check the current internal value.

source


# CompositionalNetworks.generate_inclusive_operationsFunction.
julia
generate_inclusive_operations(predicate, bits)

Generates the operations (weigths) of a layer with inclusive operations.

source


# CompositionalNetworks.generate_exclusive_operationFunction.
julia
generate_exclusive_operation(max_op_number)

Generates the operations (weigths) of a layer with exclusive operations.

source


# CompositionalNetworks.generate_weigthsFunction.
julia
generate_weigths(layers)
 generate_weigths(icn)

Generate the weigths of a collection of layers or of an ICN.

source


`,27),o=[r];function l(n,p,d,h,c,u){return s(),i("div",null,o)}const k=e(t,[["render",l]]);export{g as __pageData,k as default}; diff --git a/dev/assets/learning_layers.md.BvibaDbE.lean.js b/dev/assets/learning_layers.md.mhwb2QDA.lean.js similarity index 70% rename from dev/assets/learning_layers.md.BvibaDbE.lean.js rename to dev/assets/learning_layers.md.mhwb2QDA.lean.js index 5b902ba..b8cdb61 100644 --- a/dev/assets/learning_layers.md.BvibaDbE.lean.js +++ b/dev/assets/learning_layers.md.mhwb2QDA.lean.js @@ -1 +1 @@ -import{_ as e,c as i,o as s,a7 as a}from"./chunks/framework.RTxADYK2.js";const g=JSON.parse('{"title":"A layer structure for any ICN","description":"","frontmatter":{},"headers":[],"relativePath":"learning/layers.md","filePath":"learning/layers.md","lastUpdated":null}'),t={name:"learning/layers.md"},r=a("",27),o=[r];function l(n,p,d,h,c,u){return s(),i("div",null,o)}const k=e(t,[["render",l]]);export{g as __pageData,k as default}; +import{_ as e,c as i,o as s,a7 as a}from"./chunks/framework.aA95Gx5L.js";const g=JSON.parse('{"title":"A layer structure for any ICN","description":"","frontmatter":{},"headers":[],"relativePath":"learning/layers.md","filePath":"learning/layers.md","lastUpdated":null}'),t={name:"learning/layers.md"},r=a("",27),o=[r];function l(n,p,d,h,c,u){return s(),i("div",null,o)}const k=e(t,[["render",l]]);export{g as __pageData,k as default}; diff --git a/dev/assets/learning_qubo_constraints.md.orZ3RySk.js b/dev/assets/learning_qubo_constraints.md.DpCFckdQ.js similarity index 95% rename from dev/assets/learning_qubo_constraints.md.orZ3RySk.js rename to dev/assets/learning_qubo_constraints.md.DpCFckdQ.js index 9eea2ff..e2bcb23 100644 --- a/dev/assets/learning_qubo_constraints.md.orZ3RySk.js +++ b/dev/assets/learning_qubo_constraints.md.DpCFckdQ.js @@ -1 +1 @@ -import{_ as a,c as s,o as t,a7 as i}from"./chunks/framework.RTxADYK2.js";const _=JSON.parse('{"title":"Introduction to QUBOConstraints.jl","description":"","frontmatter":{},"headers":[],"relativePath":"learning/qubo_constraints.md","filePath":"learning/qubo_constraints.md","lastUpdated":null}'),n={name:"learning/qubo_constraints.md"},e=i('

Introduction to QUBOConstraints.jl

Introduction to QUBOConstraints.jl.

Basic features

# QUBOConstraints.QUBO_baseFunction.
julia
QUBO_base(n, weight = 1)

A basic QUBO matrix to ensure that binarized variables keep a valid encoding.

source


# QUBOConstraints.QUBO_linear_sumFunction.
julia
QUBO_linear_sum(n, σ)

One valid QUBO matrix given n variables and parameter σ for the linear sum constraint.

source


',7),r=[e];function o(l,d,c,p,h,u){return t(),s("div",null,r)}const g=a(n,[["render",o]]);export{_ as __pageData,g as default}; +import{_ as a,c as s,o as t,a7 as i}from"./chunks/framework.aA95Gx5L.js";const _=JSON.parse('{"title":"Introduction to QUBOConstraints.jl","description":"","frontmatter":{},"headers":[],"relativePath":"learning/qubo_constraints.md","filePath":"learning/qubo_constraints.md","lastUpdated":null}'),n={name:"learning/qubo_constraints.md"},e=i('

Introduction to QUBOConstraints.jl

Introduction to QUBOConstraints.jl.

Basic features

# QUBOConstraints.QUBO_baseFunction.
julia
QUBO_base(n, weight = 1)

A basic QUBO matrix to ensure that binarized variables keep a valid encoding.

source


# QUBOConstraints.QUBO_linear_sumFunction.
julia
QUBO_linear_sum(n, σ)

One valid QUBO matrix given n variables and parameter σ for the linear sum constraint.

source


',7),r=[e];function o(l,d,c,p,h,u){return t(),s("div",null,r)}const g=a(n,[["render",o]]);export{_ as __pageData,g as default}; diff --git a/dev/assets/learning_qubo_constraints.md.orZ3RySk.lean.js b/dev/assets/learning_qubo_constraints.md.DpCFckdQ.lean.js similarity index 72% rename from dev/assets/learning_qubo_constraints.md.orZ3RySk.lean.js rename to dev/assets/learning_qubo_constraints.md.DpCFckdQ.lean.js index 138406e..b897c33 100644 --- a/dev/assets/learning_qubo_constraints.md.orZ3RySk.lean.js +++ b/dev/assets/learning_qubo_constraints.md.DpCFckdQ.lean.js @@ -1 +1 @@ -import{_ as a,c as s,o as t,a7 as i}from"./chunks/framework.RTxADYK2.js";const _=JSON.parse('{"title":"Introduction to QUBOConstraints.jl","description":"","frontmatter":{},"headers":[],"relativePath":"learning/qubo_constraints.md","filePath":"learning/qubo_constraints.md","lastUpdated":null}'),n={name:"learning/qubo_constraints.md"},e=i("",7),r=[e];function o(l,d,c,p,h,u){return t(),s("div",null,r)}const g=a(n,[["render",o]]);export{_ as __pageData,g as default}; +import{_ as a,c as s,o as t,a7 as i}from"./chunks/framework.aA95Gx5L.js";const _=JSON.parse('{"title":"Introduction to QUBOConstraints.jl","description":"","frontmatter":{},"headers":[],"relativePath":"learning/qubo_constraints.md","filePath":"learning/qubo_constraints.md","lastUpdated":null}'),n={name:"learning/qubo_constraints.md"},e=i("",7),r=[e];function o(l,d,c,p,h,u){return t(),s("div",null,r)}const g=a(n,[["render",o]]);export{_ as __pageData,g as default}; diff --git a/dev/assets/learning_qubo_encoding.md.CyqG-QII.js b/dev/assets/learning_qubo_encoding.md.CDyoKOWI.js similarity index 97% rename from dev/assets/learning_qubo_encoding.md.CyqG-QII.js rename to dev/assets/learning_qubo_encoding.md.CDyoKOWI.js index 5e42c3d..4331453 100644 --- a/dev/assets/learning_qubo_encoding.md.CyqG-QII.js +++ b/dev/assets/learning_qubo_encoding.md.CDyoKOWI.js @@ -1 +1 @@ -import{_ as i,c as a,o as n,a7 as s}from"./chunks/framework.RTxADYK2.js";const k=JSON.parse('{"title":"Encoding for QUBO programs","description":"","frontmatter":{},"headers":[],"relativePath":"learning/qubo_encoding.md","filePath":"learning/qubo_encoding.md","lastUpdated":null}'),e={name:"learning/qubo_encoding.md"},o=s('

Encoding for QUBO programs

# QUBOConstraints.is_validFunction.
julia
is_valid(x, encoding::Symbol = :none)

Check if x has a valid format for encoding.

For instance, if encoding == :one_hot, at most one bit of x can be set to 1.

source


# QUBOConstraints.binarizeFunction.
julia
binarize(x[, domain]; binarization = :one_hot)

Binarize x following the binarization encoding. If x is a vector (instead of a number per say), domain is optional.

source


# QUBOConstraints.debinarizeFunction.
julia
debinarize(x[, domain]; binarization = :one_hot)

Transform a binary vector into a number or a set of number. If domain is not given, it will compute a default value based on binarization and x.

source


',7),t=[o];function r(d,l,c,p,h,g){return n(),a("div",null,t)}const u=i(e,[["render",r]]);export{k as __pageData,u as default}; +import{_ as i,c as a,o as n,a7 as s}from"./chunks/framework.aA95Gx5L.js";const k=JSON.parse('{"title":"Encoding for QUBO programs","description":"","frontmatter":{},"headers":[],"relativePath":"learning/qubo_encoding.md","filePath":"learning/qubo_encoding.md","lastUpdated":null}'),e={name:"learning/qubo_encoding.md"},o=s('

Encoding for QUBO programs

# QUBOConstraints.is_validFunction.
julia
is_valid(x, encoding::Symbol = :none)

Check if x has a valid format for encoding.

For instance, if encoding == :one_hot, at most one bit of x can be set to 1.

source


# QUBOConstraints.binarizeFunction.
julia
binarize(x[, domain]; binarization = :one_hot)

Binarize x following the binarization encoding. If x is a vector (instead of a number per say), domain is optional.

source


# QUBOConstraints.debinarizeFunction.
julia
debinarize(x[, domain]; binarization = :one_hot)

Transform a binary vector into a number or a set of number. If domain is not given, it will compute a default value based on binarization and x.

source


',7),t=[o];function r(d,l,c,p,h,g){return n(),a("div",null,t)}const u=i(e,[["render",r]]);export{k as __pageData,u as default}; diff --git a/dev/assets/learning_qubo_encoding.md.CyqG-QII.lean.js b/dev/assets/learning_qubo_encoding.md.CDyoKOWI.lean.js similarity index 71% rename from dev/assets/learning_qubo_encoding.md.CyqG-QII.lean.js rename to dev/assets/learning_qubo_encoding.md.CDyoKOWI.lean.js index 6957fe2..797be23 100644 --- a/dev/assets/learning_qubo_encoding.md.CyqG-QII.lean.js +++ b/dev/assets/learning_qubo_encoding.md.CDyoKOWI.lean.js @@ -1 +1 @@ -import{_ as i,c as a,o as n,a7 as s}from"./chunks/framework.RTxADYK2.js";const k=JSON.parse('{"title":"Encoding for QUBO programs","description":"","frontmatter":{},"headers":[],"relativePath":"learning/qubo_encoding.md","filePath":"learning/qubo_encoding.md","lastUpdated":null}'),e={name:"learning/qubo_encoding.md"},o=s("",7),t=[o];function r(d,l,c,p,h,g){return n(),a("div",null,t)}const u=i(e,[["render",r]]);export{k as __pageData,u as default}; +import{_ as i,c as a,o as n,a7 as s}from"./chunks/framework.aA95Gx5L.js";const k=JSON.parse('{"title":"Encoding for QUBO programs","description":"","frontmatter":{},"headers":[],"relativePath":"learning/qubo_encoding.md","filePath":"learning/qubo_encoding.md","lastUpdated":null}'),e={name:"learning/qubo_encoding.md"},o=s("",7),t=[o];function r(d,l,c,p,h,g){return n(),a("div",null,t)}const u=i(e,[["render",r]]);export{k as __pageData,u as default}; diff --git a/dev/assets/learning_qubo_learning.md.Vuv-WnzG.js b/dev/assets/learning_qubo_learning.md.CLlNBMzd.js similarity index 99% rename from dev/assets/learning_qubo_learning.md.Vuv-WnzG.js rename to dev/assets/learning_qubo_learning.md.CLlNBMzd.js index b78b644..719aa95 100644 --- a/dev/assets/learning_qubo_learning.md.Vuv-WnzG.js +++ b/dev/assets/learning_qubo_learning.md.CLlNBMzd.js @@ -1,4 +1,4 @@ -import{_ as s,c as i,o as a,a7 as n}from"./chunks/framework.RTxADYK2.js";const F=JSON.parse('{"title":"Learning QUBO matrices","description":"","frontmatter":{},"headers":[],"relativePath":"learning/qubo_learning.md","filePath":"learning/qubo_learning.md","lastUpdated":null}'),h={name:"learning/qubo_learning.md"},k=n(`

Learning QUBO matrices

Interface

# QUBOConstraints.AbstractOptimizerType.
julia
AbstractOptimizer

An abstract type (interface) used to learn QUBO matrices from constraints. Only a train method is required.

source


# QUBOConstraints.trainFunction.
julia
train(args...)

Default train method for any AbstractOptimizer.

source


Examples with various optimizers

Gradient Descent

julia
struct GradientDescentOptimizer <: QUBOConstraints.AbstractOptimizer
+import{_ as s,c as i,o as a,a7 as n}from"./chunks/framework.aA95Gx5L.js";const F=JSON.parse('{"title":"Learning QUBO matrices","description":"","frontmatter":{},"headers":[],"relativePath":"learning/qubo_learning.md","filePath":"learning/qubo_learning.md","lastUpdated":null}'),h={name:"learning/qubo_learning.md"},k=n(`

Learning QUBO matrices

Interface

# QUBOConstraints.AbstractOptimizerType.
julia
AbstractOptimizer

An abstract type (interface) used to learn QUBO matrices from constraints. Only a train method is required.

source


# QUBOConstraints.trainFunction.
julia
train(args...)

Default train method for any AbstractOptimizer.

source


Examples with various optimizers

Gradient Descent

julia
struct GradientDescentOptimizer <: QUBOConstraints.AbstractOptimizer
     binarization::Symbol
     η::Float64
     precision::Int
diff --git a/dev/assets/learning_qubo_learning.md.Vuv-WnzG.lean.js b/dev/assets/learning_qubo_learning.md.CLlNBMzd.lean.js
similarity index 71%
rename from dev/assets/learning_qubo_learning.md.Vuv-WnzG.lean.js
rename to dev/assets/learning_qubo_learning.md.CLlNBMzd.lean.js
index f4322d0..b7ec16b 100644
--- a/dev/assets/learning_qubo_learning.md.Vuv-WnzG.lean.js
+++ b/dev/assets/learning_qubo_learning.md.CLlNBMzd.lean.js
@@ -1 +1 @@
-import{_ as s,c as i,o as a,a7 as n}from"./chunks/framework.RTxADYK2.js";const F=JSON.parse('{"title":"Learning QUBO matrices","description":"","frontmatter":{},"headers":[],"relativePath":"learning/qubo_learning.md","filePath":"learning/qubo_learning.md","lastUpdated":null}'),h={name:"learning/qubo_learning.md"},k=n("",10),l=[k];function p(t,e,E,r,d,g){return a(),i("div",null,l)}const c=s(h,[["render",p]]);export{F as __pageData,c as default};
+import{_ as s,c as i,o as a,a7 as n}from"./chunks/framework.aA95Gx5L.js";const F=JSON.parse('{"title":"Learning QUBO matrices","description":"","frontmatter":{},"headers":[],"relativePath":"learning/qubo_learning.md","filePath":"learning/qubo_learning.md","lastUpdated":null}'),h={name:"learning/qubo_learning.md"},k=n("",10),l=[k];function p(t,e,E,r,d,g){return a(),i("div",null,l)}const c=s(h,[["render",p]]);export{F as __pageData,c as default};
diff --git a/dev/assets/learning_transformation.md.3ZyC2hKS.js b/dev/assets/learning_transformation.md.DlQiGOD9.js
similarity index 99%
rename from dev/assets/learning_transformation.md.3ZyC2hKS.js
rename to dev/assets/learning_transformation.md.DlQiGOD9.js
index 82b625c..c8f8bb8 100644
--- a/dev/assets/learning_transformation.md.3ZyC2hKS.js
+++ b/dev/assets/learning_transformation.md.DlQiGOD9.js
@@ -1,4 +1,4 @@
-import{_ as s,c as i,o as a,a7 as t}from"./chunks/framework.RTxADYK2.js";const g=JSON.parse('{"title":"Transformations Layer","description":"","frontmatter":{},"headers":[],"relativePath":"learning/transformation.md","filePath":"learning/transformation.md","lastUpdated":null}'),e={name:"learning/transformation.md"},n=t(`

Transformations Layer

Some text to describe the transformation layer within usual ICNs.

The implementation of the transformation relies heavily on the use of the lazy function (make a ref, open an issue to make @lazy macro in front of each transformation).

List of transformations

List the possible parameters and how it affects the transformations.

Non-parametric

# CompositionalNetworks.tr_identityFunction.
julia
tr_identity(i, x)
+import{_ as s,c as i,o as a,a7 as t}from"./chunks/framework.aA95Gx5L.js";const g=JSON.parse('{"title":"Transformations Layer","description":"","frontmatter":{},"headers":[],"relativePath":"learning/transformation.md","filePath":"learning/transformation.md","lastUpdated":null}'),e={name:"learning/transformation.md"},n=t(`

Transformations Layer

Some text to describe the transformation layer within usual ICNs.

The implementation of the transformation relies heavily on the use of the lazy function (make a ref, open an issue to make @lazy macro in front of each transformation).

List of transformations

List the possible parameters and how it affects the transformations.

Non-parametric

# CompositionalNetworks.tr_identityFunction.
julia
tr_identity(i, x)
 tr_identity(x)
 tr_identity(x, X::AbstractVector)

Identity function. Already defined in Julia as identity, specialized for vectors. When X is provided, the result is computed without allocations.

source


# CompositionalNetworks.tr_count_eqFunction.
julia
tr_count_eq(i, x)
 tr_count_eq(x)
diff --git a/dev/assets/learning_transformation.md.3ZyC2hKS.lean.js b/dev/assets/learning_transformation.md.DlQiGOD9.lean.js
similarity index 71%
rename from dev/assets/learning_transformation.md.3ZyC2hKS.lean.js
rename to dev/assets/learning_transformation.md.DlQiGOD9.lean.js
index 5f31608..3875ead 100644
--- a/dev/assets/learning_transformation.md.3ZyC2hKS.lean.js
+++ b/dev/assets/learning_transformation.md.DlQiGOD9.lean.js
@@ -1 +1 @@
-import{_ as s,c as i,o as a,a7 as t}from"./chunks/framework.RTxADYK2.js";const g=JSON.parse('{"title":"Transformations Layer","description":"","frontmatter":{},"headers":[],"relativePath":"learning/transformation.md","filePath":"learning/transformation.md","lastUpdated":null}'),e={name:"learning/transformation.md"},n=t("",46),r=[n];function o(l,p,h,d,c,k){return a(),i("div",null,r)}const m=s(e,[["render",o]]);export{g as __pageData,m as default};
+import{_ as s,c as i,o as a,a7 as t}from"./chunks/framework.aA95Gx5L.js";const g=JSON.parse('{"title":"Transformations Layer","description":"","frontmatter":{},"headers":[],"relativePath":"learning/transformation.md","filePath":"learning/transformation.md","lastUpdated":null}'),e={name:"learning/transformation.md"},n=t("",46),r=[n];function o(l,p,h,d,c,k){return a(),i("div",null,r)}const m=s(e,[["render",o]]);export{g as __pageData,m as default};
diff --git a/dev/assets/meta_meta_strategist.md.DPB3xUTb.js b/dev/assets/meta_meta_strategist.md.CuHkGJNL.js
similarity index 91%
rename from dev/assets/meta_meta_strategist.md.DPB3xUTb.js
rename to dev/assets/meta_meta_strategist.md.CuHkGJNL.js
index e6d662e..388cf6b 100644
--- a/dev/assets/meta_meta_strategist.md.DPB3xUTb.js
+++ b/dev/assets/meta_meta_strategist.md.CuHkGJNL.js
@@ -1 +1 @@
-import{_ as a,c as s,o as r,m as t,a as e}from"./chunks/framework.RTxADYK2.js";const u=JSON.parse('{"title":"MetaStrategist.jl","description":"","frontmatter":{},"headers":[],"relativePath":"meta/meta_strategist.md","filePath":"meta/meta_strategist.md","lastUpdated":null}'),o={name:"meta/meta_strategist.md"},i=t("h1",{id:"MetaStrategist.jl",tabindex:"-1"},[e("MetaStrategist.jl "),t("a",{class:"header-anchor",href:"#MetaStrategist.jl","aria-label":'Permalink to "MetaStrategist.jl {#MetaStrategist.jl}"'},"​")],-1),l=t("p",null,[e("Documentation for "),t("code",null,"MetaStrategist.jl"),e(".")],-1),n=[i,l];function c(d,_,m,p,g,h){return r(),s("div",null,n)}const S=a(o,[["render",c]]);export{u as __pageData,S as default};
+import{_ as a,c as s,o as r,m as t,a as e}from"./chunks/framework.aA95Gx5L.js";const u=JSON.parse('{"title":"MetaStrategist.jl","description":"","frontmatter":{},"headers":[],"relativePath":"meta/meta_strategist.md","filePath":"meta/meta_strategist.md","lastUpdated":null}'),o={name:"meta/meta_strategist.md"},i=t("h1",{id:"MetaStrategist.jl",tabindex:"-1"},[e("MetaStrategist.jl "),t("a",{class:"header-anchor",href:"#MetaStrategist.jl","aria-label":'Permalink to "MetaStrategist.jl {#MetaStrategist.jl}"'},"​")],-1),l=t("p",null,[e("Documentation for "),t("code",null,"MetaStrategist.jl"),e(".")],-1),n=[i,l];function c(d,_,m,p,g,h){return r(),s("div",null,n)}const S=a(o,[["render",c]]);export{u as __pageData,S as default};
diff --git a/dev/assets/meta_meta_strategist.md.DPB3xUTb.lean.js b/dev/assets/meta_meta_strategist.md.CuHkGJNL.lean.js
similarity index 91%
rename from dev/assets/meta_meta_strategist.md.DPB3xUTb.lean.js
rename to dev/assets/meta_meta_strategist.md.CuHkGJNL.lean.js
index e6d662e..388cf6b 100644
--- a/dev/assets/meta_meta_strategist.md.DPB3xUTb.lean.js
+++ b/dev/assets/meta_meta_strategist.md.CuHkGJNL.lean.js
@@ -1 +1 @@
-import{_ as a,c as s,o as r,m as t,a as e}from"./chunks/framework.RTxADYK2.js";const u=JSON.parse('{"title":"MetaStrategist.jl","description":"","frontmatter":{},"headers":[],"relativePath":"meta/meta_strategist.md","filePath":"meta/meta_strategist.md","lastUpdated":null}'),o={name:"meta/meta_strategist.md"},i=t("h1",{id:"MetaStrategist.jl",tabindex:"-1"},[e("MetaStrategist.jl "),t("a",{class:"header-anchor",href:"#MetaStrategist.jl","aria-label":'Permalink to "MetaStrategist.jl {#MetaStrategist.jl}"'},"​")],-1),l=t("p",null,[e("Documentation for "),t("code",null,"MetaStrategist.jl"),e(".")],-1),n=[i,l];function c(d,_,m,p,g,h){return r(),s("div",null,n)}const S=a(o,[["render",c]]);export{u as __pageData,S as default};
+import{_ as a,c as s,o as r,m as t,a as e}from"./chunks/framework.aA95Gx5L.js";const u=JSON.parse('{"title":"MetaStrategist.jl","description":"","frontmatter":{},"headers":[],"relativePath":"meta/meta_strategist.md","filePath":"meta/meta_strategist.md","lastUpdated":null}'),o={name:"meta/meta_strategist.md"},i=t("h1",{id:"MetaStrategist.jl",tabindex:"-1"},[e("MetaStrategist.jl "),t("a",{class:"header-anchor",href:"#MetaStrategist.jl","aria-label":'Permalink to "MetaStrategist.jl {#MetaStrategist.jl}"'},"​")],-1),l=t("p",null,[e("Documentation for "),t("code",null,"MetaStrategist.jl"),e(".")],-1),n=[i,l];function c(d,_,m,p,g,h){return r(),s("div",null,n)}const S=a(o,[["render",c]]);export{u as __pageData,S as default};
diff --git a/dev/assets/perf_benchmark_ext.md.BF6daeNT.js b/dev/assets/perf_benchmark_ext.md.CVYCQYDt.js
similarity index 93%
rename from dev/assets/perf_benchmark_ext.md.BF6daeNT.js
rename to dev/assets/perf_benchmark_ext.md.CVYCQYDt.js
index 1d2a22f..95486ea 100644
--- a/dev/assets/perf_benchmark_ext.md.BF6daeNT.js
+++ b/dev/assets/perf_benchmark_ext.md.CVYCQYDt.js
@@ -1 +1 @@
-import{_ as o,c as a,o as t,m as e,a as n}from"./chunks/framework.RTxADYK2.js";const f=JSON.parse('{"title":"BenchmarkTools Extension","description":"","frontmatter":{},"headers":[],"relativePath":"perf/benchmark_ext.md","filePath":"perf/benchmark_ext.md","lastUpdated":null}'),s={name:"perf/benchmark_ext.md"},r=e("h1",{id:"BenchmarkTools-Extension",tabindex:"-1"},[n("BenchmarkTools Extension "),e("a",{class:"header-anchor",href:"#BenchmarkTools-Extension","aria-label":'Permalink to "BenchmarkTools Extension {#BenchmarkTools-Extension}"'},"​")],-1),c=e("p",null,[n("A benchmarking extension, based on "),e("code",null,"BenchmarkTools.jl"),n(", has been interfaced with "),e("code",null,"PerfChecker.jl"),n(". This section (will) provides some usage examples, documentation, and links to related notebooks.")],-1),l=[r,c];function i(d,h,m,_,k,p){return t(),a("div",null,l)}const u=o(s,[["render",i]]);export{f as __pageData,u as default};
+import{_ as o,c as a,o as t,m as e,a as n}from"./chunks/framework.aA95Gx5L.js";const f=JSON.parse('{"title":"BenchmarkTools Extension","description":"","frontmatter":{},"headers":[],"relativePath":"perf/benchmark_ext.md","filePath":"perf/benchmark_ext.md","lastUpdated":null}'),s={name:"perf/benchmark_ext.md"},r=e("h1",{id:"BenchmarkTools-Extension",tabindex:"-1"},[n("BenchmarkTools Extension "),e("a",{class:"header-anchor",href:"#BenchmarkTools-Extension","aria-label":'Permalink to "BenchmarkTools Extension {#BenchmarkTools-Extension}"'},"​")],-1),c=e("p",null,[n("A benchmarking extension, based on "),e("code",null,"BenchmarkTools.jl"),n(", has been interfaced with "),e("code",null,"PerfChecker.jl"),n(". This section (will) provides some usage examples, documentation, and links to related notebooks.")],-1),l=[r,c];function i(d,h,m,_,k,p){return t(),a("div",null,l)}const u=o(s,[["render",i]]);export{f as __pageData,u as default};
diff --git a/dev/assets/perf_benchmark_ext.md.BF6daeNT.lean.js b/dev/assets/perf_benchmark_ext.md.CVYCQYDt.lean.js
similarity index 93%
rename from dev/assets/perf_benchmark_ext.md.BF6daeNT.lean.js
rename to dev/assets/perf_benchmark_ext.md.CVYCQYDt.lean.js
index 1d2a22f..95486ea 100644
--- a/dev/assets/perf_benchmark_ext.md.BF6daeNT.lean.js
+++ b/dev/assets/perf_benchmark_ext.md.CVYCQYDt.lean.js
@@ -1 +1 @@
-import{_ as o,c as a,o as t,m as e,a as n}from"./chunks/framework.RTxADYK2.js";const f=JSON.parse('{"title":"BenchmarkTools Extension","description":"","frontmatter":{},"headers":[],"relativePath":"perf/benchmark_ext.md","filePath":"perf/benchmark_ext.md","lastUpdated":null}'),s={name:"perf/benchmark_ext.md"},r=e("h1",{id:"BenchmarkTools-Extension",tabindex:"-1"},[n("BenchmarkTools Extension "),e("a",{class:"header-anchor",href:"#BenchmarkTools-Extension","aria-label":'Permalink to "BenchmarkTools Extension {#BenchmarkTools-Extension}"'},"​")],-1),c=e("p",null,[n("A benchmarking extension, based on "),e("code",null,"BenchmarkTools.jl"),n(", has been interfaced with "),e("code",null,"PerfChecker.jl"),n(". This section (will) provides some usage examples, documentation, and links to related notebooks.")],-1),l=[r,c];function i(d,h,m,_,k,p){return t(),a("div",null,l)}const u=o(s,[["render",i]]);export{f as __pageData,u as default};
+import{_ as o,c as a,o as t,m as e,a as n}from"./chunks/framework.aA95Gx5L.js";const f=JSON.parse('{"title":"BenchmarkTools Extension","description":"","frontmatter":{},"headers":[],"relativePath":"perf/benchmark_ext.md","filePath":"perf/benchmark_ext.md","lastUpdated":null}'),s={name:"perf/benchmark_ext.md"},r=e("h1",{id:"BenchmarkTools-Extension",tabindex:"-1"},[n("BenchmarkTools Extension "),e("a",{class:"header-anchor",href:"#BenchmarkTools-Extension","aria-label":'Permalink to "BenchmarkTools Extension {#BenchmarkTools-Extension}"'},"​")],-1),c=e("p",null,[n("A benchmarking extension, based on "),e("code",null,"BenchmarkTools.jl"),n(", has been interfaced with "),e("code",null,"PerfChecker.jl"),n(". This section (will) provides some usage examples, documentation, and links to related notebooks.")],-1),l=[r,c];function i(d,h,m,_,k,p){return t(),a("div",null,l)}const u=o(s,[["render",i]]);export{f as __pageData,u as default};
diff --git a/dev/assets/perf_perf_checker.md.DEoczPpG.js b/dev/assets/perf_perf_checker.md.DEoczPpG.js
new file mode 100644
index 0000000..ad37dcf
--- /dev/null
+++ b/dev/assets/perf_perf_checker.md.DEoczPpG.js
@@ -0,0 +1,9 @@
+import{_ as e,c as r,o as s,a7 as i}from"./chunks/framework.aA95Gx5L.js";const b=JSON.parse('{"title":"PerfChecker.jl","description":"","frontmatter":{},"headers":[],"relativePath":"perf/perf_checker.md","filePath":"perf/perf_checker.md","lastUpdated":null}'),a={name:"perf/perf_checker.md"},t=i(`

PerfChecker.jl

Documentation for PerfChecker.jl.

# PerfChecker.arrange_breakingMethod.

Outputs the last breaking or next breaking version.

source


# PerfChecker.arrange_majorMethod.

Outputs the earlier or next major version.

source


# PerfChecker.arrange_patchesMethod.

Outputs the last patch or first patch of a version.

source


# PerfChecker.get_pkg_versionsFunction.

Finds all versions of a package in all the installed registries and returns it as a vector.

Example:

julia
julia> get_pkg_versions("ConstraintLearning")
+7-element Vector{VersionNumber}:
+ v"0.1.4"
+ v"0.1.5"
+ v"0.1.0"
+ v"0.1.6"
+ v"0.1.1"
+ v"0.1.3"
+ v"0.1.2"

source


`,10),n=[t];function l(o,p,h,k,c,d){return s(),r("div",null,n)}const g=e(a,[["render",l]]);export{b as __pageData,g as default}; diff --git a/dev/assets/perf_perf_checker.md.DEoczPpG.lean.js b/dev/assets/perf_perf_checker.md.DEoczPpG.lean.js new file mode 100644 index 0000000..6837f7a --- /dev/null +++ b/dev/assets/perf_perf_checker.md.DEoczPpG.lean.js @@ -0,0 +1 @@ +import{_ as e,c as r,o as s,a7 as i}from"./chunks/framework.aA95Gx5L.js";const b=JSON.parse('{"title":"PerfChecker.jl","description":"","frontmatter":{},"headers":[],"relativePath":"perf/perf_checker.md","filePath":"perf/perf_checker.md","lastUpdated":null}'),a={name:"perf/perf_checker.md"},t=i("",10),n=[t];function l(o,p,h,k,c,d){return s(),r("div",null,n)}const g=e(a,[["render",l]]);export{b as __pageData,g as default}; diff --git a/dev/assets/perf_perf_checker.md.xvXRkZj_.js b/dev/assets/perf_perf_checker.md.xvXRkZj_.js deleted file mode 100644 index 0bffc5b..0000000 --- a/dev/assets/perf_perf_checker.md.xvXRkZj_.js +++ /dev/null @@ -1,9 +0,0 @@ -import{_ as e,c as s,o as r,a7 as i}from"./chunks/framework.RTxADYK2.js";const b=JSON.parse('{"title":"PerfChecker.jl","description":"","frontmatter":{},"headers":[],"relativePath":"perf/perf_checker.md","filePath":"perf/perf_checker.md","lastUpdated":null}'),a={name:"perf/perf_checker.md"},t=i(`

PerfChecker.jl

Documentation for PerfChecker.jl.

# PerfChecker.arrange_breakingMethod.

Outputs the last breaking or next breaking version. If the input is 1.2.3, then the output is 1.2.0 or 1.3.0 (assuming both exist)

source


# PerfChecker.arrange_majorMethod.

Outputs the earlier or next major version.

source


# PerfChecker.arrange_patchesMethod.

Outputs the last patch or first patch of a version. If the input is 1.2.3, then the output is 1.2.0 or 1.2.9 (assuming both exist, and both are the first and last patch of the version)

source


# PerfChecker.get_pkg_versionsFunction.

Finds all versions of a package in all the installed registries and returns it as a vector.

Example:

julia
julia> get_pkg_versions("ConstraintLearning")
-7-element Vector{VersionNumber}:
- v"0.1.4"
- v"0.1.5"
- v"0.1.0"
- v"0.1.6"
- v"0.1.1"
- v"0.1.3"
- v"0.1.2"

source


`,10),n=[t];function o(l,h,p,k,c,d){return r(),s("div",null,n)}const g=e(a,[["render",o]]);export{b as __pageData,g as default}; diff --git a/dev/assets/perf_perf_checker.md.xvXRkZj_.lean.js b/dev/assets/perf_perf_checker.md.xvXRkZj_.lean.js deleted file mode 100644 index abf0923..0000000 --- a/dev/assets/perf_perf_checker.md.xvXRkZj_.lean.js +++ /dev/null @@ -1 +0,0 @@ -import{_ as e,c as s,o as r,a7 as i}from"./chunks/framework.RTxADYK2.js";const b=JSON.parse('{"title":"PerfChecker.jl","description":"","frontmatter":{},"headers":[],"relativePath":"perf/perf_checker.md","filePath":"perf/perf_checker.md","lastUpdated":null}'),a={name:"perf/perf_checker.md"},t=i("",10),n=[t];function o(l,h,p,k,c,d){return r(),s("div",null,n)}const g=e(a,[["render",o]]);export{b as __pageData,g as default}; diff --git a/dev/assets/perf_perf_interface.md.BojTEMgF.js b/dev/assets/perf_perf_interface.md.DaCOMv6z.js similarity index 92% rename from dev/assets/perf_perf_interface.md.BojTEMgF.js rename to dev/assets/perf_perf_interface.md.DaCOMv6z.js index 127ff39..9c49dff 100644 --- a/dev/assets/perf_perf_interface.md.BojTEMgF.js +++ b/dev/assets/perf_perf_interface.md.DaCOMv6z.js @@ -1 +1 @@ -import{_ as r,c as t,o as a,m as e,a as n}from"./chunks/framework.RTxADYK2.js";const P=JSON.parse('{"title":"Interfacing PerfChecker","description":"","frontmatter":{},"headers":[],"relativePath":"perf/perf_interface.md","filePath":"perf/perf_interface.md","lastUpdated":null}'),c={name:"perf/perf_interface.md"},f=e("h1",{id:"Interfacing-PerfChecker",tabindex:"-1"},[n("Interfacing PerfChecker "),e("a",{class:"header-anchor",href:"#Interfacing-PerfChecker","aria-label":'Permalink to "Interfacing PerfChecker {#Interfacing-PerfChecker}"'},"​")],-1),i=e("p",null,"PerfChecker was build as an easy to extend interface. This section will cover the few method required.",-1),s=[f,i];function o(d,h,l,_,p,m){return a(),t("div",null,s)}const u=r(c,[["render",o]]);export{P as __pageData,u as default}; +import{_ as r,c as t,o as a,m as e,a as n}from"./chunks/framework.aA95Gx5L.js";const P=JSON.parse('{"title":"Interfacing PerfChecker","description":"","frontmatter":{},"headers":[],"relativePath":"perf/perf_interface.md","filePath":"perf/perf_interface.md","lastUpdated":null}'),c={name:"perf/perf_interface.md"},f=e("h1",{id:"Interfacing-PerfChecker",tabindex:"-1"},[n("Interfacing PerfChecker "),e("a",{class:"header-anchor",href:"#Interfacing-PerfChecker","aria-label":'Permalink to "Interfacing PerfChecker {#Interfacing-PerfChecker}"'},"​")],-1),i=e("p",null,"PerfChecker was build as an easy to extend interface. This section will cover the few method required.",-1),s=[f,i];function o(d,h,l,_,p,m){return a(),t("div",null,s)}const u=r(c,[["render",o]]);export{P as __pageData,u as default}; diff --git a/dev/assets/perf_perf_interface.md.BojTEMgF.lean.js b/dev/assets/perf_perf_interface.md.DaCOMv6z.lean.js similarity index 92% rename from dev/assets/perf_perf_interface.md.BojTEMgF.lean.js rename to dev/assets/perf_perf_interface.md.DaCOMv6z.lean.js index 127ff39..9c49dff 100644 --- a/dev/assets/perf_perf_interface.md.BojTEMgF.lean.js +++ b/dev/assets/perf_perf_interface.md.DaCOMv6z.lean.js @@ -1 +1 @@ -import{_ as r,c as t,o as a,m as e,a as n}from"./chunks/framework.RTxADYK2.js";const P=JSON.parse('{"title":"Interfacing PerfChecker","description":"","frontmatter":{},"headers":[],"relativePath":"perf/perf_interface.md","filePath":"perf/perf_interface.md","lastUpdated":null}'),c={name:"perf/perf_interface.md"},f=e("h1",{id:"Interfacing-PerfChecker",tabindex:"-1"},[n("Interfacing PerfChecker "),e("a",{class:"header-anchor",href:"#Interfacing-PerfChecker","aria-label":'Permalink to "Interfacing PerfChecker {#Interfacing-PerfChecker}"'},"​")],-1),i=e("p",null,"PerfChecker was build as an easy to extend interface. This section will cover the few method required.",-1),s=[f,i];function o(d,h,l,_,p,m){return a(),t("div",null,s)}const u=r(c,[["render",o]]);export{P as __pageData,u as default}; +import{_ as r,c as t,o as a,m as e,a as n}from"./chunks/framework.aA95Gx5L.js";const P=JSON.parse('{"title":"Interfacing PerfChecker","description":"","frontmatter":{},"headers":[],"relativePath":"perf/perf_interface.md","filePath":"perf/perf_interface.md","lastUpdated":null}'),c={name:"perf/perf_interface.md"},f=e("h1",{id:"Interfacing-PerfChecker",tabindex:"-1"},[n("Interfacing PerfChecker "),e("a",{class:"header-anchor",href:"#Interfacing-PerfChecker","aria-label":'Permalink to "Interfacing PerfChecker {#Interfacing-PerfChecker}"'},"​")],-1),i=e("p",null,"PerfChecker was build as an easy to extend interface. This section will cover the few method required.",-1),s=[f,i];function o(d,h,l,_,p,m){return a(),t("div",null,s)}const u=r(c,[["render",o]]);export{P as __pageData,u as default}; diff --git a/dev/assets/public_api.md.CHgtZLEx.js b/dev/assets/public_api.md.DHfmf6CX.js similarity index 99% rename from dev/assets/public_api.md.CHgtZLEx.js rename to dev/assets/public_api.md.DHfmf6CX.js index 8722781..93ee94a 100644 --- a/dev/assets/public_api.md.CHgtZLEx.js +++ b/dev/assets/public_api.md.DHfmf6CX.js @@ -1,4 +1,4 @@ -import{_ as i,c as s,o as a,a7 as t}from"./chunks/framework.RTxADYK2.js";const b=JSON.parse('{"title":"Public API","description":"","frontmatter":{},"headers":[],"relativePath":"public_api.md","filePath":"public_api.md","lastUpdated":null}'),e={name:"public_api.md"},n=t(`

Public API

# ConstraintCommons.AutomatonType.
julia
Automaton{S, T, F <: Union{S, Vector{S}, Set{S}}} <: AbstractAutomaton

A minimal implementation of a deterministic automaton structure.

source


# ConstraintCommons.MDDType.
julia
MDD{S,T} <: AbstractMultivaluedDecisionDiagram

A minimal implementation of a multivalued decision diagram structure.

source


# ConstraintCommons.acceptMethod.
julia
accept(a::Union{Automaton, MDD}, w)

Return true if a accepts the word w and false otherwise.

source


# ConstraintCommons.extract_parametersMethod.
julia
extract_parameters(m::Union{Method, Function}; parameters)

Extracts the intersection between the kargs of m and parameters (defaults to USUAL_CONSTRAINT_PARAMETERS).

source


# ConstraintCommons.incsert!Function.
julia
incsert!(d::Union{AbstractDict, AbstractDictionary}, ind, val = 1)

Increase or insert a counter in a dictionary-based collection. The counter insertion defaults to val = 1.

source


# ConstraintCommons.oversampleMethod.
julia
oversample(X, f)

Oversample elements of X until the boolean function f has as many true and false configurations.

source


# ConstraintCommons.δ_extremaMethod.
julia
δ_extrema(X...)

Compute both the difference between the maximum and the minimum of over all the collections of X.

source


# ConstraintDomains.AbstractDomainType.
julia
AbstractDomain

An abstract super type for any domain type. A domain type D <: AbstractDomain must implement the following methods to properly interface AbstractDomain.

  • Base.∈(val, ::D)

  • Base.rand(::D)

  • Base.length(::D) that is the number of elements in a discrete domain, and the distance between bounds or similar for a continuous domain

Addtionally, if the domain is used in a dynamic context, it can extend

  • add!(::D, args)

  • delete!(::D, args)

where args depends on D's structure

source


# ConstraintDomains.ContinuousDomainType.
julia
ContinuousDomain{T <: Real} <: AbstractDomain

An abstract supertype for all continuous domains.

source


# ConstraintDomains.DiscreteDomainType.
julia
DiscreteDomain{T <: Number} <: AbstractDomain

An abstract supertype for discrete domains (set, range).

source


# ConstraintDomains.ExploreSettingsMethod.
julia
ExploreSettings(
+import{_ as i,c as s,o as a,a7 as t}from"./chunks/framework.aA95Gx5L.js";const b=JSON.parse('{"title":"Public API","description":"","frontmatter":{},"headers":[],"relativePath":"public_api.md","filePath":"public_api.md","lastUpdated":null}'),e={name:"public_api.md"},n=t(`

Public API

# ConstraintCommons.AutomatonType.
julia
Automaton{S, T, F <: Union{S, Vector{S}, Set{S}}} <: AbstractAutomaton

A minimal implementation of a deterministic automaton structure.

source


# ConstraintCommons.MDDType.
julia
MDD{S,T} <: AbstractMultivaluedDecisionDiagram

A minimal implementation of a multivalued decision diagram structure.

source


# ConstraintCommons.acceptMethod.
julia
accept(a::Union{Automaton, MDD}, w)

Return true if a accepts the word w and false otherwise.

source


# ConstraintCommons.extract_parametersMethod.
julia
extract_parameters(m::Union{Method, Function}; parameters)

Extracts the intersection between the kargs of m and parameters (defaults to USUAL_CONSTRAINT_PARAMETERS).

source


# ConstraintCommons.incsert!Function.
julia
incsert!(d::Union{AbstractDict, AbstractDictionary}, ind, val = 1)

Increase or insert a counter in a dictionary-based collection. The counter insertion defaults to val = 1.

source


# ConstraintCommons.oversampleMethod.
julia
oversample(X, f)

Oversample elements of X until the boolean function f has as many true and false configurations.

source


# ConstraintCommons.δ_extremaMethod.
julia
δ_extrema(X...)

Compute both the difference between the maximum and the minimum of over all the collections of X.

source


# ConstraintDomains.AbstractDomainType.
julia
AbstractDomain

An abstract super type for any domain type. A domain type D <: AbstractDomain must implement the following methods to properly interface AbstractDomain.

  • Base.∈(val, ::D)

  • Base.rand(::D)

  • Base.length(::D) that is the number of elements in a discrete domain, and the distance between bounds or similar for a continuous domain

Addtionally, if the domain is used in a dynamic context, it can extend

  • add!(::D, args)

  • delete!(::D, args)

where args depends on D's structure

source


# ConstraintDomains.ContinuousDomainType.
julia
ContinuousDomain{T <: Real} <: AbstractDomain

An abstract supertype for all continuous domains.

source


# ConstraintDomains.DiscreteDomainType.
julia
DiscreteDomain{T <: Number} <: AbstractDomain

An abstract supertype for discrete domains (set, range).

source


# ConstraintDomains.ExploreSettingsMethod.
julia
ExploreSettings(
     domains;
     complete_search_limit = 10^6,
     max_samplings = sum(domain_size, domains),
diff --git a/dev/assets/public_api.md.CHgtZLEx.lean.js b/dev/assets/public_api.md.DHfmf6CX.lean.js
similarity index 68%
rename from dev/assets/public_api.md.CHgtZLEx.lean.js
rename to dev/assets/public_api.md.DHfmf6CX.lean.js
index 57b48fe..6487da0 100644
--- a/dev/assets/public_api.md.CHgtZLEx.lean.js
+++ b/dev/assets/public_api.md.DHfmf6CX.lean.js
@@ -1 +1 @@
-import{_ as i,c as s,o as a,a7 as t}from"./chunks/framework.RTxADYK2.js";const b=JSON.parse('{"title":"Public API","description":"","frontmatter":{},"headers":[],"relativePath":"public_api.md","filePath":"public_api.md","lastUpdated":null}'),e={name:"public_api.md"},n=t("",141),o=[n];function l(r,p,h,d,c,k){return a(),s("div",null,o)}const g=i(e,[["render",l]]);export{b as __pageData,g as default};
+import{_ as i,c as s,o as a,a7 as t}from"./chunks/framework.aA95Gx5L.js";const b=JSON.parse('{"title":"Public API","description":"","frontmatter":{},"headers":[],"relativePath":"public_api.md","filePath":"public_api.md","lastUpdated":null}'),e={name:"public_api.md"},n=t("",141),o=[n];function l(r,p,h,d,c,k){return a(),s("div",null,o)}const g=i(e,[["render",l]]);export{b as __pageData,g as default};
diff --git a/dev/assets/solvers_cbls.md.EsXDaOSr.js b/dev/assets/solvers_cbls.md.BxYapv-Y.js
similarity index 99%
rename from dev/assets/solvers_cbls.md.EsXDaOSr.js
rename to dev/assets/solvers_cbls.md.BxYapv-Y.js
index f34d44a..dd8bb42 100644
--- a/dev/assets/solvers_cbls.md.EsXDaOSr.js
+++ b/dev/assets/solvers_cbls.md.BxYapv-Y.js
@@ -1 +1 @@
-import{_ as i,c as s,o as a,a7 as e}from"./chunks/framework.RTxADYK2.js";const b=JSON.parse('{"title":"CBLS.jl","description":"","frontmatter":{},"headers":[],"relativePath":"solvers/cbls.md","filePath":"solvers/cbls.md","lastUpdated":null}'),t={name:"solvers/cbls.md"},l=e('

CBLS.jl

Documentation for CBLS.jl.

# CBLS.AllDifferentType.

Global constraint ensuring that all the values of a given configuration are unique.

julia
@constraint(model, X in AllDifferent())

source


# CBLS.AllEqualType.

Global constraint ensuring that all the values of X are all equal.

julia
@constraint(model, X in AllEqual())

source


# CBLS.AllEqualParamType.

Global constraint ensuring that all the values of X are all equal to a given parameter param.

julia
@constraint(model, X in AllEqualParam(param))

source


# CBLS.AlwaysTrueType.

Always return true. Mainly used for testing purpose.

julia
@constraint(model, X in AlwaysTrue())

source


# CBLS.DiscreteSetType.
julia
DiscreteSet(values)

source


# CBLS.DistDifferentType.

Local constraint ensuring that, given a vector X of size 4, |X[1] - X[2]| ≠ |X[3] - X[4]|).

julia
@constraint(model, X in DistDifferent())

source


# CBLS.EqType.

Equality between two variables.

julia
@constraint(model, X in Eq())

source


# CBLS.ErrorType.
julia
Error{F <: Function} <: JuMP.AbstractVectorSet

The solver will compute a straightforward error function based on the concept. To run the solver efficiently, it is possible to provide an error function err instead of concept. err must return a nonnegative real number.

julia
@constraint(model, X in Error(err))

source


# CBLS.LessThanParamType.

Constraint ensuring that the value of x is less than a given parameter param.

julia
@constraint(model, x in LessThanParam(param))

source


# CBLS.MOIAllDifferentType.
julia
MOIAllDifferent <: MOI.AbstractVectorSet

DOCSTRING

source


# CBLS.MOIAllEqualType.
julia
MOIAllEqual <: MOI.AbstractVectorSet

DOCSTRING

source


# CBLS.MOIAllEqualParamType.
julia
MOIAllEqualParam{T <: Number} <: MOI.AbstractVectorSet

DOCSTRING

Arguments:

  • param::T: DESCRIPTION

  • dimension::Int: DESCRIPTION

  • MOIAllEqualParam(param, dim = 0) = begin #= none:5 =# new{typeof(param)}(param, dim) end: DESCRIPTION

source


# CBLS.MOIAlwaysTrueType.
julia
MOIAlwaysTrue <: MOI.AbstractVectorSet

DOCSTRING

source


# CBLS.MOIDistDifferentType.
julia
MOIDistDifferent <: MOI.AbstractVectorSet

DOCSTRING

source


# CBLS.MOIEqType.
julia
MOIEq <: MOI.AbstractVectorSet

DOCSTRING

source


# CBLS.MOIErrorType.
julia
MOIError{F <: Function} <: MOI.AbstractVectorSet

DOCSTRING

Arguments:

  • f::F: DESCRIPTION

  • dimension::Int: DESCRIPTION

  • MOIError(f, dim = 0) = begin #= none:5 =# new{typeof(f)}(f, dim) end: DESCRIPTION

source


# CBLS.MOILessThanParamType.
julia
MOILessThanParam{T <: Number} <: MOI.AbstractVectorSet

DOCSTRING

Arguments:

  • param::T: DESCRIPTION

  • dimension::Int: DESCRIPTION

  • MOILessThanParam(param, dim = 0) = begin #= none:5 =# new{typeof(param)}(param, dim) end: DESCRIPTION

source


# CBLS.MOIMinusEqualParamType.
julia
MOIMinusEqualParam{T <: Number} <: MOI.AbstractVectorSet

DOCSTRING

Arguments:

  • param::T: DESCRIPTION

  • dimension::Int: DESCRIPTION

  • MOIMinusEqualParam(param, dim = 0) = begin #= none:5 =# new{typeof(param)}(param, dim) end: DESCRIPTION

source


# CBLS.MOIOrderedType.
julia
MOIOrdered <: MOI.AbstractVectorSet

DOCSTRING

source


# CBLS.MOIPredicateType.
julia
MOIPredicate{F <: Function} <: MOI.AbstractVectorSet

DOCSTRING

Arguments:

  • f::F: DESCRIPTION

  • dimension::Int: DESCRIPTION

  • MOIPredicate(f, dim = 0) = begin #= none:5 =# new{typeof(f)}(f, dim) end: DESCRIPTION

source


# CBLS.MOISequentialTasksType.
julia
MOISequentialTasks <: MOI.AbstractVectorSet

DOCSTRING

source


# CBLS.MOISumEqualParamType.
julia
MOISumEqualParam{T <: Number} <: MOI.AbstractVectorSet

DOCSTRING

Arguments:

  • param::T: DESCRIPTION

  • dimension::Int: DESCRIPTION

  • MOISumEqualParam(param, dim = 0) = begin #= none:5 =# new{typeof(param)}(param, dim) end: DESCRIPTION

source


# CBLS.MinusEqualParamType.

Constraint ensuring that the value of x is less than a given parameter param.

julia
@constraint(model, x in MinusEqualParam(param))

source


# CBLS.OptimizerType.
julia
Optimizer(model = Model(); options = Options())

DOCSTRING

source


# CBLS.OptimizerType.
julia
Optimizer <: MOI.AbstractOptimizer

DOCSTRING

Arguments:

  • solver::Solver: DESCRIPTION

  • status::MOI.TerminationStatusCode: DESCRIPTION

  • options::Options: DESCRIPTION

source


# CBLS.OrderedType.

Global constraint ensuring that all the values of x are ordered.

julia
@constraint(model, X in Ordered())

source


# CBLS.PredicateType.
julia
Predicate{F <: Function} <: JuMP.AbstractVectorSet

Assuming X is a (collection of) variables, concept a boolean function over X, and that a model is defined. In JuMP syntax we can create a constraint based on concept as follows.

julia
@constraint(model, X in Predicate(concept))

source


# CBLS.ScalarFunctionType.
julia
ScalarFunction{F <: Function, V <: Union{Nothing, VOV}} <: MOI.AbstractScalarFunction

A container to express any function with real value in JuMP syntax. Used with the @objective macro.

Arguments:

  • f::F: function to be applied to X

  • X::V: a subset of the variables of the model.

Given a model, and some (collection of) variables X to optimize. an objective function f can be added as follows. Note that only Min for minimization us currently defined. Max will come soon.

julia
# Applies to all variables in order of insertion.\n# Recommended only when the function argument order does not matter.\n@objective(model, ScalarFunction(f))\n\n# Generic use\n@objective(model, ScalarFunction(f, X))

source


# CBLS.SequentialTasksType.

Local constraint ensuring that, given a vector X of size 4, |X[1] - X[2]| ≠ |X[3] - X[4]|).

julia
@constraint(model, X in SequentialTasks())

source


# CBLS.SumEqualParamType.

Global constraint ensuring that the sum of the values of X is equal to a given parameter param.

julia
@constraint(model, X in SumEqualParam(param))

source


# Base.copyMethod.
julia
Base.copy(set::MOIError) = begin

DOCSTRING

source


# Base.copyMethod.
julia
Base.copy(set::DiscreteSet) = begin

DOCSTRING

source


# JuMP.build_variableMethod.
julia
JuMP.build_variable(::Function, info::JuMP.VariableInfo, set::T) where T <: MOI.AbstractScalarSet

DOCSTRING

Arguments:

  • ``: DESCRIPTION

  • info: DESCRIPTION

  • set: DESCRIPTION

source


# MathOptInterface.add_constraintMethod.
julia
MOI.add_constraint(optimizer::Optimizer, vars::MOI.VectorOfVariables, set::MOIError)

DOCSTRING

Arguments:

  • optimizer: DESCRIPTION

  • vars: DESCRIPTION

  • set: DESCRIPTION

source


# MathOptInterface.add_constraintMethod.
julia
MOI.add_constraint(optimizer::Optimizer, v::VI, set::DiscreteSet{T}) where T <: Number

DOCSTRING

Arguments:

  • optimizer: DESCRIPTION

  • v: DESCRIPTION

  • set: DESCRIPTION

source


# MathOptInterface.add_variableMethod.
julia
MOI.add_variable(model::Optimizer) = begin

DOCSTRING

source


# MathOptInterface.empty!Method.
julia
MOI.empty!(opt) = begin

DOCSTRING

source


# MathOptInterface.getMethod.
julia
MOI.get(::Optimizer, ::MOI.SolverName) = begin

DOCSTRING

source


# MathOptInterface.is_emptyMethod.
julia
MOI.is_empty(model::Optimizer) = begin

DOCSTRING

source


# MathOptInterface.optimize!Method.
julia
MOI.optimize!(model::Optimizer)

source


# MathOptInterface.setFunction.
julia
MOI.set(::Optimizer, ::MOI.Silent, bool = true) = begin

DOCSTRING

Arguments:

  • ``: DESCRIPTION

  • ``: DESCRIPTION

  • bool: DESCRIPTION

source


# MathOptInterface.setMethod.
julia
MOI.set(model::Optimizer, p::MOI.RawOptimizerAttribute, value)

Set a RawOptimizerAttribute to value

source


# MathOptInterface.setMethod.
julia
MOI.set(model::Optimizer, ::MOI.TimeLimitSec, value::Union{Nothing,Float64})

Set the time limit

source


# MathOptInterface.supports_constraintMethod.
julia
MOI.supports_constraint(::Optimizer, ::Type{VOV}, ::Type{MOIError}) = begin

DOCSTRING

Arguments:

  • ``: DESCRIPTION

  • ``: DESCRIPTION

  • ``: DESCRIPTION

source


# MathOptInterface.supports_incremental_interfaceMethod.

Copy constructor for the optimizer

source


',92),r=[l];function p(n,h,d,o,k,c){return a(),s("div",null,r)}const g=i(t,[["render",p]]);export{b as __pageData,g as default}; +import{_ as i,c as s,o as a,a7 as e}from"./chunks/framework.aA95Gx5L.js";const b=JSON.parse('{"title":"CBLS.jl","description":"","frontmatter":{},"headers":[],"relativePath":"solvers/cbls.md","filePath":"solvers/cbls.md","lastUpdated":null}'),t={name:"solvers/cbls.md"},l=e('

CBLS.jl

Documentation for CBLS.jl.

# CBLS.AllDifferentType.

Global constraint ensuring that all the values of a given configuration are unique.

julia
@constraint(model, X in AllDifferent())

source


# CBLS.AllEqualType.

Global constraint ensuring that all the values of X are all equal.

julia
@constraint(model, X in AllEqual())

source


# CBLS.AllEqualParamType.

Global constraint ensuring that all the values of X are all equal to a given parameter param.

julia
@constraint(model, X in AllEqualParam(param))

source


# CBLS.AlwaysTrueType.

Always return true. Mainly used for testing purpose.

julia
@constraint(model, X in AlwaysTrue())

source


# CBLS.DiscreteSetType.
julia
DiscreteSet(values)

source


# CBLS.DistDifferentType.

Local constraint ensuring that, given a vector X of size 4, |X[1] - X[2]| ≠ |X[3] - X[4]|).

julia
@constraint(model, X in DistDifferent())

source


# CBLS.EqType.

Equality between two variables.

julia
@constraint(model, X in Eq())

source


# CBLS.ErrorType.
julia
Error{F <: Function} <: JuMP.AbstractVectorSet

The solver will compute a straightforward error function based on the concept. To run the solver efficiently, it is possible to provide an error function err instead of concept. err must return a nonnegative real number.

julia
@constraint(model, X in Error(err))

source


# CBLS.LessThanParamType.

Constraint ensuring that the value of x is less than a given parameter param.

julia
@constraint(model, x in LessThanParam(param))

source


# CBLS.MOIAllDifferentType.
julia
MOIAllDifferent <: MOI.AbstractVectorSet

DOCSTRING

source


# CBLS.MOIAllEqualType.
julia
MOIAllEqual <: MOI.AbstractVectorSet

DOCSTRING

source


# CBLS.MOIAllEqualParamType.
julia
MOIAllEqualParam{T <: Number} <: MOI.AbstractVectorSet

DOCSTRING

Arguments:

  • param::T: DESCRIPTION

  • dimension::Int: DESCRIPTION

  • MOIAllEqualParam(param, dim = 0) = begin #= none:5 =# new{typeof(param)}(param, dim) end: DESCRIPTION

source


# CBLS.MOIAlwaysTrueType.
julia
MOIAlwaysTrue <: MOI.AbstractVectorSet

DOCSTRING

source


# CBLS.MOIDistDifferentType.
julia
MOIDistDifferent <: MOI.AbstractVectorSet

DOCSTRING

source


# CBLS.MOIEqType.
julia
MOIEq <: MOI.AbstractVectorSet

DOCSTRING

source


# CBLS.MOIErrorType.
julia
MOIError{F <: Function} <: MOI.AbstractVectorSet

DOCSTRING

Arguments:

  • f::F: DESCRIPTION

  • dimension::Int: DESCRIPTION

  • MOIError(f, dim = 0) = begin #= none:5 =# new{typeof(f)}(f, dim) end: DESCRIPTION

source


# CBLS.MOILessThanParamType.
julia
MOILessThanParam{T <: Number} <: MOI.AbstractVectorSet

DOCSTRING

Arguments:

  • param::T: DESCRIPTION

  • dimension::Int: DESCRIPTION

  • MOILessThanParam(param, dim = 0) = begin #= none:5 =# new{typeof(param)}(param, dim) end: DESCRIPTION

source


# CBLS.MOIMinusEqualParamType.
julia
MOIMinusEqualParam{T <: Number} <: MOI.AbstractVectorSet

DOCSTRING

Arguments:

  • param::T: DESCRIPTION

  • dimension::Int: DESCRIPTION

  • MOIMinusEqualParam(param, dim = 0) = begin #= none:5 =# new{typeof(param)}(param, dim) end: DESCRIPTION

source


# CBLS.MOIOrderedType.
julia
MOIOrdered <: MOI.AbstractVectorSet

DOCSTRING

source


# CBLS.MOIPredicateType.
julia
MOIPredicate{F <: Function} <: MOI.AbstractVectorSet

DOCSTRING

Arguments:

  • f::F: DESCRIPTION

  • dimension::Int: DESCRIPTION

  • MOIPredicate(f, dim = 0) = begin #= none:5 =# new{typeof(f)}(f, dim) end: DESCRIPTION

source


# CBLS.MOISequentialTasksType.
julia
MOISequentialTasks <: MOI.AbstractVectorSet

DOCSTRING

source


# CBLS.MOISumEqualParamType.
julia
MOISumEqualParam{T <: Number} <: MOI.AbstractVectorSet

DOCSTRING

Arguments:

  • param::T: DESCRIPTION

  • dimension::Int: DESCRIPTION

  • MOISumEqualParam(param, dim = 0) = begin #= none:5 =# new{typeof(param)}(param, dim) end: DESCRIPTION

source


# CBLS.MinusEqualParamType.

Constraint ensuring that the value of x is less than a given parameter param.

julia
@constraint(model, x in MinusEqualParam(param))

source


# CBLS.OptimizerType.
julia
Optimizer(model = Model(); options = Options())

DOCSTRING

source


# CBLS.OptimizerType.
julia
Optimizer <: MOI.AbstractOptimizer

DOCSTRING

Arguments:

  • solver::Solver: DESCRIPTION

  • status::MOI.TerminationStatusCode: DESCRIPTION

  • options::Options: DESCRIPTION

source


# CBLS.OrderedType.

Global constraint ensuring that all the values of x are ordered.

julia
@constraint(model, X in Ordered())

source


# CBLS.PredicateType.
julia
Predicate{F <: Function} <: JuMP.AbstractVectorSet

Assuming X is a (collection of) variables, concept a boolean function over X, and that a model is defined. In JuMP syntax we can create a constraint based on concept as follows.

julia
@constraint(model, X in Predicate(concept))

source


# CBLS.ScalarFunctionType.
julia
ScalarFunction{F <: Function, V <: Union{Nothing, VOV}} <: MOI.AbstractScalarFunction

A container to express any function with real value in JuMP syntax. Used with the @objective macro.

Arguments:

  • f::F: function to be applied to X

  • X::V: a subset of the variables of the model.

Given a model, and some (collection of) variables X to optimize. an objective function f can be added as follows. Note that only Min for minimization us currently defined. Max will come soon.

julia
# Applies to all variables in order of insertion.\n# Recommended only when the function argument order does not matter.\n@objective(model, ScalarFunction(f))\n\n# Generic use\n@objective(model, ScalarFunction(f, X))

source


# CBLS.SequentialTasksType.

Local constraint ensuring that, given a vector X of size 4, |X[1] - X[2]| ≠ |X[3] - X[4]|).

julia
@constraint(model, X in SequentialTasks())

source


# CBLS.SumEqualParamType.

Global constraint ensuring that the sum of the values of X is equal to a given parameter param.

julia
@constraint(model, X in SumEqualParam(param))

source


# Base.copyMethod.
julia
Base.copy(set::MOIError) = begin

DOCSTRING

source


# Base.copyMethod.
julia
Base.copy(set::DiscreteSet) = begin

DOCSTRING

source


# JuMP.build_variableMethod.
julia
JuMP.build_variable(::Function, info::JuMP.VariableInfo, set::T) where T <: MOI.AbstractScalarSet

DOCSTRING

Arguments:

  • ``: DESCRIPTION

  • info: DESCRIPTION

  • set: DESCRIPTION

source


# MathOptInterface.add_constraintMethod.
julia
MOI.add_constraint(optimizer::Optimizer, vars::MOI.VectorOfVariables, set::MOIError)

DOCSTRING

Arguments:

  • optimizer: DESCRIPTION

  • vars: DESCRIPTION

  • set: DESCRIPTION

source


# MathOptInterface.add_constraintMethod.
julia
MOI.add_constraint(optimizer::Optimizer, v::VI, set::DiscreteSet{T}) where T <: Number

DOCSTRING

Arguments:

  • optimizer: DESCRIPTION

  • v: DESCRIPTION

  • set: DESCRIPTION

source


# MathOptInterface.add_variableMethod.
julia
MOI.add_variable(model::Optimizer) = begin

DOCSTRING

source


# MathOptInterface.empty!Method.
julia
MOI.empty!(opt) = begin

DOCSTRING

source


# MathOptInterface.getMethod.
julia
MOI.get(::Optimizer, ::MOI.SolverName) = begin

DOCSTRING

source


# MathOptInterface.is_emptyMethod.
julia
MOI.is_empty(model::Optimizer) = begin

DOCSTRING

source


# MathOptInterface.optimize!Method.
julia
MOI.optimize!(model::Optimizer)

source


# MathOptInterface.setFunction.
julia
MOI.set(::Optimizer, ::MOI.Silent, bool = true) = begin

DOCSTRING

Arguments:

  • ``: DESCRIPTION

  • ``: DESCRIPTION

  • bool: DESCRIPTION

source


# MathOptInterface.setMethod.
julia
MOI.set(model::Optimizer, p::MOI.RawOptimizerAttribute, value)

Set a RawOptimizerAttribute to value

source


# MathOptInterface.setMethod.
julia
MOI.set(model::Optimizer, ::MOI.TimeLimitSec, value::Union{Nothing,Float64})

Set the time limit

source


# MathOptInterface.supports_constraintMethod.
julia
MOI.supports_constraint(::Optimizer, ::Type{VOV}, ::Type{MOIError}) = begin

DOCSTRING

Arguments:

  • ``: DESCRIPTION

  • ``: DESCRIPTION

  • ``: DESCRIPTION

source


# MathOptInterface.supports_incremental_interfaceMethod.

Copy constructor for the optimizer

source


',92),r=[l];function p(n,h,d,o,k,c){return a(),s("div",null,r)}const g=i(t,[["render",p]]);export{b as __pageData,g as default}; diff --git a/dev/assets/solvers_cbls.md.EsXDaOSr.lean.js b/dev/assets/solvers_cbls.md.BxYapv-Y.lean.js similarity index 68% rename from dev/assets/solvers_cbls.md.EsXDaOSr.lean.js rename to dev/assets/solvers_cbls.md.BxYapv-Y.lean.js index e842675..cabdc8d 100644 --- a/dev/assets/solvers_cbls.md.EsXDaOSr.lean.js +++ b/dev/assets/solvers_cbls.md.BxYapv-Y.lean.js @@ -1 +1 @@ -import{_ as i,c as s,o as a,a7 as e}from"./chunks/framework.RTxADYK2.js";const b=JSON.parse('{"title":"CBLS.jl","description":"","frontmatter":{},"headers":[],"relativePath":"solvers/cbls.md","filePath":"solvers/cbls.md","lastUpdated":null}'),t={name:"solvers/cbls.md"},l=e("",92),r=[l];function p(n,h,d,o,k,c){return a(),s("div",null,r)}const g=i(t,[["render",p]]);export{b as __pageData,g as default}; +import{_ as i,c as s,o as a,a7 as e}from"./chunks/framework.aA95Gx5L.js";const b=JSON.parse('{"title":"CBLS.jl","description":"","frontmatter":{},"headers":[],"relativePath":"solvers/cbls.md","filePath":"solvers/cbls.md","lastUpdated":null}'),t={name:"solvers/cbls.md"},l=e("",92),r=[l];function p(n,h,d,o,k,c){return a(),s("div",null,r)}const g=i(t,[["render",p]]);export{b as __pageData,g as default}; diff --git a/dev/assets/solvers_intro.md.ChwLXNA2.js b/dev/assets/solvers_intro.md.BOddHRCt.js similarity index 89% rename from dev/assets/solvers_intro.md.ChwLXNA2.js rename to dev/assets/solvers_intro.md.BOddHRCt.js index c74a1d1..2e28887 100644 --- a/dev/assets/solvers_intro.md.ChwLXNA2.js +++ b/dev/assets/solvers_intro.md.BOddHRCt.js @@ -1 +1 @@ -import{_ as t,c as o,o as s,m as e,a as r}from"./chunks/framework.RTxADYK2.js";const u=JSON.parse('{"title":"Solvers","description":"","frontmatter":{},"headers":[],"relativePath":"solvers/intro.md","filePath":"solvers/intro.md","lastUpdated":null}'),a={name:"solvers/intro.md"},l=e("h1",{id:"Solvers",tabindex:"-1"},[r("Solvers "),e("a",{class:"header-anchor",href:"#Solvers","aria-label":'Permalink to "Solvers {#Solvers}"'},"​")],-1),n=e("p",null,"About solvers.",-1),c=[l,n];function i(d,_,p,v,h,m){return s(),o("div",null,c)}const S=t(a,[["render",i]]);export{u as __pageData,S as default}; +import{_ as t,c as o,o as s,m as e,a as r}from"./chunks/framework.aA95Gx5L.js";const u=JSON.parse('{"title":"Solvers","description":"","frontmatter":{},"headers":[],"relativePath":"solvers/intro.md","filePath":"solvers/intro.md","lastUpdated":null}'),a={name:"solvers/intro.md"},l=e("h1",{id:"Solvers",tabindex:"-1"},[r("Solvers "),e("a",{class:"header-anchor",href:"#Solvers","aria-label":'Permalink to "Solvers {#Solvers}"'},"​")],-1),n=e("p",null,"About solvers.",-1),c=[l,n];function i(d,_,p,v,h,m){return s(),o("div",null,c)}const S=t(a,[["render",i]]);export{u as __pageData,S as default}; diff --git a/dev/assets/solvers_intro.md.ChwLXNA2.lean.js b/dev/assets/solvers_intro.md.BOddHRCt.lean.js similarity index 89% rename from dev/assets/solvers_intro.md.ChwLXNA2.lean.js rename to dev/assets/solvers_intro.md.BOddHRCt.lean.js index c74a1d1..2e28887 100644 --- a/dev/assets/solvers_intro.md.ChwLXNA2.lean.js +++ b/dev/assets/solvers_intro.md.BOddHRCt.lean.js @@ -1 +1 @@ -import{_ as t,c as o,o as s,m as e,a as r}from"./chunks/framework.RTxADYK2.js";const u=JSON.parse('{"title":"Solvers","description":"","frontmatter":{},"headers":[],"relativePath":"solvers/intro.md","filePath":"solvers/intro.md","lastUpdated":null}'),a={name:"solvers/intro.md"},l=e("h1",{id:"Solvers",tabindex:"-1"},[r("Solvers "),e("a",{class:"header-anchor",href:"#Solvers","aria-label":'Permalink to "Solvers {#Solvers}"'},"​")],-1),n=e("p",null,"About solvers.",-1),c=[l,n];function i(d,_,p,v,h,m){return s(),o("div",null,c)}const S=t(a,[["render",i]]);export{u as __pageData,S as default}; +import{_ as t,c as o,o as s,m as e,a as r}from"./chunks/framework.aA95Gx5L.js";const u=JSON.parse('{"title":"Solvers","description":"","frontmatter":{},"headers":[],"relativePath":"solvers/intro.md","filePath":"solvers/intro.md","lastUpdated":null}'),a={name:"solvers/intro.md"},l=e("h1",{id:"Solvers",tabindex:"-1"},[r("Solvers "),e("a",{class:"header-anchor",href:"#Solvers","aria-label":'Permalink to "Solvers {#Solvers}"'},"​")],-1),n=e("p",null,"About solvers.",-1),c=[l,n];function i(d,_,p,v,h,m){return s(),o("div",null,c)}const S=t(a,[["render",i]]);export{u as __pageData,S as default}; diff --git a/dev/assets/solvers_local_search_solvers.md.DdV-mJRY.js b/dev/assets/solvers_local_search_solvers.md.Czt-kW-z.js similarity index 99% rename from dev/assets/solvers_local_search_solvers.md.DdV-mJRY.js rename to dev/assets/solvers_local_search_solvers.md.Czt-kW-z.js index 452a324..b86e63c 100644 --- a/dev/assets/solvers_local_search_solvers.md.DdV-mJRY.js +++ b/dev/assets/solvers_local_search_solvers.md.Czt-kW-z.js @@ -1,4 +1,4 @@ -import{_ as s,c as i,o as a,a7 as e}from"./chunks/framework.RTxADYK2.js";const u=JSON.parse('{"title":"LocalSearchSolvers.jl","description":"","frontmatter":{},"headers":[],"relativePath":"solvers/local_search_solvers.md","filePath":"solvers/local_search_solvers.md","lastUpdated":null}'),l={name:"solvers/local_search_solvers.md"},t=e(`

LocalSearchSolvers.jl

Documentation for LocalSearchSolvers.jl.

# LocalSearchSolvers.AbstractSolverType.
julia
AbstractSolver

Abstract type to encapsulate the different solver types such as Solver or _SubSolver.

source


# LocalSearchSolvers.ConstraintType.
julia
Constraint{F <: Function}

Structure to store an error function and the variables it constrains.

source


# LocalSearchSolvers.LeadSolverType.
julia
LeadSolver <: MetaSolver

Solver managed remotely by a MainSolver. Can manage its own set of local sub solvers.

source


# LocalSearchSolvers.MainSolverType.
julia
MainSolver <: AbstractSolver

Main solver. Handle the solving of a model, and optional multithreaded and/or distributed subsolvers.

Arguments:

  • model::Model: A formal description of the targeted problem

  • state::_State: An internal state to store the info necessary to a solving run

  • options::Options: User options for this solver

  • subs::Vector{_SubSolver}: Optional subsolvers

source


# LocalSearchSolvers.MetaSolverType.

Abstract type to encapsulate all solver types that manages other solvers.

source


# LocalSearchSolvers.ObjectiveType.
julia
Objective{F <: Function}

A structure to handle objectives in a solver. \`struct Objective{F <: Function} name::String f::F end\`\`

source


# LocalSearchSolvers.ObjectiveMethod.
julia
Objective(F, o::Objective{F2}) where {F2 <: Function}

Constructor used in specializing a solver. Should never be called externally.

source


# LocalSearchSolvers.OptionsType.
julia
Options()

Arguments:

  • dynamic::Bool: is the model dynamic?

  • iteration::Union{Int, Float64}: limit on the number of iterations

  • print_level::Symbol: verbosity to choose among :silent, :minimal, :partial, :verbose

  • solutions::Int: number of solutions to return

  • specialize::Bool: should the types of the model be specialized or not. Usually yes for static problems. For dynamic in depends if the user intend to introduce new types. The specialized model is about 10% faster.

  • tabu_time::Int: DESCRIPTION

  • tabu_local::Int: DESCRIPTION

  • tabu_delta::Float64: DESCRIPTION

  • threads::Int: Number of threads to use

  • time_limit::Float64: time limit in seconds

  • \`function Options(; dynamic = false, iteration = 10000, print_level = :minimal, solutions = 1, specialize = !dynamic, tabu_time = 0, tabu_local = 0, tabu_delta = 0.0, threads = typemax(0), time_limit = Inf)

julia
# Setting options in JuMP syntax: print_level, time_limit, iteration
+import{_ as s,c as i,o as a,a7 as e}from"./chunks/framework.aA95Gx5L.js";const u=JSON.parse('{"title":"LocalSearchSolvers.jl","description":"","frontmatter":{},"headers":[],"relativePath":"solvers/local_search_solvers.md","filePath":"solvers/local_search_solvers.md","lastUpdated":null}'),l={name:"solvers/local_search_solvers.md"},t=e(`

LocalSearchSolvers.jl

Documentation for LocalSearchSolvers.jl.

# LocalSearchSolvers.AbstractSolverType.
julia
AbstractSolver

Abstract type to encapsulate the different solver types such as Solver or _SubSolver.

source


# LocalSearchSolvers.ConstraintType.
julia
Constraint{F <: Function}

Structure to store an error function and the variables it constrains.

source


# LocalSearchSolvers.LeadSolverType.
julia
LeadSolver <: MetaSolver

Solver managed remotely by a MainSolver. Can manage its own set of local sub solvers.

source


# LocalSearchSolvers.MainSolverType.
julia
MainSolver <: AbstractSolver

Main solver. Handle the solving of a model, and optional multithreaded and/or distributed subsolvers.

Arguments:

  • model::Model: A formal description of the targeted problem

  • state::_State: An internal state to store the info necessary to a solving run

  • options::Options: User options for this solver

  • subs::Vector{_SubSolver}: Optional subsolvers

source


# LocalSearchSolvers.MetaSolverType.

Abstract type to encapsulate all solver types that manages other solvers.

source


# LocalSearchSolvers.ObjectiveType.
julia
Objective{F <: Function}

A structure to handle objectives in a solver. \`struct Objective{F <: Function} name::String f::F end\`\`

source


# LocalSearchSolvers.ObjectiveMethod.
julia
Objective(F, o::Objective{F2}) where {F2 <: Function}

Constructor used in specializing a solver. Should never be called externally.

source


# LocalSearchSolvers.OptionsType.
julia
Options()

Arguments:

  • dynamic::Bool: is the model dynamic?

  • iteration::Union{Int, Float64}: limit on the number of iterations

  • print_level::Symbol: verbosity to choose among :silent, :minimal, :partial, :verbose

  • solutions::Int: number of solutions to return

  • specialize::Bool: should the types of the model be specialized or not. Usually yes for static problems. For dynamic in depends if the user intend to introduce new types. The specialized model is about 10% faster.

  • tabu_time::Int: DESCRIPTION

  • tabu_local::Int: DESCRIPTION

  • tabu_delta::Float64: DESCRIPTION

  • threads::Int: Number of threads to use

  • time_limit::Float64: time limit in seconds

  • \`function Options(; dynamic = false, iteration = 10000, print_level = :minimal, solutions = 1, specialize = !dynamic, tabu_time = 0, tabu_local = 0, tabu_delta = 0.0, threads = typemax(0), time_limit = Inf)

julia
# Setting options in JuMP syntax: print_level, time_limit, iteration
 model = Model(CBLS.Optimizer)
 set_optimizer_attribute(model, "iteration", 100)
 set_optimizer_attribute(model, "print_level", :verbose)
diff --git a/dev/assets/solvers_local_search_solvers.md.DdV-mJRY.lean.js b/dev/assets/solvers_local_search_solvers.md.Czt-kW-z.lean.js
similarity index 72%
rename from dev/assets/solvers_local_search_solvers.md.DdV-mJRY.lean.js
rename to dev/assets/solvers_local_search_solvers.md.Czt-kW-z.lean.js
index d5bed5c..377bcfd 100644
--- a/dev/assets/solvers_local_search_solvers.md.DdV-mJRY.lean.js
+++ b/dev/assets/solvers_local_search_solvers.md.Czt-kW-z.lean.js
@@ -1 +1 @@
-import{_ as s,c as i,o as a,a7 as e}from"./chunks/framework.RTxADYK2.js";const u=JSON.parse('{"title":"LocalSearchSolvers.jl","description":"","frontmatter":{},"headers":[],"relativePath":"solvers/local_search_solvers.md","filePath":"solvers/local_search_solvers.md","lastUpdated":null}'),l={name:"solvers/local_search_solvers.md"},t=e("",286),r=[t];function o(h,n,p,d,c,k){return a(),i("div",null,r)}const g=s(l,[["render",o]]);export{u as __pageData,g as default};
+import{_ as s,c as i,o as a,a7 as e}from"./chunks/framework.aA95Gx5L.js";const u=JSON.parse('{"title":"LocalSearchSolvers.jl","description":"","frontmatter":{},"headers":[],"relativePath":"solvers/local_search_solvers.md","filePath":"solvers/local_search_solvers.md","lastUpdated":null}'),l={name:"solvers/local_search_solvers.md"},t=e("",286),r=[t];function o(h,n,p,d,c,k){return a(),i("div",null,r)}const g=s(l,[["render",o]]);export{u as __pageData,g as default};
diff --git a/dev/constraints/comparison_constraints.html b/dev/constraints/comparison_constraints.html
index 09c825c..59c3410 100644
--- a/dev/constraints/comparison_constraints.html
+++ b/dev/constraints/comparison_constraints.html
@@ -8,11 +8,11 @@
     
     
     
-    
+    
     
-    
-    
-    
+    
+    
+    
     
     
   
@@ -41,8 +41,8 @@
 c([1, 2, 3, 4, 4]; op=≤)
 c([1, 2, 3, 4, 5]; op=<)
 !c([1, 2, 3, 4, 3]; op=≤)
-!c([1, 2, 3, 4, 3]; op=<)

source


- +!c([1, 2, 3, 4, 3]; op=<)

source


+ \ No newline at end of file diff --git a/dev/constraints/connection_constraints.html b/dev/constraints/connection_constraints.html index 03cff6a..c055839 100644 --- a/dev/constraints/connection_constraints.html +++ b/dev/constraints/connection_constraints.html @@ -8,11 +8,11 @@ - + - - - + + + @@ -40,8 +40,8 @@ c([2, 1, 5, 3, 4, 2, 1, 4, 5, 3]; dim=2) c([2, 1, 4, 3, 5, 2, 1, 4, 5, 3]; dim=2) c([false, false, true, false]; id=3) -c([false, false, true, false]; id=1)

source


- +c([false, false, true, false]; id=1)

source


+ \ No newline at end of file diff --git a/dev/constraints/constraint_commons.html b/dev/constraints/constraint_commons.html index ad9af64..b30a18c 100644 --- a/dev/constraints/constraint_commons.html +++ b/dev/constraints/constraint_commons.html @@ -8,11 +8,11 @@ - + - - - + + + @@ -26,8 +26,8 @@ :pair_vars, :val, :vals, -]

source


# ConstraintCommons.extract_parametersFunction.
julia
extract_parameters(m::Union{Method, Function}; parameters)

Extracts the intersection between the kargs of m and parameters (defaults to USUAL_CONSTRAINT_PARAMETERS).

source

julia
extract_parameters(s::Symbol, constraints_dict=USUAL_CONSTRAINTS; parameters=ConstraintCommons.USUAL_CONSTRAINT_PARAMETERS)

Return the parameters of the constraint s in constraints_dict.

Arguments

  • s::Symbol: the constraint name.

  • constraints_dict::Dict{Symbol,Constraint}: dictionary of constraints. Default is USUAL_CONSTRAINTS.

  • parameters::Vector{Symbol}: vector of parameters. Default is ConstraintCommons.USUAL_CONSTRAINT_PARAMETERS.

Example

julia
extract_parameters(:all_different)

source


Performances – TODO

Languages

XCSP3 considers two kinds of structure to recognize languages as core constraints: Automata, Multivalued Decision Diagrams (MMDs).

# ConstraintCommons.AbstractMultivaluedDecisionDiagramType.
julia
AbstractMultivaluedDecisionDiagram

An abstract interface for Multivalued Decision Diagrams (MDD) used in Julia Constraints packages. Requirements:

  • accept(a<:AbstractMultivaluedDecisionDiagram, word): return true if a accepts word.

source


# ConstraintCommons.MDDType.
julia
MDD{S,T} <: AbstractMultivaluedDecisionDiagram

A minimal implementation of a multivalued decision diagram structure.

source


# ConstraintCommons.AbstractAutomatonType.
julia
AbstractAutomaton

An abstract interface for automata used in Julia Constraints packages. Requirements:

  • accept(a<:AbstractAutomaton, word): return true if a accepts word.

source


# ConstraintCommons.AutomatonType.
julia
Automaton{S, T, F <: Union{S, Vector{S}, Set{S}}} <: AbstractAutomaton

A minimal implementation of a deterministic automaton structure.

source


Missing docstring.

Missing docstring for Automaton(a::MDD). Check Documenter's build log for details.

# ConstraintCommons.acceptFunction.
julia
accept(a::Union{Automaton, MDD}, w)

Return true if a accepts the word w and false otherwise.

source

julia
ConstraintCommons.accept(fa::FakeAutomaton, word)

Implement the accept methods for FakeAutomaton.

source


# ConstraintCommons.at_endFunction.
julia
at_end(a::Automaton, s)

Internal method used by accept with Automaton.

source


Performances – TODO

Extensions

We extended some operations for Nothing and Symbol.

# Base.:*Function.
julia
Base.:*(s1::Symbol, s2::Symbol, connector::AbstractString="_")

Extends * to Symbols multiplication by connecting the symbols by an _.

source


# Base.inMethod.
julia
Base.in(::Any, ::Nothing)

Extends Base.in (or ) when the set is nothing. Returns false.

source


# Base.isemptyMethod.
julia
Base.isempty(::Nothing)

Extends Base.isempty when the set is nothing. Returns true.

source


Performances – TODO

Sampling

During our constraint learning processes, we use sampling to efficiently make partial exploration of search spaces. Follows some sampling utilities.

# ConstraintCommons.oversampleFunction.
julia
oversample(X, f)

Oversample elements of X until the boolean function f has as many true and false configurations.

source


Performances – TODO

Extrema

We need to compute the difference between extrema of various kind of collections in several situations.

# ConstraintCommons.δ_extremaFunction.
julia
δ_extrema(X...)

Compute both the difference between the maximum and the minimum of over all the collections of X.

source


Performances – TODO

Dictionaries

We provide the everuseful incsert! function for dictionaries.

# ConstraintCommons.incsert!Function.
julia
incsert!(d::Union{AbstractDict, AbstractDictionary}, ind, val = 1)

Increase or insert a counter in a dictionary-based collection. The counter insertion defaults to val = 1.

source


Performances – TODO

- +]

source


# ConstraintCommons.extract_parametersFunction.
julia
extract_parameters(m::Union{Method, Function}; parameters)

Extracts the intersection between the kargs of m and parameters (defaults to USUAL_CONSTRAINT_PARAMETERS).

source

julia
extract_parameters(s::Symbol, constraints_dict=USUAL_CONSTRAINTS; parameters=ConstraintCommons.USUAL_CONSTRAINT_PARAMETERS)

Return the parameters of the constraint s in constraints_dict.

Arguments

  • s::Symbol: the constraint name.

  • constraints_dict::Dict{Symbol,Constraint}: dictionary of constraints. Default is USUAL_CONSTRAINTS.

  • parameters::Vector{Symbol}: vector of parameters. Default is ConstraintCommons.USUAL_CONSTRAINT_PARAMETERS.

Example

julia
extract_parameters(:all_different)

source


Performances – TODO

Languages

XCSP3 considers two kinds of structure to recognize languages as core constraints: Automata, Multivalued Decision Diagrams (MMDs).

# ConstraintCommons.AbstractMultivaluedDecisionDiagramType.
julia
AbstractMultivaluedDecisionDiagram

An abstract interface for Multivalued Decision Diagrams (MDD) used in Julia Constraints packages. Requirements:

  • accept(a<:AbstractMultivaluedDecisionDiagram, word): return true if a accepts word.

source


# ConstraintCommons.MDDType.
julia
MDD{S,T} <: AbstractMultivaluedDecisionDiagram

A minimal implementation of a multivalued decision diagram structure.

source


# ConstraintCommons.AbstractAutomatonType.
julia
AbstractAutomaton

An abstract interface for automata used in Julia Constraints packages. Requirements:

  • accept(a<:AbstractAutomaton, word): return true if a accepts word.

source


# ConstraintCommons.AutomatonType.
julia
Automaton{S, T, F <: Union{S, Vector{S}, Set{S}}} <: AbstractAutomaton

A minimal implementation of a deterministic automaton structure.

source


Missing docstring.

Missing docstring for Automaton(a::MDD). Check Documenter's build log for details.

# ConstraintCommons.acceptFunction.
julia
accept(a::Union{Automaton, MDD}, w)

Return true if a accepts the word w and false otherwise.

source

julia
ConstraintCommons.accept(fa::FakeAutomaton, word)

Implement the accept methods for FakeAutomaton.

source


# ConstraintCommons.at_endFunction.
julia
at_end(a::Automaton, s)

Internal method used by accept with Automaton.

source


Performances – TODO

Extensions

We extended some operations for Nothing and Symbol.

# Base.:*Function.
julia
Base.:*(s1::Symbol, s2::Symbol, connector::AbstractString="_")

Extends * to Symbols multiplication by connecting the symbols by an _.

source


# Base.inMethod.
julia
Base.in(::Any, ::Nothing)

Extends Base.in (or ) when the set is nothing. Returns false.

source


# Base.isemptyMethod.
julia
Base.isempty(::Nothing)

Extends Base.isempty when the set is nothing. Returns true.

source


Performances – TODO

Sampling

During our constraint learning processes, we use sampling to efficiently make partial exploration of search spaces. Follows some sampling utilities.

# ConstraintCommons.oversampleFunction.
julia
oversample(X, f)

Oversample elements of X until the boolean function f has as many true and false configurations.

source


Performances – TODO

Extrema

We need to compute the difference between extrema of various kind of collections in several situations.

# ConstraintCommons.δ_extremaFunction.
julia
δ_extrema(X...)

Compute both the difference between the maximum and the minimum of over all the collections of X.

source


Performances – TODO

Dictionaries

We provide the everuseful incsert! function for dictionaries.

# ConstraintCommons.incsert!Function.
julia
incsert!(d::Union{AbstractDict, AbstractDictionary}, ind, val = 1)

Increase or insert a counter in a dictionary-based collection. The counter insertion defaults to val = 1.

source


Performances – TODO

+ \ No newline at end of file diff --git a/dev/constraints/constraint_domains.html b/dev/constraints/constraint_domains.html index 893d36d..477c532 100644 --- a/dev/constraints/constraint_domains.html +++ b/dev/constraints/constraint_domains.html @@ -8,11 +8,11 @@ - + - - - + + + @@ -52,8 +52,8 @@ search = :flexible, solutions_limit = floor(Int, sqrt(max_samplings)), )

Settings for the exploration of a search space composed by a collection of domains.

source


# ConstraintDomains._exploreFunction.
julia
_explore(args...)

Internals of the explore function. Behavior is automatically adjusted on the kind of exploration: :flexible, :complete, :partial.

source


# ConstraintDomains.exploreFunction.
julia
explore(domains, concept, param = nothing; search_limit = 1000, solutions_limit = 100)

Search (a part of) a search space and returns a pair of vector of configurations: (solutions, non_solutions). If the search space size is over search_limit, then both solutions and non_solutions are limited to solutions_limit.

Beware that if the density of the solutions in the search space is low, solutions_limit needs to be reduced. This process will be automatic in the future (simple reinforcement learning).

Arguments:

  • domains: a collection of domains

  • concept: the concept of the targeted constraint

  • param: an optional parameter of the constraint

  • sol_number: the required number of solutions (half of the number of configurations), default to 100

source


Parameters

# ConstraintDomains.BoolParameterDomainType.
julia
BoolParameterDomain <: AbstractDomain

A domain to store boolean values. It is used to generate random parameters.

source


# ConstraintDomains.DimParameterDomainType.
julia
DimParameterDomain <: AbstractDomain

A domain to store dimensions. It is used to generate random parameters.

source


# ConstraintDomains.IdParameterDomainType.
julia
IdParameterDomain <: AbstractDomain

A domain to store ids. It is used to generate random parameters.

source


# ConstraintDomains.FakeAutomatonType.
julia
FakeAutomaton{T} <: ConstraintCommons.AbstractAutomaton

A structure to generate pseudo automaton enough for parameter exploration.

source


# ConstraintCommons.acceptFunction.
julia
accept(a::Union{Automaton, MDD}, w)

Return true if a accepts the word w and false otherwise.

source

julia
ConstraintCommons.accept(fa::FakeAutomaton, word)

Implement the accept methods for FakeAutomaton.

source


# ConstraintDomains.fake_automatonFunction.
julia
fake_automaton(d)

Construct a FakeAutomaton.

source


# ConstraintDomains.LanguageParameterDomainType.
julia
LanguageParameterDomain <: AbstractDomain

A domain to store languages. It is used to generate random parameters.

source


# ConstraintDomains.OpParameterDomainType.
julia
OpParameterDomain{T} <: AbstractDomain

A domain to store operators. It is used to generate random parameters.

source


# ConstraintDomains.PairVarsParameterDomainType.
julia
PairVarsParameterDomain{T} <: AbstractDomain

A domain to store values paired with variables. It is used to generate random parameters.

source


# ConstraintDomains.ValParameterDomainType.
julia
ValParameterDomain{T} <: AbstractDomain

A domain to store one value. It is used to generate random parameters.

source


# ConstraintDomains.ValsParameterDomainType.
julia
ValsParameterDomain{T} <: AbstractDomain

A domain to store values. It is used to generate random parameters.

source


# Base.randFunction.
julia
Base.rand(d::Union{Vector{D},Set{D}, D}) where {D<:AbstractDomain}

Extends Base.rand to (a collection of) domains.

source

julia
Base.rand(itv::Intervals)
-Base.rand(itv::Intervals, i)

Return a random value from itv, specifically from the ith interval if i is specified.

source

julia
Base.rand(d::D) where D <: DiscreteDomain

Draw randomly a point in d.

source

julia
Base.rand(fa::FakeAutomaton)

Extends Base.rand. Currently simply returns fa.

source


# ConstraintDomains.generate_parametersFunction.
julia
generate_parameters(d<:AbstractDomain, param)

Generates random parameters based on the domain d and the kind of parameters param.

source


- +Base.rand(itv::Intervals, i)

Return a random value from itv, specifically from the ith interval if i is specified.

source

julia
Base.rand(d::D) where D <: DiscreteDomain

Draw randomly a point in d.

source

julia
Base.rand(fa::FakeAutomaton)

Extends Base.rand. Currently simply returns fa.

source


# ConstraintDomains.generate_parametersFunction.
julia
generate_parameters(d<:AbstractDomain, param)

Generates random parameters based on the domain d and the kind of parameters param.

source


+ \ No newline at end of file diff --git a/dev/constraints/constraint_models.html b/dev/constraints/constraint_models.html index 01a2130..a843f72 100644 --- a/dev/constraints/constraint_models.html +++ b/dev/constraints/constraint_models.html @@ -8,11 +8,11 @@ - + - - - + + + @@ -46,8 +46,8 @@ # Retrieve and display the values solution = value.(grid) -display(solution, Val(:sudoku))

source


- +display(solution, Val(:sudoku))

source


+ \ No newline at end of file diff --git a/dev/constraints/constraints.html b/dev/constraints/constraints.html index 355f80f..45893b3 100644 --- a/dev/constraints/constraints.html +++ b/dev/constraints/constraints.html @@ -8,19 +8,19 @@ - + - - - + + +
Skip to content

Constraints.jl: Streamlining Constraint Definition and Integration in Julia

Constraints.jl is a pivotal package within the JuliaConstraints ecosystem, designed to facilitate the definition, manipulation, and application of constraints in constraint programming (CP). This package is central to handling both standard and complex constraints, making it an indispensable tool for developers and researchers working in CP.

Key Features and Functionalities

  • Integration of XCSP3-core Constraints: One of the standout features of Constraints.jl is its incorporation of the XCSP3-core constraints as usual constraints within Julia. This integration ensures that users can define and work with a wide range of standard constraints, following the specifications outlined in the XCSP3-core, directly in Julia. The use of USUAL_CONSTRAINTS dictionary allows for straightforward addition and manipulation of these constraints, enhancing the package's utility and flexibility.

  • Learning Package Integration: Constraints.jl goes beyond traditional constraint handling by offering the capability to include results from various learning packages within the JuliaConstraints organization. This feature allows for the enhancement of usual constraints and those from the Global Constraints Catalog with learned parameters and behaviors, significantly improving constraint applicability and performance in complex CP problems.

  • Constraint Definition and Symmetry Handling: The package provides a simple yet powerful syntax for defining new constraints (@usual) and managing their symmetries through the USUAL_SYMMETRIES dictionary. This approach simplifies the creation of new constraints and the optimization of constraint search spaces by avoiding redundant explorations.

  • Advanced Constraint Functionalities: At the core of Constraints.jl is the Constraint type, encapsulating the essential elements of a constraint, including its concept (a Boolean function determining satisfaction) and an error function (providing a preference measure over invalid assignments). These components are crucial for defining how constraints behave and are evaluated within a CP model.

  • Flexible Constraint Application: The package supports a range of methods for interacting with constraints, such as args, concept, error_f, params_length, symmetries, and xcsp_intension. These methods offer users the ability to examine constraint properties, apply constraints to variable assignments, and work with intensional constraints defined by predicates. Such flexibility is vital for tailoring constraint behavior to specific problems and contexts.

Enabling Advanced Modeling in Constraint Programming

Constraints.jl embodies the JuliaConstraints ecosystem's commitment to providing robust, flexible tools for constraint programming. By integrating standard constraints, facilitating the incorporation of learned behaviors, and offering comprehensive tools for constraint definition and application, Constraints.jl significantly enhances the modeling capabilities available to CP practitioners. Whether for educational purposes, research, or solving practical CP problems, Constraints.jl offers a sophisticated, user-friendly platform for working with constraints in Julia.

Basic tools

# Constraints.USUAL_SYMMETRIESConstant.
julia
USUAL_SYMMETRIES

A Dictionary that contains the function to apply for each symmetry to avoid searching a whole space.

source


# Constraints.ConstraintType.
julia
Constraint

Parametric stucture with the following fields.

  • concept: a Boolean function that, given an assignment x, outputs true if x satisfies the constraint, and false otherwise.

  • error: a positive function that works as preferences over invalid assignements. Return 0.0 if the constraint is satisfied, and a strictly positive real otherwise.

source


# Constraints.conceptFunction.
julia
concept(c::Constraint)

Return the concept (function) of constraint c. concept(c::Constraint, x...; param = nothing) Apply the concept of c to values x and optionally param.

source

julia
concept(s::Symbol, args...; kargs...)

Return the concept of the constraint s applied to args and kargs. This is a shortcut for concept(USUAL_CONSTRAINTS[s])(args...; kargs...).

Arguments

  • s::Symbol: the constraint name.

  • args...: the arguments to apply the concept to.

  • kargs...: the keyword arguments to apply the concept to.

Example

julia
concept(:all_different, [1, 2, 3])

source


# Constraints.error_fFunction.
julia
error_f(c::Constraint)

Return the error function of constraint c. error_f(c::Constraint, x; param = nothing) Apply the error function of c to values x and optionally param.

source


# Constraints.argsFunction.
julia
args(c::Constraint)

Return the expected length restriction of the arguments in a constraint c. The value nothing indicates that any strictly positive number of value is accepted.

source


# Constraints.params_lengthFunction.
julia
params_length(c::Constraint)

Return the expected length restriction of the arguments in a constraint c. The value nothing indicates that any strictly positive number of parameters is accepted.

source


# Constraints.symmetriesFunction.
julia
symmetries(c::Constraint)

Return the list of symmetries of c.

source


# Constraints.make_errorFunction.
julia
make_error(symb::Symbol)

Create a function that returns an error based on the predicate of the constraint identified by the symbol provided.

Arguments

  • symb::Symbol: The symbol used to determine the error function to be returned. The function first checks if a predicate with the prefix "icn_" exists in the Constraints module. If it does, it returns that function. If it doesn't, it checks for a predicate with the prefix "error_". If that exists, it returns that function. If neither exists, it returns a function that evaluates the predicate with the prefix "concept_" and returns the negation of its result cast to Float64.

Returns

  • Function: A function that takes in a variable x and an arbitrary number of parameters params. The function returns a Float64.

Examples

julia
e = make_error(:all_different)
 e([1, 2, 3]) # Returns 0.0
-e([1, 1, 3]) # Returns 1.0

source


# Constraints.shrink_conceptFunction.
julia
shrink_concept(s)

Simply delete the concept_ part of symbol or string starting with it. TODO: add a check with a warning if s starts with something different.

source


# Constraints.concept_vs_errorFunction.
julia
concept_vs_error(c, e, args...; kargs...)

Compare the results of a concept function and an error function for the same inputs. It is mainly used for testing purposes.

Arguments

  • c: The concept function.

  • e: The error function.

  • args...: Positional arguments to be passed to both the concept and error functions.

  • kargs...: Keyword arguments to be passed to both the concept and error functions.

Returns

  • Boolean: Returns true if the result of the concept function is not equal to whether the result of the error function is greater than 0.0. Otherwise, it returns false.

Examples

julia
concept_vs_error(all_different, make_error(:all_different), [1, 2, 3]) # Returns false

source


Usual constraints (based on and including XCSP3-core categories)

# Constraints.USUAL_CONSTRAINTSConstant.
julia
USUAL_CONSTRAINTS::Dict

Dictionary that contains all the usual constraints defined in Constraint.jl. It is based on XCSP3-core specifications available at https://arxiv.org/abs/2009.00514

Adding a new constraint is as simple as defining a new function with the same name as the constraint and using the @usual macro to define it. The macro will take care of adding the new constraint to the USUAL_CONSTRAINTS dictionary.

Example

julia
@usual concept_all_different(x; vals=nothing) = xcsp_all_different(list=x, except=vals)

source


# Constraints.describeFunction.
julia
describe(constraints::Dict{Symbol,Constraint}=USUAL_CONSTRAINTS; width=150)

Return a pretty table with the description of the constraints in constraints.

Arguments

  • constraints::Dict{Symbol,Constraint}: dictionary of constraints to describe. Default is USUAL_CONSTRAINTS.

  • width::Int: width of the table.

Example

julia
describe()

source


# ConstraintCommons.extract_parametersFunction.
julia
extract_parameters(m::Union{Method, Function}; parameters)

Extracts the intersection between the kargs of m and parameters (defaults to USUAL_CONSTRAINT_PARAMETERS).

source

julia
extract_parameters(s::Symbol, constraints_dict=USUAL_CONSTRAINTS; parameters=ConstraintCommons.USUAL_CONSTRAINT_PARAMETERS)

Return the parameters of the constraint s in constraints_dict.

Arguments

  • s::Symbol: the constraint name.

  • constraints_dict::Dict{Symbol,Constraint}: dictionary of constraints. Default is USUAL_CONSTRAINTS.

  • parameters::Vector{Symbol}: vector of parameters. Default is ConstraintCommons.USUAL_CONSTRAINT_PARAMETERS.

Example

julia
extract_parameters(:all_different)

source


# Constraints.@usualMacro.
julia
usual(ex::Expr)

This macro is used to define a new constraint or update an existing one in the USUAL_CONSTRAINTS dictionary. It takes an expression ex as input, which represents the definition of a constraint.

Here's a step-by-step explanation of what the macro does:

  1. It first extracts the symbol of the concept from the input expression. This symbol is expected to be the first argument of the first argument of the expression. For example, if the expression is @usual all_different(x; y=1), the symbol would be :all_different.

  2. It then calls the shrink_concept function on the symbol to get a simplified version of the concept symbol.

  3. It initializes a dictionary defaults to store whether each keyword argument of the concept has a default value or not.

  4. It checks if the expression has more than two arguments. If it does, it means that there are keyword arguments present. It then loops over these keyword arguments. If a keyword argument is a symbol, it means it doesn't have a default value, so it adds an entry to the defaults dictionary with the keyword argument as the key and false as the value. If a keyword argument is not a symbol, it means it has a default value, so it adds an entry to the defaults dictionary with the keyword argument as the key and true as the value.

  5. It calls the make_error function on the simplified concept symbol to generate an error function for the constraint.

  6. It evaluates the input expression to get the concept function.

  7. It checks if the USUAL_CONSTRAINTS dictionary already contains an entry for the simplified concept symbol. If it does, it adds the defaults dictionary to the parameters of the existing constraint. If it doesn't, it creates a new constraint with the concept function, a description, the error function, and the defaults dictionary as the parameters, and adds it to the USUAL_CONSTRAINTS dictionary.

This macro is used to make it easier to define and update constraints in a consistent and possibly automated way.

Arguments

  • ex::Expr: expression to parse.

Example

julia
@usual concept_all_different(x; vals=nothing) = xcsp_all_different(list=x, except=vals)

source


# Constraints.constraints_parametersFunction.
julia
constraints_parameters(C=USUAL_CONSTRAINTS)

Return a pretty table with the parameters of the constraints in C.

Arguments

  • C::Dict{Symbol,Constraint}: dictionary of constraints. Default is USUAL_CONSTRAINTS.

Example

julia
constraints_parameters()

source


# Constraints.constraints_descriptionsFunction.
julia
constraints_descriptions(C=USUAL_CONSTRAINTS)

Return a pretty table with the descriptions of the constraints in C.

Arguments

  • C::Dict{Symbol,Constraint}: dictionary of constraints. Default is USUAL_CONSTRAINTS.

Example

julia
constraints_descriptions()

source


# Constraints.conceptFunction.
julia
concept(c::Constraint)

Return the concept (function) of constraint c. concept(c::Constraint, x...; param = nothing) Apply the concept of c to values x and optionally param.

source

julia
concept(s::Symbol, args...; kargs...)

Return the concept of the constraint s applied to args and kargs. This is a shortcut for concept(USUAL_CONSTRAINTS[s])(args...; kargs...).

Arguments

  • s::Symbol: the constraint name.

  • args...: the arguments to apply the concept to.

  • kargs...: the keyword arguments to apply the concept to.

Example

julia
concept(:all_different, [1, 2, 3])

source


- +e([1, 1, 3]) # Returns 1.0

source


# Constraints.shrink_conceptFunction.
julia
shrink_concept(s)

Simply delete the concept_ part of symbol or string starting with it. TODO: add a check with a warning if s starts with something different.

source


# Constraints.concept_vs_errorFunction.
julia
concept_vs_error(c, e, args...; kargs...)

Compare the results of a concept function and an error function for the same inputs. It is mainly used for testing purposes.

Arguments

  • c: The concept function.

  • e: The error function.

  • args...: Positional arguments to be passed to both the concept and error functions.

  • kargs...: Keyword arguments to be passed to both the concept and error functions.

Returns

  • Boolean: Returns true if the result of the concept function is not equal to whether the result of the error function is greater than 0.0. Otherwise, it returns false.

Examples

julia
concept_vs_error(all_different, make_error(:all_different), [1, 2, 3]) # Returns false

source


Usual constraints (based on and including XCSP3-core categories)

# Constraints.USUAL_CONSTRAINTSConstant.
julia
USUAL_CONSTRAINTS::Dict

Dictionary that contains all the usual constraints defined in Constraint.jl. It is based on XCSP3-core specifications available at https://arxiv.org/abs/2009.00514

Adding a new constraint is as simple as defining a new function with the same name as the constraint and using the @usual macro to define it. The macro will take care of adding the new constraint to the USUAL_CONSTRAINTS dictionary.

Example

julia
@usual concept_all_different(x; vals=nothing) = xcsp_all_different(list=x, except=vals)

source


# Constraints.describeFunction.
julia
describe(constraints::Dict{Symbol,Constraint}=USUAL_CONSTRAINTS; width=150)

Return a pretty table with the description of the constraints in constraints.

Arguments

  • constraints::Dict{Symbol,Constraint}: dictionary of constraints to describe. Default is USUAL_CONSTRAINTS.

  • width::Int: width of the table.

Example

julia
describe()

source


# ConstraintCommons.extract_parametersFunction.
julia
extract_parameters(m::Union{Method, Function}; parameters)

Extracts the intersection between the kargs of m and parameters (defaults to USUAL_CONSTRAINT_PARAMETERS).

source

julia
extract_parameters(s::Symbol, constraints_dict=USUAL_CONSTRAINTS; parameters=ConstraintCommons.USUAL_CONSTRAINT_PARAMETERS)

Return the parameters of the constraint s in constraints_dict.

Arguments

  • s::Symbol: the constraint name.

  • constraints_dict::Dict{Symbol,Constraint}: dictionary of constraints. Default is USUAL_CONSTRAINTS.

  • parameters::Vector{Symbol}: vector of parameters. Default is ConstraintCommons.USUAL_CONSTRAINT_PARAMETERS.

Example

julia
extract_parameters(:all_different)

source


# Constraints.@usualMacro.
julia
usual(ex::Expr)

This macro is used to define a new constraint or update an existing one in the USUAL_CONSTRAINTS dictionary. It takes an expression ex as input, which represents the definition of a constraint.

Here's a step-by-step explanation of what the macro does:

  1. It first extracts the symbol of the concept from the input expression. This symbol is expected to be the first argument of the first argument of the expression. For example, if the expression is @usual all_different(x; y=1), the symbol would be :all_different.

  2. It then calls the shrink_concept function on the symbol to get a simplified version of the concept symbol.

  3. It initializes a dictionary defaults to store whether each keyword argument of the concept has a default value or not.

  4. It checks if the expression has more than two arguments. If it does, it means that there are keyword arguments present. It then loops over these keyword arguments. If a keyword argument is a symbol, it means it doesn't have a default value, so it adds an entry to the defaults dictionary with the keyword argument as the key and false as the value. If a keyword argument is not a symbol, it means it has a default value, so it adds an entry to the defaults dictionary with the keyword argument as the key and true as the value.

  5. It calls the make_error function on the simplified concept symbol to generate an error function for the constraint.

  6. It evaluates the input expression to get the concept function.

  7. It checks if the USUAL_CONSTRAINTS dictionary already contains an entry for the simplified concept symbol. If it does, it adds the defaults dictionary to the parameters of the existing constraint. If it doesn't, it creates a new constraint with the concept function, a description, the error function, and the defaults dictionary as the parameters, and adds it to the USUAL_CONSTRAINTS dictionary.

This macro is used to make it easier to define and update constraints in a consistent and possibly automated way.

Arguments

  • ex::Expr: expression to parse.

Example

julia
@usual concept_all_different(x; vals=nothing) = xcsp_all_different(list=x, except=vals)

source


# Constraints.constraints_parametersFunction.
julia
constraints_parameters(C=USUAL_CONSTRAINTS)

Return a pretty table with the parameters of the constraints in C.

Arguments

  • C::Dict{Symbol,Constraint}: dictionary of constraints. Default is USUAL_CONSTRAINTS.

Example

julia
constraints_parameters()

source


# Constraints.constraints_descriptionsFunction.
julia
constraints_descriptions(C=USUAL_CONSTRAINTS)

Return a pretty table with the descriptions of the constraints in C.

Arguments

  • C::Dict{Symbol,Constraint}: dictionary of constraints. Default is USUAL_CONSTRAINTS.

Example

julia
constraints_descriptions()

source


# Constraints.conceptFunction.
julia
concept(c::Constraint)

Return the concept (function) of constraint c. concept(c::Constraint, x...; param = nothing) Apply the concept of c to values x and optionally param.

source

julia
concept(s::Symbol, args...; kargs...)

Return the concept of the constraint s applied to args and kargs. This is a shortcut for concept(USUAL_CONSTRAINTS[s])(args...; kargs...).

Arguments

  • s::Symbol: the constraint name.

  • args...: the arguments to apply the concept to.

  • kargs...: the keyword arguments to apply the concept to.

Example

julia
concept(:all_different, [1, 2, 3])

source


+ \ No newline at end of file diff --git a/dev/constraints/counting_summing_constraints.html b/dev/constraints/counting_summing_constraints.html index 26f9c2c..4d01585 100644 --- a/dev/constraints/counting_summing_constraints.html +++ b/dev/constraints/counting_summing_constraints.html @@ -8,11 +8,11 @@ - + - - - + + + @@ -55,8 +55,8 @@ cc([8, 5, 10, 10]; vals=[2 0 1; 5 1 3; 10 2 3]) co = concept(:cardinality_open) -co([8, 5, 10, 10]; vals=[2 0 1; 5 1 3; 10 2 3])

source


- +co([8, 5, 10, 10]; vals=[2 0 1; 5 1 3; 10 2 3])

source


+ \ No newline at end of file diff --git a/dev/constraints/elementary_constraints.html b/dev/constraints/elementary_constraints.html index 2869934..528e9fc 100644 --- a/dev/constraints/elementary_constraints.html +++ b/dev/constraints/elementary_constraints.html @@ -8,11 +8,11 @@ - + - - - + + + @@ -21,8 +21,8 @@ concept(:instantiation)(x; pair_vars)

Examples

julia
c = concept(:instantiation)
 
 c([1, 2, 3, 4, 5]; pair_vars=[1, 2, 3, 4, 5])
-c([1, 2, 3, 4, 5]; pair_vars=[1, 2, 3, 4, 6])

source


- +c([1, 2, 3, 4, 5]; pair_vars=[1, 2, 3, 4, 6])

source


+ \ No newline at end of file diff --git a/dev/constraints/generic_constraints.html b/dev/constraints/generic_constraints.html index e96a542..1d4a116 100644 --- a/dev/constraints/generic_constraints.html +++ b/dev/constraints/generic_constraints.html @@ -8,11 +8,11 @@ - + - - - + + + @@ -28,7 +28,7 @@ @usual concept_dist_different(x) = xcsp_intension( list = x, predicate = predicate_dist_different -)

Please check the section dedicated to the Golomb Ruler problem to see a use for this constraint. <!– TODO: Golomb Ruler –>

APIs

Note that the intension constraint is not directly available through the JC-API in Constraints.jl. It is designed as such since defining a constraint through a predicate is the natural way.

We provide here a usage example for the :dist_different constraint, previously added to the USUAL_CONSTRAINTS collection.

Higher level modeling language such as JuMP should provide an Intension interface.

julia
concept(:dist_different, x)
+)

Please check the section dedicated to the Golomb Ruler problem to see a use for this constraint. <!– TODO: Golomb Ruler –>

APIs

Note that the intension constraint is not directly available through the JC-API in Constraints.jl. It is designed as such since defining a constraint through a predicate is the natural way.

We provide here a usage example for the :dist_different constraint, previously added to the USUAL_CONSTRAINTS collection.

Higher level modeling language such as JuMP should provide an Intension interface.

julia
concept(:dist_different, x)
 concept(:dist_different)(x)
julia
# Defines the DistDifferent constraint
 c = x -> xcsp_intension(
     list = x,
@@ -55,8 +55,8 @@
 c([1, 2, 3, 4, 5]; pair_vars=[[1, 2, 3, 4, 5]])
 
 c = concept(:conflicts)
-c([1, 2, 3, 4, 5]; pair_vars=[[1, 2, 1, 4, 5], [1, 2, 3, 5, 5]])

source


- +c([1, 2, 3, 4, 5]; pair_vars=[[1, 2, 1, 4, 5], [1, 2, 3, 5, 5]])

source


+ \ No newline at end of file diff --git a/dev/constraints/graph_constraints.html b/dev/constraints/graph_constraints.html index 4d2986a..f8ecf87 100644 --- a/dev/constraints/graph_constraints.html +++ b/dev/constraints/graph_constraints.html @@ -8,11 +8,11 @@ - + - - - + + + @@ -23,8 +23,8 @@ c([1, 2, 3, 4]) c([2, 3, 4, 1]) c([2, 3, 1, 4]; op = ==, val = 3) -c([4, 3, 1, 3]; op = >, val = 0)

source


- +c([4, 3, 1, 3]; op = >, val = 0)

source


+ \ No newline at end of file diff --git a/dev/constraints/intro.html b/dev/constraints/intro.html index feefe1e..df34329 100644 --- a/dev/constraints/intro.html +++ b/dev/constraints/intro.html @@ -8,17 +8,17 @@ - + - - - + + + -
Skip to content

Introduction to basics cosntraints related tools

About constraints.

- +
Skip to content

Introduction to basics cosntraints related tools

About constraints.

+ \ No newline at end of file diff --git a/dev/constraints/language_constraints.html b/dev/constraints/language_constraints.html index 74494fa..c5960f7 100644 --- a/dev/constraints/language_constraints.html +++ b/dev/constraints/language_constraints.html @@ -8,11 +8,11 @@ - + - - - + + + @@ -64,8 +64,8 @@ c([2,0,0]; language = a) c([2,1,2]; language = a) c([1,0,2]; language = a) -c([0,1,2]; language = a)

source


- +c([0,1,2]; language = a)

source


+ \ No newline at end of file diff --git a/dev/constraints/packing_scheduling_constraints.html b/dev/constraints/packing_scheduling_constraints.html index e893eff..a77d80c 100644 --- a/dev/constraints/packing_scheduling_constraints.html +++ b/dev/constraints/packing_scheduling_constraints.html @@ -8,11 +8,11 @@ - + - - - + + + @@ -34,8 +34,8 @@ c([1, 2, 4, 6, 3]; pair_vars = [1, 1, 1, 3, 1]) c([1, 2, 4, 6, 3]; pair_vars = [1, 1, 3, 1, 1]) c([1, 1, 1, 3, 5, 2, 7, 7, 5, 12, 8, 7]; pair_vars = [2, 4, 1, 4 ,2 ,3, 5, 1, 2, 3, 3, 2], dim = 3) -c([1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4]; pair_vars = [2, 4, 1, 4 ,2 ,3, 5, 1, 2, 3, 3, 2], dim = 3)

source


- +c([1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4]; pair_vars = [2, 4, 1, 4 ,2 ,3, 5, 1, 2, 3, 3, 2], dim = 3)

source


+ \ No newline at end of file diff --git a/dev/cp/advanced.html b/dev/cp/advanced.html index 93f9497..991a8a0 100644 --- a/dev/cp/advanced.html +++ b/dev/cp/advanced.html @@ -8,17 +8,17 @@ - + - - - + + + -
Skip to content

Advanced Constraint Programming Techniques

Global Constraints and Their Uses

  • Dive deeper into global constraints and how they simplify complex problems.

Search Strategies and Optimization

  • Discuss various search strategies and their impact on solving CP problems.
- +
Skip to content

Advanced Constraint Programming Techniques

Global Constraints and Their Uses

  • Dive deeper into global constraints and how they simplify complex problems.

Search Strategies and Optimization

  • Discuss various search strategies and their impact on solving CP problems.
+ \ No newline at end of file diff --git a/dev/cp/applications.html b/dev/cp/applications.html index e78c4fa..e92bf40 100644 --- a/dev/cp/applications.html +++ b/dev/cp/applications.html @@ -8,17 +8,17 @@ - + - - - + + + -
Skip to content

Applying Optimization Methods

Case Studies and Real-World Applications

  • Showcase studies where CP and optimization have been successfully applied.

From Theory to Practice

  • Guide readers through the process of formulating and solving an optimization problem from a real-world scenario.
- +
Skip to content

Applying Optimization Methods

Case Studies and Real-World Applications

  • Showcase studies where CP and optimization have been successfully applied.

From Theory to Practice

  • Guide readers through the process of formulating and solving an optimization problem from a real-world scenario.
+ \ No newline at end of file diff --git a/dev/cp/contribution.html b/dev/cp/contribution.html index 1b0892c..20ccf71 100644 --- a/dev/cp/contribution.html +++ b/dev/cp/contribution.html @@ -8,17 +8,17 @@ - + - - - + + + -
Skip to content

Community and Contribution

Joining the JuliaConstraint Community

  • Encourage readers to join the community, highlighting how they can contribute and collaborate.

Future Directions

  • Share the vision for JuliaConstraint and upcoming projects or areas of research.
- +
Skip to content

Community and Contribution

Joining the JuliaConstraint Community

  • Encourage readers to join the community, highlighting how they can contribute and collaborate.

Future Directions

  • Share the vision for JuliaConstraint and upcoming projects or areas of research.
+ \ No newline at end of file diff --git a/dev/cp/cp101.html b/dev/cp/cp101.html index a0e17c6..24bcb17 100644 --- a/dev/cp/cp101.html +++ b/dev/cp/cp101.html @@ -8,17 +8,17 @@ - + - - - + + + -
Skip to content

Constraint Programming 101

What is Constraint Programming?

  • Define CP and its significance in solving combinatorial problems.

Basic Concepts and Terminology

  • Introduce key concepts such as constraints, domains, and variables.

How CP differs from other optimization techniques

  • Contrast with other methods like linear programming and metaheuristics.
- +
Skip to content

Constraint Programming 101

What is Constraint Programming?

  • Define CP and its significance in solving combinatorial problems.

Basic Concepts and Terminology

  • Introduce key concepts such as constraints, domains, and variables.

How CP differs from other optimization techniques

  • Contrast with other methods like linear programming and metaheuristics.
+ \ No newline at end of file diff --git a/dev/cp/ecosystem.html b/dev/cp/ecosystem.html index fda53d4..8d1c076 100644 --- a/dev/cp/ecosystem.html +++ b/dev/cp/ecosystem.html @@ -8,17 +8,17 @@ - + - - - + + + -
Skip to content

Exploring JuliaConstraint Packages

Package Overviews

  • Introduce each package within the JuliaConstraint organization, its purpose, and primary features.

Installation and Getting Started Guides

  • Provide step-by-step instructions for installing and getting started with each package.
- +
Skip to content

Exploring JuliaConstraint Packages

Package Overviews

  • Introduce each package within the JuliaConstraint organization, its purpose, and primary features.

Installation and Getting Started Guides

  • Provide step-by-step instructions for installing and getting started with each package.
+ \ No newline at end of file diff --git a/dev/cp/getting_started.html b/dev/cp/getting_started.html index e331d5f..b83fb29 100644 --- a/dev/cp/getting_started.html +++ b/dev/cp/getting_started.html @@ -8,17 +8,25 @@ - + - - - + + + -
Skip to content

Getting Started with Julia for CP and Optimization

Why Julia?

  • Discuss the advantages of Julia for computational science and optimization, highlighting its performance and ease of use.

Setting Up Your Julia Environment

  • Guide on setting up Julia and essential packages for CP and optimization.

Your First Julia CP Model

  • A simple tutorial to build and solve a basic CP model using Julia.
- +
Skip to content

Getting Started with Julia for CP and Optimization

Why Julia?

  • Discuss the advantages of Julia for computational science and optimization, highlighting its performance and ease of use.

Setting Up Your Julia Environment

We encourage users to install Julia through juliaup, a version manager for the Julia language. Please look at the official Julia language download page for further information. Once installed, Julia can be used through various editors (Visual Studio Code), notebooks (Pluto.jl), or command-line (REPL).

Although a part of the CP solvers available within the Julia ecosystem have their own interface, we encourage users to use the JuMP modeling language if possible.

Julia Constraints host several solvers(' interfaces). Due to its flexibility in modeling and solving, we will use LocalSearchSolvers.jl through its JuMP interface CBLS.jl as the basic example. Note that depending on the targeted instances, available hardware, and expectations, it is not necessarily the best choice.

All along the documentation, we will try to provide syntax examples for different setup.

julia
using LocalSearchSolvers
julia
using JuMP, CBLS
julia
# TODO: Add other solvers

Your First Julia CP Model

We will start with a classic puzzle game and some of its not that simple variants: the Sudoku.

(From Wikipedia) In classic Sudoku, the objective is to fill a 9 × 9 grid with digits so that each column, each row, and each of the nine 3 × 3 subgrids that compose the grid (also called "boxes", "blocks", or "regions") contains all of the digits from 1 to 9. The puzzle setter provides a partially completed grid, which for a well-posed puzzle has a single solution.

Constraint Programming follows the model-and-solve approach. We first need to model our Sudoku problem.

julia
m = JuMP.Model(CBLS.Optimizer)
julia
# TODO: Add other solvers

But what are the basis of CP models? It is quite simple:

  1. A collection X=X1,,Xn of variables with each an associated domain.
julia
@variable(m, 1 X[1:9, 1:9]  9, Int)
julia
# TODO: Add other solvers
  1. A collection of predicates (called constraints) C=C1,,Cn over (subsets of) X.

When modeling problems as CP, one might define and use their own predicates. However, a large collection of already defined constraints exists. One, if not the most, iconic global constraint is called AllDifferent. It ensures that all variables take distinct values.

Sudoku puzzles can be defined using only this one constraint applied to different subsets of variables.

julia
for i in 1:9
+        @constraint(m, X[i,:] in AllDifferent()) # rows
+        @constraint(m, X[:,i] in AllDifferent()) # columns
+end
julia
# TODO: Add other solvers

The last series of AllDifferent constraint is less straight forward. We need to ensure that each 3 × 3 subgrid (block) is filled with distinct values.

julia
for i in 0:2, j in 0:2 # blocks
+    @constraint(
+        m,
+        vec(X[(3i+1):(3(i+1)), (3j+1):(3(j+1))]) in AllDifferent(),
+    )
+end
julia
# TODO: Add other solvers

We can now simply run our solver to look for a feasible solution.

julia
optimize!(m)

Note that this is heuristic solver, we might not get a feasible solution! Let's check it out. The value function print the value of a JuMP variable. We can cast it over a collection with the value. syntax.

julia
value.(X)
+ \ No newline at end of file diff --git a/dev/cp/intro.html b/dev/cp/intro.html index c77e36b..f114f53 100644 --- a/dev/cp/intro.html +++ b/dev/cp/intro.html @@ -8,17 +8,17 @@ - + - - - + + + -
Skip to content

Welcome to Julia Constraints

An introductory post/chapter that provides an overview of the JuliaConstraint organization, its mission, and what readers can expect to learn from the content. Highlight the importance of Constraint Programming (CP) and optimization in solving real-world problems.

- +
Skip to content

Welcome to Julia Constraints

An introductory post/chapter that provides an overview of the JuliaConstraint organization, its mission, and what readers can expect to learn from the content. Highlight the importance of Constraint Programming (CP) and optimization in solving real-world problems.

+ \ No newline at end of file diff --git a/dev/cp/models.html b/dev/cp/models.html index 21f948d..e183eae 100644 --- a/dev/cp/models.html +++ b/dev/cp/models.html @@ -8,17 +8,17 @@ - + - - - + + + -
Skip to content

Building and Analyzing Models

Modeling Best Practices

  • Share best practices and tips for building efficient CP and optimization models.

Performance Analysis and Improvement

  • Teach how to analyze and improve the performance of models.
- +
Skip to content

Building and Analyzing Models

Modeling Best Practices

  • Share best practices and tips for building efficient CP and optimization models.

Performance Analysis and Improvement

  • Teach how to analyze and improve the performance of models.
+ \ No newline at end of file diff --git a/dev/cp/opt.html b/dev/cp/opt.html index 6bd304c..68a10c1 100644 --- a/dev/cp/opt.html +++ b/dev/cp/opt.html @@ -8,17 +8,17 @@ - + - - - + + + -
Skip to content

Dive into Optimization

Understanding Optimization

  • Explanation of optimization, types of optimization problems (e.g., linear, nonlinear, integer programming).

Metaheuristics Overview

  • Introduce concepts like Genetic Algorithms, Simulated Annealing, and Tabu Search.

Mathematical Programming Basics

  • Cover the fundamentals of mathematical programming and its role in optimization.
- +
Skip to content

Dive into Optimization

Understanding Optimization

  • Explanation of optimization, types of optimization problems (e.g., linear, nonlinear, integer programming).

Metaheuristics Overview

  • Introduce concepts like Genetic Algorithms, Simulated Annealing, and Tabu Search.

Mathematical Programming Basics

  • Cover the fundamentals of mathematical programming and its role in optimization.
+ \ No newline at end of file diff --git a/dev/cp/tuto_xp.html b/dev/cp/tuto_xp.html index 625ef54..b908b60 100644 --- a/dev/cp/tuto_xp.html +++ b/dev/cp/tuto_xp.html @@ -8,17 +8,17 @@ - + - - - + + + -
Skip to content

Tutorials and Experiments

Hands-On Tutorials

  • Provide step-by-step tutorials covering various topics and complexity levels.

Experimental Analysis

  • Discuss the importance of experimental analysis in CP and how to conduct meaningful experiments.
- +
Skip to content

Tutorials and Experiments

Hands-On Tutorials

  • Provide step-by-step tutorials covering various topics and complexity levels.

Experimental Analysis

  • Discuss the importance of experimental analysis in CP and how to conduct meaningful experiments.
+ \ No newline at end of file diff --git a/dev/full_api.html b/dev/full_api.html index 4bdf998..30a20f6 100644 --- a/dev/full_api.html +++ b/dev/full_api.html @@ -8,11 +8,11 @@ - + - - - + + + @@ -270,8 +270,8 @@ tr_param_minus_val(x; param) tr_param_minus_val(x, X::AbstractVector; param)

Return the difference param - x[i] if positive, 0.0 otherwise. Extended method to vector with sig (x, param) are generated. When X is provided, the result is computed without allocations.

source


# CompositionalNetworks.tr_val_minus_paramMethod.
julia
tr_val_minus_param(i, x; param)
 tr_val_minus_param(x; param)
-tr_val_minus_param(x, X::AbstractVector; param)

Return the difference x[i] - param if positive, 0.0 otherwise. Extended method to vector with sig (x, param) are generated. When X is provided, the result is computed without allocations.

source


# CompositionalNetworks.transformation_layerFunction.
julia
transformation_layer(param = false)

Generate the layer of transformations functions of the ICN. Iff param value is true, also includes all the parametric transformations.

source


# CompositionalNetworks.weigths!Method.
julia
weigths!(icn, weigths)

Set the weigths of an ICN with a BitVector.

source


# CompositionalNetworks.weigthsMethod.
julia
weigths(icn)

Access the current set of weigths of an ICN.

source


# CompositionalNetworks.weigths_biasMethod.
julia
weigths_bias(x)

A metric that bias x towards operations with a lower bit. Do not affect the main metric.

source


# QUBOConstraints.AbstractOptimizerType.
julia
AbstractOptimizer

An abstract type (interface) used to learn QUBO matrices from constraints. Only a train method is required.

source


# QUBOConstraints.QUBO_baseFunction.
julia
QUBO_base(n, weight = 1)

A basic QUBO matrix to ensure that binarized variables keep a valid encoding.

source


# QUBOConstraints.QUBO_linear_sumMethod.
julia
QUBO_linear_sum(n, σ)

One valid QUBO matrix given n variables and parameter σ for the linear sum constraint.

source


# QUBOConstraints.binarizeMethod.
julia
binarize(x[, domain]; binarization = :one_hot)

Binarize x following the binarization encoding. If x is a vector (instead of a number per say), domain is optional.

source


# QUBOConstraints.debinarizeMethod.
julia
debinarize(x[, domain]; binarization = :one_hot)

Transform a binary vector into a number or a set of number. If domain is not given, it will compute a default value based on binarization and x.

source


# QUBOConstraints.is_validFunction.
julia
is_valid(x, encoding::Symbol = :none)

Check if x has a valid format for encoding.

For instance, if encoding == :one_hot, at most one bit of x can be set to 1.

source


# QUBOConstraints.trainMethod.
julia
train(args...)

Default train method for any AbstractOptimizer.

source


- +tr_val_minus_param(x, X::AbstractVector; param)

Return the difference x[i] - param if positive, 0.0 otherwise. Extended method to vector with sig (x, param) are generated. When X is provided, the result is computed without allocations.

source


# CompositionalNetworks.transformation_layerFunction.
julia
transformation_layer(param = false)

Generate the layer of transformations functions of the ICN. Iff param value is true, also includes all the parametric transformations.

source


# CompositionalNetworks.weigths!Method.
julia
weigths!(icn, weigths)

Set the weigths of an ICN with a BitVector.

source


# CompositionalNetworks.weigthsMethod.
julia
weigths(icn)

Access the current set of weigths of an ICN.

source


# CompositionalNetworks.weigths_biasMethod.
julia
weigths_bias(x)

A metric that bias x towards operations with a lower bit. Do not affect the main metric.

source


# QUBOConstraints.AbstractOptimizerType.
julia
AbstractOptimizer

An abstract type (interface) used to learn QUBO matrices from constraints. Only a train method is required.

source


# QUBOConstraints.QUBO_baseFunction.
julia
QUBO_base(n, weight = 1)

A basic QUBO matrix to ensure that binarized variables keep a valid encoding.

source


# QUBOConstraints.QUBO_linear_sumMethod.
julia
QUBO_linear_sum(n, σ)

One valid QUBO matrix given n variables and parameter σ for the linear sum constraint.

source


# QUBOConstraints.binarizeMethod.
julia
binarize(x[, domain]; binarization = :one_hot)

Binarize x following the binarization encoding. If x is a vector (instead of a number per say), domain is optional.

source


# QUBOConstraints.debinarizeMethod.
julia
debinarize(x[, domain]; binarization = :one_hot)

Transform a binary vector into a number or a set of number. If domain is not given, it will compute a default value based on binarization and x.

source


# QUBOConstraints.is_validFunction.
julia
is_valid(x, encoding::Symbol = :none)

Check if x has a valid format for encoding.

For instance, if encoding == :one_hot, at most one bit of x can be set to 1.

source


# QUBOConstraints.trainMethod.
julia
train(args...)

Default train method for any AbstractOptimizer.

source


+ \ No newline at end of file diff --git a/dev/hashmap.json b/dev/hashmap.json index 1ba9bc3..067f460 100644 --- a/dev/hashmap.json +++ b/dev/hashmap.json @@ -1 +1 @@ -{"constraints_elementary_constraints.md":"0uLE9TkI","constraints_graph_constraints.md":"CDKqx3uU","constraints_constraint_commons.md":"HfqPhyQg","constraints_intro.md":"CztSn_0F","cp_applications.md":"C5lZcsAQ","cp_opt.md":"D4kdWENj","cp_models.md":"DjZ6pPOZ","cp_tuto_xp.md":"c4f42ChT","constraints_constraints.md":"DMd1BqG8","index-old.md":"D8PnE1wz","constraints_counting_summing_constraints.md":"V8AYmo_9","index.md":"DIDgK_Eh","learning_aggregation.md":"Sz527FxT","learning_arithmetic.md":"B4v6W0sx","learning_comparison.md":"CJVKM76U","learning_qubo_encoding.md":"CyqG-QII","learning_qubo_learning.md":"Vuv-WnzG","learning_layers.md":"BvibaDbE","learning_qubo_constraints.md":"orZ3RySk","learning_intro.md":"C6sCT3GF","learning_constraint_learning.md":"C9iaCgb6","cp_intro.md":"BJ225hHJ","learning_transformation.md":"3ZyC2hKS","cp_cp101.md":"C18sX-iv","cp_advanced.md":"BCFqY9Nm","cp_ecosystem.md":"uScYgJUb","cp_getting_started.md":"0uejL3b8","cp_contribution.md":"Djq0vpjb","constraints_packing_scheduling_constraints.md":"D2j-BRwb","constraints_connection_constraints.md":"CweAgQcL","constraints_constraint_models.md":"lbbeQcb7","constraints_comparison_constraints.md":"Y4X9jl2E","constraints_language_constraints.md":"BvxfZMgF","constraints_generic_constraints.md":"Dc4qBSwZ","meta_meta_strategist.md":"DPB3xUTb","perf_benchmark_ext.md":"BF6daeNT","perf_perf_checker.md":"xvXRkZj_","solvers_intro.md":"ChwLXNA2","perf_perf_interface.md":"BojTEMgF","solvers_local_search_solvers.md":"DdV-mJRY","learning_compositional_networks.md":"CUYeNCXj","constraints_constraint_domains.md":"gmc3DB78","solvers_cbls.md":"EsXDaOSr","public_api.md":"CHgtZLEx","full_api.md":"DfcIBjEi"} +{"cp_intro.md":"qCFhsnKE","cp_opt.md":"oWksNiMs","constraints_elementary_constraints.md":"b9VNGoNL","constraints_constraints.md":"bgO76M7m","constraints_constraint_models.md":"DjPMcFlD","cp_cp101.md":"CrtqNaW3","cp_models.md":"DjhzTYet","cp_contribution.md":"CvjPxUVA","cp_ecosystem.md":"BROmdRLS","cp_getting_started.md":"BuWkGTqp","index-old.md":"BzPVACYs","cp_advanced.md":"Dsfkdtcs","constraints_connection_constraints.md":"BVUChQGg","learning_qubo_learning.md":"CLlNBMzd","solvers_cbls.md":"BxYapv-Y","constraints_comparison_constraints.md":"C8bTAbHg","learning_qubo_constraints.md":"DpCFckdQ","public_api.md":"DHfmf6CX","cp_applications.md":"-HdwrgYe","learning_intro.md":"497AVcuz","constraints_constraint_commons.md":"CgCZE1cQ","constraints_language_constraints.md":"tj54bmg8","learning_layers.md":"mhwb2QDA","learning_qubo_encoding.md":"CDyoKOWI","learning_transformation.md":"DlQiGOD9","learning_aggregation.md":"CLetyme2","learning_arithmetic.md":"BCOx2iYR","learning_compositional_networks.md":"QU5A8msL","learning_comparison.md":"hDJrmlrj","constraints_graph_constraints.md":"M2y2wALd","learning_constraint_learning.md":"B9EYEdfb","constraints_constraint_domains.md":"CJq87aJj","perf_perf_checker.md":"DEoczPpG","perf_perf_interface.md":"DaCOMv6z","perf_benchmark_ext.md":"CVYCQYDt","meta_meta_strategist.md":"CuHkGJNL","cp_tuto_xp.md":"CLy9H2hK","constraints_counting_summing_constraints.md":"BT-OmEMD","solvers_intro.md":"BOddHRCt","constraints_generic_constraints.md":"COcQcDzW","constraints_intro.md":"SiDBJ4N_","constraints_packing_scheduling_constraints.md":"CiCQvkg6","index.md":"BcgCFTkL","solvers_local_search_solvers.md":"Czt-kW-z","full_api.md":"BY5e_0Y2"} diff --git a/dev/index-old.html b/dev/index-old.html index b363a99..a772b2c 100644 --- a/dev/index-old.html +++ b/dev/index-old.html @@ -8,17 +8,17 @@ - + - - - + + + -
Skip to content

JuliaConstraints

JuliaConstraints is a collection of packages that help you solve constraint programming problems in Julia. Constraint programming involves modeling problems with constraints, such as "x > 5" or "x + y = 10", and finding solutions that satisfy all of the constraints. It is a part of the JuMP ecosystem that focuses on constraint programming in Julia.

The goal of packages in JuliaConstraints are two-fold: some of them provide a generic interface, others are solvers for CP models (either purely in Julia or wrapping). They make it easy to solve constraint-satisfaction problems (CSPs) and constraint-optimisation problems (COPs) in Julia using industry-standard solvers and mixed-integer solvers.

Other packages for CP in Julia include:

Operational Research vs Constraint Programming

Operational research (OR) is a problem-solving approach that uses mathematical models, statistical analysis, and optimization techniques to help organizations make better decisions. OR is concerned with understanding and optimizing complex systems, such as supply chains, transportation networks, and manufacturing processes, to improve efficiency and reduce costs.

On the other hand, constraint programming (CP) is a programming paradigm that focuses on solving problems with constraints. Constraints are conditions that must be satisfied for a solution to be valid. CP is often used to solve combinatorial problems, such as scheduling, routing, and allocation, where the search space of possible solutions is very large.

So, while both OR and CP are concerned with solving complex problems, they approach the problem-solving process from different angles. OR typically uses mathematical models and optimization techniques to analyze and optimize existing systems, while CP focuses on finding valid solutions that satisfy a set of constraints.

Constraint-based local search (CBLS) is a type of constraint programming solver that uses a heuristic search algorithm to find solutions to problems. It starts with an initial solution and tries to improve it by making small changes that satisfy the constraints. CBLS is especially useful for large and complex problems where finding an exact solution may take too much time or be impossible.

In contrast, other constraint programming solvers use a variety of algorithms and techniques to find exact solutions to problems. These solvers try to find a solution that satisfies all of the constraints in the problem. They can be useful for smaller problems where finding an exact solution is feasible, or for problems that have a clear mathematical structure.

In summary, CBLS is a type of constraint programming solver that uses a heuristic search algorithm to find good solutions, while other constraint programming solvers use various techniques to find exact solutions to problems.

- +
Skip to content

JuliaConstraints

JuliaConstraints is a collection of packages that help you solve constraint programming problems in Julia. Constraint programming involves modeling problems with constraints, such as "x > 5" or "x + y = 10", and finding solutions that satisfy all of the constraints. It is a part of the JuMP ecosystem that focuses on constraint programming in Julia.

The goal of packages in JuliaConstraints are two-fold: some of them provide a generic interface, others are solvers for CP models (either purely in Julia or wrapping). They make it easy to solve constraint-satisfaction problems (CSPs) and constraint-optimisation problems (COPs) in Julia using industry-standard solvers and mixed-integer solvers.

Other packages for CP in Julia include:

Operational Research vs Constraint Programming

Operational research (OR) is a problem-solving approach that uses mathematical models, statistical analysis, and optimization techniques to help organizations make better decisions. OR is concerned with understanding and optimizing complex systems, such as supply chains, transportation networks, and manufacturing processes, to improve efficiency and reduce costs.

On the other hand, constraint programming (CP) is a programming paradigm that focuses on solving problems with constraints. Constraints are conditions that must be satisfied for a solution to be valid. CP is often used to solve combinatorial problems, such as scheduling, routing, and allocation, where the search space of possible solutions is very large.

So, while both OR and CP are concerned with solving complex problems, they approach the problem-solving process from different angles. OR typically uses mathematical models and optimization techniques to analyze and optimize existing systems, while CP focuses on finding valid solutions that satisfy a set of constraints.

Constraint-based local search (CBLS) is a type of constraint programming solver that uses a heuristic search algorithm to find solutions to problems. It starts with an initial solution and tries to improve it by making small changes that satisfy the constraints. CBLS is especially useful for large and complex problems where finding an exact solution may take too much time or be impossible.

In contrast, other constraint programming solvers use a variety of algorithms and techniques to find exact solutions to problems. These solvers try to find a solution that satisfies all of the constraints in the problem. They can be useful for smaller problems where finding an exact solution is feasible, or for problems that have a clear mathematical structure.

In summary, CBLS is a type of constraint programming solver that uses a heuristic search algorithm to find good solutions, while other constraint programming solvers use various techniques to find exact solutions to problems.

+ \ No newline at end of file diff --git a/dev/index.html b/dev/index.html index 1772fd0..88df10f 100644 --- a/dev/index.html +++ b/dev/index.html @@ -8,17 +8,17 @@ - + - - - + + + -
Skip to content

Julia Constraints

Model Smoothly Decide Wisely

A Toolkit for Constraint Programming

JuliaConstraints

What is Julia Constraints? (chatGPTed atm)

The Julia Constraints organization is dedicated to advancing Constraint Programming within the Julia ecosystem, serving as a hub for resources that facilitate the creation, understanding, and solution of constraint programming problems. Our goal is to make Constraint Programming accessible and efficient for users at all levels of expertise, by providing a comprehensive suite of tools that integrate seamlessly with JuMP.jl, a popular Julia package for mathematical optimization.

Our offerings include:

Core Packages:

A foundation of common packages (ConstraintCommons, ConstraintDomains, Constraints, ConstraintModels) that supply essential features for constraint programming, ensuring users have the basic tools necessary for their projects.

Learning and Translation Tools:

Advanced packages like CompositionalNetworks, QUBOConstraints, and ConstraintsTranslator bridge the gap between ease of modeling and computational efficiency. These tools learn from constraints and convert natural language problems into constraint programming solutions, requiring minimal input from the user beyond the model itself.

Solvers:

We provide a range of solvers, from native Julia solvers (LocalSearchSolvers) to interfaces with JuMP for external CP solvers, catering to various problem-solving needs.

MetaStrategist (Emerging Technology):

In its formative stages, MetaStrategist embodies our pioneering spirit. As a burgeoning meta-solving package, it aims to harness the strengths of CP and JuMP. Its vision is to formulate tailored strategies that consider the unique hardware and software resources at hand, offering a new horizon in problem-solving efficiency and adaptability.

Performance Checker (Community Resource):

PerfChecker.jl transcends its role within Julia Constraints, offering its capabilities to the broader Julia package ecosystem. This indispensable tool for cross-version performance checking not only safeguards the high efficiency and reliability of our packages but also serves the wider community. By facilitating clear and simple performance evaluations, PerfChecker.jl enhances both development and maintenance, contributing to the overall health and progress of Julia's growing library of resources.

At Julia Constraints, our mission is to democratize Constraint Programming by providing robust, user-friendly tools that simplify the modeling process, enhance efficiency, and empower users to solve complex problems with ease.

- +
Skip to content

Julia Constraints

Model Smoothly Decide Wisely

A Toolkit for Constraint Programming

JuliaConstraints

<p style="margin-bottom:2cm"></p>

<div class="vp-doc" style="width:80%; margin:auto">

<h1>What is Julia Constraints? (chatGPTed atm)</h1>

<p>The Julia Constraints organization is dedicated to advancing Constraint Programming within the Julia ecosystem, serving as a hub for resources that facilitate the creation, understanding, and solution of constraint programming problems. Our goal is to make Constraint Programming accessible and efficient for users at all levels of expertise, by providing a comprehensive suite of tools that integrate seamlessly with JuMP.jl, a popular Julia package for mathematical optimization.</p>

<h2>Our offerings include:</h2>

<h3>Core Packages:</h3> <p>A foundation of common packages (ConstraintCommons, ConstraintDomains, Constraints, ConstraintModels) that supply essential features for constraint programming, ensuring users have the basic tools necessary for their projects.</p>

<h3>Learning and Translation Tools:</h3> <p>Advanced packages like CompositionalNetworks, QUBOConstraints, and ConstraintsTranslator bridge the gap between ease of modeling and computational efficiency. These tools learn from constraints and convert natural language problems into constraint programming solutions, requiring minimal input from the user beyond the model itself.</p>

<h3>Solvers:</h3> <p>We provide a range of solvers, from native Julia solvers (LocalSearchSolvers) to interfaces with JuMP for external CP solvers, catering to various problem-solving needs.</p>

<h3>MetaStrategist (Emerging Technology):</h3> <p>In its formative stages, MetaStrategist embodies our pioneering spirit. As a burgeoning meta-solving package, it aims to harness the strengths of CP and JuMP. Its vision is to formulate tailored strategies that consider the unique hardware and software resources at hand, offering a new horizon in problem-solving efficiency and adaptability.</p>

<h3>Performance Checker (Community Resource):</h3> <p>PerfChecker.jl transcends its role within Julia Constraints, offering its capabilities to the broader Julia package ecosystem. This indispensable tool for cross-version performance checking not only safeguards the high efficiency and reliability of our packages but also serves the wider community. By facilitating clear and simple performance evaluations, PerfChecker.jl enhances both development and maintenance, contributing to the overall health and progress of Julia's growing library of resources.</p>

<p>At Julia Constraints, our mission is to democratize Constraint Programming by providing robust, user-friendly tools that simplify the modeling process, enhance efficiency, and empower users to solve complex problems with ease.</p>

</div>

+ \ No newline at end of file diff --git a/dev/learning/aggregation.html b/dev/learning/aggregation.html index 8e2c3d5..4022200 100644 --- a/dev/learning/aggregation.html +++ b/dev/learning/aggregation.html @@ -8,17 +8,17 @@ - + - - - + + + -
Skip to content

Aggregation Layer

Some text to describe the aggragation layer within usual ICNs.

List of aggregations

# CompositionalNetworks.ag_sumFunction.
julia
ag_sum(x)

Aggregate through + a vector into a single scalar.

source


# CompositionalNetworks.ag_count_positiveFunction.
julia
ag_count_positive(x)

Count the number of strictly positive elements of x.

source


Layer generation

# CompositionalNetworks.aggregation_layerFunction.
julia
aggregation_layer()

Generate the layer of aggregations of the ICN. The operations are mutually exclusive, that is only one will be selected.

source


- +
Skip to content

Aggregation Layer

Some text to describe the aggragation layer within usual ICNs.

List of aggregations

# CompositionalNetworks.ag_sumFunction.
julia
ag_sum(x)

Aggregate through + a vector into a single scalar.

source


# CompositionalNetworks.ag_count_positiveFunction.
julia
ag_count_positive(x)

Count the number of strictly positive elements of x.

source


Layer generation

# CompositionalNetworks.aggregation_layerFunction.
julia
aggregation_layer()

Generate the layer of aggregations of the ICN. The operations are mutually exclusive, that is only one will be selected.

source


+ \ No newline at end of file diff --git a/dev/learning/arithmetic.html b/dev/learning/arithmetic.html index 323e92d..d4fc7d1 100644 --- a/dev/learning/arithmetic.html +++ b/dev/learning/arithmetic.html @@ -8,17 +8,17 @@ - + - - - + + + -
Skip to content

Arithmetic Layer

Some text to describe the arithmetic layer within usual ICNs.

List of arithmetic operations

# CompositionalNetworks.ar_sumFunction.
julia
ar_sum(x)

Reduce k = length(x) vectors through sum to a single vector.

source


# CompositionalNetworks.ar_prodFunction.
julia
ar_prod(x)

Reduce k = length(x) vectors through product to a single vector.

source


Layer generation

# CompositionalNetworks.arithmetic_layerFunction.
julia
arithmetic_layer()

Generate the layer of arithmetic operations of the ICN. The operations are mutually exclusive, that is only one will be selected.

source


- +
Skip to content

Arithmetic Layer

Some text to describe the arithmetic layer within usual ICNs.

List of arithmetic operations

# CompositionalNetworks.ar_sumFunction.
julia
ar_sum(x)

Reduce k = length(x) vectors through sum to a single vector.

source


# CompositionalNetworks.ar_prodFunction.
julia
ar_prod(x)

Reduce k = length(x) vectors through product to a single vector.

source


Layer generation

# CompositionalNetworks.arithmetic_layerFunction.
julia
arithmetic_layer()

Generate the layer of arithmetic operations of the ICN. The operations are mutually exclusive, that is only one will be selected.

source


+ \ No newline at end of file diff --git a/dev/learning/comparison.html b/dev/learning/comparison.html index c5a1617..7e556a1 100644 --- a/dev/learning/comparison.html +++ b/dev/learning/comparison.html @@ -8,17 +8,17 @@ - + - - - + + + -
Skip to content

Comparison Layer

Some text to describe the comparison layer within usual ICNs.

List of comparisons

List the possible parameters and how it affects the comparison.

Non-parametric

# CompositionalNetworks.co_identityFunction.
julia
co_identity(x)

Identity function. Already defined in Julia as identity, specialized for scalars in the comparison layer.

source


# CompositionalNetworks.co_euclidianFunction.
julia
co_euclidian(x; dom_size)

Compute an euclidian norm with domain size dom_size of a scalar.

source


# CompositionalNetworks.co_abs_diff_val_varsFunction.
julia
co_abs_diff_val_vars(x; nvars)

Return the absolute difference between x and the number of variables nvars.

source


# CompositionalNetworks.co_val_minus_varsFunction.
julia
co_val_minus_vars(x; nvars)

Return the difference x - nvars if positive, 0.0 otherwise, where nvars denotes the numbers of variables.

source


# CompositionalNetworks.co_vars_minus_valFunction.
julia
co_vars_minus_val(x; nvars)

Return the difference nvars - x if positive, 0.0 otherwise, where nvars denotes the numbers of variables.

source


Param: :val

# CompositionalNetworks.co_abs_diff_val_paramFunction.
julia
co_abs_diff_val_param(x; param)

Return the absolute difference between x and param.

source


# CompositionalNetworks.co_val_minus_paramFunction.
julia
co_val_minus_param(x; param)

Return the difference x - param if positive, 0.0 otherwise.

source


# CompositionalNetworks.co_param_minus_valFunction.
julia
co_param_minus_val(x; param)

Return the difference param - x if positive, 0.0 otherwise.

source


# CompositionalNetworks.co_euclidian_paramFunction.
julia
co_euclidian_param(x; param, dom_size)

Compute an euclidian norm with domain size dom_size, weigthed by param, of a scalar.

source


Layer generation

Missing docstring.

Missing docstring for make_comparisons. Check Documenter's build log for details.

# CompositionalNetworks.comparison_layerFunction.
julia
comparison_layer(param = false)

Generate the layer of transformations functions of the ICN. Iff param value is set, also includes all the parametric comparison with that value. The operations are mutually exclusive, that is only one will be selected.

source


- +
Skip to content

Comparison Layer

Some text to describe the comparison layer within usual ICNs.

List of comparisons

List the possible parameters and how it affects the comparison.

Non-parametric

# CompositionalNetworks.co_identityFunction.
julia
co_identity(x)

Identity function. Already defined in Julia as identity, specialized for scalars in the comparison layer.

source


# CompositionalNetworks.co_euclidianFunction.
julia
co_euclidian(x; dom_size)

Compute an euclidian norm with domain size dom_size of a scalar.

source


# CompositionalNetworks.co_abs_diff_val_varsFunction.
julia
co_abs_diff_val_vars(x; nvars)

Return the absolute difference between x and the number of variables nvars.

source


# CompositionalNetworks.co_val_minus_varsFunction.
julia
co_val_minus_vars(x; nvars)

Return the difference x - nvars if positive, 0.0 otherwise, where nvars denotes the numbers of variables.

source


# CompositionalNetworks.co_vars_minus_valFunction.
julia
co_vars_minus_val(x; nvars)

Return the difference nvars - x if positive, 0.0 otherwise, where nvars denotes the numbers of variables.

source


Param: :val

# CompositionalNetworks.co_abs_diff_val_paramFunction.
julia
co_abs_diff_val_param(x; param)

Return the absolute difference between x and param.

source


# CompositionalNetworks.co_val_minus_paramFunction.
julia
co_val_minus_param(x; param)

Return the difference x - param if positive, 0.0 otherwise.

source


# CompositionalNetworks.co_param_minus_valFunction.
julia
co_param_minus_val(x; param)

Return the difference param - x if positive, 0.0 otherwise.

source


# CompositionalNetworks.co_euclidian_paramFunction.
julia
co_euclidian_param(x; param, dom_size)

Compute an euclidian norm with domain size dom_size, weigthed by param, of a scalar.

source


Layer generation

Missing docstring.

Missing docstring for make_comparisons. Check Documenter's build log for details.

# CompositionalNetworks.comparison_layerFunction.
julia
comparison_layer(param = false)

Generate the layer of transformations functions of the ICN. Iff param value is set, also includes all the parametric comparison with that value. The operations are mutually exclusive, that is only one will be selected.

source


+ \ No newline at end of file diff --git a/dev/learning/compositional_networks.html b/dev/learning/compositional_networks.html index 040607b..d8f91d2 100644 --- a/dev/learning/compositional_networks.html +++ b/dev/learning/compositional_networks.html @@ -8,17 +8,17 @@ - + - - - + + + -
Skip to content

CompositionalNetworks.jl

Documentation for CompositionalNetworks.jl.

Utilities

# CompositionalNetworks.map_tr!Function.
julia
map_tr!(f, x, X, param)

Return an anonymous function that applies f to all elements of x and store the result in X, with a parameter param (which is set to nothing for function with no parameter).

source


# CompositionalNetworks.lazyFunction.
julia
lazy(funcs::Function...)

Generate methods extended to a vector instead of one of its components. A function f should have the following signature: f(i::Int, x::V).

source


# CompositionalNetworks.lazy_paramFunction.
julia
lazy_param(funcs::Function...)

Generate methods extended to a vector instead of one of its components. A function f should have the following signature: f(i::Int, x::V; param).

source


# CompositionalNetworks.as_bitvectorFunction.
julia
as_bitvector(n::Int, max_n::Int = n)

Convert an Int to a BitVector of minimal size (relatively to max_n).

source


# CompositionalNetworks.as_intFunction.
julia
as_int(v::AbstractVector)

Convert a BitVector into an Int.

source


# CompositionalNetworks.reduce_symbolsFunction.
julia
reduce_symbols(symbols, sep)

Produce a formatted string that separates the symbols by sep. Used internally for show_composition.

source


Missing docstring.

Missing docstring for CompositionalNeworks.tr_in. Check Documenter's build log for details.

Metrics

# CompositionalNetworks.hammingFunction.
julia
hamming(x, X)

Compute the hamming distance of x over a collection of solutions X, i.e. the minimal number of variables to switch in xto reach a solution.

source


# CompositionalNetworks.minkowskiFunction.
julia
minkowski(x, X, p)

source


# CompositionalNetworks.manhattanFunction.
julia
manhattan(x, X)

source


# CompositionalNetworks.weigths_biasFunction.
julia
weigths_bias(x)

A metric that bias x towards operations with a lower bit. Do not affect the main metric.

source


- +
Skip to content

CompositionalNetworks.jl

Documentation for CompositionalNetworks.jl.

Utilities

# CompositionalNetworks.map_tr!Function.
julia
map_tr!(f, x, X, param)

Return an anonymous function that applies f to all elements of x and store the result in X, with a parameter param (which is set to nothing for function with no parameter).

source


# CompositionalNetworks.lazyFunction.
julia
lazy(funcs::Function...)

Generate methods extended to a vector instead of one of its components. A function f should have the following signature: f(i::Int, x::V).

source


# CompositionalNetworks.lazy_paramFunction.
julia
lazy_param(funcs::Function...)

Generate methods extended to a vector instead of one of its components. A function f should have the following signature: f(i::Int, x::V; param).

source


# CompositionalNetworks.as_bitvectorFunction.
julia
as_bitvector(n::Int, max_n::Int = n)

Convert an Int to a BitVector of minimal size (relatively to max_n).

source


# CompositionalNetworks.as_intFunction.
julia
as_int(v::AbstractVector)

Convert a BitVector into an Int.

source


# CompositionalNetworks.reduce_symbolsFunction.
julia
reduce_symbols(symbols, sep)

Produce a formatted string that separates the symbols by sep. Used internally for show_composition.

source


Missing docstring.

Missing docstring for CompositionalNeworks.tr_in. Check Documenter's build log for details.

Metrics

# CompositionalNetworks.hammingFunction.
julia
hamming(x, X)

Compute the hamming distance of x over a collection of solutions X, i.e. the minimal number of variables to switch in xto reach a solution.

source


# CompositionalNetworks.minkowskiFunction.
julia
minkowski(x, X, p)

source


# CompositionalNetworks.manhattanFunction.
julia
manhattan(x, X)

source


# CompositionalNetworks.weigths_biasFunction.
julia
weigths_bias(x)

A metric that bias x towards operations with a lower bit. Do not affect the main metric.

source


+ \ No newline at end of file diff --git a/dev/learning/constraint_learning.html b/dev/learning/constraint_learning.html index a0cd89e..d5ec60d 100644 --- a/dev/learning/constraint_learning.html +++ b/dev/learning/constraint_learning.html @@ -8,17 +8,17 @@ - + - - - + + + -
Skip to content

ConstraintLearning.jl

Documentation for ConstraintLearning.jl.

# ConstraintLearning.ICNConfigType.
julia
struct ICNConfig{O <: ICNOptimizer}

A structure to hold the metric and optimizer configurations used in learning the weigths of an ICN.

source


# ConstraintLearning.ICNConfigMethod.
julia
ICNConfig(; metric = :hamming, optimizer = ICNGeneticOptimizer())

Constructor for ICNConfig. Defaults to hamming metric using a genetic algorithm.

source


# ConstraintLearning.ICNGeneticOptimizerMethod.
julia
ICNGeneticOptimizer(; kargs...)

Default constructor to learn an ICN through a Genetic Algorithm. Default kargs TBW.

source


# ConstraintLearning.ICNLocalSearchOptimizerType.
julia
ICNLocalSearchOptimizer(options = LocalSearchSolvers.Options())

Default constructor to learn an ICN through a CBLS solver.

source


# ConstraintLearning.ICNOptimizerType.
julia
const ICNOptimizer = CompositionalNetworks.AbstractOptimizer

An abstract type for optmizers defined to learn ICNs.

source


# ConstraintLearning.QUBOGradientOptimizerMethod.
julia
QUBOGradientOptimizer(; kargs...)

A QUBO optimizer based on gradient descent. Defaults TBW

source


# ConstraintLearning.QUBOOptimizerType.
julia
const QUBOOptimizer = QUBOConstraints.AbstractOptimizer

An abstract type for optimizers used to learn QUBO matrices from constraints.

source


# CompositionalNetworks.optimize!Method.
julia
CompositionalNetworks.optimize!(icn, solutions, non_sltns, dom_size, metric, optimizer::ICNGeneticOptimizer; parameters...)

Extends the optimize! method to ICNGeneticOptimizer.

source


# CompositionalNetworks.optimize!Method.
julia
CompositionalNetworks.optimize!(icn, solutions, non_sltns, dom_size, metric, optimizer::ICNLocalSearchOptimizer; parameters...)

Extends the optimize! method to ICNLocalSearchOptimizer.

source


# ConstraintLearning._optimize!Method.
julia
_optimize!(icn, X, X_sols; metric = hamming, pop_size = 200)

Optimize and set the weigths of an ICN with a given set of configuration X and solutions X_sols.

source


# ConstraintLearning.domain_sizeMethod.
julia
domain_size(ds::Number)

Extends the domain_size function when ds is number (for dispatch purposes).

source


# ConstraintLearning.generate_populationMethod.
julia
generate_population(icn, pop_size

Generate a pôpulation of weigths (individuals) for the genetic algorithm weigthing icn.

source


# ConstraintLearning.icnMethod.
julia
icn(X,X̅; kargs..., parameters...)

TBW

source


# ConstraintLearning.lossMethod.
julia
loss(x, y, Q)

Loss of the prediction given by Q, a training set y, and a given configuration x.

source


# ConstraintLearning.make_dfMethod.
julia
make_df(X, Q, penalty, binarization, domains)

DataFrame arrangement to ouput some basic evaluation of a matrix Q.

source


# ConstraintLearning.make_set_penaltyMethod.
julia
make_set_penalty(X, X̅, args...; kargs)

Return a penalty function when the training set is already split into a pair of solutions X and non solutions .

source


# ConstraintLearning.make_training_setsMethod.
julia
make_training_sets(X, penalty, args...)

Return a pair of solutions and non solutions sets based on X and penalty.

source


# ConstraintLearning.mutually_exclusiveMethod.
julia
mutually_exclusive(layer, w)

Constraint ensuring that w encode exclusive operations in layer.

source


# ConstraintLearning.no_empty_layerMethod.
julia
no_empty_layer(x; X = nothing)

Constraint ensuring that at least one operation is selected.

source


# ConstraintLearning.optimize!Method.
julia
optimize!(icn, X, X_sols, global_iter, local_iter; metric=hamming, popSize=100)

Optimize and set the weigths of an ICN with a given set of configuration X and solutions X_sols. The best weigths among global_iter will be set.

source


# ConstraintLearning.parameter_specific_operationsMethod.
julia
parameter_specific_operations(x; X = nothing)

Constraint ensuring that at least one operation related to parameters is selected if the error function to be learned is parametric.

source


# ConstraintLearning.predictMethod.
julia
predict(x, Q)

Return the predictions given by Q for a given configuration x.

source


# ConstraintLearning.preliminariesMethod.
julia
preliminaries(args)

Preliminaries to the training process in a QUBOGradientOptimizer run.

source


# ConstraintLearning.quboFunction.
julia
qubo(X,X̅; kargs..., parameters...)

TBW

source


# ConstraintLearning.sub_eltypeMethod.
julia
sub_eltype(X)

Return the element type of of the first element of a collection.

source


# ConstraintLearning.train!Method.
julia
train!(Q, X, penalty, η, precision, X_test, oversampling, binarization, domains)

Training inner method.

source


# ConstraintLearning.trainMethod.
julia
train(X, penalty[, d]; optimizer = QUBOGradientOptimizer(), X_test = X)

Learn a QUBO matrix on training set X for a constraint defined by penalty with optional domain information d. By default, it uses a QUBOGradientOptimizer and X as a testing set.

source


# ConstraintLearning.δMethod.
julia
δ(X[, Y]; discrete = true)

Compute the extrema over a collection X``or a pair of collection(X, Y)`.

source


- +
Skip to content

ConstraintLearning.jl

Documentation for ConstraintLearning.jl.

# ConstraintLearning.ICNConfigType.
julia
struct ICNConfig{O <: ICNOptimizer}

A structure to hold the metric and optimizer configurations used in learning the weigths of an ICN.

source


# ConstraintLearning.ICNConfigMethod.
julia
ICNConfig(; metric = :hamming, optimizer = ICNGeneticOptimizer())

Constructor for ICNConfig. Defaults to hamming metric using a genetic algorithm.

source


# ConstraintLearning.ICNGeneticOptimizerMethod.
julia
ICNGeneticOptimizer(; kargs...)

Default constructor to learn an ICN through a Genetic Algorithm. Default kargs TBW.

source


# ConstraintLearning.ICNLocalSearchOptimizerType.
julia
ICNLocalSearchOptimizer(options = LocalSearchSolvers.Options())

Default constructor to learn an ICN through a CBLS solver.

source


# ConstraintLearning.ICNOptimizerType.
julia
const ICNOptimizer = CompositionalNetworks.AbstractOptimizer

An abstract type for optmizers defined to learn ICNs.

source


# ConstraintLearning.QUBOGradientOptimizerMethod.
julia
QUBOGradientOptimizer(; kargs...)

A QUBO optimizer based on gradient descent. Defaults TBW

source


# ConstraintLearning.QUBOOptimizerType.
julia
const QUBOOptimizer = QUBOConstraints.AbstractOptimizer

An abstract type for optimizers used to learn QUBO matrices from constraints.

source


# CompositionalNetworks.optimize!Method.
julia
CompositionalNetworks.optimize!(icn, solutions, non_sltns, dom_size, metric, optimizer::ICNGeneticOptimizer; parameters...)

Extends the optimize! method to ICNGeneticOptimizer.

source


# CompositionalNetworks.optimize!Method.
julia
CompositionalNetworks.optimize!(icn, solutions, non_sltns, dom_size, metric, optimizer::ICNLocalSearchOptimizer; parameters...)

Extends the optimize! method to ICNLocalSearchOptimizer.

source


# ConstraintLearning._optimize!Method.
julia
_optimize!(icn, X, X_sols; metric = hamming, pop_size = 200)

Optimize and set the weigths of an ICN with a given set of configuration X and solutions X_sols.

source


# ConstraintLearning.domain_sizeMethod.
julia
domain_size(ds::Number)

Extends the domain_size function when ds is number (for dispatch purposes).

source


# ConstraintLearning.generate_populationMethod.
julia
generate_population(icn, pop_size

Generate a pôpulation of weigths (individuals) for the genetic algorithm weigthing icn.

source


# ConstraintLearning.icnMethod.
julia
icn(X,X̅; kargs..., parameters...)

TBW

source


# ConstraintLearning.lossMethod.
julia
loss(x, y, Q)

Loss of the prediction given by Q, a training set y, and a given configuration x.

source


# ConstraintLearning.make_dfMethod.
julia
make_df(X, Q, penalty, binarization, domains)

DataFrame arrangement to ouput some basic evaluation of a matrix Q.

source


# ConstraintLearning.make_set_penaltyMethod.
julia
make_set_penalty(X, X̅, args...; kargs)

Return a penalty function when the training set is already split into a pair of solutions X and non solutions .

source


# ConstraintLearning.make_training_setsMethod.
julia
make_training_sets(X, penalty, args...)

Return a pair of solutions and non solutions sets based on X and penalty.

source


# ConstraintLearning.mutually_exclusiveMethod.
julia
mutually_exclusive(layer, w)

Constraint ensuring that w encode exclusive operations in layer.

source


# ConstraintLearning.no_empty_layerMethod.
julia
no_empty_layer(x; X = nothing)

Constraint ensuring that at least one operation is selected.

source


# ConstraintLearning.optimize!Method.
julia
optimize!(icn, X, X_sols, global_iter, local_iter; metric=hamming, popSize=100)

Optimize and set the weigths of an ICN with a given set of configuration X and solutions X_sols. The best weigths among global_iter will be set.

source


# ConstraintLearning.parameter_specific_operationsMethod.
julia
parameter_specific_operations(x; X = nothing)

Constraint ensuring that at least one operation related to parameters is selected if the error function to be learned is parametric.

source


# ConstraintLearning.predictMethod.
julia
predict(x, Q)

Return the predictions given by Q for a given configuration x.

source


# ConstraintLearning.preliminariesMethod.
julia
preliminaries(args)

Preliminaries to the training process in a QUBOGradientOptimizer run.

source


# ConstraintLearning.quboFunction.
julia
qubo(X,X̅; kargs..., parameters...)

TBW

source


# ConstraintLearning.sub_eltypeMethod.
julia
sub_eltype(X)

Return the element type of of the first element of a collection.

source


# ConstraintLearning.train!Method.
julia
train!(Q, X, penalty, η, precision, X_test, oversampling, binarization, domains)

Training inner method.

source


# ConstraintLearning.trainMethod.
julia
train(X, penalty[, d]; optimizer = QUBOGradientOptimizer(), X_test = X)

Learn a QUBO matrix on training set X for a constraint defined by penalty with optional domain information d. By default, it uses a QUBOGradientOptimizer and X as a testing set.

source


# ConstraintLearning.δMethod.
julia
δ(X[, Y]; discrete = true)

Compute the extrema over a collection X``or a pair of collection(X, Y)`.

source


+ \ No newline at end of file diff --git a/dev/learning/intro.html b/dev/learning/intro.html index 78944c4..4156fcc 100644 --- a/dev/learning/intro.html +++ b/dev/learning/intro.html @@ -8,17 +8,17 @@ - + - - - + + + -
Skip to content

Learning about Constraints

About learning constraints related matters.

- +
Skip to content

Learning about Constraints

About learning constraints related matters.

+ \ No newline at end of file diff --git a/dev/learning/layers.html b/dev/learning/layers.html index f7b629b..6c9b68f 100644 --- a/dev/learning/layers.html +++ b/dev/learning/layers.html @@ -8,11 +8,11 @@ - + - - - + + + @@ -20,8 +20,8 @@
Skip to content

A layer structure for any ICN

The layer.jl file defines a Layer structure and several associated functions for manipulating and interacting with this structure in the context of an Interpretable Compositional Network (ICN).

The Layer structure is used to store a LittleDict of operations that can be selected during the learning phase of an ICN. Each layer can be exclusive, meaning only one operation can be selected at a time. This is particularly useful in the context of ICNs, which are used to learn alternative expressions for highly combinatorial functions, such as those found in Constraint-based Local Search solvers.

# CompositionalNetworks.LayerType.
julia
Layer

A structure to store a LittleDict of operations that can be selected during the learning phase of an ICN. If the layer is exclusive, only one operation can be selected at a time.

source


# CompositionalNetworks.functionsFunction.
julia
functions(layer)

Access the operations of a layer. The container is ordered.

source


# Base.lengthMethod.
julia
length(layer)

Return the number of operations in a layer.

source


# CompositionalNetworks.excluFunction.
julia
exclu(layer)

Return true if the layer has mutually exclusive operations.

source


# CompositionalNetworks.symbolFunction.
julia
symbol(layer, i)

Return the i-th symbols of the operations in a given layer.

source


# CompositionalNetworks.nbits_excluFunction.
julia
nbits_exclu(layer)

Convert the length of an exclusive layer into a number of bits.

source


# CompositionalNetworks.show_layerFunction.
julia
show_layer(layer)

Return a string that contains the elements in a layer.

source


# CompositionalNetworks.selected_sizeFunction.
julia
selected_size(layer, layer_weigths)

Return the number of operations selected by layer_weigths in layer.

source


# CompositionalNetworks.is_viableFunction.
julia
is_viable(layer, w)
 is_viable(icn)
 is_viable(icn, w)

Assert if a pair of layer/icn and weigths compose a viable pattern. If no weigths are given with an icn, it will check the current internal value.

source


# CompositionalNetworks.generate_inclusive_operationsFunction.
julia
generate_inclusive_operations(predicate, bits)

Generates the operations (weigths) of a layer with inclusive operations.

source


# CompositionalNetworks.generate_exclusive_operationFunction.
julia
generate_exclusive_operation(max_op_number)

Generates the operations (weigths) of a layer with exclusive operations.

source


# CompositionalNetworks.generate_weigthsFunction.
julia
generate_weigths(layers)
-generate_weigths(icn)

Generate the weigths of a collection of layers or of an ICN.

source


- +generate_weigths(icn)

Generate the weigths of a collection of layers or of an ICN.

source


+ \ No newline at end of file diff --git a/dev/learning/qubo_constraints.html b/dev/learning/qubo_constraints.html index 8019dc8..0e5a0b8 100644 --- a/dev/learning/qubo_constraints.html +++ b/dev/learning/qubo_constraints.html @@ -8,17 +8,17 @@ - + - - - + + + -
Skip to content

Introduction to QUBOConstraints.jl

Introduction to QUBOConstraints.jl.

Basic features

# QUBOConstraints.QUBO_baseFunction.
julia
QUBO_base(n, weight = 1)

A basic QUBO matrix to ensure that binarized variables keep a valid encoding.

source


# QUBOConstraints.QUBO_linear_sumFunction.
julia
QUBO_linear_sum(n, σ)

One valid QUBO matrix given n variables and parameter σ for the linear sum constraint.

source


- +
Skip to content

Introduction to QUBOConstraints.jl

Introduction to QUBOConstraints.jl.

Basic features

# QUBOConstraints.QUBO_baseFunction.
julia
QUBO_base(n, weight = 1)

A basic QUBO matrix to ensure that binarized variables keep a valid encoding.

source


# QUBOConstraints.QUBO_linear_sumFunction.
julia
QUBO_linear_sum(n, σ)

One valid QUBO matrix given n variables and parameter σ for the linear sum constraint.

source


+ \ No newline at end of file diff --git a/dev/learning/qubo_encoding.html b/dev/learning/qubo_encoding.html index f8eff53..23da8c6 100644 --- a/dev/learning/qubo_encoding.html +++ b/dev/learning/qubo_encoding.html @@ -8,17 +8,17 @@ - + - - - + + + -
Skip to content

Encoding for QUBO programs

# QUBOConstraints.is_validFunction.
julia
is_valid(x, encoding::Symbol = :none)

Check if x has a valid format for encoding.

For instance, if encoding == :one_hot, at most one bit of x can be set to 1.

source


# QUBOConstraints.binarizeFunction.
julia
binarize(x[, domain]; binarization = :one_hot)

Binarize x following the binarization encoding. If x is a vector (instead of a number per say), domain is optional.

source


# QUBOConstraints.debinarizeFunction.
julia
debinarize(x[, domain]; binarization = :one_hot)

Transform a binary vector into a number or a set of number. If domain is not given, it will compute a default value based on binarization and x.

source


- +
Skip to content

Encoding for QUBO programs

# QUBOConstraints.is_validFunction.
julia
is_valid(x, encoding::Symbol = :none)

Check if x has a valid format for encoding.

For instance, if encoding == :one_hot, at most one bit of x can be set to 1.

source


# QUBOConstraints.binarizeFunction.
julia
binarize(x[, domain]; binarization = :one_hot)

Binarize x following the binarization encoding. If x is a vector (instead of a number per say), domain is optional.

source


# QUBOConstraints.debinarizeFunction.
julia
debinarize(x[, domain]; binarization = :one_hot)

Transform a binary vector into a number or a set of number. If domain is not given, it will compute a default value based on binarization and x.

source


+ \ No newline at end of file diff --git a/dev/learning/qubo_learning.html b/dev/learning/qubo_learning.html index e2c1828..76a7765 100644 --- a/dev/learning/qubo_learning.html +++ b/dev/learning/qubo_learning.html @@ -8,11 +8,11 @@ - + - - - + + + @@ -135,8 +135,8 @@ X_test = X, ) return train(X, penalty, to_domains(X, dom_stuff); optimizer, X_test) -end - +end + \ No newline at end of file diff --git a/dev/learning/transformation.html b/dev/learning/transformation.html index 50e6790..372d766 100644 --- a/dev/learning/transformation.html +++ b/dev/learning/transformation.html @@ -8,11 +8,11 @@ - + - - - + + + @@ -61,8 +61,8 @@ val_transforms = make_transformations(:val) # Apply a count equal to parameter transformation -count_eq_param_result = val_transforms[:count_eq_param](data, param)

source


# CompositionalNetworks.transformation_layerFunction.
julia
transformation_layer(param = false)

Generate the layer of transformations functions of the ICN. Iff param value is true, also includes all the parametric transformations.

source


- +count_eq_param_result = val_transforms[:count_eq_param](data, param)

source


# CompositionalNetworks.transformation_layerFunction.
julia
transformation_layer(param = false)

Generate the layer of transformations functions of the ICN. Iff param value is true, also includes all the parametric transformations.

source


+ \ No newline at end of file diff --git a/dev/meta/meta_strategist.html b/dev/meta/meta_strategist.html index 0edfb78..72c3112 100644 --- a/dev/meta/meta_strategist.html +++ b/dev/meta/meta_strategist.html @@ -8,17 +8,17 @@ - + - - - + + + -
Skip to content

MetaStrategist.jl

Documentation for MetaStrategist.jl.

- +
Skip to content

MetaStrategist.jl

Documentation for MetaStrategist.jl.

+ \ No newline at end of file diff --git a/dev/perf/benchmark_ext.html b/dev/perf/benchmark_ext.html index 068a702..d7c6fbe 100644 --- a/dev/perf/benchmark_ext.html +++ b/dev/perf/benchmark_ext.html @@ -8,17 +8,17 @@ - + - - - + + + -
Skip to content

BenchmarkTools Extension

A benchmarking extension, based on BenchmarkTools.jl, has been interfaced with PerfChecker.jl. This section (will) provides some usage examples, documentation, and links to related notebooks.

- +
Skip to content

BenchmarkTools Extension

A benchmarking extension, based on BenchmarkTools.jl, has been interfaced with PerfChecker.jl. This section (will) provides some usage examples, documentation, and links to related notebooks.

+ \ No newline at end of file diff --git a/dev/perf/perf_checker.html b/dev/perf/perf_checker.html index c9c2a77..607d6a3 100644 --- a/dev/perf/perf_checker.html +++ b/dev/perf/perf_checker.html @@ -8,16 +8,16 @@ - + - - - + + + -
Skip to content

PerfChecker.jl

Documentation for PerfChecker.jl.

# PerfChecker.arrange_breakingMethod.

Outputs the last breaking or next breaking version. If the input is 1.2.3, then the output is 1.2.0 or 1.3.0 (assuming both exist)

source


# PerfChecker.arrange_majorMethod.

Outputs the earlier or next major version.

source


# PerfChecker.arrange_patchesMethod.

Outputs the last patch or first patch of a version. If the input is 1.2.3, then the output is 1.2.0 or 1.2.9 (assuming both exist, and both are the first and last patch of the version)

source


# PerfChecker.get_pkg_versionsFunction.

Finds all versions of a package in all the installed registries and returns it as a vector.

Example:

julia
julia> get_pkg_versions("ConstraintLearning")
+    
Skip to content

PerfChecker.jl

Documentation for PerfChecker.jl.

# PerfChecker.arrange_breakingMethod.

Outputs the last breaking or next breaking version.

source


# PerfChecker.arrange_majorMethod.

Outputs the earlier or next major version.

source


# PerfChecker.arrange_patchesMethod.

Outputs the last patch or first patch of a version.

source


# PerfChecker.get_pkg_versionsFunction.

Finds all versions of a package in all the installed registries and returns it as a vector.

Example:

julia
julia> get_pkg_versions("ConstraintLearning")
 7-element Vector{VersionNumber}:
  v"0.1.4"
  v"0.1.5"
@@ -25,8 +25,8 @@
  v"0.1.6"
  v"0.1.1"
  v"0.1.3"
- v"0.1.2"

source


- + v"0.1.2"

source


+ \ No newline at end of file diff --git a/dev/perf/perf_interface.html b/dev/perf/perf_interface.html index 3e5453c..2658091 100644 --- a/dev/perf/perf_interface.html +++ b/dev/perf/perf_interface.html @@ -8,17 +8,17 @@ - + - - - + + + -
Skip to content

Interfacing PerfChecker

PerfChecker was build as an easy to extend interface. This section will cover the few method required.

- +
Skip to content

Interfacing PerfChecker

PerfChecker was build as an easy to extend interface. This section will cover the few method required.

+ \ No newline at end of file diff --git a/dev/public_api.html b/dev/public_api.html index 1530e9e..08ee432 100644 --- a/dev/public_api.html +++ b/dev/public_api.html @@ -8,11 +8,11 @@ - + - - - + + + @@ -32,8 +32,8 @@ domain(intervals::Vector{Tuple{Tuple{T, Bool},Tuple{T, Bool}}}) where {T <: Real}

Construct a domain of continuous interval(s).

source


# ConstraintDomains.domain_sizeMethod.
julia
domain_size(itv::Intervals)

Return the difference between the highest and lowest values in itv.

source


# ConstraintDomains.domain_sizeMethod.
julia
domain_size(d <: AbstractDomain)

Fallback method for domain_size(d) that return length(d).

source


# ConstraintDomains.domain_sizeMethod.
julia
domain_size(d::D) where D <: DiscreteDomain

Return the maximum distance between two points in d.

source


# ConstraintDomains.exploreMethod.
julia
explore(domains, concept, param = nothing; search_limit = 1000, solutions_limit = 100)

Search (a part of) a search space and returns a pair of vector of configurations: (solutions, non_solutions). If the search space size is over search_limit, then both solutions and non_solutions are limited to solutions_limit.

Beware that if the density of the solutions in the search space is low, solutions_limit needs to be reduced. This process will be automatic in the future (simple reinforcement learning).

Arguments:

  • domains: a collection of domains

  • concept: the concept of the targeted constraint

  • param: an optional parameter of the constraint

  • sol_number: the required number of solutions (half of the number of configurations), default to 100

source


# ConstraintDomains.generate_parametersMethod.
julia
generate_parameters(d<:AbstractDomain, param)

Generates random parameters based on the domain d and the kind of parameters param.

source


# ConstraintDomains.get_domainMethod.
julia
get_domain(::AbstractDomain)

Access the internal structure of any domain type.

source


# ConstraintDomains.intersect_domainsMethod.
julia
intersect_domains(d₁, d₂)

Compute the intersections of two domains.

source


# ConstraintDomains.merge_domainsMethod.
julia
merge_domains(d₁::AbstractDomain, d₂::AbstractDomain)

Merge two domains of same nature (discrete/contiuous).

source


# ConstraintDomains.to_domainsMethod.
julia
to_domains(args...)

Convert various arguments into valid domains format.

source


# Constraints.USUAL_CONSTRAINTSConstant.
julia
USUAL_CONSTRAINTS::Dict

Dictionary that contains all the usual constraints defined in Constraint.jl. It is based on XCSP3-core specifications available at https://arxiv.org/abs/2009.00514

Adding a new constraint is as simple as defining a new function with the same name as the constraint and using the @usual macro to define it. The macro will take care of adding the new constraint to the USUAL_CONSTRAINTS dictionary.

Example

julia
@usual concept_all_different(x; vals=nothing) = xcsp_all_different(list=x, except=vals)

source


# Constraints.USUAL_SYMMETRIESConstant.
julia
USUAL_SYMMETRIES

A Dictionary that contains the function to apply for each symmetry to avoid searching a whole space.

source


# Constraints.ConstraintType.
julia
Constraint

Parametric stucture with the following fields.

  • concept: a Boolean function that, given an assignment x, outputs true if x satisfies the constraint, and false otherwise.

  • error: a positive function that works as preferences over invalid assignements. Return 0.0 if the constraint is satisfied, and a strictly positive real otherwise.

source


# ConstraintCommons.extract_parametersFunction.
julia
extract_parameters(s::Symbol, constraints_dict=USUAL_CONSTRAINTS; parameters=ConstraintCommons.USUAL_CONSTRAINT_PARAMETERS)

Return the parameters of the constraint s in constraints_dict.

Arguments

  • s::Symbol: the constraint name.

  • constraints_dict::Dict{Symbol,Constraint}: dictionary of constraints. Default is USUAL_CONSTRAINTS.

  • parameters::Vector{Symbol}: vector of parameters. Default is ConstraintCommons.USUAL_CONSTRAINT_PARAMETERS.

Example

julia
extract_parameters(:all_different)

source


# Constraints.argsMethod.
julia
args(c::Constraint)

Return the expected length restriction of the arguments in a constraint c. The value nothing indicates that any strictly positive number of value is accepted.

source


# Constraints.conceptMethod.
julia
concept(c::Constraint)

Return the concept (function) of constraint c. concept(c::Constraint, x...; param = nothing) Apply the concept of c to values x and optionally param.

source


# Constraints.conceptMethod.
julia
concept(s::Symbol, args...; kargs...)

Return the concept of the constraint s applied to args and kargs. This is a shortcut for concept(USUAL_CONSTRAINTS[s])(args...; kargs...).

Arguments

  • s::Symbol: the constraint name.

  • args...: the arguments to apply the concept to.

  • kargs...: the keyword arguments to apply the concept to.

Example

julia
concept(:all_different, [1, 2, 3])

source


# Constraints.constraints_descriptionsFunction.
julia
constraints_descriptions(C=USUAL_CONSTRAINTS)

Return a pretty table with the descriptions of the constraints in C.

Arguments

  • C::Dict{Symbol,Constraint}: dictionary of constraints. Default is USUAL_CONSTRAINTS.

Example

julia
constraints_descriptions()

source


# Constraints.constraints_parametersFunction.
julia
constraints_parameters(C=USUAL_CONSTRAINTS)

Return a pretty table with the parameters of the constraints in C.

Arguments

  • C::Dict{Symbol,Constraint}: dictionary of constraints. Default is USUAL_CONSTRAINTS.

Example

julia
constraints_parameters()

source


# Constraints.describeFunction.
julia
describe(constraints::Dict{Symbol,Constraint}=USUAL_CONSTRAINTS; width=150)

Return a pretty table with the description of the constraints in constraints.

Arguments

  • constraints::Dict{Symbol,Constraint}: dictionary of constraints to describe. Default is USUAL_CONSTRAINTS.

  • width::Int: width of the table.

Example

julia
describe()

source


# Constraints.error_fMethod.
julia
error_f(c::Constraint)

Return the error function of constraint c. error_f(c::Constraint, x; param = nothing) Apply the error function of c to values x and optionally param.

source


# Constraints.params_lengthMethod.
julia
params_length(c::Constraint)

Return the expected length restriction of the arguments in a constraint c. The value nothing indicates that any strictly positive number of parameters is accepted.

source


# Constraints.symmetriesMethod.
julia
symmetries(c::Constraint)

Return the list of symmetries of c.

source


# CompositionalNetworks.CompositionMethod.
julia
Composition(f::F, symbols) where {F<:Function}

Construct a Composition.

source


# CompositionalNetworks.CompositionType.
julia
struct Composition{F<:Function}

Store the all the information of a composition learned by an ICN.

source


# CompositionalNetworks.ICNType.
julia
ICN(; nvars, dom_size, param, transformation, arithmetic, aggregation, comparison)

Construct an Interpretable Compositional Network, with the following arguments:

  • nvars: number of variable in the constraint

  • dom_size: maximum domain size of any variable in the constraint

  • param: optional parameter (default to nothing)

  • transformation: a transformation layer (optional)

  • arithmetic: a arithmetic layer (optional)

  • aggregation: a aggregation layer (optional)

  • comparison: a comparison layer (optional)

source


# CompositionalNetworks.aggregation_layerMethod.
julia
aggregation_layer()

Generate the layer of aggregations of the ICN. The operations are mutually exclusive, that is only one will be selected.

source


# CompositionalNetworks.arithmetic_layerMethod.
julia
arithmetic_layer()

Generate the layer of arithmetic operations of the ICN. The operations are mutually exclusive, that is only one will be selected.

source


# CompositionalNetworks.codeFunction.
julia
code(c::Composition, lang=:maths; name="composition")

Access the code of a composition c in a given language lang. The name of the generated method is optional.

source


# CompositionalNetworks.comparison_layerFunction.
julia
comparison_layer(param = false)

Generate the layer of transformations functions of the ICN. Iff param value is set, also includes all the parametric comparison with that value. The operations are mutually exclusive, that is only one will be selected.

source


# CompositionalNetworks.composeFunction.
julia
compose(icn, weigths=nothing)

Return a function composed by some of the operations of a given ICN. Can be applied to any vector of variables. If weigths are given, will assign to icn.

source


# CompositionalNetworks.compose_to_file!Method.
julia
compose_to_file!(concept, name, path; domains, param = nothing, language = :Julia, search = :complete, global_iter = 10, local_iter = 100, metric = hamming, popSize = 200)

Explore, learn and compose a function and write it to a file.

Arguments:

  • concept: the concept to learn

  • name: the name to give to the constraint

  • path: path of the output file

Keywords arguments:

  • domains: domains that defines the search space

  • param: an optional paramater of the constraint

  • language: the language to export to, default to :julia

  • search: either :partial or :complete search

  • global_iter: number of learning iteration

  • local_iter: number of generation in the genetic algorithm

  • metric: the metric to measure the distance between a configuration and known solutions

  • popSize: size of the population in the genetic algorithm

source


# CompositionalNetworks.compositionMethod.
julia
composition(c::Composition)

Access the actual method of an ICN composition c.

source


# CompositionalNetworks.composition_to_file!Function.
julia
composition_to_file!(c::Composition, path, name, language=:Julia)

Write the composition code in a given language into a file at path.

source


# CompositionalNetworks.explore_learn_composeMethod.
julia
explore_learn_compose(concept; domains, param = nothing, search = :complete, global_iter = 10, local_iter = 100, metric = hamming, popSize = 200, action = :composition)

Explore a search space, learn a composition from an ICN, and compose an error function.

Arguments:

  • concept: the concept of the targeted constraint

  • domains: domains of the variables that define the training space

  • param: an optional parameter of the constraint

  • search: either flexible,:partial or :complete search. Flexible search will use search_limit and solutions_limit to determine if the search space needs to be partially or completely explored

  • global_iter: number of learning iteration

  • local_iter: number of generation in the genetic algorithm

  • metric: the metric to measure the distance between a configuration and known solutions

  • popSize: size of the population in the genetic algorithm

  • action: either :symbols to have a description of the composition or :composition to have the composed function itself

source


# CompositionalNetworks.hammingMethod.
julia
hamming(x, X)

Compute the hamming distance of x over a collection of solutions X, i.e. the minimal number of variables to switch in xto reach a solution.

source


# CompositionalNetworks.lazyMethod.
julia
lazy(funcs::Function...)

Generate methods extended to a vector instead of one of its components. A function f should have the following signature: f(i::Int, x::V).

source


# CompositionalNetworks.lazy_paramMethod.
julia
lazy_param(funcs::Function...)

Generate methods extended to a vector instead of one of its components. A function f should have the following signature: f(i::Int, x::V; param).

source


# CompositionalNetworks.learn_composeMethod.
julia
learn_compose(;
     nvars, dom_size, param=nothing, icn=ICN(nvars, dom_size, param),
     X, X_sols, global_iter=100, local_iter=100, metric=hamming, popSize=200
-)

Create an ICN, optimize it, and return its composition.

source


# CompositionalNetworks.manhattanMethod.
julia
manhattan(x, X)

source


# CompositionalNetworks.minkowskiMethod.
julia
minkowski(x, X, p)

source


# CompositionalNetworks.nbitsMethod.
julia
nbits(icn)

Return the expected number of bits of a viable weigth of an ICN.

source


# CompositionalNetworks.regularizationMethod.
julia
regularization(icn)

Return the regularization value of an ICN weigths, which is proportional to the normalized number of operations selected in the icn layers.

source


# CompositionalNetworks.show_layersMethod.
julia
show_layers(icn)

Return a formated string with each layers in the icn.

source


# CompositionalNetworks.symbolsMethod.
julia
symbols(c::Composition)

Output the composition as a layered collection of Symbols.

source


# CompositionalNetworks.transformation_layerFunction.
julia
transformation_layer(param = false)

Generate the layer of transformations functions of the ICN. Iff param value is true, also includes all the parametric transformations.

source


# CompositionalNetworks.weigths!Method.
julia
weigths!(icn, weigths)

Set the weigths of an ICN with a BitVector.

source


# CompositionalNetworks.weigthsMethod.
julia
weigths(icn)

Access the current set of weigths of an ICN.

source


# CompositionalNetworks.weigths_biasMethod.
julia
weigths_bias(x)

A metric that bias x towards operations with a lower bit. Do not affect the main metric.

source


# QUBOConstraints.QUBO_linear_sumMethod.
julia
QUBO_linear_sum(n, σ)

One valid QUBO matrix given n variables and parameter σ for the linear sum constraint.

source


# QUBOConstraints.binarizeMethod.
julia
binarize(x[, domain]; binarization = :one_hot)

Binarize x following the binarization encoding. If x is a vector (instead of a number per say), domain is optional.

source


# QUBOConstraints.debinarizeMethod.
julia
debinarize(x[, domain]; binarization = :one_hot)

Transform a binary vector into a number or a set of number. If domain is not given, it will compute a default value based on binarization and x.

source


# QUBOConstraints.is_validFunction.
julia
is_valid(x, encoding::Symbol = :none)

Check if x has a valid format for encoding.

For instance, if encoding == :one_hot, at most one bit of x can be set to 1.

source


# QUBOConstraints.trainMethod.
julia
train(args...)

Default train method for any AbstractOptimizer.

source


- +)

Create an ICN, optimize it, and return its composition.

source


# CompositionalNetworks.manhattanMethod.
julia
manhattan(x, X)

source


# CompositionalNetworks.minkowskiMethod.
julia
minkowski(x, X, p)

source


# CompositionalNetworks.nbitsMethod.
julia
nbits(icn)

Return the expected number of bits of a viable weigth of an ICN.

source


# CompositionalNetworks.regularizationMethod.
julia
regularization(icn)

Return the regularization value of an ICN weigths, which is proportional to the normalized number of operations selected in the icn layers.

source


# CompositionalNetworks.show_layersMethod.
julia
show_layers(icn)

Return a formated string with each layers in the icn.

source


# CompositionalNetworks.symbolsMethod.
julia
symbols(c::Composition)

Output the composition as a layered collection of Symbols.

source


# CompositionalNetworks.transformation_layerFunction.
julia
transformation_layer(param = false)

Generate the layer of transformations functions of the ICN. Iff param value is true, also includes all the parametric transformations.

source


# CompositionalNetworks.weigths!Method.
julia
weigths!(icn, weigths)

Set the weigths of an ICN with a BitVector.

source


# CompositionalNetworks.weigthsMethod.
julia
weigths(icn)

Access the current set of weigths of an ICN.

source


# CompositionalNetworks.weigths_biasMethod.
julia
weigths_bias(x)

A metric that bias x towards operations with a lower bit. Do not affect the main metric.

source


# QUBOConstraints.QUBO_linear_sumMethod.
julia
QUBO_linear_sum(n, σ)

One valid QUBO matrix given n variables and parameter σ for the linear sum constraint.

source


# QUBOConstraints.binarizeMethod.
julia
binarize(x[, domain]; binarization = :one_hot)

Binarize x following the binarization encoding. If x is a vector (instead of a number per say), domain is optional.

source


# QUBOConstraints.debinarizeMethod.
julia
debinarize(x[, domain]; binarization = :one_hot)

Transform a binary vector into a number or a set of number. If domain is not given, it will compute a default value based on binarization and x.

source


# QUBOConstraints.is_validFunction.
julia
is_valid(x, encoding::Symbol = :none)

Check if x has a valid format for encoding.

For instance, if encoding == :one_hot, at most one bit of x can be set to 1.

source


# QUBOConstraints.trainMethod.
julia
train(args...)

Default train method for any AbstractOptimizer.

source


+ \ No newline at end of file diff --git a/dev/solvers/cbls.html b/dev/solvers/cbls.html index bb18be9..f59806c 100644 --- a/dev/solvers/cbls.html +++ b/dev/solvers/cbls.html @@ -8,11 +8,11 @@ - + - - - + + + @@ -22,8 +22,8 @@ @objective(model, ScalarFunction(f)) # Generic use -@objective(model, ScalarFunction(f, X))

source


# CBLS.SequentialTasksType.

Local constraint ensuring that, given a vector X of size 4, |X[1] - X[2]| ≠ |X[3] - X[4]|).

julia
@constraint(model, X in SequentialTasks())

source


# CBLS.SumEqualParamType.

Global constraint ensuring that the sum of the values of X is equal to a given parameter param.

julia
@constraint(model, X in SumEqualParam(param))

source


# Base.copyMethod.
julia
Base.copy(set::MOIError) = begin

DOCSTRING

source


# Base.copyMethod.
julia
Base.copy(set::DiscreteSet) = begin

DOCSTRING

source


# JuMP.build_variableMethod.
julia
JuMP.build_variable(::Function, info::JuMP.VariableInfo, set::T) where T <: MOI.AbstractScalarSet

DOCSTRING

Arguments:

  • ``: DESCRIPTION

  • info: DESCRIPTION

  • set: DESCRIPTION

source


# MathOptInterface.add_constraintMethod.
julia
MOI.add_constraint(optimizer::Optimizer, vars::MOI.VectorOfVariables, set::MOIError)

DOCSTRING

Arguments:

  • optimizer: DESCRIPTION

  • vars: DESCRIPTION

  • set: DESCRIPTION

source


# MathOptInterface.add_constraintMethod.
julia
MOI.add_constraint(optimizer::Optimizer, v::VI, set::DiscreteSet{T}) where T <: Number

DOCSTRING

Arguments:

  • optimizer: DESCRIPTION

  • v: DESCRIPTION

  • set: DESCRIPTION

source


# MathOptInterface.add_variableMethod.
julia
MOI.add_variable(model::Optimizer) = begin

DOCSTRING

source


# MathOptInterface.empty!Method.
julia
MOI.empty!(opt) = begin

DOCSTRING

source


# MathOptInterface.getMethod.
julia
MOI.get(::Optimizer, ::MOI.SolverName) = begin

DOCSTRING

source


# MathOptInterface.is_emptyMethod.
julia
MOI.is_empty(model::Optimizer) = begin

DOCSTRING

source


# MathOptInterface.optimize!Method.
julia
MOI.optimize!(model::Optimizer)

source


# MathOptInterface.setFunction.
julia
MOI.set(::Optimizer, ::MOI.Silent, bool = true) = begin

DOCSTRING

Arguments:

  • ``: DESCRIPTION

  • ``: DESCRIPTION

  • bool: DESCRIPTION

source


# MathOptInterface.setMethod.
julia
MOI.set(model::Optimizer, p::MOI.RawOptimizerAttribute, value)

Set a RawOptimizerAttribute to value

source


# MathOptInterface.setMethod.
julia
MOI.set(model::Optimizer, ::MOI.TimeLimitSec, value::Union{Nothing,Float64})

Set the time limit

source


# MathOptInterface.supports_constraintMethod.
julia
MOI.supports_constraint(::Optimizer, ::Type{VOV}, ::Type{MOIError}) = begin

DOCSTRING

Arguments:

  • ``: DESCRIPTION

  • ``: DESCRIPTION

  • ``: DESCRIPTION

source


# MathOptInterface.supports_incremental_interfaceMethod.

Copy constructor for the optimizer

source


- +@objective(model, ScalarFunction(f, X))

source


# CBLS.SequentialTasksType.

Local constraint ensuring that, given a vector X of size 4, |X[1] - X[2]| ≠ |X[3] - X[4]|).

julia
@constraint(model, X in SequentialTasks())

source


# CBLS.SumEqualParamType.

Global constraint ensuring that the sum of the values of X is equal to a given parameter param.

julia
@constraint(model, X in SumEqualParam(param))

source


# Base.copyMethod.
julia
Base.copy(set::MOIError) = begin

DOCSTRING

source


# Base.copyMethod.
julia
Base.copy(set::DiscreteSet) = begin

DOCSTRING

source


# JuMP.build_variableMethod.
julia
JuMP.build_variable(::Function, info::JuMP.VariableInfo, set::T) where T <: MOI.AbstractScalarSet

DOCSTRING

Arguments:

  • ``: DESCRIPTION

  • info: DESCRIPTION

  • set: DESCRIPTION

source


# MathOptInterface.add_constraintMethod.
julia
MOI.add_constraint(optimizer::Optimizer, vars::MOI.VectorOfVariables, set::MOIError)

DOCSTRING

Arguments:

  • optimizer: DESCRIPTION

  • vars: DESCRIPTION

  • set: DESCRIPTION

source


# MathOptInterface.add_constraintMethod.
julia
MOI.add_constraint(optimizer::Optimizer, v::VI, set::DiscreteSet{T}) where T <: Number

DOCSTRING

Arguments:

  • optimizer: DESCRIPTION

  • v: DESCRIPTION

  • set: DESCRIPTION

source


# MathOptInterface.add_variableMethod.
julia
MOI.add_variable(model::Optimizer) = begin

DOCSTRING

source


# MathOptInterface.empty!Method.
julia
MOI.empty!(opt) = begin

DOCSTRING

source


# MathOptInterface.getMethod.
julia
MOI.get(::Optimizer, ::MOI.SolverName) = begin

DOCSTRING

source


# MathOptInterface.is_emptyMethod.
julia
MOI.is_empty(model::Optimizer) = begin

DOCSTRING

source


# MathOptInterface.optimize!Method.
julia
MOI.optimize!(model::Optimizer)

source


# MathOptInterface.setFunction.
julia
MOI.set(::Optimizer, ::MOI.Silent, bool = true) = begin

DOCSTRING

Arguments:

  • ``: DESCRIPTION

  • ``: DESCRIPTION

  • bool: DESCRIPTION

source


# MathOptInterface.setMethod.
julia
MOI.set(model::Optimizer, p::MOI.RawOptimizerAttribute, value)

Set a RawOptimizerAttribute to value

source


# MathOptInterface.setMethod.
julia
MOI.set(model::Optimizer, ::MOI.TimeLimitSec, value::Union{Nothing,Float64})

Set the time limit

source


# MathOptInterface.supports_constraintMethod.
julia
MOI.supports_constraint(::Optimizer, ::Type{VOV}, ::Type{MOIError}) = begin

DOCSTRING

Arguments:

  • ``: DESCRIPTION

  • ``: DESCRIPTION

  • ``: DESCRIPTION

source


# MathOptInterface.supports_incremental_interfaceMethod.

Copy constructor for the optimizer

source


+ \ No newline at end of file diff --git a/dev/solvers/intro.html b/dev/solvers/intro.html index f9e1556..a422876 100644 --- a/dev/solvers/intro.html +++ b/dev/solvers/intro.html @@ -8,17 +8,17 @@ - + - - - + + + -
Skip to content
- +
Skip to content
+ \ No newline at end of file diff --git a/dev/solvers/local_search_solvers.html b/dev/solvers/local_search_solvers.html index 3791937..b0280fa 100644 --- a/dev/solvers/local_search_solvers.html +++ b/dev/solvers/local_search_solvers.html @@ -8,11 +8,11 @@ - + - - - + + + @@ -52,8 +52,8 @@ add!(m::M, o) where M <: Union{Model, AbstractSolver}

Add a variable x, a constraint c, or an objective o to m.

source


# LocalSearchSolvers.add_value!Method.
julia
add_value!(m::M, x, val) where M <: Union{Model, AbstractSolver}

Add val to x domain.

source


# LocalSearchSolvers.add_var_to_cons!Method.
julia
add_var_to_cons!(m::M, c, x) where M <: Union{Model, AbstractSolver}

Add x to the constraint c list of restricted variables.

source


# LocalSearchSolvers.constraint!Method.
julia
constraint!(m::M, func, vars) where M <: Union{Model, AbstractSolver}

Add a constraint with an error function func defined over variables vars.

source


# LocalSearchSolvers.constraintMethod.
julia
constraint(f, vars)

DOCSTRING

source


# LocalSearchSolvers.constrictionMethod.
julia
constriction(m::M, x) where M <: Union{Model, AbstractSolver}

Return the constriction of variable x.

source


# LocalSearchSolvers.decay_tabu!Method.
julia
_decay_tabu!(s::S) where S <: Union{_State, AbstractSolver}

Decay the tabu list.

source


# LocalSearchSolvers.decrease_tabu!Method.
julia
_decrease_tabu!(s::S, x) where S <: Union{_State, AbstractSolver}

Decrement the tabu value of variable x.

source


# LocalSearchSolvers.delete_tabu!Method.
julia
_delete_tabu!(s::S, x) where S <: Union{_State, AbstractSolver}

Delete the tabu entry of variable x.

source


# LocalSearchSolvers.delete_value!Method.
julia
delete_value(m::M, x, val) where M <: Union{Model, AbstractSolver}

Delete val from x domain.

source


# LocalSearchSolvers.delete_var_from_cons!Method.
julia
delete_var_from_cons(m::M, c, x) where M <: Union{Model, AbstractSolver}

Delete x from the constraint c list of restricted variables.

source


# LocalSearchSolvers.describeMethod.
julia
describe(m::M) where M <: Union{Model, AbstractSolver}

Describe the model.

source


# LocalSearchSolvers.domain_sizeMethod.
julia
domain_size(m::Model, x) = begin

DOCSTRING

source


# LocalSearchSolvers.drawMethod.
julia
draw(m::M, x) where M <: Union{Model, AbstractSolver}

Draw a random value of x domain.

source


# LocalSearchSolvers.empty_tabu!Method.
julia
_empty_tabu!(s::S) where S <: Union{_State, AbstractSolver}

Empty the tabu list.

source


# LocalSearchSolvers.get_cons_from_varMethod.
julia
get_cons_from_var(m::M, x) where M <: Union{Model, AbstractSolver}

Access the constraints restricting variable x.

source


# LocalSearchSolvers.get_constraintMethod.
julia
get_constraint(m::M, c) where M <: Union{Model, AbstractSolver}

Access the constraint c.

source


# LocalSearchSolvers.get_constraintsMethod.
julia
get_constraints(m::M) where M <: Union{Model, AbstractSolver}

Access the constraints of m.

source


# LocalSearchSolvers.get_domainMethod.
julia
get_domain(m::M, x) where M <: Union{Model, AbstractSolver}

Access the domain of variable x.

source


# LocalSearchSolvers.get_kindMethod.
julia
get_kind(m::M) where M <: Union{Model, AbstractSolver}

Access the kind of m, such as :sudoku or :generic (default).

source


# LocalSearchSolvers.get_nameMethod.
julia
get_name(m::M, x) where M <: Union{Model, AbstractSolver}

Access the name of variable x.

source


# LocalSearchSolvers.get_objectiveMethod.
julia
get_objective(m::M, o) where M <: Union{Model, AbstractSolver}

Access the objective o.

source


# LocalSearchSolvers.get_objectivesMethod.
julia
get_objectives(m::M) where M <: Union{Model, AbstractSolver}

Access the objectives of m.

source


# LocalSearchSolvers.get_time_stampMethod.
julia
get_time_stamp(m::M) where M <: Union{Model, AbstractSolver}

Access the time (since epoch) when the model was created. This time stamp is for internal performance measurement.

source


# LocalSearchSolvers.get_variableMethod.
julia
get_variable(m::M, x) where M <: Union{Model, AbstractSolver}

Access the variable x.

source


# LocalSearchSolvers.get_variablesMethod.
julia
get_variables(m::M) where M <: Union{Model, AbstractSolver}

Access the variables of m.

source


# LocalSearchSolvers.get_vars_from_consMethod.
julia
get_vars_from_cons(m::M, c) where M <: Union{Model, AbstractSolver}

Access the variables restricted by constraint c.

source


# LocalSearchSolvers.insert_tabu!Method.
julia
_insert_tabu!(s::S, x, tabu_time) where S <: Union{_State, AbstractSolver}

Insert the bariable x as tabu for tabu_time.

source


# LocalSearchSolvers.is_satMethod.
julia
is_sat(m::M) where M <: Union{Model, AbstractSolver}

Return true if m is a satisfaction model.

source


# LocalSearchSolvers.is_specializedMethod.
julia
is_specialized(m::M) where M <: Union{Model, AbstractSolver}

Return true if the model is already specialized.

source


# LocalSearchSolvers.length_consMethod.
julia
length_cons(m::M, c) where M <: Union{Model, AbstractSolver}

Return the length of constraint c.

source


# LocalSearchSolvers.length_consMethod.
julia
length_cons(m::M) where M <: Union{Model, AbstractSolver}

Return the number of constraints in m.

source


# LocalSearchSolvers.length_objsMethod.
julia
length_objs(m::M) where M <: Union{Model, AbstractSolver}

Return the number of objectives in m.

source


# LocalSearchSolvers.length_tabuMethod.
julia
_length_tabu!(s::S) where S <: Union{_State, AbstractSolver}

Return the length of the tabu list.

source


# LocalSearchSolvers.length_varMethod.
julia
length_var(m::M, x) where M <: Union{Model, AbstractSolver}

Return the domain length of variable x.

source


# LocalSearchSolvers.length_varsMethod.
julia
length_vars(m::M) where M <: Union{Model, AbstractSolver}

Return the number of variables in m.

source


# LocalSearchSolvers.max_domains_sizeMethod.
julia
max_domains_size(m::Model, vars) = begin

DOCSTRING

source


# LocalSearchSolvers.modelMethod.
julia
model()

Construct a _Model, empty by default. It is recommended to add the constraints, variables, and objectives from an empty _Model. The following keyword arguments are available,

  • vars=Dictionary{Int,Variable}(): collection of variables

  • cons=Dictionary{Int,Constraint}(): collection of cosntraints

  • objs=Dictionary{Int,Objective}(): collection of objectives

  • kind=:generic: the kind of problem modeled (useful for specialized methods such as pretty printing)

source


# LocalSearchSolvers.o_dist_extremaMethod.
julia
dist_extrema(values::T...) where {T <: Number}

Computes the distance between extrema in an ordered set.

source


# LocalSearchSolvers.o_mincutMethod.
julia
o_mincut(graph, values; interdiction = 0)

Compute the capacity of a cut (determined by the state of the solver) with a possible interdiction on the highest capacited links.

source


# LocalSearchSolvers.objective!Method.
julia
objective!(m::M, func) where M <: Union{Model, AbstractSolver}

Add an objective evaluated by func.

source


# LocalSearchSolvers.objectiveMethod.
julia
objective(func, name)

Construct an objective with a function func that should be applied to a collection of variables.

source


# LocalSearchSolvers.post_processMethod.
julia
post_process(s::MainSolver)

Launch a serie of tasks to round-up a solving run, for instance, export a run's info.

source


# LocalSearchSolvers.remote_dispatch!Method.
julia
remote_dispatch!(solver)

Starts the LeadSolvers attached to the MainSolver.

source


# LocalSearchSolvers.remote_stop!Method.
julia
remote_stop!!(solver)

Fetch the pool of solutions from LeadSolvers and merge it into the MainSolver.

source


# LocalSearchSolvers.solutionMethod.
julia
solution(s)

Return the only/best known solution of a satisfaction/optimization model.

source


# LocalSearchSolvers.solve_for_loop!Method.
julia
solve_for_loop!(solver, stop, sat, iter)

First loop in the solving process that starts LeadSolvers from the MainSolver, and _SubSolvers from each MetaSolver.

source


# LocalSearchSolvers.solve_while_loop!Method.
julia
solve_while_loop!(s, )

Search the space of configurations.

source


# LocalSearchSolvers.specialize!Method.
julia
specialize!(solver)

Replace the model of solver by one with specialized types (variables, constraints, objectives).

source


# LocalSearchSolvers.specializeMethod.
julia
specialize(m::M) where M <: Union{Model, AbstractSolver}

Specialize the structure of a model to avoid dynamic type attribution at runtime.

source


# LocalSearchSolvers.statusMethod.
julia
status(solver)

Return the status of a MainSolver.

source


# LocalSearchSolvers.stop_while_loopMethod.
julia
stop_while_loop()

Check the stop conditions of the solve! while inner loop.

source


# LocalSearchSolvers.tabu_listMethod.
julia
_tabu(s::S) where S <: Union{_State, AbstractSolver}

Access the list of tabu variables.

source


# LocalSearchSolvers.tabu_valueMethod.
julia
_tabu(s::S, x) where S <: Union{_State, AbstractSolver}

Return the tabu value of variable x.

source


# LocalSearchSolvers.variable!Function.
julia
variable!(m::M, d) where M <: Union{Model, AbstractSolver}

Add a variable with domain d to m.

source


# LocalSearchSolvers.variableMethod.
julia
variable(values::AbstractVector{T}, name::AbstractString; domain = :set) where T <: Number
 variable(domain::AbstractDomain, name::AbstractString) where D <: AbstractDomain

Construct a variable with discrete domain. See the domain method for other options.

julia
d = domain([1,2,3,4], types = :indices)
 x1 = variable(d, "x1")
-x2 = variable([-89,56,28], "x2", domain = :indices)

source


- +x2 = variable([-89,56,28], "x2", domain = :indices)

source


+ \ No newline at end of file