@@ -28,14 +28,14 @@ using Pkg; Pkg.add("ModelPredictiveControl")
28
28
### Model Predictive Control Features
29
29
30
30
- ✅ linear and nonlinear plant models exploiting multiple dispatch
31
- - ⬜ model predictive controllers based on:
31
+ - ✅ model predictive controllers based on:
32
32
- ✅ linear plant models
33
- - ⬜ nonlinear plant models
34
- - ⬜ supported objective function terms:
33
+ - ✅ nonlinear plant models
34
+ - ✅ supported objective function terms:
35
35
- ✅ output setpoint tracking
36
36
- ✅ move suppression
37
37
- ✅ input setpoint tracking
38
- - ⬜ additional custom penalty (e.g. economic costs )
38
+ - ✅ economic costs ( economic model predictive control )
39
39
- ⬜ terminal cost to ensure nominal stability
40
40
- ✅ soft and hard constraints on:
41
41
- ✅ output predictions
@@ -54,14 +54,14 @@ using Pkg; Pkg.add("ModelPredictiveControl")
54
54
- ⬜ easy integration with ` Plots.jl `
55
55
- ✅ optimization based on ` JuMP.jl ` :
56
56
- ✅ quickly compare multiple optimizers
57
- - ⬜ nonlinear solvers relying on automatic differentiation (exact derivative)
57
+ - ✅ nonlinear solvers relying on automatic differentiation (exact derivative)
58
58
- ⬜ additional information about the optimum to ease troubleshooting:
59
- - ✅ optimal input increments over control horizon
60
- - ✅ slack variable optimum
61
- - ✅ objective function optimum
62
- - ✅ output predictions at optimum
63
- - ✅ current stochastic output predictions
64
- - ⬜ custom penalty value at optimum
59
+ - ⬜ optimal input increments over control horizon
60
+ - ⬜ slack variable optimum
61
+ - ⬜ objective function optimum
62
+ - ⬜ output predictions at optimum
63
+ - ⬜ current stochastic output predictions
64
+ - ⬜ optimal economic costs
65
65
66
66
### State Estimation Features
67
67
@@ -70,6 +70,7 @@ using Pkg; Pkg.add("ModelPredictiveControl")
70
70
- ✅ Kalman filter
71
71
- ⬜ Luenberger observer
72
72
- ✅ internal model structure
73
+ - ⬜ extended Kalman filter
73
74
- ✅ unscented Kalman filter
74
75
- ⬜ moving horizon estimator
75
76
- ✅ observers in predictor form to ease control applications
0 commit comments