@@ -624,11 +624,11 @@ This estimator is allocation-free if `model` simulations do not allocate.
624
624
disturbances at measured outputs ``\m athbf{Q_{int_{ym}}}`` (composed of integrators).
625
625
- `σPint_ym_0=fill(1,sum(nint_ym))` or *`sigmaPint_ym_0`* : same than `σP_0` but for the unmeasured
626
626
disturbances at measured outputs ``\m athbf{P_{int_{ym}}}(0)`` (composed of integrators).
627
- - `direct=true`: construct with a direct transmission from ``\m athbf{y^m}`` (a.k.a. current
628
- estimator, in opposition to the delayed/predictor form).
629
627
- `α=1e-3` or *`alpha`* : alpha parameter, spread of the state distribution ``(0 < α ≤ 1)``.
630
628
- `β=2` or *`beta`* : beta parameter, skewness and kurtosis of the states distribution ``(β ≥ 0)``.
631
629
- `κ=0` or *`kappa`* : kappa parameter, another spread parameter ``(0 ≤ κ ≤ 3)``.
630
+ - `direct=true`: construct with a direct transmission from ``\m athbf{y^m}`` (a.k.a. current
631
+ estimator, in opposition to the delayed/predictor form).
632
632
633
633
# Examples
634
634
```jldoctest
@@ -872,7 +872,12 @@ function update_estimate!(estim::UnscentedKalmanFilter, y0m, d0, u0)
872
872
return nothing
873
873
end
874
874
875
- struct ExtendedKalmanFilter{NT<: Real , SM<: SimModel } <: StateEstimator{NT}
875
+ struct ExtendedKalmanFilter{
876
+ NT<: Real ,
877
+ SM<: SimModel ,
878
+ JB<: AbstractADType ,
879
+ LF<: Function
880
+ } <: StateEstimator{NT}
876
881
model:: SM
877
882
lastu0:: Vector{NT}
878
883
x̂op :: Vector{NT}
@@ -904,12 +909,14 @@ struct ExtendedKalmanFilter{NT<:Real, SM<:SimModel} <: StateEstimator{NT}
904
909
F̂ :: Matrix{NT}
905
910
Ĥ :: Matrix{NT}
906
911
Ĥm :: Matrix{NT}
912
+ jacobian:: JB
913
+ linfunc!:: LF
907
914
direct:: Bool
908
915
corrected:: Vector{Bool}
909
916
buffer:: StateEstimatorBuffer{NT}
910
917
function ExtendedKalmanFilter {NT} (
911
- model:: SM , i_ym, nint_u, nint_ym, P̂_0, Q̂, R̂; direct= true
912
- ) where {NT<: Real , SM<: SimModel }
918
+ model:: SM , i_ym, nint_u, nint_ym, P̂_0, Q̂, R̂; jacobian :: JB , linfunc! :: LF , direct= true
919
+ ) where {NT<: Real , SM<: SimModel , JB <: AbstractADType , LF <: Function }
913
920
nu, ny, nd = model. nu, model. ny, model. nd
914
921
nym, nyu = validate_ym (model, i_ym)
915
922
As, Cs_u, Cs_y, nint_u, nint_ym = init_estimstoch (model, i_ym, nint_u, nint_ym)
@@ -928,7 +935,7 @@ struct ExtendedKalmanFilter{NT<:Real, SM<:SimModel} <: StateEstimator{NT}
928
935
Ĥ, Ĥm = zeros (NT, ny, nx̂), zeros (NT, nym, nx̂)
929
936
corrected = [false ]
930
937
buffer = StateEstimatorBuffer {NT} (nu, nx̂, nym, ny, nd)
931
- return new {NT, SM} (
938
+ return new {NT, SM, JB, LF } (
932
939
model,
933
940
lastu0, x̂op, f̂op, x̂0, P̂,
934
941
i_ym, nx̂, nym, nyu, nxs,
@@ -937,6 +944,7 @@ struct ExtendedKalmanFilter{NT<:Real, SM<:SimModel} <: StateEstimator{NT}
937
944
P̂_0, Q̂, R̂,
938
945
K̂,
939
946
F̂_û, F̂, Ĥ, Ĥm,
947
+ jacobian, linfunc!,
940
948
direct, corrected,
941
949
buffer
942
950
)
@@ -948,16 +956,44 @@ end
948
956
949
957
Construct an extended Kalman Filter with the [`SimModel`](@ref) `model`.
950
958
951
- Both [`LinModel`](@ref) and [`NonLinModel`](@ref) are supported. The process model and the
952
- keyword arguments are identical to [`UnscentedKalmanFilter`](@ref), except for `α`, `β` and
953
- `κ` which do not apply to the extended Kalman Filter. The Jacobians of the augmented model
954
- ``\m athbf{f̂, ĥ}`` are computed with [`ForwardDiff`](@extref ForwardDiff) automatic
955
- differentiation. This estimator allocates memory for the Jacobians.
956
-
959
+ Both [`LinModel`](@ref) and [`NonLinModel`](@ref) are supported. The process model is
960
+ identical to [`UnscentedKalmanFilter`](@ref). By default, the Jacobians of the augmented
961
+ model ``\m athbf{f̂, ĥ}`` are computed with [`ForwardDiff`](@extref ForwardDiff) automatic
962
+ differentiation. This estimator is allocation-free if `model` simulations do not allocate.
957
963
!!! warning
958
964
See the Extended Help of [`linearize`](@ref) function if you get an error like:
959
965
`MethodError: no method matching (::var"##")(::Vector{ForwardDiff.Dual})`.
960
966
967
+ # Arguments
968
+ !!! info
969
+ Keyword arguments with *`emphasis`* are non-Unicode alternatives.
970
+
971
+ - `model::SimModel` : (deterministic) model for the estimations.
972
+ - `i_ym=1:model.ny` : `model` output indices that are measured ``\m athbf{y^m}``, the rest
973
+ are unmeasured ``\m athbf{y^u}``.
974
+ - `σP_0=fill(1/model.nx,model.nx)` or *`sigmaP_0`* : main diagonal of the initial estimate
975
+ covariance ``\m athbf{P}(0)``, specified as a standard deviation vector.
976
+ - `σQ=fill(1/model.nx,model.nx)` or *`sigmaQ`* : main diagonal of the process noise
977
+ covariance ``\m athbf{Q}`` of `model`, specified as a standard deviation vector.
978
+ - `σR=fill(1,length(i_ym))` or *`sigmaR`* : main diagonal of the sensor noise covariance
979
+ ``\m athbf{R}`` of `model` measured outputs, specified as a standard deviation vector.
980
+ - `nint_u=0`: integrator quantity for the stochastic model of the unmeasured disturbances at
981
+ the manipulated inputs (vector), use `nint_u=0` for no integrator (see Extended Help).
982
+ - `nint_ym=default_nint(model,i_ym,nint_u)` : same than `nint_u` but for the unmeasured
983
+ disturbances at the measured outputs, use `nint_ym=0` for no integrator (see Extended Help).
984
+ - `σQint_u=fill(1,sum(nint_u))` or *`sigmaQint_u`* : same than `σQ` but for the unmeasured
985
+ disturbances at manipulated inputs ``\m athbf{Q_{int_u}}`` (composed of integrators).
986
+ - `σPint_u_0=fill(1,sum(nint_u))` or *`sigmaPint_u_0`* : same than `σP_0` but for the unmeasured
987
+ disturbances at manipulated inputs ``\m athbf{P_{int_u}}(0)`` (composed of integrators).
988
+ - `σQint_ym=fill(1,sum(nint_ym))` or *`sigmaQint_u`* : same than `σQ` for the unmeasured
989
+ disturbances at measured outputs ``\m athbf{Q_{int_{ym}}}`` (composed of integrators).
990
+ - `σPint_ym_0=fill(1,sum(nint_ym))` or *`sigmaPint_ym_0`* : same than `σP_0` but for the unmeasured
991
+ disturbances at measured outputs ``\m athbf{P_{int_{ym}}}(0)`` (composed of integrators).
992
+ - `jacobian=AutoForwardDiff()`: an `AbstractADType` backend for the Jacobians of the augmented
993
+ model, see [`DifferentiationInterface` doc](@extref DifferentiationInterface List).
994
+ - `direct=true`: construct with a direct transmission from ``\m athbf{y^m}`` (a.k.a. current
995
+ estimator, in opposition to the delayed/predictor form).
996
+
961
997
# Examples
962
998
```jldoctest
963
999
julia> model = NonLinModel((x,u,_,_)->0.2x+u, (x,_,_)->-3x, 5.0, 1, 1, 1, solver=nothing);
@@ -983,6 +1019,7 @@ function ExtendedKalmanFilter(
983
1019
sigmaQint_u = fill (1 , max (sum (nint_u), 0 )),
984
1020
sigmaPint_ym_0 = fill (1 , max (sum (nint_ym), 0 )),
985
1021
sigmaQint_ym = fill (1 , max (sum (nint_ym), 0 )),
1022
+ jacobian = AutoForwardDiff (),
986
1023
direct = true ,
987
1024
σP_0 = sigmaP_0,
988
1025
σQ = sigmaQ,
@@ -996,21 +1033,68 @@ function ExtendedKalmanFilter(
996
1033
P̂_0 = Hermitian (diagm (NT[σP_0; σPint_u_0; σPint_ym_0]. ^ 2 ), :L )
997
1034
Q̂ = Hermitian (diagm (NT[σQ; σQint_u; σQint_ym ]. ^ 2 ), :L )
998
1035
R̂ = Hermitian (diagm (NT[σR;]. ^ 2 ), :L )
999
- return ExtendedKalmanFilter {NT} (model, i_ym, nint_u, nint_ym, P̂_0, Q̂, R̂; direct)
1036
+ linfunc! = get_ekf_linfunc (NT, model, i_ym, nint_u, nint_ym, jacobian)
1037
+ return ExtendedKalmanFilter {NT} (
1038
+ model, i_ym, nint_u, nint_ym, P̂_0, Q̂, R̂; jacobian, linfunc!, direct
1039
+ )
1000
1040
end
1001
1041
1002
1042
@doc raw """
1003
- ExtendedKalmanFilter(model, i_ym, nint_u, nint_ym, P̂_0, Q̂, R̂; direct=true)
1043
+ ExtendedKalmanFilter(
1044
+ model, i_ym, nint_u, nint_ym, P̂_0, Q̂, R̂; jacobian=AutoForwardDiff(), direct=true
1045
+ )
1004
1046
1005
1047
Construct the estimator from the augmented covariance matrices `P̂_0`, `Q̂` and `R̂`.
1006
1048
1007
1049
This syntax allows nonzero off-diagonal elements in ``\m athbf{P̂}_{-1}(0), \m athbf{Q̂, R̂}``.
1008
1050
"""
1009
1051
function ExtendedKalmanFilter (
1010
- model:: SM , i_ym, nint_u, nint_ym,P̂_0, Q̂, R̂; direct= true
1052
+ model:: SM , i_ym, nint_u, nint_ym, P̂_0, Q̂, R̂; jacobian = AutoForwardDiff (), direct= true
1011
1053
) where {NT<: Real , SM<: SimModel{NT} }
1012
- P̂_0, Q̂, R̂ = to_mat (P̂_0), to_mat (Q̂), to_mat (R̂)
1013
- return ExtendedKalmanFilter {NT} (model, i_ym, nint_u, nint_ym, P̂_0, Q̂, R̂; direct)
1054
+ P̂_0, Q̂, R̂ = to_mat (P̂_0), to_mat (Q̂), to_mat (R̂)
1055
+ linfunc! = get_ekf_linfunc (NT, model, i_ym, nint_u, nint_ym, jacobian)
1056
+ return ExtendedKalmanFilter {NT} (
1057
+ model, i_ym, nint_u, nint_ym, P̂_0, Q̂, R̂; jacobian, direct, linfunc!
1058
+ )
1059
+ end
1060
+
1061
+ """
1062
+ get_ekf_linfunc(NT, model, i_ym, nint_u, nint_ym, jacobian) -> linfunc!
1063
+
1064
+ Return the `linfunc!` function that computes the Jacobians of the augmented model.
1065
+
1066
+ The function has the two following methods:
1067
+ ```
1068
+ linfunc!(x̂0next , ::Nothing, F̂ , ::Nothing, backend, x̂0, cst_u0, cst_d0) -> nothing
1069
+ linfunc!(::Nothing, ŷ0 , ::Nothing, Ĥ , backend, x̂0, _ , cst_d0) -> nothing
1070
+ ```
1071
+ To respectively compute only `F̂` or `Ĥ` Jacobian. The methods mutate all the arguments
1072
+ before `backend` argument. The `backend` argument is an `AbstractADType` object from
1073
+ `DifferentiationInterface`. The `cst_u0` and `cst_d0` are `DifferentiationInterface.Constant`
1074
+ objects with the linearization points.
1075
+ """
1076
+ function get_ekf_linfunc (NT, model, i_ym, nint_u, nint_ym, jacobian)
1077
+ As, Cs_u, Cs_y = init_estimstoch (model, i_ym, nint_u, nint_ym)
1078
+ f̂_ekf! (x̂0next, x̂0, û0, u0, d0) = f̂! (x̂0next, û0, model, As, Cs_u, x̂0, u0, d0)
1079
+ ĥ_ekf! (ŷ0, x̂0, d0) = ĥ! (ŷ0, model, Cs_y, x̂0, d0)
1080
+ strict = Val (true )
1081
+ nu, ny, nd = model. nu, model. ny, model. nd
1082
+ nx̂ = model. nx + size (As, 1 )
1083
+ x̂0next = zeros (NT, nx̂)
1084
+ ŷ0 = zeros (NT, ny)
1085
+ x̂0 = zeros (NT, nx̂)
1086
+ tmp_û0 = Cache (zeros (NT, nu))
1087
+ cst_u0 = Constant (zeros (NT, nu))
1088
+ cst_d0 = Constant (zeros (NT, nd))
1089
+ F̂_prep = prepare_jacobian (f̂_ekf!, x̂0next, jacobian, x̂0, tmp_û0, cst_u0, cst_d0; strict)
1090
+ Ĥ_prep = prepare_jacobian (ĥ_ekf!, ŷ0, jacobian, x̂0, cst_d0; strict)
1091
+ function linfunc! (x̂0next, ŷ0:: Nothing , F̂, Ĥ:: Nothing , backend, x̂0, cst_u0, cst_d0)
1092
+ return jacobian! (f̂_ekf!, x̂0next, F̂, F̂_prep, backend, x̂0, tmp_û0, cst_u0, cst_d0)
1093
+ end
1094
+ function linfunc! (x̂0next:: Nothing , ŷ0, F̂:: Nothing , Ĥ, backend, x̂0, _ , cst_d0)
1095
+ return jacobian! (ĥ_ekf!, ŷ0, Ĥ, Ĥ_prep, backend, x̂0, cst_d0)
1096
+ end
1097
+ return linfunc!
1014
1098
end
1015
1099
1016
1100
"""
@@ -1020,9 +1104,9 @@ Do the same but for the [`ExtendedKalmanFilter`](@ref).
1020
1104
"""
1021
1105
function correct_estimate! (estim:: ExtendedKalmanFilter , y0m, d0)
1022
1106
model, x̂0 = estim. model, estim. x̂0
1023
- ŷ0 = estim . buffer . ŷ
1024
- ĥAD! = ( ŷ0, x̂0) -> ĥ! (ŷ0, estim, model, x̂0, d0)
1025
- ForwardDiff . jacobian! ( estim. Ĥ, ĥAD!, ŷ0, x̂0 )
1107
+ cst_d0 = Constant (d0)
1108
+ ŷ0, Ĥ = estim. buffer . ŷ, estim . Ĥ
1109
+ estim . linfunc! ( nothing , ŷ0, nothing , Ĥ, estim. jacobian, x̂0, nothing , cst_d0 )
1026
1110
estim. Ĥm .= @views estim. Ĥ[estim. i_ym, :]
1027
1111
return correct_estimate_kf! (estim, y0m, d0, estim. Ĥm)
1028
1112
end
@@ -1043,8 +1127,8 @@ augmented process model:
1043
1127
\e nd{aligned}
1044
1128
```
1045
1129
The matrix ``\m athbf{Ĥ^m}`` is the rows of ``\m athbf{Ĥ}`` that are measured outputs. The
1046
- Jacobians are computed with [`ForwardDiff`](@extref ForwardDiff). The correction and
1047
- prediction step equations are provided below. The correction step is skipped if
1130
+ Jacobians are computed with [`ForwardDiff`](@extref ForwardDiff) bu default . The correction
1131
+ and prediction step equations are provided below. The correction step is skipped if
1048
1132
`estim.direct == true` since it's already done by the user.
1049
1133
1050
1134
# Correction Step
@@ -1069,22 +1153,16 @@ prediction step equations are provided below. The correction step is skipped if
1069
1153
function update_estimate! (estim:: ExtendedKalmanFilter{NT} , y0m, d0, u0) where NT<: Real
1070
1154
model, x̂0 = estim. model, estim. x̂0
1071
1155
nx̂, nu = estim. nx̂, model. nu
1156
+ cst_u0, cst_d0 = Constant (u0), Constant (d0)
1072
1157
if ! estim. direct
1073
- ŷ0 = estim. buffer. ŷ
1074
- ĥAD! = (ŷ0, x̂0) -> ĥ! (ŷ0, estim, model, x̂0, d0)
1075
- ForwardDiff. jacobian! (estim. Ĥ, ĥAD!, ŷ0, x̂0)
1158
+ ŷ0, Ĥ = estim. buffer. ŷ, estim. Ĥ
1159
+ estim. linfunc! (nothing , ŷ0, nothing , Ĥ, estim. jacobian, x̂0, nothing , cst_d0)
1076
1160
estim. Ĥm .= @views estim. Ĥ[estim. i_ym, :]
1077
1161
correct_estimate_kf! (estim, y0m, d0, estim. Ĥm)
1078
1162
end
1079
1163
x̂0corr = estim. x̂0
1080
- # concatenate x̂0next and û0 vectors to allows û0 vector with dual numbers for AD:
1081
- # TODO : remove this allocation using estim.buffer
1082
- x̂0nextû = Vector {NT} (undef, nx̂ + nu)
1083
- f̂AD! = (x̂0nextû, x̂0corr) -> @views f̂! (
1084
- x̂0nextû[1 : nx̂], x̂0nextû[nx̂+ 1 : end ], estim, model, x̂0corr, u0, d0
1085
- )
1086
- ForwardDiff. jacobian! (estim. F̂_û, f̂AD!, x̂0nextû, x̂0corr)
1087
- estim. F̂ .= @views estim. F̂_û[1 : estim. nx̂, :]
1164
+ x̂0next, F̂ = estim. buffer. x̂, estim. F̂
1165
+ estim. linfunc! (x̂0next, nothing , F̂, nothing , estim. jacobian, x̂0corr, cst_u0, cst_d0)
1088
1166
return predict_estimate_kf! (estim, u0, d0, estim. F̂)
1089
1167
end
1090
1168
0 commit comments