From d53f57de8fb567cc8fdc4c279dca641a24f2b28e Mon Sep 17 00:00:00 2001 From: Vedant Puri Date: Sat, 8 Jul 2023 22:00:52 -0400 Subject: [PATCH 1/9] make ProjectionStyle abstract type so we can subtype in downstream packages. add a few lines of docs --- src/definitions.jl | 26 ++++++++++++++++++++++---- 1 file changed, 22 insertions(+), 4 deletions(-) diff --git a/src/definitions.jl b/src/definitions.jl index 4ec176e..604329f 100644 --- a/src/definitions.jl +++ b/src/definitions.jl @@ -583,12 +583,30 @@ plan_brfft ############################################################################## -struct NoProjectionStyle end -struct RealProjectionStyle end -struct RealInverseProjectionStyle +abstract type ProjectionStyle end + +""" + NoProjectionStyle() + +Projection style for complex to complex discrete Fourier transform +""" +struct NoProjectionStyle <: ProjectionStyle end + +""" + RealProjectionStyle() + +Projection style for complex to real discrete Fourier transform +""" +struct RealProjectionStyle <: ProjectionStyle end + +""" + RealInverseProjectionStyle() + +Projection style for inverse of complex to real discrete Fourier transform +""" +struct RealInverseProjectionStyle <: ProjectionStyle dim::Int end -const ProjectionStyle = Union{NoProjectionStyle, RealProjectionStyle, RealInverseProjectionStyle} output_size(p::Plan) = _output_size(p, ProjectionStyle(p)) _output_size(p::Plan, ::NoProjectionStyle) = size(p) From f3575aa3b402faac5abcff32a7b21424f78274bb Mon Sep 17 00:00:00 2001 From: Gaurav Arya Date: Tue, 18 Jul 2023 12:44:04 -0400 Subject: [PATCH 2/9] Rename ProjectionStyle -> AdjointStyle, _mul -> AdjointMul, improve docs --- docs/src/api.md | 4 ++ docs/src/implementations.md | 9 ++-- src/definitions.jl | 86 ++++++++++++++++++++++++------------- test/testplans.jl | 10 ++--- 4 files changed, 69 insertions(+), 40 deletions(-) diff --git a/docs/src/api.md b/docs/src/api.md index bb3b849..ef998f8 100644 --- a/docs/src/api.md +++ b/docs/src/api.md @@ -21,6 +21,10 @@ AbstractFFTs.plan_brfft AbstractFFTs.plan_irfft AbstractFFTs.fftdims Base.adjoint +AbstractFFTs.FFTAdjointStyle +AbstractFFTs.RFFTAdjointStyle +AbstractFFTs.IRFFTAdjointStyle +AbstractFFTs.UnitaryAdjointStyle AbstractFFTs.fftshift AbstractFFTs.fftshift! AbstractFFTs.ifftshift diff --git a/docs/src/implementations.md b/docs/src/implementations.md index 7367fd4..364d21b 100644 --- a/docs/src/implementations.md +++ b/docs/src/implementations.md @@ -32,10 +32,11 @@ To define a new FFT implementation in your own module, you should * You can also define similar methods of `plan_rfft` and `plan_brfft` for real-input FFTs. -* To enable automatic computation of adjoint plans via [`Base.adjoint`](@ref) (used in rules for reverse-mode differentiation), define the trait `AbstractFFTs.ProjectionStyle(::MyPlan)`, which can return: - * `AbstractFFTs.NoProjectionStyle()`, - * `AbstractFFTs.RealProjectionStyle()`, for plans that halve one of the output's dimensions analogously to [`rfft`](@ref), - * `AbstractFFTs.RealInverseProjectionStyle(d::Int)`, for plans that expect an input with a halved dimension analogously to [`irfft`](@ref), where `d` is the original length of the dimension. +* We offer an experimental `AdjointStyle` trait to enable automatic computation of adjoint plans via [`Base.adjoint`](@ref). + To support adjoints in a new plan, define the trait `AbstractFFTs.AdjointStyle(::MyPlan)`. This should return a subtype of `AS <: AbstractFFTs.AdjointStyle` supporting `AbstractFFTs.adjoint_mul(::Plan, ::AbstractArray, ::AS)` and + `AbstractFFTs._output_size(::Plan, ::AS)`. + + `AbstractFFTs` pre-implements the following adjoint styles: [`AbstractFFTs.FFTAdjointStyle`](@ref), [`AbstractFFTs.RFFTAdjointStyle`](@ref), [`AbstractFFTs.IRFFTAdjointStyle`](@ref), and [`AbstractFFTs.UnitaryAdjointStyle`](@ref). The normalization convention for your FFT should be that it computes ``y_k = \sum_j x_j \exp(-2\pi i j k/n)`` for a transform of length ``n``, and the "backwards" (unnormalized inverse) transform computes the same thing but with ``\exp(+2\pi i jk/n)``. diff --git a/src/definitions.jl b/src/definitions.jl index 604329f..e495104 100644 --- a/src/definitions.jl +++ b/src/definitions.jl @@ -583,35 +583,57 @@ plan_brfft ############################################################################## -abstract type ProjectionStyle end +abstract type AdjointStyle end """ - NoProjectionStyle() + FFTAdjointStyle() -Projection style for complex to complex discrete Fourier transform +Projection style for complex to complex discrete Fourier transforms. + +Since the Fourier transform is unitary up to a scaling, the adjoint simply applies +the transform's inverse with an appropriate scaling. """ -struct NoProjectionStyle <: ProjectionStyle end +struct FFTAdjointStyle <: AdjointStyle end """ - RealProjectionStyle() + RFFTAdjointStyle() -Projection style for complex to real discrete Fourier transform +Projection style for real to complex discrete Fourier transforms, for plans that +halve one of the output's dimensions analogously to [`rfft`](@ref). + +Since the Fourier transform is unitary up to a scaling, the adjoint applies the transform's +inverse, but with additional logic to handle the fact that the output is projected +to exploit its conjugate symmetry (see [`rfft`](@ref)). """ -struct RealProjectionStyle <: ProjectionStyle end +struct RFFTAdjointStyle <: AdjointStyle end """ - RealInverseProjectionStyle() + IRFFTAdjointStyle(d::Dim) -Projection style for inverse of complex to real discrete Fourier transform +Projection style for complex to real discrete Fourier transforms, for plans that +expect an input with a halved dimension analogously to [`irfft`](@ref), where `d` +is the original length of the dimension. + +Since the Fourier transform is unitary up to a scaling, the adjoint applies the transform's +inverse, but with additional logic to handle the fact that the input is projected +to exploit its conjugate symmetry (see [`irfft`](@ref)). """ -struct RealInverseProjectionStyle <: ProjectionStyle +struct IRFFTAdjointStyle <: AdjointStyle dim::Int end -output_size(p::Plan) = _output_size(p, ProjectionStyle(p)) -_output_size(p::Plan, ::NoProjectionStyle) = size(p) -_output_size(p::Plan, ::RealProjectionStyle) = rfft_output_size(size(p), fftdims(p)) -_output_size(p::Plan, s::RealInverseProjectionStyle) = brfft_output_size(size(p), s.dim, fftdims(p)) +""" + UnitaryAdjointStyle() + +Projection style for unitary transforms, whose adjoint equals their inverse. +""" +struct UnitaryAdjointStyle <: AdjointStyle end + +output_size(p::Plan) = _output_size(p, AdjointStyle(p)) +_output_size(p::Plan, ::FFTAdjointStyle) = size(p) +_output_size(p::Plan, ::RFFTAdjointStyle) = rfft_output_size(size(p), fftdims(p)) +_output_size(p::Plan, s::IRFFTAdjointStyle) = brfft_output_size(size(p), s.dim, fftdims(p)) +_output_size(p::Plan, ::UnitaryAdjointStyle) = size(p) struct AdjointPlan{T,P<:Plan} <: Plan{T} p::P @@ -638,40 +660,42 @@ Base.adjoint(p::ScaledPlan) = ScaledPlan(p.p', p.scale) size(p::AdjointPlan) = output_size(p.p) output_size(p::AdjointPlan) = size(p.p) -Base.:*(p::AdjointPlan, x::AbstractArray) = _mul(p, x, ProjectionStyle(p.p)) +Base.:*(p::AdjointPlan, x::AbstractArray) = adjoint_mul(p.p, x, AdjointStyle(p.p)) -function _mul(p::AdjointPlan{T}, x::AbstractArray, ::NoProjectionStyle) where {T} - dims = fftdims(p.p) - N = normalization(T, size(p.p), dims) - return (p.p \ x) / N +function adjoint_mul(p::Plan{T}, x::AbstractArray, ::FFTAdjointStyle) where {T} + dims = fftdims(p) + N = normalization(T, size(p), dims) + return (p \ x) / N end -function _mul(p::AdjointPlan{T}, x::AbstractArray, ::RealProjectionStyle) where {T<:Real} - dims = fftdims(p.p) - N = normalization(T, size(p.p), dims) +function adjoint_mul(p::Plan{T}, x::AbstractArray, ::RFFTAdjointStyle) where {T<:Real} + dims = fftdims(p) + N = normalization(T, size(p), dims) halfdim = first(dims) - d = size(p.p, halfdim) - n = output_size(p.p, halfdim) + d = size(p, halfdim) + n = output_size(p, halfdim) scale = reshape( [(i == 1 || (i == n && 2 * (i - 1)) == d) ? N : 2 * N for i in 1:n], ntuple(i -> i == halfdim ? n : 1, Val(ndims(x))) ) - return p.p \ (x ./ convert(typeof(x), scale)) + return p \ (x ./ convert(typeof(x), scale)) end -function _mul(p::AdjointPlan{T}, x::AbstractArray, ::RealInverseProjectionStyle) where {T} - dims = fftdims(p.p) - N = normalization(real(T), output_size(p.p), dims) +function adjoint_mul(p::Plan{T}, x::AbstractArray, ::IRFFTAdjointStyle) where {T} + dims = fftdims(p) + N = normalization(real(T), output_size(p), dims) halfdim = first(dims) - n = size(p.p, halfdim) - d = output_size(p.p, halfdim) + n = size(p, halfdim) + d = output_size(p, halfdim) scale = reshape( [(i == 1 || (i == n && 2 * (i - 1)) == d) ? 1 : 2 for i in 1:n], ntuple(i -> i == halfdim ? n : 1, Val(ndims(x))) ) - return (convert(typeof(x), scale) ./ N) .* (p.p \ x) + return (convert(typeof(x), scale) ./ N) .* (p \ x) end +adjoint_mul(p::Plan, x::AbstractArray, ::UnitaryAdjointStyle) = p \ x + # Analogously to ScaledPlan, define both plan_inv (for no caching) and inv (caches inner plan only). plan_inv(p::AdjointPlan) = adjoint(plan_inv(p.p)) inv(p::AdjointPlan) = adjoint(inv(p.p)) diff --git a/test/testplans.jl b/test/testplans.jl index 09b3f67..c6a76f9 100644 --- a/test/testplans.jl +++ b/test/testplans.jl @@ -21,8 +21,8 @@ Base.ndims(::TestPlan{T,N}) where {T,N} = N Base.size(p::InverseTestPlan) = p.sz Base.ndims(::InverseTestPlan{T,N}) where {T,N} = N -AbstractFFTs.ProjectionStyle(::TestPlan) = AbstractFFTs.NoProjectionStyle() -AbstractFFTs.ProjectionStyle(::InverseTestPlan) = AbstractFFTs.NoProjectionStyle() +AbstractFFTs.AdjointStyle(::TestPlan) = AbstractFFTs.FFTAdjointStyle() +AbstractFFTs.AdjointStyle(::InverseTestPlan) = AbstractFFTs.FFTAdjointStyle() function AbstractFFTs.plan_fft(x::AbstractArray{T}, region; kwargs...) where {T} return TestPlan{T}(region, size(x)) @@ -110,8 +110,8 @@ mutable struct InverseTestRPlan{T,N,G} <: Plan{Complex{T}} end end -AbstractFFTs.ProjectionStyle(::TestRPlan) = AbstractFFTs.RealProjectionStyle() -AbstractFFTs.ProjectionStyle(p::InverseTestRPlan) = AbstractFFTs.RealInverseProjectionStyle(p.d) +AbstractFFTs.AdjointStyle(::TestRPlan) = AbstractFFTs.RFFTAdjointStyle() +AbstractFFTs.AdjointStyle(p::InverseTestRPlan) = AbstractFFTs.IRFFTAdjointStyle(p.d) function AbstractFFTs.plan_rfft(x::AbstractArray{T}, region; kwargs...) where {T<:Real} return TestRPlan{T}(region, size(x)) @@ -241,7 +241,7 @@ end Base.size(p::InplaceTestPlan) = size(p.plan) Base.ndims(p::InplaceTestPlan) = ndims(p.plan) -AbstractFFTs.ProjectionStyle(p::InplaceTestPlan) = AbstractFFTs.ProjectionStyle(p.plan) +AbstractFFTs.AdjointStyle(p::InplaceTestPlan) = AbstractFFTs.AdjointStyle(p.plan) function AbstractFFTs.plan_fft!(x::AbstractArray, region; kwargs...) return InplaceTestPlan(plan_fft(x, region; kwargs...)) From 00eef4f5e54ba3275a5907a6a21fa336e694790d Mon Sep 17 00:00:00 2001 From: Gaurav Arya Date: Wed, 19 Jul 2023 15:05:14 -0400 Subject: [PATCH 3/9] Clarify normalization --- src/definitions.jl | 15 ++++++++------- 1 file changed, 8 insertions(+), 7 deletions(-) diff --git a/src/definitions.jl b/src/definitions.jl index e495104..4c59b00 100644 --- a/src/definitions.jl +++ b/src/definitions.jl @@ -588,8 +588,9 @@ abstract type AdjointStyle end """ FFTAdjointStyle() -Projection style for complex to complex discrete Fourier transforms. - +Projection style for complex to complex discrete Fourier transforms that normalize +the output analogously to [`fft`](@ref). + Since the Fourier transform is unitary up to a scaling, the adjoint simply applies the transform's inverse with an appropriate scaling. """ @@ -598,8 +599,8 @@ struct FFTAdjointStyle <: AdjointStyle end """ RFFTAdjointStyle() -Projection style for real to complex discrete Fourier transforms, for plans that -halve one of the output's dimensions analogously to [`rfft`](@ref). +Projection style for real to complex discrete Fourier transforms that halve +one of the output's dimensions and normalize the output analogously to [`rfft`](@ref). Since the Fourier transform is unitary up to a scaling, the adjoint applies the transform's inverse, but with additional logic to handle the fact that the output is projected @@ -610,9 +611,9 @@ struct RFFTAdjointStyle <: AdjointStyle end """ IRFFTAdjointStyle(d::Dim) -Projection style for complex to real discrete Fourier transforms, for plans that -expect an input with a halved dimension analogously to [`irfft`](@ref), where `d` -is the original length of the dimension. +Projection style for complex to real discrete Fourier transforms that expect +an input with a halved dimension and normalize the output analogously to [`irfft`](@ref), +where `d` is the original length of the dimension. Since the Fourier transform is unitary up to a scaling, the adjoint applies the transform's inverse, but with additional logic to handle the fact that the input is projected From 17adac8b812346040417adf2066224c722d6a89e Mon Sep 17 00:00:00 2001 From: Gaurav Arya Date: Wed, 19 Jul 2023 18:34:06 -0400 Subject: [PATCH 4/9] Clarify documentation, rename _output_size -> output_size --- docs/src/api.md | 23 +++++++++++---- docs/src/implementations.md | 9 +++--- src/definitions.jl | 57 +++++++++++++++++++++++++++---------- 3 files changed, 64 insertions(+), 25 deletions(-) diff --git a/docs/src/api.md b/docs/src/api.md index ef998f8..713e62d 100644 --- a/docs/src/api.md +++ b/docs/src/api.md @@ -1,5 +1,7 @@ # Public Interface +## FFT and FFT planning functions + ```@docs AbstractFFTs.fft AbstractFFTs.fft! @@ -20,15 +22,26 @@ AbstractFFTs.plan_rfft AbstractFFTs.plan_brfft AbstractFFTs.plan_irfft AbstractFFTs.fftdims -Base.adjoint -AbstractFFTs.FFTAdjointStyle -AbstractFFTs.RFFTAdjointStyle -AbstractFFTs.IRFFTAdjointStyle -AbstractFFTs.UnitaryAdjointStyle AbstractFFTs.fftshift AbstractFFTs.fftshift! AbstractFFTs.ifftshift AbstractFFTs.ifftshift! AbstractFFTs.fftfreq AbstractFFTs.rfftfreq +Base.size +``` + +## Adjoint functionality + +The following API is supported by plans that support adjoint functionality. +It is also relevant to implementers of FFT plans that wish to support adjoints. +```@docs +Base.adjoint +AbstractFFTs.AdjointStyle +AbstractFFTs.output_size +AbstractFFTs.adjoint_mul +AbstractFFTs.FFTAdjointStyle +AbstractFFTs.RFFTAdjointStyle +AbstractFFTs.IRFFTAdjointStyle +AbstractFFTs.UnitaryAdjointStyle ``` diff --git a/docs/src/implementations.md b/docs/src/implementations.md index 364d21b..efa3be4 100644 --- a/docs/src/implementations.md +++ b/docs/src/implementations.md @@ -32,11 +32,10 @@ To define a new FFT implementation in your own module, you should * You can also define similar methods of `plan_rfft` and `plan_brfft` for real-input FFTs. -* We offer an experimental `AdjointStyle` trait to enable automatic computation of adjoint plans via [`Base.adjoint`](@ref). - To support adjoints in a new plan, define the trait `AbstractFFTs.AdjointStyle(::MyPlan)`. This should return a subtype of `AS <: AbstractFFTs.AdjointStyle` supporting `AbstractFFTs.adjoint_mul(::Plan, ::AbstractArray, ::AS)` and - `AbstractFFTs._output_size(::Plan, ::AS)`. - - `AbstractFFTs` pre-implements the following adjoint styles: [`AbstractFFTs.FFTAdjointStyle`](@ref), [`AbstractFFTs.RFFTAdjointStyle`](@ref), [`AbstractFFTs.IRFFTAdjointStyle`](@ref), and [`AbstractFFTs.UnitaryAdjointStyle`](@ref). +* To support adjoints in a new plan, define the trait [`AbstractFFTs.AdjointStyle`](@ref). + `AbstractFFTs` implements the following adjoint styles: [`AbstractFFTs.FFTAdjointStyle`](@ref), [`AbstractFFTs.RFFTAdjointStyle`](@ref), [`AbstractFFTs.IRFFTAdjointStyle`](@ref), and [`AbstractFFTs.UnitaryAdjointStyle`](@ref). + To define a new adjoint style of type `AS <: AbstractFFTs.AdjointStyle`, define the methods + [`AbstractFFTs.adjoint_mul`](@ref) and [`AbstractFFTs.output_size`](@ref). The normalization convention for your FFT should be that it computes ``y_k = \sum_j x_j \exp(-2\pi i j k/n)`` for a transform of length ``n``, and the "backwards" (unnormalized inverse) transform computes the same thing but with ``\exp(+2\pi i jk/n)``. diff --git a/src/definitions.jl b/src/definitions.jl index 4c59b00..b642ac5 100644 --- a/src/definitions.jl +++ b/src/definitions.jl @@ -583,12 +583,19 @@ plan_brfft ############################################################################## +""" + AbstractFFTs.AdjointStyle(::Plan) + +Return the adjoint style of a plan, enabling automatic computation of adjoint plans via +[`Base.adjoint`](@ref). Instructions for supporting adjoint styles are provided in the +[implementation instructions](implementations.md#Defining-a-new-implementation). +""" abstract type AdjointStyle end """ FFTAdjointStyle() -Projection style for complex to complex discrete Fourier transforms that normalize +Adjoint style for complex to complex discrete Fourier transforms that normalize the output analogously to [`fft`](@ref). Since the Fourier transform is unitary up to a scaling, the adjoint simply applies @@ -599,8 +606,8 @@ struct FFTAdjointStyle <: AdjointStyle end """ RFFTAdjointStyle() -Projection style for real to complex discrete Fourier transforms that halve -one of the output's dimensions and normalize the output analogously to [`rfft`](@ref). +Adjoint style for real to complex discrete Fourier transforms that halve one of +the output's dimensions and normalize the output, analogously to [`rfft`](@ref). Since the Fourier transform is unitary up to a scaling, the adjoint applies the transform's inverse, but with additional logic to handle the fact that the output is projected @@ -611,8 +618,8 @@ struct RFFTAdjointStyle <: AdjointStyle end """ IRFFTAdjointStyle(d::Dim) -Projection style for complex to real discrete Fourier transforms that expect -an input with a halved dimension and normalize the output analogously to [`irfft`](@ref), +Adjoint style for complex to real discrete Fourier transforms that expect an input +with a halved dimension and normalize the output, analogously to [`irfft`](@ref), where `d` is the original length of the dimension. Since the Fourier transform is unitary up to a scaling, the adjoint applies the transform's @@ -626,15 +633,22 @@ end """ UnitaryAdjointStyle() -Projection style for unitary transforms, whose adjoint equals their inverse. +Adjoint style for unitary transforms, whose adjoint equals their inverse. """ struct UnitaryAdjointStyle <: AdjointStyle end -output_size(p::Plan) = _output_size(p, AdjointStyle(p)) -_output_size(p::Plan, ::FFTAdjointStyle) = size(p) -_output_size(p::Plan, ::RFFTAdjointStyle) = rfft_output_size(size(p), fftdims(p)) -_output_size(p::Plan, s::IRFFTAdjointStyle) = brfft_output_size(size(p), s.dim, fftdims(p)) -_output_size(p::Plan, ::UnitaryAdjointStyle) = size(p) +""" + output_size(p::Plan) + +Return the size of the output of a plan `p`. + +Implementations of a new adjoint style `AS <: AbstractFFTs.AdjointStyle` should define `output_size(::Plan, ::AS)`. +""" +output_size(p::Plan) = output_size(p, AdjointStyle(p)) +output_size(p::Plan, ::FFTAdjointStyle) = size(p) +output_size(p::Plan, ::RFFTAdjointStyle) = rfft_output_size(size(p), fftdims(p)) +output_size(p::Plan, s::IRFFTAdjointStyle) = brfft_output_size(size(p), s.dim, fftdims(p)) +output_size(p::Plan, ::UnitaryAdjointStyle) = size(p) struct AdjointPlan{T,P<:Plan} <: Plan{T} p::P @@ -645,9 +659,7 @@ end (p::Plan)' adjoint(p::Plan) -Form the adjoint operator of an FFT plan. Returns a plan that performs the adjoint operation of -the original plan. Note that this differs from the corresponding backwards plan in the case of real -FFTs due to the halving of one of the dimensions of the FFT output, as described in [`rfft`](@ref). +Return a plan that performs the adjoint operation of the original plan. !!! note Adjoint plans do not currently support `LinearAlgebra.mul!`. Further, as a new addition to `AbstractFFTs`, @@ -658,10 +670,25 @@ Base.adjoint(p::AdjointPlan) = p.p # always have AdjointPlan inside ScaledPlan. Base.adjoint(p::ScaledPlan) = ScaledPlan(p.p', p.scale) +""" + size(p::Plan) + +Return the size of the input of a plan `p`. +""" size(p::AdjointPlan) = output_size(p.p) output_size(p::AdjointPlan) = size(p.p) -Base.:*(p::AdjointPlan, x::AbstractArray) = adjoint_mul(p.p, x, AdjointStyle(p.p)) +Base.:*(p::AdjointPlan, x::AbstractArray) = adjoint_mul(p.p, x) + +""" + adjoint_mul(p::Plan, x::AbstractArray) + +Multiply an array `x` by the adjoint of a plan `p`. This is equivalent to `p' * x`. + +Implementations of a new adjoint style `AS <: AbstractFFTs.AdjointStyle` should define +`adjoint_mul(::Plan, ::AbstractArray, ::AS)`. +""" +adjoint_mul(p::Plan, x::AbstractArray) = adjoint_mul(p, x, AdjointStyle(p)) function adjoint_mul(p::Plan{T}, x::AbstractArray, ::FFTAdjointStyle) where {T} dims = fftdims(p) From bbd9f41b0ce9c04d6a5b0e1b388033169dbf63cb Mon Sep 17 00:00:00 2001 From: Gaurav Arya Date: Wed, 19 Jul 2023 22:31:30 -0400 Subject: [PATCH 5/9] Remove unnecessary def --- docs/src/implementations.md | 3 +-- 1 file changed, 1 insertion(+), 2 deletions(-) diff --git a/docs/src/implementations.md b/docs/src/implementations.md index efa3be4..5d82e00 100644 --- a/docs/src/implementations.md +++ b/docs/src/implementations.md @@ -34,8 +34,7 @@ To define a new FFT implementation in your own module, you should * To support adjoints in a new plan, define the trait [`AbstractFFTs.AdjointStyle`](@ref). `AbstractFFTs` implements the following adjoint styles: [`AbstractFFTs.FFTAdjointStyle`](@ref), [`AbstractFFTs.RFFTAdjointStyle`](@ref), [`AbstractFFTs.IRFFTAdjointStyle`](@ref), and [`AbstractFFTs.UnitaryAdjointStyle`](@ref). - To define a new adjoint style of type `AS <: AbstractFFTs.AdjointStyle`, define the methods - [`AbstractFFTs.adjoint_mul`](@ref) and [`AbstractFFTs.output_size`](@ref). + To define a new adjoint style, define the methods [`AbstractFFTs.adjoint_mul`](@ref) and [`AbstractFFTs.output_size`](@ref). The normalization convention for your FFT should be that it computes ``y_k = \sum_j x_j \exp(-2\pi i j k/n)`` for a transform of length ``n``, and the "backwards" (unnormalized inverse) transform computes the same thing but with ``\exp(+2\pi i jk/n)``. From 9b724ed3050d920554ff3836e304c25cfc821c90 Mon Sep 17 00:00:00 2001 From: Gaurav Arya Date: Thu, 20 Jul 2023 12:57:22 -0400 Subject: [PATCH 6/9] Remove confusing commas --- src/definitions.jl | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/src/definitions.jl b/src/definitions.jl index b642ac5..7dfb184 100644 --- a/src/definitions.jl +++ b/src/definitions.jl @@ -607,7 +607,7 @@ struct FFTAdjointStyle <: AdjointStyle end RFFTAdjointStyle() Adjoint style for real to complex discrete Fourier transforms that halve one of -the output's dimensions and normalize the output, analogously to [`rfft`](@ref). +the output's dimensions and normalize the output analogously to [`rfft`](@ref). Since the Fourier transform is unitary up to a scaling, the adjoint applies the transform's inverse, but with additional logic to handle the fact that the output is projected @@ -619,7 +619,7 @@ struct RFFTAdjointStyle <: AdjointStyle end IRFFTAdjointStyle(d::Dim) Adjoint style for complex to real discrete Fourier transforms that expect an input -with a halved dimension and normalize the output, analogously to [`irfft`](@ref), +with a halved dimension and normalize the output analogously to [`irfft`](@ref), where `d` is the original length of the dimension. Since the Fourier transform is unitary up to a scaling, the adjoint applies the transform's From d5d7ce2a4140448dfc9818b29a14f4f9e9a5e5f7 Mon Sep 17 00:00:00 2001 From: Gaurav Arya Date: Thu, 20 Jul 2023 13:00:01 -0400 Subject: [PATCH 7/9] Tweak docstring wording --- src/definitions.jl | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/src/definitions.jl b/src/definitions.jl index 7dfb184..b90eff0 100644 --- a/src/definitions.jl +++ b/src/definitions.jl @@ -610,8 +610,8 @@ Adjoint style for real to complex discrete Fourier transforms that halve one of the output's dimensions and normalize the output analogously to [`rfft`](@ref). Since the Fourier transform is unitary up to a scaling, the adjoint applies the transform's -inverse, but with additional logic to handle the fact that the output is projected -to exploit its conjugate symmetry (see [`rfft`](@ref)). +inverse, but with appropriate scaling and additional logic to handle the fact that the +output is projected to exploit its conjugate symmetry (see [`rfft`](@ref)). """ struct RFFTAdjointStyle <: AdjointStyle end @@ -623,8 +623,8 @@ with a halved dimension and normalize the output analogously to [`irfft`](@ref), where `d` is the original length of the dimension. Since the Fourier transform is unitary up to a scaling, the adjoint applies the transform's -inverse, but with additional logic to handle the fact that the input is projected -to exploit its conjugate symmetry (see [`irfft`](@ref)). +inverse, but with appropriate scaling and additional logic to handle the fact that the +input is projected to exploit its conjugate symmetry (see [`irfft`](@ref)). """ struct IRFFTAdjointStyle <: AdjointStyle dim::Int From eddf7e3a428ab95efa5cee47b1974481eea7a4e2 Mon Sep 17 00:00:00 2001 From: Gaurav Arya Date: Thu, 20 Jul 2023 22:03:54 -0400 Subject: [PATCH 8/9] Reposition and improve size/output_size docstrings --- src/definitions.jl | 19 +++++++++---------- 1 file changed, 9 insertions(+), 10 deletions(-) diff --git a/src/definitions.jl b/src/definitions.jl index b90eff0..2ac28b7 100644 --- a/src/definitions.jl +++ b/src/definitions.jl @@ -10,9 +10,12 @@ abstract type Plan{T} end eltype(::Type{<:Plan{T}}) where {T} = T -# size(p) should return the size of the input array for p -size(p::Plan, d) = size(p)[d] -output_size(p::Plan, d) = output_size(p)[d] +""" + size(p::Plan, [dim]) + +Return the size of the input of a plan `p`, optionally at a specified dimenion `dim`. +""" +size(p::Plan, dim) = size(p)[dim] ndims(p::Plan) = length(size(p)) length(p::Plan) = prod(size(p))::Int @@ -638,13 +641,14 @@ Adjoint style for unitary transforms, whose adjoint equals their inverse. struct UnitaryAdjointStyle <: AdjointStyle end """ - output_size(p::Plan) + output_size(p::Plan, [dim]) -Return the size of the output of a plan `p`. +Return the size of the output of a plan `p`, optionally at a specified dimension `dim`. Implementations of a new adjoint style `AS <: AbstractFFTs.AdjointStyle` should define `output_size(::Plan, ::AS)`. """ output_size(p::Plan) = output_size(p, AdjointStyle(p)) +output_size(p::Plan, dim) = output_size(p)[dim] output_size(p::Plan, ::FFTAdjointStyle) = size(p) output_size(p::Plan, ::RFFTAdjointStyle) = rfft_output_size(size(p), fftdims(p)) output_size(p::Plan, s::IRFFTAdjointStyle) = brfft_output_size(size(p), s.dim, fftdims(p)) @@ -670,11 +674,6 @@ Base.adjoint(p::AdjointPlan) = p.p # always have AdjointPlan inside ScaledPlan. Base.adjoint(p::ScaledPlan) = ScaledPlan(p.p', p.scale) -""" - size(p::Plan) - -Return the size of the input of a plan `p`. -""" size(p::AdjointPlan) = output_size(p.p) output_size(p::AdjointPlan) = size(p.p) From bc6bee80f1b4c19d65ad0cbaa1b045761a70eb05 Mon Sep 17 00:00:00 2001 From: Gaurav Arya Date: Thu, 20 Jul 2023 22:06:11 -0400 Subject: [PATCH 9/9] Note that size needs to be implemented in docs --- docs/src/implementations.md | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/docs/src/implementations.md b/docs/src/implementations.md index 5d82e00..b7e6751 100644 --- a/docs/src/implementations.md +++ b/docs/src/implementations.md @@ -18,7 +18,8 @@ To define a new FFT implementation in your own module, you should inverse plan. * Define a new method `AbstractFFTs.plan_fft(x, region; kws...)` that returns a `MyPlan` for at least some types of - `x` and some set of dimensions `region`. The `region` (or a copy thereof) should be accessible via `fftdims(p::MyPlan)` (which defaults to `p.region`). + `x` and some set of dimensions `region`. The `region` (or a copy thereof) should be accessible via `fftdims(p::MyPlan)` + (which defaults to `p.region`), and the input size `size(x)` should be accessible via `size(p::MyPlan)`. * Define a method of `LinearAlgebra.mul!(y, p::MyPlan, x)` that computes the transform `p` of `x` and stores the result in `y`.