-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathmodels.py
430 lines (355 loc) · 15.5 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
import torch
import torch.nn as nn
import torch.utils.data as utils
from torch.utils.tensorboard import SummaryWriter
import os
from sklearn.model_selection import StratifiedShuffleSplit
from sklearn import metrics
from enum import Enum
import logging
from os.path import join
class Softmax(nn.Module):
"""
Softmax Regression Model
"""
def __init__(self,input_dim,num_classes,device):
super(Softmax,self).__init__()
self.classifier = nn.Linear(input_dim, num_classes).to(device)
#self.classifier = self.classifier'
def forward(self,x):
output= self.classifier(x)
return output
class CNN2(nn.Module):
"""
2-layer Convolutional Neural Network Model
"""
def __init__(self,input_dim,num_classes,device):
super(CNN2, self).__init__()
# kernel
self.input_dim = input_dim
self.num_classes = num_classes
conv_layers = []
conv_layers.append(nn.Conv1d(in_channels=1,out_channels=64,kernel_size=3,padding=1)) # ;input_dim,64
conv_layers.append(nn.BatchNorm1d(64))
conv_layers.append(nn.ReLU(True))
conv_layers.append(nn.Conv1d(in_channels=64,out_channels=128,kernel_size=3,padding=1)) #(input_dim,128)
conv_layers.append(nn.BatchNorm1d(128))
conv_layers.append(nn.ReLU(True))
self.conv = nn.Sequential(*conv_layers).to(device)
fc_layers = []
fc_layers.append(nn.Linear(input_dim*128,num_classes))
self.classifier = nn.Sequential(*fc_layers).to(device)
def forward(self, x):
batch_size, D = x.shape
x = x.view(batch_size,1,D)
x = self.conv(x)
x = torch.flatten(x,1)
x = self.classifier(x)
return x
class CNN5(nn.Module):
"""
5-layer Convolutional Neural Network Model
"""
def __init__(self,input_dim,num_classes,device):
super(CNN5, self).__init__()
# kernel
self.input_dim = input_dim
self.num_classes = num_classes
conv_layers = []
conv_layers.append(nn.Conv1d(in_channels=1,out_channels=64,kernel_size=3,padding=1)) # ;input_dim,64
conv_layers.append(nn.BatchNorm1d(64))
conv_layers.append(nn.ReLU(True))
conv_layers.append(nn.Conv1d(in_channels=64,out_channels=128,kernel_size=3,padding=1)) #(input_dim,128)
conv_layers.append(nn.BatchNorm1d(128))
conv_layers.append(nn.ReLU(True))
conv_layers.append(nn.Conv1d(in_channels=128,out_channels=256,kernel_size=3,padding=1)) #(input_dim,128)
conv_layers.append(nn.BatchNorm1d(256))
conv_layers.append(nn.ReLU(True))
conv_layers.append(nn.Conv1d(in_channels=256,out_channels=256,kernel_size=3,padding=1)) #(input_dim,128)
conv_layers.append(nn.BatchNorm1d(256))
conv_layers.append(nn.ReLU(True))
conv_layers.append(nn.Conv1d(in_channels=256,out_channels=128,kernel_size=3,padding=1)) #(input_dim,128)
conv_layers.append(nn.BatchNorm1d(128))
conv_layers.append(nn.ReLU(True))
self.conv = nn.Sequential(*conv_layers).to(device)
fc_layers = []
fc_layers.append(nn.Linear(input_dim*128,num_classes))
self.classifier = nn.Sequential(*fc_layers).to(device)
def forward(self, x):
batch_size, D = x.shape
x = x.view(batch_size,1,D)
x = self.conv(x)
x = torch.flatten(x,1)
x = self.classifier(x)
return x
class Net3(nn.Module):
"""
A neural network model consisting of multiple layers, used for classification tasks.
Args:
- input_dim (int): The dimensionality of the input data.
- num_classes (int): The number of classes in the classification problem.
- device (str): The device to be used for running the computations.
Attributes:
- input_dim (int): The dimensionality of the input data.
- num_classes (int): The number of classes in the classification problem.
- device (str): The device to be used for running the computations.
Methods:
- forward(x): Defines the forward pass of the model, taking in an input tensor x and returning the output tensor.
"""
def __init__(self,input_dim,num_classes,device):
super(Net3, self).__init__()
# kernel
print('building NN3')
self.input_dim = input_dim
self.num_classes = num_classes
layers = []
layers.append(nn.Dropout(p=0.1))
layers.append(nn.Linear(self.input_dim, 128))
layers.append(nn.BatchNorm1d(num_features=128))
layers.append(nn.Dropout(p=0.3))
layers.append(nn.Linear(128, 128))
layers.append(nn.BatchNorm1d(num_features=128))
layers.append(nn.Linear(128, self.num_classes))
self.classifier = nn.Sequential(*layers).to(device)
def forward(self, x):
x = self.classifier(x)
return x
class Net5(nn.Module):
"""
A neural network model with 4 fully connected layers, using batch normalization and dropout for regularization.
Args:
- input_dim (int): the number of input features
- num_classes (int): the number of output classes
- device (torch.device): the device on which to run the model
Attributes:
- input_dim (int): the number of input features
- num_classes (int): the number of output classes
- model (nn.Sequential): the neural network architecture consisting of 4 fully connected layers
"""
def __init__(self,input_dim,num_classes,device):
super(Net5, self).__init__()
# kernel
self.input_dim = input_dim
self.num_classes = num_classes
layers = []
layers.append(nn.Linear(input_dim,128))
layers.append(nn.BatchNorm1d(128))
layers.append(nn.ReLU(True))
layers.append(nn.Linear(128,256))
layers.append(nn.BatchNorm1d(256))
layers.append(nn.Dropout(p=0.3))
layers.append(nn.ReLU(True))
layers.append(nn.Linear(256,256))
layers.append(nn.BatchNorm1d(256))
layers.append(nn.Dropout(p=0.4))
layers.append(nn.ReLU(True))
layers.append(nn.Linear(256,128))
layers.append(nn.BatchNorm1d(128))
layers.append(nn.Dropout(p=0.5))
layers.append(nn.ReLU(True))
layers.append(nn.Linear(128,num_classes))
self.model = nn.Sequential(*layers).to(device)
def forward(self, x):
return self.model(x)
class Method(Enum):
SOFTMAX = "softmax"
CNN2 = "cnn2"
CNN5 = "cnn5"
NN3 = "nn3"
NN5 = "nn5"
class Classifier:
"""
A classifier for machine learning models using PyTorch.
Parameters
----------
method : str
The method used for classification. Currently supported options are
'softmax', 'cnn2', 'cnn5', 'nn3', and 'nn5'.
input_dim : int
The number of input features.
num_classes : int
The number of classes.
num_epochs : int
The number of training epochs.
batch_size : int, optional
The batch size. Default is 100.
lr : float, optional
The learning rate. Default is 1e-3.
reg : float, optional
The regularization strength. Default is 1e-5.
runs_dir : str, optional
The directory for saving training runs. Default is None.
Attributes
----------
batch_size : int
The batch size.
num_epochs : int
The number of training epochs.
learning_rate : float
The learning rate.
reg : float
The regularization strength.
runs_dir : str
The directory for saving training runs.
device : torch.device
The device used for training.
model : torch.nn.Module
The PyTorch model used for classification.
criterion : torch.nn.Module
The PyTorch criterion used for optimization.
optimizer : torch.optim.Optimizer
The PyTorch optimizer used for training.
Methods
-------
fit(X, Y)
Trains the classifier on the input data X and labels Y.
predict(x, eval_mode=False)
Predicts the labels for the input data x.
"""
def __init__(self,method,input_dim,num_classes,num_epochs,batch_size=100,lr=1e-3,reg=1e-5,runs_dir=None,seed=10):
self.batch_size = batch_size
self.num_epochs = num_epochs
self.learning_rate = lr
self.reg= reg
self.runs_dir = runs_dir
self.seed = seed
#self.device = 'cuda'
self.logger = logging.getLogger(__name__)
self.logger.setLevel(logging.DEBUG)
file_handler = logging.FileHandler('training.log')
file_handler.setLevel(logging.DEBUG)
file_formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
file_handler.setFormatter(file_formatter)
self.logger.addHandler(file_handler)
self.logger.info("Classifier initialized with method %s, input_dim %d, num_classes %d, num_epochs %d, batch_size %d, lr %f, reg %f, runs_dir %s" % (method,input_dim,num_classes,num_epochs,batch_size,lr,reg,runs_dir))
#self.model = nn.Linear(self.input_size, self.num_classes).to(self.device)
if method==Method.SOFTMAX.value:
self.device = torch.device('cuda:0')
self.model = Softmax(input_dim,num_classes=num_classes, device=self.device)
elif method==Method.CNN2.value:
self.device = torch.device('cuda:0')
self.model = CNN2(input_dim,num_classes=num_classes,device=self.device)
elif method==Method.CNN5.value:
self.device = torch.device('cuda:0')
self.model = CNN5(input_dim,num_classes=num_classes,device=self.device)
elif method==Method.NN3.value:
self.device = torch.device('cuda:0')
self.model = Net3(input_dim,num_classes=num_classes,device=self.device)
elif method==Method.NN5.value:
self.device = torch.device('cuda:0')
self.model = Net5(input_dim,num_classes=num_classes,device=self.device)
else:
raise ValueError("Method must be one of 'softmax', 'cnn2', 'cnn5', 'nn3', or 'nn5'.")
self.criterion = nn.CrossEntropyLoss()
self.optimizer = torch.optim.Adam(self.model.parameters(),lr=self.learning_rate,betas=(0.9,0.99),eps=1e-08, weight_decay=self.reg, amsgrad=False)
def fit(self,X,Y):
self.logger.info('Starting training process...')
sss = StratifiedShuffleSplit(n_splits=1, test_size=0.1, random_state=self.seed)
for dev_index, val_index in sss.split(X, Y): # runs only once
X_dev = X[dev_index]
Y_dev = Y[dev_index]
X_val = X[val_index]
Y_val = Y[val_index]
writer = SummaryWriter(self.runs_dir)
tensor_x = torch.stack([torch.Tensor(i) for i in X_dev]).to(self.device)
tensor_y = torch.LongTensor(Y_dev).to(self.device) # checked working correctly
dataset = utils.TensorDataset(tensor_x,tensor_y)
train_loader = utils.DataLoader(dataset,batch_size=self.batch_size)
N = tensor_x.shape[0]
num_epochs = self.num_epochs
model = self.model
best_acc = None
best_epoch = None
filepath = join(self.runs_dir,'checkpoint.pth')
if os.path.isfile(filepath):
checkpoint = self.load_checkpoint(filepath)
best_epoch = checkpoint['epoch']
best_batch = checkpoint['batch']
self.model.load_state_dict(checkpoint['state_dict'])
self.optimizer.load_state_dict(checkpoint['optimizer'])
pred = self.predict(X_val)
best_acc = metrics.balanced_accuracy_score(Y_val,pred)*100
resume_epoch = best_epoch+1
resume_batch = best_batch+1
else:
resume_epoch = 0
resume_batch = 0
best_acc = -1
best_epoch = 0
no_improvement = 0
for epoch in range(resume_epoch,num_epochs):
for i,(xi,yi) in enumerate(train_loader):
if epoch==resume_epoch and i<resume_batch:
continue
outputs = model(xi)
loss = self.criterion(outputs,yi)
loss.requires_grad
seen_so_far = self.batch_size*(epoch*len(train_loader)+i+1) # fixes issues with different batch size
writer.add_scalar('Loss/train',loss.item(),seen_so_far)
#batckward, optimize
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
if (seen_so_far/self.batch_size)%50==0:
pred = self.predict(X_val)
balanced_acc = metrics.balanced_accuracy_score(Y_val,pred)*100
if balanced_acc > best_acc:
best_acc = balanced_acc
best_epoch = epoch
checkpoint = {
'state_dict': model.state_dict(),
'optimizer' : self.optimizer.state_dict(),
'epoch':epoch,
'batch': i,
'batch_size': self.batch_size
}
self.save(checkpoint)
no_improvement =0
else:
no_improvement+=1
if no_improvement>=10:
self.logger.warning("No improvement in accuracy for 10 iterations.")
return
self.logger.debug('Epoch [%d/%d], Step [%d/%d], Loss: %.4f', epoch+1, num_epochs, i+1, len(Y_dev)//self.batch_size, loss.item())
writer.add_scalar('Accuracy/Balanced Val',balanced_acc,seen_so_far)
acc = metrics.accuracy_score(Y_val,pred)*100
writer.add_scalar('Accuracy/Val',acc,seen_so_far)
writer.close()
def predict(self,x,eval_mode=False):
tensor_x = torch.stack([torch.Tensor(i) for i in x]).to(self.device)
bs = self.batch_size
num_batch = x.shape[0]//bs +1*(x.shape[0]%bs!=0)
pred = torch.zeros(0,dtype=torch.int64).to(self.device)
if eval_mode:
model = self.load_model()
else:
model = self.model
model.eval()
with torch.no_grad():
for i in range(num_batch):
xi = tensor_x[i*bs:(i+1)*bs]
outputs = model(xi)
_, predicted_labels = torch.max(outputs.data,1)
pred = torch.cat((pred,predicted_labels))
return pred.cpu().numpy()
def save(self,checkpoint):
path = join(self.runs_dir,'checkpoint.pth')
torch.save(checkpoint,path)
def load_checkpoint(self,filepath):
if os.path.isfile(filepath):
checkpoint = torch.load(filepath)
print("Loaded {} model trained with batch_size = {}, seen {} epochs and {} mini batches".
format(self.runs_dir,checkpoint['batch_size'],checkpoint['epoch'],checkpoint['batch']))
return checkpoint
else:
return None
def load_model(self,inference_mode=True):
filepath = join(self.runs_dir,'checkpoint.pth')
checkpoint = self.load_checkpoint(filepath)
model = self.model
model.load_state_dict(checkpoint['state_dict'])
if inference_mode:
for parameter in model.parameters():
parameter.requires_grad = False
model.eval()
return model