forked from envoyproxy/nighthawk
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrate_limiter_test.cc
546 lines (487 loc) · 23.6 KB
/
rate_limiter_test.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
#include <chrono>
#include <vector>
#include "nighthawk/common/exception.h"
#include "external/envoy/test/test_common/simulated_time_system.h"
#include "source/common/frequency.h"
#include "source/common/rate_limiter_impl.h"
#include "test/mocks/common/mock_rate_limiter.h"
#include "gtest/gtest.h"
using namespace std::chrono_literals;
using namespace testing;
namespace Nighthawk {
class RateLimiterTest : public Test {};
TEST_F(RateLimiterTest, LinearRateLimiterTest) {
Envoy::Event::SimulatedTimeSystem time_system;
// Construct a 10/second paced rate limiter.
LinearRateLimiter rate_limiter(time_system, 10_Hz);
EXPECT_FALSE(rate_limiter.tryAcquireOne());
time_system.advanceTimeWait(100ms);
EXPECT_TRUE(rate_limiter.tryAcquireOne());
EXPECT_FALSE(rate_limiter.tryAcquireOne());
time_system.advanceTimeWait(1s);
for (int i = 0; i < 10; i++) {
EXPECT_TRUE(rate_limiter.tryAcquireOne());
}
EXPECT_FALSE(rate_limiter.tryAcquireOne());
}
TEST_F(RateLimiterTest, LinearRateLimiterInvalidArgumentTest) {
Envoy::Event::SimulatedTimeSystem time_system;
EXPECT_THROW(LinearRateLimiter rate_limiter(time_system, 0_Hz), NighthawkException);
}
TEST_F(RateLimiterTest, BurstingRateLimiterTest) {
const uint64_t burst_size = 3;
std::unique_ptr<MockRateLimiter> mock_rate_limiter = std::make_unique<MockRateLimiter>();
MockRateLimiter& unsafe_mock_rate_limiter = *mock_rate_limiter;
InSequence s;
EXPECT_CALL(unsafe_mock_rate_limiter, tryAcquireOne)
.Times(burst_size)
.WillRepeatedly(Return(true));
RateLimiterPtr rate_limiter =
std::make_unique<BurstingRateLimiter>(std::move(mock_rate_limiter), burst_size);
// On the first acquisition the bursting rate limiter will have accumulated three.
EXPECT_TRUE(rate_limiter->tryAcquireOne());
rate_limiter->releaseOne();
EXPECT_TRUE(rate_limiter->tryAcquireOne());
EXPECT_TRUE(rate_limiter->tryAcquireOne());
// Releasing one here should result in one more successfull acquisition, as the
// BurstingRateLimiter is still releasing and not working to accumulate a new burst.
rate_limiter->releaseOne();
EXPECT_TRUE(rate_limiter->tryAcquireOne());
EXPECT_TRUE(rate_limiter->tryAcquireOne());
EXPECT_CALL(unsafe_mock_rate_limiter, tryAcquireOne).WillOnce(Return(false));
EXPECT_FALSE(rate_limiter->tryAcquireOne());
}
TEST_F(RateLimiterTest, ScheduledStartingRateLimiterTest) {
Envoy::Event::SimulatedTimeSystem time_system;
const auto schedule_delay = 10ms;
// We test regular flow, but also the flow where the first acquisition attempt comes after the
// scheduled delay. This should be business as usual from a functional perspective, but internally
// this rate limiter specializes on this case to log a warning message, and we want to cover that.
for (const bool starting_late : std::vector<bool>{false, true}) {
const Envoy::MonotonicTime scheduled_starting_time =
time_system.monotonicTime() + schedule_delay;
std::unique_ptr<MockRateLimiter> mock_rate_limiter = std::make_unique<MockRateLimiter>();
MockRateLimiter& unsafe_mock_rate_limiter = *mock_rate_limiter;
InSequence s;
EXPECT_CALL(unsafe_mock_rate_limiter, timeSource)
.Times(AtLeast(1))
.WillRepeatedly(ReturnRef(time_system));
RateLimiterPtr rate_limiter = std::make_unique<ScheduledStartingRateLimiter>(
std::move(mock_rate_limiter), scheduled_starting_time);
EXPECT_CALL(unsafe_mock_rate_limiter, tryAcquireOne)
.Times(AtLeast(1))
.WillRepeatedly(Return(true));
if (starting_late) {
time_system.advanceTimeWait(schedule_delay);
}
// We should expect zero releases until it is time to start.
while (time_system.monotonicTime() < scheduled_starting_time) {
EXPECT_FALSE(rate_limiter->tryAcquireOne());
time_system.advanceTimeWait(1ms);
}
// Now that is time to start, the rate limiter should propagate to the mock rate limiter.
EXPECT_TRUE(rate_limiter->tryAcquireOne());
}
}
TEST_F(RateLimiterTest, ScheduledStartingRateLimiterTestBadArgs) {
Envoy::Event::SimulatedTimeSystem time_system;
// Verify we enforce future-only scheduling.
for (const auto& timing : std::vector<Envoy::MonotonicTime>{time_system.monotonicTime(),
time_system.monotonicTime() - 10ms}) {
std::unique_ptr<MockRateLimiter> mock_rate_limiter = std::make_unique<MockRateLimiter>();
MockRateLimiter& unsafe_mock_rate_limiter = *mock_rate_limiter;
EXPECT_CALL(unsafe_mock_rate_limiter, timeSource)
.Times(AtLeast(1))
.WillRepeatedly(ReturnRef(time_system));
EXPECT_NO_THROW(ScheduledStartingRateLimiter(std::move(mock_rate_limiter), timing));
// TODO(XXX): once we can, verify a warning gets logged while running the line
// above.
}
}
class BurstingRateLimiterIntegrationTest : public Test {
public:
void testBurstSize(const uint64_t burst_size, const Frequency frequency) {
Envoy::Event::SimulatedTimeSystem time_system;
RateLimiterPtr rate_limiter = std::make_unique<BurstingRateLimiter>(
std::make_unique<LinearRateLimiter>(time_system, frequency), burst_size);
const auto burst_interval_ms =
std::chrono::duration_cast<std::chrono::milliseconds>(frequency.interval() * burst_size);
int first_burst = -1;
for (int i = 0; i < 10000; i++) {
uint64_t burst_acquired = 0;
while (rate_limiter->tryAcquireOne()) {
burst_acquired++;
}
if (burst_acquired) {
first_burst = first_burst == -1 ? i : first_burst;
EXPECT_EQ(burst_acquired, burst_size);
EXPECT_EQ(i % (burst_interval_ms.count() - first_burst), 0);
}
time_system.advanceTimeWait(1ms);
}
}
};
TEST_F(BurstingRateLimiterIntegrationTest, BurstingLinearRateLimiterTest) {
testBurstSize(1, 100_Hz);
testBurstSize(2, 100_Hz);
testBurstSize(13, 100_Hz);
testBurstSize(100, 100_Hz);
testBurstSize(1, 50_Hz);
testBurstSize(2, 50_Hz);
testBurstSize(13, 50_Hz);
testBurstSize(100, 50_Hz);
}
TEST_F(RateLimiterTest, DistributionSamplingRateLimiterImplTest) {
const uint64_t tries = 1000;
auto mock_rate_limiter = std::make_unique<MockRateLimiter>();
MockRateLimiter& unsafe_mock_rate_limiter = *mock_rate_limiter;
Envoy::Event::SimulatedTimeSystem time_system;
EXPECT_CALL(unsafe_mock_rate_limiter, timeSource)
.Times(AtLeast(1))
.WillRepeatedly(ReturnRef(time_system));
auto sampler = std::make_unique<UniformRandomDistributionSamplerImpl>(1);
EXPECT_EQ(sampler->min(), 0);
EXPECT_EQ(sampler->max(), 1);
RateLimiterPtr rate_limiter = std::make_unique<DistributionSamplingRateLimiterImpl>(
std::move(sampler), std::move(mock_rate_limiter));
EXPECT_CALL(unsafe_mock_rate_limiter, tryAcquireOne).Times(tries).WillRepeatedly(Return(true));
// 1 in a billion chance of failure to exceed max_expected_acquisitions.
const int max_expected_acquisitions = (tries / 2) + 30;
EXPECT_CALL(unsafe_mock_rate_limiter, releaseOne).Times(AtMost(max_expected_acquisitions));
int acquisitions = 0;
// We used a 1ns upper bound. That means we can expect around 50% of acquisitions to succeed as
// there are only two possibilities: now, or 1ns later in the future.
for (uint64_t i = 0; i < tries; i++) {
if (rate_limiter->tryAcquireOne()) {
acquisitions++;
// We test the release gets propagated to the mock rate limiter.
// also, the release will force DelegatingRateLimiterImpl to propagate tryAcquireOne.
rate_limiter->releaseOne();
}
}
EXPECT_LT(acquisitions, max_expected_acquisitions);
}
// A rate limiter determines when acquisition is allowed, but DistributionSamplingRateLimiterImpl
// may arbitrarily delay that. We test that principle with tests that use this fixture, which
// sets up a distribution sampling rate limiter instance to encapsulate a mock rate limiter,
// relying on simulated time and a mock discrete numberic distribution sampler.
class DistributionSamplingRateLimiterTest : public RateLimiterTest {
public:
DistributionSamplingRateLimiterTest()
: tmp_mock_inner_rate_limiter_(std::make_unique<NiceMock<MockRateLimiter>>()),
mock_inner_rate_limiter_(*tmp_mock_inner_rate_limiter_),
tmp_mock_discrete_numeric_distribution_sampler_(
std::make_unique<MockDiscreteNumericDistributionSampler>()),
mock_discrete_numeric_distribution_sampler_(
*tmp_mock_discrete_numeric_distribution_sampler_),
rate_limiter_(std::make_unique<DistributionSamplingRateLimiterImpl>(
std::move(tmp_mock_discrete_numeric_distribution_sampler_),
std::move(tmp_mock_inner_rate_limiter_))) {
EXPECT_CALL(mock_inner_rate_limiter_, timeSource).WillRepeatedly(ReturnRef(time_system_));
}
Envoy::Event::SimulatedTimeSystem time_system_;
std::unique_ptr<NiceMock<MockRateLimiter>> tmp_mock_inner_rate_limiter_;
MockRateLimiter& mock_inner_rate_limiter_;
std::unique_ptr<MockDiscreteNumericDistributionSampler>
tmp_mock_discrete_numeric_distribution_sampler_;
MockDiscreteNumericDistributionSampler& mock_discrete_numeric_distribution_sampler_;
RateLimiterPtr rate_limiter_;
};
TEST_F(DistributionSamplingRateLimiterTest, SingleAcquisition) {
EXPECT_CALL(mock_inner_rate_limiter_, tryAcquireOne)
.WillOnce(Return(true))
.WillOnce(Return(false))
.WillOnce(Return(false));
// The distribution first yields a 1 ns offset.
EXPECT_CALL(mock_discrete_numeric_distribution_sampler_, getValue).WillOnce(Return(1));
// We don't expect to be green lighted without moving time forward.
EXPECT_FALSE(rate_limiter_->tryAcquireOne());
time_system_.advanceTimeWait(1ns);
EXPECT_TRUE(rate_limiter_->tryAcquireOne());
EXPECT_FALSE(rate_limiter_->tryAcquireOne());
}
TEST_F(DistributionSamplingRateLimiterTest, QueuedAcquisition) {
EXPECT_CALL(mock_inner_rate_limiter_, tryAcquireOne)
.WillOnce(Return(true))
.WillOnce(Return(true))
.WillOnce(Return(false))
.WillOnce(Return(false))
.WillOnce(Return(false));
// The distribution yields a 1 ns offset two times.
EXPECT_CALL(mock_discrete_numeric_distribution_sampler_, getValue)
.WillOnce(Return(1))
.WillOnce(Return(1));
// We do not expect to observe releases because we did not move time forward.
EXPECT_FALSE(rate_limiter_->tryAcquireOne());
EXPECT_FALSE(rate_limiter_->tryAcquireOne());
time_system_.advanceTimeWait(1ns);
// We moved time forward, release timings that have been queued up earlier should now be observed.
EXPECT_TRUE(rate_limiter_->tryAcquireOne());
EXPECT_TRUE(rate_limiter_->tryAcquireOne());
// This should be all of it, so no further acquisitions are to be expected.
EXPECT_FALSE(rate_limiter_->tryAcquireOne());
}
TEST_F(DistributionSamplingRateLimiterTest, ReleaseOneFunctionsWhenAcquired) {
EXPECT_CALL(mock_inner_rate_limiter_, tryAcquireOne).WillOnce(Return(true));
EXPECT_CALL(mock_discrete_numeric_distribution_sampler_, getValue).WillOnce(Return(0));
EXPECT_TRUE(rate_limiter_->tryAcquireOne());
EXPECT_CALL(mock_inner_rate_limiter_, releaseOne);
rate_limiter_->releaseOne();
}
// Calling releaseOne() without a prior acquisition is invavlid
TEST_F(DistributionSamplingRateLimiterTest, ReleaseOneDiesWhenNotAcquired) {
EXPECT_DEATH(rate_limiter_->releaseOne(),
"unexpected call to DelegatingRateLimiterImpl::releaseOne");
EXPECT_CALL(mock_inner_rate_limiter_, tryAcquireOne).WillOnce(Return(true));
EXPECT_CALL(mock_discrete_numeric_distribution_sampler_, getValue).WillOnce(Return(0));
EXPECT_TRUE(rate_limiter_->tryAcquireOne());
rate_limiter_->releaseOne();
EXPECT_DEATH(rate_limiter_->releaseOne(),
"unexpected call to DelegatingRateLimiterImpl::releaseOne");
}
// The DistributionSamplingRateLimiter may queues up timings for deferred release later on. Here we
// verify those are deferred release timings happen at the expected points in time. This is
// important, because the associated distribution sampler may give the
// DistributionSamplingRateLimiter random time offsets as inputs.
TEST_F(DistributionSamplingRateLimiterTest, QueuedAcquisitionCorrectReleaseOrdering) {
// The vector below defines the sequence of timing offsets that the mock distribution sampler will
// yield.
std::vector<uint64_t> input_acquisition_timings_ms = {0, 0, 15000, 7, 3, 700, 2,
2, 1, 800, 4, 7, 9};
uint64_t i = 0;
uint64_t j = 0;
EXPECT_CALL(mock_inner_rate_limiter_, tryAcquireOne)
.WillRepeatedly([&i, input_acquisition_timings_ms]() {
return ++i <= input_acquisition_timings_ms.size() ? true : false;
});
EXPECT_CALL(mock_discrete_numeric_distribution_sampler_, getValue)
.Times(input_acquisition_timings_ms.size())
.WillRepeatedly(
[&j, input_acquisition_timings_ms]() { return input_acquisition_timings_ms[j++] * 1e6; });
// Here we are at T0. The mock rate limiter isn't time dependent when it comes to releasing.
// So here we iterate over the expected input acquisition timings, and the outer rate limiter
// will buffer those that indicate an offset > 0. Zero-valued offsets ought to be released
// immediately.
std::vector<uint64_t> acquisition_timings;
for (uint64_t k : input_acquisition_timings_ms) {
if (k == 0) {
EXPECT_TRUE(rate_limiter_->tryAcquireOne());
acquisition_timings.push_back(0);
} else {
EXPECT_FALSE(rate_limiter_->tryAcquireOne());
}
}
// Now we will start moving the clock, and see if the accrued deferred releases result in the
// correct timings.
const std::chrono::seconds duration = 15s;
auto total_ms_elapsed = 0ms;
const auto kClockTick = 1ms;
do {
while (rate_limiter_->tryAcquireOne()) {
acquisition_timings.push_back(total_ms_elapsed.count());
}
time_system_.advanceTimeWait(kClockTick);
total_ms_elapsed += kClockTick;
} while (total_ms_elapsed <= duration);
// The observed timings should equal the sorted offsets we had at the input.
std::sort(input_acquisition_timings_ms.begin(), input_acquisition_timings_ms.end());
EXPECT_EQ(acquisition_timings, input_acquisition_timings_ms);
}
class LinearRampingRateLimiterImplTest : public Test {
public:
/**
* @param frequency The final frequency of the ramp.
* @param duration The test (and ramp) duration. Frequency will be 0 Hz at the start and
* linearly increase as time moves forward, up to the specified frequency.
* @return std::vector<uint64_t> an array containing the acquisition timings
* in microseconds.
*/
std::vector<int64_t> checkAcquisitionTimings(const Frequency frequency,
const std::chrono::seconds duration) {
Envoy::Event::SimulatedTimeSystem time_system;
std::vector<int64_t> acquisition_timings;
std::vector<int64_t> control_timings;
LinearRampingRateLimiterImpl rate_limiter(time_system, duration, frequency);
auto total_us_elapsed = 0us;
const auto clock_tick = 10us;
EXPECT_FALSE(rate_limiter.tryAcquireOne());
do {
if (rate_limiter.tryAcquireOne()) {
EXPECT_FALSE(rate_limiter.tryAcquireOne());
acquisition_timings.push_back(total_us_elapsed.count());
}
// We use the second law of motion to verify results: ½ * a * t²
// In this formula, 'a' equates to our ramp speed, and t to elapsed time.
double t = total_us_elapsed.count() / 1e6;
double a = (frequency.value() / (duration.count() * 1.0));
// Finally, figure out the ground that we can expect to be covered.
uint64_t expected_count = std::round(0.5 * a * t * t);
if (expected_count > control_timings.size()) {
control_timings.push_back(total_us_elapsed.count());
}
time_system.advanceTimeWait(clock_tick);
total_us_elapsed += clock_tick;
} while (total_us_elapsed <= duration);
// For good measure, verify we saw the expected amount of acquisitions: half
// of "frequency times duration".
EXPECT_EQ(std::round(duration.count() * frequency.value() / 2.0), acquisition_timings.size());
// Sanity check that we have the right number of control timings.
EXPECT_EQ(control_timings.size(), acquisition_timings.size());
// Verify that all timings are correct.
for (uint64_t i = 0; i < acquisition_timings.size(); i++) {
// We allow one clock tick of slack in timing expectations, as floating
// point math may introduce small errors in some cases.
// This is a test only issue: in practice we don't have a fixed microsecond-level step sizes,
// and the rate limiter computes at nanosecond precision internally. As we want to have
// microsecond level precision, this should be more then sufficient.
EXPECT_NEAR(acquisition_timings[i], control_timings[i], clock_tick.count());
}
return acquisition_timings;
}
};
TEST_F(RateLimiterTest, LinearRampingRateLimiterImplInvalidArgumentTest) {
Envoy::Event::SimulatedTimeSystem time_system;
// bad frequency
EXPECT_THROW(LinearRampingRateLimiterImpl rate_limiter(time_system, 1s, 0_Hz);
, NighthawkException);
// bad ramp duration
EXPECT_THROW(LinearRampingRateLimiterImpl rate_limiter(time_system, 0s, 1_Hz);
, NighthawkException);
EXPECT_THROW(LinearRampingRateLimiterImpl rate_limiter(time_system, -1s, 1_Hz);
, NighthawkException);
}
TEST_F(LinearRampingRateLimiterImplTest, TimingVerificationTest) {
EXPECT_EQ(checkAcquisitionTimings(5_Hz, 5s),
std::vector<int64_t>({1000010, 1732060, 2236070, 2645760, 3000000, 3316630, 3605560,
3872990, 4123110, 4358900, 4582580, 4795840, 5000000}));
checkAcquisitionTimings(1_Hz, 3s);
checkAcquisitionTimings(5_Hz, 3s);
checkAcquisitionTimings(4_Hz, 2s);
checkAcquisitionTimings(1000_Hz, 12s);
checkAcquisitionTimings(40000_Hz, 7s);
}
TEST_F(RateLimiterTest, GraduallyOpeningRateLimiterFilterInvalidArgumentTest) {
// Negative ramp throws.
EXPECT_THROW(GraduallyOpeningRateLimiterFilter gorl(
-1s, std::make_unique<NiceMock<MockDiscreteNumericDistributionSampler>>(),
std::make_unique<NiceMock<MockRateLimiter>>());
, NighthawkException);
// zero ramp throws.
EXPECT_THROW(GraduallyOpeningRateLimiterFilter gorl(
0s, std::make_unique<NiceMock<MockDiscreteNumericDistributionSampler>>(),
std::make_unique<NiceMock<MockRateLimiter>>());
, NighthawkException);
// Pass in a badly configured distribution sampler.
auto bad_distribution_sampler = std::make_unique<MockDiscreteNumericDistributionSampler>();
EXPECT_CALL(*bad_distribution_sampler, min).WillOnce(Return(0));
EXPECT_THROW(
GraduallyOpeningRateLimiterFilter gorl(1s, std::move(bad_distribution_sampler),
std::make_unique<NiceMock<MockRateLimiter>>());
, NighthawkException);
bad_distribution_sampler = std::make_unique<MockDiscreteNumericDistributionSampler>();
// Correct min, but now introduce a bad max.
EXPECT_CALL(*bad_distribution_sampler, min).WillOnce(Return(1));
EXPECT_CALL(*bad_distribution_sampler, max).WillOnce(Return(99));
EXPECT_THROW(
GraduallyOpeningRateLimiterFilter gorl(1s, std::move(bad_distribution_sampler),
std::make_unique<NiceMock<MockRateLimiter>>());
, NighthawkException);
}
class GraduallyOpeningRateLimiterFilterTest : public Test {
public:
std::vector<int64_t> getAcquisitionTimings(const Frequency frequency,
const std::chrono::seconds duration) {
Envoy::Event::SimulatedTimeSystem time_system;
std::vector<int64_t> acquisition_timings;
auto* unsafe_discrete_numeric_distribution_sampler =
new MockDiscreteNumericDistributionSampler();
const uint64_t dist_min = 1;
const uint64_t dist_max = 1000000;
EXPECT_CALL(*unsafe_discrete_numeric_distribution_sampler, getValue)
.Times(AtLeast(1))
.WillRepeatedly(Invoke([]() { return (dist_min + dist_max) / 2; }));
EXPECT_CALL(*unsafe_discrete_numeric_distribution_sampler, min)
.Times(1)
.WillOnce(Return(dist_min));
EXPECT_CALL(*unsafe_discrete_numeric_distribution_sampler, max)
.Times(AtLeast(1))
.WillRepeatedly(Return(dist_max));
RateLimiterPtr rate_limiter = std::make_unique<GraduallyOpeningRateLimiterFilter>(
duration,
std::unique_ptr<DiscreteNumericDistributionSampler>(
unsafe_discrete_numeric_distribution_sampler),
std::make_unique<LinearRateLimiter>(time_system, frequency));
auto total_ms_elapsed = 0ms;
auto clock_tick = 1ms;
EXPECT_FALSE(rate_limiter->tryAcquireOne());
do {
if (rate_limiter->tryAcquireOne()) {
acquisition_timings.push_back(total_ms_elapsed.count());
EXPECT_FALSE(rate_limiter->tryAcquireOne());
}
time_system.advanceTimeWait(clock_tick);
total_ms_elapsed += clock_tick;
} while (total_ms_elapsed <= duration);
EXPECT_FALSE(rate_limiter->tryAcquireOne());
time_system.advanceTimeWait(1s);
// Verify that after the rampup the expected constant pacing is maintained.
// Calls should be forwarded to the regular linear rate limiter algorithm with its
// corrective behavior so we can expect to acquire a series with that.
for (uint64_t i = 0; i < frequency.value(); i++) {
EXPECT_TRUE(rate_limiter->tryAcquireOne());
}
// Verify we acquired everything.
EXPECT_FALSE(rate_limiter->tryAcquireOne());
// Verify releaseOne works.
rate_limiter->releaseOne();
EXPECT_TRUE(rate_limiter->tryAcquireOne());
EXPECT_FALSE(rate_limiter->tryAcquireOne());
return acquisition_timings;
}
};
TEST_F(GraduallyOpeningRateLimiterFilterTest, TimingVerificationTest) {
EXPECT_EQ(getAcquisitionTimings(50_Hz, 1s),
std::vector<int64_t>({510, 530, 550, 570, 590, 610, 630, 650, 670, 690, 710, 730, 750,
770, 790, 810, 830, 850, 870, 890, 910, 930, 950, 970, 990}));
}
class ZipfRateLimiterImplTest : public Test {};
TEST_F(ZipfRateLimiterImplTest, TimingVerificationTest) {
Envoy::Event::SimulatedTimeSystem time_system;
const double q = 2.0;
const double v = 1.0;
auto rate_limiter = std::make_unique<ZipfRateLimiterImpl>(
std::make_unique<LinearRateLimiter>(time_system, 10_Hz), q, v,
ZipfRateLimiterImpl::ZipfBehavior::ZIPF_PSEUDO_RANDOM);
const std::chrono::seconds duration = 15s;
std::vector<int64_t> acquisition_timings;
auto total_ms_elapsed = 0ms;
auto clock_tick = 1ms;
do {
if (rate_limiter->tryAcquireOne()) {
acquisition_timings.push_back(total_ms_elapsed.count());
}
time_system.advanceTimeWait(clock_tick);
total_ms_elapsed += clock_tick;
} while (total_ms_elapsed <= duration);
EXPECT_EQ(acquisition_timings,
std::vector<int64_t>({450, 750, 1250, 2350, 2850, 3850, 4150, 4350, 4450,
5750, 5950, 6350, 7850, 8350, 8550, 9850, 10150, 10450,
10550, 11950, 12250, 12550, 13250, 13550, 13650, 13750, 13850}));
}
TEST_F(ZipfRateLimiterImplTest, BadArgumentsTest) {
// Zipf preconditions are q > 1, v > 0, verify we guard appropriately.
std::list<std::tuple<double, double>> bad_q_v_pairs{
{1.0, 1.0} /*borderline bad q*/,
{1.1, 0.0} /*borderline bad v*/,
{1.0, 0.0} /*borderline bad both*/,
{0.9, 1.0},
{1.1, -1.0},
{-1, 1.0},
};
for (const auto& pair : bad_q_v_pairs) {
EXPECT_THROW(ZipfRateLimiterImpl rate_limiter(std::make_unique<NiceMock<MockRateLimiter>>(),
std::get<0>(pair), std::get<1>(pair)),
NighthawkException);
}
}
} // namespace Nighthawk