11ARG BASE_TAG=staging
2- FROM nvidia/cuda:11.4.2 -cudnn8-devel-ubuntu18.04 AS nvidia
2+ FROM nvidia/cuda:11.7.0 -cudnn8-devel-ubuntu18.04 AS nvidia
33FROM gcr.io/kaggle-images/rstats:${BASE_TAG}
44ARG ncpus=1
55
@@ -10,11 +10,12 @@ COPY --from=nvidia /etc/apt/sources.list.d/cuda.list /etc/apt/sources.list.d/
1010COPY --from=nvidia /etc/apt/trusted.gpg /etc/apt/trusted.gpg.d/cuda.gpg
1111
1212ENV CUDA_MAJOR_VERSION=11
13- ENV CUDA_MINOR_VERSION=4
14- ENV CUDA_PATCH_VERSION=2
13+ ENV CUDA_MINOR_VERSION=7
14+ ENV CUDA_PATCH_VERSION=0
1515ENV CUDA_VERSION=$CUDA_MAJOR_VERSION.$CUDA_MINOR_VERSION.$CUDA_PATCH_VERSION
1616ENV CUDA_PKG_VERSION=$CUDA_MAJOR_VERSION-$CUDA_MINOR_VERSION
17- ENV CUDNN_VERSION=8.2.4.15
17+ ENV CUDNN_VERSION=8.5.0.96
18+ ENV NCCL_VERSION=2.13.4-1
1819LABEL com.nvidia.volumes.needed="nvidia_driver"
1920LABEL com.nvidia.cuda.version="${CUDA_VERSION}"
2021LABEL com.nvidia.cudnn.version="${CUDNN_VERSION}"
@@ -41,8 +42,8 @@ RUN apt-get update && apt-get install -y --no-install-recommends \
4142 libcudnn8-dev=$CUDNN_VERSION-1+cuda$CUDA_MAJOR_VERSION.$CUDA_MINOR_VERSION \
4243 libcublas-$CUDA_PKG_VERSION \
4344 libcublas-dev-$CUDA_PKG_VERSION \
44- libnccl2=2.11.4-1 +cuda$CUDA_MAJOR_VERSION.$CUDA_MINOR_VERSION \
45- libnccl-dev=2.11.4-1 +cuda$CUDA_MAJOR_VERSION.$CUDA_MINOR_VERSION && \
45+ libnccl2=$NCCL_VERSION +cuda$CUDA_MAJOR_VERSION.$CUDA_MINOR_VERSION \
46+ libnccl-dev=$NCCL_VERSION +cuda$CUDA_MAJOR_VERSION.$CUDA_MINOR_VERSION && \
4647 /tmp/clean-layer.sh
4748
4849ENV CUDA_HOME=/usr/local/cuda
@@ -55,7 +56,7 @@ ENV CUDA_HOME=/usr/local/cuda
5556ADD ldpaths $R_HOME/etc/ldpaths
5657
5758# Install tensorflow with GPU support
58- RUN R -e 'keras::install_keras(tensorflow = "2.6- gpu")' && \
59+ RUN R -e 'keras::install_keras(tensorflow = "gpu")' && \
5960 rm -rf /tmp/tensorflow_gpu && \
6061 /tmp/clean-layer.sh
6162
@@ -70,8 +71,8 @@ RUN CPATH=/usr/local/cuda/targets/x86_64-linux/include install2.r --error --ncpu
7071
7172# Torch: install the full package upfront otherwise it will be installed on loading the package which doesn't work for kernels
7273# without internet (competitions for example). It will detect CUDA and install the proper version.
73- # Make Torch think we use CUDA 11.3 (https://github.com/mlverse/torch/issues/807)
74- ENV CUDA=11.3
74+ # Make Torch think we use CUDA 11.8 (https://github.com/mlverse/torch/issues/807)
75+ ENV CUDA=11.7
7576RUN R -e 'install.packages("torch")'
7677RUN R -e 'library(torch); install_torch()'
7778
0 commit comments