-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCalibrationFromPics.py
377 lines (279 loc) · 11.9 KB
/
CalibrationFromPics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
# -*- coding: utf-8 -*-
import codecs
import csv
import math
import cv2
import numpy as np
from CalcBetweenRobot import CalcBetweenRobot
from utils import VS068_Kinematics as K
class load_data:
def __init__(self):
self.debugmode = 0 # 0: internal parameters are calculated at the same time, 1: pre-computed internal parameters are loaded
self.reference_img = 120 # Number of reference images
self.square_size = 1.2 # Size of one side of a square [cm].
self.pattern_size = (3, 4) # Number of crossing points
self.mode = 1
self.pattern_points = np.zeros(
(np.prod(self.pattern_size), 3), np.float32
)
self.pattern_points[:, :2] = np.indices(self.pattern_size).T.reshape(
-1, 2
)
self.pattern_points *= self.square_size
# print(self.pattern_points)
def get_angle(self, robot):
# Variable for storing acquired joint angles
all_angle = np.empty((0, 6), dtype=np.float32)
# Loading of fingertip position posture
file_name = "angle_" + str(self.reference_img)
# file_name = 'angle_100'
with codecs.open(
"./data/" + robot + "/" + file_name + ".csv", "r", "utf-8-sig"
) as f:
angle_reader = csv.reader(f, delimiter=",")
for row in angle_reader:
row = np.expand_dims(row, axis=0)
all_angle = np.append(all_angle, row, axis=0)
f.close()
return all_angle
def get_data_for_calib(self, all_angle, robot):
objpoints = []
imgpoints = []
good_angle = []
for img_num in range(self.reference_img):
img = cv2.imread(
"./saved_img/" + robot + "/img_%04d.bmp" % img_num
)
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
if self.mode == 1:
# Detecting chessboard corners
ret, corner = cv2.findChessboardCorners(
gray, self.pattern_size
)
if self.mode == 2:
ret, corner = cv2.findCirclesGrid(
gray,
self.pattern_size,
None,
cv2.CALIB_CB_CLUSTERING | cv2.CALIB_CB_SYMMETRIC_GRID,
)
# If there is a corner
if ret == True:
criteria = (
cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_COUNT,
100,
0.001,
)
cv2.cornerSubPix(gray, corner, (5, 5), (-1, -1), criteria)
print("img_%04d.bmp: seccess" % img_num)
good_angle.append(all_angle[img_num])
imgpoints.append(corner.reshape(-1, 2))
objpoints.append(self.pattern_points)
# Corner Drawing
gray = cv2.drawChessboardCorners(
gray, self.pattern_size, corner, ret
)
else:
print("img_%04d.bmp: fail" % img_num)
return good_angle, imgpoints, objpoints, gray
class calibrate_intrinsic(load_data):
def __init__(self):
super(calibrate_intrinsic, self).__init__()
def get_intrinsic(self, good_angle, imgpoints, objpoints, gray, robot):
if self.debugmode == 0:
(
ret,
mtx,
dist,
Rvec_target2cam,
tvec_target2cam,
) = cv2.calibrateCamera(
objpoints, imgpoints, gray.shape[::-1], None, None
)
np.save("data/" + robot + "/mtx", mtx)
np.save("data/" + robot + "/dist", dist)
tot_error = 0
for obj_point_num in range(len(objpoints)):
imgpoints_reproj, _ = cv2.projectPoints(
objpoints[obj_point_num],
Rvec_target2cam[obj_point_num],
tvec_target2cam[obj_point_num],
mtx,
dist,
)
error = 0
for img_point_num in range(imgpoints_reproj.shape[0]):
error += np.linalg.norm(
imgpoints[obj_point_num][img_point_num]
- imgpoints_reproj[img_point_num]
)
tot_error += error / len(imgpoints_reproj)
print(
"average of error (intrinsic): "
+ str(tot_error / len(objpoints))
+ " pixel"
)
T_cam2target = np.zeros((len(Rvec_target2cam), 4, 4), np.float32)
T_target2cam = np.zeros((len(Rvec_target2cam), 4, 4), np.float32)
for i in range(len(T_cam2target)):
R_target2cam, jac = cv2.Rodrigues(Rvec_target2cam[i])
T_target2cam[i][0:3, 0:3] = R_target2cam
T_target2cam[i][0:3, 3:4] = tvec_target2cam[i][0:3]
T_target2cam[i][3][3] = 1
T_cam2target[i] = np.linalg.inv(T_target2cam[i])
np.save("data/" + robot + "/T_cam2target", T_cam2target)
np.save("data/" + robot + "/T_target2cam", T_target2cam)
if self.debugmode == 1:
Rvec_target2cam = []
tvec_target2cam = []
mtx = np.load("data/" + robot + "/mtx.npy")
dist = np.load("data/" + robot + "/dist.npy")
mtx = np.load("data/A/mtx.npy")
dist = np.load("data/A/dist.npy")
for i in range(len(objpoints)):
err, R, t = cv2.solvePnP(objpoints[i], imgpoints[i], mtx, dist)
Rvec_target2cam.append(R)
tvec_target2cam.append(t)
T_cam2target = np.zeros((len(Rvec_target2cam), 4, 4), np.float32)
T_target2cam = np.zeros((len(Rvec_target2cam), 4, 4), np.float32)
for i in range(len(T_cam2target)):
R_target2cam, jac = cv2.Rodrigues(Rvec_target2cam[i])
T_target2cam[i][0:3, 0:3] = R_target2cam
T_target2cam[i][0:3, 3:4] = tvec_target2cam[i][0:3]
T_target2cam[i][3][3] = 1
T_cam2target[i] = np.linalg.inv(T_target2cam[i])
np.save("data/" + robot + "/T_cam2target", T_cam2target)
np.save("data/" + robot + "/T_target2cam", T_target2cam)
else:
T_cam2target = np.load("data/" + robot + "/T_cam2target.npy")
T_target2cam = np.load("data/" + robot + "/T_target2cam.npy")
print("intrinsic saved!")
return T_cam2target, T_target2cam
class calibrate_extrinsic:
def __init__(self):
super(calibrate_extrinsic, self).__init__()
self.DEG2RAD = math.pi / 180.0
self.RAD2DEG = 180.0 / math.pi
self.kine = K.KINE()
# extension specification
# self.kine.Extension.x = -138.0
# self.kine.Extension.z = 110.0
def get_Gripper2Base(self, good_angle, robot):
T_base2gripper = np.zeros((len(good_angle), 4, 4), np.float32)
T_gripper2base = np.zeros((len(good_angle), 4, 4), np.float32)
J = np.zeros((4, 4), dtype=np.float32)
good_angle = np.asarray(good_angle, np.float32)
for i in range(len(good_angle)):
self.kine.Angle[0] = good_angle[i][0] * self.DEG2RAD
self.kine.Angle[1] = good_angle[i][1] * self.DEG2RAD
self.kine.Angle[2] = good_angle[i][2] * self.DEG2RAD
self.kine.Angle[3] = good_angle[i][3] * self.DEG2RAD
self.kine.Angle[4] = good_angle[i][4] * self.DEG2RAD
self.kine.Angle[5] = good_angle[i][5] * self.DEG2RAD
self.kine.Forward()
J = self.kine.T
# cmに直す
J[0][3] = 0.1 * J[0][3]
J[1][3] = 0.1 * J[1][3]
J[2][3] = 0.1 * J[2][3]
T_gripper2base[i] = J
T_base2gripper[i] = np.linalg.inv(J)
# Difference between the maximum and minimum values of x,y,z
print(
"diff of xyz (cm)):",
max([r[0] for r in T_gripper2base[:, 0:3, 3:4]])
- min([r[0] for r in T_gripper2base[:, 0:3, 3:4]]),
max([r[1] for r in T_gripper2base[:, 0:3, 3:4]])
- min([r[1] for r in T_gripper2base[:, 0:3, 3:4]]),
max([r[2] for r in T_gripper2base[:, 0:3, 3:4]])
- min([r[2] for r in T_gripper2base[:, 0:3, 3:4]]),
)
np.save("data/" + robot + "/T_base2gripper", T_base2gripper)
np.save("data/" + robot + "/T_gripper2base", T_gripper2base)
print("gripper2base saved!")
return T_base2gripper, T_gripper2base
def handeye_calib(
self, T_base2gripper, T_gripper2base, T_cam2target, T_target2cam, robot
):
T_cam2base = np.zeros((4, 4), np.float32)
R_cam2base, t_cam2base = cv2.calibrateHandEye(
T_base2gripper[:, 0:3, 0:3],
T_base2gripper[:, 0:3, 3:4],
T_target2cam[:, 0:3, 0:3],
T_target2cam[:, 0:3, 3:4],
cv2.CALIB_HAND_EYE_TSAI,
)
T_cam2base[0:3, 0:3] = R_cam2base[:]
T_cam2base[0:3, 3:4] = t_cam2base[:]
T_cam2base[3, 3] = 1
print("cam2base \n", T_cam2base)
np.save("data/" + robot + "/T_cam2base", T_cam2base)
np.save("data/" + robot + "/T_base2cam", np.linalg.inv(T_cam2base))
# print("cam2base saved!")
def robot_world_handeye_calib(
self, T_base2gripper, T_gripper2base, T_cam2target, T_target2cam, robot
):
T_base2cam = np.zeros((4, 4), np.float32)
T_gripper2target = np.zeros((4, 4), np.float32)
(
R_base2cam,
t_base2cam,
R_gripper2target,
t_gripper2target,
) = cv2.calibrateRobotWorldHandEye(
T_cam2target[:, 0:3, 0:3],
T_cam2target[:, 0:3, 3:4],
T_base2gripper[:, 0:3, 0:3],
T_base2gripper[:, 0:3, 3:4],
cv2.CALIB_ROBOT_WORLD_HAND_EYE_SHAH,
)
T_base2cam = self.vec2T(R_base2cam, t_base2cam)
T_gripper2target = self.vec2T(R_gripper2target, t_gripper2target)
T_cam2base = np.linalg.inv(T_base2cam)
T_target2gripper = np.linalg.inv(T_gripper2target)
print("cam2base: \n", T_cam2base)
np.save("data/" + robot + "/T_gripper2target", T_gripper2target)
np.save("data/" + robot + "/T_target2gripper", T_target2gripper)
np.save("data/" + robot + "/T_cam2base", T_cam2base)
np.save("data/" + robot + "/T_base2cam", T_base2cam)
def vec2T(self, R, t):
T = np.zeros((4, 4), np.float32)
T[0:3, 0:3] = R[:]
T[0:3, 3:4] = t[:]
T[3, 3] = 1
return T
def main():
# Camera Robot Calibration
# ld = load_data()
# i_calib = calibrate_intrinsic()
# e_calib = calibrate_extrinsic()
# all_angle_A = ld.get_angle("A")
# all_angle_B = ld.get_angle("B")
# good_angle_A, imgpoints_A, objpoints_A, gray_A = ld.get_data_for_calib(
# all_angle_A, "A"
# )
# good_angle_B, imgpoints_B, objpoints_B, gray_B = ld.get_data_for_calib(
# all_angle_B, "B"
# )
# c2t_A, t2c_A = i_calib.get_intrinsic(
# good_angle_A, imgpoints_A, objpoints_A, gray_A, "A"
# )
# c2t_B, t2c_B = i_calib.get_intrinsic(
# good_angle_B, imgpoints_B, objpoints_B, gray_B, "B"
# )
# b2g_A, g2b_A = e_calib.get_Gripper2Base(good_angle_A, "A")
# b2g_B, g2b_B = e_calib.get_Gripper2Base(good_angle_B, "B")
# e_calib.handeye_calib(b2g_A, g2b_A, c2t_A, t2c_A, "A")
# e_calib.handeye_calib(b2g_B, g2b_B, c2t_B, t2c_B, "B")
# e_calib.robot_world_handeye_calib(b2g_A, g2b_A, c2t_A, t2c_A, "A")
# e_calib.robot_world_handeye_calib(b2g_B, g2b_B, c2t_B, t2c_B, "B")
# Robot-to-Robot Calibration
calc = CalcBetweenRobot()
T_B2A = calc.get_T_B2A()
T_A2World = calc.get_T_A2World(T_B2A)
T_B2World = calc.get_T_B2World(T_B2A, T_A2World)
calc.save_T(T_B2World, T_A2World)
print(T_B2World)
print(T_A2World)
if __name__ == "__main__":
main()