-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRandom_angle_generator.py
221 lines (163 loc) · 7.1 KB
/
Random_angle_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
# -*- coding: utf-8 -*-
import csv
import math
import random
import numpy as np
from utils import VS068_Kinematics as K
class random_generator:
def __init__(self):
self.DEG2RAD = math.pi / 180.0
self.RAD2DEG = 180.0 / math.pi
# 保存枚数
self.save_num = 100
# 手先移動量の最大
self.max_trans = 7.0
self.max_rot = 5.0
# 現在の関節角の読み込み
self.robot_name = "B"
cur_angle_deg = np.loadtxt(
"./data/" + self.robot_name + "/current_angle.csv"
).astype(np.float32)
self.kine = K.KINE()
# # 逆運動学の解選択に使用
# self.kine.near_angle = [
# 38.55 * self.DEG2RAD,
# 25.87 * self.DEG2RAD,
# 47.36 * self.DEG2RAD,
# 77.0 * self.DEG2RAD,
# 53.21 * self.DEG2RAD,
# -13.85 * self.DEG2RAD,
# ]
# 逆運動学の解選択に使用
# 関節角を読み込んで使う時用
self.kine.near_angle = [
cur_angle_deg[0] * self.DEG2RAD,
cur_angle_deg[1] * self.DEG2RAD,
cur_angle_deg[2] * self.DEG2RAD,
cur_angle_deg[3] * self.DEG2RAD,
cur_angle_deg[4] * self.DEG2RAD,
cur_angle_deg[5] * self.DEG2RAD,
]
# エクステンション指定
self.kine.Extension.x = -30.5
self.kine.Extension.z = 65.5
# 基準関節角度の指定_A
# self.kine.Angle[0] = -36.88 * self.DEG2RAD
# self.kine.Angle[1] = 24.47 * self.DEG2RAD
# self.kine.Angle[2] = 50.87 * self.DEG2RAD
# self.kine.Angle[3] = -79.25 * self.DEG2RAD
# self.kine.Angle[4] = 54.49 * self.DEG2RAD
# self.kine.Angle[5] = 20.4 * self.DEG2RAD
# 基準関節角度の指定_B
# self.kine.Angle[0] = 38.55 * self.DEG2RAD
# self.kine.Angle[1] = 25.87 * self.DEG2RAD
# self.kine.Angle[2] = 47.36 * self.DEG2RAD
# self.kine.Angle[3] = 77.0 * self.DEG2RAD
# self.kine.Angle[4] = 53.21 * self.DEG2RAD
# self.kine.Angle[5] = -13.85 * self.DEG2RAD
# 基準関節角度の指定_ファイルから読み込むとき
self.kine.Angle[0] = cur_angle_deg[0] * self.DEG2RAD
self.kine.Angle[1] = cur_angle_deg[1] * self.DEG2RAD
self.kine.Angle[2] = cur_angle_deg[2] * self.DEG2RAD
self.kine.Angle[3] = cur_angle_deg[3] * self.DEG2RAD
self.kine.Angle[4] = cur_angle_deg[4] * self.DEG2RAD
self.kine.Angle[5] = cur_angle_deg[5] * self.DEG2RAD
def get_init_pose(self):
# 基準位置格納変数
init_pose = np.zeros(6)
# 基準位置を求める
self.kine.Forward()
# 基準位置を格納する
init_pose[0] = np.copy(self.kine.T[0, 3])
init_pose[1] = np.copy(self.kine.T[1, 3])
init_pose[2] = np.copy(self.kine.T[2, 3])
init_pose[3] = self.kine.Euler.x * 180 / math.pi
init_pose[4] = self.kine.Euler.y * 180 / math.pi
init_pose[5] = self.kine.Euler.z * 180 / math.pi
return init_pose
def get_random(self):
# ----------------変数定義----------------
# 乱数保存用メモリ
trans_rand = np.zeros(3)
rot_rand = np.zeros(3)
# ----------------乱数を生成する----------------
for t_axis in range(0, 3):
trans_rand[t_axis] = random.uniform(
-self.max_trans, self.max_trans
)
for r_axis in range(0, 3):
rot_rand[r_axis] = random.uniform(-self.max_rot, self.max_rot)
return trans_rand, rot_rand
def get_pose_angle(self, init_pose):
# ----------------変数定義----------------
# 計算結果保存用メモリ
pose = np.zeros((1, 6))
angle = np.zeros((1, 6))
# 全結果保存用メモリ
all_pose = np.empty((0, 6))
all_T = np.empty((0, 4, 4))
all_angle = np.empty((0, 6))
# 取得した乱数を格納するメモリ
trand = np.zeros(3)
rrand = np.zeros(3)
# ----------------計算部分----------------
# 生成乱数に基づいて繰り返し,ランダムな角度位置を計算する
for num in range(0, self.save_num):
# 乱数を取得
trand, rrand = self.get_random()
# 基準位置に乱数で生成した微少移動分を足す
pose[:, 0] = init_pose[0] + trand[0]
pose[:, 1] = init_pose[1] + trand[1]
pose[:, 2] = init_pose[2] + trand[2]
pose[:, 3] = init_pose[3] + rrand[0]
pose[:, 4] = init_pose[4] + rrand[1]
pose[:, 5] = init_pose[5] + rrand[2]
# 順逆用変数に渡す
self.kine.T[0, 3] = np.copy(pose[:, 0])
self.kine.T[1, 3] = np.copy(pose[:, 1])
self.kine.T[2, 3] = np.copy(pose[:, 2])
self.kine.Euler.x = pose[:, 3] * math.pi / 180
self.kine.Euler.y = pose[:, 4] * math.pi / 180
self.kine.Euler.z = pose[:, 5] * math.pi / 180
# オイラー角から行列Rにする
self.kine.InverseEuler()
# 逆運動学を解く
self.kine.Inverse()
# 6次元の位置姿勢を保存用メモリにappendする
all_pose = np.append(all_pose, pose, axis=0)
# 6次元の位置姿勢を保存用メモリにappendする
all_T = np.append(
all_T, np.expand_dims(self.kine.T, axis=0), axis=0
)
for j in range(0, 6):
angle[:, j] = self.kine.Angle[j] * 180 / math.pi
# 関節角度を保存用メモリにappendする
all_angle = np.append(all_angle, angle, axis=0)
return all_pose, all_T, all_angle
def file_save(self, all_pose, all_T, all_angle):
with open("data/pose_" + str(self.save_num) + ".csv", "w") as f:
writer = csv.writer(f, lineterminator="\n") # 改行コード(\n)を指定しておく
writer.writerows(all_pose)
with open("data/pose_T_" + str(self.save_num) + ".csv", "w") as f:
writer = csv.writer(f, lineterminator="\n") # 改行コード(\n)を指定しておく
writer.writerows(all_T)
for i in range(0, all_T.shape[0]):
with open("data/poses" + "%02d" % i + ".txt", "w") as f:
writer = csv.writer(
f, lineterminator="\n", delimiter=" "
) # 改行コード(\n)を指定しておく
writer.writerows(all_T[i, :, :])
with open("data/angle_" + str(self.save_num) + ".csv", "w") as f:
writer = csv.writer(f, lineterminator="\n") # 改行コード(\n)を指定しておく
writer.writerows(all_angle)
def main():
rg = random_generator()
# 基準位置姿勢を取得
init_p = rg.get_init_pose()
# ランダムな角度位置姿勢を一括取得
pose, T, angle = rg.get_pose_angle(init_p)
# 保存
rg.file_save(pose, T, angle)
print("fin!")
if __name__ == "__main__":
main()